WorldWideScience

Sample records for acetyl-coa synthetase activity

  1. Neural control of glutamine synthetase activity in rat skeletal muscles.

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  2. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  3. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  4. Uroporphyrinogen-I-synthetase activity in red blood cells of lead-exposed workers

    El-Waseef, A.

    1982-01-01

    Lead-exposed (n . 26) and control (n . 12) subjects were investigated for their blood lead concentration erythrocyte 5-amino-laevulinic acid dehydratase (5-ALAD) and erythrocyte uroporphyrinogen-I-synthetase (URO-I-S) activity; 5-amino-laevulinic acid (5-ALA) and porphobilinogen (PBG) were used as substrates in the synthetase assay. In the lead workers erythrocyte 5-ALA dehydratase was grossly inhibited but with PBG as substrate the synthetase activity was not significantly different from the control group. With 5-ALA as substrate the synthetase assay showed marked inhibition. Addition of zinc (0.1 mmol/l) and dithiotheritol (0.5 mmol/l) brought the activities of both the dehydratase and synthetase (using 5-ALA as substrate) back into the ranges seen in the control group. With porphobilinogen as substrate higher concentrations of zinc caused inhibition of the synthetase, whilst reduction of added zinc to 0.01 mmol/l resulted in stimulation of the synthetase. A good correlation (r . 0.87) was obtained in synthetase assay when PBG and 5-aminolaevulinate (with added zinc and dithiothreitol) were used as substrates. With these additions 5-ALA may be used as a substrate in the URO-I-S assay in the investigation of latent cases of acute intermittent porphyria.

  5. Activity of aminoacyl-tRNA synthetases in experimental hyperthyroidism in muscle tissue of the rabbit

    In cardial and femoral muscles of rabbits specific activities of aminoacyl-tRNA synthetases for twenty amino acids were generally similar, namely the activities towards amino acids and their amides, leucine, isoleucine, histidine, tyrosine, proline and serine were considerably lower than towards the remaining amino acids. Specific activities of most aminoacyl-tRNA synthetases were higher in hyperthyroidism than in euthyreosis, and were higher in femoral muscle than in heart. The response to thyroxine treatment of individual aminoacyl-tRNA synthetases in both kinds of muscles varied with respect to most of the amino acids. (author). 22 refs, 1 fig., 1 tab

  6. Oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes in various diseases.

    Fujii, N; Kotake, S.; Hirose, S; Ohno, S; Yasuda, I.; Sagawa, A; Ishikawa, K.; Minagawa, T

    1984-01-01

    Interferon induces oligo-2',5'-adenylate synthetase in cells. In various diseases, interferon was detectable in the circulation or was produced spontaneously from peripheral blood mononuclear leukocytes. The oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes was examined in various diseases, including systemic lupus erythematosus, sarcoidosis, Vogt-Koyanagi-Harada disease, and Behcet's disease. The activity of this enzyme was significantly increased in system...

  7. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  8. Changes in Activities of Glutamine Synthetase during Grain Filling and Their Relation to Rice Quality

    2007-01-01

    Four japonica rice varieties differed in cooking and eating qualities were used in a pot experiment to study the relationship between the activities of glutamine synthetase during grain filling and rice quality. The activities of glutamine synthetase gradually increased and then declined as a single peak curve in the course of grain filling. The 15th day after heading was a turning point, before which the enzymatic activities in the inferior rice varieties with high protein content were higher than those in the superior rice varietie with low protein content, and after which it was converse. The activity of glutamine synthetase in grain was correlated with the taste meter value, peak viscosity and breakdown negatively at the early stage of grain filling whereas positively at the middle and late stages. Moreover, it was correlated with the protein content of rice grain and setback positively at the early stage and negatively at the middle and late stages. The correlation degree varied with the course of grain filling. From 15 days to 20 days after heading was a critical stage, in which the direction of correlation between the activity of glutamine synthetase and taste meter value and RVA properties of rice changed.

  9. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  10. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2

    Schwer, Bjoern; Bunkenborg, Jakob; Verdin, Regis O; Andersen, Jens S; Verdin, Eric

    2006-01-01

    We report that human acetyl-CoA synthetase 2 (AceCS2) is a mitochondrial matrix protein. AceCS2 is reversibly acetylated at Lys-642 in the active site of the enzyme. The mitochondrial sirtuin SIRT3 interacts with AceCS2 and deacetylates Lys-642 both in vitro and in vivo. Deacetylation of AceCS2 b...

  11. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    Revuelta José L

    2008-09-01

    Full Text Available Abstract Background Phosphoribosyl pyrophosphate (PRPP is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C. We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii.

  12. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers

    Hartmann, R; Norby, P L; Martensen, P M;

    1998-01-01

    . Competition experiments indicate that the binding site for the small RNAs on the 2'-5' oligoadenylate synthetase molecule at least partially overlaps that for the synthetic double-stranded RNA, poly(I).poly(C). Several of the RNAs function as potent activators of 2'-5' oligoadenylate synthetase in vitro......, although there is no correlation between binding affinity and ability to activate. The RNA aptamers having the strongest activation potential appear to have few base-paired regions. This suggests that 2'-5' oligoadenylate synthetase, which has previously been believed to be activated only by double-stranded...

  13. On the active site thiol of gamma-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation.

    C. S. Huang; Moore, W. R.; Meister, A.

    1988-01-01

    gamma-Glutamylcysteine synthetase (glutamate-cysteine ligase; EC 6.3.2.2) was isolated from an Escherichia coli strain enriched in the gene for this enzyme by recombinant DNA techniques. The purified enzyme has a specific activity of 1860 units/mg and a molecular weight of 56,000. Comparison of the E. coli enzyme with the well-characterized rat kidney enzyme showed that these enzymes have similar catalytic properties (apparent Km values, substrate specificities, turnover numbers). Both enzyme...

  14. Interferon titer and the 2',5'-oligoadenylate-synthetase activity in rat thymus lymphocytes in conditions of Omeprazol-caused hypergastrinemia

    Kompanets I. V.; Korotkiy О. G.; Karpovets T. P.; Pilipenko S. V.; Nikolska V. V.; Ostapchenko L. I.; Yankovsky D. S.

    2013-01-01

    The aim of this work was the determination of rat thymocytes response to hypergastrinemia evoked by hypoacidity and multiprobiotic «Symbiter® acidophilic concentrated» (symbiter) treatment via the estimation of the interferon (IFN) titer and 2', 5'-oligoadenylate (OA)-synthetase activity in lymphocytes. 2', 5'-OA-synthetase is the IFN-induced enzyme. Methods. The micromethod of IFN titer determination by antiviral activity, spectrophotometrical method of 2', 5'-OA-synthetase activity determin...

  15. Redox status affects the catalytic activity of glutamyl-tRNA synthetase

    Katz, Assaf; Banerjee, Rajat; de Armas, Merly;

    2010-01-01

    Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in...... vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were found to be cysteines from a SWIM zinc-binding motif located in the tRNA acceptor helix-binding domain. tRNA(Glu) was able to protect GluRS1 against oxidative...

  16. REGULATION OF RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE AND HEME OXYGENASE ACTIVITIES: EVIDENCE FOR CONTROL BY HEME AND AGAINST MEDIATION BY PROSTHETIC IRON

    The effects of in vivo administration of 6 compounds on the activity of delta-aminolevulinic acid (ALA) synthetase and heme oxygenase were determined. The order of decreasing potency in reducing ALA synthetase activity was heme, bilirubin, protoporphyrin IX, bilirubin dimethyl es...

  17. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.;

    2006-01-01

    an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was...

  18. Activity of interferon-dependent 2',5'-oligoadenylate synthetase in rat lymphoid cells under transformed environment conditions

    Ostapchenko, L. I.; Mikhailik, I. V.; Prokopova, K. V.

    It is detected that interferon-dependent 2',5'-oligoadenylate synthetase is a sensitive index of immunocompetent cells functional state under transformed environment conditions. Microgravitation and ionising radiation induce increase of investigated enzyme activity in rat lymphocytes, which can be a result of lymphoid cells compensatory mechanisms starting in response to stress factors action. Administration of interferon inductors permits to stimulate the 2',5'-oligoadenylate synthetase, which enables one to correct pathological changes in the cells and to intensify adaptive reactions of immune systems.

  19. Activity of CMP-2-keto-3-deoxyoctulosonic acid synthetase in Escherichia coli strains expressing the capsular K5 polysaccharide implication for K5 polysaccharide biosynthesis.

    Finke, A.; Roberts, I.; Boulnois, G; Pzzani, C; Jann, K

    1989-01-01

    The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of th...

  20. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Gabriela Beatriz Acosta; María Alejandra Fernández; Diego Martín Roselló; María Luján Tomaro; Karina Balestrasse; Abraham Lemberg

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoperated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions.

  1. In vitro and in vivo effect of interleukin-2 on the 2',5'-oligoadenylate synthetase activity of peripheral mononuclear blood cells

    The in vitro and in vivo influence of interleukin-2 (IL-2) on 2',5'-oligoadenylate (2-5A) synthetase activity and natural killer (NK) activity of peripheral mononuclear blood cells (PBMCs) was investigated. Incubation of PBMCs in vitro with IL-2 resulted in a considerable secretion of interferon-gamma (IFN-gamma) and in a significant elevation of 2-5A synthetase activity, as well as NK activity. Neutralizing monoclonal anti-IFN-gamma antibodies inhibited the elevation of 2-5A synthetase activity, but not the IL-2-induced augmentation of NK activity. Additionally, 2-5A synthetase and NK activity of PBMCs was measured in a child with neuroblastoma that was treated with recombinant IL-2 by continuous intravenous application. During the treatment, NK activity against the NK-sensitive cell line K 562 and against autologous tumor cells was not augmented. However, a significant increase of 2-5A synthetase activity in PBMCs was observed during IL-2 treatment, whereas there was no detectable serum level of IFN-gamma. We conclude that measuring 2-5A synthetase activity in patients treated with IL-2 may be helpful in monitoring the immunomodulatory effects of IL-2 on immune effector cells

  2. Radiosensitivity of glutathione-synthetase deficient human fibroblasts in vitro: Indication of a correlation between OER and glutathione-synthetase activity

    5-oxoprolinuria is an autosomal recessive disease associated with a glutathione-synthetase (GSH-S) deficiency. Previous results obtained with a fibroplast cell strain originating from such a patient (VP) and exhibiting a decreased glutathione (GSH) level, showed a reduced oxygen enhancement ratio (OER) (1.5; control: 2.9). In order to assess the radioprotective role of the intrinsic GSH, radiosensitivity of 6 fibroblast cell strains with different GSH-S activity have been studied using colony assay as endpoint. 3 strains originated from 5-oxoprolinuria patients (OB, EB and AZ); 3 other strains were got from parents of patients (RB, JB and SP). Among those 6 cell strains, the GSH level was found to be depleted only in AZ and SP. However, a reduced OER is observed for the 6 cell strains (1.7, 2.0 and 2.0 for the patients; 1.9, 2.2 and 2.7 for parents; controls: 2.9). As far as survival of GSH-S deficient cells is concerned, OER seems to be correlated with GSH-S activity: the lower the GSH-S activity, the lower the OER. These results are discussed taking into account other unpublished results obtained from experiments designed to investigate the role of GSH in radio-induced enzymatic repair

  3. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    The catalytic activity of highly purified Escherichia coli glycyl-tRNA synthetase has been studied by 31P-NMR spectroscopy and thin-layer chromatography on poly(ethyleneimine)-cellulose. It was found that this synthetase, besides the activation of its cognate amino acid and the syntheses of...... adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A), also catalyzes the formation of ADP from inorganic phosphate and the enzyme-bound glycyl adenylate. Accordingly it was shown that E. coli glycyl-tRNA synthetase, in the presence of inorganic phosphate, glycine...... remaining catalytic activities of aminoacyl-tRNA synthetases is discussed, as well as the biological significance of the reaction....

  4. Expression and specific activities of carbamoyl phosphate synthetase 1 in chronic hypoxic rats

    Uly A. Nikmah

    2016-04-01

    Full Text Available Background: Urea biosynthesis is a very important process in the liver which needs ATP, CO2 and functional mitochondria or aerobic condition. Liver can adapt to hypoxic condition, generally and locally. This study aimed to analyze the effect of chronic hypoxia on liver urea biosynthesis as indicated by the level and specific activity of mRNA of carbamoyl phosphate synthetase 1 (CPS1, a key enzyme in urea biosynthesis in hypoxic rats.Methods: 20 male Sprague-Dawley rats were placed in hypoxic chamber supplied by a mixture of 10% O2 and 90% N2. Five rats were sacrificed at 1, 3, 5, and 7 days after exposure. Liver homogenates were analyzed for HIF-1 (hypoxia inducible factor-1 by ELISA, CPS1 mRNA by real time RT-PCR and CPS1 enzymatic specific activities by Pierson method. Data were analyzed by ANOVA test and Pearson correlation.Results: The HIF-1 in liver increased significantly, as well as CPS1 mRNA and CPS1 enzymatic activities (p<0.05. There was a strong correlation (r=0.618; p<0.01 between the level of CPS1 mRNA and CPS1 enzymatic activities, moderate correlation between HIF-1 and CPS1 mRNA (r=0.419; p<0.05 but no correlation between HIF-1 and CPS1 enzymatic activities. The study indicated that urea biosynthesis in liver was affected by hypoxia and partially under HIF-1 regulation. The study also found increase of urea and NH3 biosynthesis related to proteolysis as indicated by the decrease of total body weight and liver weight.Conclusion: There was an increase in the expression and specific activities of CPS1 in urea biosynthesis as a result of increasing proteolysis  in chronic hypoxic condition.

