WorldWideScience
 
 
1

Influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation, regulation and organisation of photosynthesis in Solanum nigrum  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation of the photosynthetic apparatus was examined on 4-weeks-old climate chamber-grown Solanum nigrum plant. To have an indication on the relative performance of the photosynthetic apparatus of ALS-treated plants, the level of carbon dioxide (CO2) fixation, the relative quantum efficiency of photosystem I (¿PSI) or photosystem II (¿PSII) electron transport and leaf chlorophyll content were assessed for both ...

Riethmuller-haage, I. C. P.; Bastiaans, L.; Harbinson, J.; Kempenaar, C.; Kropff, M. J.

2006-01-01

2

Biology, management and biochemical/genetic characterization of weed biotypes resistant to acetolactate synthase inhibitor herbicides  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Bidens pilosa and Amaranthus quitensis are major weeds infesting soybean [Glycine max L (Merrill)] fields in Brazil and Argentina. The repetitive use of acetolactate synthase (ALS EC 4.1.3.18) inhibiting herbicides in São Gabriel do Oeste, MS, Brazil and in the provinces of Córdoba and Tucumã, Argentina, has selected for resistant (R) biotypes of these weeds. Research work was developed to study the management, growth, biochemistry, and genetics of these R weed biotypes. In a field experim...

Monquero Patrícia Andrea; Christoffoleti Pedro Jacob; Carrer Helaine

2003-01-01

3

Influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation, regulation and organisation of photosynthesis in Solanum nigrum.  

Science.gov (United States)

The influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation of the photosynthetic apparatus was examined on 4-weeks-old climate chamber-grown Solanum nigrum plant. To have an indication on the relative performance of the photosynthetic apparatus of ALS-treated plants, the level of carbon dioxide (CO(2)) fixation, the relative quantum efficiency of photosystem I (Phi(PSI)) or photosystem II (Phi(PSII)) electron transport and leaf chlorophyll content were assessed for both control and treated plants at 2, 4 and 7 days after application of the herbicide. Results indicated a progressive inhibition of the level of CO(2) fixation, the relative quantum efficiency of photosystem I (Phi(PSI)) and II (Phi(PSII)) electron transport and the leaf chlorophyll content already 2 days after application of the herbicide. The linear relationship between the photosystem I and II was unaltered by herbicidal treatment and was sustained under conditions where large changes in pigment composition of the leaves occurred. It appears that the stress-induced loss of leaf chlorophyll is not a catastrophic process but rather is the consequence of a well-organised breakdown of components. Under photorespiratory and non-photorespiratory conditions, the relationship between the index of electron transport flow through photosystem I and II and the rate of CO(2) fixation is altered so that electron transport becomes less efficient at driving CO(2) fixation. PMID:16691366

Riethmuller-Haage, Ingrid; Bastiaans, Lammert; Harbinson, Jeremy; Kempenaar, Corné; Kropff, Martin J

2006-06-01

4

Resistência de amendoim-bravo aos herbicidas inibidores da enzima acetolactato sintase / Wild poinsettia resistance to acetolactate synthase inhibitor herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O controle contínuo de plantas daninhas através da aplicação de herbicidas que apresentam atividade em um único local de ação nas plantas favorece a seleção de biótipos resistentes a estes herbicidas, em certas espécies vegetais. Quatro experimentos foram conduzidos em condições casa-de-vegetação, n [...] a Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul, com os objetivos de avaliar a ocorrência de resistência aos herbicidas inibidores da enzima acetolactato sintase (ALS) em vários biótipos de leiteiro ou amendoim-bravo (Euphorbia heterophylla EPHHL) e avaliar a ocorrência de resistência múltipla a herbicidas com atividade em outros locais de ação. Biótipo oriundo de Passo Fundo foi resistente ao imazethapyr, enquanto biótipo oriundo de Porto Alegre foi suscetível. O biótipo de Passo Fundo apresentou resistência cruzada aos herbicidas imidazolinonas: imazapyr, imazaquin e imazethapyr; sulfoniluréias: chlorimuron, nicosulfuron e metsulfuron; e sulfonanilida: flumetsulan. Este biótipo não foi resistente aos herbicidas com os seguintes mecanismos de ação: inibidores de EPSPs, mimetizadores de auxina, inibidores dos fotossistemas I e II e inibidores de PROTOX. A confirmação de resistência aos inibidores de ALS em biótipos oriundos de Nãome-Toque, Passo Fundo e Rio Pardo sugere ampla dispersão no Rio Grande do Sul de resistência de E. heterophylla aos herbicidas deste mecanismo de ação. Abstract in english The continuous weed control with herbicides of only one site of action selects biotypes resistant to these herbicides. Four experiments were conducted in greenhouse of UFRGS, Brazil, to confirm the occurence of wild poinsettia (Euphorbia heterophylla) biotypes resistance to herbicides inhibitors of [...] acetholactate synthase (ALS), and to determine whether there was cross resistance to herbicides with other site of action. A biotype from Passo Fundo -RS was resistant to imazethapyr, whereas a biotype from Porto Alegre -RS was susceptible to this compound. The biotype from Passo Fundo was resistant to the following ALS-inhibitors: imazapyr, imazaquin, imazethapyr, chlorimuron, nicosulfuron, metsulfuron e flumetsulan. This biotype was not resistant to herbicides from the following modes of action: EPSPs inhibitors, auxin agonists, fotossystems I and II inhibitors, and PROTOX inhibitors. The confirmation of resistance to ALS inhibitors in biotypes from Não-me-Toque, Passo Fundo and Rio Pardo suggests a wide spread of wild poinsettia resistance to compounds of this mode of action in the Rio Grande do Sul state.

Ribas A., Vidal; Aldo, Merotto Jr..

1999-12-01

5

Resistência de amendoim-bravo aos herbicidas inibidores da enzima acetolactato sintase / Wild poinsettia resistance to acetolactate synthase inhibitor herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O controle contínuo de plantas daninhas através da aplicação de herbicidas que apresentam atividade em um único local de ação nas plantas favorece a seleção de biótipos resistentes a estes herbicidas, em certas espécies vegetais. Quatro experimentos foram conduzidos em condições casa-de-vegetação, n [...] a Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul, com os objetivos de avaliar a ocorrência de resistência aos herbicidas inibidores da enzima acetolactato sintase (ALS) em vários biótipos de leiteiro ou amendoim-bravo (Euphorbia heterophylla EPHHL) e avaliar a ocorrência de resistência múltipla a herbicidas com atividade em outros locais de ação. Biótipo oriundo de Passo Fundo foi resistente ao imazethapyr, enquanto biótipo oriundo de Porto Alegre foi suscetível. O biótipo de Passo Fundo apresentou resistência cruzada aos herbicidas imidazolinonas: imazapyr, imazaquin e imazethapyr; sulfoniluréias: chlorimuron, nicosulfuron e metsulfuron; e sulfonanilida: flumetsulan. Este biótipo não foi resistente aos herbicidas com os seguintes mecanismos de ação: inibidores de EPSPs, mimetizadores de auxina, inibidores dos fotossistemas I e II e inibidores de PROTOX. A confirmação de resistência aos inibidores de ALS em biótipos oriundos de Nãome-Toque, Passo Fundo e Rio Pardo sugere ampla dispersão no Rio Grande do Sul de resistência de E. heterophylla aos herbicidas deste mecanismo de ação. Abstract in english The continuous weed control with herbicides of only one site of action selects biotypes resistant to these herbicides. Four experiments were conducted in greenhouse of UFRGS, Brazil, to confirm the occurence of wild poinsettia (Euphorbia heterophylla) biotypes resistance to herbicides inhibitors of [...] acetholactate synthase (ALS), and to determine whether there was cross resistance to herbicides with other site of action. A biotype from Passo Fundo -RS was resistant to imazethapyr, whereas a biotype from Porto Alegre -RS was susceptible to this compound. The biotype from Passo Fundo was resistant to the following ALS-inhibitors: imazapyr, imazaquin, imazethapyr, chlorimuron, nicosulfuron, metsulfuron e flumetsulan. This biotype was not resistant to herbicides from the following modes of action: EPSPs inhibitors, auxin agonists, fotossystems I and II inhibitors, and PROTOX inhibitors. The confirmation of resistance to ALS inhibitors in biotypes from Não-me-Toque, Passo Fundo and Rio Pardo suggests a wide spread of wild poinsettia resistance to compounds of this mode of action in the Rio Grande do Sul state.

Ribas A., Vidal; Aldo, Merotto Jr..

