WorldWideScience

Sample records for acetyl coa carboxylase

  1. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses.

    Jang Eun Lee

    Full Text Available Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2 regulates fatty acid oxidation (FAO by inhibiting carnitine palmitoyltransferase 1 (CPT1, a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.

  2. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. PMID:27181349

  3. Role of acetyl CoA

    Existence of an acetyltransferase, which catalizes acetylation of deacetylcephalosporin C to cephalosporin C, was demonstrated for the first time in cell-free extracts of Cephalosporium acremonium. The pH optimum of the enzyme appeared to be 7.0 to 7.5 and the enzyme required essentially Mg2+ as a cofactor for its reaction. The activity of this enzyme was not observed in the cell-free extracts of deacetylcephalosporin C-producing mutants Nos. 20, 29, 36 and 40, but was recovered in a revertant obtained from the mutant No. 40. These results indicate that deacetylcephalosporin C accumulation by these mutants was due to the lack of the acetyltransferase and made it reasonable that the terminal reaction of cephalosporin C biosynthesis in Cephalosporium acremonium proceeded by the catalytic action of acetyltransferase. (auth.)

  4. Chemical Genetics of Acetyl-CoA Carboxylases

    Xuyu Zu

    2013-01-01

    Full Text Available Chemical genetic studies on acetyl-CoA carboxylases (ACCs, rate-limiting enzymes in long chain fatty acid biosynthesis, have greatly advanced the understanding of their biochemistry and molecular biology and promoted the use of ACCs as targets for herbicides in agriculture and for development of drugs for diabetes, obesity and cancers. In mammals, ACCs have both biotin carboxylase (BC and carboxyltransferase (CT activity, catalyzing carboxylation of acetyl-CoA to malonyl-CoA. Several classes of small chemicals modulate ACC activity, including cellular metabolites, natural compounds, and chemically synthesized products. This article reviews chemical genetic studies of ACCs and the use of ACCs for targeted therapy of cancers.

  5. The dynamic organization of fungal acetyl-CoA carboxylase

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  6. The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis.

    P. Marini(GANIL); Li, S J; Gardiol, D; Cronan, J E; De Mendoza, D

    1995-01-01

    The genes encoding two subunits of acetyl coenzyme A carboxylase, biotin carboxyl carrier protein, and biotin carboxylase have been cloned from Bacillus subtilis. DNA sequencing and RNA blot hybridization studies indicated that the B. subtilis accB homolog which encodes biotin carboxyl carrier protein, is part of an operon that includes accC, the gene encoding the biotin carboxylase subunit of acetyl coenzyme A carboxylase.

  7. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  8. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine.

    McCarty, M F

    2001-03-01

    Pantethine is a versatile and well-tolerated hypolipidemic agent whose efficacy in this regard appears to be mediated by its catabolic product cystamine, a nucleophile which avidly attacks disulfide groups. An overview of pantethine research suggests that the hypotriglyceridemic activity of pantethine reflects cystamine-mediated inhibition of the hepatic acetyl-CoA carboxylase, which can be expected to activate hepatic fatty acid oxidation. Inhibition of HMG-CoA reductase as well as a more distal enzyme in the cholesterol synthetic pathway may account for pantethine's hypocholesterolemic effects. If pantethine does indeed effectively inhibit hepatic acetyl-CoA carboxylase, it may have adjuvant utility in the hepatothermic therapy of obesity. As a safe and effective compound of natural origin, pantethine merits broader use in the management of hyperlipidemias. PMID:11359352

  9. Wheat cytosolic acetyl-CoA carboxylase complements an ACC1 null mutation in yeast

    Joachimiak, M.; Tevzadze, G.; Podkowinski, J; Haselkorn, R.; Gornicki, P.

    1997-01-01

    Spores harboring an ACC1 deletion derived from a diploid Saccharomyces cerevisiae strain, in which one copy of the entire ACC1 gene is replaced with a LEU2 cassette, fail to grow. A chimeric gene consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat cytosolic acetyl-CoA carboxylase (ACCase) cDNA, and yeast ACC1 3′ tail was used to complement a yeast ACC1 mutation. The complementation demonstrates that active wheat ACCase can be produced in yeast. At low concentrations of galactose,...

  10. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.

    Wei, Jia; Tong, Liang

    2015-10-29

    Acetyl-CoA carboxylase (ACC) has crucial roles in fatty acid metabolism and is an attractive target for drug discovery against diabetes, cancer and other diseases. Saccharomyces cerevisiae ACC (ScACC) is crucial for the production of very-long-chain fatty acids and the maintenance of the nuclear envelope. ACC contains biotin carboxylase (BC) and carboxyltransferase (CT) activities, and its biotin is linked covalently to the biotin carboxyl carrier protein (BCCP). Most eukaryotic ACCs are 250-kilodalton (kDa), multi-domain enzymes and function as homodimers and higher oligomers. They contain a unique, 80-kDa central region that shares no homology with other proteins. Although the structures of the BC, CT and BCCP domains and other biotin-dependent carboxylase holoenzymes are known, there is currently no structural information on the ACC holoenzyme. Here we report the crystal structure of the full-length, 500-kDa holoenzyme dimer of ScACC. The structure is remarkably different from that of the other biotin-dependent carboxylases. The central region contains five domains and is important for positioning the BC and CT domains for catalysis. The structure unexpectedly reveals a dimer of the BC domain and extensive conformational differences compared to the structure of the BC domain alone, which is a monomer. These structural changes reveal why the BC domain alone is catalytically inactive and define the molecular mechanism for the inhibition of eukaryotic ACC by the natural product soraphen A and by phosphorylation of a Ser residue just before the BC domain core in mammalian ACC. The BC and CT active sites are separated by 80 Å, and the entire BCCP domain must translocate during catalysis. PMID:26458104

  11. Synthesis of O-[11C]acetyl CoA, O-[11C]acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with 11C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-11C]acetyl CoA and O-[2-11C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-11C]acetyl-L-carnitine and O-[2-11C]acetyl-L-carnitine in 70-80% yield, based on [1-11C]acetate or [2-11C]acetate, respectively. By an N-methylation reaction with [11C]methyl iodide, L-[methyl-11C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-11C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [11C]methyl iodide. Initial data of the kinetics of the different 11C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented

  12. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  13. Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes

    2007-01-01

    Heteromeric acetyl-coanzyme A(CoA)carboxylese(ACCase)catalyzes the formation of malonyl-CoA from acetyl-CoA.It plays an essential role in fatty acid synthesis in prokaryotes and most of plants.The heteromeric ACCase is composed of four subunits:biotin carboxylase (BC),biotin carboxyl carrier protein (BCCP),and α-and β-subunits of carboxyltransferese(α-andβ-CT).In this study,we cloned five novel genes encoding the subunits of heteromeric ACCese(one BC,BCCP and β-CT,and two α-CTs) from cotton (Gossypium hirsutum cv.zhongmian 35)by RACE-PCR.The deduced amino acid sequence of these cDNAs shares high similarity with other reported heteromeric ACCese subunits.The phylogenetic analysis indicated that the different subunits of heteromeric ACCase were grouped in a similar pattern.Southern blot analysis revealed the milti-copy patterns of these heteromeric ACCase genes in cotton genome.Semi-quantitative RT-PCR demonstrated that heteromeric ACCese genes were constitutively expressed in all of the cotton tissues,but the transcripts accumulated at a relatively low level in roots.To our knowledge,this is the first report about characterization of the heteromeric ACCase genes in cotton.

  14. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase.

    Choi, Jin Wook; Da Silva, Nancy A

    2014-10-10

    Polyketides and fatty acids are important in the production of pharmaceuticals, industrial chemicals, and biofuels. The synthesis of the malonyl-CoA building block, catalyzed by acetyl-CoA carboxylase (Acc1), is considered a limiting step to achieving high titers of polyketides and fatty acids in Saccharomyces cerevisiae. Acc1 is deactivated by AMP-activated serine/threonine protein kinase (Snf1) when glucose is depleted. To prevent this deactivation, the enzyme was aligned with the Rattus norvegicus (rat) Acc1 to identify a critical amino acid (Ser-1157) for phosphorylation and deactivation. Introduction of a S1157A mutation into Acc1 resulted in 9-fold higher specific activity following glucose depletion. The enzyme was tested in yeast engineered to produce the polyketide 6-methylsalisylic acid (6-MSA). Both 6-MSA and native fatty acid levels increased by 3-fold. Utilization of this modified Acc1 enzyme will also be beneficial for other products built from malonyl-CoA. PMID:25078432

  15. Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese Foxtail (Alopecurus japonicus.

    Hongle Xu

    Full Text Available Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.

  16. Cloning, Expression and Purification of Wheat Acetyl-CoA Carboxylases CT Domain in E.coil

    WANG Rui-jian; YANG Xue-ying; ZHENG Liang-yu; YANG Ye; GAO Gui; CAO Shu-gui

    2008-01-01

    The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly,and the 2.3 kb gene was inserted into PET28a+ vector and expressed in E.coil in a soluble state.The (His)6 fusion protein was identified by SDS-PAGE and Western blot.The recombinant protein was purified by affinity chromatography,and the calculated molecular mass(Mr) was 88000.The results of the sequence analysis indicate that the cloned gene(GeneBank accession No.EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid.The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides,and further to screen new herbicides.

  17. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D.; Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor)...

  18. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides.

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D; De Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha(-1)) compared with the GR50 (1484.6 g ai ha(-1)) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar (14)C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of (14)C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg. PMID:27148285

  19. [The protective effect of pantothenic acid derivatives and changes in the system of acetyl CoA metabolism in acute ethanol poisoning].

    Moiseenok, A G; Dorofeev, B F; Omel'ianchik, S N

    1988-01-01

    Calcium pantothenate (CaP), calcium 4'-phosphopantothenate (CaPP), pantethine, panthenol, sulfopantetheine and CoA decrease acute toxicity of acetaldehyde in mice. All studied compounds diminish duration of the narcotic action of ethanol--ET (3.5 g/kg intraperitoneally) in mice and rats. In the latter this effect is realized at the expense of "long sleeping" and "middle sleeping" animals. CaP (150 mg/kg subcutaneously) and CaPP (100 mg/kg subcutaneously) prevent hypothermia and a decrease of oxygen consumption in rats induced by ET administration. Combined administration of ET, CaP and CaPP leads to a characteristic increase of acid-soluble CoA fractions in the rat liver and a relative decrease of acetyl CoA synthetase and N-acetyltransferase reactions. The antitoxic effect of preparations of pantothenic acid is not mediated by CoA-dependent reactions of detoxication, but most probably is due to intensification of ET oxidation and perhaps to its elimination from the organism. PMID:2905277

  20. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Research highlights: → AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. → Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. → AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACCβ) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACCβ activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid β-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACCβ promoter activity via AMPK activation. A human ACCβ promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes ± a NRF-1 expression construct. NRF-1 overexpression decreased ACCβ gene promoter activity by 71 ± 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACCβ was abolished with a pPIIβ-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACCβ promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACCβ gene promoter. Here NRF-1 blunted USF1-dependent induction of ACCβ promoter activity by 58 ± 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 ± 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACCβ gene promoter in the mammalian heart. Our data extends AMPK regulation of ACCβ to the transcriptional level.

  1. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats.

    Harriman, Geraldine; Greenwood, Jeremy; Bhat, Sathesh; Huang, Xinyi; Wang, Ruiying; Paul, Debamita; Tong, Liang; Saha, Asish K; Westlin, William F; Kapeller, Rosana; Harwood, H James

    2016-03-29

    Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein-protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease. PMID:26976583

  2. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  3. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  4. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis.

    Kristen E N Scott

    Full Text Available Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1, the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.

  5. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: mfessop@sun.ac.za [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  6. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J.; Lueders, Tillmann

    2013-01-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (a...

  7. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified

  8. Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site

    Ito, Mikinao; Kotera, Mai; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki

    2009-01-01

    A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid–Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N′-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)–Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)2] (OTf)2(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(d...

  9. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  10. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    Li, Zhi-Guo; Yin, Wei-Bo; Guo, Huan; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2010-05-01

    Heteromeric acetyl coenzyme A carboxylase (ACCase), a rate-limiting enzyme in fatty acid biosynthesis in dicots, is a multi-enzyme complex consisting of biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase (alpha-CT and beta-CT). In the present study, four genes encoding alpha-CT were cloned from Brassica napus, and two were cloned from each of the two parental species, B. rapa and B. oleracea. Comparative and cluster analyses indicated that these genes were divided into two major groups. The major divergence between group-1 and group-2 occurred in the second intron. Group-2 alpha-CT genes represented the ancestral form in the genus Brassica. The divergence of group-1 and group-2 genes occurred in their common ancestor 12.96-17.78 million years ago (MYA), soon after the divergence of Arabidopsis thaliana and Brassica (15-20 MYA). This time of divergence is identical to that reported for the paralogous subgenomes of diploid Brassica species (13-17 MYA). Real-time reverse transcription PCR revealed that the expression patterns of the two groups of genes were similar in different organs, except in leaves. To better understand the regulation and evolution of alpha-CT genes, promoter regions from two sets of orthologous gene copies from B. napus, B. rapa, and B. oleracea were cloned and compared. The function of the promoter of gene Bnalpha-CT-1-1 in group-1 and gene Bnalpha-CT-2-1 in group-2 was examined by assaying beta-glucuronidase activity in transgenic A. thaliana. Our results will be helpful in elucidating the evolution and regulation of ACCase in oilseed rape. PMID:20616867

  11. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells.

    Cordonier, Elizabeth L; Jarecke, Sarah K; Hollinger, Frances E; Zempleni, Janos

    2016-06-01

    Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation. PMID:27041646

  12. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  13. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  14. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    Griffith, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Kung, Daniel W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Esler, William P. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Amor, Paul A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Bagley, Scott W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Beysen, Carine [KineMed Inc., Emeryville, CA (United States); Carvajal-Gonzalez, Santos [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Doran, Shawn D. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Limberakis, Chris [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Mathiowetz, Alan M. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); McPherson, Kirk [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Price, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Ravussin, Eric [Louisiana State Univ., Baton Rouge, LA (United States); Sonnenberg, Gabriele E. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Southers, James A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Sweet, Laurel J. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Turner, Scott M. [KineMed Inc., Emeryville, CA (United States); Vajdos, Felix F. [Pfizer Worldwide Research and Development, Cambridge, MA (United States)

    2014-12-26

    We found that Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. Here, we disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.

  15. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  16. Search for novel targets of the PII signal transduction protein in Bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner.

    Rodrigues, Thiago E; Gerhardt, Edileusa C M; Oliveira, Marco A; Chubatsu, Leda S; Pedrosa, Fabio O; Souza, Emanuel M; Souza, Gustavo A; Müller-Santos, Marcelo; Huergo, Luciano F

    2014-02-01

    The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP. PMID:24329683

  17. Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: multi-drug resistance mechanism.

    Zhu, Xiao-Lei; Yang, Wen-Chao; Yu, Ning-Xi; Yang, Sheng-Gang; Yang, Guang-Fu

    2011-03-01

    Herbicides targeting grass plastidic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) are selectively effective against graminicides. The intensive worldwide use of this herbicide family has selected for resistance genes in a number of grass weed species. Recently, the active-site W374C mutation was found to confer multi-drug resistance toward haloxyfop (HF), fenoxaprop (FR), Diclofop (DF), and clodinafop (CF) in A. myosuroides. In order to uncover the resistance mechanism due to W374C mutation, the binding of above-mentioned four herbicides to both wild-type and the mutant-type ACCase was investigated in the current work by molecular docking and molecular dynamics (MD) simulations. The binding free energies were calculated by molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) method. The calculated binding free energy values for four herbicides were qualitatively consistent with the experimental order of IC(50) values. All the computational model and energetic results indicated that the W374C mutation has great effects on the conformational change of the binding pocket and the ligand-protein interactions. The most significant conformational change was found to be associated with the aromatic amino acid residues, such as Phe377, Tyr161' and Trp346. As a result, the π-π interaction between the ligand and the residue of Phe377 and Tyr161', which make important contributions to the binding affinity, was decreased after mutation and the binding affinity for the inhibitors to the mutant-type ACCase was less than that to the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural role and mechanistic insights obtained from computational simulations will provide a new starting point for the rational design of novel inhibitors to overcome drug resistance associated with W374C mutation. PMID:20499260

  18. Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken.

    Liu, Zhen; Li, Qinghe; Liu, Ranran; Zhao, Guiping; Zhang, Yonghong; Zheng, Maiqing; Cui, Huanxian; Li, Peng; Cui, Xiaoyan; Liu, Jie; Wen, Jie

    2016-06-01

    The typical characteristic of fatty liver syndrome (FLS) is an increased hepatic triacylglycerol content, and a sudden decline in egg production often occurs. FLS may develop into fatty liver hemorrhagic syndrome (FLHS), characterized by sudden death from hepatic rupture and hemorrhage. DNA methylation is associated with transcriptional silencing, leading to the etiology and pathogenesis of some animal diseases. The roles of DNA methylation in the genesis of FLS, however, are largely unknown. The lipogenic methyl-deficient diet (MDD) caused FLS similar to human nonalcoholic steatohepatitis (NASH). After 16 Jingxing-Huang (JXH) hens were fed MDD for 10 wk, eight exhibited FLS (designated as FLS-susceptible birds); the remainder, without FLS, served as controls (NFLS). Physiological and biochemical variables, gene expression levels, and DNA methylation were determined in the liver. The development of FLS in JXH hens was accompanied by abnormal lipid accumulation. Relative expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and microsomal triglyceride transfer protein (MTTP) were significantly up-regulated in the FLS group in comparison with the NFLS group. The transcript abundance of sterol regulatory element binding protein 1 (SREBP-1c), stearoyl-CoA desaturase (SCD), liver X receptor alpha (LXRα), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferator-activated receptor gamma (PPARγ) did not differ between the two groups. Interestingly, MTTP and ACC mRNA abundance were negatively correlated with the level of promoter methylation. The extent of DNA methylation of the cytosine-guanine (CpG) sites in the SREBP-1c, FAS, PPARα, and LXRα promoter regions was also analyzed by direct sequencing but none differed between FLS and NFLS birds. Taken together, these results specify link DNA methylation to the pathogenesis of FLS in chickens. PMID:27083546

  19. Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition.

    Zhang, S; Knight, T J; Reecy, J M; Wheeler, T L; Shackelford, S D; Cundiff, L V; Beitz, D C

    2010-08-01

    The objectives of this study were to identify single nucleotide polymorphisms (SNPs) in the promoter I (PI) region of the bovine acetyl-CoA carboxylase-alpha (ACACA) gene and to evaluate the extent to which they were associated with lipid-related traits. Eight novel SNPs were identified, which were AJ276223:g.2064T>A (SNP1), g.2155C>T (SNP2), g.2203G>T (SNP3), g.2268T>C (SNP4), g.2274G>A (SNP5), g.2340A>G (SNP6), g.2350T>C (SNP7) and g.2370A>G (SNP8). Complete linkage disequilibrium was observed among SNP1, 2, 4, 5, 6 and 8. Phenotypic data were collected from 573 cross-bred steers with six sire breeds, including Hereford, Angus, Brangus, Beefmaster, Bonsmara and Romosinuano. The genotypes of SNP1/2/4/5/6/8 were significantly associated with adjusted backfat thickness. The genotypes of SNP3 were significantly associated with triacylglycerol (TAG) content and fatty acid composition of longissimus dorsi muscle (LM) in Brangus-, Romosinuano- and Bonsmara-sired cattle. Cattle with g.2203GG genotype had greater concentrations of TAG, total lipid, total saturated fatty acid and total monounsaturated fatty acid than did cattle with g.2203GT genotype. The genotypes of SNP7 were significantly associated with fatty acid composition of LM. Cattle with genotype g.2350TC had greater amounts of several fatty acids in LM than did cattle with genotype g.2350CC. Our results suggested that the SNPs in the PI region of ACACA gene are associated with variations in the fatty acid contents in LM. PMID:20002363

  20. A Symmetrical Tetramer for S. aureus Pyruvate Carboxylase in Complex with Coenzyme A

    Yu, L.; Xiang, S; Lasso, G; Gil, D; Valle, M; Tong, L

    2009-01-01

    Pyruvate carboxylase (PC) is a conserved metabolic enzyme with important cellular functions. We report crystallographic and cryo-electron microscopy (EM) studies of Staphylococcus aureus PC (SaPC) in complex with acetyl-CoA, an allosteric activator, and mutagenesis, biochemical, and structural studies of the biotin binding site of its carboxyltransferase (CT) domain. The disease-causing A610T mutation abolishes catalytic activity by blocking biotin binding to the CT active site, and Thr908 might play a catalytic role in the CT reaction. The crystal structure of SaPC in complex with CoA reveals a symmetrical tetramer, with one CoA molecule bound to each monomer, and cryo-EM studies confirm the symmetrical nature of the tetramer. These observations are in sharp contrast to the highly asymmetrical tetramer of Rhizobium etli PC in complex with ethyl-CoA. Our structural information suggests that acetyl-CoA promotes a conformation for the dimer of the biotin carboxylase domain of PC that might be catalytically more competent.

  1. Characterization of acetyl-CoA and propionyl-CoA carboxylases encoded by Leptospira interrogans serovar Lai: an initial biochemical study for leptospiral gluconeogenesis via anaplerotic CO2 assimilation

    Nanqiu Peng; Yi Zhong; Qing Zhang; Mingyue Zheng; Wei Zhao; Hualiang Jiang; Chen Yang; Xiaokui Guo; Guoping Zhao

    2012-01-01

    Leptospira interrogans is the causative agent of leptospirosis.The in vitro growth of L.interrogans requires CO2 and a partial 3-hydroxypropionate pathway involving two acyl-CoA carboxylases was suggested by genomic analysis to assimilate CO2.Either set of the candidate genes heterologously co-expressed in Escherichia coli was able to demonstrate both acetyl-CoA carboxylase (ACC)and propionyl-CoA carboxylase (PCC) activities.The trisubunit holoenzyme (LA_2736-LA_2735 and LA_3803),although failed to be purified,was designated ACC based on its substrate preference toward acetyl-CoA.The partially purified bi-subunit holoenzyme (LA_2432-LA_2433) has a considerably higher activity against propionyi-CoA as the substrate than that of acetyl-CoA,and thus,designated PCC.Native polyacrylamide gel electrophoresis indicated that this PCC has a molecular mass of around 669 kDa,suggesting an α4β4 quaternary structure and both structural homology modeling and site-directed mutagenesis analysis of its carboxyltransferase subunit (LA_2433) indicated that the A431 residue located at the bottom of the putative substrate binding pocket may play an important role in substrate specificity determination.Both transcriptomic and proteomic data indicated that enzymes involved in the suggested partial 3-hydroxypropionate pathway were expressed in vivo in addition to ACC/PCC and the homologous genes in genomes of other Leptospira species were re-annotated accordingly.However,as the in vitro detected specific activity of ACC in the crude cell extract was too low to account for the growth of the bacterium in Ellinghausen-McCulloughJohnson-Harris minimal medium,further systematic analysis is required to unveil the mechanism of gluconeogenesis via anaplerotic CO2 assimilation in Leptospira species.

  2. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.

    Gerhardt, Edileusa C M; Rodrigues, Thiago E; Müller-Santos, Marcelo; Pedrosa, Fabio O; Souza, Emanuel M; Forchhammer, Karl; Huergo, Luciano F

    2015-03-01

    Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria. PMID:25557370

  3. Design of small molecule inhibitors of acetyl-CoA carboxylase 1 and 2 showing reduction of hepatic malonyl-CoA levels in vivo in obese Zucker rats.

    Bengtsson, Christoffer; Blaho, Stefan; Saitton, David Blomberg; Brickmann, Kay; Broddefalk, Johan; Davidsson, Ojvind; Drmota, Tomas; Folmer, Rutger; Hallberg, Kenth; Hallén, Stefan; Hovland, Ragnar; Isin, Emre; Johannesson, Petra; Kull, Bengt; Larsson, Lars-Olof; Löfgren, Lars; Nilsson, Kristina E; Noeske, Tobias; Oakes, Nick; Plowright, Alleyn T; Schnecke, Volker; Ståhlberg, Pernilla; Sörme, Pernilla; Wan, Hong; Wellner, Eric; Oster, Linda

    2011-05-15

    Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats. PMID:21515056

  4. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes

    Maeda, Shiro; Kobayashi, Masa-aki; Araki, Shin-ichi;

    2010-01-01

    It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A ca...

  5. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex.

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2010-01-01

    N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex. PMID:20930369

  6. A comparative study of drug resistance mechanism associated with active site and non-active site mutations: I388N and D425G mutants of acetyl-coenzyme-A carboxylase.

    Zhu, Xiao-Lei; Yang, Guang-Fu

    2012-03-01

    A major concern in the development of acetyl-CoA carboxylase-inhibiting (ACCase; EC 6.4.1.2) herbicides is the emergence of resistance as a result of the selection of distinct mutations within the CT domain. Mutations associated with resistance have been demonstrated to include both active sites and non-active sites, including Ile-1781-Leu, Trp- 2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Gly-2096-Ala (numbered according to the Alopecurus myosuroides plastid ACCase). In the present study, extensive computational simulations, including molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) calculations, were carried out to compare the molecular mechanisms of active site mutation (I388N) and non-active site mutation (D425G) in Alopecurus myosuroides resistance to some commercial herbicides targeting ACCase, including haloxyfop (HF), diclofop (DF) and fenoxaprop (FR). All of the computational model and energetic results indicated that both I388N and D425G mutations have effects on the conformational change of the binding pocket. The π-π interaction between ligand and Phe377 and Tyr161' residues, which make an important contribution to the binding affinity, was decreased after mutation. As a result, the mutant-type ACCase has a lower affinity for the inhibitor than the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural and mechanistic insights obtained from the present study will deepen our understanding of the interactions between ACCase and herbicides, which provides a molecular basis for the future design of a promising inhibitor with low resistance risk. PMID:22242795

  7. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian;

    2015-01-01

    -CoA (or pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong...

  8. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I.

    Moir, A M; Zammit, V A

    1993-01-01

    The effects of the ingestion of a meal on the partitioning of hepatic fatty acids between oxidation and esterification were studied in vivo for meal-fed rats. The time course for the reversal of the starved state was extremely rapid and the process was complete within 2 h, in marked contrast with the reversal of the effects of starvation in rats fed ad libitum [A. M. B. Moir and V. A. Zammit (1993) Biochem. J. 289, 49-55]. This rapid reversal occurred in spite of the fact that, in the liver of the meal-fed animals before feeding, a similar degree of partitioning of fatty acids in favour of oxidation was observed as in 24 h-starved rats (previously fed ad libitum). This suggested that the lower degree of ketonaemia observed in meal-fed rats before a meal is not due to the inability of acylcarnitine formation to compete successfully with esterification of fatty acids to the glycerol moiety. Investigation of the possible mechanisms that could contribute towards the rapid switching-off of fatty acid oxidation revealed that this was correlated with a very rapid rise and overshoot in hepatic malonyl-CoA concentration, but not with any change in the activity, or sensitivity to malonyl-CoA, of the mitochondrial overt carnitine palmitoyltransferase (CPT I). The role of these two parameters in the reversal of fasting-induced hepatic fatty acid oxidation was thus the inverse of that observed previously for refed 24 h-starved rats. The rapid increase in [malonyl-CoA] was accompanied by an immediate and complete reversion of the kinetic characteristics (Ka for citrate, expressed/total activity ratio) of acetyl-CoA carboxylase to those found in the post-meal animals, again in contrast with the time course observed in refed 24 h-starved rats [A. M. B. Moir and V. A. Zammit (1990) Biochem. J. 272, 511-517]. The rapidity with which these changes occurred was specific to the partitioning of acyl-CoA; the meal-induced diversion of glycerolipids towards phospholipid synthesis and the

  9. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming...

  10. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  11. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production

    Shimazu, Tadahiro; Hirschey, Matthew D; Hua, Lan; Dittenhafer-Reed, Kristin E; Schwer, Bjoern; Lombard, David B; Li, Yu; Bunkenborg, Jakob; Alt, Frederick W; Denu, John M; Jacobson, Matthew P; Verdin, Eric

    2010-01-01

    The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(...

  12. 高脂饮食对老年大鼠骨骼肌脂肪酸含量及乙酰辅酶A羧化酶表达和活性的影响%Effects of high-fat diet on fatty acid metabolism, expression and activity of acetyl-coenzyme A carboxylase in skeletal muscle in aged rats

    胡淑国; 宋光耀; 王敬; 高宇

    2010-01-01

    目的 探讨增龄和高脂饮食对大鼠骨骼肌脂肪酸含量及乙酰辅酶A羧化酶(acetyl-coenzyme A carboxylase,ACC)表达和活性的影响.方法 将22~24月龄雄性Wistar大鼠随机分为老年对照组和高脂组;4~5月龄大鼠作为青年对照组.老年对照组和青年对照组给基础饲料,高脂组给予高脂饲料,喂养8周.用高胰岛素-正葡萄糖钳夹实验评价各组大鼠胰岛素敏感性,用全自动生化分析仪测定骨骼肌三酰甘油,用荧光分光光度计测定骨骼肌总的长链脂酰辅酶A含量,用Western-blot方法测定骨骼肌ACC、和磷酸化ACC(P-ACC)蛋白表达.结果 (1)老年对照组空腹血糖、胰岛索和游离脂肪酸高于青年对照组,高脂组上述几项指标进一步升高,并且出现血清三酰甘油和总胆固醇水平增高;(2)老年对照组葡萄糖输注率(glucose infusion rates,GIR)低于青年对照组,高脂组GIR低于老年对照组,高脂组GIR在8周末低于4周末;(3)老年对照组骨骼肌三酰甘油及长链脂酰辅酶A含量高于青年对照组,高脂组与老年对照组比较进一步升高;(4)老年对照组与青年对照组之间、高脂组与老年对照组之间骨骼肌ACC蛋白表达均无明显变化(P>0.05);骨骼肌P-ACC蛋白水平在老年对照组低于青年对照组,高脂组与老年对照组比较进一步降低(P0.05). The protein levels of P-ACC in skeletal muscle were lower in OC group, and much lower in HF group than in YC group (P<0.05 or P<0.01). Conclusions Compared with young rats, abnormal fatty acid metabolism and insulin resistance always exist in aged rats. High-fat feeding results in a significant increase in lipid content in skeletal muscle. Alterations of ACC activity may contribute to fat accumulation in skeletal muscle and insulin resistance.