  5. Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

    Edith Debroas

    2015-05-01

    Full Text Available Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS, the key enzyme that governs this glutamate/glutamine cycle, is known to be upregulated by glucocorticoids. In the present work we have thus studied in parallel the effects of dexamethasone on glutamine synthetase activity and NMDA-induced neuronal death in cultures derived from the brain cortex of murine embryos. We showed that dexamethasone was able to markedly enhance GS activity in cultures of astrocytes but not in near pure neuronal cultures. The pharmacological characteristics of the dexamethasone action strongly suggest that it corresponds to a typical receptor-mediated effect. We also observed that long lasting incubation (72 h of mixed astrocyte-neuron cultures in the presence of 100 nM dexamethasone significantly reduced the toxicity of NMDA treatment. Furthermore we demonstrated that methionine sulfoximine, a selective inhibitor of GS, abolished the dexamethasone-induced increase in GS activity and also markedly potentiated NMDA toxicity. Altogether these results suggest that dexamethasone may promote neuroprotection through a stimulation of astrocyte glutamine synthetase.

  6. Interferon titer and the 2',5'-oligoadenylate-synthetase activity in rat thymus lymphocytes in conditions of Omeprazol-caused hypergastrinemia

    Kompanets I. V.

    2013-01-01

    Full Text Available The aim of this work was the determination of rat thymocytes response to hypergastrinemia evoked by hypoacidity and multiprobiotic «Symbiter® acidophilic concentrated» (symbiter treatment via the estimation of the interferon (IFN titer and 2', 5'-oligoadenylate (OA-synthetase activity in lymphocytes. 2', 5'-OA-synthetase is the IFN-induced enzyme. Methods. The micromethod of IFN titer determination by antiviral activity, spectrophotometrical method of 2', 5'-OA-synthetase activity determination. Results. It was shown that the IFN production by cultivated thymocytes is amplified while the 2', 5'-OA-synthetase activity decreases in these cells in conditions of hypoacidity caused by the 28-days omeprazol treatment. The treatment of animals by symbiter against a background of hypoacidity causes the augmentation of IFN production by thymocytes, but does not stimulate the 2', 5'-OA-synthetase activity. The IFN production by thymocytes in response to IFN inducers (PHA and cycloferone in vitro is intensified comparatively to the control at hypoacidity and symbiter treatment. Conclusions. The multiprobiotic symbiter exhibits interferonogenic properties. The IFN synthesis in response to induction in vitro is intensified in comparison with healthy animals at both hypoacidity and symbiter treatment while the 2', 5'-OA-synthetase acivity in thymocytes decreases.

  7. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids

    Ford, Tyler J.; Way, Jeffrey C

    2015-01-01

    FadD catalyses the first step in E. coli beta-oxidation, the activation of free fatty acids into acyl-CoA thioesters. This activation makes fatty acids competent for catabolism and reduction into derivatives like alcohols and alkanes. Alcohols and alkanes derived from medium chain fatty acids (MCFAs, 6–12 carbons) are potential biofuels; however, FadD has low activity on MCFAs. Herein, we generate mutations in fadD that enhance its acyl-CoA synthetase activity on MCFAs. Homology modeling reve...

  8. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just;

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have not...

  9. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  10. Loss of (2'-5')oligoadenylate synthetase activity by production of antisense RNA results in lack of protection by interferon from viral infections

    An expression vector was constructed that carries part of the human BK papovavirus with 0.5 kilobases of (2'-5')oligoadenylate (2-5A) synthetase cDNA inserted in inverted orientation downstream from the virion proteins (VP) promoter and the neomycin-resistance gene neo under the control of a simian virus 40 promoter. Cells transfected with this vector and selected for resistance to the neomycin derivative G418 synthesized RNA complementary to 2-5A synthetase mRNA. These cells lacked 2-5A synthetase activity, and the enzyme was not inducible by interferon. In contrast, 2-5A synthetase was induced in cells transfected with a control vector without the cDNA insert. Such cells were protected by interferon from RNA viruses, whereas cells lacking 2-5A synthetase were not protected from encephalomyocarditis virus, vesicular stomatitis virus, and Sindbis virus but were fully protected from influenza virus. These findings show that a high level of 2-5A synthetase is required for interferon-induced protection from the cytoplasmic RNA viruses tested

  11. Gamma-irradiation effect on the acceptor activity of phenylalanine-tRNA and aminoacyl-tRNA-synthetases of cotton seeds

    Changes in the activity of phenylalanine-tRNA-synthetases in the reaction of addition of C14-phenylalanine to tRNA, as well as in the acceptor activity of phenylalanine-tRNA itself and the substrate specificity of phenylalanine--tRNA-synthetases have been studied in two-day-old cotton seedlings grown from seeds irradiated with doses of 6, 25 and 50 kR. Phenylalanine-tRNA and its synthetase, and the isoacceptor tRNAs were shown to be differently sensitive to the action of ionizing radiation. The activity of enzyme was inhibited more markedly than the corresponding tRNA. Study of the substrate specificity of each fraction showed that enzyme E1 acylated isoacceptor phenylalanine-tRNA 1 and 2; the enzyme E2, isoacceptor form 3

  12. Optimization of crude enzyme preparation methods for analysis of glutamine synthetase activity in phytoplankton and field samples

    WANG Yujue; WANG Dazhi; HONG Huasheng

    2009-01-01

    Glutamine synthetase (GS) is an important enzyme involved in nitrogen assimilation and metabolism in marine phytoplankton. However, little work has been done in situ due to the limitation of crude enzyme preparation methods. In this study, three enzyme preparation methods, high-speed centrifugation (HC, <10 000 g), ultracentrifugation (UC, 70 000 g), and ultrafiltration (UF) with 100 kμ, molecular weight cutoff, were compared using two diatom species (Asterionellopsis glacialis and Thalassiosira weissflogii), and two dinoflagellate species (Alexandrium catenella and Prorocentrum donghaiense) as experimental materials together with field samples collected from Xiamen Harbor, China. The results showed that HC is the best method to prepare crude enzymes for glutamine synthetase activity (GSA) in diatom species and diatom-dominant samples, while UF is the best method to extract GS from dinoflagellate species and dinoflagellate-dominant samples. For the HC method, the optimal centrifugal speed and time were 10 000 g and 35 min, respectively, and under these conditions, the highest GSA was obtained in all samples. This study indicates that both methods (HC and UF) overcome the limitation of centrifugal speed and could be applied to in situ GSA analysis, especially at sea.

  13. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.

    Ishikawa, Fumihiro; Suzuki, Takehiro; Dohmae, Naoshi; Kakeya, Hideaki

    2015-12-01

    Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple-labeling technique with active-site-directed probes for adenylation domains. When applied to gramicidin S-producing and -nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high-resolution identification of low-abundance active NRPS enzymes in native proteomic environments. PMID:26467472

  14. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    Knight, T.J. [Univ. of Southern Maine, Portland, ME (United States); Temple, S.; Sengupta-Gopalan, C. [New Mexico State Univ., Las Curces, NM (United States)] [and others

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  15. Intestinal acyl-CoA synthetase 5: Activation of long chain fatty acids and behind

    Christina Klaus

    2013-01-01

    Full Text Available The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5. It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development.

  16. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids

    Tyler J. Ford

    2015-06-01

    Full Text Available FadD catalyses the first step in E. coli beta-oxidation, the activation of free fatty acids into acyl-CoA thioesters. This activation makes fatty acids competent for catabolism and reduction into derivatives like alcohols and alkanes. Alcohols and alkanes derived from medium chain fatty acids (MCFAs, 6–12 carbons are potential biofuels; however, FadD has low activity on MCFAs. Herein, we generate mutations in fadD that enhance its acyl-CoA synthetase activity on MCFAs. Homology modeling reveals that these mutations cluster on a face of FadD from which the co-product, AMP, is expected to exit. Using FadD homology models, we design additional FadD mutations that enhance E. coli growth rate on octanoate and provide evidence for a model wherein FadD activity on octanoate can be enhanced by aiding product exit. These studies provide FadD mutants useful for producing MCFA derivatives and a rationale to alter the substrate specificity of adenylating enzymes.

  17. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  18. Changes in Activities of Key Enzymes for Starch Synthesis and Glutamine Synthetase in Grains of Progenies from a Rice Cross During Grain Filling

    LI Xiao-guang; LIU Hai-ying; JIN Zheng-xun; LIU Hong-liang; HUANG Xing; XU Mei-lan; ZHANG Feng-zhuan

    2010-01-01

    The progenies differed in amylose and protein contents in grains, which derived from a rice cross, Dongnong 423×Toukei 180, were used to study changes in the activities of ADP-glucose pyrophosphorylase (AGPP), soluble starch synthetase (SSS), starch branching enzyme (SBE) and glutamine synthetase (GS) in rice grains during grain filling. The activities of AGPP, SSS and SBE gradually increased and then declined as a single-peak curve with the process of grain filling in the progenies with high and low amylose contents in grains. The progenies with high amylose content peaked earlier in the AGPP, SSS and SBE activities and had higher AGPP, SSS and SBE activities at the early grain filling stage than those with low amylose content. The GS activity peaked earlier and was higher at the late stage of grain filling in the progenies with high protein content than in those with low protein content. It is suggested that the activities of key enzymes for starch synthesis and glutamine synthetase could be changed in oriented breeding for amylose and protein contents in grains.

  19. Studies on Glutamine Synthetase Activity in Sugar Beet(Beta vulgaris L.) under Different Levels of Nitrogen

    YanGuiping; YanHui; 等

    1995-01-01

    It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seeding stage to foliage rapid growth stage and declined to its lowest level at the latter stage of root rapid growth,and then increased slightly,GSA in leaf blades had positive correlation with nitrogen level during the whole period of growth,GSA in roots showed the same tendency as it in leaf blades at the early middle stage of growth,but at the latter stage of growth,no positive correlation was established.GSA in leaf blades was the strongest compared with crowns,petioles and roots,and could represent the highest enzyme activity of the whole pant,GSA had quadratic curvilinear correlation with root yield and sugar production.GSA in leaf blades had significant positive correlation with α-NH2-N at the foliage rapid growth stage.

  20. Entamoeba lysyl-tRNA synthetase contains a cytokine-like domain with chemokine activity towards human endothelial cells.

    Manuel Castro de Moura

    2011-11-01

    Full Text Available Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II. This Entamoeba EMAPII-like polypeptide (EELP is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.

  1. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (32P)orthophosphate

  2. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  3. Genetics Home Reference: holocarboxylase synthetase deficiency

    ... the body is unable to use the vitamin biotin effectively. This disorder is classified as a multiple ... impaired activity of certain enzymes that depend on biotin. The signs and symptoms of holocarboxylase synthetase deficiency ...

  4. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly. PMID:19464754

  5. Radioimmune assay of human platelet prostaglandin synthetase

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH2 from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and [125I]-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the [125I]antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 109 platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency

  6. Immunological recovery and dose evaluation in IFN-alpha treatment of hairy cell leukemia: analysis of leukocyte differentiation antigens, NK and 2',5'-oligoadenylate synthetase activity

    Nielsen, B; Hokland, M; Justesen, J;

    1989-01-01

    A low-dose interferon (IFN)-alpha regimen for the treatment of hairy cell leukemia (HCL) was evaluated by following changes in leukocyte differentiation antigens (LDA), natural killer cell (NK) and 2',5'-oligoadenylate (2-5A) synthetase activities. Due to hairy cells' (HC) weak expression of...... treatment these effects were gradually abolished, indicating an increasing effect of IFN-alpha in vivo with time. These results shows that the different PBMNC subpopulations and important immunological functions normalize with treatment. This normalization is, however, not seen until at least after 1 year...

  7. Organisation and sequence determination of glutamine-dependent carbamoyl phosphate synthetase II in Toxoplasma gondii.

    Fox, Barbara A; Bzik, David J

    2003-01-01

    Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase. PMID:12547350

  8. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides.

    Ostrowski, Maciej; Jakubowska, Anna

    2013-03-01

    The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species. PMID:23332498

  9. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.

    Tan, Min; Yan, Wei; Liu, Ru-Juan; Wang, Meng; Chen, Xin; Zhou, Xiao-Long; Wang, En-Duo

    2012-04-15

    aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism. PMID:22292813

  10. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].

    Iakovlev, N N; Chagovets, N R; Maksimova, L V

    1980-01-01

    Changes in the contents of adenine nucleotides, creatine phosphate, inorganic phosphate, creatine, glucose-6-phosphate and glycogen and the activity of adenylate cyclase, creatine kinase, glycogen phosphorylase 31:51-AMP-phosphodiesterase and glycogen synthetase in muscles and of blood catecholamines were studied in adult rats before loading, immediately after the cessation of the muscular activity, and at rest. Adenine nucleotides are established to play a regulatory role in catabolic and anabolic processes nucleotides are established to play a regulatory role in catabolic and anabolic processes related to the muscular activity. It is established that compensation and supercompensation of the working losses of muscular creatine phosphate and glycogen are due to activation of anabolic processes under conditions of higher phosphorylation of the adenylic system. PMID:6247797

  11. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  12. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization

    Færgeman, Nils J.; Black, P N; Zhao, X D;

    2001-01-01

    Exogenous long-chain fatty acids are activated to coenzyme A derivatives prior to metabolic utilization. In the yeast Saccharomyces cerevisiae, the activation of these compounds prior to metabolic utilization proceeds through the fatty acyl-CoA synthetases Faa1p and Faa4p. Faa1p or Faa4p are esse...

  13. Substrate specificity of formylglycinamidine synthetase

    Schendel, F.J.; Stubbe, J.