6

Resistência de amendoim-bravo aos herbicidas inibidores da enzima acetolactato sintase Wild poinsettia resistance to acetolactate synthase inhibitor herbicides  

Directory of Open Access Journals (Sweden)

Full Text Available O controle contínuo de plantas daninhas através da aplicação de herbicidas que apresentam atividade em um único local de ação nas plantas favorece a seleção de biótipos resistentes a estes herbicidas, em certas espécies vegetais. Quatro experimentos foram conduzidos em condições casa-de-vegetação, na Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul, com os objetivos de avaliar a ocorrência de resistência aos herbicidas inibidores da enzima acetolactato sintase (ALS em vários biótipos de leiteiro ou amendoim-bravo (Euphorbia heterophylla EPHHL e avaliar a ocorrência de resistência múltipla a herbicidas com atividade em outros locais de ação. Biótipo oriundo de Passo Fundo foi resistente ao imazethapyr, enquanto biótipo oriundo de Porto Alegre foi suscetível. O biótipo de Passo Fundo apresentou resistência cruzada aos herbicidas imidazolinonas: imazapyr, imazaquin e imazethapyr; sulfoniluréias: chlorimuron, nicosulfuron e metsulfuron; e sulfonanilida: flumetsulan. Este biótipo não foi resistente aos herbicidas com os seguintes mecanismos de ação: inibidores de EPSPs, mimetizadores de auxina, inibidores dos fotossistemas I e II e inibidores de PROTOX. A confirmação de resistência aos inibidores de ALS em biótipos oriundos de Nãome-Toque, Passo Fundo e Rio Pardo sugere ampla dispersão no Rio Grande do Sul de resistência de E. heterophylla aos herbicidas deste mecanismo de ação.The continuous weed control with herbicides of only one site of action selects biotypes resistant to these herbicides. Four experiments were conducted in greenhouse of UFRGS, Brazil, to confirm the occurence of wild poinsettia (Euphorbia heterophylla biotypes resistance to herbicides inhibitors of acetholactate synthase (ALS, and to determine whether there was cross resistance to herbicides with other site of action. A biotype from Passo Fundo -RS was resistant to imazethapyr, whereas a biotype from Porto Alegre -RS was susceptible to this compound. The biotype from Passo Fundo was resistant to the following ALS-inhibitors: imazapyr, imazaquin, imazethapyr, chlorimuron, nicosulfuron, metsulfuron e flumetsulan. This biotype was not resistant to herbicides from the following modes of action: EPSPs inhibitors, auxin agonists, fotossystems I and II inhibitors, and PROTOX inhibitors. The confirmation of resistance to ALS inhibitors in biotypes from Não-me-Toque, Passo Fundo and Rio Pardo suggests a wide spread of wild poinsettia resistance to compounds of this mode of action in the Rio Grande do Sul state.

Ribas A. Vidal

1999-12-01

7

New Aspects on Inhibition of Plant Acetolactate Synthase by Chlorsulfuron and Imazaquin 1  

Science.gov (United States)

The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyruvate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, an initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of [14C]chlorsulfuron and [14C]imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency. PMID:16668103

Durner, Jorg; Gailus, Valerie; Boger, Peter

1991-01-01

8

New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin  

International Nuclear Information System (INIS)

The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyrvuate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, and initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of [14C]chlorsulfuron and [14C]imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency

9

New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin.  

Science.gov (United States)

The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyruvate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, an initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of [(14)C]chlorsulfuron and [(14)C]imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency. PMID:16668103

Durner, J; Gailus, V; Böger, P

1991-04-01

10

New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin  

Energy Technology Data Exchange (ETDEWEB)

The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyrvuate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, and initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of ({sup 14}C)chlorsulfuron and ({sup 14}C)imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency.

Durner, J.; Gailus, V.; Boeger, P. (Univ. Konstanz (West Germany))

1991-04-01

11

Selection of transgenic rice plants using a herbicide tolerant form of the acetolactate synthase gene.  

Science.gov (United States)

Acetolactate synthase (ALS) is an enzyme in the biosynthetic pathway for branched-chain amino acids, and bispyribac-sodium (BS), a pyrimidinyl carboxy herbicide, is a well-known inhibitor of ALS activity. However, it appears that a mutated form of rice ALS [OsmALS (W548L/S627I)] confers resistance to BS. We succeeded in using OsmALS with native OsALS promoter and terminator region for a selection marker of rice transformation. Because this selection marker cassette is originally from the rice endogenous genome, it can be expected to be publicly acceptable. PMID:22350999

Endo, Masaki; Shimizu, Tsutomu; Toki, Seiichi

2012-01-01

12

Biology, management and biochemical/genetic characterization of weed biotypes resistant to acetolactate synthase inhibitor herbicides Biologia, manejo e caracterização bioquímica e genética de biótipos resistentes aos herbicidas inibidores da acetolactato sintase  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Bidens pilosa and Amaranthus quitensis are major weeds infesting soybean [Glycine max L (Merrill)] fields in Brazil and Argentina. The repetitive use of acetolactate synthase (ALS EC 4.1.3.18) inhibiting herbicides in São Gabriel do Oeste, MS, Brazil and in the provinces of Córdoba and Tucumã, Argentina, has selected for resistant (R) biotypes of these weeds. Research work was developed to study the management, growth, biochemistry, and genetics of these R weed biotypes. In a field experim...

Patrícia Andrea Monquero; Pedro Jacob Christoffoleti; Helaine Carrer

2003-01-01

13

Lack of Cross-Resistance of Imazaquin-Resistant Xanthium strumarium Acetolactate Synthase to Flumetsulam and Chlorimuron.  

Science.gov (United States)

Acetolactate synthase (ALS) was isolated from a field population of cocklebur (Xanthium strumarium) that developed resistance to the herbicide Scepter following three consecutive years of application. The active ingredient of Scepter, imazaquin, gave an inhibitor concentration required to produce 50% inhibition of the enzyme activity that was more than 300 times greater for the resistant enzyme than for the wild-type cocklebur ALS. Tests with flumetsulam and chlorimuron show that the resistant ALS was not cross-resistant to these two other classes of ALS inhibitors. PMID:12231935

Schmitzer, P. R.; Eilers, R. J.; Cseke, C.

1993-09-01

14

Manejo de Bidens subalternans resistente aos herbicidas inibidores da acetolactato sintase / Management of Bidens subalternans resistant to acetolactate synthase inhibitor herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese A extensão das áreas com seleção de populações de plantas daninhas resistentes a herbicidas tem aumentado rapidamente no Brasil nos últimos anos, sendo citado como causa principal desta seleção a recomendação inadequada de produtos. Com o objetivo de avaliar a eficácia de controle de plantas daninha [...] s através de herbicidas, com diferentes mecanismos de ação, sobre plantas de Bidens subalternans, foi conduzido o presente trabalho, que envolveu um experimento de casa de vegetação e dois de campo, com as culturas de milho e soja. A pesquisa foi realizada a partir de populações de plantas de Bidens subalternans com suspeita de resistência aos herbicidas inibidores da ALS encontradas em área de produção comercial nas quais ocorriam falhas de controle através desses herbicidas. Os resultados permitiram confirmar a seleção de populações resistentes aos herbicidas inibidores da acetolactato sintase (ALS) e encontrar alternativas para o manejo destas populações, por meio do uso de produtos com mecanismo de ação diferenciado, tanto para a cultura da soja quanto para a do milho. Produtos inibidores da protoporfirinogênio oxidase (PROTOX), da fotossíntese e da divisão celular, aplicados isoladamente ou em misturas, controlaram adequadamente o biótipo resistente. Abstract in english The acreage with herbicide resistant weed populations has rapidly increased in Brazil in recent years. Inadequate herbicide recommendation is pointed as the main cause of this problem. This study aimed to evaluate Bidens subalternans control efficacy through herbicides with alternative mechanisms of [...] action, consisting of a greenhouse and two field experiments, with corn and soybean crops. A Bidens subalternans population suspected to be resistant to ALS inhibitor herbicides, found in a commercial crop area, was used in the experiments. The results confirmed beggartick resistance to ALS inhibitor herbicides. Management alternatives found for this weed include herbicides recommended for soybean and corn with differentiated mechanism of action: protoporphyrinogen oxidase (PROTOX) inhibitors, mitotic disrupters and photosynthesis inhibitor herbicides, applied alone or in tank mixture.

D.L.P., Gazziero; C.E.C., Prete; M., Sumiya.

15

Resistance of Amaranthus retroflexus to acetolactate synthase inhibitor herbicides in Brazil / Resistência de Amaranthus retroflexus a herbicidas inibidores da enzima acetolactato sintase no Brasil  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Quando em competição com a cultura do algodoeiro, Amaranthus retroflexus é capaz de promover grande perda de produtividade. Devido à limitada disponibilidade de herbicidas seletivos para controle em pós-emergência dessa espécie daninha, algumas moléculas têm sido usadas por safras seguidas, o que po [...] de ter levado à seleção de biótipos resistentes. Biótipos de A. retroflexus coletados das principais regiões produtoras de algodão do Brasil foram submetidos a ensaios de dose-resposta, por meio da aplicação de doses dos herbicidas trifloxysulfuron-sodium e pyrithiobac­sodium equivalentes a 0, ¼, ½, 1, 2 e 4 vezes a dose recomendada. Foi confirmada a ocorrência de biótipos de A. retroflexus resistentes aos herbicidas inibidores da enzima ALS. O biótipo MS 2, oriundo do Mato Grosso do Sul, apresentou resistência cruzada ao trifloxysulfuron-sodium e ao pyrithiobac-sodium, ao passo que o biótipo MS 1 mostrou resistência apenas ao trifloxysulfuron­sodium. Da mesma maneira, foram confirmados casos de resistência nos biótipos coletados no Estado de Goiás (GO 3, GO 4 e GO 6) aos herbicidas trifloxysulfuron-sodium e ao pyrithiobac-sodium, demonstrando resistência singular e cruzada. Um biótipo oriundo do Mato Grosso (MT 13) não apresentou resistência aos herbicidas inibidores da ALS testados. Abstract in english When in competition with cotton, Amaranthus retroflexus can cause high yield losses. Due to the limited availability of selective herbicides registered for post emergence control of this weed, the same herbicides have been used repeated times over the last few years, which may have selected resistan [...] t biotypes. Biotypes of A. retroflexus collected from the main areas of cotton cultivation in Brazil were submitted to dose-response trials, by applying the herbicides trifloxysulfuron-sodium and pyrithiobac-sodium in doses equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended rates. Resistance to ALS inhibitors was confirmed in biotypes of A. retroflexus. Biotype MS 2 from Mato Grosso do Sul, was cross-resistant to both trifloxysulfuron-sodium and pyrithiobac-sodium, while biotype MS 1 was resistant to trifloxysulfuron-sodium only. Likewise, singular and cross resistance was also confirmed in biotypes from Goiás (GO 3, GO 4 and GO 6), in relation to trifloxysulfuron­sodium and pyrithiobac-sodium. One biotype from Mato Grosso (MT 13) was not resistant to any of the ALS inhibitors evaluated in this work.