  13. Crescimento e competitividade de biótipos de capim-colchão resistente e suscetível aos herbicidas inibidores da acetil coenzima A carboxilase Growth and competitiveness of biotypes of crabgrass resistant and susceptible to acetyl coenzyme A carboxylase inhibiting herbicides

    Ramiro Fernando López Ovejero

    2007-01-01

    Full Text Available O objetivo deste trabalho foi comparar o crescimento e a habilidade competitiva de dois biótipos de capim-colchão (Digitaria ciliaris, um resistente (R e outro suscetível (S aos herbicidas inibidores da acetil coenzima A carboxilase. O crescimento dos biótipos foi determinado pela coleta da matéria seca das plantas, aos 14, 21, 25, 28, 34, 42, 49, 57, 65, 72, 78, 86, 101, 111 e 118 dias após emergência (DAE. Os dados de massa de matéria seca foram ajustados ao modelo logístico e, também, utilizados para a obtenção da taxa de crescimento absoluto. Para avaliar a habilidade competitiva intra-específica e interespecífica, foram instalados cinco experimentos com o uso do método substitutivo. Compararam-se os biótipos R e S entre si e cada um destes com a cultura da soja, quando semeada no mesmo dia ou sete dias após a semeadura das plantas daninhas. As proporções de plantas entre as espécies ou biótipos utilizados foram: 5:0; 4:1; 3:2; 2:3; 1:4 e 0:5. Os biótipos de capim-colchão apresentaram acúmulo de matéria seca, crescimento absoluto e competição interespecífica semelhantes, e a redução da matéria seca da soja foi similar na presença dos biótipos R e S, o que sugere que ambos os biótipos de capim-colchão possuem a mesma adaptabilidade ecológica.The objective of this work was to compare the growth and the competitive ability of two crabgrass (Digitaria ciliaris biotypes, one resistant (R and other susceptible (S to the acetyl coenzyme A carboxylase inhibiting herbicides. Biotypes growth was determined by collecting the plant dry mass at 14, 21, 25, 28, 34, 42, 49, 57, 65, 72, 78, 86, 101, 111, and 118 days after emergence (DAE. Data of dry mass were adjusted to a logistic model, and were also used to calculate the absolute growth rate. Five experiments were installed to evaluate the intraspecific and interspecific competitive ability, using the substitutive method. The biotypes R and S were compared between

  14. Differences among Adult COAs and Adult Non-COAs on Levels of Self-Esteem, Depression, and Anxiety.

    Dodd, David T.; Roberts, Richard L.

    1994-01-01

    Examined self-esteem, depression, and anxiety among 60 adult children of alcoholics (COAs) and 143 adult non-COAs. Subjects completed Children of Alcoholics Screening Test, demographic questionnaire, Beck Depression Inventory, State-Trait Anxiety Inventory, and Coopersmith Self-Esteem Inventory. Found no significant differences between COAs and…

  15. Autotrophic growth: the methyl binding site of CO dehydrogenase in the synthesis of acetyl-CoA

    A pathway in which CO or CO2 and H2 is used as a source of energy and carbon to synthesize acetyl-CoA is used for autotrophic growth of acetogenes, methanogens and some sulfate-reducing bacteria. All enzymes involved in this pathway have been purified from C. thermoaceticum. Five of them: CO dehydrogenase (CODH), corrinoid protein, methyltransferase, CODH disulfide reductase (SSRd) and ferredoxin catalyzed synthesis of acetyl-CoA from methyltetrahydrofolate, CO and CoA. CODH is a central enzyme catalyzing the condensation of CH3, CO and CoA and per se it catalyzes a reversible exchange of CO with acetyl-CoA. Thus, CODH must have binding sites for CH3, CO and CoA. They have succeeded in methylating β subunits of CODH using 14CH3I or 14CH-corrinoid protein, a native donor of the CH3 group in synthesis of acetyl-CoA. With resulting [14CH3]CODH, only SSRd is required for synthesis of [14C]acetyl-CoA from CO and CoA. The kinetic studies show that CH3I is a competitive inhibitor for exchange reaction between CO and acetyl-CoA. Acetaldehyde and acetyl-CoA but not acetic acid and CoA protected CODH against methylation by CH3I. Methyl group bound to CODH is very slowly removed by CO and CoA and acetyl-CoA accelerated this process. These data confirm that CH3 group from CH3I and CH3-corrinoid protein is bound to the methyl binding site of CODH

  16. Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis.

    Sirobhushanam, Sirisha; Galva, Charitha; Sen, Suranjana; Wilkinson, Brian J; Gatto, Craig

    2016-09-01

    Listeria monocytogenes, the causative organism of the serious food-borne disease listeriosis, has a membrane abundant in branched-chain fatty acids (BCFAs). BCFAs are normally biosynthesized from branched-chain amino acids via the activity of branched chain α-keto acid dehydrogenase (Bkd), and disruption of this pathway results in reduced BCFA content in the membrane. Short branched-chain carboxylic acids (BCCAs) added as media supplements result in incorporation of BCFAs arising from the supplemented BCCAs in the membrane of L. monocytogenes bkd mutant MOR401. High concentrations of the supplements also effect similar changes in the membrane of the wild type organism with intact bkd. Such carboxylic acids clearly act as fatty acid precursors, and there must be an alternative pathway resulting in the formation of their CoA thioester derivatives. Candidates for this are the enzymes phosphotransbutyrylase (Ptb) and butyrate kinase (Buk), the products of the first two genes of the bkd operon. Ptb from L. monocytogenes exhibited broad substrate specificity, a strong preference for branched-chain substrates, a lack of activity with acetyl CoA and hexanoyl CoA, and strict chain length preference (C3-C5). Ptb catalysis involved ternary complex formation. Additionally, Ptb could utilize unnatural branched-chain substrates such as 2-ethylbutyryl CoA, albeit with lower efficiency, consistent with a potential involvement of this enzyme in the conversion of the carboxylic acid additives into CoA primers for BCFA biosynthesis. PMID:27320015

  17. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    Harris Steven D; Nickerson Kenneth W; Strope Pooja K; Moriyama Etsuko N

    2011-01-01

    Abstract Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green al...

  18. ADP-bildende Acetyl-CoA Synthetasen aus hyperthermophilen Archaea: Molekularbiologische und biochemische Charakterisierung von neuartigen Enzymen der Acetat-Bildung und ATP-Synthese

    Musfeldt, Meike

    2001-01-01

    Keine deutschsprachige Zusammenfassung vorhanden. Acetyl-CoA synthetase (ADP-forming) (ADP-ACS) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + Pi -> acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ADP-ACS in Archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145 kDa heterotetramers (a2, b2). By using the N-terminal amino acid sequences of both subunits, which are located at different ...

  19. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  20. Effect of [L-Carnitine] on acetyl-L-carnitine production by heart mitochondria

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of 14CO2 from 2-14C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. 14CO2 production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase

  1. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks

  2. COA based robust output feedback UPFC controller design

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  3. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    Harris Steven D

    2011-03-01

    Full Text Available Abstract Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. Results Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota. It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina. Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. Conclusions We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal

  4. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of bioti...

  5. Autotrophic growth: methylated carbon monoxide dehydrogenase as an intermediate of acetyl-CoA synthesis

    A new pathway of autotrophic growth has been discovered in certain anaerobic bacteria in which acetyl-CoA is the product formed from CO2 for initiation of anabolism rather than 3-phosphoglycerate as in the Calvin Cycle. CO2 is reduced in combination with tetrahydrofolate to methyltetrahydrofolate (CH3THF) and is the source of the CH3 group. CO2 or CO is the source of the carbonyl group. CO dehydrogenase (CODH), corrinoid enzyme, methyltransferase, ferredoxin and CODH disulfide reductase have been isolated from Clostridium thermoaceticum and shown to catalyze the synthesis of acetyl-CoA from CH3THF, CO and CoA. The methyltransferase catalyzes transfer of the CH3 group from CH3THF to the corrinoid enzyme from which the methyl is transferred to CODH. CO is bound to the Ni of CODH forming a Ni-Fe-C center. When CO2 is the source of carbon, H2 and hydrogenase are required for reduction of the CO2 by CODH. CODH disulfide reductase is required for the addition of CoA to the CODH (Pezacka, E. and Wood, H.G. J. Biol. Chem., in press). Then, CODH catalyzes the combination of the three groups forming acetyl-CoA. The authors have now succeeded in methylating CODH using 14CH3I or 14CH3-B12. With the resulting 14CH3-CODH, only CODH disulfide reductase is required for synthesis of [14C]acetyl-CoA from CO and CoA. The amino acid sequence at the CH3-site is being investigated

  6. Crystal Structure of the N-Acetyltransferase Domain of Human N-Acetyl-L-Glutamate Synthase in Complex with N-Acetyl-L-Glutamate Provides Insights into Its Catalytic and Regulatory Mechanisms

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNA...

  7. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila

    The purified nickel-containing CO dehydrogenase complex isolated from methanogenic Methanosarcina thermophila grown on acetate is able to catalyze the exchange of [1-14C] acetyl-coenzyme A (CoA) (carbonyl group) with 12CO as well as the exchange of [3'-32P]CoA with acetyl-CoA. Kinetic parameters for the carbonyl exchange have been determined: Km (acetyl-CoA) = 200 microM, Vmax = 15 min-1. CoA is a potent inhibitor of this exchange (Ki = 25 microM) and is formed under the assay conditions because of a slow but detectable acetyl-CoA hydrolase activity of the enzyme. Kinetic parameters for both exchanges are compared with those previously determined for the acetyl-CoA synthase/CO dehydrogenase from the acetogenic Clostridium thermoaceticum. Collectively, these results provide evidence for the postulated role of CO dehydrogenase as the key enzyme for acetyl-CoA degradation in acetotrophic bacteria

  8. Regulation of phosphoenolpyruvate carboxylase in PVYNTN-infected tobacco plants

    Müller, Karel; Doubnerová, V.; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2009-01-01

    Roč. 390, č. 3 (2009), s. 245-251. ISSN 1431-6730 R&D Projects: GA ČR GA206/03/0310; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50380511 Keywords : biotic stress * Nicotiana tabacum * phosphoenolpyruvate carboxylase (PEPC) Subject RIV: ED - Physiology Impact factor: 2.732, year: 2009

  9. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans.

    Hynes, Michael J; Murray, Sandra L

    2010-07-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  10. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author)

  11. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    Ferreira, R.M.B. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia]|[Universidade Nova de Lisboa, Oeiras (Portugal). Instituto de Tecnologia Quimica e Biologica; Franco, E.; Teixeira, A.R.N. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of {sup 35}S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author).

  12. Mosaic Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_MOSAIC33)

    U.S. Environmental Protection Agency — The COA_Mosaic33 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland mosaic...

  13. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    Wang, S.P.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Quebec (Canada)] [and others

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither a TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.

  14. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chuna Ram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  15. Mechanisms of Inhibition of Rhizobium etli Pyruvate Carboxylase by l-Aspartate

    Sirithanakorn, Chaiyos; Adina-Zada, Abdussalam; Wallace, John C.; Jitrapakdee, Sarawut; Attwood, Paul V.

    2014-01-01

    l-Aspartate is a regulatory feedback inhibitor of the biotin-dependent enzyme pyruvate carboxylase in response to increased levels of tricarboxylic acid cycle intermediates. Detailed studies of l-aspartate inhibition of pyruvate carboxylase have been mainly confined to eukaryotic microbial enzymes, and aspects of its mode of action remain unclear. Here we examine its inhibition of the bacterial enzyme Rhizobium etli pyruvate carboxylase. Kinetic studies demonstrated that l-aspartate binds to ...

  16. Cryogenic Optical Assembly (COA) cooldown analysis for the Cosmic Background Explorer (COBE)

    Coladonato, Robert J.; Irish, Sandra M.; Mosier, Carol L.

    1990-01-01

    The Cosmic Background Explorer (COBE) spacecraft, developed by Goddard Space Flight Center (GSFC), was successfully launched on November 18, 1989 aboard a Delta expendable launch vehicle. Two of the three instruments for this mission were mounted inside a liquid helium (LHe) dewar which operates at a temperature of 2 K. These two instruments are the Diffuse Infrared Background Experiment (DIRBE) and the Far Infrared Absolute Spectrophotometer (FIRAS). They are mounted to a common Instrument Interface Structure (IIS) and the entire assembly is called the Cryogenic Optical Assembly (COA). As part of the structural verification requirement, it was necessary to show that the entire COA exhibited adequate strength and would be capable of withstanding the launch environment. This requirement presented an unique challenge for COBE because the COA is built and assembled at room temperature (300 K), cooled to 2 K, and then subjected to launch loads. However, strength testing of the entire COA at 2 K could not be done because of facility limitations. Therefore, it was decided to perform the strength verification of the COA by analysis.

  17. Acetyltransferase and human hemoglobin acetylation

    A minor component of human fetal hemoglobin (Hb F) is acetylated at the amino-terminus of the γ-globin chains. A similar minor component of Hb F is formed during translation of cord blood mRNA in the rabbit reticulocyte lysate system. The acetylation appeared to be enzymatic. This system contains an acetyltransferase capable of acetylating histones and hemoglobins. The enzyme, partially purified by histone-Sepharose affinity chromatography was capable of incorporating labeled acetyl- group from 1-[14C-acetyl]-CoA into both human Hb F0 and HB A0, but at a lower rate than for histones. Characterization of the labeled products indicated that the α-chains of both hemoglobins were being acetylated presumably at a lysyl-residue, but in the case of Hb F0 the amino-terminus of the γ-globin chains was acetylated as well. While histone-Sepharose bound more than 95% of the enzyme, Sepharose linked Hb F0, γ-globin chains, and Hb Bart's bound 14, 5, and 12% of the activity, respectively. Enzyme bound to these resins was not any more active on the hemoglobins than was the enzyme bound to the histone-Sepharose. The histone-Sepharose was also used to detect the enzyme in human cord blood red cells separated by dextran 40 density gradient centrifugation. Activity was found mostly in the young cells, and was directly related to the number of reticulocytes present in any one fraction

  18. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt2 cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 μM) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 μm/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of [14C]-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis

  19. Regulation of intermediary metabolism by protein acetylation

    Guan, Kun-Liang; Xiong, Yue

    2010-01-01

    Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Convers...

  20. Studies on biotin dependent carboxylases and the properties of carboxybiotin

    Biotin dependent carboxyl-transfer reactions have been studied using biotin and pyruvate carboxylases. The pH profile for the Mg2+ and MgATP dependent carboxylation of biotin by bicarbonate shows that an enzymic base with a pK of 6.5 must be unprotonated for catalysis to occur. The pH profiles for the carboxyl-transfer reaction of pyruvate carboxylase have been obtained by studying the decarboxylation of oxalacetate stimulated by the presence of oxamate. Similarly, 13C and 2H isotope effects have been measured for the decarboxylation of oxalacetate by both enzymic and nonenzymic means. From these studies the authors can conclude that carboxyl-transfer between biotin and oxalacetate is at least partially rate-limiting and is not concerted with proton-transfer. The lack of any apparent enzymic acid-base catalyst (the V/K profile for oxalacetate is pH independent) suggests that proton transfer may occur directly between biotin and the carbanion formed when oxalacetate is decarboxylated. The pH profile for the nonenzymatic decarboxylation of carboxybiotin shows a plateau below pH 4 (k = 0.012 min-1 at 20C), and a lower plateau above pH 8 (k = 0.005 min-1 at 250C). A proton inventory at low pH is linear, while at high pH it is curved. These data suggest that two different mechanisms operate at high and low pH

  1. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. PMID:27372278

  2. The COA360: a tool for assessing the cultural competency of healthcare organizations.

    LaVeist, Thomas A; Relosa, Rachel; Sawaya, Nadia

    2008-01-01

    The U.S. Census Bureau projects that by 2050, non-Hispanic whites will be in the numerical minority. This rapid diversification requires healthcare organizations to pay closer attention to cross-cultural issues if they are to meet the healthcare needs of the nation and continue to maintain a high standard of care. Although scorecards and benchmarking are widely used to gauge healthcare organizations' performance in various areas, these tools have been underused in relation to cultural preparedness or initiatives. The likely reason for this is the lack of a validated tool specifically designed to examine cultural competency. Existing validated cultural competency instruments evaluate individuals, not organizations. In this article, we discuss a study to validate the Cultural Competency Organizational Assessment--360 or the COA360, an instrument designed to appraise a healthcare organization's cultural competence. The Office of Minority Health and the Joint Commission have each developed standards for measuring the cultural competency of organizations. The COA360 is designed to assess adherence to both of these sets of standards. For this validation study, we enlisted a panel of national experts. The panel rated each dimension of the COA360, and the combination of items for each of the scale's 14 dimensions was rated above 4.13 (on 5-point scale). Our conclusion points to the validity of the COA360. As such, it is a valuable tool not only for assessing a healthcare organization's cultural readiness but also for benchmarking its progress in addressing cultural and diversity issues. PMID:18720687

  3. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm;

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts...

  4. Liver fatty acid binding protein (LFABP) transfers fatty acids and fatty acyl coas to membranes

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C.; Córsico, Betina

    2010-01-01

    The objective of this work was to analyze LFABP´s capacity to transfer acyl CoAs to artificial membranes and compare it to LCFA transfer employing natural ligands, in order to better understand the specific physiological role of LFABP in the cell.

  5. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  6. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Marco, Chiara; Detournay, Anais; MacKenzie, Ian A; Green, David C.; Heal, Mathew R.

    2016-01-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to ce...

  7. Fatal Intoxication with Acetyl Fentanyl.

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  8. Biotin Responsive Multiple Carboxylase Deficiency Presenting as Diabetic Ketoacidosis.

    Jia-Woei Hou

    2004-02-01

    Full Text Available Multiple carboxylase deficiency (MCD is a rare inherited metabolic disease of biotindependency due to deficiency of holocarboxylase synthetase (HCS or biotinidase deficiency.A 30-month-old female patient who presented with the initial features of diabeticketoacidosis (severe metabolic acidosis, ketosis, and hyperglycemia, lactic acidemia, moderatehyperammonemia, and generalized organic aciduria is described. Associated symptomsand signs included erythematous skin rashes, alopecia and developmental delay. The patientresponded dramatically to treatment with biotin (10 mg/day showing normalization of clinicalsymptoms and most biochemical abnormalities. Based on the urine organic profile bygas chromatography/ mass spectrometry (GC/MS, the diagnosis of MCD was made. A plasmatandem mass study confirmed this diagnosis. The biotinase activity in serum was normal,indicating that this was a rare case of late-onset HCS deficiency.

  9. Intracellular signal transduction of PBAN action in the silkworm, Bombyx mori: involvement of acyl CoA reductase.

    Ozawa, R; Matsumoto, S

    1996-03-01

    In the silkworm, Bombyx mori, production of the sex pheromone bombykol is regulated by a neurohormone termed PBAN. We have detected the activity of acyl CoA reductase in the pheromone gland of B. mori by using palmitoyl CoA as a substrate. The acyl CoA reductase requires NADPH, but not NADH, as a proton dono. When the pheromone gland was incubated with the PBAN fragment peptide TKYFSPRLamide, palmitoyl CoA was incorporated and converted into the corresponding C16 alcohols. Radio HPLC analysis revealed that these C16 alcohols were hexadecan-1-ol (81.2%), (Z)-11-hexadecen-1-ol (12.3%), and (E, Z)-10, 12-hexadecadien-1-ol (= bombykol, 6.5%). The production of C16 alcohols in the pheromone gland was inhibited by the known bombykol biosynthesis inhibitors EDTA, LaCl3, W-7, trifluoperazine, p-nitrophenyl phosphate, NaF and compactin. By contrast, when the pheromone gland homogenate was incubated in the presence of palmitoyl CoA and NADPH, production of C16 alcohols was affected by compactin, W-7 and trifluoperazine, but not by EDTA, LaCl3, p-nitrophenyl phosphate and NaF. These results indicate that compactin, W-7 and trifluoperazine directly suppress the step catalyzed by acyl CoA reductase, whereas EDTA, LaCl3, pNPP, and NaF inhibit bombykol production by affecting other biochemical steps in the signal transduction of PBAN action. The present results also imply that PBAN regulates the step catalyzed by acyl CoA reductase and that palmitoyl CoA could be used as a substrate of the acyl CoA reductase that regulates bombykol biosynthesis. PMID:8900596

  10. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose

    Huan Huang; McIntosh, Avery L.; Martin, Gregory G.; Petrescu, Anca D.; Landrock, Kerstin K.; Danilo Landrock; Kier, Ann B.; Friedhelm Schroeder

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA th...

  11. Protein Acetylation in Archaea, Bacteria, and Eukaryotes

    Jörg Soppa

    2010-01-01

    Full Text Available Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  12. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A;

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  13. Decreased renal vitamin K-dependent γ-glutamyl carboxylase activity in calcium oxalate calculi patients

    陈俊汇; 刘继红; 章咏裳; 叶章群; 王少刚

    2003-01-01

    Objective To study the activity of vitamin K-dependent γ-glutamyl carboxylase in patients with calcium oxalate (CaOx) urolithiasis compared with healthy individuals and to assess its relationship to the renal calcium oxalate urolithiasis. Methods Renal parenchymas were harvested from urolithic patients and renal tumor patients undergoing nephrectomy. The renal carboxylase activity was evaluated as the radioactivity of [14C] labeled sodium bicarbonate in carboxylic reactions in vitro using β-liquid scintillation counting. Results Significantly reduced activity of renal vitamin K-dependent γ-glutamyl carboxylase was observed in the urolithic group as compared with normal controls (P<0.01). Conclusion It suggests that the reduced carboxylase activity observed in the urolithic patients may play an important role in the course of renal calcium oxalate urolithiasis.

  14. Effect of Pyruvate Carboxylase Overexpression on the Physiology of Corynebacterium glutamicum

    Koffas, Mattheos A. G.; Jung, Gyoo Yeol; Aon, Juan C.; Stephanopoulos, Gregory

    2002-01-01

    Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overe...

  15. Crystallization and structure of a recombinant ribulose-1,5-bisphosphate carboxylase

    Schneider, Gunter; Lindqvist, Ylva; Brändén, Carl-Ivar; Lorimer, George

    1988-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase is the key enzyme in photosynthetic carbon dioxide fixation and photorespiration. The dimeric carboxylase from the photosynthetic bacterium Rhodospirillum rubrum has been cloned and expressed in E. coli. The recombinant enzyme has been crystallized in a number of different crystal forms. The three-dimensional structure of the enzyme has been determined by X-ray crystallographic methods to 2.9Åresolution.

  16. Sequence Classification: 182868 [

    Full Text Available TMB Non-TMH Non-TMB TMB Non-TMB Non-TMB >gi|17987345|ref|NP_539979.1| BIOTIN CARBOX...YL CARRIER PROTEIN OF ACETYL-COA CARBOXYLASE || http://www.ncbi.nlm.nih.gov/protein/17987345 ...

  17. Sequence Classification: 565760 [

    Full Text Available TMB Non-TMH Non-TMB TMB Non-TMB Non-TMB >gi|15965073|ref|NP_385426.1| PROBABLE BIOTIN CARB...OXYL CARRIER PROTEIN OF ACETYL-COA CARBOXYLASE (BCCP) || http://www.ncbi.nlm.nih.gov/protein/15965073 ...

  18. Sequence Classification: 512243 [

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|17547505|ref|NP_520907.1| PROBABLE BIOTIN CARB...OXYL CARRIER PROTEIN OF ACETYL-COA CARBOXYLASE (BCCP) || http://www.ncbi.nlm.nih.gov/protein/17547505 ...

  19. Sequence Classification: 697789 [

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|34557455|ref|NP_907270.1| PUTATIVE BIOTIN CARB...OXYL CARRIER PROTEIN OF ACETYL-COA CARBOXYLASE || http://www.ncbi.nlm.nih.gov/protein/34557455 ...

  20. Unlocking the Barley Genome by Chromosomal and Comparative Genomics

    Mayer, K. F. X.; Martis, M.; Hedley, P. E.; Šimková, Hana; Liu, H.; Morris, J. A.; Steuernagel, B.; Taudien, S.; Kubaláková, Marie; Suchánková, Pavla; Doležel, Jaroslav; Stein, N.

    Roč. 23, č. 4 ( 2011 ), s. 1249-1263. ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50380511 Keywords : PSEUDO-RESPONSE-REGULATOR * ACETYL-COA CARBOXYLASE * TRITICUM-AESTIVUM L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  1. Unlocking the Barley Genome by Chromosomal and Comparative Genomics

    Mayer, K. F. X.; Martis, M.; Hedley, P. E.; Šimková, Hana; Liu, H.; Morris, J. A.; Steuernagel, B.; Taudien, S.; Kubaláková, Marie; Suchánková, Pavla; Doležel, Jaroslav; Stein, N.

    2011-01-01

    Roč. 23, č. 4 (2011), s. 1249-1263. ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50380511 Keywords : PSEUDO-RESPONSE-REGULATOR * ACETYL-COA CARBOXYLASE * TRITICUM-AESTIVUM L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  2. Swelling of acetylated wood in organic liquids

    Obataya, E; Obataya, Eiichi; Gril, Joseph

    2005-01-01

    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.

  3. Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco.

    Toyota, Kentaro; Koizumi, Nozomu; Sato, Fumihiko

    2003-03-01

    Phosphoenolpyruvate carboxylase (PEPC), which catalyses the carboxylation of phosphoenolpyruvate using HCO(3)(-) to generate oxaloacetic acid, is an important enzyme in the primary metabolism of plants. Although the PEPC genes (ppc) comprise only a small gene family, the function of each gene is not clear, except for roles in C(4) photosynthesis and CAM. Three PEPC genes (Nsppc1-3) from the C(3) plant Nicotiana sylvestris were used to investigate their roles and regulation in a C(3) plant, and their regulation by phosphorus depletion in particular. First, the induction of PEPC by phosphorus depletion was confirmed. Next, Nsppc1 was determined to be mainly responsive to phosphorus deficiency at the transcriptional level. Further studies using transgenic tobacco harbouring a chimeric gene consisting of the 2.0 kb promoter region of Nsppc1 and the beta-glucuronidase (GUS) reporter showed that PEPC is transcriptionally induced. It was also found that sucrose had a synergistic effect on the induction of PEPC by phosphorus deficiency. A series of transgenic tobacco containing 5'-deletion mutants of Nsppc1 promoter::GUS fusion revealed that the -539 to -442 bp Nsppc1 promoter region, relative to the translation start site, was necessary for the response to phosphorus deficiency. Gain-of-function analysis using a construct containing three tandem repeats of the -539 to -442 bp region confirmed that this region was sufficient to induce the phosphorus-deficiency response in tobacco. PMID:12598567

  4. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis

    F. Habarou

    2015-03-01

    Full Text Available Pyruvate carboxylase (PC is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A. Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1 and type B (patient 2. Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.

  5. Histone Acetylation in Drug Addiction

    Renthal, William; Nestler, Eric J.

    2009-01-01

    Regulation of chromatin structure through post-translational modifications of histones (e.g. acetylation) has emerged as an important mechanism to translate a variety of environmental stimuli, including drugs of abuse, into specific changes in gene expression. Since alterations in gene expression are thought to contribute to the development and maintenance of the addicted state, recent efforts are aimed at identifying how drugs of abuse alter chromatin structure and the enzymes which regulate...

  6. The Crystal Structure of N-Acetyl-l-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation*†

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, and Mendel

    2008-01-01

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylgluta-mate have been determined at 2.5- and 2.6-Å resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-Å linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with ...

  7. Characterization of three protein components required for functional reconstitution of the epoxide carboxylase multienzyme complex from Xanthobacter strain Py2.

    Allen, J. R.; Ensign, S A

    1997-01-01

    Epoxide carboxylase from Xanthobacter strain Py2 catalyzes the reductant- and NAD+-dependent carboxylation of aliphatic epoxides to beta-keto acids. Epoxide carboxylase from Xanthobacter strain Py2 has been resolved from cell extracts by anion-exchange chromatography into three protein components, designated I, II, and III, that are obligately required for functional reconstitution of epoxide carboxylase activity. Component II has been purified to homogeneity on the basis of its ability to co...

  8. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues. PMID:26358839

  9. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  10. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters.

    Peter, Dominik M; Vögeli, Bastian; Cortina, Niña Socorro; Erb, Tobias J

    2016-01-01

    Coenzyme A (CoA) is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives), and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives). Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s) and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories. PMID:27104508

  11. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters

    Dominik M. Peter

    2016-04-01

    Full Text Available Coenzyme A (CoA is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives, and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives. Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories.

  12. A Method to determine lysine acetylation stoichiometries

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  13. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas;

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or...... suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of...... fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...

  14. Acetylation of woody lignocellulose: significance and regulation

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  15. Acetylation-Mediated Suppression of Transcription-Independent Memory: Bidirectional Modulation of Memory by Acetylation

    Katja Merschbaecher; Jakob Haettig; Uli Mueller

    2012-01-01

    Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact...

  16. UNIQUE ACETYLATION OF OLIGOSACCHARIDES BY TRICHODERMA REESEI ACETYL ESTERASE IN WATER - VINYL ACETATE MIXTURE

    Purified T. reesei RUT C-30 acetyl esterase catalyzes acetyl transfer to a variety of carbohydrates in water in the presence of vinyl acetate as the acetyl group donor. The degree of conversion and the number of formed acetates depended on the acceptor used. With some acceptors, such as methyl or ...

  17. Flexible DAQ card for detector systems utilizing the CoaXPress communication standard

    This work concerns the design and construction of a flexible FPGA based data acquisition system aimed for particle detectors. The interface card as presented was designed for large area detectors with millions of individual readout channels. Flexibility was achieved by partitioning the design into multiple PCBs, creating a set of modular blocks, allowing the creation of a wide variety of configurations by simply stacking functional PCBs together. This way the user can easily toggle the polarity of the high voltage bias supply or switch the downstream interface from CoaXPress to PCIe or stream directly HDMI. We addressed the issues of data throughput, data buffering, bias voltage generation, trigger timing and fine tuning of the whole readout chain enabling a smooth data transmission. On the current prototype, we have wire-bonded a MediPix2 MXR quad and connected it to a XILINX FPGA. For the downstream interface, we implemented the CoaXPress communication protocol, which enables us to stream data at 3.125 Gbps to a standard PC

  18. A Clinical Study to Validate the Pupil Rescaling Technique by using COAS Shack Hartmann Aberrometer.

    Kalikivayi, V; Kannan, K; Ganesan, A R

    2015-01-01

    In any optical system, optical aberrations of the imaging system affect the image quality. The human eye is also like an optical system which has optical aberrations influencing the quality of the retinal image. When pupil size exceeds 3 mm, ocular aberrations increase and play a major role on retinal image degradation. Pupil diameter is made constant in commercially available aberrometers by mathematically rescaling it. The aim of this study is to validate the pupil rescaling technique by using COAS (Complete Ophthalmic Analysis System)Shack Hartmann Aberrometer. Five subjects were recruited for this study. The measurements were taken over a moderately large pupil of 5mm in normal room illumination to allow for natural pupil dilation. The analyses diameter is fixed at 5 mm in COAS which means it rescales the aberration data to 5 mm if the pupil diameter recorded was more than 5 mm at the time of measurement. Ocular aberrations for natural and rescaled pupil sizes were analyzed. Estimation of ocular aberrations showed there was no statistical significance between natural pupil and rescaled pupil diameter. PMID:25996727

  19. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM. PMID:27125317

  20. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  1. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.