    1986-04-22

    Formylglycinamidine ribonucleotide (FGAM) synthetase, which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and ATP to FGAM, ADP, glutamate, and Pi, has been purified to homogeneity (sp act. 0.20 mumol min-1 mg-1) from chicken liver by an alternative procedure to that of Buchanan et al. (Buchanan, J. M., Ohnoki, S., and Hong, B. S. (1978) Methods Enzymol. 51, 193-201) (sp act. 0.12 mumol min-1 mg-1). A variety of new analogues of formylglycinamide ribonucleotide have been prepared in which the formylglycinamide arm (R = CH/sub 2/NHCHO) has been replaced by R = CH/sub 3/, CH/sub 2/OH, CH/sub 2/Cl, CH/sub 2/NH/sub 3/, CH/sub 2/NHCOCH/sub 3/, CH/sub 2/NHCOCH/sub 2/Cl, CH/sub 2/NHCO/sub 2/CH/sub 2/Ph, and L-CHC-H/sub 3/NHCHO. These compounds have been characterized by 1H and 13C NMR spectroscopy. With compounds R = CH/sub 3/, CH/sub 2/OH, and CH/sub 2/NHCOCH/sub 3/ and ATP, in the presence or absence of glutamine, FGAM synthetase catalyzes the production of Pi at 4.5, 48, and 20%, respectively, the rate of production of Pi from formylglycinamide ribonucleotide. Only R = CH/sub 2/NHCOCH/sub 3/ causes glutaminase activity as well as ATPase activity and has been shown to be converted to the amidine analogue. Both FGAR (R = CH/sub 2/NHCHO) and the FGAR analogue (R = CH/sub 2/NHCHOCH/sub 3/) in the presence of ATP and FGAM synthetase and in the absence of glutamine form a complex isolable by Sephadex G-50 chromatography. FGAM synthetase is thus highly specific for its formylglycine side chain. (18O)-beta-FGAR was prepared biosynthetically, and FGAM synthetase was shown by 31P NMR spectroscopy to catalyze the transfer of amide 18O to inorganic phosphate.

  14. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation

    Grevengoed, Trisha J; Cooper, Daniel E; Young, Pamela A; Ellis, Jessica M; Coleman, Rosalind A

    2015-01-01

    protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure......, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin...... treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and...

  15. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    Highlights: → Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). → Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. → HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  16. Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU. This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors. While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity. TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT

  17. Cytosolic glutamine synthetase

    Thomsen, Hanne Cecilie; Eriksson, Ulf Dennis; Møller, Inge Skrumsager;

    2014-01-01

    Overexpression of the cytosolic enzyme glutamine synthetase 1 (GS1) has been investigated in numerous cases with the goal of improving crop nitrogen use efficiency. However, the outcome has generally been inconsistent. Here, we review possible reasons underlying the lack of success and conclude...

  18. A Modified Bacillus Calmette-Guérin (BCG Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence

    Douglas S. Kernodle

    2013-01-01

    Full Text Available Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.

  19. Effects of detergents on retinyl ester synthetase and all-trans:11-CIS retinoid isomerase activities in homogenates of bovine retinal pigment epithelium

    [11,12-3H] all-trans Retinol and various detergents were added to homogenates of fresh bovine retinal pigment epithelium. After dark incubation for 40 minutes at 37 degrees C, the retinoids were extracted and analyzed by a high resolution HPLC method. The detergents showed different effects on the retinyl ester synthetase (RES) and all-trans:11 cis retinoid isomerase (RI) activities. The detergent CHAPS (0.3%) almost totally destroyed RI activity without reducing RES activity. The same concentration of sodium dodecyl sulfate and Nonidet P-40 significantly reduced RES activity and totally destroyed RI activity. RES and RI activities were unaffected by 0.3% Mega 8, a nonionic detergent, but were inhibited by 1% Mega 8. Thus, because of these differential effects of detergents, RES and RI probably are different enzymes rather than a single multifunctional enzyme. Because isomerization was always inhibited more than esterification, our findings also accord with the esterification/isomerization mechanism recently reported by Rando et al

  20. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-03-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective. PMID:25676153

  1. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations

    Mykuliak V. V.

    2014-03-01

    Full Text Available Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS. Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD simulations in solution. Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyrosine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the enzyme evidences a significant conformational mobility of the active site.

  2. Specific activation of 2'-5'oligoadenylate synthetase gene promoter by hepatitis C virus-core protein: A potential for developing hepatitis C virus targeting gene therapy

    Ying Wang; Shan-Shan Mao; Qiong-Qiong He; Yuan Zi; Ji-Fang Wen; De-Yun Feng

    2009-01-01

    AIM: To examine whether 2'-5'oligoadenylate synthetase (OAS) gene promoter can be specifically activated by hepatitis C virus (HCV)-core protein.METHODS: Human embryo hepatic cell line L02 was transfected with pcDNA3.1-core plasmid and selected by G418. Expression of HCV-core was detected by reverse transcription polymerase chain reaction and Western blotting. The OAS promoter sequence was amplified from the genomic DNA and inserted into pGL3-basic vector. The resultant pGL3-OAS-Luci plasmid was transiently transfected into L02/core cells and luciferase activity was assayed.RESULTS: L02/core cell line stably expressing HCV-core protein was established. The pGL3-OAS-Luci construct exhibited significant transcriptional activity in the L02/core cells but not in the L02 cells.CONCLUSION: HCV-core protein activates the OAS gene promoter specifically and effectively. Utilization of OAS gene promoter would be an ideal strategy for developing HCV-specific gene therapy.

  3. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  4. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins.

    Zuo, Dong-Yun; Yi, Shu-Yuan; Liu, Rong-Jing; Qu, Bo; Huang, Tao; He, Wei-Jie; Li, Cheng; Li, He-Ping; Liao, Yu-Cai

    2016-06-01

    Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification. PMID:26882849

  5. A facile reproducible radioimmunoassay of the mixed metabolites of prostaglandins E, suitable for measurement of relative differences of phospholipase/prostaglandin synthetase activity in vivo.

    Fretland, D J; Cammarata, P S

    1984-04-01

    A relatively simple, reproducible, radioimmunoassay for the mixed metabolites of prostaglandins E (U-PGE-M) in rat and human urine is described. Results of the assay of treated versus control urine extracts correlate well with differences expected from treatments known to alter in vivo phospholipase/prostaglandin synthetase activity. Cross-reactivity of heterogeneous metabolite antiserum with 5 available endogenous prostaglandins and a single metabolite was determined and showed little or no cross reaction. Sensitivity, within-assay precision, interassay reproducibility, and parallelism were also determined and found acceptable. Excretion rates of U-PGE-M by rats and humans were determined, and statistically significant differences could be shown, although absolute values were smaller than estimated absolute values obtained from mass-spectrometric measurements of single, purified metabolites. Normal human male excretion rates differed significantly from those of females. Injection of prostaglandin E1 caused a significant rise in U-PGE-M excretion in rats whereas aspirin and indomethacin caused it to fall. U-PGE-M excretion rates of spontaneous hypertensive rats were significantly less than rates of normotensive controls. Adrenalectomy resulted in excretion of significantly larger amounts of U-PGE-M than in normal or sham-operated controls. A screen of clinically active pharmacological agents and hormones gave results consistent with previously published reports. PMID:6427792

  6. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles.

    Jules A Nchoutmboube

    Full Text Available All positive strand (+RNA viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3 as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna

  7. Continuous spectrophotometric assay for aminoacyl-tRNA synthetases.

    Chang, G G; Pan, F; Lin, Y H; Wang, H Y

    1984-11-01

    A simple, continuous assay for aminoacyl-tRNA synthetases utilizing a commercially available pyrophosphate assay reagent kit was demonstrated. The method coupled aminoacyl-tRNA synthetase activity with pyrophosphate-dependent fructose-6-phosphate kinase, aldolase, triosephosphate isomerase, and glycerophosphate dehydrogenase. PPi formation was correlated with the oxidation of NADH, and was monitored continuously by the decrease of absorbance at 340 nm. PMID:6099060

  8. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  9. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with 32P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with 32P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C

  10. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  11. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  12. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S41A, S41C, K37Q, and K37L

  13. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  14. Molecular cloning of an ornithine-activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in Escherichia coli.

    Krause, M.; Marahiel, M A; von Döhren, H; Kleinkauf, H

    1985-01-01

    Partially digested chromosomal DNA of Bacillus brevis ATCC 9999, a producer of the cyclic peptide antibiotic gramicidin S, was ligated into the BamHI site of the Escherichia coli expression vector pUR2-Bam. The ligated molecules were used to transfer E. coli to ampicillin resistance. Of 5 X 10(3) colonies tested by in situ immunoassay for a cross-reaction with antibodies against the gramicidin S synthetase 2, 6 colonies were found to be immunoreactive. A clone designated MK2, which had a 3.9-...

  15. Cytosolic glutamine synthetase in barley

    Thomsen, Hanne Cecilie

    fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  16. Prostaglandin synthetase inhibitor in an infant with congenital chloride diarrhoea.

    Minford, A M; Barr, D G

    1980-01-01

    Hyper-reninaemia, hypokaluria, and hypokalaemia in an infant with congenital chloride diarrhoea improved during treatment with a prostaglandin synthetase inhibitor, ketoprofen. There was evidence of increased activity of therenin-aldosterone system when ketoprofen was stopped. It is suggested that prostaglandins may be involved in stimulating the renin-aldosterone system in congenital chloride diarrhoea.

  17. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  18. Biosynthetic engineering of nonribosomal peptide synthetases.

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  19. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  20. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification.

    Kosenko, Elena A; Venediktova, Natalia I; Kudryavtsev, Andrey A; Ataullakhanov, Fazoil I; Kaminsky, Yury G; Felipo, Vicente; Montoliu, Carmina

    2008-12-01

    There are a number of pathological situations in which ammonia levels increase leading to hyperammonemia, which may cause neurological alterations and can lead to coma and death. Currently, there are no efficient treatments allowing rapid and sustained decrease of ammonia levels in these situations. A way to increase ammonia detoxification would be to increase its incorporation in glutamine by glutamine synthetase. The aim of this work was to develop a procedure to encapsulate glutamine synthetase in mouse erythrocytes and to assess whether administration of these erythrocytes containing glutamine synthetase (GS) reduce ammonia levels in hyperammonemic mice. The procedure developed allowed the encapsulation of 3 +/- 0.25 IU of GS / mL of erythrocytes with a 70% cell recovery. Most metabolites, including ATP, remained unaltered in glutamine synthetase-loaded erythrocytes (named ammocytes by us) compared with native erythrocytes. The glutamine synthetase-loaded ammocytes injected in mice survived and retained essentially all of their glutamine synthetase activity for at least 48 h in vivo. Injection of these ammocytes into hyperammonemic mice reduced ammonia levels in the blood by about 50%. The results reported indicate that ammocytes are able to keep their integrity, normal energy metabolism, the inserted glutamine synthetase activity, and can be useful to reduce ammonia levels in hyperammonemic situations. PMID:19088795

  1. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    Bandaralage, Sahan P.S. [Gold Coast Hospital and Health Service, Southport, Queensland (Australia); Griffith University, School of Medicine, Southport, Queensland (Australia); Farnaghi, Soheil [Caboolture Hospital, Caboolture, Queensland (Australia); Dulhunty, Joel M.; Kothari, Alka [Redcliffe Hospital, Redcliffe, Queensland (Australia); The University of Queensland, School of Medicine, Herston, Queensland (Australia)

    2016-03-15

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  2. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  3. Reaction Mechanism and Structural Model of ADP-forming Acetyl-CoA Synthetase from the Hyperthermophilic Archaeon Pyrococcus furiosus: EVIDENCE FOR A SECOND ACTIVE SITE HISTIDINE RESIDUE*S⃞

    Bräsen, Christopher; Schmidt, Marcel; Grötzinger, Joachim; Schönheit, Peter

    2008-01-01

    In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + Pi ⇆ acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain orga...

  4. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes. PMID:25437123

  5. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency.

    Burri, B J; Sweetman, L.; Nyhan, W L

    1985-01-01

    Holocarboxylase synthetase activity has been determined in fibroblasts of seven patients with the neonatal form of biotin-responsive multiple carboxylase deficiency. The normal Km for biotin was 15 +/- 3 nmol/l, while in the patients the values ranged from 48 to 1,062 nmol/l. The mean maximum velocity was 27% of normal. Differences among the values obtained for the Km for biotin and the heat stability of holocarboxylase synthetase suggested that the patients studied represented at least four ...

  6. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine.

    Kleeman, T A; Wei, D; Simpson, K L; First, E A

    1997-05-30

    To test the hypothesis that tRNATyr recognition differs between bacterial and human tyrosyl-tRNA synthetases, we sequenced several clones identified as human tyrosyl-tRNA synthetase cDNAs by the Human Genome Project. We found that human tyrosyl-tRNA synthetase is composed of three domains: 1) an amino-terminal Rossmann fold domain that is responsible for formation of the activated E.Tyr-AMP intermediate and is conserved among bacteria, archeae, and eukaryotes; 2) a tRNA anticodon recognition domain that has not been conserved between bacteria and eukaryotes; and 3) a carboxyl-terminal domain that is unique to the human tyrosyl-tRNA synthetase and whose primary structure is 49% identical to the putative human cytokine endothelial monocyte-activating protein II, 50% identical to the carboxyl-terminal domain of methionyl-tRNA synthetase from Caenorhabditis elegans, and 43% identical to the carboxyl-terminal domain of Arc1p from Saccharomyces cerevisiae. The first two domains of the human tyrosyl-tRNA synthetase are 52, 36, and 16% identical to tyrosyl-tRNA synthetases from S. cerevisiae, Methanococcus jannaschii, and Bacillus stearothermophilus, respectively. Nine of fifteen amino acids known to be involved in the formation of the tyrosyl-adenylate complex in B. stearothermophilus are conserved across all of the organisms, whereas amino acids involved in the recognition of tRNATyr are not conserved. Kinetic analyses of recombinant human and B. stearothermophilus tyrosyl-tRNA synthetases expressed in Escherichia coli indicate that human tyrosyl-tRNA synthetase aminoacylates human but not B. stearothermophilus tRNATyr, and vice versa, supporting the original hypothesis. It is proposed that like endothelial monocyte-activating protein II and the carboxyl-terminal domain of Arc1p, the carboxyl-terminal domain of human tyrosyl-tRNA synthetase evolved from gene duplication of the carboxyl-terminal domain of methionyl-tRNA synthetase and may direct tRNA to the active site of

  7. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei.