A.C., Francischini; J., Constantin; R.S., Oliveira Jr.; G., Santos; L.H.M., Franchini; D.F., Biffe.

2014-06-01

16

Role of a Highly Conserved and Catalytically Important Glutamate-49 in the Enterococcus faecalis Acetolactate Synthase  

International Nuclear Information System (INIS)

Acetolactate synthase (ALS) is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylation of pyruvate and then condenses the hydroxyethyl moiety with another molecule of pyruvate to give 2-acetolactate (AL). AL is a key metabolic intermediate in various metabolic pathways of microorganisms. In addition, AL can be converted to acetoin, an important physiological metabolite that is excreted by many microorganisms. There are two types of ALSs reported in the literature, anabolic aceto-hydroxyacid synthase (AHAS) and catabolic ALSs (cALS). The anabolic AHAS is primarily found in plants, fungi, and bacteria, is involved in the biosynthesis of branched-chain amino acids (BCAAs), and contains flavin adenine dinucleotide (FAD), whereas the cALS is found only in some bacteria and is involved in the butanediol fermentation pathway. Both of the enzymes are ThDP-dependent and require a divalent metal ion for catalytic activity. Despite the similarities of the reactions catalyzed, the cALS can be distinguished from anabolic AHAS by a low optimal pH of about 6.0, FAD-independent functionality, a genetic location within the butanediol operon, and lack of a regulatory subunit. It is noteworthy that the structural and functional features of AHAS have been extensively studied, in contrast to those of cALS, for which only limited information is available. To date, the only crystal structure of cALS reported is from Klebsiella pneumonia, which revealed that the overall structure of K. pneumonia ALS is similar to that of AHAS except for the FAD binding region found in AHAS

17

Role of a Highly Conserved and Catalytically Important Glutamate-49 in the Enterococcus faecalis Acetolactate Synthase  

Energy Technology Data Exchange (ETDEWEB)

Acetolactate synthase (ALS) is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylation of pyruvate and then condenses the hydroxyethyl moiety with another molecule of pyruvate to give 2-acetolactate (AL). AL is a key metabolic intermediate in various metabolic pathways of microorganisms. In addition, AL can be converted to acetoin, an important physiological metabolite that is excreted by many microorganisms. There are two types of ALSs reported in the literature, anabolic aceto-hydroxyacid synthase (AHAS) and catabolic ALSs (cALS). The anabolic AHAS is primarily found in plants, fungi, and bacteria, is involved in the biosynthesis of branched-chain amino acids (BCAAs), and contains flavin adenine dinucleotide (FAD), whereas the cALS is found only in some bacteria and is involved in the butanediol fermentation pathway. Both of the enzymes are ThDP-dependent and require a divalent metal ion for catalytic activity. Despite the similarities of the reactions catalyzed, the cALS can be distinguished from anabolic AHAS by a low optimal pH of about 6.0, FAD-independent functionality, a genetic location within the butanediol operon, and lack of a regulatory subunit. It is noteworthy that the structural and functional features of AHAS have been extensively studied, in contrast to those of cALS, for which only limited information is available. To date, the only crystal structure of cALS reported is from Klebsiella pneumonia, which revealed that the overall structure of K. pneumonia ALS is similar to that of AHAS except for the FAD binding region found in AHAS.

Lee, Miyoung; Lee, Sangchoon; Cho, Junehaeng; Ryu, Seong Eon; Yoon, Moonyoung [Hanyang Univ., Seoul (Korea, Republic of); Koo, Bonsung [Rural Development Administration, Suwon (Korea, Republic of)

2013-02-15

18

The Mutated Acetolactate Synthase Gene from Rice as a Non-Antibiotic Selection Marker for Transformation of Bamboo Cells  

Directory of Open Access Journals (Sweden)

Full Text Available Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT and neomycin phosphotransferase II gene (NPT II. Although these marker genes could introduce to several tissue cultured organs (e.g. leaves, buds, and calli of Phyllostachs bamboo species, some organs showed a high susceptibility and/or a low selectivity to hygromycin and kanamycin. In this report, therefore, we describe advantages and technical details for generating stable transgenic bamboo cells using the particle bombardment method with the mutated-acetolactate synthase gene (mALS from rice (W548L/S627IOsALS as a non-antibiotic selection marker. A facile and efficient transformation was achieved with the mALS gene and enhanced fluorescent protein gene (mCherry. Approximately 490 and 1400 mCherry-expressing cells/dish/shot in average were observed in both P. bambusoides and P. nigra under fluorescent stereo-microscope. Stable transgenic bamboo cell lines were generated in a selection medium supplemented with 0.1 ?M of bispyribac-sodium (BS as ALS inhibitor. The integration of mALS gene was identified by in vivo ALS enzyme assay and a PCR-restriction fragment length polymerphism (RFLP based detection procedures.

Nanaka Kikuchi

2012-03-01

19

Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker.  

Science.gov (United States)

Acetolactate synthase (ALS) is a target enzyme for many herbicides, including sulfonylurea and imidazolinone. We investigated the usefulness of a mutated ALS gene of rice, which had double point mutations and encoded an herbicide-resistant form of the enzyme, as a selectable marker for wheat transformation. After the genomic DNA fragment from rice containing the mutated ALS gene was introduced into immature embryos by means of particle bombardment, transgenic plants were efficiently selected with the herbicide bispyribac sodium (BS). Southern blot analysis confirmed that transgenic plants had one to more than ten copies of the transgene in their chromosomes. Adjustment of the BS concentration combined with repeated selection effectively prevented nontransgenic plants from escaping herbicide selection. Measurement of ALS activity indicated that transgenic plants produced an herbicide-resistant form of ALS and therefore had acquired the resistance to BS. This report is the first to describe a selection system for wheat transformation that uses a selectable marker gene of plant origin. PMID:18449542

Ogawa, Taiichi; Kawahigashi, Hiroyuki; Toki, Seiichi; Handa, Hirokazu

2008-08-01

20

A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice.  

Science.gov (United States)

Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathway of branched-chain amino acids. Mutations of specific amino acids in ALS have been known to confer resistance to ALS-inhibiting herbicides such as sulfonylureas and pyrimidinyl carboxy (PC) herbicides. However, mutations conferring exclusive resistance to PC have not yet been reported to date. We selected PC resistant rice calli, which were derived from anther culture, using one of the PCs, bispyribac-sodium (BS), as a selection agent. Two lines of BS-resistant plants carrying a novel mutation, the 95th Glycine to Alanine (G95A), in ALS were obtained. In vitro ALS activity assay indicated that the recombinant protein of G95A-mutated ALS (ALS-G95A) conferred highly specific resistance to PC herbicides. In order to determine if the ALS-G95A gene could be used as a selection marker for rice transformation, the ALS-G95A gene was connected to ubiquitin promoter and introduced into rice. PC resistant plants containing integrated ALS-G95A gene were obtained after selection with BS as a selection agent. In conclusion, novel G95A mutated ALS gene confers highly specific resistant to PC-herbicides and can be used as a selection marker. PMID:17334827

Okuzaki, Ayako; Shimizu, Tsutomu; Kaku, Koichiro; Kawai, Kiyoshi; Toriyama, Kinya

2007-05-01

 
 
 
 
21

Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L.  