    Zhao, Gengxiang; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-25

    N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  2. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  3. Investigation of acetyl migrations in furanosides

    Migaud ME

    2006-07-01

    Full Text Available Abstract Standard reaction conditions for the desilylation of acetylated furanoside (riboside, arabinoside and xyloside derivatives facilitate acyl migration. Conditions which favour intramolecular and intermolecular mechanisms have been identified with intermolecular transesterifications taking place under mild basic conditions when intramolecular orthoester formations are disfavoured. In acetyl ribosides, acyl migration could be prevented when desilylation was catalysed by cerium ammonium nitrate.

  4. Histone Acetylation in Fungal Pathogens of Plants

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  5. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  6. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    The X-ray structure of phosphopantetheine adenylyltransferase (PPAT) from M. tuberculosis in complex with its feedback regulator coenzyme A (CoA) was determined to 2.11 Å resolution. Unlike previous X-ray structures of PPAT–CoA complexes from other bacteria, which showed two distinct conformations of bound CoA, only one conformation of bound CoA is observed in the M. tuberculosis PPAT–CoA complex. Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4′-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 Å resolution. Unlike previous X-ray crystal structures of PPAT–CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT–CoA complex

  7. Characterization of phosphoenolpyruvate carboxylase from mature maize seeds: Properties of phosphorylated and dephosphorylated forms

    Černý, M.; Doubnerová, V.; Müller, Karel; Ryšlavá, H.

    2010-01-01

    Roč. 92, č. 10 (2010), s. 1362-1370. ISSN 0300-9084 R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phosphoenolpyruvate carboxylase * Phosphorylation * Seed Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.787, year: 2010

  8. Isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Leaves

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multi-functional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a...

  9. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    Wubben, T.; Mesecar, A.D. (Purdue); (UIC)

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  10. COA2帮软件轻松换新家

    Sportsman

    2003-01-01

    Windows体积越来越大,而且在使用中还会不断膨胀自己,大部分软件也会默认安装在 文件夹中,时间一长,原来宽敞的C盘变得拥剂不堪,那么该如给C盘减肥呢?除到除临时文件等方法外,为什么不把原来装在C盘上的软件战略转移到其他分区?而COA2可以让你无需卸载和重装软件,直接将软件目录剪切到其他分区,从而完成快速搬家工程。

  11. Carnitine palmitoyl transferase activity in Morris Hepatoma 7777 mitochondria and its sensitivity to malonyl CoA inhibition

    Earlier reports in the literature have indicated no detectable Carnitine Palymitoyl Transferase (CPT) activity in homogenates prepared from Morris Hepatoma 7777. In its study CPT activity in isolated mitochondria (mito) was measured by butanol extraction of the [3H]palmitoyl carnitine formed as outlined by Bremer et al. Contrary to the earlier work where no appreciable activity of CPT was observed the authors find significant levels of CPT (2.6 nMol/min/mg protein) in isolated mito from Morris Hepatoma 7777 (MH 7777). The level of CPT activity observed in MH 7777 mito was, however, 36% lower compared to the host liver CPT activity (4.1 nMol/min/mg protein). The enzyme in MH 7777 mito showed 83% inhibition in the presence of 10 μM malonyl CoA, in agreement with the degree of sensitivity observed with the host liver isolated mito. On freeze thawing host mito, total CPT activity increased and the sensitivity of the enzyme to malonyl CoA decreased. Frozen thawed MH 7777 mito showed a similar response to malonyl CoA but no change in the total CPT level was observed. The authors results establish for the first time the presence of a malonyl CoA sensitive CPT in MH 7777 mito, which may have slightly different properties from normal due to the membrane environment of the enzyme

  12. Inhibition of neutral lipase from castor bean lipid bodies by coenzyme A (CoA) and Oleoyl-CoA

    The neutral lipase (EC 3.1.1.3) in lipid body membranes isolated from the endosperm of 4 day old castor (Ricinus communis L.) seedlings catalyzes the hydrolysis of [14C]trioleoylglycerol, releasing [14C]oleic acid for up to 4 hours. However, the addition of Mg-ATP and coenzyme A (CoA), which are present in the cytoplasm of plant cells, caused a progressive inhibition of the neutral lipase such that after 15 minutes, release of [14C]oleic acid was almost undetectable. A fatty acyl CoA synthetase was found in the lipid body membrane which converts [14C]oleic acid produced from the lipase reaction to [14C]oleoyl-CoA under these conditions. The concentration of free oleoyl-CoA in the reaction mixture when the lipase was inhibited by 50% was calculated to be about 21 micromolar. It was found that a mixture of exogenously added oleoyl-CoA and CoA was most effective in causing lipase inhibition. Little inhibition of lipase was detected in the presence of CoA alone. It is possible that this effect is important in vivo in coordinating lipase activity with fatty acid oxidation

  13. Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulase-bisphosphate carboxylase activity

    The diurnal change in activity of ribulose 1,5-bisphosphate (Rbu-1,5-P2) carboxylase [3-phospho-D-glycerate carboxy-lyase (dimerizing); EC 4.1.1.39] of leaves of Phaseolus vulgaris is regulated (in part) by mechanisms that control the level of an endogenous inhibitor that binds tightly to the activated (carbamoylated) form of Rbu-1,5-P2 carboxylase. This inhibitor was extracted from leaves and copurified with the Rbu-1,5-P2 carboxylase of the leaves. Further purification by ion-exchange chromatography, adsorption to purified Rbu-1,5-P2 carboxylase, barium precipitation, and HPLC separation yielded a phosphorylated compound that was a strong inhibitor of Rbu-1,5-P2 carboxylase. The compound was analyzed by GC/MS, 13C NMR, and 1H NMR and shown to be 2-carboxyarabinitol 1-phosphate [(2-C-phosphohydroxymethyl)-D-ribonic acid]. The structure of the isolated compound differs from the Rbu-1,5-P2 carboxylase transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate only by the lack of the C-5 phosphate group. This difference results in a higher binding constant for the monophosphate compared with the bisphosphate. The less tightly bound compound acts in a light-dependent, reversible regulation of Rbu-1,5-P2 carboxylase activity in vivo

  14. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  15. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari

    2015-12-21

    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI). PMID:26558897

  16. Levels of histone acetylation in thyroid tumors.

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  17. p53 Acetylation: Regulation and Consequences

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  18. p53 Acetylation: Regulation and Consequences

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  19. p53 Acetylation: Regulation and Consequences

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  20. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2

    Schwer, Bjoern; Bunkenborg, Jakob; Verdin, Regis O; Andersen, Jens S; Verdin, Eric

    2006-01-01

    We report that human acetyl-CoA synthetase 2 (AceCS2) is a mitochondrial matrix protein. AceCS2 is reversibly acetylated at Lys-642 in the active site of the enzyme. The mitochondrial sirtuin SIRT3 interacts with AceCS2 and deacetylates Lys-642 both in vitro and in vivo. Deacetylation of AceCS2 b...

  1. Reaction of phosphoenolpyruvate carboxylase with (Z)-3-bromophosphoenolpyruvate and (Z)-3-fluorophosphoenolpyruvate

    (Z)-3-Bromophosphoenolpyruvate inactivates phosphoenolpyruvate carboxylase from maize in the presence of HCO3- and either Mg2+ or Mn2+. The inactivation rate follows saturation kinetics. Inactivation is slower in the presence of phospholactate or epoxymaleate, both of which are inhibitors of the enzyme, or dithiothreitol. Inactivation is completely prevented by the presence of lactate dehydrogenase and NADH, and 3-bromolactate is formed during this treatment. If the reaction is conducted by using HC18O3-, the inorganic phosphate produced contains 18O. This and other evidence indicate that phosphoenolpyruvate carboxylase catalyzes conversion of bromophosphoenolpyruvate into bromopyruvate by way of the usual carboxyphosphate-enolate intermediate, and bromopyruvate is the species responsible for enzyme inactivation. (Z)-3-fluorophosphoenolpyruvate is transformed by the enzyme into a 6:1 mixture of 3-fluoropyruvate and 3-fluorooxalacetate, presumably by the same mechanism. The enzyme is not inactivated during this treatment

  2. Reaction of phosphoenolpyruvate carboxylase with (Z)-3-bromophosphoenolpyruvate and (Z)-3-fluorophosphoenolpyruvate

    Diaz, E.; O' Laughlin, J.T.; O' Leary, M.H.

    1988-02-23

    (Z)-3-Bromophosphoenolpyruvate inactivates phosphoenolpyruvate carboxylase from maize in the presence of HCO/sub 3//sup -/ and either Mg/sup 2 +/ or Mn/sup 2 +/. The inactivation rate follows saturation kinetics. Inactivation is slower in the presence of phospholactate or epoxymaleate, both of which are inhibitors of the enzyme, or dithiothreitol. Inactivation is completely prevented by the presence of lactate dehydrogenase and NADH, and 3-bromolactate is formed during this treatment. If the reaction is conducted by using HC/sup 18/O/sub 3//sup -/, the inorganic phosphate produced contains /sup 18/O. This and other evidence indicate that phosphoenolpyruvate carboxylase catalyzes conversion of bromophosphoenolpyruvate into bromopyruvate by way of the usual carboxyphosphate-enolate intermediate, and bromopyruvate is the species responsible for enzyme inactivation. (Z)-3-fluorophosphoenolpyruvate is transformed by the enzyme into a 6:1 mixture of 3-fluoropyruvate and 3-fluorooxalacetate, presumably by the same mechanism. The enzyme is not inactivated during this treatment.

  3. Vitamin K-dependent carboxylase: possible role of the substrate "propeptide" as an intracellular recognition site.

    Suttie, J W; Hoskins, J A; Engelke, J; Hopfgartner, A; Ehrlich, H; Bang, N U; Belagaje, R M; Schoner, B; Long, G L

    1987-01-01

    The liver microsomal vitamin K-dependent carboxylase catalyzes the posttranslational conversion of specific glutamate residues to gamma-carboxyglutamate residues in a limited number of proteins. A number of these proteins have been shown to contain a homologous basic amino acid-rich "propeptide" between the leader sequence and the amino terminus of the mature protein. Plasmids encoding protein C, a vitamin K-dependent protein, containing or lacking a propeptide region were constructed and the protein was expressed in Escherichia coli. The protein products were assayed as substrates in an in vitro vitamin K-dependent carboxylase system. Only proteins containing a propeptide region were substrates for the enzyme. These data support the hypothesis that this sequence of the primary gene product is an important recognition site for this processing enzyme. PMID:3543932

  4. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN)2, using radiation at a wavelength just above the Au LIII edge. The asymmetric unit contains two tetramers of PepcA

  5. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  6. Vitamin K-dependent carboxylase: possible role of the substrate "propeptide" as an intracellular recognition site.

    Suttie, J W; Hoskins, J A; Engelke, J; Hopfgartner, A; Ehrlich, H.; Bang, N U; Belagaje, R M; Schoner, B; Long, G L

    1987-01-01

    The liver microsomal vitamin K-dependent carboxylase catalyzes the posttranslational conversion of specific glutamate residues to gamma-carboxyglutamate residues in a limited number of proteins. A number of these proteins have been shown to contain a homologous basic amino acid-rich "propeptide" between the leader sequence and the amino terminus of the mature protein. Plasmids encoding protein C, a vitamin K-dependent protein, containing or lacking a propeptide region were constructed and the...

  7. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency.

    Burri, B J; Sweetman, L.; Nyhan, W L

    1985-01-01

    Holocarboxylase synthetase activity has been determined in fibroblasts of seven patients with the neonatal form of biotin-responsive multiple carboxylase deficiency. The normal Km for biotin was 15 +/- 3 nmol/l, while in the patients the values ranged from 48 to 1,062 nmol/l. The mean maximum velocity was 27% of normal. Differences among the values obtained for the Km for biotin and the heat stability of holocarboxylase synthetase suggested that the patients studied represented at least four ...

  8. Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-01-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations ...

  9. Crystal structure of the N-acetyltransferase domain of human N-acetyl-L-glutamate synthase in complex with N-acetyl-L-glutamate provides insights into its catalytic and regulatory mechanisms.

    Gengxiang Zhao

    Full Text Available N-acetylglutamate synthase (NAGS catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG, an obligate cofactor for carbamyl phosphate synthetase I (CPSI in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K.

  10. Crystal structure of the N-acetyltransferase domain of human N-acetyl-L-glutamate synthase in complex with N-acetyl-L-glutamate provides insights into its catalytic and regulatory mechanisms.

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K. PMID:23894642

  11. The development of the 2, 4-dienoyl CoA reductase 1 gene (DECR 1) in pig

    2007-01-01

    2,4-dienoyl CoA reductase gene (DECR 1) is mapped on pig 4 q1.2, includes ten exons and nine introns of variable sizethat span 30 kb. DECR 1 gene participates in the β-oxidation pathway, affects the content of intramuscular fatty acid, especially thepercentage of linoleic acid. The expression of DECR 1 gene has important influence on IMF, the pH, and the meat colour of pork,further affects the meat quality.

  12. Germline Deletion of Pantothenate Kinases 1 and 2 Reveals the Key Roles for CoA in Postnatal Metabolism

    Garcia, Matthew; Leonardi, Roberta; Zhang, Yong-Mei; Rehg, Jerold E.; Jackowski, Suzanne

    2012-01-01

    Pantothenate kinase (PanK) phosphorylates pantothenic acid (vitamin B5) and controls the overall rate of coenzyme A (CoA) biosynthesis. Pank1 gene deletion in mice results in a metabolic phenotype where fatty acid oxidation and gluconeogenesis are impaired in the fasted state, leading to mild hypoglycemia. Inactivating mutations in the human PANK2 gene lead to childhood neurodegeneration, but Pank2 gene inactivation in mice does not elicit a phenotype indicative of the neuromuscular symptoms ...

  13. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison

    2014-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analys...

  14. Molecular analysis of virulent genes (coa and spa) of staphylococcus aureus involved in natural cases of bovine mastitis

    The present study was undertaken to determine the distribution and genotypic characteristics of Staphylococcus aureus isolates recovered from naturally occurring mastitis in cattle and buffaloes. For this purpose a total of 1445 lactating cattle (653) and buffaloes (792) present at two experimental livestock farms Okara (Bahadarnagar) and Sahiwal (Qadiarabad), in and around district Faisalabad and slaughtered at an abattoir due to low milk yield and were screened for mastitis. California Mastitis Test (CMT) was used to detect sub clinical mastitis. The positive quarter milk samples were collected for culturing of S. aureus isolates. taphylococcus aureus isolates were identified on the basis of growth features, biochemical characteristics, coagulase test and as well as amplification of coagulase (coa) and spa (spa-X) genes specific to its virulence. S. aureus isolates (n=265) were characterized by Polymerase chain reaction to determine the frequency of coagulase (coa) and spa (spa-X) genes. From these isolates the amplification of the coagulase (coa) gene yielded three different PCR products approximately 204bp to 490bp while spa (spa-X) gene produced five different products ranging in size from 190bp to 320bp. PCR revealed that from all the coagulase positive S. aureus isolates 261(98.5%) had spa (spa-X) gene. The results of the present study indicated that S. aureus isolates recovered from bovine mastitis were genetically different within and among the various herds which may provide essential and valuable strategies to control staphylococcal infections in future. (author)

  15. On O(1S) and CO(a3Π) production from electron impact dissociation of CO2

    A novel method is employed to selectively detect O(1S) and CO(a 3Π) fragments following the dissociation of CO2 by electron impact. O(1S) atoms impinging on solid Xe produce a prominent emission feature at 725 nm, and less intense features at 375 and 550 nm. CO(a 3Π) molecules give a single emission feature spanning 250 to 350 nm. Time-of-flight spectra are presented for O(1S) and CO(a 3Π) from electron impact dissociation of CO2. The results for O(1S) production indicate contributions from pre-dissociation of excited states of CO2. Relative cross sections for the production of both species have been obtained. The cross section for O(1S) production has been made absolute by comparison with production of the same species from N2O. It has a threshold at 11.0 ± 0.5 eV and reaches a maximum of 1.69 x 10-17 cm2 at 50 eV. (author)

  16. Effect of Vitamin K-dependent Protein Precursor Propeptide, Vitamin K Hydroquinone, and Glutamate Substrate Binding on the Structure and Function of γ-Glutamyl Carboxylase*

    Higgins-Gruber, Shannon L.; Mutucumarana, Vasantha P.; Lin, Pen-Jen; Jorgenson, James W.; Stafford, Darrel W.; Straight, David L.

    2010-01-01

    The γ-glutamyl carboxylase utilizes four substrates to catalyze carboxylation of certain glutamic acid residues in vitamin K-dependent proteins. How the enzyme brings the substrates together to promote catalysis is an important question in understanding the structure and function of this enzyme. The propeptide is the primary binding site of the vitamin K-dependent proteins to carboxylase. It is also an effector of carboxylase activity. We tested the hypothesis that binding of substrates cause...

  17. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  18. Partitioning of Nitrogen among Ribulose-1,5-bisphosphate Carboxylase/Oxygenase, Phosphoenolpyruvate Carboxylase, and Pyruvate Orthophosphate Dikinase as Related to Biomass Productivity in Maize Seedlings.

    Sugiyama, T; Mizuno, M; Hayashi, M

    1984-07-01

    Maize (Zea mays L. cv Golden Cross Bantam T51) seedlings were grown under full sunlight or 50% sunlight in a temperature-controlled glasshouse at the temperatures of near optimum (30/25 degrees C) and suboptimum (17/13 degrees C) with seven levels of nitrate-N (0.4 to 12 millimolars). The contents of phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPD), and ribulose-1,5-P(2) carboxylase/oxygenase (RuBisCO) were immunochemically determined for each treatment with rabbit antibodies raised against the respective maize leaf proteins (anti-PEPC and anti-PPD) or spinach leaf protein (anti-RuBisCO). The content of each enzymic protein increased with increasing N and raised under reduced temperature. The positive effect of light intensity on their contents was evident only at near optimal temperature. The relative increase in PEPC and PPD content with increasing N was significantly greater than that of RuBisCO irrespective of growth conditions. These enzymic proteins comprised about 8, 6, and 35% of total soluble protein, respectively, at near optimal growth condition. In contrast to significant increase in the proportion of soluble protein allocated to PEPC and PPD seen under certain conditions, the proportion allocated to RuBisCO decreased reciprocally with an increased biomass yield by N supply.These results indicated that the levels of PEPC and PPD parallel to maize biomass more tightly than that of RuBisCO at least under near optimal growth condition. PMID:16663684

  19. Oxidative Debenzylation and Acetylation of Hexabenzylhexaazaisowutzitane

    2002-01-01

    The oxidative reactivity of hexabenzylhexaazaisowutzitane(HBIW)under different conditions was studied. It was found that the N-benzyl groups were found to form benzoyl group after oxidation. They might also be first debenzylated and then acetylated by potassium permanganate in acetic anhydride/DMF.

  20. Property enhancement of optically transparent bionanofiber composites by acetylation

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  1. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues

    Adipose tissue is one of the major sites for fatty acid synthesis and lipid storage. We generated adipose (fat)-specific ACC1 knockout (FACC1KO) mice using the aP2-Cre/loxP system. FACC1KO mice showed prenatal growth retardation; after weaning, however, their weight gain was comparable to that of wi...

  2. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior

    Bergauer, K.; Sintes, E.; van Bleijswijk, J.; Witte, H.; Herndl, G.J.

    2013-01-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating d

  3. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J;

    2011-01-01

    acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  4. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase from leaves.

    Carmo-Silva, A Elizabete; Barta, Csengele; Salvucci, Michael E

    2011-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multifunctional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a viable strategy for increasing plant productivity. Advances in biotechnology have made this goal more attainable by making it possible to modify Rubisco in planta. To properly evaluate the properties of Rubisco, it is necessary to isolate the enzyme in pure form. This chapter describes procedures for rapid and efficient purification of Rubisco from leaves of several species. PMID:20960141

  5. The Crystal Structure of N-Acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel (Maryland); (GWU); (Georgia)

    2010-01-07

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.

  6. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation.

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel

    2008-03-14

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes. PMID:18184660

  7. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA

  8. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    Hejtmánek, M.; Neue, G.; Voleš, P.

    2015-06-01

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.

  9. Partial genetic characterization of Stearoyl Coa-Desaturase´s structural region in Bubalus bubalis

    R.B. Thomazine

    2010-02-01

    Full Text Available Conjugated Linoleic Acids (CLAs comprise a family of positional and geometric isomers of linoleic acid. The main form of CLA, cis-9, trans-11-C18:2 show positive effects in cancer prevention and treatment. The major dietary sources of these fatty acids are derived from ruminant animals, in particular dairy products. In these animals, the endogenous synthesis mainly occurs in mammary gland by the action of enzyme Stearoyl CoA Desaturase (SCD. Different levels of expression and activity of SCD in mammary gland can explain partially the variation of CLA levels in fat milk. Considering a great fat concentration in bubaline milk and the benefit of a high and positive correlation between fat milk and CLA production, this study was carried on with the intention of sequencing and characterizing part of the gene that codifies SCD in buffaloes. Genomic DNA was extracted from blood samples of lactating bubaline which begins to the breed Murrah. After the (acho que nao precisa desse the extractions, PCR (Polymerase Chain Reaction reactions were made by using primers Z43D1 and E143F1. The fragments obtained in PCR were cloned into “T” vectors and transformed in competent cells DH10B line. After this, three samples of each fragment were sequenced from 5’ and 3’ extremities using a BigDye kit in an automatic sequencer. Sequences were edited in a consensus of each fragment and were submitted to BLAST-n / NCBI for similarity comparisions among other species. The sequence obtained with Z43D1 primers shows 938 bp enclosing exons 1 and 2 and intron 1. The primers E143F1 show 70 bp corresponding to exon 3 of bubaline SCD gene. Similarities were obtained between 85% and 97% among bubaline sequences and sequences of SCD gene described in human, mouse, rat, swine, bovine, caprine and ovine species. This study has permitted the identification and partial characterization of SCD codifing region in Bubalus bubalis specie.

  10. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae. PMID:25129521

  11. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  12. Attempts to apply affinity labeling techniques to ribulosebisphosphate carboxylase/oxygenase. [Comparison of spinach leaf and Rhodospirillum rubrum

    Hartman, F. C.; Norton, I. L.; Stringer, C. D.; Schloss, J. V.

    1978-01-01

    Studies on carboxylases/oxygenases from different species may be necessary to confirm that a residue implicated as essential is indeed an active-site component. To provide an especially stringent test case for the identification of species invariant structural features the enzymes from two phylogenetically distant species, spinach and Rhodospirillum rubrum, were compared. To date, the reactions of Br-butanone-P/sub 2/ and BrAcNHEtOP with the spinach enayme have been rather thoroughly characterized; only preliminary experiments have been completed with the R. rubrum enzyme. Both enzymes were isolated and assayed for carboxylase activity (spectrophotometrically or /sup 14/CO/sub 2/-fixation) and for oxygenase activity.

  13. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate

    [3H] Diethyl pyrocarbonate was synthesized from [3H] ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM Mg2+, and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with earlier experiments, suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources

  14. Dark/light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories

    Vu, J.C.V.; Allen, L.H. Jr.; Bowes, G.

    1984-11-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from light-exposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO/sub 3//sup -/ and Mg/sup 2 +/ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C/sub 3/); P. maximum (C/sub 4/ phosphoenolpyruvate carboxykinase); P. milioides (C/sub 3//C/sub 4/); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C/sub 3/); P. miliaceum (C/sub 4/ NAD malic enzyme); Zea mays and Sorghum bicolor (C/sub 4/ NADP malic enzyme); Moricandia arvensis (C/sub 3//C/sub 4/); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C/sub 3/ species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO/sub 2/ and Mg/sup 2 +/ activation, but which can be converted to an activatable state upon exposure of the leaf to light. 16 references, 2 tables.

  15. Dark/Light Modulation of Ribulose Bisphosphate Carboxylase Activity in Plants from Different Photosynthetic Categories 1

    Vu, J. Cu V.; Allen, Leon H.; Bowes, George

    1984-01-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3− and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light. PMID:16663937

  16. Dark/Light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories.

    Vu, J C; Allen, L H; Bowes, G

    1984-11-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO(3) (-) and Mg(2+) concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C(3)); P. maximum (C(4) phosphoenolpyruvate carboxykinase); P. milioides (C(3)/C(4)); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C(3)); P. miliaceum (C(4) NAD malic enzyme); Zea mays and Sorghum bicolor (C(4) NADP malic enzyme); Moricandia arvensis (C(3)/C(4)); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C(3) species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO(2) and Mg(2+) activation, but which can be converted to an activatable state upon exposure of the leaf to light. PMID:16663937

  17. Acetylation Is Indispensable for p53 Activation

    Tang, Yi; Zhao, Wenhui; Chen, Yue; Zhao, Yingming; Gu, Wei

    2008-01-01

    The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its...

  18. p53 Acetylation: Regulation and Consequences

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  19. The neurobiology of acetyl-L-carnitine.

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  20. Fragrance material review on acetyl cedrene.

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  1. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with [3H]acetate and [14C]glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with [acetyl-3H]acetyl-coenzyme A, the major labeled products were disialogangliosides. [Acetyl-3H]O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in [3H]N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from [3H]acetate was exclusively in the form of [3H]N-acetyl groups, whereas the 14C-label was at the 4-position

  2. Acetylation phenotype variation in pediatric patients with atopic dermatitis

    Rafi A Majeed Al-Razzuqi

    2011-01-01

    Full Text Available Background: Few studies have been done on the relation between acetylator status and allergic diseases. Aim: To determine any possible association between acetylating phenotype in pediatric patients with atopic dermatitis (AD and the disease prognosis. Patients and Methods: Thirty-six pediatric patients and forty two healthy children as a control group were participated in the study. All participants received a single oral dose of dapsone of 1.54 mg/kg body weight, after an overnight fast. Using high performance liquid chromatography (HPLC, plasma concentrations of dapsone and its metabolite (monoacetyldapsone were estimated to phenotype the participants as slow and rapid acetylators according to their acetylation ratio (ratio of monoacetyldapsone to dapsone. Results: 72.2% of pediatric patients with AD showed slow acetylating status as compared to 69.4% of control individuals. Also, 73% of AD patients with slow acetylating phenotype had familial history of allergy. The severity of AD occurred only in slow acetylator patients. The eczematous lesions in slow acetylators presented mainly in the limbs, while in rapid acetylators, they were found mostly in face and neck. Conclusion: This study shows an association between the N-acetylation phenotype variation and clinical aspects of AD.

  3. New insights into structure-function relationships of oxalyl CoA decarboxylase from Escherichia coli.

    Werther, Tobias; Zimmer, Agnes; Wille, Georg; Golbik, Ralph; Weiss, Manfred S; König, Stephan

    2010-06-01

    The gene yfdU from Escherichia coli encodes a putative oxalyl coenzyme A decarboxylase, a thiamine diphosphate-dependent enzyme that is potentially involved in the degradation of oxalate. The enzyme has been purified to homogeneity. The kinetic constants for conversion of the substrate oxalyl coenzyme A by the enzyme in the absence and presence of the inhibitor coenzyme A, as well as in the absence and presence of the activator adenosine 5'-diphosphate, were determined using a novel continuous optical assay. The effects of these ligands on the solution and crystal structure of the enzyme were studied using small-angle X-ray scattering and X-ray crystal diffraction. Analyses of the obtained crystal structures of the enzyme in complex with the cofactor thiamine diphosphate, the activator adenosine 5'-diphosphate and the inhibitor acetyl coenzyme A, as well as the corresponding solution scattering patterns, allow comparison of the oligomer structures of the enzyme complexes under various experimental conditions, and provide insights into the architecture of substrate and effector binding sites. PMID:20553497

  4. Immunochemical localization of ribulose-1,5-bisphosphate carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia : Mollusca)

    Cavanaugh, Colleen M.; Abbott, Marilyn S.; Veenhuis, Marten

    1988-01-01

    The distribution of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase (RbuP2Case; EC 4.1.1.39) was examined by using two immunological methods in tissues of Solemya velum, an Atlantic coast bivalve containing putative chemoautotrophic symbionts. Antibodies elicited by the purified large

  5. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.

    Xu, Chunlin; Leppänen, Ann-Sofie; Eklund, Patrik; Holmlund, Peter; Sjöholm, Rainer; Sundberg, Kenneth; Willför, Stefan

    2010-04-19

    Acetylated galactoglucomannans (GGMs) are the main hemicellulose type in most softwood species and can be utilized as, for example, bioactive polymers, hydrocolloids, papermaking chemicals, or coating polymers. Acetylation of spruce GGM using acetic anhydride with pyridine as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale, whereas, as a classic method, it can be potentially transferred to the industrial scale. The effects of the amount of catalyst and acetic anhydride, reaction time, temperature and pretreatment by acetic acid were investigated. A fully acetylated product was obtained by refluxing GGM for two hours. The structures of the acetylated GGMs were determined by SEC-MALLS/RI, (1)H and (13)C NMR and FTIR spectroscopy. NMR studies also indicated migration of acetyl groups from O-2 or O-3 to O-6 after a heating treatment in a water bath. The thermal stability of the products was investigated by DSC-TGA. PMID:20144827

  6. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  7. Obesity, cancer, and acetyl-CoA metabolism

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  8. Getting a Knack for NAC: N-Acetyl-Cysteine

    Sansone, Randy A.; Sansone, Lori A.

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway....

  9. Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy

    Min, Sang-Won; Cho, Seo-Hyun; Zhou, Yungui; Schroeder, Sebastian; Haroutunian, Vahram; Seeley, William W.; Huang, Eric J.; Shen, Yong; Masliah, Eliezer; Mukherjee, Chandrani; Meyers, David; Cole, Philip A.; Ott, Melanie; Gan, Li

    2010-01-01

    Neurodegenerative tauopathies characterized by hyperphosphorylated tau include frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). Reducing tau levels improves cognitive function in mouse models of AD and FTDP-17, but the mechanisms regulating the turnover of pathogenic tau are unknown. We found that tau is acetylated and that tau acetylation prevents degradation of phosphorylated tau (p-tau). Using two antibodies specific for acetylated ta...