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth; Phillips, Margaret A

    2014-04-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  8. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translat...

  9. Genetics Home Reference: glutathione synthetase deficiency

    ... elevated acidity in the blood and tissues (metabolic acidosis). In addition to the features present in moderate ... Kaabachi N, Hachicha M. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency. Fetal Pediatr Pathol. ...

  10. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  11. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine

  12. Light induces changes in activities of Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa.

    Ip, Yuen K; Ching, Biyun; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Chew, Shit F

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH(+) 4 or H(+), and activities of enzymes involved in converting NH(+) 4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH(+) 4 in substitution for K(+) to activate Na(+)/K(+)-ATPase (NKA), manifested as a significant increase in the Na(+)/NH(+) 4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H(+) released from CaCO3 deposition could react with NH3 to form NH(+) 4 in the extrapallial fluid, and NH(+) 4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH(+) 4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H(+)-ATPase (VATPase) in the inner mantle, and significant increases in the Na(+)/K(+)-activated-NKA, H(+)/NH(+) 4-activated-H(+)/K(+)-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na(+) homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH(+) 4 from the environment. This is the first report on light having direct

  13. Light induces changes in activities of Na+/K+(NH4+-ATPase, H+/K+(NH4+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam Tridacna squamosa

    Alex Y K Ip

    2015-03-01

    Full Text Available The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control, on enzymatic activities of transporters involved in the transport of NH4+ or H+, and activities of enzymes involved in converting NH4+ to glutamate/glutamine in inner mantle, outer mantle and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH4+ in substitution for K+ to activate Na+/K+-ATPase (NKA, manifested as a significant increase in the Na+/NH4+-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H+ released from CaCO3 deposition could react with NH3 to form NH4+ in the extrapallial fluid, and NH4+ could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH4+ and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM-sensitive-V-H+-ATPase (VATPase in the inner mantle, and significant increases in the Na+/K+-activated-NKA, H+/NH4+-activated-H+/K+-ATPase and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na+ homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH4+ from the environment. This is the first report on light having direct enhancing effects on activities of certain

  14. Characterization of arachidonate 5-lipoxygenase and leukotriene A4 synthetase from RBL-1 cells

    5-lipoxygenase (LO) and leukotriene (LT) A4 synthetase from RBL-1 high speed (105,000 x g for 60 min) supernatants were partially purified by protein-high performance liquid chromatography (HPLC) and characterized in detail. The partially purified preparation contained only 5-LO and LTA4 synthetase and was isolated from 12-LO, peroxidase and LTA4 hydrolase activities. Reaction products were separated by reversed phase HPLC and quantitated by absorption spectrophotometry and radiochemical detection. The enzyme preparation rapidly converted [14C]arachidonate to [14C]5-hydroperoxyeicosatetraenoic acid (HPETE) and [14C]5,12-dihydroperoxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were primarily non-enzymatic breakdown products of LTA4 (e.g., 6-trans-LTB4 and 6-trans-12-epi-LTB4). Both the 5-LO and LTA4 synthetase activities were Ca2+- and ATP-dependent. For both enzyme activities, the CA2+ stimulation required the presence of ATP. The fatty acid hydroperoxides, 5-,12-, and 15-HPETE, both stimulated ([ 3 μM]) 5-LO and LTA4 synthetase activities. The rapid isolation and subsequent characterization of 5-LO and LTA4 synthetase provide the bases for the further understanding of the role of the LO pathway in biological processes

  15. Transcription Activity of Individual rrn Operons in Bacillus subtilis Mutants Deficient in (p)ppGpp Synthetase Genes, relA, yjbM, and ywaC▿ †

    Natori, Yousuke; Tagami, Kazumi; Murakami, Kana; Yoshida, Sawako; Tanigawa, Osamu; Moh, Yoonsuh; MASUDA, KENTA; Wada, Tetsuya; Suzuki, Shota; Nanamiya, Hideaki; Tozawa, Yuzuru; Kawamura, Fujio

    2009-01-01

    In Bacillus subtilis a null mutation of the relA gene, whose gene product is involved in the synthesis and/or hydrolysis of (p)ppGpp, causes a growth defect that can be suppressed by mutation(s) of yjbM and/or ywaC coding for small (p)ppGpp synthetases. All 35 suppressor mutations newly isolated were classified into two groups, either yjbM or ywaC, by mapping and sequencing their mutations, suggesting that there are no (p)ppGpp synthetases other than RelA, YjbM, and YwaC in B. subtilis. In or...

  16. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.;

    1986-01-01

    Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...

  17. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus.

    Mazauric, M H; Reinbolt, J; Lorber, B; Ebel, C; Keith, G; Giegé, R; Kern, D

    1996-11-01

    Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict

  18. Evolutionary divergence of chloroplast FAD synthetase proteins

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  19. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D;

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation...... the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that......, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA...

  20. Properties of asparagine synthetase in asparagine-independent variants of Jensen rat sarcoma cells induced by 5-azacytidine.

    Sugiyama, R H; Arfin, S M; Harris, M.

    1983-01-01

    Jensen rat sarcoma cells in culture require L-asparagine for growth and lack detectable levels of asparagine synthetase. Cultures exposed for 24 h to graded concentrations of 5-azacytidine give rise to asparagine-independent variants in high frequency. These prototrophs are stable phenotypically whether maintained in the presence or absence of L-asparagine. Asparagine synthetase activity in several variant clones was uniform in thermolability and several kinetic parameters, as well as in immu...

  1. Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases

    Niehues, Sven; Bussmann, Julia; Steffes, Georg; Erdmann, Ines; Sun, Litao; Wagner, Marina; Wang, Guangxia; Koerdt, Sophia N.; Stum, Morgane; Rajbhandary, Uttam L.; Thomas, Ulrich; Aberle, Hermann; Burgess, Robert W.; Yang, Xiang-Lei; Dieterich, Daniela

    2014-01-01

    Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. ...

  2. Absence of acetohydroxy acid synthetase in a clinical isolate of Neisseria gonorrhoeae requiring isoleucine and valine.

    Lerner, S A; Friedman, E L; Dudek, E J; Kominski, G; Bohnhoff, M.; Morello, J A

    1980-01-01

    A clinical isolate of Neisseria gonorrhoeae with an unusual growth requirement for isoleucine and valine lacked the activity of acetohydroxy acid synthetase, one of the enzymes required for the biosynthesis of these amino acids. A spontaneous mutant which no longer required isoleucine and valine had acquired this enzymatic activity.

  3. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis

    Raina, Medha; Elgamal, Sara; Santangelo, Thomas J; Ibba, Michael

    2012-01-01

    In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together...... with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate...... that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs. STRUCTURED SUMMARY OF PROTEIN...

  4. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function

    Grevengoed, Trisha J; Martin, Sarah A; Katunga, Lalage; Cooper, Daniel E; Anderson, Ethan J; Murphy, Robert C; Coleman, Rosalind A

    2015-01-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1(T-/-)) have impaired cardiac fatty acid oxidation and rely on glucose for ATP producti...

  5. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    Jochimsen, Bjarne U.; Hove-Jensen, Bjarne; Garber, Bruce B.;

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosin...

  6. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J;

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine repre...

  7. ß-Lysine discrimination by lysyl-tRNA synthetase

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J;

    2011-01-01

    Elongation factor P is modified with (R)-ß-lysine by the lysyl-tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate a- and ß-lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site gui...... enantiomers of ß-lysine were substrates for tRNA aminoacylation by LysRS, which, together with the relaxed specificity of the A233S variant, suggest a possible means to develop systems for in vivo co-translational insertion of ß-amino acids.......Elongation factor P is modified with (R)-ß-lysine by the lysyl-tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate a- and ß-lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site...

  8. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.

    Brevet, Annie; Chen, Josiane; Commans, Stéphane; Lazennec, Christine; Blanquet, Sylvain; Plateau, Pierre

    2003-08-15

    The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases. PMID:12766171

  9. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  10. Aromatase inhibitors and anti-synthetase syndrome.

    Mascella, Fabio; Gianni, Lorenzo; Affatato, Alessandra; Fantini, Manuela

    2016-09-01

    Adjuvant therapy in postmenopausal women with endocrine-responsive breast cancer (BC) is actually centered on the use of anti-aromatase inhibitors (AI). Several reports, however, are emerging in literature associating the use of this drugs to rheumatic disorders. This case report describes the first case of anti-synthetase syndrome diagnosis after treatment with anti-estrogen agents in a patient with pre-existing rheumatoid arthritis. PMID:27225465

  11. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    Brattsten, L B; Wilkinson, C F

    1975-07-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase. PMID:1004

  12. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution

    Zhao, Ming-Wei; Zhu, Bin; Hao, Rui; Xu, Min-Gang; Eriani, Gilbert; Wang, En-Duo

    2005-01-01

    The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (αβ-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNALeu and minihelixLeu. Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplan...

  13. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.;

    1986-01-01

    Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...... ADP. The nucleotide sequence of the E. coli prs gene has been determined and the coding segment established. The deduced amino acid sequence of P-Rib-PP synthetase contained 314 amino acid residues and the molecular weight was calculated as 34,060. The initiation site of transcription was determined...

  14. Co-purification of dihydrofolate synthetase and N10formyltetrahydropteroyldiglutamate synthetase from E. coli

    The enzymatic activities which add a single glutamate to dihydropteroate (H2Pte) and to N10formyltetrahydropteroylglutamate (N10formylH4PteGlu) remained at a constant ratio when various purification techniques were used, including ammonium sulfate fractionation, isoelectric focusing, polyacrylamide gel electrophoresis, and column chromatography on Sephadex G-100, DEAE-Sephadex, CM-Sephadex, ADP-Sepharose, N10formylfolate-agarose or matrix Gel Red-A. The best combination of these methods yielded 900-fold purified enzyme. However, the kinetic properties were dependent upon the substrate used. H2Pte was a noncompetitive inhibitor (Kii . 1.1 microM) of the utilization of N10formylH4PteGlu, but no inhibition was detected in the reciprocal experiment. Aminopterin was a competitive inhibitor (Kis . 370 microM) of the reaction with N10formylH4PteGlu but was not inhibitory with H2Pte as substrate. In the dihydrofolate synthetase reaction, in Tris-HCl, pH 8.9 with 50 mM KCl, the apparent Km values for glutamate and MgATP were 3.5 mM and 8.1 microM respectively. With N10formylH4PteGlu as substrate, these Km values were 1.2 mM and 80 microM. Since the two activities were not separated by protein purification procedures but exhibited different kinetic properties (including lack of reciprocal inhibition), the data suggest these reactions are catalyzed on independent sites of a common protein

  15. Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases

    Adam C. Mirando

    2014-12-01

    Full Text Available In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.

  16. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  17. The CcmFH complex is the system I holocytochrome c synthetase: engineering cytochrome c maturation independent of CcmABCDE

    Francisco, Brian San; Sutherland, Molly C.; Kranz, Robert G.

    2014-01-01

    Cytochrome c maturation (ccm) in many bacteria, archaea, and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches heme covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of heme to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation ...

  18. The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis

    Durbecq, Virginie; Legrain, Christianne; Roovers, Martine; Piérard, André; Glansdorff, Nicolas

    1997-01-01

    Microbial carbamoyl phosphate synthetases (CPS) use glutamine as nitrogen donor and are composed of two subunits (or domains), one exhibiting glutaminase activity, the other able to synthesize carbamoyl phosphate (CP) from bicarbonate, ATP, and ammonia. The pseudodimeric organization of this synthetase suggested that it has evolved by duplication of a smaller kinase, possibly a carbamate kinase (CK). In contrast to other prokaryotes the hyperthermophilic archaeon Pyrococcus furiosus was found...

  19. Glutamine synthetase and glutamyltransferase in developing chick and rat tissues

    Herzfeld, A.; Raper, S.M.

    1975-01-01

    Concomitant determination of ..gamma..-glutamine-hydroxylamine-glutamyltransferase (GT) and ..gamma..-glutamyl hydroxamate synthetase (GS) activities in chick retina, brain and liver between the 13th day of incubation and a day after hatching showed that while both activities increased late in incubation, in neural tissues their rises were not simultaneous throughout development; in liver both activities were already high on the 14th day of incubation and changed in parallel thereafter. GS and GT activities could be evoked prematurely in all three tissues by cortisol, but GT activity showed higher responses to the hormone. GT and GS were separable by differential solubilization in chick liver but not in retina of chick or rat. The wide spread of the ratios of GT : GS activities in homogenates of a number of chick and rat tissues (1 : 1 to 73 : 1) indicates that the GS reaction is not catalyzed by the same protein that catalyzes the GT reactions. Relative amounts of GT(T) (free of GS activity) and of variants of GS (with different competences to catalyze the GT reaction) may govern the changes between the two activities during development and their distribution among different adult tissues in chick and rat.

  20. Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli

    Hove-Jensen, Bjarne

    1985-01-01

    The gene, prs, encoding phosphoribosylpyrophosphate (PRPP) synthetase of Escherichia coli was isolated from a library of E. coli genes cloned in the bacteriophage λD69 vector. A strain with a temperature-lethal defect in PRPP synthetase, (prs-2), was used as the host and cloning was performed by...... lysogenic complementation. The prs gene resided on a 5.6 kilobase-pair (kbp) DNA fragment generated by hydrolysis with restriction endonuclease BamHI. The nearby gene pth, encoding peptidyl-tRNA hydrolase, was also on this fragment. Subcloning of the fragment in the multi-copy plasmid pBR322 and subsequent...... deletion of parts of the insert resulted in a 1.7 kbp DNA fragment containing the entire prs gene. Bacterial strains harbouring prs-bearing plasmids showed up to 50-fold increased PRPP synthetase activity. The PRPP synthetase subunit was identified by analysis of plasmid-harbouring minicells and the...