Science.gov (United States)

A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 1?2?1 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS. PMID:24169770

Boutsalis, P; Powles, S B

1995-07-01

22

Identification of cofactor and herbicide binding domains in acetolactate synthase by bromopyruvate modification  

International Nuclear Information System (INIS)

Bromopyruvate is an affinity label for acetolactate synthase isozyme II from Salmonella typhimurium (ALSII). The concentration of bromopyruvate giving half-maximal inactivation is 0.1 mM, and the maximal rate of inactivation is 0.56 hr-1. Inactivation with [14C]bromopyruvate is associated with the incorporation of 4 molecules of reagent per active site lost. Two cysteinyl residues are modified extremely rapidly, with no loss of enzymatic activity, as judged by quenching the reaction with thiol after its initial phase. Inactivation is a consequence of the additional two moles of reagent incorporated per mole of protomer. The additional incorporation is divided between one major and two minor sites of modification. Substantial protection against inactivation is afforded by FAD, with virtually complete protection provided by a mixture of FAD and thiamine pyrophosphate (TPP). The major site of modification, protected by FAD, is cysteinyl residue number67, based upon amino acid sequence analysis of the purified tryptic peptide that encompasses this site. The remaining site of modification, protected by TPP, is associated with cysteinyl residue number44. Both sites of modification are afforded protection by the sulfonylurea herbicide sulfometuron methyl (SM). Although inactivation by bromopyruvate exhibits rate saturation, indicating binding as a prerequisite to inactivation, neither pyruvate nor ?-ketobutyrate prevent modification of the enzyme by bromopyruvate. Thus, it would appear that the bromopyruvate binding site is not the site normally occupied by substrate

23

Identification of cofactor and herbicide binding domains in acetolactate synthase by bromopyruvate modification  

Energy Technology Data Exchange (ETDEWEB)

Bromopyruvate is an affinity label for acetolactate synthase isozyme II from Salmonella typhimurium (ALSII). The concentration of bromopyruvate giving half-maximal inactivation is 0.1 mM, and the maximal rate of inactivation is 0.56 hr/sup -1/. Inactivation with (/sup 14/C)bromopyruvate is associated with the incorporation of 4 molecules of reagent per active site lost. Two cysteinyl residues are modified extremely rapidly, with no loss of enzymatic activity, as judged by quenching the reaction with thiol after its initial phase. Inactivation is a consequence of the additional two moles of reagent incorporated per mole of protomer. The additional incorporation is divided between one major and two minor sites of modification. Substantial protection against inactivation is afforded by FAD, with virtually complete protection provided by a mixture of FAD and thiamine pyrophosphate (TPP). The major site of modification, protected by FAD, is cysteinyl residue number67, based upon amino acid sequence analysis of the purified tryptic peptide that encompasses this site. The remaining site of modification, protected by TPP, is associated with cysteinyl residue number44. Both sites of modification are afforded protection by the sulfonylurea herbicide sulfometuron methyl (SM). Although inactivation by bromopyruvate exhibits rate saturation, indicating binding as a prerequisite to inactivation, neither pyruvate nor ..cap alpha..-ketobutyrate prevent modification of the enzyme by bromopyruvate. Thus, it would appear that the bromopyruvate binding site is not the site normally occupied by substrate.

Van Dyk, D.E.; Schloss, J.V.

1987-05-01

24

Downy Brome (Bromus tectorum L.) and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS)-inhibiting herbicides for downy brome (Bromus tectorum L.) and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha?1, propoxycarbazone-Na at 44 g ai ha?1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha?1, and sulfosulfuron at 35 g ai ha?1. The herbicides were applied postemergence in fall and spring seasons. Ave...

Geier, Patrick W.; Stahlman, Phillip W.; Reddy, Seshadri S.

2013-01-01

25

Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja / Resistance of Bidens subalternans to the acetolactate synthase inhibitor herbicides used in soybean crop  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O uso contínuo e prolongado de produtos com o mesmo mecanismo de ação pode provocar a manifestação de biótipos resistentes. Para verificar possíveis novos casos de resistência, bem como alternativas para prevenção e manejo, foram coletadas sementes de Bidens subalternans na região de São Gabriel D' [...] Oeste-MS, em plantas que sobreviveram a tratamentos em que inibidores da ALS foram sistematicamente utilizados. Em experimento conduzido em vasos em casa de vegetação, o biótipo com histórico de resistente foi comparado ao suscetível quando submetido aos diversos herbicidas com diferentes mecanismos de ação usados em pós-emergência, os quais foram aplicados nas doses de zero, uma, duas, quatro e oito vezes a recomendada. Decorridos 20 dias, foram avaliadas a porcentagem de controle e a produção da fitomassa verde, visando estabelecimento de curvas de dose-resposta e obtenção dos fatores de resistência. O biótipo oriundo de área com histórico de aplicações repetidas de inibidores da ALS apresentou elevado nível de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando ser portador de resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. Entretanto, esse biótipo foi eficientemente controlado pelos herbicidas fomesafen, lactofen, bentazon, glufosinato de amônio e glyphosate. Abstract in english The continuous and prolonged use of products with the same mechanism of action can provoke the manifestation of resistant biotypes. In horder to verify possible new cases, as well as alternatives for prevention and control, seeds of Bidens subalternans were collected at São Gabriel D' Oeste (MS) reg [...] ion at plants that survived continuous treatments which sistematically ALS inhibitors. Through an experiment performed in pots inside a greenhouse, a resistant biotype was compared to a susceptible one when submitted to herbicides with different mechanisms of action and applied at post emergence. These herbicides were applied at doses zero, one, two, four and eight times the recommended dosage. Twenty days after, the control and the green weight production were analysed aiming to get the dose-response curves as well as the resistance factor. The biotype from the area with repeated application of ALS inhibitors showed a high level of resistance to chlorimuron-ethyl and imazethapyr, demonstrating therefore to be a carrier of crossed resistance to the ALS inhibitors of the sulfonilurea and imidazolinona groups. However, this biotype was controlled by fomesafen, lactofen, bentazon, ammonium glufosinate and glyphosate.

G.A., Gelmini; R., Victória Filho; M.C.S.S., Novo; M.L., Adoryan.

2002-08-01

26

Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae.  

Science.gov (United States)

Amino acids are important components in the metabolism of a variety of pathogens, plants and animals. Acetolactate synthase (ALS) catalyses the first common step in leucine, isoleucine and valine biosynthesis, and is the target of several classes of inhibitors. Here, MoIlv2, an orthologue of the Saccharomyces cerevisiae?ALS catalytic subunit Ilv2, and MoIlv6, an orthologue of the S.?cerevisiae?ALS regulatory subunit Ilv6, were identified. To characterize MoILV2 and MoILV6 functions, we generated the deletion mutants ?Moilv2 and ?Moilv6. Phenotypic analysis showed that both mutants were auxotrophic for leucine, isoleucine and valine, and were defective in conidial morphogenesis, appressorial penetration and pathogenicity. Further studies suggested that MoIlv2 and MoIlv6 play a critical role in maintaining the balance of intracellular amino acid levels. MoIlv2 and MoIlv6 are both localized to the mitochondria and the signal peptide of MoIlv6 is critical for its localization. In summary, our evidence indicates that MoIlv2 plays a crucial role in isoleucine and valine biosynthesis, whereas MoIlv6 contributes to isoleucine and leucine biosynthesis; both genes are required for fungal pathogenicity. This study indicates the potential of targeting branched-chain amino acid biosynthesis for anti-rice blast management. PMID:23782532

Du, Yan; Zhang, Haifeng; Hong, Li; Wang, Jiamei; Zheng, Xiaobo; Zhang, Zhengguang

2013-12-01

27

Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.).  

Science.gov (United States)

We investigated the diversity of mechanisms conferring resistance to herbicides inhibiting acetolactate synthase (ALS) in corn poppy (Papaver rhoeas L.) and the processes underlying the selection for resistance. Six mutant ALS alleles, Arg???, His???, Leu???, Ser???, Thr??? and Leu??? were identified in five Italian populations. Different alleles were found in a same population or a same plant. Comparison of individual plant phenotype (herbicide sensitivity) and genotype (amino-acid substitution(s) at codon 197) showed that all mutant ALS alleles conferred dominant resistance to the field rate of the sulfonylurea tribenuron and moderate or no resistance to the field rate of the triazolopyrimidine florasulam. Depending on the allele, dominant or partially dominant resistance to the field rate of the imidazolinone imazamox was observed. Putative non-target-site resistance mechanisms were also likely present in the populations investigated. The derived Cleaved Amplified Polymorphic Sequence assays targeting ALS codons crucial for herbicide sensitivity developed in this work will facilitate the detection of resistance due to mutant ALS alleles. Nucleotide variation around codon 197 indicated that mutant ALS alleles evolved by multiple, independent appearances. Resistance to ALS inhibitors in P. rhoeas clearly evolved by redundant evolution of a set of mutant ALS alleles and likely of non-target-site mechanisms. PMID:21421378

Délye, Christophe; Pernin, Fanny; Scarabel, Laura

2011-02-01

28

Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli).  