  10. Determination of amphetamine by HPLC after acetylation.

    Veress, T

    2000-01-01

    An analytical procedure has been developed for the HPLC determination of amphetamine by off-line pre-column derivatization. The proposed procedure consists of sample preparation by acetylation of amphetamine with acetic anhydride and a subsequent reversed-phase HPLC separation on an octadecyl silica stationary phase with salt-free mobile phase (tetrahydrofuran, acetonitrile, 0.1% triethylamine in water, 15:15:70 v/v) applying UV-detection. The applicability of the elaborated procedure is demonstrated with results obtained by analysis of real samples seized in the Hungarian black market. PMID:10641931

  11. Resolving the Activation Site of PositiveRegulators in Plant PhosphoenolpyruvateCarboxylase

    2014-01-01

    Dear Editor, Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) islocated at an important branch point in the carbohydratemetabolism of plants. The enzyme is a homotetramer andcatalyzes the addition of bicarbonate to phosphoenolpyru-vate (PEP) to form oxaloacetate and phosphate. PEPC isregulated by metabolites and phosphorylation. AIIostericfeedback inhibition is mainly regulated by L-malate andL-aspartate which bind to a site separated from the activecenter (Kai et al., 1999; Paulus et al., 2013). Structure analy-sis of PEPC from Escherichia coli (Kai et al., 1999; Matsumuraet al., 2002), Zea rnays (Matsumura et al., 2002), Flaveria trin-ervia, and F. pringlei (Paulus et al., 2013) revealed that thesubstrate PEP and the feedback inhibitors bind to separatesites within each monomer.

  12. Is L-Carnitine Supplementation Beneficial in 3-Methylcrotonyl-CoA Carboxylase Deficiency?

    Thomsen, Jákup Andreas; Lund, Allan Meldgaard; Olesen, Jess Have; Mohr, Magni; Rasmussen, Jan

    2015-01-01

    Background: 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCd) is an autosomal recessive disorder in the catabolism of leucine. In the present study, we investigated the current and prior medical condition of patients with 3-MCCd in the Faroe Islands and their carnitine levels in blood, urine and...... muscle tissue with and without L-carnitine supplementation to evaluate the current treatment strategy of not recommending L-carnitine supplementation to Faroese 3-MCCd patients. Methods: Blood and urine samples and muscle biopsies were collected from patients at inclusion and at 3 months. Eight patients...... received L-carnitine supplementation when recruited; five did not. Included patients who received supplementation were asked to stop L-carnitine, the others were asked to initiate L-carnitine supplementation during the study. Symptoms were determined by review of hospital medical records and questionnaires...

  13. Novel Mutations in the PC Gene in Patients with Type B Pyruvate Carboxylase Deficiency

    Ostergaard, Elsebet; Duno, Morten; Møller, Lisbeth Birk;

    2013-01-01

    We have investigated seven patients with the type B form of pyruvate carboxylase (PC) deficiency. Mutation analysis revealed eight mutations, all novel. In a patient with exon skipping on cDNA analysis, we identified a homozygous mutation located in a potential branch point sequence, the first...... possible branch point mutation in PC. Two patients were homozygous for missense mutations (with normal protein amounts on western blot analysis), and two patients were homozygous for nonsense mutations. In addition, a duplication of one base pair was found in a patient who also harboured a splice site...... mutation. Another splice site mutation led to the activation of a cryptic splice site, shown by cDNA analysis.All patients reported until now with at least one missense mutation have had the milder type A form of PC deficiency. We thus report for the first time two patients with homozygous missense...

  14. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  15. Structural and Biochemical Studies on the Regulation of Biotin Carboxylase by Substrate Inhibition and Dimerization

    Chou, Chi-Yuan; Tong, Liang (Columbia)

    2012-06-19

    Biotin carboxylase (BC) activity is shared among biotin-dependent carboxylases and catalyzes the Mg-ATP-dependent carboxylation of biotin using bicarbonate as the CO{sub 2} donor. BC has been studied extensively over the years by structural, kinetic, and mutagenesis analyses. Here we report three new crystal structures of Escherichia coli BC at up to 1.9 {angstrom} resolution, complexed with different ligands. Two structures are wild-type BC in complex with two ADP molecules and two Ca{sup 2+} ions or two ADP molecules and one Mg{sup 2+} ion. One ADP molecule is in the position normally taken by the ATP substrate, whereas the other ADP molecule occupies the binding sites of bicarbonate and biotin. One Ca{sup 2+} ion and the Mg{sup 2+} ion are associated with the ADP molecule in the active site, and the other Ca{sup 2+} ion is coordinated by Glu-87, Glu-288, and Asn-290. Our kinetic studies confirm that ATP shows substrate inhibition and that this inhibition is competitive against bicarbonate. The third structure is on the R16E mutant in complex with bicarbonate and Mg-ADP. Arg-16 is located near the dimer interface. The R16E mutant has only a 2-fold loss in catalytic activity compared with the wild-type enzyme. Analytical ultracentrifugation experiments showed that the mutation significantly destabilized the dimer, although the presence of substrates can induce dimer formation. The binding modes of bicarbonate and Mg-ADP are essentially the same as those to the wild-type enzyme. However, the mutation greatly disrupted the dimer interface and caused a large re-organization of the dimer. The structures of these new complexes have implications for the catalysis by BC.

  16. Inhibition of E. coli P-enolpyruvate carboxylase by P-enol-3-bromopyruvate

    The generality of the mechanism based inhibition of P-enolpyruvate carboxylases (PEPCase) by P-enol-3-bromopyruvate (BrPEP) was tested by measuring its effects on the allosterically regulated enzyme from E. coli. In the presence of 1mM Mn2+, BrPEP appears to be a competitive inhibitor (K/sub i/ = 0.0087mM) of PEPCase. Incubation of 0.005mM PEPCase with 0.5mM (or 1.0mM)BrPEP along with H14CO3- and Mn2+, yielded, upon reduction with NaBH4, a protein containing radioactivity in an amount approximately proportional to that expected from the loss of catalytic activity. At both a 25- and a 50-fold excess (0.5mM and 1.0mM, respectively) of BrPEP to PEPCase subunits, first order loss of activity occurred with k values of 5.24 x 10-3 min-1 and 1.03 x 10-2 min-1, respectively. At the lower concentration of BrPEP the inactivation process appeared to be reversible after 40 min with no further inhibition occurring even up to two hours of incubation. At the higher concentration of BrPEP, the rate of inhibition slowed dramatically after 50 min and appeared insignificant over the next hour. These data suggest that BrPEP irreversibly inactivates the E. coli PEP carboxylase, but that there may be considerable dissociation of the product, Br-oxaloacetate, before irreversible binding occurs, and that the reduced rate of inactivation may be due to depletion of BrPEP

  17. Differential patterns of histone acetylation in inflammatory bowel diseases

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  18. Protein lysine acetylation in bacteria: Current state of the art.

    Ouidir, Tassadit; Kentache, Takfarinas; Hardouin, Julie

    2016-01-01

    Post-translational modifications of proteins are key events in cellular metabolism and physiology regulation. Lysine acetylation is one of the best studied protein modifications in eukaryotes, but, until recently, ignored in bacteria. However, proteomic advances have highlighted the diversity of bacterial lysine-acetylated proteins. The current data support the implication of lysine acetylation in various metabolic pathways, adaptation and virulence. In this review, we present a broad overview of the current knowledge of lysine acetylation in bacteria. We emphasize particularly the significant contribution of proteomics in this field. PMID:26390373

  19. Probing the acetylation code of histone H4.

    Lang, Diana; Schümann, Michael; Gelato, Kathy; Fischle, Wolfgang; Schwarzer, Dirk; Krause, Eberhard

    2013-10-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein-protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-acetylated at K8/12/16 and fully tetra-acetylated. A set of 29 proteins was found enriched on the fully acetylated H4 tail while specific binders of the mono and bis-acetylated tails were barely detectable. These observations are in good agreement with earlier reports indicating that the H4 acetylation state establishes its regulatory effects in a cumulative manner rather than via site-specific recruitment of regulatory proteins. PMID:23970329

  20. Probing the acetylation code of histone H4.

    Lang, D; Schümann, M; Gelato, K.; Fischle, W; Schwarzer, D; Krause, E.

    2013-01-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein–protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-ace...

  1. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  2. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  3. The production of CO+(A 2Π) from dissociative ionization of CO2: a fragment ion-photon coincidence spectroscopic investigation

    Fragment ion-photon coincidence (FIPCO) spectra by 120 eV electron impact on carbon dioxide (CO2) have been observed, in which optical emission in the 250-600 nm region has been detected. There are a dominant CO2+ peak and a weak, broad CO+ peak in the FIPCO spectra. The kinetic energy distribution of CO+ correlated with the CO+(A 2Π-X 2Σ+) emission has been estimated on the basis of the Monte Carlo simulation of the CO+ band shape. This CO+(A 2Π) ion is produced through the dissociation process, CO2+e-→CO2+*[MET I 2Πu] + 2e-→CO+(A 2Π) + O(3P) + 2e-, where MET refers to multiple electron transitions. The production of CO+(B 2Σ+) is negligible compared with that of CO+(A 2Π). The produced CO+(A 2Π) ion is in vibrationally excited levels, and there is little population in the vibrational levels, v'≤3. (author)

  4. Medial temporal N-acetyl-aspartate in pediatric major depression.

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  5. Medial temporal N-acetyl aspartate in pediatric major depression

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  6. Emerging Functions for N-Terminal Protein Acetylation in Plants

    Gibbs, Daniel J.

    2015-01-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour.

  7. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. PMID:26920270

  8. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains.

    Song, J.; Wurtele, E S; Nikolau, B J

    1994-01-01

    Soybean genomic clones were isolated based on hybridization to probes that code for the conserved biotinylation domain of biotin-containing enzymes. The corresponding cDNA was isolated and expressed in Escherichia coli through fusion to the bacterial trpE gene. The resulting chimeric protein was biotinylated in E. coli. Antibodies raised against the chimeric protein reacted specifically with an 85-kDa biotin-containing polypeptide from soybean and inhibited 3-methylcrotonoyl-CoA carboxylase (...

  9. Unchanged acetylation of isoniazid by alcohol intake

    Wilcke, J T R; Døssing, M; Angelo, H R;

    2004-01-01

    SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...... dose of 300 mg INH was administered on 2 separate days, 14 days apart, with or without alcohol to a serum alcohol of about 21 mmol/l (1 g/l) maintained for 12 h. RESULTS: Neither the metabolism of INH nor that of acetylisoniazid was changed by acute alcohol intake. CONCLUSION: Acute alcohol intake has...... no impact on the conversion of INH to its metabolite acetylisoniazid, which is catalysed by the enzyme N-acetyltranferase. Accordingly, a metabolic effect of acute alcohol intake on INH metabolism probably contributes little to the therapeutic failure of anti-tuberculosis treatment among alcoholics....

  10. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  11. Electron spin resonance studies of ribulosebisphosphate carboxylase: identification of activator cation ligands.

    Miziorko, H M; Sealy, R C

    1984-01-31

    Ribulosebisphosphate carboxylase (RuBP carboxylase)forms a stable model complex containing stoichiometric amounts of enzyme sites, activator C0(2), divalent activator cation, and the transition-state analogue carboxyarabinitol bisphosphate (CABP). Incorporation of Mn(2+) in the model complex permits investigation of the environment of the activator cation by electron spin resonance (ESR)techniques. Measurements at 9 GHz on the Mn(2+)-containing complex prepared by using dimeric Rhodospirillum rubrum enzyme produce a spectrum which indicates that the cation is bound in an anisotropic environment. Measurements at 9 GHz on the spinach enzyme model complex produce a spectrum in which several of the fine structure transitions are obvious. In contrast, the spectrum produced from Mn(2+) bound to R. rubrum enzyme exhibits an intense powder pattern for the central fine structure transition; the other four fine structure transitions produce powder patterns that are in homogeneously broadened and therefore are not as apparent.Low-temperature measurements at high field (35 GHz) result in substantially simplified spectra. The spectrum of Mn(2+) bound to the R. rubrum enzyme shows less fine structure than the spectrum of Mn(2+) bound in the octameric spinach enzyme complex, where substantial hyperfine splitting is resolved in three of the five fine structure transitions. Measurements at 35 GHz on Mn (2+) bound in the dimeric R. rubrum enzyme complex produce spectra in which only the central fine structure transition produces a prominent signal. However, these samples are characterized by several narrow spectral features which permit investigation of the identity of Mn(2+)ligands by 170 perturbation techniques. Preparation of the R. rubrum RuBP carboxylase model complex in (17)O-enriched water results in a sample which exhibits an obviously broadened 35-GHz Mn(2+) spectrum in comparison to unenriched samples. Removal of H(2)(17)O by gel filtration abolished the spectral

  12. Propeptide and glutamate-containing substrates bound to the vitamin K-dependent carboxylase convert its vitamin K epoxidase function from an inactive to an active state

    Sugiura, Isamu; Furie, Bruce; Walsh, Christopher T.; Furie, Barbara C.

    1997-01-01

    The vitamin K-dependent γ-glutamyl carboxylase catalyzes the posttranslational conversion of glutamic acid to γ-carboxyglutamic acid in precursor proteins containing the γ-carboxylation recognition site (γ-CRS). During this reaction, glutamic acid is converted to γ-carboxyglutamic acid while vitamin KH2 is converted to vitamin K 2,3-epoxide. Recombinant bovine carboxylase was purified free of γ-CRS-containing propeptide and endogenous substrate in a single-step immunoaffinity procedure. We sh...

  13. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose

    Biely, Peter; Cziszarava, Maria; Agger, Jane W.;

    2014-01-01

    Results The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most promin...

  14. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    Munger, C.E.; Ivie, G.W.; Christopher, R.J.; Hammock, B.D.; Phillips, T.D.

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with (/sup 3/H)HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with (/sup 3/H)acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown.

  15. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with [3H]HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with [3H]acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown

  16. /sup 13/C nuclear magnetic resonance study of the CO/sub 2/ activation of ribulosebisphosphate carboxylase from Rhodospirillum rubrum

    O' Leary, M.H. (Univ. of Wisconsin, Madison); Joworski, R.J.; Hartman, F.C.

    1979-02-01

    Ribulosebisphosphate carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) from Rhodospirillum rubrum is activated by CO/sub 2/ and Mg/sup 2 +/. /sup 13/C NMR spectra were determined for the unactivated enzyme and for enzyme that had been activated by /sup 13/CO/sub 2/ and Mg/sup 2 +/. In addition to the expected resonance for H/sup 13/CO/sub 3//sup -//CO/sub 3//sup 2 -/ at 161.8 ppM downfield from tetramethylsilane, the spectrum of the activated enzyme shows a broad resonance at 164.9 ppM. Analogy with previous NMR studies of /sup 13/CO/sub 2/ binding to hemoglobin suggests that the CO/sub 2/ activation of ribulosebisphosphate carboxylase involves formation of a carbamate between an enzyme amino group and CO/sub 2/.

  17. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    Lietzan, Adam D.; St. Maurice, Martin

    2013-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT doma...

  18. Biotin Uptake into Human Peripheral Blood Mononuclear Cells Increases Early in the Cell Cycle, Increasing Carboxylase Activities1,2

    Stanley, J. Steven; Mock, Donald M.; Griffin, Jacob B.; Zempleni, Janos

    2002-01-01

    Cells respond to proliferation with increased accumulation of biotin, suggesting that proliferation enhances biotin demand. Here we determined whether peripheral blood mononuclear cells (PBMC) increase biotin uptake at specific phases of the cell cycle, and whether biotin is utilized to increase biotinylation of carboxylases. Biotin uptake was quantified in human PBMC that were arrested chemically at specific phases of the cell cycle, i.e., biotin uptake increased in the G1 phase of the cycle...

  19. Role of Histone Acetylation in Cell Cycle Regulation.

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  20. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover. Annual progress report

    Meagher, R.B. [Georgia Univ., Athens, GA (United States). Dept. of Genetics

    1993-12-31

    An in vitro degradation system has been developed from petunia and soybean polysomes in order to investigate the mechanisms and determinants controlling RNA turnover in higher plants. This system faithfully degrades soybean ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) mRNA into the same products observed in total RNA preparations. In previous years it was shown that the most stable products represent a nested constellation of fragments, which are shortened from their 3{prime} ends, and have intact 5{prime} ends. Exogenous rbcS RNA tagged with novel 5{prime} sequence 15 or 56 bp long were synthesized in vitro as Sp6 and T7 runoff transcripts, respectively. When added to the system they were degraded faithfully into constellation of products which were 15 or 56 bp longer than the endogenous products, respectively. Detailed kinetics on the appearance of these exogenous products confirmed degradation proceeds in an overall 3{prime} to 5{prime} direction but suggested that there are multiple pathways through which the RNA may be degraded. To further demonstrate a precursor product relationships, in vitro synthesized transcripts truncated at their 3{prime} ends were shown to degrade into the expected smaller fragments previously mapped in the 5{prime} portion of the rbcS RNA.

  1. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals

    Grünert Sarah C

    2012-05-01

    Full Text Available Abstract Background Isolated 3-methylcrotonyl-CoA carboxylase (MCC deficiency is an autosomal recessive disorder of leucine metabolism caused by mutations in MCCC1 or MCCC2 encoding the α and β subunit of MCC, respectively. The phenotype is highly variable ranging from acute neonatal onset with fatal outcome to asymptomatic adults. Methods We report clinical, biochemical, enzymatic and mutation data of 88 MCC deficient individuals, 53 identified by newborn screening, 26 diagnosed due to clinical symptoms or positive family history and 9 mothers, identified following the positive newborn screening result of their baby. Results Fifty-seven percent of patients were asymptomatic while 43% showed clinical symptoms, many of which were probably not related to MCC deficiency but due to ascertainment bias. However, 12 patients (5 of 53 identified by newborn screening presented with acute metabolic decompensations. We identified 15 novel MCCC1 and 16 novel MCCC2 mutant alleles. Additionally, we report expression studies on 3 MCCC1 and 8 MCCC2 mutations and show an overview of all 132 MCCC1 and MCCC2 variants known to date. Conclusions Our data confirm that MCC deficiency, despite low penetrance, may lead to a severe clinical phenotype resembling classical organic acidurias. However, neither the genotype nor the biochemical phenotype is helpful in predicting the clinical course.

  2. Ribulose-1,5-bisphosphate Carboxylase/Oxygenase content, assimilatory charge, and mesophyll conductance in leaves

    Eichelmann; Laisk

    1999-01-01

    The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 &mgr;mol active sites m-2. Mesophyll conductance (&mgr;) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of &mgr; on Et saturated at Et = 30 &mgr;mol active sites m-2 and &mgr; = 11 mm s-1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a &mgr; of only 6 to 8 mm s-1. &mgr; was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 &mgr;M-1 s-1. Our data show that the saturation of the relationship between Et and &mgr; is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites. PMID:9880359

  3. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation.

    Sellers, Katherine; Fox, Matthew P; Bousamra, Michael; Slone, Stephen P; Higashi, Richard M; Miller, Donald M; Wang, Yali; Yan, Jun; Yuneva, Mariia O; Deshpande, Rahul; Lane, Andrew N; Fan, Teresa W-M

    2015-02-01

    Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non-small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5,15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early-stage NSCLC is required for tumor survival and proliferation. PMID:25607840

  4. Relationship between NH4+ assimilation rate and in vivo phosphoenolpyruvate carboxylase activity

    The rate of NH4+ assimilation by N-limited Selenastrum minutum (Naeg.) Collins cells in the dark was set as an independent variable and the relationship between NH4+ assimilation rate and in vivo activity of phosphoenolpyruvate carboxylase (PEPC) was determined. In vivo activity of PEPC was measured by following the incorporation of H14CO3- into acid stable products. A linear relationship of 0.3 moles C fixed via PEPC per mole N assimilated was observed. This value agrees extremely well with the PEPC requirement for the synthesis of the amino acids found in total cellular protein. Determinations of metabolite levels in vivo at different rates of N assimilation indicated that the known metabolite effectors of S. minutum PEPC in vitro (KA Schuller, WC Plaxton, DH Turpin, [1990] Plant Physiol 93: 1303-1311) are important regulators of this enzyme during N assimilation. As PEPC activity increased in response to increasing rates of N assimilation, there was a corresponding decline in the level of PEPC inhibitors (2-oxoglutarate, malate), an increase in the level of PEPC activators (glutamine, dihydroxyacetone phosphate), and an increase in the Gln/Glu ratio. Treatment of N-limited cells with azaserine caused an increase in the Gln/Glu ratio resulting in increased PEPC activity in the absence of N assimilation. We suggest glutamate and glutamine play a key role in regulating the anaplerotic function of PEPC in this C3 organism

  5. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-02-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667

  6. Ribulose Bisphosphate Carboxylase Activity in Anther-Derived Plants of Saintpaulia ionantha Wendl. Shag.

    Bhaskaran, S; Smith, R H; Finer, J J

    1983-11-01

    Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. ;Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable. PMID:16663273

  7. Pyruvate carboxylase as a sensitive protein biomarker for exogenous steroid chemicals

    Assessing protein responses to endocrine disrupting chemicals is critical for understanding the mechanisms of chemical action and for the assessment of hazards. In this study, the response of the liver proteome of male rare minnows (Gobiocypris rarus) treated with 17β-estradiol (E2) and females treated with 17α-methyltestosterone (MT) were analyzed. A total of 23 and 24 proteins were identified with differential expression in response to E2 and MT, respectively. Pyruvate carboxylase (PC) was the only common differentially expressed protein in both males and females after E2- and MT-treatments. The mRNA as well as the protein levels of PC were significantly down-regulated compared with that of the controls (p < 0.05). Our results suggest that endocrine disruptors interfere with genes and proteins of the TCA cycle and PC may be a sensitive biomarker of exposure to exogenous steroid chemicals in the liver of fish. - Highlights: • The hepatic proteomes of rare minnow (Gobiocypris rarus) exposed to E2 and MT were analyzed. • Differentially expressed proteins (23 and 24 respectively) were identified following E2 and MT exposure. • Four differentially expressed proteins associated with chemical stimulus were characterized. • PC was identified as a responsive biomarker for both estrogens and androgens. - Our results suggest PC may be a sensitive biomarker of exposure to exogenous steroid chemicals in the liver of fish

  8. Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria.

    Varaljay, Vanessa A; Satagopan, Sriram; North, Justin A; Witte, Brian; Dourado, Manuella N; Anantharaman, Karthik; Arbing, Mark A; McCann, Shelley Hoeft; Oremland, Ronald S; Banfield, Jillian F; Wrighton, Kelly C; Tabita, F Robert

    2016-04-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2 -dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2 /O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2 -fixing enzymes not previously characterized. PMID:26617072

  9. A guarda Nacional Republicana no combate à sinistralidade rodoviária, educação ou coação?

    Lopes, Fábio

    2012-01-01

    O presente Trabalho de Investigação Aplicada (TIA) com o tema “A GNR no Combate à Sinistralidade Rodoviária, Educação ou Coação?” tem como objetivo esclarecer o papel da Guarda Nacional Republicana (GNR) no combate à sinistralidade rodoviária, assim como clarificar esse papel no domínio da fiscalização/coação e da educação. No desenvolver do presente estudo foram formuladas hipóteses e questões de investigação subordinadas à questão central: “Qual ...

  10. Intracellular signal transduction of PBAN action in lepidopteran insects: inhibition of sex pheromone production by compactin, an HMG CoA reductase inhibitor.

    Ozawa, R; Matsumoto, S; Kim, G H; Uchiumi, K; Kurihara, M; Shono, T; Mitsui, T

    1995-06-27

    Pheromone biosynthesis activating neuropeptide (PBAN) regulates sex pheromone production in the pheromone glands of many species of female moths. In order to probe the biochemical steps as well as underlying mechanisms regulated by PBAN, we have tested the effect of chemicals on sex pheromone production by using an in vitro assay. Among the chemicals we tested here, compactin, a specific 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitor, clearly inhibited the pheromone biosynthesis in the silkworm, Bombyx mori, and the common cutworm, Spodoptera litura. Since the activation of HMG CoA reductase occurs by dephosphorylation mediated by a specific phosphatase and the biochemical step regulated by PBAN in bombykol biosynthesis is similar to the one catalyzed by HMG-CoA reductase in cholesterol biosynthesis, the present results support the idea that phosphoprotein phosphatase has a significant role to regulate bombykol production in the intracellular transduction of PBAN action in B. mori. PMID:7480881

  11. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  12. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase.

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-01-01

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD. PMID:25742604

  13. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Russell A DeBose-Boyd

    2008-01-01

    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  14. Impact of single-dose nandrolone decanoate on gonadotropins, blood lipids and HMG CoA reductase in healthy men.

    Gårevik, N; Börjesson, A; Choong, E; Ekström, L; Lehtihet, M

    2016-06-01

    The aim was to study the effect and time profile of a single dose of nandrolone decanoate (ND) on gonadotropins, blood lipids and HMG CoA reductase [3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR)] in healthy men. Eleven healthy male participants aged 29-46 years were given a single dose of 150 mg ND as an intramuscular dose of Deca Durabol®, Organon. Blood samples for sex hormones, lipids and HMGCR mRNA analysis were collected prior to ND administration day 0, 4 and 14. A significant suppression of luteinising hormone (LH) and follicle-stimulating hormone (FSH) was seen after 4 days. Total testosterone and bioavailable testosterone level decreased significantly throughout the observed study period. A small but significant decrease in sexual hormone-binding globulin (SHBG) was seen after 4 days but not after 14 days. Total serum (S)-cholesterol and plasma (P)-apolipoprotein B (ApoB) increased significantly after 14 days. In 80% of the individuals, the HMGCR mRNA level was increased 4 days after the ND administration. Our results show that a single dose of 150 mg ND increases (1) HMGCR mRNA expression, (2) total S-cholesterol and (3) P-ApoB level. The long-term consequences on cardiovascular risk that may appear in users remain to be elucidated. PMID:26370185

  15. Study on the 3-hydroxy-3-methyl-glutaryl CoA reductase inhibitory properties of Agaricus bisporus and extraction of bioactive fractions using pressurised solvent technologies

    Gil-Ramírez, Alicia; Clavijo, Cristina; Palanisamy, Marimuthu; Ruiz-Rodríguez, Alejandro; Navarro-Rubio, María; Pérez, Margarita; Marin, Francisco R.; Reglero, Guillermo; Soler-Rivas, Cristina

    2013-01-01

    [Background]: Agaricus bisporus mushrooms were able to lower cholesterol levels in hypercholesterolaemic rats and it was suggested that dietary fibre might inhibit cholesterol absorption. However, A. bisporus extracts were also able to inhibit the 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR, the key enzyme in the cholesterol biosynthetic pathway) and this might also contribute to the observed lowering of cholesterol levels in serum. [Results]: The methanol-water extracts obtained from A....

  16. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  17. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  18. Acetylation of C/EBPα inhibits its granulopoietic function.

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S; Numata, Akihiko; Sárosi, Menyhárt B; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K; Gunaratne, Jayantha; Tenen, Daniel G

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  19. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  20. Function-structure relationships of acetylated pea starches

    J. Huang

    2006-01-01

    Cowpea, chickpea and yellow pea starches were studied and the results showed that their properties were strongly related to the chemical fine structures of the starches. Furthermore, granular starches were modified using two types of chemical acetylation reagents and then separated into different size fractions. The amount of introduced acetyl groups was found to depend on the size of the granules for the reaction with rapidly reacting reagent acetic acid anhydride, whereas the amount of intr...

  1. Acetyl radical generation in cigarette smoke: Quantification and simulations

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  2. Site-specific acetylation of ISWI by GCN5

    Chioda Mariacristina

    2007-08-01

    Full Text Available Abstract Background The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition. Results We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the Drosophila remodelling ATPase ISWI at a single, conserved lysine, K753, in vivo and in vitro. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF. Conclusion Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RKT/SxGx(KacxPR/K differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.

  3. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  4. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  5. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells.

    Ansaya Thonpho

    Full Text Available Pyruvate carboxylase (PC is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an activator element(s for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y, as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.

  6. Photosynthetic Characteristics and Heterosis in Transgenic Hybrid Rice with Maize Phosphoenolpyruvate Carboxylase (pepc) Gene

    LI Ji-hang; XIANG Xun-chao; ZHOU Hua-qiang; HE Li-bin; ZHANG Kai-zheng; LI Ping

    2006-01-01

    Three F1 hybrids derived from the sterile rice lines Gang 46A, 776A and 2480A and the improved restorer line Shuhui 881 containing maize phosphoenolpyruvate carboxylase (pepc) gene were used to analyze the effect of pepc gene on the heterosis and photosynthetic characteristics, while the F1 obtained by crossing Shuhui 881 with the above three sterile lines served as controls. The dynamics of photosynthetic characteristics in leaves of three F1 with pepc gene and their controls were determined at the initial-tillering, maxium-tillering, elongation, initial-heading, heading, maturity stages, and other different times after flag leaf fully expanded. The PEPCase activities of the three F1 with pepc gene increased significantly as compared with control plants during the whole developmental stages. Moreover, the net photosynthesis rate (Pn) also increased to certain extent. The data showed that PEPCase activity was significantly correlated to Pn with a correlation coefficient of 0.6081**. The photosynthetic indexes of the three F1 with pepc gene were obviously superior with respective to controls in apparent quantum yield, light compensation point (LCP) and carboxylation efficiency (CE), while the CO2 compensation point (CCP) was lower than that of corresponding control. The Pn of the three F1 with pepc gene at light saturation point (LSP) and CO2 saturation point (CSP) was also higher than that of control plants. In addition, the three F1 with pepc gene had an average increase of 37.10% in grain yields per plant in comparison with control plants. The results indicated that the photosynthetic characteristics of hybrid rice containing pepc gene had been improved to some extent due to the introduction of pepc gene.