  1. Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases.

    Iancu, Cristina V; Zhou, Yang; Borza, Tudor; Fromm, Herbert J; Honzatko, Richard B

    2006-09-26

    Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket. PMID:16981730

  2. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    Carmen M Pérez-Delgado

    Full Text Available It is well established that the plastidic isoform of glutamine synthetase (GS2 is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1, glutamate dehydrogenase (GDH and asparagine synthetase (ASN was observed in the mutant in correspondence with the diminishment of NH4(+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H-dependent GDH activity.

  3. Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni.

    Zano, Stephen P; Pavlovsky, Alexander G; Viola, Ronald E

    2014-02-01

    S-Adenosylmethionine (AdoMet) participates in a wide range of methylation and other group-transfer reactions and also serves as the precursor for two groups of quorum-sensing molecules that function as regulators of the production of virulence factors in Gram-negative bacteria. The synthesis of AdoMet is catalyzed by AdoMet synthetases (MATs), a ubiquitous family of enzymes found in species ranging from microorganisms to mammals. The AdoMet synthetase from the bacterium Campylobacter jejuni (cjMAT) is an outlier among this homologous enzyme family, with lower sequence identity, numerous insertions and substitutions, and higher catalytic activity compared with other bacterial MATs. Alterations in the structure of this enzyme provide an explanation for its unusual dimeric quaternary structure relative to the other MATs. Taken together with several active-site substitutions, this new structure provides insights into its improved kinetic properties with alternative substrates. PMID:24531478

  4. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  5. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J;

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases....

  6. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman;

    2004-01-01

    -CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine.......Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology...

  7. Effect of detergents on membrane-associated glucan synthetase from Paracoccidioides brasiliensis.

    San-Blas, G; San-Blas, F

    1982-01-01

    Yeast and mycelial particulate preparations of Paracoccidioides brasiliensis were subjected to the action of several detergents in an attempt to solubilize the glucan synthetase present in these preparations. This was achieved more successfully in the yeast membranes than in the mycelial ones. The enzymatic activity was greatly stimulated in the insoluble fractions upon treatment with some of the detergents used. The results suggest that the yeast and mycelial phases of P. brasiliensis may di...

  8. Virtual Screening to Identify Lead Inhibitors for Bacterial NAD Synthetase (NADs)

    Moro, Whitney Beysselance; Yang, Zhengrong; Kane, Tasha; Brouillette, Christie G; Brouillette, Wayne J.

    2009-01-01

    Virtual screening was employed to identify new drug-like inhibitors of NAD synthetase (NADs) as antibacterial agents. Four databases of commercially available compounds were docked against three subsites of the NADs active site using FlexX in conjunction with CScore. Over 200 commercial compounds were purchased and evaluated in enzyme inhibition and antibacterial assays. 18 compounds inhibited NADs at or below 100 μM (7.6% hit rate), and two were selected for future SAR studies.

  9. Virtual Screening to Identify Lead Inhibitors for Bacterial NAD Synthetase (NADs)

    Moro, Whitney Beysselance; Yang, Zhengrong; Kane, Tasha; Brouillette, Christie G.; Brouillette, Wayne J.

    2009-01-01

    Virtual screening was employed to identify new drug-like inhibitors of NAD synthetase (NADs) as antibacterial agents. Four databases of commercially available compounds were docked against three subsites of the NADs active site using FlexX in conjunction with CScore. Over 200 commercial compounds were purchased and evaluated in enzyme inhibition and antibacterial assays. 18 compounds inhibited NADs at or below 100 μM (7.6% hit rate), and two were selected for future SAR studies. PMID:19249205

  10. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.

    Fice, D; Shen, Z; Byers, D M

    1993-01-01

    A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism. Images PMID:8384617

  11. Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding.

    Onesti, S; Desogus, G; Brevet, A; Chen, J; Plateau, P; Blanquet, S; Brick, P

    2000-10-24

    Lysyl-tRNA synthetase is a member of the class II aminoacyl-tRNA synthetases and catalyses the specific aminoacylation of tRNA(Lys). The crystal structure of the constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli has been determined to 2.7 A resolution in the unliganded form and in a complex with the lysine substrate. A comparison between the unliganded and lysine-bound structures reveals major conformational changes upon lysine binding. The lysine substrate is involved in a network of hydrogen bonds. Two of these interactions, one between the alpha-amino group and the carbonyl oxygen of Gly 216 and the other between the carboxylate group and the side chain of Arg 262, trigger a subtle and complicated reorganization of the active site, involving the ordering of two loops (residues 215-217 and 444-455), a change in conformation of residues 393-409, and a rotation of a 4-helix bundle domain (located between motif 2 and 3) by 10 degrees. The result of these changes is a closing up of the active site upon lysine binding. PMID:11041850

  12. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis. PMID:27234879

  13. Glucosamine synthetase from Escherichia coli: purification, properties and glutamine-utilizing site location

    L-Glutamine: D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction. The enzyme has a K/sub m/ of 2 mM for fructose 6-phosphate, a K/sub m/ of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analog 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation

  14. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  15. Murine Pancreatic Beta TC3 Cells Show Greater 2′,5′-Oligoadenylate Synthetase (2′5′AS Antiviral Enzyme Activity and Apoptosis Following IFN-α or Poly(I:C Treatment than Pancreatic Alpha TC3 Cells

    M. Li

    2009-01-01

    Full Text Available Type 1 diabetes is caused by autoimmune destruction of pancreatic beta cells, possibly virus initiated. Virus infection induces alpha-interferon (IFN-α, leading to upregulation of genes encoding double-stranded (ds RNA-dependent antiviral enzymes 2′,5′-oligoadenylate synthetase (2′5′AS and PKR (p68. To investigate whether beta cell specificity could be due to antiviral differences between beta and alpha cells, we treated beta and alpha TC3 cell lines with IFN-α and/or poly(I:C (a synthetic dsRNA. Results showed that, following IFN-α stimulation, increases in 2′5′AS levels and activities were significantly higher in beta than alpha cells (P<.001, whereas increases in PKR level and activity were comparable in the two cell types. Poly(I:C stimulated 2′5′AS activity in beta but not alpha cells, and co-transfection IFN-α plus poly(I:C induced apoptosis in beta but not alpha cells. These findings suggest that the elevated 2′5′AS response of pancreatic beta cells could render them particularly vulnerable to damage and/or apoptosis during virus infection.

  16. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of 3H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei

  17. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  18. Arabidopsis acyl-acyl carrier protein synthetase AAE15 with medium chain fatty acid specificity is functional in cyanobacteria

    Kaczmarzyk, Danuta; Hudson, Elton P.; Fulda, Martin

    2016-01-01

    Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 of Arabidopsis encoded by At4g14070, which is a homologue of a cyanobacterial acyl-ACP synthetase (AAS). We expressed AAE15 in insect cells and demonstrated its AAS activity with medium chain fatty ...

  19. Nitric oxide synthetase and Helicobacter pylori in patients undergoing appendicectomy.

    Kell, M R

    2012-02-03

    BACKGROUND: This study was designed to determine whether Helicobacter pylori forms part of the normal microenvironment of the appendix, whether it plays a role in the pathogenesis of acute appendicitis, and whether it is associated with increased expression of inducible nitric oxide synthetase (iNOS) in appendicular macrophages. METHODS: Serology for H. pylori was performed on 51 consecutive patients undergoing emergency appendicectomy. Appendix samples were tested for urease activity, cultured and stained for H. pylori, graded according to the degree of inflammatory infiltrate, and probed immunohistochemically for iNOS expression. RESULTS: The mean age of the patients was 21 (range 7-51) years. Seventeen patients (33 per cent) were seropositive for H. pylori but no evidence of H. pylori was found in any appendix specimen. However, an enhanced inflammatory cell infiltration was observed in seropositive patients (P < 0.04) and the expression of macrophage iNOS in the mucosa of normal and inflamed appendix specimens was increased (P < 0.01). CONCLUSION: H. pylori does not colonize the appendix and is unlikely to be a pathogenic stimulus for appendicitis. Priming effects on mucosal immunology downstream from the foregut may occur after infection with H. pylori.

  20. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  1. Purification and characterization of 3-deoxy-D-manno-octulosonate 8-phosphate synthetase from Escherichia coli.

    Ray, P H

    1980-01-01

    3-Deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase has been purified 450-fold from frozen Escherichia coli B cells. The purified enzyme catalyzed the stoichiometric formation of KDO-8-phosphate and Pi from phosphoenolpyruvate (PEP) and D-arabinose-5-phosphate. The enzyme showed no metal requirement for activity and was inhibited by 1 mM Cd2+, Cu2+, Zn2+, and Hg2+. The inhibition by Hg2+ could be reversed by dithiothreitol. The optimum temperature for enzyme activity was determined to b...

  2. The glutamine synthetase gene family in Populus

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  3. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in ...

  4. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.

    Fice, D; Z. Shen; Byers, D M

    1993-01-01

    A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the ...

  5. A radiochemical method for carbamoyl-phosphate synthetase I: application to rats fed a hyperproteic diet

    Arriarán, Sofía; Agnelli, Silvia; Fernández López, José Antonio; Remesar Betlloch, Xavier; Alemany, Marià

    2012-01-01

    A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium w...

  6. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...... in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up...... to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA....

  7. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting in a...... DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up to...... nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA....

  8. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Zhukhlistova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  9. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins

  10. NITRIC OXIDE (NO, CITRULLINE - NO CYCLE ENZYMES, GLUTAMINE SYNTHETASE AND OXIDATIVE STRESS IN ANOXIA (HYPOBARIC HYPOXIA AND REPERFUSION IN RAT BRAIN

    M. Swamy, Mohd Jamsani Mat Salleh, K. N .S. Sirajudeen, Wan Roslina Wan Yusof, G. Chandran

    2010-01-01

    Full Text Available Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia and reperfusion (reoxygenation, the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective.

  11. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.;

    1989-01-01

    The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed by chemi...... cation binds to PRPP synthetase and serves as a bridge to the α-phosphate of ATP and AMP at the active site. The prsA1 mutation appears to alter this divalent cation site....

  12. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  13. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates Mg x ATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-D-ribosyl (alpha-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, alpha,beta-methylene ATP ...

  14. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  15. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress

    Schug, Zachary T.; Peck, Barrie; Jones, Dylan T; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S.; Goodwin, Louise M.; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E.

    2015-01-01

    Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and A...

  16. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo.

    Novoa, Eva Maria; Camacho, Noelia; Tor, Anna; Wilkinson, Barrie; Moss, Steven; Marín-García, Patricia; Azcárate, Isabel G; Bautista, José M; Mirando, Adam C; Francklyn, Christopher S; Varon, Sònia; Royo, Miriam; Cortés, Alfred; Ribas de Pouplana, Lluís

    2014-12-23

    Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo. PMID:25489076

  17. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.

    Reimer, Janice M; Aloise, Martin N; Harrison, Paul M; Schmeing, T Martin

    2016-01-14

    Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics. PMID:26762462

  18. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  19. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  20. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  1. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.;

    2003-01-01

    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions ...

  2. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. PMID:27225077

  3. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  4. Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa

    Ip, Yuen K.; Ching, Biyun; Kum C Hiong; Choo, Celine Y. L.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH+ 4 or H+, and activities of enzymes involved in converting NH+ 4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH+ 4 in substitution for K+ to ac...

  5. Light induces changes in activities of Na+/K+(NH4+)-ATPase, H+/K+(NH4+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam Tridacna squamosa

    Alex Y K Ip; Biyun eChing; Kum C Hiong; Yen Ling eChoo; Mel Veen Boo; WaiP eWong; S F Chew

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH4+ or H+, and activities of enzymes involved in converting NH4+ to glutamate/glutamine in inner mantle, outer mantle and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH4+ in substitution for K+ to activa...

  6. CcsBA is a cytochrome c synthetase that also functions in heme transport

    Frawley, Elaine R.; Kranz, Robert G.

    2009-01-01

    Little is known about trafficking of heme from its sites of synthesis to sites of heme-protein assembly. We describe an integral membrane protein that allows trapping of endogenous heme to elucidate trafficking mechanisms. We show that CcsBA, a representative of a superfamily of integral membrane proteins involved in cytochrome c biosynthesis, exports and protects heme from oxidation. CcsBA has 10 transmembrane domains (TMDs) and reconstitutes cytochrome c synthesis in the Escherichia coli periplasm; thus, CcsBA is a cytochrome c synthetase. Purified CcsBA contains heme in an “external heme binding domain” for which two external histidines are shown to serve as axial ligands that protect the heme iron from oxidation. This is likely the active site of the synthetase. Furthermore, two conserved histidines in TMDs are required for heme to travel to the external heme binding domain. Remarkably, the function of CcsBA with mutations in these TMD histidines is corrected by exogenous imidazole, a result analogous to correction of heme binding by myoglobin when its proximal histidine is mutated. These data suggest that CcsBA has a heme binding site within the bilayer and that CcsBA is a heme channel. PMID:19509336

  7. Identification of the Escherichia coli ADP-glucose synthetase inhibitor binding site(s)

    The photoaffinity labeling agent 8-azido adenylate (AMP) is an inhibitor site specific probe of the E. coli ADPG synthetase. In the absence of light, 8-azido AMP exhibits the typical reversible allosteric kinetics of the physiological inhibitor AMP. In the presence of light (254 nm), [2-3H]8-azido AMP specifically and covalently incorporates into the enzyme. Photoincorporation is linearly related to loss of catalytic activity up to at least 65% inactivation. The substrate ADP-glucose (ADPG) provides nearly 100% protection from 8-azido AMP photoinactivation, while the substrate AMP provides approximately 50% protection and the inhibitor AMP provides approximately 30% protection. These three adenylate allosteric effects of E. coli ADPG synthetase also protect it from photoincorporation of 8-azido AMP. The reaction site(s) of [2-3H]-azido AMP with the enzyme was identified by reverse phase HPLC isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease generated peptides containing the labeled analog. This site is the same as the major binding region of the substrate site specific probe, 8-azido ADP-[14C]glucose. Conformational analysis of this region predicts that it is a part of a Rossmann fold, the super-secondary structure found in many adenine nucleotide binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido AMP were also identified. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure

  8. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    Ana Rita Seabra

    2015-07-01

    Full Text Available Glutamine Synthetase (GS catalyses the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of glutamine synthetase isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.