Science.gov (United States)

Barnyardgrass biotypes from Arkansas (AR1 and AR2) and Mississippi (MS1) have evolved cross-resistance to imazamox, imazethapyr, and penoxsulam. Additionally, AR1 and MS1 have evolved cross-resistance to bispyribac-sodium. Studies were conducted to determine if resistance to acetolactate synthase (ALS)-inhibiting herbicides in these biotypes is target-site or non-target-site based. Sequencing and analysis of a 1701 base pair ALS coding sequence revealed Ala??? to Val and Ala??? to Thr substitutions in AR1 and AR2, respectively. The imazamox concentrations required for 50% inhibition of ALS enzyme activity in vitro of AR1 and AR2 were 2.0 and 5.8 times, respectively, greater than the susceptible biotype. Absorption of ¹?C-bispyribac-sodium, -imazamox, and -penoxsulam was similar in all biotypes. ¹?C-Penoxsulam translocation out of the treated leaf (?2%) was similar among all biotypes. ¹?C-Bispyribac-treated AR1 and MS1 translocated 31- 43% less radioactivity to aboveground tissue below the treated leaf compared to the susceptible biotype. ¹?C-Imazamox-treated AR1 plants translocated 39% less radioactivity above the treated leaf and aboveground tissue below the treated leaf, and MS1 translocated 54 and 18% less radioactivity to aboveground tissue above and below the treated leaf, respectively, compared to the susceptible biotype. Phosphorimaging results further corroborated the above results. This study shows that altered target site is a mechanism of resistance to imazamox in AR2 and probably in AR1. Additionally, reduced translocation, which may be a result of metabolism, could contribute to imazamox and bispyribac-sodium resistance in AR1 and MS1. PMID:23237199

Riar, Dilpreet S; Norsworthy, Jason K; Srivastava, Vibha; Nandula, Vijay; Bond, Jason A; Scott, Robert C

2013-01-16

29

Characterization of sulfonylurea-resistant Schoenoplectus juncoides having a target-site Asp(376)Glu mutation in the acetolactate synthase.  

Science.gov (United States)

Schoenoplectus juncoides, a noxious weed for paddy rice, is known to become resistant to sulfonylurea (SU) herbicides by a target-site mutation in either of the two acetolactate synthase (ALS) genes (ALS1 and ALS2). SU-resistant S. juncoides plants having an Asp376Glu mutation in ALS2 were found from a paddy rice field in Japan, but their resistance profile has not been quantitatively investigated. In this study, dose-response of the SU-resistant accession was compared with that of a SU-susceptible accession at in vivo whole-plant level as well as at in vitro enzymatic level. In whole-plant tests, resistance factors (RFs) based on 50% growth reduction (GR50) for imazosulfuron (ISF), bensulfuron-methyl (BSM), metsulfuron-methyl (MSM), bispyribac-sodium (BPS), and imazaquin (IMQ) were 176, 40, 14, 5.2 and 1.5, respectively. Thus, the accession having an Asp376Glu mutation in ALS2 was highly resistant to the three SU herbicides and moderately resistant to BPS, but was not substantially resistant to IMQ. This is slightly different from the earlier results reported from other weeds with an Asp376Glu mutation, in which the mutation confers resistance to broadly all the chemical classes of ALS-inhibiting herbicides. In enzymatic tests, ALS2 of S. juncoides was expressed in E. coli; the resultant ALS2 was subjected to an in vitro assay. RFs of the mutated ALS2 based on 50% enzymatic inhibition (I50) for ISF, BSM, MSM, BPS, and IMQ were 3699, 2438, 322, 80, and 4.8, respectively. The RFs of ALS2 were highly correlated with those of the whole-plant; this suggests that the Asp376Glu mutation in ALS2 is a molecular basis for the whole-plant resistance. The presence of two ALS genes in S. juncoides can at least partially explain why the whole-plant RFs were less than those of the expressed ALS2 enzymes. PMID:25149243

Sada, Yoshinao; Ikeda, Hajime; Yamato, Seiji; Kizawa, Satoru

2013-09-01

30

The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans.  

Science.gov (United States)

We investigated selective culturing conditions for the production of transgenic soybeans. In this culturing system, we used the acetolactate synthase (ALS)-inhibiting herbicide-resistance gene derived from rice (Os-mALS gene) as a selectable marker gene instead of that derived from bacteria, which interfered with the cultivation and practical usage of transgenic crops. T(1) soybeans grown from one regenerated plant after selection of the ALS-targeting pyrimidinyl carboxy (PC) herbicide bispyribac-sodium (BS) exhibited herbicide resistance, and the introduction and expression of the Os-mALS gene were confirmed by genetic analysis. The selective culturing system promoted by BS herbicide, in which the Os-mALS gene was used as a selectable marker, was proved to be applicable to the production of transgenic soybeans, despite the appearance of escaped soybean plants that did not contain the Os-mALS transgene. PMID:19219608

Tougou, Makoto; Yamagishi, Noriko; Furutani, Noriyuki; Kaku, Koichiro; Shimizu, Tsutomu; Takahata, Yoshihito; Sakai, Jun-ichi; Kanematsu, Seiji; Hidaka, Soh

2009-05-01

31

Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The pyruvate dehydrogenase complex of Lactococcus lactis subsp. lactis bv. diacetylactis has a specific activity of 6.6 U/mg and a Km of 1 mM for pyruvate. The specific activities of E2 and E3 in the complex are 30 and 0.36 U/mg, respectively. The complex is very sensitive to NADH inhibition and consists of four subunits: E1 alpha (44 kDa), E1 beta (35 kDa), E2 (73 kDa), and E3 (60 kDa). The L. lactis alpha-acetolactate synthase has a specific activity of 103 U/mg and a Km of 50 mM for pyruva...

Snoep, J. L.; Teixeira Mattos, M. J.; Starrenburg, M. J.; Hugenholtz, J.

1992-01-01

32

Resistência do girassol a herbicidas inibidores da enzima acetolactato sintase / Sunflower resistance to acetolactate synthase-inhibiting herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O girassol é bastante sensível a herbicidas aplicados em pós-emergência da cultura, com o objetivo de controlar espécies daninhas de folhas largas. Diante disto, foram desenvolvidos genótipos resistentes a herbicidas do grupo químico das imidazolinonas. Este trabalho objetivou avaliar a seletividade [...] de herbicidas dos grupos químicos das imidazolinonas e sulfonilureias, aplicados sobre plantas de girassol (Tera 8003 e Tera 8011) resistentes aos inibidores da enzima acetolactato sintase (ALS). Experimentos foram conduzidos em área experimental da Embrapa Gado de Leite, nos municípios de Coronel Pacheco (MG) e Valença (RJ). O delineamento experimental foi em blocos casualizados, com quatro repetições. Os tratamentos foram: testemunha capinada, imazapyr 25 g i.a. ha-1 e 50 g i.a. ha-1, imazethapyr 70 g i.a. ha-1 e 100 g i.a. ha-1, nicosulfuron 20 g i.a. ha-1 e 32 g i.a. ha-1 e chlorimuron 7,5 g i.a. ha-1 + 0,05% v/v de óleo mineral. Foi avaliada a percentagem de fitotoxicidade, teor de clorofila (índice SPAD), altura de plantas, produção e percentagem de matéria seca e produtividade. As doses de 70 g i.a. ha-1 e 100 g i.a. ha-1 de imazethapyr foram as mais seletivas, a dose de 20 g i.a. ha-1 do nicosulfuron apresentou tolerância moderada e os tratamentos com imazapyr e chlorimuron foram aqueles que causaram maior injúria, para ambos os híbridos de girassol. Abstract in english Sunflower is very sensitive to herbicides applied in post-emergence to control broad-leaf weeds. Researchers have developed herbicide-resistant genotypes to imidazolinone herbicides. This study aimed to evaluate the selectivity of imidazolinone and sulfonylurea herbicides applied on sunflower plants [...] (Tera 8003 and Tera 8011) resistant to acetolactate synthase-inhibiting herbicides. The experiments were conducted at Embrapa Gado de Leite, in Coronel Pacheco, Minas Gerais State, and Valença, Rio de Janeiro State, Brazil. The experimental design was randomized complete blocks, with four replications. The treatments consisted of hoed control, imazapyr 25 g a.i. ha-1 and 50 g a.i. ha-1, imazethapyr 70 g a.i. ha-1 and 100 g a.i. ha-1, nicosulfuron 20 g a.i. ha-1 and 32 g a.i. ha-1, and chlorimuron 7.5 g a.i. ha-1 + 0.05% v/v of mineral oil. The crop injury percentage, chlorophyll content (SPAD index), plant height, dry matter production and percentage, and yield were evaluated. The imazethapyr doses (70 g a.i. ha-1 and 100 g a.i. ha-1) were the most selective ones, the nicosulfuron dose (20 g a.i. ha-1) showed moderate tolerance, and imazapyr and chlorimuron caused greater injury, for both sunflower hybrids.

Alexandre Magno, Brighenti.