  7. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase

    13C and 2H kinetic isotope effects have been used to investigate the mechanism of enzymic biotin carboxylation. /sup D/(V/K) is 0.50 in 80% D2O at pD 8.0 for the forward reaction and 0.57 at pD 8.5 for the phosphorylation of ADP by carbamoyl phosphate. These values approach the theoretical maximum limit for a reaction in which a proton is transferred from a sulfhydryl to a nitrogen or oxygen base. Therefore, it appears that this portion of the reaction is at or near equilibrium. 13(V/K) at pH 8 is 1.007; the small magnitude of this number suggests that the reaction is almost fully committed by the time the carbon-sensitive steps are reached. There does not appear to be a reverse commitment to the reaction under the conditions in which 13(V/K) was determined. A large forward commitment is consistent with the failure to observe positional isotope exchange from the βγ-bridge position to the β-nonbridge position in [18O4]ATP or washout of 18O from the γ-nonbridge positions. Transfer of 18O from bicarbonate to inorganic phosphate in the forward reaction was clearly observed, however. These observations suggest that biotin carboxylase exists in two distinct forms which differ in the protonation states of the two active-site bases, one of which is a sulfhydryl. Only when the sulfhydryl is ionized and the second base protonated can catalysis take place. Carboxylation of biotin is postulated to occur via a pathway in which carboxyphosphate is formed by nucleophilic attack of bicarbonate on ATP. Decarboxylation of carboxyphosphate in the active site generates CO2, which serves to carboxylate the isourea tautomer of biotin that is generated by the removal of the proton on N1' by the ionized sulfhydryl

  8. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    Marek M Galka

    Full Text Available Abscisic acid ((+-ABA is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC, x-ray crystallography and in silico modelling to identify putative (+-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP substrate. Functionally, (+-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM, but more potent inhibition of Rubisco activation (Ki of ~ 130 μM. Comparative structural analysis of Rubisco in the presence of (+-ABA with RuBP in the active site revealed only a putative low occupancy (+-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+-ABA binding site in the RuBP binding pocket. Overall we conclude that (+-ABA interacts with Rubisco. While the low occupancy (+-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.

  9. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. PMID:26168906

  10. Epigenetic regulation of pyruvate carboxylase gene expression in the postpartum liver.

    Walker, C G; Crookenden, M A; Henty, K M; Handley, R R; Kuhn-Sherlock, B; White, H M; Donkin, S S; Snell, R G; Meier, S; Heiser, A; Loor, J J; Mitchell, M D; Roche, J R

    2016-07-01

    Hepatic gluconeogenesis is essential for maintenance of whole body glucose homeostasis and glucose supply for mammary lactose synthesis in the dairy cow. Upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC) during the transition period is vital in the adaptation to the greater glucose demands associated with peripartum lactogenesis. The objective of this study was to determine if PC transcription in hepatocytes is regulated by DNA methylation and if treatment with a nonsteroidal anti-inflammatory drug (NSAID) alters methylation of an upstream DNA sequence defined as promoter 1. Dairy cows were left untreated (n=20), or treated with a NSAID during the first 5 d postcalving (n=20). Liver was biopsied at d 7 precalving and d 7, 14, and 28 postcalving. Total PC and transcript specific gene expression was quantified using quantitative PCR and DNA methylation of promoter 1 was quantified using bisulfite Sanger sequencing. Expression of PC changed over the transition period, with increased expression postcalving occurring concurrently with increased circulating concentration of nonesterified fatty acids. The DNA methylation percentage was variable at all sites quantified and ranged from 21 to 54% across the 15 CpG dinucleotides within promoter 1. The DNA methylation at wk 1 postcalving, however, was not correlated with gene expression of promoter 1-regulated transcripts and we did not detect an effect of NSAID treatment on DNA methylation or PC gene expression. Our results do not support a role for DNA methylation in regulating promoter 1-driven gene expression of PC at wk 1 postcalving. Further research is required to determine the mechanisms regulating increased PC expression over the transition period. PMID:27085418

  11. Effect of prolactin on enzymes of lipid biosynthesis in mammary gland explants

    Prolactin (PRL) stimulates an increased rate of incorporation of [14C]acetate and [3H]glucose into lipids in cultured mammary gland explants from 10-to 14-day-pregnant mice. This response is biphasic with an early increase occurring from 6 through 12 h, and an additional increase from 16 to 24 h. Enzymes likely to be rate limiting to this process include acetyl CoA carboxylase, fatty acid synthetase, acetyl CoA synthetase, and/or pyruvate dehydrogenase. Of these enzymes only pyruvate dehydrogenase activity was elevated at 6 h, suggesting that this enzymatic activity is important in stimulating early increases in lipogenesis after PRL treatment. In addition, the PRL stimulation of pyruvate dehydrogenase may also indirectly stimulate acetyl CoA carboxylase through the generation of citrate; this may explain the early (6-12 h) effect of PRL on [14C]acetate incorporation. After 16 h of PRL treatment, the activities of all the lipogenic enzymes were enhanced. The second phase of PRLs stimulation of lipogenesis thus likely involves the enhanced activities of more than one of the lipogenic enzymes

  12. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H. Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2014-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profilin...

  13. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1+ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-[3H]acetyl groups from [3H]acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified ∼ 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 μM), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1+ E.coli

  14. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  15. Mutation analysis of methylmalonyl CoA mutase gene exon 2 in Egyptian families: Identification of 25 novel allelic variants

    Dina A. Ghoraba

    2015-02-01

    Full Text Available Methylmalonic aciduria (MMA is an autosomal recessive disorder of methylmalonate and cobalamin (cbl; vitamin B12 metabolism. It is an inborn error of organic acid metabolism which commonly results from a defect in the gene encoding the methylmalonyl-CoA mutase (MCM apoenzyme. Here we report the results of mutation study of exon 2 of the methylmalonyl CoA mutase (MUT gene, coding MCM residues from 1 to 128, in ten unrelated Egyptian families affected with methylmalonic aciduria. Patients were presented with a wide-anion gap metabolic acidosis. The diagnosis has established by the measurement of C3 (propionylcarnitine and C3:C2 (propionylcarnitine/acetylcarnitine in blood by using liquid chromatography–tandem mass spectrometry (LC/MS–MS and was confirmed by the detection of an abnormally elevated level of methylmalonic acid in urine by using gas chromatography–mass spectrometry (GC/MS and isocratic cation exchange high-performance liquid-chromatography (HPLC. Direct sequencing of gDNA of the MUT gene exon 2 has revealed a total of 26 allelic variants: ten of which were intronic, eight were located upstream to the exon 2 coding region, four were novel modifications predicted to affect the splicing region, three were novel mutations within the coding region: c.15G>A (p.K5K, c.165C>A (p.N55K and c.7del (p.R3EfsX14, as well as the previously reported mutation c.323G>A (p.R108H.

  16. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms.

    Xu, H.H.; Tabita, F R

    1996-01-01

    Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished, with types A and B and types C and D more closely related to one another. To better understand the environmental regulation of RubisCO in Lake E...

  17. A Novel Approach to Functional Analysis of the Ribulose Bisphosphate Carboxylase Small Subunit Gene by Agrobacterium-Mediated Gene Silencing

    Xiao-Fu Zhou; Peng-Da Ma; Ren-Hou Wang; Bo Liu; Xing-Zhi Wang

    2006-01-01

    A novel approach to virus-induced post-transcriptional gene silencing for studying the function of the ribulose bisphosphate carboxylase small subunlt (rbcS) gene was established and optimized using potato virus X vector and Nicotiana benthamiana as experimental material. The analysis of silencing phenomena,transcriptional level, protein expression, and pigment measurement showed that the expression of the rbcS endogenous gene was inactivated by the expression of a 500-bp homologous cDNA fragment carried in the virus vector.

  18. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  19. Curcumin-induced Histone Acetylation in Malignant Hematologic Cells

    Junbin HU; Yan WANG; Yan CHEN

    2009-01-01

    This study investigated the inhibitory effects of curcumin on proliferation of hemato-logical malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacety-lation levels.The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay.The expression of acetylated histone-3 (H3) in Raji,HL60 and K562 cells,and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS.The results showed curcumin inhibited pro-liferation of Raji cells significantly in a time- and dose-dependent fashion,while exhibited low toxic-ity in PBMCs.Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested.In conclusion,curcumin inhibited proliferation of Raji cells selec-tively,enhanced the level of acetylated H3 in Raji,HL60,and K562 cells,which acted as a histone deacetylase inhibitor like TSA.Furthermore,up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.

  20. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development.

    Dai, Jinxiang; Bercury, Kathryn K; Jin, Weilin; Macklin, Wendy B

    2015-12-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. PMID:26631469

  1. Demonstration of a functional requirement for the carbamate nitrogen of ribulosebisphosphate carboxylase/oxygenase by chemical rescue

    Ribulosebisphosphate carboxylase/oxygenase is reversibly activated by the reaction of Co2 with a specific lysyl residue to form a carbamate that coordinates an essential Mg2+ cation. Surprisingly, the Lys191→Cys mutant protein, in the presence of Co2 and Mg2+ exhibits tight binding of the reaction intermediate analogue 2-carboxyarabinitol bisphosphate a property normally equated with effective coordination of the Mg2+ by the carbamate. Catalytic ineptness of the Cys191 mutant protein, despite its ability to coordinate Mg2+ properly, might be due to the absence of the carbamate nitrogen. To investigate this possibility, the authors have evaluated the ability of exogenous amines to restore catalytic activity to the mutant protein. Significantly, the Cys191 protein manifests ribulose bisphosphate dependent fixation of 14CO2 when incubated with aminomethanewsulfonate but not ethanesulfonate. This novel activity reflects a Km value for ribulose bisphosphate which is not markedly perturbed relative to wild-type enzyme, a Km for Mg2+ which is in fact decreased 10-fold, and rate saturation with respect to aminomethanesulfonate. Chromatographic and spectrophotometric analyses reveal the product of CO2 fixation to be D-3-phosphoglycerate while turnover of [1-3H]ribulose bisphosphate into [3H]phosphoglycolate confirms oxygenase activity. The authors conclude that aminomethanesulfonate restored ribulosebisphosphate carboxylase/oxygenase activities to the Cys191 mutant protein by providing a nitrogenous function which satisfies a catalytic demand normally met by the carbamate nitrogen of Lys191

  2. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis

    Jialei Hu

    2015-12-01

    Full Text Available Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  3. Recycling and Reuse of Ionic Liquid in Homogeneous Cellulose Acetylation

    HUANG Kelin; WU Rui; CAO Yan; LI Huiquan; WANG Jinshu

    2013-01-01

    Molecular distillation was used to recover ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AmimC1) in homogeneous cellulose acetylation.The five factors that affect the separation efficiency of molecular distillation,namely,feed flow rate,distillation temperature,feed temperature,wiper rotating speed,and distillation pressure,are discussed.The optimal recovery condition was determined via orthogonal experiments using an OA9(34) design.The IL was recycled and reused 5 times in the homogeneous cellulose acetylation system under optimal conditions.The purity of recycled IL the 5th time reached 99.56%.FT-IR (Fourier transform infrared spectroscopy) and 1H NMR (nuclear magnetic resonance) spectroscopy showed that the structure of the recovered IL is not changed.This work proves that AmirnCl has excellent reusability,and that molecular distillation is an effective method for recovering IL in homogeneous cellulose acetylation.

  4. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain...... acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the...

  5. Study on Reactions of 2-Acetyl-7-methylaminotropone with Pyridinecarboxyaldehydes

    GAO Wen-Tao; ZHENG Zhuo

    2003-01-01

    @@ Cinnamoyl group is a versatile constituent because of bearing active carbonyl group and α, β-unsaturated car bon-carbon double bond. A wide variety of heterocycle-fused troponoid compounds have been derived from cinnamoyl-substituted tropones. For examples, the 3-(4-aryl-3-cyano-2- methoxypyridin-6-yl)tropones were synthesized by the reactions of 2-acetyl-7-methylaminotropone with malononitrile via michael addition and cyclization. [1] There have been some reports about the synthesis of 2-cinnamoyl-7-methylaminotropone, [2,3] herein we further report the synthesis of this kind of compounds by the reactions of 2-acetyl-7-methylaminotropone with pyridinecarboxyaldehydes.

  6. New lysine-acetylated proteins screened by immunoaffinity and liquid chromatography-mass spectrometry

    2010-01-01

    The lack of selective extraction specific for lysine-acetylated proteins has been a major problem in the field of acetylation biology,though acetylation plays a key role in many biological processes.In this paper,we report for the first time the proteomic screening of lysine-acetylated proteins from a mouse liver tissue,by a new approach of immunoaffinity purification of lysine-acetylated peptides combined with nano-HPLC/MS/MS analysis.We have found 20 lysine-acetylated proteins with 21 lysine-acetylated sites,among which 12 lysine-acetylated proteins and 16 lysine-acetylated sites have never been reported before.Notably,three acetyltransferases harboring in mitochondrion are newly discovered acetyltransferases responsible for the acetylation of nonhistone proteins.We have explored the significant patterns of residue preference by the hierarchical clustering analysis of amino acid residues surrounding acetylation sites,which could be helpful to the prediction of new sites of lysine acetylation.Our findings provide more candidates for studying the important roles played by acetylation in diverse cellular pathways and related human diseases.

  7. Simple determination of the CO2/O2 specificity of Ribulose-1,5-bisphosphate carboxylase/oxygenase by the specific radioactivity of [14C] glycerate 3-phosphate

    A new method is presented for measurement of the CO2/O2 specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The [14C]3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. 14CO2 fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO2 in O2-saturated water and carboxylase only with 160 micromolar CO2 under N2. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the [14C]PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 ± 4), from the green alga Chlamydomonas reinhardtii (66 ± 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods

  8. A conformational investigation of propeptide binding to the integral membrane protein γ-glutamyl carboxylase using nanodisc hydrogen exchange mass spectrometry

    Parker, Christine H; Morgan, Christopher R; Rand, Kasper Dyrberg;

    2014-01-01

    Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the rol...

  9. Cloning and characterization of the gene product of the form II ribulose-1,5-bisphosphate carboxylase gene of Rhodopseudomonas sphaeroides.

    Muller, E D; Chory, J; Kaplan, S

    1985-01-01

    We report the cloning and characterization of the gene product of the gene for the form II ribulose bisphosphate carboxylase from Rhodopseudomonas sphaeroides. We present evidence that the form II enzyme is encoded by a single gene in R. sphaeroides; however, this gene does hybridize to a second chromosomal locus.

  10. Predicting post-translational lysine acetylation using support vector machines

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram;

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  11. The potential role of wood acetylation in climate change mitigation

    Van der Lugt, P.; Vogtländer, J.G.; Alexander, J.; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet

  12. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  13. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  14. Acetylation regulates DNA repair mechanisms in human cells.

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  15. Surface effects in the acetylation of granular potato starch

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  16. SCANDIUM TRIFLATE CATALYZED ACETYLATION OF STARCH UNDER MILD CONDITIONS

    Scandium (III) trifluoromethan sulfonate (Sc(OTf)3) was investigated as a catalyst for the acetylation of starch in order to determine the potential for preparing new types of starch esters under mild conditions. At room temperature, dry granular corn starch reacts with acetic anhydride in the pres...

  17. Enzymatic synthesis of carbon-11 N-acetyl-D-glucosamine

    An enzymatic synthesis of [11C] N-acetyl-D-glucosamine is described. 11CO2 is reacted with methylmagnesium bromide to form [1-11C]acetate. The latter is converted to [11C]acetylcoenzyme A by passage over an enzyme reactor containing immobilized acetylcoenzyme A synthetase, and to the title compound after purification. (author)

  18. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A)+ RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  19. DMPD: Acetylation of MKP-1 and the control of inflammation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18922786 Acetylation of MKP-1 and the control of inflammation. Chi H, Flavell RA. S...ci Signal. 2008 Oct 14;1(41):pe44. (.png) (.svg) (.html) (.csml) Show Acetylation of MKP-1 and the control of inflammation.... PubmedID 18922786 Title Acetylation of MKP-1 and the control of inflammation. Authors Chi H,

  20. Serine-15 is the regulatory seryl-phosphorylation site in C4-leaf phosphoenolpyruvate carboxylase (PEPCase) from maize

    The 32P-labeled regulatory site phosphopeptide was purified from a tryptic digest of in vitro phosphorylated/activated dark-form PEPCase by metal ion affinity and reversed-phase chromatography and subjected to automated Edman degradation analysis. The amino acid sequence of this phosphoseryl peptide is His-His-Ser(P)-Ile-Asp-Ala-Gln-Leu-Arg. This nonapeptide, which corresponds exactly to residues 13-21 in the deduced primary sequence of the maize leaf carboxylase, is far removed from a recently identified active-site cysteine (Cys-553) in the C-terminal region of the primary structure. Comparative analysis of the deduced N-terminal sequences of C3, C4, and CAM leaf PEPCases suggests that the motif of Lys/Arg-X-X-Ser is an important structural requirement of the C4- and CAM-leaf protein-serine kinases

  1. Serine-15 is the regulatory seryl-phosphorylation site in C sub 4 -leaf phosphoenolpyruvate carboxylase (PEPCase) from maize

    Jiao, Jinan; Chollet, R. (Univ. of Nebraska, Lincoln (USA))

    1990-05-01

    The {sup 32}P-labeled regulatory site phosphopeptide was purified from a tryptic digest of in vitro phosphorylated/activated dark-form PEPCase by metal ion affinity and reversed-phase chromatography and subjected to automated Edman degradation analysis. The amino acid sequence of this phosphoseryl peptide is His-His-Ser(P)-Ile-Asp-Ala-Gln-Leu-Arg. This nonapeptide, which corresponds exactly to residues 13-21 in the deduced primary sequence of the maize leaf carboxylase, is far removed from a recently identified active-site cysteine (Cys-553) in the C-terminal region of the primary structure. Comparative analysis of the deduced N-terminal sequences of C{sub 3}, C{sub 4}, and CAM leaf PEPCases suggests that the motif of Lys/Arg-X-X-Ser is an important structural requirement of the C{sub 4}- and CAM-leaf protein-serine kinases.

  2. Phosphorylation-dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants.

    Brulfert, J; Vidal, J; Le Marechal, P; Gadal, P; Queiroz, O; Kluge, M; Kruger, I

    1986-04-14

    Day and night forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) (PEPC) were extracted from leaves of the CAM plants Kalanchoe daigremontiana, K. tubiflora and K. blossfeldiana previously fed with [32P] labelled phosphate solution. A one-step immunochemical purification followed by SDS polyacrylamide gel electrophoresis and autoradiography showed that, in all species, the night form of the enzyme was phosphorylated and not the day form. Limited acid hydrolysis of the night form and two-dimensional separation identified predominantly labelled phosphoserine and phosphothreonine. In vitro addition of exogenous acid phosphatase (EC 3.1.3.2) to desalted night form-containing extracts resulted within 30 min in a shift in PEPC enzymic properties similar to the in vivo changes from night to day form. It is suggested that phosphorylation-dephosphorylation of the enzyme could be the primary in vivo process which might explain the observed rhythmicity of enzymic properties. PMID:3707571

  3. Differential transcription and message stability of two genes encoding soybean ribulose 1,5-bisphosphate carboxylase small subunit

    The expression of two closely related soybean ribulose bisphosphate carboxylase small subunit (Rubisco ss) genes, SRS1 and SRS4, has been compared. These genes account for approximately 2-4% of the total transcription in light grown leaves, SRS4 being twice as transcriptionally active as SRS1. The transcription of these genes is reduced more than 30 fold after a pulse of far-red light or extended periods of darkness. When etiolated seedlings are shifted to the light the transcription of both genes increases 30-50 fold. Despite this 30-fold range in transcriptional expression the steady state mRNA levels in light and dark grown tissue differ by less than 8 fold. This suggests that the mRNAs are less stable in light grown tissue. 38 refs., 5 figs

  4. Effect of low temperature stress on the transcription of ribulose-1, 5-bisphosphate carboxylase in rice seedlings

    The seeds of ri e (oryza sativa. cv. IR 8) were grown in the growth chambers having 14 hours day length and temperature 25 deg. C) under same photo period to observe low temperature effect. After 10 days the fourth leaf of each plant was excised and immediately killed in liquid nitrogen and then used for the extraction of total RNA by GTC method. This RNA was used to estimate the amount of mRNAs responsible for the transcription of lage subunit (LSU) and small subunit (|SSU) of the Ribulose-1, 5-bisphosphate carboxylase (RuPBC) by northern blot and dot blot hybridization using cDNA probes labeled with /sup 32/P. It was observed that amount of mRNAs (LSU and SSU mRNAs) or RuBPC decreased under low temperature stress indicating that transcription of RuBPC was affected. (author)

  5. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  6. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  7. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress.

    Zandberg, L; van Dyk, H C; van der Westhuizen, F H; van Dijk, A A

    2016-09-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inherited metabolic disease of leucine catabolism with a highly variable phenotype. Apart from extensive mutation analyses of the MCCC1 and MCCC2 genes encoding 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), molecular data on MCC deficiency gene expression studies in human tissues is lacking. For IEMs, unbiased '-omics' approaches are starting to reveal the secondary cellular responses to defects in biochemical pathways. Here we present the first whole genome expression profile of immortalized cultured skin fibroblast cells of two clinically affected MCC deficient patients and two healthy individuals generated using Affymetrix(®)HuExST1.0 arrays. There were 16191 significantly differentially expressed transcript IDs of which 3591 were well annotated and present in the predefined knowledge database of Ingenuity Pathway Analysis software used for downstream functional analyses. The most noticeable feature of this MCCA deficient skin fibroblast transcriptome was the typical genetic hallmark of mitochondrial dysfunction, decreased antioxidant response and disruption of energy homeostasis, which was confirmed by mitochondrial functional analyses. The MCC deficient transcriptome seems to predict oxidative stress that could alter the complex secondary cellular response that involve genes of the glycolysis, the TCA cycle, OXPHOS, gluconeogenesis, β-oxidation and the branched-chain fatty acid metabolism. An important emerging insight from this human MCCA transcriptome in combination with previous reports is that chronic exposure to the primary and secondary metabolites of MCC deficiency and the resulting oxidative stress might impact adversely on the quality of life and energy levels, irrespective of whether MCC deficient individuals are clinically affected or asymptomatic. PMID:27417235

  8. Comparative modeling and molecular dynamics suggest high carboxylase activity of the Cyanobium sp. CACIAM14 RbcL protein.

    Siqueira, Andrei Santos; Lima, Alex Ranieri Jerônimo; Dall'Agnol, Leonardo Teixeira; de Azevedo, Juliana Simão Nina; da Silva Gonçalves Vianez, João Lídio; Gonçalves, Evonnildo Costa

    2016-03-01

    Rubisco catalyzes the first step reaction in the carbon fixation pathway, bonding atmospheric CO2/O2 to ribulose 1,5-bisphosphate; it is therefore considered one of the most important enzymes in the biosphere. Genetic modifications to increase the carboxylase activity of rubisco are a subject of great interest to agronomy and biotechnology, since this could increase the productivity of biomass in plants, algae and cyanobacteria and give better yields in crops and biofuel production. Thus, the aim of this study was to characterize in silico the catalytic domain of the rubisco large subunit (rbcL gene) of Cyanobium sp. CACIAM14, and identify target sites to improve enzyme affinity for ribulose 1,5-bisphosphate. A three-dimensional model was built using MODELLER 9.14, molecular dynamics was used to generate a 100 ns trajectory by AMBER12, and the binding free energy was calculated using MM-PBSA, MM-GBSA and SIE methods with alanine scanning. The model obtained showed characteristics of form-I rubisco, with 15 beta sheets and 19 alpha helices, and maintained the highly conserved catalytic site encompassing residues Lys175, Lys177, Lys201, Asp203, and Glu204. The binding free energy of the enzyme-substrate complexation of Cyanobium sp. CACIAM14 showed values around -10 kcal mol(-1) using the SIE method. The most important residues for the interaction with ribulose 1,5-bisphosphate were Arg295 followed by Lys334. The generated model was successfully validated, remaining stable during the whole simulation, and demonstrated characteristics of enzymes with high carboxylase activity. The binding analysis revealed candidates for directed mutagenesis sites to improve rubisco's affinity. PMID:26936271

  9. 2-Acetylthiamin pyrophosphate (acetyl-TPP) pH-rate profile for hydrolysis of acetyl-TPP and isolation of acetyl-TPP as a transient species in pyruvate dehydrogenase catalyzed reactions

    Rate constants for the hydrolysis of acetyl-TPP were measured pH values of 2.5 and 7.5 and plotted as log kobs versus pH. The pH-rate profile defined two legs, each with a slope of +1 but separated by a region of decreased slope between pH 4 and pH 6. The rates were insensitive to buffer concentrations. Each leg of the profile reflected specific-base-catalyzed hydrolysis of acetyl-TPP, analogous to the hydrolysis of 2-acetyl-3,4-dimethylthiazolium ion. The separation of the two legs of this profile has been shown to be caused by the ionization of a group exhibiting a pKa of 4.73 within acetyl-TPP that is remote from the acetyl group, the aminopyrimidine ring, which is promoted below pH 4.73. The protonation level of this ring has been shown to control the equilibrium partitioning of acetyl-TPP among its carbinolamine, keto, and hydrate forms. The differential partitioning of these species is a major factor causing the separation between the two legs of the pH-rate profile. The characteristic pH-rate profile and the availability of synthetic acetyl-TPP have facilitated the isolation and identification of [1-14C]acetyl-TPP from acid-quenched enymatic reaction mixtures at steady states. [1-14C]Acetyl-TPP was identified as a transient species in reactions catalyzed by the PDH complex or the pyruvate dehydrogenase component of the complex (E1). The pH-rate profile for hydrolysis of [1-14C]-acetyl-TPP, isolated from enzymatic reactions was found to be indistinguishable from that for authentic acetyl-TPP, which constituted positive identification of the 14C-labeled enzymic species

  10. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex.

    Gebremedhin, Kibrom G; Rademacher, David J

    2016-08-01

    Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription. PMID:27241718

  11. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as l-glutamate. During l-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor l-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  12. Specificity of antibodies to O-acetyl-positive and O-acetyl-negative group C meningococcal polysaccharides in sera from vaccinees and carriers.

    Arakere, G; Frasch, C E

    1991-01-01

    Most group C Neisseria meningitidis strains produce an O-acetyl-positive polysaccharide, a homopolymer of alpha-2----9-linked N-acetylneuraminic acid with O-acetyl groups at the C-7 and C-8 of its sialic acid residues. The majority of disease isolates have been reported to contain this polysaccharide. Some strains produce group C polysaccharide lacking O-acetyl groups. The licensed vaccine contains the O-acetyl-positive polysaccharide. We have measured the antibody specificities to the two po...

  13. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate; Breinholt Bekker-Jensen, Dorte; Secher, Anna; Skovgaard, Tine; Kelstrup, Christian; Dmytriyev, Anatoliy; Choudhary, Chuna Ram; Lundby, Carsten; Olsen, Jesper Velgaard

    2012-01-01

    Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4...... subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle...

  14. The growing landscape of lysine acetylation links metabolism and cell signalling

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya;

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation......, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and...... deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes....

  15. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  16. N-Acetyltransferase 2 (NAT2) in Tunisian Population: Correlation Between Acetylation Phenotype and Genotype

    One hundred tuberculous patients were studied during 2004-2005 to determine acetylation phenotype, frequent mutations of NAT2 gene and to compare acetylation phenotype with NAT2 genotype in Tunisian population. Acetylation phenotype was determined by determination of acetylation index. Five mutations of NAT2 gene were evaluated by PCR/RFLP. Results show bimodal distribution of acetylation SA and RA phenotype, 75% and 25% and genotype 56% and 44%, respectively. Ten NAT2 alleles were found, NAT2*4 being the major one. Thirty-two different genotypes were found (9 RA and 23 SA). The major one was NAT2*6 B/NAT2*4. The concordance value was 79%. A good sensibility (98, 2%) of acetylation test for SA detection was found. Thus, acetylation phenotype in SA is predicted with poor error risk. (author)

  17. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian; Nielsen, Michael L; Rehman, Michael; Walther, Tobias C; Olsen, Jesper V; Mann, Matthias

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600...... lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  18. Use of Intravenous N-Acetyl Systein in Paracetamol Intoxication

    Latif Duran; Bülent Şişman; Canan Doğruel; Türker Yardan; Ahmet Baydın; Yücel Yavuz

    2011-01-01

    Objective: In this study, we aimed to present our clinical experiences of intravenous (IV) N-Acetyl cystein administration in patients admitted to our emergency department with paracetamol intoxication.Material and Methods: This study was conducted between January 2007 and December 2009, in the Ondokuz Mayis University Medical Faculty Hospital, Emergency Service, and the hospital records of adult patients admitted with paracetamol poisoning were examined retrospectively. Fifty three patients ...

  19. The potential role of wood acetylation in climate change mitigation

    Van der Lugt, P.; Vogtländer, J.G.; J. Alexander; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet carbon intensive non-renewable materials such as metals, plastics and concrete may be replaced by abundantly available nondurable wood species. To better understand the difference in greenhouse ga...

  20. Acetylation modification regulates GRP78 secretion in colon cancer cells.

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  1. Acetylation modification regulates GRP78 secretion in colon cancer cells

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  2. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets. PMID:27551260

  3. Histone acetylation regulates osteodifferentiation of hDPSCs via DSPP.

    Gu, Shensheng; Liang, Jingping; Wang, Jia; Liu, Bin

    2013-01-01

    Dental pulp stem cells (DPSCs) are a unique population of precursor cells isolated from postnatal human dental pulp, with the ability to regenerate a reparative dentin-like complex. We examined the regulation of odontoblast-like differentiation of DPSCs by histone acetylation. Western blot analysis showed that histone H3 acetylation was strongly induced in osteodifferentiation medium. Inhibition of histone acetyltransferase by garcinol reversed osteodifferentiation and mineral formation. Real-time polymerase chain reaction assay indicated that the dentin sialophosphoprotein (DSPP) gene, which is mainly expressed in odontoblasts and preameloblasts in teeth and plays an important role in tooth function, was also down-regulated in garcinol-treated cells. Moreover, lentivirus-mediated knockdown of DSPP in human DPSCs was associated with significant inhibition of mineral formation, but not osteoblast differentiation. In conclusion, the results of this study suggest that DSPP positively affects mineral formation, and that odontoblast-like differentiation and maturation of DPSCs can be regulated by histone acetylation of the DSPP gene. PMID:23747867

  4. Selective cleavage enhanced by acetylating the side chain of lysine.

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  5. Detecting ALS and ACCase herbicide tolerant accession of Echinochloa oryzoides (Ard.) Fritsch. in rice (Oryza sativa L.) fields

    Altop, Emine Kaya; Mennan, Husrev; Streibig, Jens Carl; Budak, Unal; Ritz, Christian

    2014-01-01

    -sodium) and acetyl CoA carboxylase (cyhalofob-butyl) inhibiting herbicides. Comparison of 95% lower confidence intervals of ED90 derived from log-logistic dose-response curves, and twice the recommended field rates of the herbicides showed some, but not distinct separation of susceptible and tolerant...... bispyribac-sodium) at recommended field rates; and 38% were not controlled by the ACCase Inhibitor (cyhalofob-butyl) at twice the field rates. The effective response level of ED90 resulted in 64 and 14 tolerant accessions to ALS and ACCase, respectively. Fourteen accessions showed multiple resistances to ALS...