  9. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.

    Koryakina, Irina; McArthur, John; Randall, Shan; Draelos, Matthew M; Musiol, Ewa M; Muddiman, David C; Weber, Tilmann; Williams, Gavin J

    2013-01-18

    Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides. PMID:23083014

  10. Glutamine synthetase gene evolution: A good molecular clock

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves

  11. Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coli

    The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene

  12. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.

    Duerfahrt, Thomas; Doekel, Sascha; Sonke, Theo; Quaedflieg, Peter J L M; Marahiel, Mohamed A

    2003-11-01

    Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases. PMID:14622284

  13. The glutamine synthetase gene family in Populus

    Cánovas Francisco M; Kirby Edward G; Avila Concepción; Canales Javier; García-Gutiérrez Angel; Castro-Rodríguez Vanessa

    2011-01-01

    Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists ...

  14. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  15. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both [1-14C]-acetate and [214C] malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases. (author)

  16. Bacterial Type I Glutamine Synthetase of the Rifamycin SV Producing Actinomycete, Amycolatopsis mediterranei U32, is the Only Enzyme Responsible for Glutamine Synthesis under Physiological Conditions

    Wen-Tao PENG; Jin WANG; Ting WU; Jian-Qiang HUANG; Jui-Shen CHIAO; Guo-Ping ZHAO

    2006-01-01

    The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.

  17. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analyses of threonyl-tRNA synthetase editing domain from Aeropyrum pernix

    The editing domain of threonyl-tRNA synthetase from the archaeon Aeropyrum pernix has been overexpressed, purified and crystallized. The crystal diffracted to a resolution of 1.66 Å. The proofreading function of aminoacyl-tRNA synthetases is crucial in maintaining the fidelity of protein synthesis. Most archaeal threonyl-tRNA synthetases (ThrRSs) possess a unique proofreading domain unrelated to their eukaryotic/bacterial counterpart. The crystal structure of this domain from the archaeon Pyrococcus abysii in complex with its cognate and noncognate substrate analogues had given insights into its catalytic and discriminatory mechanisms. To probe further into the mechanistic and evolutionary aspects of this domain, work has been extended to another archaeon Aeropyrum pernix. The organism possesses two proteins corresponding to threonyl-tRNA synthetase, i.e. ThrRS1 and ThrRS2, encoded by two different genes, thrS1 and thrS2, respectively. ThrRS1 is responsible for aminoacylation and ThrRS2 for proofreading activity. Here the purification, crystallization and preliminary X-ray crystallographic investigation of the N-terminal proofreading domain of ThrRS2 from A. pernix is reported. The crystals belong to either the P41212 or P43212 space group and consist of one monomer per asymmetric unit

  18. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  19. Evolution of the 2'-5'-Oligoadenylate Synthetase family in eukaryotes and bacteria

    Kjær, Karina Hansen; Poulsen, Jesper Buchhave; Reitamm, Tonu;

    2009-01-01

    The 2′-5′-oligoadenylate synthetase (OAS) belongs to a nucleotidyl transferase family that includes poly(A) polymerases and CCA-adding enzymes. In mammals and birds, the OAS functions in the interferon system but it is also present in an active form in sponges, which are devoid of the interferon...... system. In view of these observations, we have pursued the idea that OAS genes could be present in other metazoans and in unicellular organisms as well. We have identified a number of OAS1 genes in annelids, mollusks, a cnidarian, chordates, and unicellular eukaryotes and also found a family of proteins...... the OASL may have evolved from an ancestor of cartilaginous fishes, and that the OAS2 and the OAS3 genes evolved from a mammalian ancestor. OAS proteins function in the interferon system in mammals. This system is only found in jawed vertebrates. We therefore suggest that the original function of OAS...

  20. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  1. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    Miller Andrew D

    2003-06-01

    Full Text Available Abstract Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common

  2. Inhibition of Methionyl-tRNA Synthetase by REP8839 and Effects of Resistance Mutations on Enzyme Activity▿

    Green, Louis S.; Bullard, James M; Ribble, Wendy; Dean, Frank; Ayers, David F.; Ochsner, Urs A.; Janjic, Nebojsa; Jarvis, Thale C.

    2008-01-01

    REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (Ki) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels w...

  3. Elucidating the Pseudomonas aeruginosa Fatty Acid Degradation Pathway: Identification of Additional Fatty Acyl-CoA Synthetase Homologues

    Zarzycki-Siek, Jan; Norris, Michael H.; Kang, Yun (Kenneth); Sun, Zhenxin; Bluhm, Andrew P.; McMillan, Ian A.; Hoang, Tung T.

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. T...

  4. Holocarboxylase synthetase deficiency pre and post newborn screening

    Taraka R. Donti

    2016-06-01

    Full Text Available Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  5. Holocarboxylase synthetase deficiency pre and post newborn screening.

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  6. Purification and properties of the dihydrofolate synthetase from Serratia indica

    The dihydrofolate synthetase (EC6.3.2.12) responsible for catalyzing the synthesis of dihydrofolic acid from dihydropteroic acid and L-glutamic acid was purified about 130-fold from extracts of Serratia indica IFO 3759 by ammonium sulfate fractionation, DEAE-Sephadex column chromatography, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The enzyme preparation obtained was shown to be homogeneous by DEAE-cellulose column chromatography and ultracentrifugal analysis. The sedimentation coefficient of this enzyme was 3.9 S, and the molecular weight was determined to be about 47,000 by Sephadex G-100. The optimum pH for the reaction was 9.0. The enzymatic reaction required dihydropteroate, L-glutamate and ATP as substrates, and Mg2+ and K+ as cofactors. γ-L-Glutamyl-L-glutamic acid cannot replace L-glutamic acid as the substrate. Neither pteroic acid nor tetrahydropteroic acid can be used as the substrate. ATP was partially replaced by ITP or GTP. The enzyme reaction was inhibited by the addition of ADP, but not by AMP. One mole of dihydrofolate, 1 mole of ADP and 1 mole of orthophosphate were produced from each 1 mole of dihydropteroic acid, L-glutamic acid, and ATP. These results suggest that the systematic name for the dihydrofolate synthetase is 7,8-dihydropteroate: L-glutamate ligase (ADP). (auth.)

  7. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. PMID:27235647

  8. NITRIC OXIDE (NO), CITRULLINE - NO CYCLE ENZYMES, GLUTAMINE SYNTHETASE AND OXIDATIVE STRESS IN ANOXIA (HYPOBARIC HYPOXIA) AND REPERFUSION IN RAT BRAIN

    M. Swamy, Mohd Jamsani Mat Salleh, K. N .S. Sirajudeen, Wan Roslina Wan Yusof, G. Chandran

    2010-01-01

    Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusion (reoxygenation), the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase...

  9. Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N.

    Ramos, F R; López-Nieto, M J; Martín, J F

    1985-01-01

    The tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine, an intermediate in the penicillin biosynthetic pathway, is converted to isopenicillin N by isopenicillin N synthetase (cyclase) of Penicillium chrysogenum. The cyclization required dithiothreitol and was stimulated by ferrous ions and ascorbate. Co2+ and Mn2+ completely inhibited enzyme activity. Optimal temperature and pH were 25 degrees C and 7.8, respectively. The reaction required O2 and was stimulated by increasing the diss...

  10. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  11. On the assembly of dodecameric glutamine synthetase from stable chaperonin complexes.

    Fisher, M T

    1993-07-01

    For many in vitro protein-folding reactions, the fraction of correctly folded product declines as the initial protein concentration increases due primarily to misfolding and aggregation reactions. Under optimal conditions and in the presence of ATP, chaperonins (groEL and groES) enhanced the renaturation of dodecameric glutamine synthetase (GS) with yields of active enzyme between 75 and 85% of the original activity (Fisher, M.T. (1992) Biochemistry 31, 3955-3963). In spite of this enhancement, a concentration-dependent decline in recoverable activity was observed when increasing concentrations of unfolded GS were rapidly mixed with renaturation buffer containing a 2-fold molar excess (GS subunits:groEL oligomer) of chaperonins. When a stable groEL-GS complex, formed under optimal conditions, was concentrated 4-fold by centrifugal ultrafiltration prior to ATP addition, the amount of total active GS (percent of the original activity) recovered remained at optimal levels and no longer showed a concentration-dependent decline. The GS subunits that are initially bound and then released from groEL by ATP are assembly-competent. It is proposed that the subunits are no longer able to kinetically equilibrate with folding intermediates that misfold or aggregate. If a stable groEL-protein substrate complex can be amassed without loss of activity, this will facilitate studies on molecular aspects of chaperonin release mechanisms and oligomeric protein assembly. PMID:8100224

  12. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris.

    Crosby, Heidi A; Rank, Katherine C; Rayment, Ivan; Escalante-Semerena, Jorge C

    2012-09-01

    Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are two of the most commonly used extender units for polyketide biosynthesis and are utilized to synthesize a vast array of pharmaceutically relevant products with antibacterial, antiparasitic, anticholesterol, anticancer, antifungal, and immunosuppressive properties. Heterologous hosts used for polyketide production such as Escherichia coli often do not produce significant amounts of methylmalonyl-CoA, however, requiring the introduction of other pathways for the generation of this important building block. Recently, the bacterial malonyl-CoA synthetase class of enzymes has been utilized to generate malonyl-CoA and methylmalonyl-CoA directly from malonate and methylmalonate. We demonstrate that in the purple photosynthetic bacterium Rhodopseudomonas palustris, MatB (RpMatB) acts as a methylmalonyl-CoA synthetase and is required for growth on methylmalonate. We report the apo (1.7-Å resolution) and ATP-bound (2.0-Å resolution) structure and kinetic analysis of RpMatB, which shows similar activities for both malonate and methylmalonate, making it an ideal enzyme for heterologous polyketide biosynthesis. Additionally, rational, structure-based mutagenesis of the active site of RpMatB led to substantially higher activity with ethylmalonate and butylmalonate, demonstrating that this enzyme is a prime target for expanded substrate specificity. PMID:22773649

  13. The CcmFH complex is the system I holocytochrome c synthetase: engineering cytochrome c maturation independent of CcmABCDE

    Francisco, Brian San; Sutherland, Molly C.; Kranz, Robert G.

    2014-01-01

    SUMMARY Cytochrome c maturation (ccm) in many bacteria, archaea, and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches heme covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of heme to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation of holocytochromes c by CcmFH and CcmG, a periplasmic thioredoxin, independent of CcmABCDE (we term this activity CcmFGH-only). Cytochrome c produced in the absence of CcmABCDE is indistinguishable from cytochrome c produced by the full system I, with a cleaved signal sequence and two covalent bonds to heme. We engineered increased cytochrome c production by CcmFGH-only, with yields approaching those from the full system I. Three conserved histidines in CcmF (TM-His1, TM-His2, and P-His1) are required for activity, as are the conserved cysteine pairs in CcmG and CcmH. Our findings establish that CcmFH is the system I holocytochrome c synthetase. Although we discuss why this engineering would likely not replace the need for CcmABCDE in nature, these results provide unique mechanistic and evolutionary insights into cytochrome c biosynthesis. PMID:24397552

  14. Treatment of renal colic by prostaglandin synthetase inhibitors and avafortan (analgesic antispasmodic).

    el-Sherif, A E; Foda, R; Norlen, L J; Yahia, H

    1990-12-01

    In a study of the pain-relieving effect of 3 drugs commonly used to treat acute renal colic in this hospital, intravenous indomethacin and intramuscular diclofenac (prostaglandin synthetase inhibitors) were compared with intravenous Avafortan (analgesic antispasmodic). As first-line analgesics, prostaglandin synthetase inhibitors, if given intravenously, offer an effective alternative to Avafortan. Of 145 patients studied, 32 required a second injection for complete relief of pain. Administering a second dose of prostaglandin synthetase inhibitors resulted in equally significant pain relief rate even though the route was intramuscular. PMID:2265331

  15. Effect of ionizing radiation on methylation of lysil-tRNA-synthetase from rat liver

    X-irradiation of animals with an absolutely lethal dose of 0.21 C/kg increases the incorporation of a methyl group into aminoacyl-tRNA-synthetases the radioactive label being traced in lysine, arginine, and histidine. The isolated protein methyltransferase methylated total preparaions of aminoacyl-tRNA-synthetases and lysil-tRNA-synthetase of rat liver in the in vitro experiments with the use of S-adenosylmethionine-14CH3 as a donor of methyl groups: the radioactive label was traced in arginine, lysine, histidine, aspartic and glytamic acids

  16. Thiol synthetases of legumes: Immunogold localization and differential gene regulation by phytohormones

    Clemente, María Rebeca; Bustos-Sanmamed, Pilar; Loscos Aranda, Jorge; James, Euan Kevin; Pérez-Rontomé, Carmen; Navascués Ortega, Joaquín; Gay, Marina; Becana Ausejo, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immu...