33

Resistência do girassol a herbicidas inibidores da enzima acetolactato sintase / Sunflower resistance to acetolactate synthase-inhibiting herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese O girassol é bastante sensível a herbicidas aplicados em pós-emergência da cultura, com o objetivo de controlar espécies daninhas de folhas largas. Diante disto, foram desenvolvidos genótipos resistentes a herbicidas do grupo químico das imidazolinonas. Este trabalho objetivou avaliar a seletividade [...] de herbicidas dos grupos químicos das imidazolinonas e sulfonilureias, aplicados sobre plantas de girassol (Tera 8003 e Tera 8011) resistentes aos inibidores da enzima acetolactato sintase (ALS). Experimentos foram conduzidos em área experimental da Embrapa Gado de Leite, nos municípios de Coronel Pacheco (MG) e Valença (RJ). O delineamento experimental foi em blocos casualizados, com quatro repetições. Os tratamentos foram: testemunha capinada, imazapyr 25 g i.a. ha-1 e 50 g i.a. ha-1, imazethapyr 70 g i.a. ha-1 e 100 g i.a. ha-1, nicosulfuron 20 g i.a. ha-1 e 32 g i.a. ha-1 e chlorimuron 7,5 g i.a. ha-1 + 0,05% v/v de óleo mineral. Foi avaliada a percentagem de fitotoxicidade, teor de clorofila (índice SPAD), altura de plantas, produção e percentagem de matéria seca e produtividade. As doses de 70 g i.a. ha-1 e 100 g i.a. ha-1 de imazethapyr foram as mais seletivas, a dose de 20 g i.a. ha-1 do nicosulfuron apresentou tolerância moderada e os tratamentos com imazapyr e chlorimuron foram aqueles que causaram maior injúria, para ambos os híbridos de girassol. Abstract in english Sunflower is very sensitive to herbicides applied in post-emergence to control broad-leaf weeds. Researchers have developed herbicide-resistant genotypes to imidazolinone herbicides. This study aimed to evaluate the selectivity of imidazolinone and sulfonylurea herbicides applied on sunflower plants [...] (Tera 8003 and Tera 8011) resistant to acetolactate synthase-inhibiting herbicides. The experiments were conducted at Embrapa Gado de Leite, in Coronel Pacheco, Minas Gerais State, and Valença, Rio de Janeiro State, Brazil. The experimental design was randomized complete blocks, with four replications. The treatments consisted of hoed control, imazapyr 25 g a.i. ha-1 and 50 g a.i. ha-1, imazethapyr 70 g a.i. ha-1 and 100 g a.i. ha-1, nicosulfuron 20 g a.i. ha-1 and 32 g a.i. ha-1, and chlorimuron 7.5 g a.i. ha-1 + 0.05% v/v of mineral oil. The crop injury percentage, chlorophyll content (SPAD index), plant height, dry matter production and percentage, and yield were evaluated. The imazethapyr doses (70 g a.i. ha-1 and 100 g a.i. ha-1) were the most selective ones, the nicosulfuron dose (20 g a.i. ha-1) showed moderate tolerance, and imazapyr and chlorimuron caused greater injury, for both sunflower hybrids.

Alexandre Magno, Brighenti.

2012-06-01

34

A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis.  

Science.gov (United States)

Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

2014-11-01

35

Nitric oxide synthase inhibitors and cerebral vasospasm.  

Science.gov (United States)

L-arginine is a source of nitric oxide (NO) that is cleaved from the terminal guanidino nitrogen atom by nitric oxide synthase (NOS). NO evokes, because of its free radical properties and affinity to heme, ferrous iron and cysteine, a wide spectrum of physiological and pathophysiological effects. For many years, different exogenous NOS inhibitors were used to elucidate the role of NOS and NO in health and disease. Later, endogenous NOS inhibitors, as asymmetric dimethylarginine (ADMA) were discovered. Endogenous inhibitors as ADMA are produced by post-translational methylation of L-arginine which is catalyzed by a family of protein N-methyltransferases (PRMT), using S-adenosylmethionine as a methyl group donor. ADMA is eliminated by dimethylarginine dimethylaminohydrolases (DDAH I or II). ADMA hydrolysis increases NOS activity and NO production. Furthermore, L-citrulline, a by-product of ADMA hydrolysis as well as of NO production by NOS, can in turn inhibit DDAH. Therefore, endogenous inhibition of NOS can be modified via different ways (1) changing the availability of L-arginine and/or of L-citrulline; (2) stimulating or inhibiting DDAH activity; (3) modifying methylation via regulating availability of adenosylmethionine; or (4) modifying PRMT activity. Research elucidating the role of NOS inhibitors in respect of delayed cerebral vasospasm after subarachnoid hemorrhage is summarized. PMID:21116921

Jung, C S

2011-01-01

36

Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil.  

Science.gov (United States)

Owing to reported phytotoxicity of some sulfonylurea class of herbicides in number of sensitive crops and higher persistence in soil, present study was conducted to isolate and identify pyrazosulfuron-ethyl degrading fungi from soil of rice field. Penicillium chrysogenum and Aspergillus niger, were isolated and identified from rhizospere soil of rice field, as potent pyrazosulfuron-ethyl degrading fungi. Degradation of pyrazosulfuron-ethyl by P. chrysogenum and A. niger, yielded transformation products/metabolites which were identified and characterized by LC/MS/MS. The rate of dissipation of pyrazosulfuron-ethyl was found higher in soil of rice field and soil inoculated with P. chrysogenum. This showed important route of degradation of pyrazosulfuron-ethyl by microbes apart from chemical degradation. PMID:23993642

Sondhia, Shobha; Waseem, Uzma; Varma, R K

2013-11-01

37

Acetolactate synthase activity in Euphorbia heterophylla resistant to ALS- and protox- inhibiting herbicides / Atividade da enzima acetolactato sintase em Euphorbia heterophylla com resistência múltipla aos herbicidas inibidores da ALS e da protox  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese O objetivo deste trabalho foi determinar a atividade da enzima ALS em biótipos de leiteiro (Euphorbia heterophylla) com resistência múltipla aos inibidores da ALS e da Protox na presença e ausência dos herbicidas imazapyr, imazethapyr e nicosulfuron. Efetuou-se ensaio in vitro da enzima acetolactato [...] sintase (ALS) extraída de plantas dos biótipos Vitorino, Bom Sucesso do Sul e Medianeira (com resistência múltipla aos inibidores da ALS e da Protox) e de um biótipo suscetível, na ausência e presença dos herbicidas imazapyr, imazethapyr e nicosulfuron. Na ausência dos herbicidas, os biótipos com resistência múltipla demonstraram maior afinidade da enzima pelo substrato piruvato em comparação ao biótipo suscetível. Os herbicidas imazapyr, imazethapyr e nicosulfuron produziram reduzido efeito sobre a atividade da enzima ALS dos biótipos resistentes e, ao contrário, elevado efeito inibitório sobre a ALS do biótipo suscetível. Os fatores de resistência foram elevados, superiores a 438, 963 e 474 para os biótipos Vitorino, Bom Sucesso do Sul e Medianeira, respectivamente. A resistência observada deve-se à insensibilidade da enzima ALS aos herbicidas tanto do grupo das imidazolinonas quanto das sulfonilureias, caracterizando resistência cruzada. Abstract in english The objective of this study was to determine the activity of the enzyme acetolactate synthase in biotypes of wild poinsettia (Euphorbia heterophylla) with multiple resistance to ALS- and Protox- inhibitors in the presence and absence of imazapyr, imazethapyr and nicosulfuron. We conducted in vitro a [...] ssay of ALS enzyme extracted from plants of Vitorino, Bom Sucesso do Sul and Medianeira biotypes (with multiple resistance) and a susceptible population in the absence and presence of imazapyr, imazethapyr and nicosulfuron. In the absence of herbicides, biotypes with multiple resistance showed higher affinity for the substrate of the enzyme compared with the susceptible population. The herbicides imazapyr, imazethapyr and nicosulfuron had little effect on the enzyme activity of ALS-resistant biotypes and, conversely, high inhibitory effect on ALS of the susceptible population. Resistance factors were very high, greater than 438, 963 and 474 for Vitorino, Bom Sucesso do Sul and Medianeira biotypes, respectively. The resistance to ALS inhibitors is due to the insensitivity of ALS to herbicides of both imidazolinone and sulfonylurea groups, characterizing a cross-resistance.

E., Xavier; M.C., Oliveira; M.M., Trezzi; R.A., Vidal; F., Diesel; F.D., Pagnoncelli; E., Scalcon.

38

Acetolactate synthase activity in Euphorbia heterophylla resistant to ALS- and protox- inhibiting herbicides / Atividade da enzima acetolactato sintase em Euphorbia heterophylla com resistência múltipla aos herbicidas inibidores da ALS e da protox  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese O objetivo deste trabalho foi determinar a atividade da enzima ALS em biótipos de leiteiro (Euphorbia heterophylla) com resistência múltipla aos inibidores da ALS e da Protox na presença e ausência dos herbicidas imazapyr, imazethapyr e nicosulfuron. Efetuou-se ensaio in vitro da enzima acetolactato [...] sintase (ALS) extraída de plantas dos biótipos Vitorino, Bom Sucesso do Sul e Medianeira (com resistência múltipla aos inibidores da ALS e da Protox) e de um biótipo suscetível, na ausência e presença dos herbicidas imazapyr, imazethapyr e nicosulfuron. Na ausência dos herbicidas, os biótipos com resistência múltipla demonstraram maior afinidade da enzima pelo substrato piruvato em comparação ao biótipo suscetível. Os herbicidas imazapyr, imazethapyr e nicosulfuron produziram reduzido efeito sobre a atividade da enzima ALS dos biótipos resistentes e, ao contrário, elevado efeito inibitório sobre a ALS do biótipo suscetível. Os fatores de resistência foram elevados, superiores a 438, 963 e 474 para os biótipos Vitorino, Bom Sucesso do Sul e Medianeira, respectivamente. A resistência observada deve-se à insensibilidade da enzima ALS aos herbicidas tanto do grupo das imidazolinonas quanto das sulfonilureias, caracterizando resistência cruzada. Abstract in english The objective of this study was to determine the activity of the enzyme acetolactate synthase in biotypes of wild poinsettia (Euphorbia heterophylla) with multiple resistance to ALS- and Protox- inhibitors in the presence and absence of imazapyr, imazethapyr and nicosulfuron. We conducted in vitro a [...] ssay of ALS enzyme extracted from plants of Vitorino, Bom Sucesso do Sul and Medianeira biotypes (with multiple resistance) and a susceptible population in the absence and presence of imazapyr, imazethapyr and nicosulfuron. In the absence of herbicides, biotypes with multiple resistance showed higher affinity for the substrate of the enzyme compared with the susceptible population. The herbicides imazapyr, imazethapyr and nicosulfuron had little effect on the enzyme activity of ALS-resistant biotypes and, conversely, high inhibitory effect on ALS of the susceptible population. Resistance factors were very high, greater than 438, 963 and 474 for Vitorino, Bom Sucesso do Sul and Medianeira biotypes, respectively. The resistance to ALS inhibitors is due to the insensitivity of ALS to herbicides of both imidazolinone and sulfonylurea groups, characterizing a cross-resistance.