  6. Influence of nitrogen enrichment on size-fractionated in vitro carboxylase activities of phytoplankton from Thau Lagoon (Coastal Mediterranean Lagoon, France)

    Fouilland, Eric; Descolas Gros, Chantal; Collos, Yves; Vaquer A, André; Souchu, Philippe; Gasc, Anne; Bibent, Bertrand; Pons, Virginie

    2002-01-01

    The influence of dissolved inorganic and organic nitrogen (DIN and DON) enrichments on pools of enzymes responsible for CO2 fixation by the Calvin-Benson (Rubisco) and beta-carboxylation pathways (beta-carboxylases) were studied in a natural plankton assemblage. The plankton community from a coastal Mediterranean lagoon were incubated in situ for 24 h with initially ammonium, nitrate and DON (taurine) enrichments and compared to a control without any enrichment. An increase of small picophyto...

  7. Measurement of Acylcarnitine Substrate to Product Ratios Specific to Biotin-Dependent Carboxylases Offers a Combination of Indicators of Biotin Status in Humans12

    Bogusiewicz, Anna; Horvath, Thomas D; Stratton, Shawna L.; Mock, Donald M; Boysen, Gunnar

    2012-01-01

    This work describes a novel liquid chromatography tandem MS (LC-MS/MS) method for the determination of ratios of acylcarnitines arising from acyl-CoA substrates and products that reflect metabolic disturbances caused by marginal biotin deficiency. The urinary ratios reflecting reduced activities of biotin-dependent enzymes include the following: 1) the ratio of 3-hydroxyisovalerylcarnitine : 3-methylglutarylcarnitine (3HIAc : MGc) for methylcrotonyl-CoA carboxylase; 2) the ratio of propionylc...

  8. Acetylator genotype-dependent formation of 2-aminofluorene-hemoglobin adducts in rapid and slow acetylator Syrian hamsters congenic at the NAT2 locus.

    Feng, Y; Rustan, T D; Ferguson, R J; Doll, M A; Hein, D W

    1994-01-01

    Arylamine-hemoglobin adducts are a valuable dosimeter for assessing arylamine exposures and carcinogenic risk. The effects of age, sex, time-course, dose, and acetylator genotype on levels of 2-aminofluorene-hemoglobin adducts were investigated in homozygous rapid (Bio. 82.73/H-Patr) and slow (Bio. 82.73/H-Pats) acetylator hamsters congenic at the polymorphic (NAT2) acetylator locus. Following administration of a single ip dose of [3H]2-aminofluorene, peak 2-aminofluorene-hemoglobin adduct levels were achieved at 12-18 hr and retained a plateau up to 72 hr postinjection in both rapid and slow acetylator congenic hamsters. 2-Aminofluorene-hemoglobin adduct levels did not differ significantly between young (5-6 weeks) and old (32-49 weeks) hamsters or between male and female hamsters within either acetylator genotype. 2-Aminofluorene-hemoglobin adduct levels increased in a dose-dependent manner (r = 0.95, p = 0.0001) and were consistently higher in slow versus rapid acetylator congenic hamsters in studies of both time-course and dose-effect. The magnitude of the acetylator genotype-dependent difference was a function of dose; 2-aminofluorene-hemoglobin adduct levels were 1.5-fold higher in slow acetylator congenic hamsters following a 60 mg/kg 2-aminofluorene dose (p = 0.0013) but 2-fold higher following a 100 mg/kg 2-aminofluorene dose (p < 0.0001). These results show a specific and significant role for NAT2 acetylator genotype in formation of arylamine-hemoglobin adducts, which may reflect the relationship between acetylator genotype and the incidence of different cancers from arylamine exposures. PMID:8291051

  9. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.

    Yatscoff, Michael A; Jaswal, Jagdip S; Grant, Meghan R; Greenwood, Rachel; Lukat, Trish; Beker, Donna L; Rebeyka, Ivan M; Lopaschuk, Gary D

    2008-12-01

    After birth dramatic decreases in cardiac malonyl CoA levels result in the rapid maturation of fatty acid oxidation. We have previously demonstrated that the decrease in malonyl CoA is due to increased activity of malonyl CoA decarboxylase (MCD), and decreased activity of acetyl CoA carboxylase (ACC), enzymes which degrade and synthesize malonyl CoA, respectively. Decreased ACC activity corresponds to an increase in the activity of 5'-AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. These alterations are delayed by myocardial hypertrophy. As rates of fatty acid oxidation can influence the ability of the heart to withstand an ischemic insult, we examined the expression of MCD, ACC, and AMPK in the newborn human heart. Ventricular biopsies were obtained from infants undergoing cardiac surgery. Immunoblot analysis showed a positive correlation between MCD expression and age. In contrast, a negative correlation in both ACC and AMPK expression and age was observed. All ventricular samples displayed some degree of hypertrophy, however, no differences in enzyme expression were found between moderate and severe hypertrophy. This indicates that increased expression of MCD, and the decreased expression of ACC and AMPK are important regulators of the maturation of fatty acid oxidation in the newborn human heart. PMID:18614968

  10. INFLUENCE OF NACL SALINITY ON THE ACTIVITY OF RIBULOSE 1, 5-BISPHOSPHATE CARBOXYLASE IN THREE LEAFY VEGETABLES

    Anjali Ratnakar

    2015-06-01

    Full Text Available Salinity is one of the major factors which have an adverse effect on crop growth. Stress caused due to excessive accumulation of salts results in various physiological and biochemical changes in plants. Due to their nutritional value, leafy vegetables constitute an important part of our daily diet. In the present investigation, effect of NaCl salinity on the activity of ribulose 1,5–bisphosphate carboxylase in three leafy vegetables was studied. Seeds of leafy vegetables were sown in earthen pots and were subjected to different levels of saline water (NaCl treatment. Control plants were irrigated with tap water. Treatments started after the seedling emergence and continued till the plants were 45 day old. Mature leaves of these plants were harvested and used for the studies. The activity of ribulose 1,5-bisphosphate in all the three leafy vegetables was observed to decrease gradually with increase in the concentration of NaCl in the growth medium.

  11. The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn(2+)-ribulosebisphosphate carboxylase.

    Lilley, R M; Riesen, H; Andrews, T J

    1993-07-01

    We confirm the observation of Mogel and McFadden (Mogel, S.N., and McFadden, B. A. (1990) Biochemistry 29, 8333-8337) that ribulosebisphosphate carboxylase/oxygenase (rubisco) exhibits chemiluminescence while catalyzing its oxygenase reaction in the presence of Mn2+. However, our results with the spinach and Rhodospirillum rubrum enzymes differ markedly in the following respects. 1) Chemiluminescence intensity was directly proportional to enzyme concentration and behaved as if representing the rate of oxygenase catalysis. 2) The wavelength spectrum peaked at about 770 nm and extended beyond 810 nm. This seems inconsistent with chemiluminescence generated by simultaneous decay of pairs of singlet O2 molecules. It is consistent with manganese(II) luminescence and we discuss its possible sources. The time course of chemiluminescence (resolution, 0.25 s) was distinctively different for spinach and R. rubrum enzymes during the initial 5 s of catalysis, with the bacterial enzyme exhibiting a pronounced initial "burst." Chemiluminescence by the spinach enzyme responded to substrate concentrations in a manner consistent with known oxygenase properties, exhibiting Michaelis-Menten kinetics with ribulose-1,5-bisphosphate (Km 400 nM). Chemiluminescence required carbamylated enzyme with Mn2+ bound at the active site (activation energy, -57.1 KJ.mol-1). As an indicator of oxygenase activity, chemiluminescence represents an improvement over oxygen electrode measurements in response time and sensitivity by factors of at least 100. PMID:8314755

  12. Promotive Effect of Low Concentrations of NaHSO3 on Photophosphorylation and Photosynthesis in Phosphoenolpyruvate Carboxylase Transgenic Rice Leaves

    Ben-Hua JI; Hong-He TAN; Rong ZHOU; De-Mao JIAO; Yun-Gang SHEN

    2005-01-01

    Spraying a 1-2 mmol/L solution of NaHSO3 on the leaves of wild-type rice (Oryza sativa L.)Kitaake (WT), phosphoenolpyruvate carboxylase (PEPC) transgenic (PC) rice and PEPC+phosphate dikinase (PPDK) transgenic rice (PC+PK), in which the germplasm was transformed with wild-type Kitaake as the gene receptor, resulted in an enhancement of the net photosynthetic rate by 23.0%, 28.8%, and 34.4%,respectively, for more than 3 d. It was also observed that NaHSO3 application caused an increase in the ATP content in leaves. Spraying PMS (a cofactor catalysing the photophosphorylation cycle) and NaHSO3 separately or together on leaves resulted in an increase in photosynthesis with all treatments. There was no additional effect on photosynthetic rate when the mixture was applied, suggesting that the mechanism by which NaHSO3 promotes photosynthesis is similar to the mechanism by which PMS acts and that both of compounds enhanced the supply of ATP. After spraying a solution of NaHSO3 on leaves, compared with the WT Kitaake rice, a greater enhancement of net photosynthetic rate was observed in PEPC transgenic (PC) and PEPC+PPDK transgenic (PC+PK) rice, with the greatest increase being observed in the latter group. Therefore ATP supply may become the limiting factor that concentrates CO2 in rice leaves transformed with an exogenous PEPC gene and exogenous PEPC+PPDK genes.

  13. Acetylated starch nanocrystals: Preparation and antitumor drug delivery study.

    Xiao, Huaxi; Yang, Tao; Lin, Qinlu; Liu, Gao-Qiang; Zhang, Lin; Yu, Fengxiang; Chen, Yuejiao

    2016-08-01

    In this study, we developed a new nanoparticulate system for acetylated starch nanocrystals (ASN) using broken rice. ASN with different degrees of substitution (DS) of 0.04, 0.08 and 0.14 were prepared using acetic anhydride as acetylating agent through reaction with starch nanocrystals (SN). The resulting ASN were investigated for the capability to load and release doxorubicin hydrochloride (DOX), and the antitumor activities of DOX-loaded SN and DOX-loaded ASN were evaluated as potential drug delivery systems for cancer therapy. Cellular uptake and cytotoxicity of nanocrystals and the DOX-loaded nanocrystals were investigated using fluorescence microscopy and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Compared with acetylated starches (AS) and native starches (NS), ASN with DS 0.14 loaded up to 6.07% of DOX with a higher loading efficiency of 91.1% and had steadier drug-release rates. Toxicity analysis using the rat hepatocytes model suggested that ASN was biocompatible and could be used for drug delivery. Furthermore, ASN were taken up by cancer cells in vitro and significantly enhanced the cytotoxicity of DOX against HeLa human cervical carcinoma cells. The IC50 value of DOX-loaded ASN-DS 0.14 was 3.8μg/mL for 24h of treatment, which was significantly lower than that of free DOX (21μg/mL). These results indicate that the prepared ASN using broken rice is a promising vehicle for the controlled delivery of DOX for cancer therapy. PMID:27156696

  14. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties - clinical study

    Kassandra Azevedo Tadini; Daiane Garcia Mercurio; Patrícia Maria Berardo Gonçalves Maia Campos

    2015-01-01

    abstract Acetyl hexapeptide-3 has been used in anti-aging topical formulations aimed at improving skin appearance. However, few basic studies address its effects on epidermis and dermis, when vehiculated in topical formulations. Thus, the objective of this study was to determine the clinical efficacy of acetyl hexapeptide-3 using biophysical techniques. For this purpose, formulations with and without acetyl hexapeptide-3 were applied to the ventral forearm and the face area of forty female vo...

  15. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    Saare, Mario, E-mail: mario.saare@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); Rebane, Ana [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos (Switzerland); Rajashekar, Balaji; Vilo, Jaak [BIIT, Bioinformatics, Algorithmics and Data Mining group, Institute of Computer Science, University of Tartu, Tartu (Estonia); Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia)

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  16. Targeted Quantitation of Acetylated Lysine Peptides by Selected Reaction Monitoring Mass Spectrometry

    Rardin, Matthew J.; Held, Jason M.; Gibson, Bradford W.

    2013-01-01

    Mass spectrometry (MS) allows for the large-scale identification of multiple peptide analytes in complex mixtures. However, the low abundance of acetylated peptides in the overall mixture requires an enrichment step. After enrichment, the resulting acetylated peptides of interest can be quantitated using selected reaction monitoring (SRM)-MS with stable isotope dilution. Here, we describe the enrichment of lysine acetylated peptides from typsin digested mouse liver mitochondria, and the targe...

  17. Production and characterization of a monoclonal antibody to the O-acetylated peptidoglycan of Proteus mirabilis.

    Gyorffy, S; Clarke, A J

    1992-01-01

    A monoclonal antibody (PmPG5-3) specific for the O-acetylated peptidoglycan of Proteus mirabilis 19 was produced by an NS-1 myeloma cell line and purified from ascites fluid by a combination of ammonium sulfate precipitation and affinity chromatography. The monoclonal antibody (an immunoglobulin M) was characterized by a competition enzyme-linked immunosorbent assay to be equally specific for both insoluble and soluble O-acetylated peptidoglycan but weakly recognized chemically de-O-acetylate...

  18. Production of N α -acetylated thymosin α1 in Escherichia coli

    Ren, Yuantao; Yao, Xueqin; Dai, Hongmei; Li, Shulong; Fang, Hongqing; Chen, Huipeng; Zhou, Changlin

    2011-01-01

    Background Thymosin α1 (Tα1), a 28-amino acid N α -acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining N α -acetylation. In this study, we describe a novel production process for N α -acetylated Tα1 in Escherichia coli. Results To obtain recombinant N α -ac...

  19. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate e...

  20. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin. PMID:26596838

  1. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  2. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells

    Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium. (author)

  3. Effect of acetylation on arthropathic activity of group A streptococcal peptidoglycan-polysaccharide fragments.

    Stimpson, S. A.; Lerch, R A; Cleland, D R; Yarnall, D P; Clark, R L; Cromartie, W. J.; Schwab, J. H.

    1987-01-01

    Purified group A streptococcal peptidoglycan-polysaccharide (PG-PS) fragments were either de-O-acylated, or acetylated and then de-O-acylated to yield N-acetylated PG-PS. Native PG-PS was poorly degraded, N-acetylated PG-PS was extensively degraded, and de-O-acylated PG-PS was only slightly degraded by hen egg white lysozyme. N-acetylated PG-PS was also extensively degraded by human lysozyme and partially degraded by rat serum or rat liver extract. After a single intraperitoneal injection of ...

  4. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  5. p53 targets simian virus 40 large T antigen for acetylation by CBP.

    Poulin, Danielle L; Kung, Andrew L; DeCaprio, James A

    2004-08-01

    Simian virus 40 (SV40) large T antigen (T Ag) interacts with the tumor suppressor p53 and the transcriptional coactivators CBP and p300. Binding of these cellular proteins in a ternary complex has been implicated in T Ag-mediated transformation. It has been suggested that the ability of CBP/p300 to modulate p53 function underlies p53's regulation of cell proliferation and tumorigenesis. In this study, we provide further evidence that CBP activity may be mediated through its synergistic action with p53. We demonstrate that SV40 T Ag is acetylated in vivo in a p53-dependent manner and T Ag acetylation is largely mediated by CBP. The acetylation of T Ag is dependent on its interaction with p53 and on p53's interaction with CBP. We have mapped the site of acetylation on T Ag to the C-terminal lysine residue 697. This acetylation site is conserved between the T antigens of the human polyomaviruses JC and BK, which are also known to interact with p53. We show that both JC and BK T antigens are also acetylated at corresponding sites in vivo. While other proteins are known to be acetylated by CBP/p300, none are known to depend on p53 for acetylation. T Ag acetylation may provide a regulatory mechanism for T Ag binding to a cellular factor or play a role in another aspect of T Ag function. PMID:15254196

  6. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    Lee, Juhyung; Yun, Nuri; Kim, Chiho [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Song, Min-Young; Park, Kang-Sik [Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701 (Korea, Republic of); Oh, Young J., E-mail: yjoh@yonsei.ac.kr [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of)

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  7. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    A rapid method for the preparation of [1-14C]acetyl-L-carnitine is described. The method involves exchange of [1-14C]acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1-) anion exchange resin. One of the procedures used to verify the product [1-14C]acetyl-L-carnitine can be used to synthesize (3S)-[5-14C]citric acid

  8. Synthesis of Andrographolide Glucopyranoside and Selective Cleavage of O-acetyl Groups in Sugar Moiety

    WANG Shao-Min; LIU Hong-Min

    2008-01-01

    Andrographolide glucopyranosides were synthesized from andrographolide and tetra-O-acetyl-β-D-glucopyranosyl bromide via a Koenigs-Knorr reaction and deacetylation with a moderate deacetylation reagent dibutyltin oxide in methanol for the first time.The structures of the andrographolide derivatives were confirmed by IR, NMR,and HRMS.Deprotection of the acetylated andrographolide glucopyranoside with dibutyltin oxide in methanol selectively removed all acetyl groups of the sugar moiety, whereas the acetyl group of the andrographolide part and the base- or acid-sensitive functional groups were retained.

  9. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman;

    2008-01-01

    total meat intake and red meat intake and breast cancer risk were confined to intermediate/fast N-acetyl transferase 2 acetylators (P-interaction=0.03 and 0.04). Our findings support an association between meat consumption and breast cancer risk and that N-acetyl transferase 2 polymorphism has a......The aim of this study was to investigate whether polymorphisms in N-acetyl transferase 1 and 2 modify the association between meat consumption and risk of breast cancer. A nested case-control study was conducted among 24697 postmenopausal women included in the 'Diet, Cancer and Health' cohort study...... increment in intake. Compared with slow acetylators, the IRR (95% confidence interval) among fast N-acetyl transferase 1 acetylators was 1.43 (1.03-1.99) and 1.13 (0.83-1.54) among intermediate/fast N-acetyl transferase 2 acetylators. Interaction analyses revealed that the positive associations between...

  10. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  11. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  12. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotropically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.1 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation

  13. Fat metabolism is regulated by altered gene expression oflipogenic enzymes and regulatory factors in liver and adiposetissue but not in semimembranosus muscle of pigs during thefattening period

    Duran-Montge, P; Theil, Peter Kappel; Lauridsen, Charlotte;

    2009-01-01

    It has been shown previously that lipid metabolism is regulated by fatty acids (FA) and that thyroid hormones are important regulators of energy metabolism. The effects of weight, dietary fat level and dietary FA profile on thyroid hormone levels and expression of lipogenic genes and tissue FA...... supplemented with approximately 10% fat of different origin and slaughtered at 100 kg BW. The supplemental fats were tallow, high-oleic sunflower oil, sunflower oil (SFO), linseed oil, fat blend (55% tallow, 35% sunflower oil, 10% linseed oil) and fish oil blend (40% fish oil, 60% linseed oil). In general, the...... hormones and genes encoding enzymes of fat synthesis in adipose tissue (acetyl CoA carboxylase (ACACA), fatty acid synthase and stearoyl CoA desaturase (SCD)) and the large differences in expression of lipogenic genes at different weights (60 and 100 kg BW), suggest a role for thyroid hormones and for T3...

  14. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization.

    Azuma, Kotaro; Shiba, Sachiko; Hasegawa, Tomoka; Ikeda, Kazuhiro; Urano, Tomohiko; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Amizuka, Norio; Inoue, Satoshi

    2015-07-01

    Vitamin K is a fat-soluble vitamin that is necessary for blood coagulation. In addition, it has bone-protective effects. Vitamin K functions as a cofactor of γ-glutamyl carboxylase (GGCX), which activates its substrates by carboxylation. These substrates are found throughout the body and examples include hepatic blood coagulation factors. Furthermore, vitamin K functions as a ligand of the nuclear receptor known as steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR). We have previously reported on the bone-protective role of SXR/PXR signaling by demonstrating that systemic Pxr-knockout mice displayed osteopenia. Because systemic Ggcx-knockout mice die shortly after birth from severe hemorrhage, the GGCX-mediated effect of vitamin K on bone metabolism has been difficult to evaluate. In this work, we utilized Ggcx-floxed mice to generate osteoblast-specific GGCX-deficient (Ggcx(Δobl/Δobl)) mice by crossing them with Col1-Cre mice. The bone mineral density (BMD) of Ggcx(Δobl/Δobl) mice was significantly higher than that of control Col1-Cre (Ggcx(+/+)) mice. Histomorphometrical analysis of trabecular bones in the proximal tibia showed increased osteoid volume and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Histomorphometrical analysis of cortical bones revealed a thicker cortical width and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Electron microscopic examination revealed disassembly of mineralized nodules and aberrant calcification of collagen fibers in Ggcx(Δobl/Δobl) mice. The mechanical properties of bones from Ggcx(Δobl/Δobl) mice tended to be stronger than those from control Ggcx(+/+) mice. These results suggest that GGCX in osteoblasts functions to prevent abnormal mineralization in bone formation, although this function may not be a prerequisite for the bone-protective effect of vitamin K. PMID:25600070

  15. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs.

    Lietzan, Adam D; St Maurice, Martin

    2013-11-15

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  16. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage

    Dann, M.S.; Pell, E.J. (Pennsylvania State Univ., University Park (USA))

    1989-09-01

    The effect of ozone (O{sub 3}) on ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and quantity and net photosynthesis in greenhouse-grown Solanum tuberosum L. cv Norland foliage was studied in relation to oxidant-induced premature senescence. Plants, 26 days old, were exposed to 0.06 to 0.08 microliters per liter O{sub 3} from 1,000 to 1,600 hours for 4 days in a controlled environment chamber. On day 5, plants were exposed to a 6-hour simulated inversion in which O{sub 3} peaked at 0.12 microliters per liter. Net photosynthesis declined in response to O{sub 3} but recovered to near control levels 3 days after the exposure ended. Rubisco activity and quantity in control potato foliage increased and then decreased during the 12-day interval of the study. In some experiments foliage studied was physiologically mature and Rubisco activity had peaked when O{sub 3} exposure commenced. In those cases, O{sub 3} accelerated the decline in Rubisco activity. When less mature foliage was treated with O{sub 3}, the leaves never achieved the maximal level of Rubisco activity observed in control foliage and also exhibited more rapid decline in initial and total activity. Percent activation of Rubisco (initial/total activity) was not affected significantly by treatment. Quantity of Rubisco decreased in concert with activity. The reduction in the quantity of Rubisco, an important foliage storage protein, could contribute to premature senescence associated with toxicity of this air pollutant.

  17. Molecular cloning and characterization of Polygalacturonase-Inhibiting Protein and Cinnamoyl-Coa Reductase genes and their association with fruit storage conditions in blueberry (Vaccinium corymbosum)

    Khraiwesh, Basel

    2013-05-13

    Blueberry is a widely grown and easily perishable fruit crop. An efficient post-harvest handling is critical, and for that purpose gene technology methods have been part of ongoing programmes to improve crops with high food values such as blueberry. Here we report the isolation, cloning, characterization and differential expression levels of two cDNAs encoding Polygalacturonase-Inhibitor Protein (PGIP) and Cinnamoyl-Coa Reductase (CCR) from blueberry fruits in relation to various storage conditions. The open reading frame of PGIP and CCR encodes a polypeptide of 329 and 347 amino acids, respectively. To assess changes in the expression of blueberry PGIP and CCR after harvest, a storage trial was initiated. The northern blots hybridization showed a clear differential expression level of PGIP and CCR between freshly harvested and stored fruits as well as between fruits stored under various storage conditions. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the quality over the storage period at the molecular level.

  18. Effect of various eicosanoid products of arachidonic acid on the acyl CoA: Cholesterol acyl transferase activity in three different mammalian cell lines

    Acylcoenzyme A:cholesterol acyltransferase (ACAT) catalyzes cholesterol ester synthesis intracellularly and has been implicated in the development of atherosclerosis. An in vitro assay has been adapted for determining ACAT activity from rat FU5AH hepatoma, Chinese hamster ovary (CHO) and rat thoracic aortic smooth muscle (RSM) cells. Formation of 14C-labelled cholesteryl oleate at 0 to 60 min ± cholesterol was determined; in the presence of exogenous cholesterol, ACAT activity was approximately linear and surpassed the plateau observed in ACAT activity without cholesterol. Increasing exogenous cholesterol concentration, the amount of oleoyl CoA or the amount of microsomal protein produced a corresponding increase in ACAT activity, while ester formation was slightly increased by decreasing the ratio of Triton WR-1339 to cholesterol. Both the thromboxane A2 (TxA2) mimic, U-44069, and the inflammatory lipoxygenase product, LTB4, decreased optimal in vitro microsomal ACAT activity from RSM, but not form FU5AH, while CHO ACAT activity was suppressed by LTBr only. PGI2, PGE2 and PGF2α had minimal effects for each cell type

  19. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  20. InterProScan Result: CK523618 [KAIKOcDNA[Archive

    Full Text Available CK523618 CK523618_6_ORF1 9340A0F489CFC86C PANTHER PTHR18866 CARBOXYLASE:PYRUVATE/AC...ETYL-COA/PROPIONYL-COA CARBOXYLASE 2.1e-14 T IPR005482 unintegrated Molecular Function: ligase activity (GO:0016874) ...

  1. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity.

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-13

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  2. Polymorphic acetylation of the antibacterials, sulfamethazine and dapsone, in South Indian subjects.

    Peters, J H; Gordon, G R; Karat, A B

    1975-07-01

    A group of South Indian subjects was studied for their capacities to acetylate sulfamethazine (SMZ) and dapsone (DDS) and to clear DDS from the circulation. An apparent trimodal distribution of acetylator phenotypes was found in 49 subjects (51% slow, 12% intermediate, and 37% rapid acetylators) from measurements of the percentage acetylation of SMZ in 6-hour plasma samples after administration of 10 mg SMZ/kg. The intermediate phenotype was not discernible from either the percentage acetylation of SMZ in urine (collected concurrently with the plasma after SMZ) or that of DDS in plasma after the ingestion of 50 mg DDS by the same subjects. The latter two measurements yielded a bimodal distribution of 59% slow and 41% rapid acetylators, nearly identical to earlier reported distributions of isoniazid inactivator phenotypes in larger numbers of South Indian tuberculosis patients. In the current group, acetylation of DDS and SMZ was positively correlated. The half-time of disappearance (T 1/2) of DDS, an expression of the rate of clearance from the plasma, ranged from 13 to 40 hours. No correlation was found between the subject's capacity to acetylate DDS and the T 1/2 value for DDS. These results were generally consistent with earlier observations made during similar studies of American and Filipino subjects. PMID:1155699

  3. chiral Synthesis of 13-Acetyl-12-hydroxy-podocarpane-8, 11,13-triene-7-one

    2001-01-01

    An enantioselective synthetic route to (+)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1a and (-)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1b was developed from (S)-(-)-a -cyclocitral 8a and (R)-(+)-a -cyclocitral 8b.

  4. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  5. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  6. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties. PMID:27083845

  7. Effects of Partially N-acetylated Chitosans to Elicit Resistance Reaction on Brassica napus L.

    ZHANG Xue-kun; TANG Zhang-lin; CHEN Li; GUO Yi-hong; CHEN Yun-ping; LI Jia-na

    2002-01-01

    The effects to elicit resistance reaction on oilseed rape (Brassica napus L. cv Xinongchangjiao )by four partially N-acetylated chitosan 7B, 8B, 9B and 10B (Degree of acetylation (D. A. ) is 30%, 20%,10%, 0%, respectively) and Glycol chitosan (GC, D.A. is 0%) were investigated and compared. Results showed that chitosan were similar to salicylic acid (SA), and could induce resistance reaction, but the reaction was influenced by the degree of acetylation of chitosan. Fully deacetylated chitosans, 10B and GC, elicited chitinase activity, but partially acetylated chitosan, 7B, 8B and 9B, inhibited chitinase activity. Phenyalanine ammonia-lyase (PAL) was also elicited. Elicitor activity increased with on increasing degree of acetylation, 7B induced highest PAL activity among all chitosans. All chitosans induced peroxidase (POD) in a similar level.After elicited by glycol chitosan, like SA treatment, the seedlings increased disease resistance to Sclerotinia sclerotiorum significantly.

  8. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.;

    2013-01-01

    -dependent posttranslational modifications (PT Ms). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry......-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP 300 and CREBBP, are dynamically acetylated; (2) that nuclear...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...

  9. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  10. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  11. H3K9 acetylation and radial chromatin positioning

    Strašák, Luděk; Bártová, Eva; Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Krejčí, Jana; Kozubek, Stanislav

    2009-01-01

    Roč. 220, č. 1 (2009), s. 91-101. ISSN 0021-9541 R&D Projects: GA MŠk(CZ) LC06027; GA MŠk(CZ) LC535; GA AV ČR(CZ) 1QS500040508; GA AV ČR(CZ) IAA5004306; GA ČR(CZ) GA204/06/0978 Grant ostatní: GA ČR(CZ) GP310/07/P480 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromatin structure * RIDGE and anti-RIDGE regions * H3K9 acetylation Subject RIV: BO - Biophysics Impact factor: 4.586, year: 2009

  12. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    Chen, Yun; Zhang, Yiming; Siewers, Verena;

    2015-01-01

    Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported into the......-fermentative yeast strain. We found that mitochondrial Ach1 can convert acetyl-CoA in this compartment into acetate, which crosses the mitochondrial membrane before being converted into acetyl-CoA in the cytosol. Based on our finding we propose a model in which acetate can be used to exchange acetyl units between...... mitochondria and the cytosol. These results will increase our fundamental understanding of intracellular transport of acetyl units, and also help to develop microbial cell factories for many kinds of acetyl-CoA derived products....

  13. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [3H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [3H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [3H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  14. Hair Analysis for Determination of Isoniazid Concentrations and Acetylator Phenotype during Antituberculous Treatment

    Michael Eisenhut

    2012-01-01

    Full Text Available Background. Analysis of isoniazid (INH uptake has been based on measurement of plasma concentrations providing a short-term and potentially biased view. Objectives. To establish hair analysis as a tool to measure long-term uptake of INH and to assess whether acetylator phenotype in hair reflects N-acetyltransferase-2 (NAT2 genotype. Design and Methods. INH and acetyl-INH concentrations in hair were determined in patients on INH treatment for M. tuberculosis infection using high pressure liquid chromatography/mass spectrometry. Acetyl-INH/INH ratios were correlated with NAT-2 genotype. Results. Hair concentrations of INH, determined in 40 patients, were not dependent on ethnic group or body mass index and were significantly higher in male compared to female patients (median (range 2.37 ng/mg (0.76–4.9 versus 1.11 ng/mg (0.02–7.20 (P=0.02. Acetyl-INH/INH ratios were a median of 15.2% (14.5 to 31.7 in homozygous rapid acetylator NAT-2 genotype and 37.3% (1.73 to 51.2 in the heterozygous rapid acetylator NAT-2 genotype and both significantly higher than in the slow acetylator NAT-2 genotype with 5.8% (0.53 to 14.4 (P<0.05. Conclusions. Results of hair analysis for INH showed lower concentrations in females. Acetyl-INH/INH ratios were significantly lower in patients with slow acetylator versus rapid acetylator genotypes.