  17. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor

    Guo, Li-Tao; Helgadóttir, Sunna; Söll, Dieter; Ling, Jiqiang

    2012-01-01

    Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNAGln is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNAGln, and an amidotransferase converts Glu-tRNAGln to Gln-tRNAGln. The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacyl...

  18. In Silico Discovery of Aminoacyl-tRNA Synthetase Inhibitors

    Yaxue Zhao

    2014-01-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are enzymes that catalyze the transfer of amino acids to their cognate tRNA. They play a pivotal role in protein synthesis and are essential for cell growth and survival. The aaRSs are one of the leading targets for development of antibiotic agents. In this review, we mainly focused on aaRS inhibitor discovery and development using in silico methods including virtual screening and structure-based drug design. These computational methods are relatively fast and cheap, and are proving to be of great benefit for the rational development of more potent aaRS inhibitors and other pharmaceutical agents that may usher in a much needed generation of new antibiotics.

  19. Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli

    Hove-Jensen, Bjarne

    1985-01-01

    deletion of parts of the insert resulted in a 1.7 kbp DNA fragment containing the entire prs gene. Bacterial strains harbouring prs-bearing plasmids showed up to 50-fold increased PRPP synthetase activity. The PRPP synthetase subunit was identified by analysis of plasmid-harbouring minicells...... by lysogenic complementation. The prs gene resided on a 5.6 kilobase-pair (kbp) DNA fragment generated by hydrolysis with restriction endonuclease BamHI. The nearby gene pth, encoding peptidyl-tRNA hydrolase, was also on this fragment. Subcloning of the fragment in the multi-copy plasmid pBR322 and subsequent...... and the subunit molecular mass established as 33,000 daltons. Analysis, by the minicell procedure, of plasmids with deletions extending into the prs gene established the direction of transcription as counterclockwise. A putative leader sequence of approximately 400 bp preceded the coding sequence. By deletion...

  20. Glutamine synthetase and Wnt-signaling%谷氨酰胺合成酶与Wnt信号转导通路

    彭春伟; 燕敏

    2009-01-01

    GS(glutamine synthetase)或GLUL(glutamate-ammonia ligase),即谷氨酰胺合成酶,为人体内重要的功能酶,催化谷氨酸与氨生成谷氨酰胺.在体内氮的代谢中,尤其在维持氨离子和谷氨酰胺的稳定中发挥着重要的作用.GS表达和活性的异常常会导致人体很多疾病的发生.近年来研究发现GS表达和活性的异常与Wnt信号通路的异常密切相关.%GS is also called glutamine synthetase or glutamate-ammonia ligase, which is an important enzyme in human body. It can catalyze glutamine from glutamate and ammonia. Besides, it plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. The aberrant expression and activity will cause many human diseases. Recent studies show that the abnormality of its expression and activity has a close relationship with the aberrance of Wnt-signaling.

  1. Crystallogenesis in tRNA aminoacylation systems: how packing accounts for crystallization drawbacks with yeast aspartyl-tRNA synthetase

    Sauter, C.; Lorber, B.; Théobald-Dietrich, A.; Giegé, R.

    2001-11-01

    Two active forms of homodimeric aspartyl-tRNA synthetase from Saccharomyces cerevisiae differing in length at their N-terminus crystallize in the same orthorhombic space group (P4 12 12) with identical cell parameters. Initial studies were hampered by the poor and anisotropic diffraction of the crystals of enzyme extracted from yeast cells. Isotropic diffraction at higher resolution was obtained when crystals were grown from an engineered protein deprived of its 70 N-terminal amino acids. The present work describes the packing contacts in crystals of the shortened protein whose structure was solved at 2.3 Å resolution. Each subunit of the enzyme develops two lattice interactions covering a surface of 670 Å 2, about 7-fold smaller than that of the interface between monomers. The smallest lattice interaction, covering 150 Å 2, brings the anticodon binding domain adjacent to the N-terminus of one monomer in contact with a loop from the active-site domain of a neighboring monomer. Modeling of the extension in the solvent channels shows that the 150 Å 2 intermolecular contact is perturbed in protein molecules possessing a floppy appendix while their second and larger 520 Å 2 contact area is unaffected. Altogether the packing organization explains the poor diffraction properties of the native enzyme crystals and the enhanced diffraction of the crystals of shortened synthetase.

  2. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content.

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L; Paradiso, Annalisa; Gu, Yong Q; Blanco, Antonio; de Pinto, Maria C; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  3. Mammalian folylpoly-γ-glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis

    The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. [3H]Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly

  4. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  5. High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency : Implications for treatment?

    van Spronsen, F. J.; Reijngoud, D. J.; Verhoeven, N. M.; Soorani-Lunsing, R. J.; Jakobs, C.; Sijens, P. E.

    2006-01-01

    Cerebral creatine and guanidinoacetate and blood and urine metabolites were studied in four patients with argininosuccinate synthetase (ASS) or argininosuccinate lyase (ASL) deficiency receiving large doses of arginine. Urine and blood metabolites varied largely. Cerebral guanidinoacetate was increa

  6. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya;

    2012-01-01

    Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding the mitochon...... aminoacyl-tRNA synthetase as a cause of mitochondrial disease.......Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding the...... mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial...

  7. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  8. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation.

    Domínguez-Martín, María Agustina; Díez, Jesús; García-Fernández, José M

    2016-01-01

    The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation. PMID:27446010

  9. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation

    Domínguez-Martín, María Agustina; Díez, Jesús; García-Fernández, José M.

    2016-01-01

    The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation. PMID:27446010

  10. Structural Aspects of Phenylalanylation and Quality Control in Three Major Forms of Phenylalanyl-tRNA Synthetase

    Liron Klipcan

    2010-01-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase (PheRS—bacterial (αβ2, eukaryotic/archaeal cytosolic (αβ2, and mitochondrial α—is a prominent example of structural diversity within the aaRSs family. Although archaeal/eukaryotic and bacterial PheRSs share common topology of the core domains and the B3/B4 interface, where editing activity of heterotetrameric PheRSs is localized, the detailed investigation of the three-dimensional structures from three kingdoms revealed significant variations in the local design of their synthetic and editing sites. Moreover, as might be expected from structural data eubacterial, Thermus thermophilus and human cytoplasmic PheRSs acquire different patterns of tRNAPhe anticodon recognition.

  11. Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain.

    Zane, Hannah K; Naka, Hiroaki; Rosconi, Federico; Sandy, Moriah; Haygood, Margo G; Butler, Alison

    2014-04-16

    The genome of Vibrio harveyi BAA-1116 contains a nonribosomal peptide synthetase (NRPS) gene cluster (aebA-F) resembling that for enterobactin, yet enterobactin is not produced. A gene predicted to encode a long-chain fatty acid CoA ligase (FACL), similar to enzymes involved in the biosynthesis of acyl peptides, resides 15 kb away from the putative enterobactin-like biosynthetic gene cluster (aebG). The proximity of this FACL gene to the enterobactin-like synthetase suggested that V. harveyi may produce amphiphilic enterobactin-like siderophores. Extraction of the bacterial cell pellet of V. harveyi led to the isolation and structure determination of a suite of eight amphi-enterobactin siderophores composed of the cyclic lactone of tris-2,3-dihydroxybenzoyl-L-serine and acyl-L-serine. The FACL knockout mutant, ΔaebG V. harveyi, and the NRPS knockout mutant, ΔaebF V. harveyi, do not produce amphi-enterobactins. The amphi-enterobactin biosynthetic machinery was heterologously expressed in Escherichia coli and reconstituted in vitro, demonstrating the condensation domain of AebF has unique activity, catalyzing two distinct condensation reactions. PMID:24701966

  12. Porcine 2', 5'-oligoadenylate synthetases inhibit Japanese encephalitis virus replication in vitro.

    Zheng, Sheng; Zhu, Dan; Lian, Xue; Liu, Weiting; Cao, Ruibing; Chen, Puyan

    2016-05-01

    The 2', 5'-oligoadenylate synthetases (OAS) are antiviral proteins and several isoforms have been identified as flavivirus-resistance biomarkers in human and mouse. The expression kinetics and antiviral functions of porcine OAS family (OAS1, OAS2, and OASL) in PK-15 cells following infection by Japanese encephalitis virus (JEV) were evaluated in the present study. The endogenous expression of the three OAS genes was efficiently induced by IFN-α treatment in PK-15 cells. However, expression of pOAS1 and pOAS2 responded more quickly than pOASL. Infection by JEV also induced the expression of the pOAS isoforms, but at a significantly lower level than that observed following IFN-α stimulation. Transient overexpression of pOASL and pOAS1 inhibited JEV replication more efficiently than OAS2 overexpression. Interestingly, knockdown of pOAS2 expression by siRNA treatment led to the highest increase in JEV multiplication. Co-silencing of RNase L and each pOAS revealed that the anti-JEV function of pOAS1 and pOAS2 were RNase L dependent, while the antiviral activity of pOASL was not. In conclusion, all pOAS isoforms play a significant role in the response to JEV infection, and are differentially induced by different stimuli. The alternative pathways of antiviral activity stimulated by OASL require further study. PMID:26437676

  13. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl2, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  14. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    Webb, G.C.; Vaska, V.L.; Ford, J.H. [Queen Elizabeth Hospital, Woodville (Australia)] [and others

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  15. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  16. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii.

    Chen, Q; Silflow, C D

    1996-11-01

    To elucidate the role of glutamine synthetase (GS) in nitrogen assimilation in the green alga Chlamydomonas reinhardtii we used maize GS1 (the cytosolic form) and GS2 (the chloroplastic form) cDNAs as hybridization probes to isolate C. reinhardtii cDNA clones. The amino acid sequences derived from the C. reinhardtii clones have extensive homology with GS enzymes from higher plants. A putative amino-terminal transit peptide encoded by the GS2 cDNA suggests that the protein localizes to the chloroplast. Genomic DNA blot analysis indicated that GS1 is encoded by a single gene, whereas two genomic fragments hybridized to the GS2 cDNA probe. All GS2 cDNA clones corresponded to only one of the two GS2 genomic sequences. We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae. Our results indicate that the level of GS1 transcripts is repressed by ammonium but induced by nitrate. The level of GS2 transcripts is not affected by ammonium or nitrate. Expression of both GS1 and GS2 genes is regulated by light, but perhaps through different mechanisms. Unlike in higher plants, no decreased level of GS2 transcripts was detected when cells were grown under conditions that repress photorespiration. Analysis of GS transcript levels in mutants with defects in the nitrate assimilation pathway show that nitrate assimilation and ammonium assimilation are regulated independently. PMID:8938407

  17. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.

    Yan, Wei; Ye, Qing; Tan, Min; Chen, Xi; Eriani, Gilbert; Wang, En-Duo

    2015-05-01

    A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNA(Leu), which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNA(Leu) D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS. PMID:25817995

  18. Genetic identification of essential indels and domains in carbamoyl phosphate synthetase II of Toxoplasma gondii.

    Fox, Barbara A; Ristuccia, Jessica G; Bzik, David J

    2009-04-01

    New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage, suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of uridine 5'-monophosphate (UMP) and thymidine 5'-monophosphate (dTMP) pools, thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII-deficient mutants, restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within, or proximal to, the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition, several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development. PMID:18992249

  19. In vitro characterization of the NAD(+) synthetase NadE1 from Herbaspirillum seropedicae.

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor. PMID:26802007

  20. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  1. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. PMID:27294598

  2. Structural Insights into the Catalytic Mechanism of Escherichia coli Selenophosphate Synthetase

    Noinaj, Nicholas; Wattanasak, Rut; Lee, Duck-Yeon; Wally, Jeremy L.; Piszczek, Grzegorz; Chock, P. Boon; Stadtman, Thressa C.; Buchanan, Susan K. (NIH)

    2012-03-26

    Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg{sup 2+} and K{sup +} and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS{sup C17S}) in apo form (without ATP bound). EcSPS{sup C17S} crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.

  3. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  4. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus;

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end produc...

  5. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress.

    Schug, Zachary T; Peck, Barrie; Jones, Dylan T; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S; Goodwin, Louise M; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J F; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J; Tardito, Saverio; Strachan, David; Harris, Adrian L; Aboagye, Eric O; Critchlow, Susan E; Wakelam, Michael J O; Schulze, Almut; Gottlieb, Eyal

    2015-01-12

    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. PMID:25584894

  6. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  7. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  8. N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of α-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicated that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO43- allosteric site where PO43- functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.

  9. Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases

    Wenyan Xu; Liling Li; Liangcheng Du; Ninghua Tan

    2011-01-01

    An increasing number of cyclopeptides have been discovered as products of ribosomal synthetic pathway.The biosynthetic study of these cyclopeptides has revealed interesting new mechanisms for cyclization.This review highlighted the recent discoveries in cyclization mechanisms for cyclopeptides synthesized independently of non-ribosomal peptide synthetases,including endopeptidase-catalyzed cyclization,intein-mediated cyclization,and peptide synthetase-catalyzed cyclization.This information may help to design hybrid ribosomal and non-ribosomal biosynthetic systems to produce novel cyclopeptides with various bioactivities.

  10. A cDNA clone from Zea mays endosperm sucrose synthetase mRNA.

    Geiser, M.; Döring, H P; Wöstemeyer, J; Behrens, U.; Tillmann, E; Starlinger, P.

    1980-01-01

    A cDNA clone for maize endosperm sucrose synthetase of 62o nucleotide pairs length was obtained by cloning double stranded DNA obtained from the total maize endosperm poly(A) RNA in pBR322, and identifying the appropriate clone by hybrid-promoter translation. In Southern blotting to genomic BamHI-digested DNA, a single band only of approximately 20 Kb lights up, indicating that the sucrose synthetase gene is unique, or that closely linked copies are located on this DNA fragment.