E., Xavier; M.C., Oliveira; M.M., Trezzi; R.A., Vidal; F., Diesel; F.D., Pagnoncelli; E., Scalcon.

2013-12-01

39

Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.  

Science.gov (United States)

There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ?2 ?M, Ki ?300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 ?g/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

2014-07-10

40

Farnesyl diphosphate synthase inhibitors from in silico screening.  

Science.gov (United States)

The relaxed complex scheme is an in silico drug screening method that accounts for receptor flexibility using molecular dynamics simulations. Here, we used this approach combined with similarity searches and experimental inhibition assays to identify several low micromolar, non-bisphosphonate inhibitors, bisamidines, of farnesyl diphosphate synthase (FPPS), an enzyme targeted by some anticancer and antimicrobial agents and for the treatment of bone resorption diseases. This novel class of farnesyl diphosphate synthase inhibitors have more drug-like properties than existing bisphosphonate inhibitors, making them interesting pharmaceutical leads. PMID:23421555

Lindert, Steffen; Zhu, Wei; Liu, Yi-Liang; Pang, Ran; Oldfield, Eric; McCammon, J Andrew

2013-06-01

 
 
 
 
41

The optimization of pyridazinone series of glucan synthase inhibitors.  

Science.gov (United States)

A detailed structure-activity relationship study of a novel series of pyridazine-based small molecule glucan synthase inhibitors is described. The optimization of the PK profile of this series led to the discovery of compound 11g, which demonstrated in vivo potency ip in a lethal fungal infection model. PMID:22818082

Kuang, Rongze; Wu, Heping; Ting, Pauline C; Aslanian, Robert G; Cao, Jianhua; Kim, David W; Lee, Joe F; Schwerdt, John; Zhou, Gang; Herr, R Jason; Zych, Andrew J; Yang, Jinhai; Lam, Sang Q; Jenkins, David M; Sakwa, Samuel A; Wainhaus, Samuel; Black, Todd A; Cacciapuoti, Anthony; McNicholas, Paul M; Xu, Yiming; Walker, Scott S

2012-08-15

42

Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis  

International Nuclear Information System (INIS)

Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site

43

Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis  

Energy Technology Data Exchange (ETDEWEB)

Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo(2-/sup 14/C)pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of /sup 14/C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.

Silverman, P.M.; Eoyang, L.

1987-06-01

44

Enhancement of vascular targeting by inhibitors of nitric oxide synthase  

International Nuclear Information System (INIS)

Purpose: This study investigates the enhancement of the vascular targeting activity of the tubulin-binding agent combretastatin A4 phosphate (CA4P) by various inhibitors of nitric oxide synthases. Methods and Materials: The syngeneic tumors CaNT and SaS growing in CBA mice were used for this study. Reduction in perfused vascular volume was measured by injection of Hoechst 33342 24 h after drug administration. Necrosis (hematoxylin and eosin stain) was assessed also at 24 h after treatment. Combretastatin A4 phosphate was synthesized by a modification of the published procedure and the nitric oxide synthase inhibitors L-NNA, L-NMMA, L-NIO, L-NIL, S-MTC, S-EIT, AMP, AMT, and L-TC, obtained from commercial sources. Results: A statistically significant augmentation of the reduction in perfused vascular volume by CA4P in the CaNT tumor was observed with L-NNA, AMP, and AMT. An increase in CA4P-induced necrosis in the same tumor achieved significance with L-NNA, L-NMMA, L-NIL, and AMT. CA4P induced little necrosis in the SaS tumor, but combination with the inhibitors L-NNA, L-NMMA, L-NIO, S-EIT, and L-TC was effective. Conclusions: Augmentation of CA4P activity by nitric oxide synthase inhibitors of different structural classes supports a nitric oxide-related mechanism for this effect. L-NNA was the most effective inhibitor studied

45

Fatty acid synthase inhibitors isolated from Punica granatum L  

International Nuclear Information System (INIS)

The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC50 value of 10.3 ?mol L-1. (author)

46

SAR studies of pyridazinone derivatives as novel glucan synthase inhibitors.  

Science.gov (United States)

A novel series of pyridazinone analogs has been developed as potent ?-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans. PMID:21489787

Zhou, Gang; Ting, Pauline C; Aslanian, Robert; Cao, Jianhua; Kim, David W; Kuang, Rongze; Lee, Joe F; Schwerdt, John; Wu, Heping; Herr, R Jason; Zych, Andrew J; Yang, Jinhai; Lam, Sang; Wainhaus, Samuel; Black, Todd A; McNicholas, Paul M; Xu, Yiming; Walker, Scott S

2011-05-15

47

Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase  

Energy Technology Data Exchange (ETDEWEB)

Dihydropteroate synthase (DHPS) is a key enzyme in bacterial folate synthesis and the target of the sulfonamide class of antibacterials. Resistance and toxicities associated with sulfonamides have led to a decrease in their clinical use. Compounds that bind to the pterin binding site of DHPS, as opposed to the p-amino benzoic acid (pABA) binding site targeted by the sulfonamide agents, are anticipated to bypass sulfonamide resistance. To identify such inhibitors and map the pterin binding pocket, we have performed virtual screening, synthetic, and structural studies using Bacillus anthracis DHPS. Several compounds with inhibitory activity have been identified, and crystal structures have been determined that show how the compounds engage the pterin site. The structural studies identify the key binding elements and have been used to generate a structure-activity based pharmacophore map that will facilitate the development of the next generation of DHPS inhibitors which specifically target the pterin site.

Hevener, Kirk E.; Yun, Mi-Kyung; Qi, Jianjun; Kerr, Iain D.; Babaoglu, Kerim; Hurdle, Julian G.; Balakrishna, Kanya; White, Stephan W.; Lee, Richard E. (Tennessee-HSC); (SJCH)

2010-01-12

48

Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.  

Science.gov (United States)

Dehydrosqualene synthase of Staphylococcus aureus is involved in the synthesis of golden carotenoid pigment staphyloxanthin. This pigment of S. aureus provides the antioxidant property to this bacterium to survive inside the host cell. Dehydrosqualene synthase (CrtM) is having structural similarity with the human squalene synthase enzyme which is involved in the cholesterol synthesis pathway in humans (Liu et al., 2008). Cholesterol lowering drugs were found to have inhibitory effect on dehydrosqualene synthase enzyme of S. aureus. The present study attempts to focus on squalene synthase inhibitors, lapaquistat acetate and squalestatins reported as cholesterol lowering agents in vitro and in vivo but not studied in context to dehydrosqualene synthase of S. aureus. Mode of binding of lapaquistat acetate and squalestatin analogs on dehydrosqualene synthase (CrtM) enzyme of S. aureus was identified by performing docking analysis with Scigress Explorer Ultra 7.7 docking software. Based on the molecular docking analysis, it was found that the His18, Arg45, Asp48, Asp52, Tyr129, Gln165, Asn168 and Asp172 residues interacted with comparatively high frequency with the inhibitors studied. Comparative docking study with Discovery studio 2.0 also confirmed the involvement of these residues of dehydrosqualene synthase enzyme with the inhibitors studied. This further confirms the importance of these residues in the enzyme function. In silico ADMET analysis was done to predict the ADMET properties of the standard drugs and test compounds. This might provide insights to develop new drugs to target the virulence factor, dehydrosqualene synthase of S. aureus. PMID:20645653

Kahlon, Amandeep Kaur; Roy, Sudeep; Sharma, Ashok

2010-10-01

49

Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity.  