  15. Antioxidant activity of N-acetyl-glucosamine based thiazolidine derivative

    Li Chunlei; Yang Yan; Han Baoqin; Liu Wanshun

    2007-01-01

    N-acetyl-glucosamine,the monomer of chitin,was cyclo-condensed with L-cysteine to prepare thiazolidine derivative:2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid(GlcNAcCys).The stability of GlcNAcCys was evaluated by high performance liquid chromatography(HPLC)measurement.The results showed that GlcNAcCys Was more stable than other TCA derivatives,especially in alkaline condition.The direct in vitro antioxidative properties of GlcNAcCys were investigated by using UV radiation-induced lipid peroxidation(LPO)in mitochondria and nuclei and.OH-induced LPO in red blood cell (RBC)ghosts models.UV radiation caused dose-dependent LPO in both mitochondria and nuclei,this effect Was catalvzed by addition of Fd2+ while prevented by co-incubation with GlcNAcCys.When nuclei and mitochondria Was treated with 100μl,300μl,500μl of GlcNAcCys and co-incubated at 37℃ for 30min,LPO was decreased to 96%,72%,68%in nuclei and 95%,72%,68% in mitochondria when compared to the UV radiation group respectively.Hydroxyl radicals(.OH)generated by Fenton reaction induced LPO in RBC ghosts.Pretreatment of RBC ghosts with GlcNAcCys could induce antioxidant RBC ghosts and inhibit concentration-dependent malondialdehyde(MDA)formation in antioxidant RBC ghosts.Its inhibition percent Was 14%,35%,36%,42%at 10,20,30,40ms/ml respectively.In a conclusion,the data suggest that GlcNAcCys has antioxidant ability and can significantly inhibit lipid peroxidation in biological samples tested in vitro.

  16. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    Crosby, Heidi A [University of Wisconsin, Madison; Pelletier, Dale A [ORNL; Hurst, Gregory {Greg} B [ORNL; Escalante-Semerena, Jorge C [University of Wisconsin, Madison

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  17. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells

    Kwon, Hye-Sook; Lim, Hyung W; Wu, Jessica; Schnoelzer, Martina; Verdin, Eric; Ott, Melanie

    2012-01-01

    The Foxp3 transcription factor is the master regulator of regulatory T cell (Treg) differentiation and function. Its activity is regulated by reversible acetylation. Using mass spectrometry of immunoprecipitated proteins, we identify three novel acetylation sites in murine Foxp3 (K31, K262, and K267) and the corresponding sites in human FoxP3 proteins. Newly raised modification-specific antibodies against acetylated K31 and K267 confirm acetylation of these residues in murine Tregs. Mutant Fo...

  18. 40 CFR 180.1089 - Poly-N-acetyl-D-glucosamine; exemption from the requirement of tolerance.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Poly-N-acetyl-D-glucosamine; exemption... FOOD Exemptions From Tolerances § 180.1089 Poly-N-acetyl-D-glucosamine; exemption from the requirement... biochemical nematicide poly-N-acetyl-D-glucosamine on a variety of agricultural crops....

  19. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Titinchi Salam JJ

    2012-06-01

    Full Text Available Abstract Background Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. Findings The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl3 equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms. Conclusions Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl3 complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism.

  20. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  1. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  2. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.

    Yun Chen

    Full Text Available As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.

  3. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  4. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.

    Eri Maria Sol

    Full Text Available Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3 by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.

  5. Walnut oil increases cholesterol efflux through inhibition of stearoyl CoA desaturase 1 in THP-1 macrophage-derived foam cells

    Gillies Peter J

    2011-08-01

    Full Text Available Abstract Background Walnuts significantly decrease total and low-density lipoprotein cholesterol in normo- and hypercholesterolemic individuals. No study to date has evaluated the effects of walnuts on cholesterol efflux, the initial step in reverse cholesterol transport, in macrophage-derived foam cells (MDFC. The present study was conducted to investigate the mechanisms by which walnut oil affects cholesterol efflux. Methods The extract of English walnuts (walnut oil was dissolved in DMSO and applied to cultured THP-1 MDFC cells (0.5 mg/mL. THP-1 MDFC also were treated with human sera (10%, v:v taken from subjects in a walnut feeding study. Cholesterol efflux was examined by liquid scintillation counting. Changes in gene expression were quantified by real time PCR. Results Walnut oil treatment significantly increased cholesterol efflux through decreasing the expression of the lipogenic enzyme stearoyl CoA desaturase 1 (SCD1 in MDFC. Alpha-linolenic acid (ALA, the major n-3 polyunsaturated fatty acids found in walnuts, recaptured SCD1 reduction in MDFC, a mechanism mediated through activation of nuclear receptor farnesoid-X-receptor (FXR. Postprandial serum treatment also increased cholesterol efflux in MDFC. When categorized by baseline C-reactive protein (CRP; cut point of 2 mg/L, subjects in the lower CRP sub-group benefited more from dietary intervention, including a more increase in cholesterol efflux, a greater reduction in SCD1, and a blunted postprandial lipemia. Conclusion In conclusion, walnut oil contains bioactive molecules that significantly improve cholesterol efflux in MDFC. However, the beneficial effects of walnut intake may be reduced by the presence of a pro-inflammatory state. Trial Registration ClinicalTrials.gov: NCT00938340

  6. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.

  7. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves

    We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions

  8. Influence of the nitrate concentration and source in the incorporation of 14CO2 by the RuBP-carboxylase from wheat (triticum aestivum) and maize (zea mays)

    The effect of the concentration and source of nitrogen in the culture media has been studied regarding its influence in the activity of the RuBP-carboxylase from wheat and maize during the first month of development. Wheat and maize has been chosen as plants representatives of two different types of CO2 assimilation: C3 and M- respectively. Plants have been grown in hydroponic media and under temperature, humidity and nutrient salts control. A negative effect of NH4 has been observed in the enzymatic activity of wheat seedlings, being this effect more remarkable as NH4 concentration increases and as long the time of treatment. In our experimental conditions the most favorable source of nitrogen has been N03NH4. The specific activity of the enzyme from wheat is about four times higher than in maize, even it decreases with time. This decreasing has not been observed in maize, with the exception of total absence of nitrogen in the media. We have not seen significant differences between the two photo periods which have been tested. Also, no differences have been found in the enzyme activities at the different NO3NH4 concentrations assayed, and it seems that RuBP-carboxylase metabolism is only affected in the case of absolute stress. (Author) 20 refs

  9. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  10. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [3H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  11. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    Park, C. Sehwan; Rehrauer, Hubert; Mansuy, Isabelle M.

    2013-01-01

    Background Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. Results Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates...

  12. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    Park, C. Sehwan; Rehrauer, Hubert; Mansuy, Isabelle M.

    2013-01-01

    BACKGROUND: Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. RESULTS: Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlat...

  13. Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs

    Yamagata, Tetsuya; Mitani, Kinuko; Oda, Hideaki; Suzuki, Takahiro; Honda, Hiroaki; Asai, Takashi; Maki, Kazuhiro; Nakamoto, Tetsuya; Hirai, Hisamaru

    2000-01-01

    Acetylation of a transcription factor has recently been shown to play a significant role in gene regulation. Here we show that GATA-3 is acetylated in T cells and that a mutation introduced into amino acids 305–307 (KRR-GATA3) creates local hypoacetylation in GATA-3. Remarkably, KRR-GATA3 possesses the most potent suppressive effect when compared with other mutants that are disrupted in putative acetylation targets. Expressing this mutant in peripheral T cells results in defective T-cell homi...

  14. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko;

    2011-01-01

    . With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification...... sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated...... that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently...

  15. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Lv, Lei; Li, Dong; Zhao, Di; Lin, Ruiting; Chu, Yajing; Zhang, Heng; Zha, Zhengyu; Liu, Ying; Li, Zi; Xu, Yanping; Wang, Gang; Huang, Yiran; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2016-01-01

    SUMMARY Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA. PMID:21700219

  16. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3'-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.;

    2012-01-01

    Background: Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3'-dimethylbiphenyl (3,3'-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and...... converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding s-complexes were studied by DFT calculations and the data indicated that mono-and diacetylation followed different mechanisms. Conclusions: Friedel-Crafts acetylation of 3...... derivatives that are of interest in cancer treatment. Findings: The effect of solvent and temperature on the selectivity of monoacetylation of 3,3'-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3'-dmbp was formed almost quantitatively in boiling 1...

  17. Blends of Poly (lactic acid) with Thermoplastic Acetylated Starch

    ZHANG Kun-yu; RAN Xiang-hai; ZHUANG Yu-gang; YAO Bin; DONG Li-song

    2009-01-01

    Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of T_g by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from 5% of neat PLA to 25% of the blend PLA/ATPS40. It was found that the cold crystallization behavior of PLA changed evidently by addition of ATPS. The cold crystallization temperature(T_(cc)) of each of PLA/ATPS blends was found to shift to a lower temperature and the width of exothermic peak became narrow compared with that of neat PLA. The thermogravimetry analy-sis(TGA) results showed that the peak of derivative weight for ATPS moved to higher temperature with increasing PLA content in PLA/ATPS blends. It can be concluded that PLA could increase the thermal stability of ATPS. The rheological measurement reveals the melt elasticity and viscosity of the blends decreased with the increased concentration of ATPS, which was favorable to the processing properties of PLA.

  18. Reference intervals for acetylated fetal hemoglobin in healthy newborns

    Renata Paleari

    2014-09-01

    Full Text Available The acetylated fetal hemoglobin (AcHbF derives from an enzyme-mediated post-translational modification occurring on the N-terminal glycine residues of γ-chains. At present, no established data are available on reference intervals for AcHbF in newborns. A total of 92 healthy infants, with gestational age between 37 and 41 weeks were selected for the establishment of AcHbF reference intervals. Blood samples were collected by heel pricking, when collecting routine neonatal screening, and the hemoglobin pattern was analyzed by high-performance liquid chromatography. AcHbF results were then normalized for HbF content in order to account for differences in hemoglobin switch. No difference was found in AcHbF values between genders (P=0.858. AcHbF results were as follow: 12.8±0.8% (mean±standard deviation, reference interval: 11.3-14.3%. This finding could facilitate further studies aimed to assess the possible use of AcHbF, for instance as a possible fetal metabolic biomarker during pregnancy.

  19. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  20. Experimental thermochemical study of 3-acetyl-2-methyl-5-phenylthiophene

    Ribeiro da Silva, Manuel A.V., E-mail: risilva@fc.up.p [Centro de Investigacao em Quimica, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Ana Filipa L.O.M. [Centro de Investigacao em Quimica, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2010-01-15

    The standard (p{sup 0}=0.1MPa) massic energy of combustion, in oxygen, of the crystalline 3-acetyl-2-methyl-5-phenylthiophene was measured, at T = 298.15 K, by rotating-bomb combustion calorimetry, from which the standard molar enthalpy of formation, in the condensed phase, was calculated as DELTA{sub f}H{sub m}{sup 0}(cr)=-(104.3+-3.1)kJ.mol{sup -1}. The corresponding standard molar enthalpy of sublimation, at T = 298.15 K, DELTA{sub cr}{sup g}H{sub m}{sup 0}=(108.9+-0.4)kJ.mol{sup -1}, was derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures of this compound, measured by the Knudsen effusion mass-loss technique. From the results presented above, the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived, DELTA{sub f}H{sub m}{sup 0}(g)=(4.6+-3.1)kJ.mol{sup -1}. This value, in conjunction with the literature values of the experimental enthalpies of formation of thiophene, 2-methylthiophene, and 3-acetylthiophene, was used to predict the enthalpic increment due to the introduction of a phenyl group in the position 2- of the thiophene ring. The calculated increment was compared with the corresponding ones in benzene and pyridine derivatives.

  1. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D.; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  2. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  3. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change

    Prothrombin fragment 1 (prothrombin residues 1-156) contains two acetylation sites that are protected from derivatization by calcium. The first site was protected by only calcium while the second site was protected by magnesium as well. To identify this second acetylation site, fragment 1 was first acetylated with unlabeled reagent in the presence of magnesium. Metal ions were removed, and the protein was acetylated with radiolabeled reagent. The incorporated radiolabel was stable over long periods of time and at acidic or basic pH as long as elevated temperatures were avoided. The radiolabel was removed by treatment of the protein at pH 10 and 50 0C or with 0.2 M hydroxylamine at 50 0C for at least 30 min. Proteolytic degradation of the protein showed that the radioactivity appeared in a tryptic peptide corresponding to residues 94-111 of prothrombin. Amino acid sequence analysis revealed that the radiolabel was associated with an unextracted sequence product. The major radiolabeled product contained Asn101-Ser102 along with the expected chitobiose attached to Asn-101. NMR analysis revealed the presence of three acetate groups which would correspond to two from the chitobiose plus the incorporated acetate residue. Mass spectral analysis showed the correct mass for this glycopeptide plus a single added acetyl group. Amide 1H NMR analysis showed only three amide protons rather than the anticipated four. On the basis of these several observations, it is postulated that the site of acetylation is the β-amide nitrogen of Asn-101. Consequently, these studies showed an unusual chemical reactivity in prothrombin fragment 1. They further show that metal ion binding to prothrombin fragment 1 and subsequent protein fluorescence quenching involve sites ion the kringle region of the protein

  4. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  5. The percutaneous absorption of 35S-acetyl-L-methionine and L-serine in rabbit

    The authors had reported that L-cysteine probably was formed from acetyl-L-methionine and L-serine through cystathionine pathway by the skin enzyme of rabbit, and the solution composed of acetyl-L-methionine and L-serine exhibited the effectiveness to the hair growth in rabbit. This report shows that, by the application of 35S-acetyl-L-methionine and L-serine to the skin of rabbit and in vitro analysis of the metabolites of 35S-compounds, 35S-acetyl-L-methionine was absorbed into the hair tissues for many hours, and half 35S-L-cystine was formed in vitro and in vivo. When total amount of 35S in the hair was measured, the radiochemical activities were clearly shown as almost 35S-L-cystine. (auth.)

  6. Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast

    Kagami, Ayano; Sakuno, Takeshi; Yamagishi, Yuya; Ishiguro, Tadashi; Tsukahara, Tatsuya; Shirahige, Katsuhiko; Tanaka, Koichi; Watanabe, Yoshinori

    2011-01-01

    This study shows that multiple acetylations are crucial for establishing and maintaining core centromere cohesion in meiosis. Eso1 establishes it during S phase, whereas Moa1 maintains cohesion after S phase.

  7. Physiology: Kinetics of Acetyl Coenzyme A: Arylamine N-Acetyltransferase from Human Cumulus Cells

    Chang, Chi-Chen; Hsieh, Yao-Yuan; CHUNG, JING-GUNG; Tsai, Horng-Der; Tsai, Chang-Hai

    2001-01-01

    Purpose:N-acetyltransferase (NAT) activity is involved in the detoxification of exogenous amines. We aimed to evaluate the kinetics of acetyl coenzyme A (AcCoA): arylamine NAT for human cumulus cells.

  8. The Synthesis of Some Novel N-[a-(Isoflavone-7-O-)Acetyl ] Amino Acid Derivatives

    2000-01-01

    A series of novel N-[(α)-(isoflavone-7-O-)acetyl] amino acid methyl esters were prepared from the efficient and regioselective alkylation of isoflavones with chloroacetyl amino acid derivatives under mild condition.

  9. Preparation and structural characterization of O-acetyl agarose with low degree of substitution

    Rosangela B. Garcia

    2000-09-01

    Full Text Available Among the biodegradable polymers, the polysaccharides have been found to be promising carriers for bioactive molecules. From a general standpoint, they present several reactive groups, such as hydroxyl, carboxyl and amine, that can be modified in a number of ways, giving rise to suitable devices for controlled release. In this paper, agarose was submitted to O-acetylation reactions under heterogeneous conditions, using acetic anhydride and pyridine, aiming to observe the effect of acetyl groups on the agarose properties. The products were characterized by Infrared and ¹H NMR spectroscopies. In the range of average acetylation degrees (DA 0.07-0.48, the polymers presented partial solubility in boiling water and in common organic solvents. The ¹H NMR spectra presented evidences of non-homogeneous acetyl group distribution along the chains, as concluded from the solubility of only one of the fractions with DA<0.09, in boiling water .

  10. Density Functional Theory Study on the Histidine-assisted Mechanism of Arylamine N-Acetyltransferase Acetylation

    QIAO Qing-An; GAO Shan-Min; JIN Yue-Qing; CHEN Xin; SUN Xiao-Min; YANG Chuan-Lu

    2008-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc.In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products.When using histidine to mediate the acetylation process, these energies will drop in the 15~45 kJ/mol range.If the histidine residue is protonated, the corresponding energies will be decreased by about 35~87 kJ/mol.The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.

  11. Data for global lysine-acetylation analysis in rice (Oryza sativa).

    Xiong, Yehui; Zhang, Kai; Cheng, Zhongyi; Wang, Guo-Liang; Liu, Wende

    2016-06-01

    Rice is one of the most important crops for human consumption and is a staple food for over half of the world׳s population (Yu et al., 2002) [1]. A systematic identification of the lysine acetylome was performed by our research (Xiong et al., 2016) [2]. Rice plant samples were collected from 5 weeks old seedlings (Oryza sativa, Nipponbare). After the trypsin digestion and immunoaffinity precipitation, LC-MS/MS approach was used to identify acetylated peptides. After the collected MS/MS data procession and GO annotation, the InterProScan was used to annotate protein domain. Subcellular localization of the identified acetylated proteins was predicted by WoLF PSORT. The KEGG pathway database was used to annotate identified acetylated protein interactions, reactions, and relations. The data, supplied in this article, are related to "A comprehensive catalog of the lysine-acetylation targets in rice (O. sativa) based on proteomic analyses" by Xiong et al. (2016) [2]. PMID:26977447

  12. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Titinchi Salam JJ; Kamounah Fadhil S; Abbo Hanna S; Hammerich Ole

    2012-01-01

    Abstract Background Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. Findings The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was st...

  13. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors

    Subramanian, Chitra; Opipari, Anthony W.; Bian, Xin; Castle, Valerie P; Kwok, Roland P S

    2005-01-01

    Histone deacetylase inhibitors (HDACIs) are therapeutic drugs that inhibit deacetylase activity, thereby increasing acetylation of many proteins, including histones. HDACIs have antineoplastic effects in preclinical and clinical trials and are being considered for cancers with unmet therapeutic need, including neuroblastoma (NB). Uncertainty of how HDACI-induced protein acetylation leads to cell death, however, makes it difficult to determine which tumors are likely to be responsive to these ...

  14. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl

    Pandita Tej K

    2011-07-01

    Full Text Available Abstract Background The proto-oncogene, c-Abl encodes a ubiquitously expressed tyrosine kinase that critically governs the cell death response induced by genotoxic agents such as ionizing radiation and cisplatin. The catalytic function of Abl, which is essential for executing DNA damage response (DDR, is normally tightly regulated but upregulated several folds upon IR exposure due to ATM-mediated phosphorylation on S465. However, the mechanism/s leading to activation of Abl's apoptotic activity is currently unknown. Results We investigated the role of acetyl modification in regulating apoptotic activity of Abl and the results showed that DNA strand break-inducing agents, ionizing radiation and bleomycin induced Abl acetylation. Using mass spectrophotometry and site-specific acetyl antibody, we identified Abl K921, located in the DNA binding domain, and conforming to one of the lysine residue in the consensus acetylation motif (KXXK--X3-5--SGS is acetylated following DNA damage. We further observed that the S465 phosphorylated Abl is acetyl modified during DNA damage. Signifying the modification, cells expressing the non acetylatable K921R mutant displayed attenuated apoptosis compared to wild-type in response to IR or bleomycin treatment. WT-Abl induced apoptosis irrespective of new protein synthesis. Furthermore, upon γ-irradiation K921R-Abl displayed reduced chromatin binding compared to wild type. Finally, loss of Abl K921 acetylation in Tip60-knocked down cells and co-precipitation of Abl with Tip60 in DNA damaged cells identified Tip60 as an Abl acetylase. Conclusion Collective data showed that DNA damage-induced K921 Abl acetylation, mediated by Tip60, stimulates transcriptional-independent apoptotic activity and chromatin-associative property thereby defining a new regulatory mechanism governing Abl's DDR function.

  15. Physical and Functional HAT/HDAC Interplay Regulates Protein Acetylation Balance

    Alessia Peserico; Cristiano Simone

    2011-01-01

    The balance between protein acetylation and deacetylation controls several physiological and pathological cellular processes, and the enzymes involved in the maintenance of this equilibrium—acetyltransferases (HATs) and deacetylases (HDACs)—have been widely studied. Presently, the evidences obtained in this field suggest that the dynamic acetylation equilibrium is mostly maintained through the physical and functional interplay between HAT and HDAC activities. This model overcomes the classica...

  16. Identification and characterization of genes involved in Arabidopsis thaliana cell wall acetylation

    de Souza, Amancio Jose

    2014-01-01

    Most non-cellulosic plant cell wall polysaccharides including the hemicellulose xyloglucan and the pectic polysaccharides can be O-acetylated. This feature has direct significance in the use of these polymers in the food and biofuel industry. For example, increased pectin acetylation can reduce its gelling abilities and is hence detrimental in its application as a food thickener or emulsifier. In general, plant biomass with wall polymers with high acetate content can negatively influence biom...

  17. Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice

    Gunale Bhagawat K; Prasanna C G; Subbanna Prasanna; Tyagi Manoj G

    2007-01-01

    Abstract Cyclin-dependent kinase 5 (CDK-5) appears to play a significant role in peripheral nerve regeneration as CDK-5 inhibition retards nerve regeneration following nerve crush. Anti-inflammatory drug acetyl salicylic acid elevates CDK-5 and reduces ischemia – reperfusion injury in cultured neurons. In this study we have evaluated the effect of acetyl salicylic acid on functional recovery following sciatic nerve crush in mice. Eighteen Swiss albino mice underwent unilateral sciatic nerve c...

  18. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells.

    Markowetz, Florian; Mulder, Klaas W; Airoldi, Edoardo M; Lemischka, Ihor R; Troyanskaya, Olga G

    2010-01-01

    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate. PMID:21187909

  19. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  20. Hair Analysis for Determination of Isoniazid Concentrations and Acetylator Phenotype during Antituberculous Treatment

    Michael Eisenhut; Detlef Thieme; Dagmar Schmid; Sybille Fieseler; Hans Sachs

    2012-01-01

    Background. Analysis of isoniazid (INH) uptake has been based on measurement of plasma concentrations providing a short-term and potentially biased view. Objectives. To establish hair analysis as a tool to measure long-term uptake of INH and to assess whether acetylator phenotype in hair reflects N-acetyltransferase-2 (NAT2) genotype. Design and Methods. INH and acetyl-INH concentrations in hair were determined in patients on INH treatment for M. tuberculosis infection using high pressure liq...

  1. Micronutrients, N-acetyl cysteine, probiotics and prebiotics, a review of effectiveness in reducing HIV progression

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics...

  2. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    Ruben Hummelen; Jaimie Hemsworth; Gregor Reid

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebio...

  3. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, A Review of Effectiveness in Reducing HIV Progression

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics...

  4. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Matthew Johnson

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  5. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.

    2012-01-01

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of ga...

  6. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid

    Podbielska, Maria; Dasgupta, Somsankar; Levery, Steven B;

    2010-01-01

    Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous......GL-II from Mycoplasma fermentans. The cross-reactivity of highly acetylated GalCer with microbial acyl-glycolipid raises the possibility that myelin-O-acetyl-cerebrosides, bacterial infection, and neurological disease are linked....

  7. Application of the MIDAS approach for analysis of lysine acetylation sites.

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation. PMID:23381851

  8. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  9. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  10. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets

  11. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    Todd J Cohen

    Full Text Available Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD. Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  12. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression

    Wan Junhu; Chin Y Eugene; Zhang Hongquan; Zhan Jun; Li Shuai; Ma Ji; Xu Weizhi; Liu Chang; Xue Xiaowei; Xie Yuping; Fang Weigang

    2015-01-01

    Enhancer of zeste homolog 2 ( EZH2 ) is a key epigenetic regulator that catalyzes the trimethyla-tion of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associat-ed factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 ( PRC2 ) . Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients pre-dicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acety-lation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.

  13. Histone H3 globular domain acetylation identifies a new class of enhancers.

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-06-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered. PMID:27089178

  14. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine*

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2009-01-01

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked ...

  15. The effect of N-acetyl cysteine on laryngopharyngeal reflux.

    Payman Dabirmoghaddam

    2013-11-01

    Full Text Available Laryngopharyngeal reflux (LPR is a variant of gastroesophageal reflux disease (GERD in which the stomach contents go up into the pharynx and then down into the larynx. LPR causes a wide spectrum of manifestations mainly related to the upper and the lower respiratory system such as laryngitis, asthma, chronic obstructive pulmonary disease, cough, hoarseness, postnasal drip disease, sinusitis, otitis media, recurrent pneumonia, laryngeal cancer and etc. The object of this study was to examine the effect of N-acetyl Cysteine (NAC with and without Omeprazole on laryngitis and LPR. Ninety patients with laryngitis or its symptoms were referred and randomly assigned into three groups. The first group was treated by Omeprazole and NAC. The second group was treated by Omeprazole and placebo and the last group was treated by NAC and placebo. Duration of treatment was 3 months and all patients were evaluated at the beginning of study, one month and three month after treatment of sign and symptoms, based on reflux symptom index (RSI and reflex finding score (RFS. Based on the results of this study, despite therapeutic efficacy of all treatment protocols, the RSI before and after 3 months treatment had significant difference in (NAS+ Omeprazole and (Omeprazole+ placebo group (P<0.001 in the first group, P<0.001 in the second group and P=0.35 in the third group. Whereas RFS before and after 3 month treatment had significant difference in all groups. (P<0.001 in each group in comparison with itself but this results had not significant difference after 1 month treatment. Our results showed that the combination therapy with Omeprazole and NAC treatment had the most effect on both subjective and objective questionnaire at least after 3 months treatment. Based on the results of the present study, it seems that the use objective tools are more accurate than subjective tools in evaluation of therapeutic effects in patients with GERD-related laryngitis.

  16. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  17. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  18. Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production.

    Fu, Ge-Yi; Lu, Yi; Chi, Zhe; Liu, Guang-Lei; Zhao, Shou-Feng; Jiang, Hong; Chi, Zhen-Ming

    2016-02-01

    In this study, a pyruvate carboxylase gene (PYC1) from a marine fungus Penicillium rubens I607 was cloned and characterized. ORF of the gene (accession number: KM397349.1) had 3534 bp encoding 1177 amino acids with a molecular weight of 127.531 kDa and a PI of 6.20. The promoter of the gene was located at -1200 bp and contained a TATAA box, several CAAT boxes and a sequence 5'-SYGGRG-3'. The PYC1 deduced from the gene had no signal peptide, was a homotetramer (α4), and had the four functional domains. After expression of the PYC1 gene from the marine fungus in the marine-derived yeast Yarrowia lipolytica SWJ-1b, the transformant PR32 obtained had much higher specific pyruvate carboxylase activity (0.53 U/mg) than Y. lipolytica SWJ-1b (0.07 U/mg), and the PYC1 gene expression (133.8%) and citric acid production (70.2 g/l) by the transformant PR32 were also greatly enhanced compared to those (100 % and 27.3 g/l) by Y. lipolytica SWJ-1b. When glucose concentration in the medium was 60.0 g/l, citric acid (CA) concentration formed by the transformant PR32 was 36.1 g/l, leading to conversion of 62.1% of glucose into CA. During a 10-l fed-batch fermentation, the final concentration of CA was 111.1 ± 1.3 g/l, the yield was 0.93 g/g, the productivity was 0.46 g/l/h, and only 1.72 g/l reducing sugar was left in the fermented medium within 240 h. HPLC analysis showed that most of the fermentation products were CA. However, minor malic acid and other unknown products also existed in the culture. PMID:26470708

  19. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. PMID:27194739

  20. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  1. Catalytic and glycan-binding abilities of ppGalNAc-T2 are regulated by acetylation

    Zlocowski, Natacha; Sendra, Victor G; Lorenz, Virginia; Villarreal, Marcos A; Jorge, Alberto; Núñez, Yolanda; Bennett, Eric P; Clausen, Henrik; Nores, Gustavo A; Irazoqui, Fernando J

    2011-01-01

    ); the first five are located in the catalytic domain. Specific glycosyltransferase activity of ppGalNAc-T2 was reduced 95% by acetylation. The last two amino acids, K521 and S529, are located in the lectin domain, and their acetylation results in alteration of the carbohydrate-binding ability of pp...... activity (catalytic capacity and glycan-binding ability) of ppGalNAc-T2 is regulated by acetylation....

  2. N-Acetylation of L-aspartate in the nervous system: differential distribution of a specific enzyme

    Truckenmiller, M.E.; Namboodiri, M.A.; Brownstein, M.J.; Neale, J.H.

    1985-11-01

    L-Aspartate N-acetyltransferase, a nervous system enzyme that mediates the synthesis of N-acetyl-L-aspartic acid, has been characterized. In the presence of acetyl-CoA, L-aspartate was acetylated 10-fold more efficiently than L-glutamate, and the acetylation of aspartylglutamate was not detectable. Within the nervous system, a 10-fold variation in the enzyme activity was observed, with the brainstem and spinal cord exhibiting the highest activity and retina the lowest detectable activity. No enzyme activity was detected in pituitary, heart, liver, or kidney. The enzyme activity was found to be membrane-associated and was solubilized by treatment with Triton X-100.

  3. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties - clinical study

    Kassandra Azevedo Tadini

    2015-12-01

    Full Text Available abstract Acetyl hexapeptide-3 has been used in anti-aging topical formulations aimed at improving skin appearance. However, few basic studies address its effects on epidermis and dermis, when vehiculated in topical formulations. Thus, the objective of this study was to determine the clinical efficacy of acetyl hexapeptide-3 using biophysical techniques. For this purpose, formulations with and without acetyl hexapeptide-3 were applied to the ventral forearm and the face area of forty female volunteers. Skin conditions were evaluated after 2 and 4-week long daily applications, by analyzing the stratum corneum water content and the skin mechanical properties, using three instruments, the Corneometer(r CM 825, CutometerSEM 575 and ReviscometerRV600. All formulations tested increased the stratum corneum water content in the face region, which remained constant until the end of the study. In contrast, only formulations containing acetyl hexapeptide-3 exhibit a significant effect on mechanical properties, by decreasing the anisotropy of the face skin. No significant effects were observed in viscoelasticity parameters. In conclusion, the effects of acetyl hexapeptide-3 on the anisotropy of face skin characterize the compound as an effective ingredient for improving conditions of the cutaneous tissue, when used in anti-aging cosmetic formulations.