  11. Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase

    Yang, Zhengrong W.; Tendian, Susan W.; Carson, W. Michael; Brouillette, Wayne J.; DeLucas, Lawrence J.; Brouillette, Christie G

    2004-01-01

    Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD+ synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme’s catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. ...

  12. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis.

    Geng, Dechun; Wu, Jian; Shao, Hongguo; Zhu, Shijun; Wang, Yijun; Zhang, Wen; Ping, Zichuan; Hu, Xuanyang; Zhu, Xuesong; Xu, Yaozeng; Yang, Huilin

    2015-11-01

    Aseptic loosening is associated with the development of wear debris-induced peri-implant osteolytic bone disease caused by an increased osteoclastic bone resorption and decreased osteoblastic bone formation. However, no effective measures for the prevention and treatment of peri-implant osteolysis currently exist. The aim of this study was to determine whether lithium chloride (LiCl), a selective inhibitor of glycogen synthetase kinase 3 beta (GSK-3β), mitigates wear debris-induced osteolysis in a murine calvarial model of osteolysis. GSK-3β is activated by titanium (Ti) particles, and implantation of Ti particles on the calvarial surface in C57BL/6 mice resulted in osteolysis caused by an increase in the number of osteoclasts and a decrease in the number of osteoblasts. Mice implanted with Ti particles were gavage-fed LiCl (50 or 200 mg kg(-1)d(-1)), 6 days per week for 2 weeks. The LiCl treatment significantly inhibited GSK-3β activity and increased β-catenin and axin-2 expression in a dose-dependent manner, dramatically mitigating the Ti particle-induced suppression of osteoblast numbers and the expression of bone formation markers. Finally, we demonstrated that inhibition of GSK-3β suppresses osteoclast differentiation and reduces the severity of Ti particle-induced osteolysis. The results of this study indicate that Ti particle-induced osteolysis is partly dependent on GSK-3β and, therefore, the canonical Wnt signaling pathway. This suggests that selective inhibitors of GSK-3β such as LiCl may help prevent and treat wear debris-induced osteolysis. PMID:26275858

  13. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera

    Rouhiainen Leo

    2008-09-01

    Full Text Available Abstract Background Cyanobacteria produce a wealth of secondary metabolites, including the group of small cyclic heptapeptide hepatotoxins that constitutes the microcystin family. The enzyme complex that directs the biosynthesis of microcystin is encoded in a single large gene cluster (mcy. mcy genes have a widespread distribution among cyanobacteria and are likely to have an ancient origin. The notable diversity within some of the Mcy modules is generated through various recombination events including horizontal gene transfer. Results A comparative analysis of the adenylation domains from the first module of McyB (McyB1 and McyC in the microcystin synthetase complex was performed on a large number of microcystin-producing strains from the Anabaena, Microcystis and Planktothrix genera. We found no decisive evidence for recombination between strains from different genera. However, we detected frequent recombination events in the mcyB and mcyC genes between strains within the same genus. Frequent interdomain recombination events were also observed between mcyB and mcyC sequences in Anabaena and Microcystis. Recombination and mutation rate ratios suggest that the diversification of mcyB and mcyC genes is driven by recombination events as well as point mutations in all three genera. Sequence analysis suggests that generally the adenylation domains of the first domain of McyB and McyC are under purifying selection. However, we found clear evidence for positive selection acting on a number of amino acid residues within these adenylation domains. These include residues important for active site selectivity of the adenylation domain, strongly suggesting selection for novel microcystin variants. Conclusion We provide the first clear evidence for positive selection acting on amino acid residues involved directly in the recognition and activation of amino acids incorporated into microcystin, indicating that the microcystin complement of a given strain may

  14. Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic.

    Trauger, J W; Walsh, C T

    2000-03-28

    The gene cluster from Amycolotopsis orientalis responsible for biosynthesis of the vancomycin-type glycopeptide antibiotic chloroeremomycin was recently sequenced, indicating that this antibiotic derives from a seven-residue peptide synthesized by a three-subunit (CepA, CepB, and CepC) modular nonribosomal peptide synthetase. Expression of all or parts of the peptide synthetase in Escherichia coli would facilitate biochemical characterization of its substrate specificity, an important step toward the development of more potent glycopeptides by combinatorial biosynthesis. To determine whether CepA, a three-module 3,158-residue peptide synthetase expected to assemble the first three residues of the heptapeptide precursor, could be heterologously expressed in E. coli and converted to active, holo form by posttranslational priming with a phosphopantetheinyltransferase, we expressed two CepA fragments (CepA1-575 and CepA1-1596) as well as full-length CepA (CepA1-3158). All three constructs were expressed in soluble form. We find that the CepA1-575 fragment, containing adenylation and peptidyl carrier protein domains (A1-PCP1), specifically adenylates l-leucine and d-leucine in a 6:1 ratio, and it can be converted to holo form by the phosphopantetheinyltransferase Sfp; also, we find that holo-CepA1-575 can be covalently aminoacylated with l-leucine on the peptidyl carrier protein 1 domain. However, no amino acid-dependent adenylation or aminoacylation activity was detected for the larger CepA constructs with l-leucine or other expected amino acid substrates, suggesting severe folding problems in the multidomain proteins. PMID:10716695

  15. Effects of aerosolized ketamine on the level of nitric oxide and nitric oxide synthetase in the lung tissue of rat with asthma

    2006-01-01

    Objective: To explore the effects of aerosolized ketamine on the level of nitric oxide and nitric oxide synthetase in the lung tissue in rat asthma model. Methods: Forty SD rats were randomly assigned to five groups: control group (group N), asthma model group (group A), two pretreated groups of different concentrations of ketamine (group K1, K2)and dexamethasone group(group D) with eight rats in each group. The rats in group A were sensitized by injection of ovalbumin (OA) together with aluminum hydroxide and bordetella pertussis as adjuvants. Two weeks after the sensitization, aerosolized OA was used to cause asthma. The rats in group K1 and K2 were sensitized with OA as group A , and then exposed to aerosol of ketamine , with the concentration of 25 g/L and 50 g/L respectively. Before using aerosolized OA, the rats in group D were exposed to aerosol of 0.01% dexamethasone . The level of NO2-/NO3- in lung tissues, inducible nitric oxide synthetase(iNOS) and constitute nitric oxide synthetase(cNOS) was measured in all groups. Results: The level of NO2-/NO3- and the activity of iNOS in lung tissues in group A were signiticantly higher than those in the other groups. The iNOS activity and the level of NO2-/NO3- in lung tissues were highly positively correlated. Conclusion: NO can induce airway hyperreactivity that may worsen asthma. Aerosolized ketamine can decrease the iNOS expression and reduce the level of NO in the lung tissue in rat asthma model.

  16. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2.

    Pinyi Lu

    Full Text Available BACKGROUND: Lanthionine synthetase component C-like protein 2 (LANCL2 is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA, a plant hormone with anti-diabetic and anti-inflammatory effects. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1 as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610 in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. CONCLUSIONS/SIGNIFICANCE: LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.

  17. Biodistribution of 3,4-dihydro-5-[11c]methoxy-1(2h)-isoquinolinone, a potential PET tracer for poly(adp-ribose) synthetase

    Poly(adenosine diphosphate-ribose) synthetase (PARS) is a nuclear enzyme that is activated by deoxyribonucleic acid (DNA) strand breaks and participates in DNA repair. Excessive PARS activation, however, leads to cell death due to depletion of adenosine triphosphate (ATP). To evaluate whether it is possible to detect excessive activation of PARS with positron emission tomography (PET), we examined the pharmacokinetics of 3,4-dihydro-5-[11C]methoxy-1(2H)-isoquinolinone ([11C]MIQO), a potent poly(ADP-ribose) synthetase inhibitor, in the brain of rats and monkeys. Although the uptake of [11C]MIQO in the brain of normal rats was low, [11C]MIQO was rapidly incorporated into and then quickly washed out from the brain. The uptake of the radiotracer in the brain of normal monkeys was also low; however, [11C]MIQO gave a distribution image that differed from that of cerebral blood flow obtained by [15O]water-PET. No localization of [11C]MIQO in the brain of normal monkeys was observed. Low accumulation of some radioactivity was also observed in muscles surrounding the brain of monkeys, but did not seem to interfere with measurement of [11C]MIQO uptake in the brain with PET. Thus, detection of [11C]MIQO uptake with PET may be useful for detecting PARS activity in ischemic injury

  18. Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum

    Di Lorenzo, M.; Stork, M.; Naka, H.; Tolmasky, M.E.; Crosa, J.H.

    2008-01-01

    Anguibactin, the siderophore produced by Vibrio anguillarum 775, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes required for anguibactin biosynthesis are harbored by the pJM1 plasmid. Complete sequencing of this plasmid identified an orf encoding a 108 kDa p

  19. The PRPP Synthetase Spectrum: What Does it Demonstrate About Nucleotide Syndromes?

    Duley, J.A.; Christodoulou, J.; Brouwer, A.P.M. de

    2011-01-01

    Defects in X-linked phosphoribosylpyrophosphate synthetase 1 (PRPS1) manifest as follows: (1) PRS-I enzyme "superactivity" (gain-of-function mutations affecting allosteric regions); (2) PRS-I overexpression (which may be linked to miRNA mutation); (3) severe PRS-I deficiency/Arts syndrome (missense

  20. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid...

  1. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases.

    Drake, Eric J; Miller, Bradley R; Shi, Ce; Tarrasch, Jeffrey T; Sundlov, Jesse A; Allen, C Leigh; Skiniotis, Georgios; Aldrich, Courtney C; Gulick, Andrew M

    2016-01-14

    Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases. PMID:26762461

  2. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases

    Byung Sun Park

    2015-01-01

    Full Text Available Aminoacyl-tRNA synthetases (AminoARSs are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB, isoleucyl-tRNA synthetase (IARS and methionyl-tRNA synthetase (MARS mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment.

  3. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases.

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  4. Giardia fatty acyl-CoA synthetases as potential drug targets

    Fengguang eGuo

    2015-07-01

    Full Text Available Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5 to activate fatty acids scavenged from the host. ACS is an essential enzyme because fatty acids need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference towards palmitic acid (C16:0 and myristic acid (C14:0, and allosteric or Michaelis-Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 µM, Ki = 0.18 µM for GiACS1 and IC50 = 2.28 µM, Ki = 0.23 µM for GiACS2, respectively and the growth of G. intestinalis in vitro (IC50 = 0.8 µM. As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.

  5. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G

    2014-03-11

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  6. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus; Jöchl, Christoph; Kavanagh, Kevin; Larsen, Thomas O.; Doyle, Sean

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production...

  7. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder

    Hans-Gert eBernstein

    2015-08-01

    Full Text Available There is increasing evidence for disturbances within the glutamate system in patients with affective disorders, which involve disruptions of the glutamate-glutamine- cycle. The mainly astroglia-located enzyme glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a central role in glutamate and glutamine homoeostasis. However, glutamine synthetase is also expressed in numerous oligodendrocytes, another class of glial cells implicated in mood disorder pathology. To learn more about the role of glia-associated glutamine synthetase in mental illnesses, we decided to find out if numerical densities of glial cells immunostained for the enzyme protein differ between subjects with major depressive disorder, bipolar disorder and psychically healthy control cases. Counting of glutamine synthetase expressing astrocytes and oligodendrocytes in eight cortical and two subcortical brain regions of subjects with mood disorder (N=14, bipolar disorder (N=15 and controls (N=16 revealed that in major depression the densities of astrocytes were significantly reduced in some cortical but not subcortical gray matter areas, whereas no changes were found for oligodendrocytes. In bipolar disorder no alterations of glutamine synthetase-immunoreactive glia were found. From our findings we conclude that (1 glutamine synthetase expressing astrocytes are prominently involved in glutamate-related disturbances in major depression, but not in bipolar disorder and (2 glutamine synthetase expressing oligodendrocytes, though being present in significant numbers in prefrontal cortical areas, play a minor (if any role in mood disorder pathology. The latter assumption is supported by findings of others showing that - at least in the mouse brain cortex - glutamine synthetase immunoreactive oligodendroglial cells are unable to contribute to the glutamate-glutamine cycle due to the complete lack of amino acid transporters

  8. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    hart, Leen M; Hansen, Torben; Rietveld, Ingrid;

    2005-01-01

    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase...... first report of association between an aminoacyl tRNA synthetase gene and disease. Our results further highlight the important role of mitochondria in glucose homeostasis....

  9. eth-1, the Neurospora crassa locus encoding S-adenosylmethionine synthetase: Molecular cloning, sequence analysis and in vivo overexpression

    Mautino, M.R.; Barra, J.L.; Rosa, A.L. [Universidad Nacional de Cordoba (Argentina)

    1996-03-01

    Intense biochemical and genetic research on the eth-1 mutant of Neurospora crassa suggested that this locus might encode S-adenosylmethionine synthetase (S-Adomet synthetase). We have used protoplast transformation and phenotypic rescue of a thermosensitive phenotype associated with the eth-1 mutation to clone the locus. Nucleotide sequence analysis demonstrated that it encodes S-Adomet synthetase. Homology analyses of prokaryotic, fungal and higher eukaryotic S-Adomet synthetase polypeptide sequences show a remarkable evolutionary conservation of the enzyme. N. crassa strains carrying S-Adomet synthetase coding sequences fused to a strong heterologous promoter were constructed to assess the phenotypic consequences of in vivo S-Adomet synthetase overexpression. Studies of growth rates and microscopic examination of vegetative development revealed that normal growth and morphogenesis take place in N. crassa even at abnormally high levels of cellular S-Adomet. The degree of cytosine methylation of a naturally methylated genomic region was dependent on the cellular levels of S-Adomet. We conclude that variation in S-Adomet levels in N. crassa cells, which in addition to the status of genomic DNA methylation could modify the flux of other S-Adomet-dependent metabolic pathways, does not affect growth rate or morphogenesis. 90 refs., 5 figs., 1 tab.

  10. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.