  4. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  5. NUCLEOPHOSMIN/B23 NEGATIVELY REGULATES GCN5-DEPENDENT HISTONE ACETYLATION AND TRANSACTIVATION

    Zou, Yonglong [ORNL; Wu, Jun [ORNL; Giannone, Richard J [ORNL; Boucher, Lorrie [Samuel Lunenfeld Res Inst., Canada; Du, Hansen [National Institute on Aging, Baltimore; Huang, Ying [ORNL; Johnson, Dabney K [ORNL; Liu, Yie [National Institute on Aging, Baltimore; Wang, Yisong [ORNL

    2007-01-01

    Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. In vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr199 enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation.

  6. Acetylation of C/EBPε is a prerequisite for terminal neutrophil differentiation.

    Bartels, Marije; Govers, Anita M; Fleskens, Veerle; Lourenço, Ana Rita; Pals, Cornelieke E; Vervoort, Stephin J; van Gent, Rogier; Brenkman, Arjan B; Bierings, Marc B; Ackerman, Steven J; van Loosdregt, Jorg; Coffer, Paul J

    2015-03-12

    C/EBPε, a member of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, is exclusively expressed in myeloid cells and regulates transition from the promyelocytic stage to the myelocytic stage of neutrophil development, being indispensable for secondary and tertiary granule formation. Knowledge concerning the functional role of C/EBPε posttranslational modifications is limited to studies concerning phosphorylation and sumoylation. In the current study, using ectopic expression and ex vivo differentiation of CD34(+) hematopoietic progenitor cells, we demonstrate that C/EBPε is acetylated, which was confirmed by mass spectrometry analysis, identifying 4 acetylated lysines in 3 distinct functional domains. Regulation of C/EBPε acetylation levels by the p300 acetyltransferase and the sirtuin 1 deacetylase controls transcriptional activity, which can at least in part be explained by modulation of DNA binding. During neutrophil development, acetylation of lysines 121 and 198 were found to be crucial for terminal neutrophil differentiation and the expression of neutrophil-specific granule proteins, including lactoferrin and collagenase. Taken together, our data illustrate a critical role for acetylation in the functional regulation of C/EBPε activity during terminal neutrophil development. PMID:25568349

  7. Characterization of acetylation of Saccharomyces cerevisiae H2B by mass spectrometry

    Zhang, Kangling

    2008-11-01

    Following the identification of histone H3 modifications in Saccharomyces cerevisiae [K. Zhang, Int. J. Mass Spectrom. 269 (2008) 101-111], here, we report a detailed characterization of post-translational modifications by LC/MS/MS analysis of tryptic and Glu-C digests of H2B proteins isolated from S. cerevisiae. We show that both H2B.1 and H2B.2 are acetylated at K6, K11, K16, K21 and K22 while H2B.2 has an additional acetylation site at K3. All the acetylation sites of yeast H2B except K3 of H2B.2 are located at the same positions on aligned protein sequences of Arabidopsis H2B variants that were reported previously to be acetylated at K6, K11, K27, K32, K38 and K39. A unique acetylation motif AEK is observed in the H2B variants of these two species, indicating a plant/yeast H2B specific acetyltransferase may exist.

  8. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. PMID:27190149

  9. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with [14C]oxaloacetate by citrate synthase to give [14C]-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976

  10. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  11. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  12. Proteomic analysis reveals differentially regulated protein acetylation in human amyotrophic lateral sclerosis spinal cord.

    Dong Liu

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS identifies glial fibrillary acidic protein (GFAP as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS.

  13. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  14. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    Jachen A Solinger

    2010-01-01

    Full Text Available Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3 and in a scaffold subunit (Elp1 have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  15. The chromosomal protein HMGBI inhibits DNA replication in vitro. The role of post-synthetic acetylation

    The effect of HMGB1 protein on the replication of closed circular plasmid DNA in cell free extract have been studied using parental form of the protein, post-synthetically acetylated HMGB1 and HMGB1 lacking its acidic C-terminal tail. We have shown that HMGB1 protein inhibits DNA replication and that this effect is eliminated upon either acetylation of the protein or removal of the acidic C-terminal domain. An explanation of these findings suggests interactions of HMGB1 with a protein(s) of the replication complex resulting in reduction of its functional efficiency. Acetylation of HMGB1 affects these interactions in a way that restores the initial replication capacity of the system. The eventual protein-protein interactions are supposed to proceed via the C-terminal domain of HMGB1. (authors)

  16. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum.

    Gabriella M A Forte

    2011-05-01

    Full Text Available Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.

  17. Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    David D’Melo

    2012-07-01

    Full Text Available Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation.

  18. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics.

    Kaypee, Stephanie; Sudarshan, Deepthi; Shanmugam, Muthu K; Mukherjee, Debanjan; Sethi, Gautam; Kundu, Tapas K

    2016-06-01

    The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment. PMID:26808162

  19. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences.

    Kramer, Debora L; Diegelman, Paula; Jell, Jason; Vujcic, Slavoljub; Merali, Salim; Porter, Carl W

    2008-02-15

    Recent studies suggest that overexpression of the polyamine-acetylating enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) significantly increases metabolic flux through the polyamine pathway. The concept derives from the observation that SSAT-induced acetylation of polyamines gives rise to a compensatory increase in biosynthesis and presumably to increased flow through the pathway. Despite the strength of this deduction, the existence of heightened polyamine flux has not yet been experimentally demonstrated. Here, we use the artificial polyamine precursor 4-fluoro-ornithine to measure polyamine flux by tracking fluorine unit permeation of polyamine pools in human prostate carcinoma LNCaP cells. Conditional overexpression of SSAT was accompanied by a massive increase in intracellular and extracellular acetylated spermidine and by a 6-20-fold increase in biosynthetic enzyme activities. In the presence of 300 microM 4-fluoro-ornithine, SSAT overexpression led to the sequential appearance of fluorinated putrescine, spermidine, acetylated spermidine, and spermine. As fluorinated polyamines increased, endogenous polyamines decreased, so that the total polyamine pool size remained relatively constant. At 24 h, 56% of the spermine pool in the induced SSAT cells was fluorine-labeled compared with only 12% in uninduced cells. Thus, SSAT induction increased metabolic flux by approximately 5-fold. Flux could be interrupted by inhibition of polyamine biosynthesis but not by inhibition of polyamine oxidation. Overall, the findings are consistent with a paradigm whereby flux is initiated by SSAT acetylation of spermine and particularly spermidine followed by a marked increase in key biosynthetic enzymes. The latter sustains the flux cycle by providing a constant supply of polyamines for subsequent acetylation by SSAT. The broader metabolic implications of this futile metabolic cycling are discussed in detail. PMID:18089555

  20. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration

    Albanese Alberto

    2010-03-01

    Full Text Available Abstract Background An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN, the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT p300. Results In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273 are targeted by GCN5 acetylation, three of which (K264, K266, and K273 are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258 does not affect this process. Conclusions The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.

  1. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  2. Cigarette Smoking, N-Acetyltransferase 2 Acetylation Status, and Bladder Cancer Risk

    Marcus, P.M.; Hayes, R.B.; Vineis, P.;

    2000-01-01

    Tobacco use is an established cause of bladder cancer. The ability to detoxify aromatic amines, which are present in tobacco and are potent bladder carcinogens, is compromised in persons with the N-acetyltransferase 2 slow acetylation polymorphism. The relationship of cigarette smoking with bladder...... interaction between smoking and N-acetyltransferase 2 slow acetylation (OR, 1.3; 95% confidence interval, 1.0-1.6) that was somewhat stronger when analyses were restricted to studies conducted in Europe (OR, 1.5; confidence interval, 1.1-1.9), a pooling that included nearly 80% of the collected data. Using...

  3. Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-Depleted Murine Embryonic Stem Cells

    Airoldi, Edoardo Maria; Markowetz, Florian; Mulder, Klaas; Lemischka, Ihor; Troyanskaya, Olga

    2010-01-01

    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation p...

  4. Radioimmunoassay for cyclic GMP with femtomole sensitivity using tritiated label and acetylated ligands

    An economical assay using [3H]cyclic GMP is described which will be of use to those laboratories either restricted from using γ isotopes or who do not possess gamma-counting facilities. In this assay, label, standards, and samples are acetylated, and interacted with an antibody raised against the succinyl derivative of cyclic GMP prepared in the usual way. Using this assay procedure 20 fmol of cyclic GMP are detectable. The optimal assay conditions were calculated on theoretical grounds. The use of acetylated ligands might also be applied to the assay of cyclic AMP

  5. Histone Acetyl Transferase (HAT) HBO1 and JADE1 in Epithelial Cell Regeneration

    Havasi, Andrea; Haegele, Joseph A.; Gall, Jonathan M.; Blackmon, Sherry; Ichimura, Takaharu; Bonegio, Ramon G.; Panchenko, Maria V.

    2013-01-01

    HBO1 acetylates lysine residues of histones and is involved in DNA replication and gene transcription. Two isoforms of JADE1, JADE1S and JADE1L, bind HBO1 and promote acetylation of histones in chromatin context. We characterized the role of JADE1-HBO1 complexes in vitro and in vivo during epithelial cell replication. Down-regulation of JADE1 by siRNA diminished the rate of DNA synthesis in cultured cells, decreased endogenous HBO1 protein expression, and prevented chromatin recruitment of re...

  6. Hydrolysis of Wheat Arabinoxylan by Two Acetyl Xylan Esterases from Chaetomium thermophilum

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard;

    2015-01-01

    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has...... xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass...

  7. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation

    Shaw, Bryan F; Schneider, Gregory F.; Bilgiçer, Başar; Kaufman, George K.; Neveu, John M.; Lane, William S.; Whitelegge, Julian P.; Whitesides, George M.

    2008-01-01

    This paper reports that the acetylation of lysine ε-NH3 + groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the ...

  8. Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

    A V Shanbhag; T V Venkatesha; R A Prabhu; B M Praveen

    2011-06-01

    The corrosion inhibition characteristics of acetyl coumarine (AC), bromo acetyl coumarine (BAC) and thiazole derivatives (BTMQ and BTCQ) on the corrosion of zinc in 0.1 M HCl solution were investigated by weight loss, potentiodynamic polarization and impedance techniques. The inhibition efficiency increased with increase in inhibitor concentration upto 5 × 10-4 M, then gave almost same inhibition efficiency. The polarizationmeasurements indicated the mixed nature of inhibitors. The adsorption of compounds obeyed Langmuir’s adsorption isotherm. The thermodynamic functions for adsorption processes were evaluated.

  9. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-l-glutamate synthase/kinase with and without a His tag bound to N-acetyl-l-glutamate

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-l-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-l-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively.

  10. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  11. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of [3H]acetyl-CoA in the assay using [3H]acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-[3H]acetylarylamine after separation from [3H]acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase

  12. NON-DEGRADATIVE DISSOLUTION AND ACETYLATION OF BALL-MILLED PLANT CELL WALLS; HIGH-RESOLUTION SOLUTION-STATE NMR

    We describe two solvent systems for fully dissolving, and optionally derivatizing, finely ground plant cell wall material at room temperature: dimethylsulfoxide and tetrabutylammonium fluoride or N-methylimidazole. In situ acetylation produces acetylated cell walls that are fully soluble in CDCl3. L...

  13. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    L. López-Contreras

    2013-01-01

    Full Text Available Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  14. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  15. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation

    Weinert, Brian T; Schölz, Christian; Wagner, Sebastian A;

    2013-01-01

    Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), hu...

  16. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    Schrier, B.P.; Lichtendonk, W.J.; Witjes, J.A.

    2002-01-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a

  17. Acetylation regulates WRN catalytic activities and affects base excision DNA repair

    Muftuoglu, Meltem; Kusumoto, Rika; Speina, Elzbieta;

    2008-01-01

    The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone...... acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription....

  18. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    -cysteine. The purified enzyme did not catalyse the formation of L-homocysteine from O-acetyl-L-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyI-L-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold...

  19. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation.

    Das, Chandrima; Roy, Siddhartha; Namjoshi, Sarita; Malarkey, Christopher S; Jones, David N M; Kutateladze, Tatiana G; Churchill, Mair E A; Tyler, Jessica K

    2014-03-25

    The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP. PMID:24616510

  20. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T; Kumar, Amit; Kim, Hyun-Seok; Deng, Chu-Xia; Choudhary, Chuna Ram

    2012-01-01

    KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...

  1. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Biswas, Arunima; Pasquel, Danielle [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Tyagi, Rakesh Kumar [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Mani, Sridhar, E-mail: sridhar.mani@einstein.yu.edu [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  2. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, info

  3. 2-acetyl-1-pyrroline - key aroma compound in Mediterranean dried sausages

    Stahnke, Marie Louise Heller

    2000-01-01

    Southern types were attributed to a burned coffee odour from smoke in the smoked sausages and a popcorn note in the Mediterranean products covered with mould. The two compounds were 2-furfurylthiol and 2-acetyl-1-pyrroline, respectively. An analysis of five dried, moulded sausages showed that the surface...

  4. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  5. Ficolins and FIBCD1: Soluble and membrane bound pattern recognition molecules with acetyl group selectivity

    Thomsen, Theresa; Schlosser, Anders; Holmskov, Uffe;

    2011-01-01

    A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized......D-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands....

  6. Effect of acetyl-SDKP, an inhibitor of hematopoiesis, in myelosuppressed animals

    The hemoregulatory tetrapeptide Acetyl-SDKP could be used as a myeloprotector in cancer chemotherapy as well as in radiobiology. It improves the survival rate in lethally irradiated rats and stimulates the leucocyte recovery in 1-β-D-arabino-furanosylcytosine treated cynomolgus monkeys

  7. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  8. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, A Review of Effectiveness in Reducing HIV Progression

    R.B.S. Hummelen (Ruben); J. Hemsworth (Jaimie); G.K. Reid (Gregor)

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical t

  9. Urinary excretion of N-acetyl-beta-d-glucosaminidase in children.

    Osborne, J.

    1980-01-01

    The normal range for the urinary N-acetyl-beta-D-glucosaminidase/creatinine ratio was determined in 82 children. The range was found to vary with age, and the distribution was found to be logarithmic. This test should help to detect renal tubular disease in children; it gave abnormal results in some of these children.

  10. Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans

    Xu, C.; Pranovich, A.; Hemmimg, J.; Holmbom, B.; Albrecht, S.A.; Schols, H.A.; Willfor, S.

    2009-01-01

    Water-soluble native O-acetyl galactoglucomannan (GGM) from spruce is a polysaccharide that can be produced in an industrial scale. To develop GGM applications, information is needed on its stability, particularly under acidic conditions. Therefore, acid hydrolysis of spruce GGM was investigated at

  11. Hydrolysis of wheat B-starch and characterisation of acetylated maltodextrin

    Smrčková, P.; Horský, Jiří; Šárka, E.; Koláček, J.; Netopilík, Miloš; Walterová, Zuzana; Kruliš, Zdeněk; Synytsya, A.; Hrušková, K.

    2013-01-01

    Roč. 98, č. 1 (2013), s. 43-49. ISSN 0144-8617 R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : wheat B-starch * α-amylase * acetylated maltodextrin Subject RIV: JI - Composite Materials Impact factor: 3.916, year: 2013

  12. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  13. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Dušková, Eva; Hnilicová, Jarmila; Staněk, David

    2014-01-01

    Roč. 11, č. 7 (2014), s. 865-874. ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : alternative splicing * fibronectin * p300 * histone acetylation * promoter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.974, year: 2014

  14. The in situ distribution of glycoprotein-bound 4-O-Acetylated sialic acids in vertebrates.

    Aamelfot, Maria; Dale, Ole Bendik; Weli, Simon Chioma; Koppang, Erling Olaf; Falk, Knut

    2014-05-01

    Sialic acids are located at the terminal branches of the cell glycocalyx and secreted glycan molecules. O-Acetylation is an important modification of the sialic acids, however very few studies have demonstrated the in situ distribution of the O-Acetylated sialic acids. Here the distribution of glycoprotein bound 4-O-Acetylated sialic acids (4-O-Ac sias) in vertebrates was determined using a novel virus histochemistry assay. The 4-O-Ac sias were found in the circulatory system, i.e. on the surface of endothelial cells and RBCs, of several vertebrate species, though most frequently in the cartilaginous fish (class Chondrichthyes) and the bony fish (class Osteichthyes). The O-Acetylated sialic acid was detected in 64 % of the examined fish species. Even though the sialic acid was found less commonly in higher vertebrates, it was found at the same location in the positive species. The general significance of this endothelial labelling pattern distribution is discussed. The seemingly conserved local position through the evolution of the vertebrates, suggests an evolutionary advantage of this sialic acid modification. PMID:24833039

  15. Patterns of histone acetylation as targets for novel therapeutic approaches in neurological diseases

    Ebrahimi, Azadeh

    2013-01-01

    Neurological diseases, in particular brain tumors and neurodegenerative disorders, cause significant socio-economic burdens on societies. Exploring epigenetic mechanisms in neurological disorders in recent decades has been an emerging tool for describing the pathogenesis of neurological diseases as well as developing new therapeutics. Global histone acetylation is an epigenetic entity whose alternating patterns in various neurological diseases have recently raised special attention concer...

  16. Nvar-epsilon-acetyl-β-lysine: An osmolyte synthesized by mothanogenic archaebacteria

    Methanosarcina thermophila, a nonmarine methanogenic archaebacterium, can grow in a range of saline concentrations. At less than 0.4 M NaCl, Ms. thermophila accumulated glutamate in response to increasing osmotic stress. At greater than 0.4 M NaCl, this organism synthesized a modified β-amino acid that was identified as Nvar-epsilon-acetyl-β-lysine by NMR spectroscopy and ion-exchange HPLC. This β-amino acid derivative accumulated to high intracellular concentrations (up to 0.6 M) in Ms. thermophila and in another methanogen examined - Methanogenium cariaci, a marine species. The compound has features that are characteristic of a compatible solute: it is neutrally charged at physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological compatible solute, Nvar-epsilon-acetyl-β-lysine synthesis was repressed and glycine betaine was accumulated. Nvar-epsilon-Acetyl-β-lysine was synthesized by species from three phylogenetic families when grown in high solute concentrations, suggesting that it may be ubiquitous among the methanogens. The ability to control the biosynthesis of Nvar-epsilon-acetyl-β-lysine in response to extracellular solute concentration indicates that the methanogenic archaebacteria have a unique β-amino acid biosynthetic pathway that is osmotically regulated

  17. Human mitochondrial HMG CoA synthase: Liver cDNA and partial genomic cloning, chromosome mapping to 1p12-p13, and possible role in vertebrate evolution

    Boukaftane, Y.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Montreal (Canada)] [and others

    1994-10-01

    Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (mHS) is the first enzyme of ketogenesis, whereas the cytoplasmic HS isozyme (cHS) mediates an early step in cholersterol synthesis. We here report the sequence of human and mouse liver mHS cDNAs, the sequence of an HS-like cDNA from Caenorhabditis elegans, the structure of a partial human mHS genomic clone, and the mapping of the human mHS gene to chromosome 1p12-p13. the nucleotide sequence of the human mHS cDNA encodes a mature mHS peptide of 471 residues, with a mean amino acid identity of 66.5% with cHS from mammals and chicken. Comparative analysis of all known mHS and cHS protein and DNA sequences shows a high degree of conservation near the N-terminus that decreases progressively toward the C-terminus and suggests that the two isozymes arose from a common ancestor gene 400-900 million years ago. Comparison of the gene structure of mHS and cHS is also consistant with a recent duplication event. We hypothesize that the physiologic result of the HS gene duplication was the appearance of HS within the mitochondria around the time of emergence of early vertebrates, which linked preexisting pathways of beta oxidation and leucine catabolism and created the HMG CoA pathway of ketogenesis, thus providing a lipid-derived energy source for the vertebrate brain. 56 refs., 4 figs., 2 tabs.

  18. Production of Nα-acetylated thymosin α1 in Escherichia coli

    Fang Hongqing

    2011-04-01

    Full Text Available Abstract Background Thymosin α1 (Tα1, a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. Results To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis, and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da. The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. Conclusions The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production

  19. Effect of CO{sub 2} concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea

    Majeau, N.; Coleman, J.R. [Univ. of Toronto, Ontario (Canada)

    1996-10-01

    The effect of external CO{sub 2} concentration on the expression of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in pea (Pisum sativum cv Little Marvel) leaves. Enzyme activities and their transcript levels were reduced in plants grown at 1000 {mu}L/L CO{sub 2} compared with plants grown in ambient air. Growth at 160 {mu}L/L CO{sub 2} also appeared to reduce steady-state transcript levels for the rbcS, the gene encoding the small subunit of Rubisco, and for ca, the gene encoding CA; however, rbcS transcripts were reduced to a greater extent at this concentration. Rubisco activity was slightly lower in plants grown at 160 {mu}L/L CO{sub 2}, and CA activity was significantly higher than that observed in air-grown plants. Transfer of plants from 1000 {mu}L/L to air levels of CO{sub 2} resulted in a rapid increase in both ca and rbcS transcript abundance in fully expanded leaves, followed by an increase in enzyme activity. Plants transferred from air to high-CO{sub 2} concentrations appeared to modulate transcript abundance and enzyme activity less quickly. Foliar carbohydrate levels were also examined in plants grown continuously at high and ambient CO{sub 2}, and following changes in growth conditions that rapidly altered ca and rbcS transcript abundance and enzyme activities. 39 refs., 2 figs., 3 tabs.

  20. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice

    Fortress, Ashley M.; Kim, Jaekyoon; Rachel L Poole; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone ace...

  1. Missing value imputation for microarray gene expression data using histone acetylation information

    Feng Jihua

    2008-05-01

    Full Text Available Abstract Background It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages. Results The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method is presented. It incorporates the histone acetylation information into the conventional KNN(k-nearest neighbor and LLS(local least square imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE. Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information. Conclusion We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.

  2. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition.

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M; Boulware, Marissa I; Frick, Karyn M

    2012-02-15

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol E2. We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2. Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409

  3. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model.

    Mahmoudi Najafi, Seyed Heydar; Baghaie, Maryam; Ashori, Alireza

    2016-06-01

    The objective of this study was to characterize in-vitro the potential of acetylated corn starch (ACS) particles as a matrix for the delivery of ciprofloxacin (CFx). ACS was successfully synthesized and optimized by the reaction of native corn starch using acetic anhydride and acetic acid with low and high degrees of substitution (DS). The nanoprecipitation method was applied for the formation of the ACS-based nanoparticles, by the dropwise addition of water to acetone solution of ACS under stirring. The effects of acetylation and nanoprecipitation on the morphology and granular structure of ACS samples were examined by the FT-IR, XRD, DSL and SEM techniques. The efficiency of CFx loading was also evaluated via encapsulation efficiency (EE) in ACS nanoparticles. The average degree of acetyl substitution per glucose residue of corn starch was 0.33, 2.00, and 2.66. The nanoparticles size of the ACS and ACS-loaded with CFx were measured and analyzed relative to the solvent:non-solvent ratio. Based on the results, ACS nanoparticles with DS of 2.00 and water:acetone of 3:1 had 312nm diameter. Increasing DS in starch acetate led to increase in the EE from 67.7 to 89.1% and with increasing ratio of water/acetone from 1:1 to 3:1, the EE raised from 48.5 to 89.1%. X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. PMID:26893054

  4. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection

    Mukherjee Krishnendu

    2012-10-01

    Full Text Available Abstract Background Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs and histone deacetylases (HDACs whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. Results We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase, the regulation of sepsis (inhibitor of metalloproteinases from insects and host defense (antimicrobial peptides, and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. Conclusions Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection.

  5. Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species

    Koutaniemi, Sanna; Guillon, Fabienne; Tranquet, Olivier; Bouchet, Brigitte; Tuomainen, Päivi; Virkki, Liisa; Pedersen, Henriette Lodberg; Willats, William George Tycho; Saulnier, Luc; Tenkanen, Maija

    2012-01-01

    antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in...

  6. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  7. GenBank blastx search result: AK061906 [KOME

    Full Text Available moderately similar to ACETYL-/PROPIONYL-COENZYME A CARBOXYLASE ALPHA CHAIN [CONTAINS: BIOTIN CARBOXYLASE (EC 6.3.4.14); BIOTIN CARBOXYL CARRIER PROTEIN (BCCP)].|PRI PRI 1e-102 +1 ...

  8. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products.

    Juan-García, Ana; Juan, Cristina; Manyes, Lara; Ruiz, María-José

    2016-08-01

    Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied. PMID:27131905

  9. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.

    Cuccurazzu, Bruna; Bortolotto, Valeria; Valente, Maria Maddalena; Ubezio, Federica; Koverech, Aleardo; Canonico, Pier Luigi; Grilli, Mariagrazia

    2013-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-κB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-κB pathway, and in particular by p65 acetylation, and subsequent NF-κB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants. PMID:23670591

  10. Determination of the degree of acetylation and the distribution of acetyl groups in chitosan by HPLC analysis of nitrous acid degraded and PMP labeled products.

    Han, Zhangrun; Zeng, Yangyang; Lu, Hong; Zhang, Lijuan

    2015-09-01

    Chitin is one of the most abundant polysaccharides on earth. It consists of repeating β-1,4 linked N-acetylated glucosamine (A) units. Chitosan is an N-deacetylated product of chitin. Chitosan and its derivatives have broad medical applications as drugs, nutraceuticals, or drug delivery agents. However, a reliable analytical method for quality control of medically used chitosans is still lacking. In current study, nitrous acid was used to cleave all glucosamine residues in chitosan into 2,5-anhydromannose (M) or M at the reducing end of di-, tri-, and oligosaccharides. PMP, i.e. 1-phenyl-3-methyl-5-pyrazolone, was used to label all the Ms. Online UV detection allowed quantification of all M-containing UV peaks whereas online MS analysis directly identified 11 different kinds of mono-, di-, tri-, and oligosaccharides that correlated each oligosaccharide with specific UV peak after HPLC separation. The DA (degree of acetylation) for chitosans was calculated based on the A/(A+M) value derived from the UV data. This newly developed method had several advantages for quality control of chitosan: 1. the experimental procedures were extensively optimized; 2. the reliability of the method was confirmed by online LC-MS analysis; 3. the DA value was obtainable based on the UV data after HPLC analysis, which was comparableto that of (1)H NMR and conductometric titration analyses; 4. finally and most importantly, this method could be used to obtain the DA as well as chemical acetylation/deacetylation mechanisms for chitosan by any laboratory equipped with a HPLC and an online UV detector. PMID:26114886

  11. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  12. Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

    Anne Bouchut

    Full Text Available Lysine acetylation is a reversible post-translational modification (PTM that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT and deacetylase (KDAC genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.

  13. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola, E-mail: Ola.Hermanson@ki.se

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  14. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    Yamagata, Kazutsune, E-mail: kyamagat@ncc.go.jp [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kitabayashi, Issay [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  15. Pyruvate dehydrogenase and 3-fluoropyruvate: chemical competence of 2-acetylthiamin pyrophosphate as an acetyl group donor to dihydrolipoamide

    The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14]pyruvate, TPP, and dihydrolipoamide, [14]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate

  16. Spectroscopic and Biological Studies on Newly Synthesized Cobalt (II and Nickel (II Complexes with 2-Acetyl Coumarone Semicarbazone and 2-Acetyl Coumarone Thiosemicarbazone

    Sanjay Goel

    2013-01-01

    Full Text Available Co(II and Ni(II complexes of general composition ML2X2 (M = Co(II, Ni(II; X = Cl−, NO3 − were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.

  17. Stability and Analgesic Efficacy of Di-acetyl Morphine (Diamorphine) Compared with Morphine in Implanted Intrathecal Pumps In Vivo.

    Raphael, Jon H; Palfrey, Stephen M; Rayen, Arasu; Southall, Jane L; Labib, Maurad H

    2004-07-01

    The objective of this study was to investigate di-acetyl morphine as an alternative opioid analgesic for use in implanted intrathecal drug delivery systems because of its greater solubility through evaluation of its stability in vivo and analgesic efficacy in the period between pump refills. Contents of intrathecal drug delivery system reservoirs (SynchroMed, Medtronic, Inc., Minneapolis, MN) that had been filled with di-acetyl morphine dissolved in saline (21), bupivacaine (9), or in both bupivacaine and clonidine (19) were sampled in vivo between 1 and 125 days after refill. The samples were assayed for di-acetyl morphine and its breakdown products by micellar electrokinetic capillary chromatography. Prospective daily numerical pain scores between pump refills, using 11-point Likert scales, on 24 patients with implanted SynchroMed pumps (12 delivering di-acetyl morphine in saline, 12 were delivering morphine in saline) were collected. Results showed that di-acetyl morphine immediately started to decay to mono-acetyl morphine in implanted Synchromed pumps with half-life of 50 days. Mono-acetyl morphine decayed to morphine with a maxima estimated at 125 days. There was no clinically significant change in average weekly pain scores for up to ten weeks in either group (range, 2.5 to 2.8 for diamorphine and 2.7 to 3.1 for morphine) (2-way repeated ANOVA, F(9,220) = 0.98, n.s.). We conclude that di-acetyl morphine and its breakdown products, 6 mono-acetyl morphine and morphine, provide similar analgesia to morphine alone when administered by intrathecal pump for a period of at least ten weeks and may be a useful alternative when a more soluble agent is favored. PMID:22151270

  18. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    Lisa Günther; Roswitha Beck; Guoming Xiong; Heidrun Potschka; Klaus Jahn; Peter Bartenstein; Thomas Brandt; Mayank Dutia; Marianne Dieterich; Michael Strupp; Christian la Fougère; Andreas Zwergal

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular beha...

  19. HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development▿

    Kueh, Andrew J.; Dixon, Mathew P.; Voss, Anne K.; Thomas, Tim

    2010-01-01

    We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulati...

  20. On the Mechanism of Condensation between 5-Amino-4, 6-dichloro-2-methylpyrimidine and 1-Acetyl-2-imidazolin-2-one

    2002-01-01

    The condensation reaction between 5-amino-4, 6-dichloro-2-methylpyrimidine and 1-acetyl-2-imidazolin-2-one using POCl3 as solvent gave 4, 6-dichloro-2-methyl-5-(l-acetyl-tetrahydro-imidazo-2-ylidene)-aminopyrimidine predominantly and 4, 6-dichloro-2-methyl-5-{1-[ l-(2-oxo-tetrahydro-imidazolyl)]-acetyene}-aminopyrimidine as by-product. No 4, 6-dichloro-2-methyl-5-(1-acetyl-2-imidazolin-2-yl)-aminopyrimidine was found. The result indicated an esterifi- cation-addition-elimination mechanism.``