Science.gov (United States)

PURPOSE: Fatty acid synthase (FASN) is overexpressed in human breast carcinoma. The natural polyphenol (-)-epigallocatechin-3-gallate blocks in vitro FASN activity and leads to apoptosis in breast cancer cells without any effects on carnitine palmitoyltransferase-1 (CPT-1) activity, and in vivo, does not decrease body weight. We synthesized a panel of new polyphenolic compounds and tested their effects on breast cancer models. EXPERIMENTAL DESIGN: We evaluated the in vitro effects of the compounds on breast cancer cell growth (SK-Br3, MCF-7, and MDA-MB-231), apoptosis [as assessed by cleavage of poly(ADP-ribose) polymerase], cell signaling (HER2, ERK1/2, and AKT), and fatty acid metabolism enzymes (FASN and CPT-1). In vivo, we have evaluated their antitumor activity and their effect on body weight in a mice model of BT474 breast cancer cells. RESULTS: Two compounds potently inhibited FASN activity and showed high cytotoxicity. Moreover, the compounds induced apoptosis and caused a marked decrease in the active forms of HER2, AKT, and ERK1/2 proteins. Interestingly, the compounds did not stimulate CPT-1 activity in vitro. We show evidence that one of the FASN inhibitors blocked the growth of BT474 breast cancer xenografts and did not induce weight loss in vivo. CONCLUSIONS: The synthesized polyphenolic compounds represent a novel class of FASN inhibitors, with in vitro and in vivo anticancer activity, that do not exhibit cross-activation of beta-oxidation and do not induce weight loss in animals. One of the compounds blocked the growth of breast cancer xenografts. These FASN inhibitors may represent new agents for breast cancer treatment. (Clin Cancer Res 2009;15(24):7608-15). PMID:20008854

Puig, Teresa; Turrado, Carlos; Benhamú, Bellinda; Aguilar, Helena; Relat, Joana; Ortega-Gutiérrez, Silvia; Casals, Gemma; Marrero, Pedro F; Urruticoechea, Ander; Haro, Diego; López-Rodríguez, María Luz; Colomer, Ramon

2009-12-15

50

Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.  

Science.gov (United States)

Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia. PMID:18167444

Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

2007-12-01

51

Germination and growth of Fimbristylis miliacea biotypes resistant and susceptible to acetolactate synthase-inhibiting herbicides / Germinação e crescimento de biótipos de Fimbristylis miliacea resistente e suscetível aos herbicidas inibidores da enzima acetolactato sintase  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Biótipos de plantas daninhas suscetíveis e resistentes a herbicidas podem apresentar diferenças quanto ao seu valor adaptativo. Os objetivos deste trabalho foram comparar, em condição controlada e não competitiva, a análise de crescimento, características de germinação e peso de sementes de biótipos [...] de Fimbristylis miliacea resistente e suscetível a herbicidas inibidores da ALS. Experimentos foram conduzidos em casa de vegetação e em laboratório no período de outubro de 2008 a fevereiro de 2010. Para os estudos foram utilizados dois biótipos resistentes (FIMMI 10 e FIMMI 12) e um suscetível (FIMMI 13). No estudo de análise de crescimento, os tratamentos foram organizados em delineamento completamente casualizado com quatro repetições e oito épocas de coletas [21, 28, 35, 42, 49, 56, 69 dias após a emergência (DAE) e no florescimento]. Quanto aos estudos de velocidade de germinação, germinação e peso de sementes, foram determinados os índices de velocidade de germinação, porcentagem de germinação em diferentes temperaturas e peso de sementes dos biótipos. Os resultados demonstraram que o biótipo resistente FIMMI 12 apresentou diferença em todas as variáveis avaliadas em comparação ao biótipo resistente FIMMI 10 e, em comparação ao suscetível FIMMI 13, apenas no florescimento. O biótipo suscetível FIMMI 13 apresentou maior índice de velocidade de germinação e maior germinação em porcentagem quando comparado com os biótipos resistentes. Por outro lado, os biótipos resistentes FIMMI 10 e FIMMI 12 apresentaram maior massa de sementes. Abstract in english Weed biotypes resistant and susceptible to herbicides may have differences in their adaptive values. The aims of this study were to compare, under controlled and non-competitive condition, the growth analysis, germination features and seed weight of Fimbristylis miliacea (FIMMI) biotypes resistant a [...] nd susceptible to acetolactate synthase (ALS) inhibiting herbicides. Experiments were conducted in a greenhouse and in a laboratory from October 2008 to February 2010. Two resistant biotypes (FIMMI 10 and FIMMI 12) and one susceptible biotype (FIMMI 13) were used for the studies. For the study on growth analysis, the treatments were arranged in a completely randomized experimental design with four replications and sampled at 21, 28, 35, 42, 49, 56, 69 days after emergence (DAE) and at flowering stage. For the studies on germination speed, germination and seed weight, the indexes for germination speed, percentage of germination at different temperatures and seed weight of the biotypes were determined. The results showed that the resistant biotype FIMMI 12 shows differences in all variables compared to the resistant biotype FIMMI 10 and compared to the susceptible biotype FIMMI 13, only for the evaluation at flowering. The susceptible biotype FIMMI 13 showed a higher germination speed index and higher germination rate when compared with the resistant biotypes. On the other hand, the resistant biotypes FIMMI 10 and FIMMI 12 showed higher seed weight.

C.E., Schaedler; J.A., Noldin; D., Agostinetto; T., Dal Magro; L.C., Fontana.

2013-09-01

52

Fatty acid synthase inhibitors isolated from Punica granatum L.  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Este trabalho tem por objetivo o isolamento de inibidores da enzima ácido graxo sintase (FAS) a partir de acetato de etila proveniente de extratos de cascas de frutas da Punica granatum L. A investigação química guiada por bioensaios das cascas das frutas resultou no isolamento de dezessete composto [...] s incluindo principalmente triternóides e compostos fenólicos, dos quais um novo triterpeno do tipo oleanano (punicaone) juntamente com quatorze compostos conhecidos foram isolados pela primeira vez a partir desta planta. Sete dos componentes isolados foram avaliados para atividades inibitórias de FAS e dois deles apresentaram-se ativos. Em particular, o ácido flavogalônico que exibiu forte atividade inibitória de FAS com valor de IC50 de 10,3 µmol L-1. Abstract in english The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic co [...] mpounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC50 value of 10.3 µmol L-1.

He-Zhong, Jiang; Qing-Yun, Ma; Hui-Jin, Fan; Wen-Juan, Liang; Sheng-Zhuo, Huang; Hao-Fu, Dai; Peng-Cheng, Wang; Xiao-Feng, Ma; You-Xing, Zhao.

2012-05-01

53

Design of more potent squalene synthase inhibitors with multiple activities.  

Science.gov (United States)

With the increasing realization that modulating a multiplicity of targets can be an asset in the treatment of multifactorial disorders, we hereby report the synthesis and evaluation of the first compounds in which antioxidant, anti-inflammatory as well as squalene synthase (SQS) inhibitory activities are combined by design, in a series of simple molecules, extending their potential range of activities against the multifactorial disease of atherosclerosis. The activity of the initially synthesized antihyperlipidemic morpholine derivatives (1-6), in which we combined several pharmacophore moieties, was evaluated in vitro (antioxidant, inhibition of SQS and lipoxygenase) and in vivo (anti-dyslipidemic and anti-inflammatory effect). We further compared the in vitro SQS inhibitory action of these derivatives with theoretically derived molecular interactions by performing an in silico docking study using the X-ray crystal structure of human SQS. Based on low energy preferred binding modes, we designed potentially more potent SQS ligands. We proceeded with synthesizing and evaluating these new structures (7-12) in vitro and in vivo, to show that the new derivatives were significantly more active than formerly developed congeners, both as SQS inhibitors (20-70-fold increase in activity) and antioxidants (4-30-fold increase in activity). A significant correlation between experimental activity [Log(1/IC(50))] and the corresponding binding free energy (?G(b)) of the docked compounds was shown. These results, taken together, show a promising alternative and novel approach for the design and development of multifunctional antiatherosclerosis agents. PMID:20888243

Kourounakis, Angeliki P; Matralis, Alexios N; Nikitakis, Anastasios

2010-11-01

54

Biochemistry: Acetohydroxyacid Synthase  

Directory of Open Access Journals (Sweden)

Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

Pham Ngoc Chien

2010-02-01

55

Chloropropionyl-CoA: a mechanism-based inhibitor of HMG-CoA synthase and fatty acid synthase  

International Nuclear Information System (INIS)

Recent work on the mechanisms of inactivation of HMG-CoA synthase and fatty acid synthase by chloropropionyl-CoA (Cl-prop-CoA) suggests that this analog is a mechanism-based (suicide) inhibitor; the acyl group is enzymatically converted to an acrylyl derivative prior to alkylation of the target proteins. When Cl-[3H]prop-CoA is incubated with the target enzymes, 3H2O is produced concomitantly with enzyme inactivation; this suggests that deprotonation and chloride elimination to form an acrylyl moiety occurs. Difficulty in cleanly synthesizing acrylyl-CoA complicates direct demonstration of the intermediacy of this species. However, synthesis of a functionally equivalent reactive substrate analog, S-acrylyl-N-acetylcysteamine has been accomplished. This analog irreversibly inhibits both HMG-CoA synthase and fatty acid synthase in a site directed fashion. Concentrations required for effective inhibition (K/sub i/ values of 1.9 mM and 3.6 mM, respectively) are much higher than observed with Cl-prop-CoA. Maximal rates of inactivation (as vertical bar ? ?) are comparable to those measured with Cl-prop-CoA, indicating that an acrylyl derivative is kinetically competent to function as an intermediate, as required if Cl-prop-CoA is a mechanism-based inhibitor. S-acrylyl-N-acetylcysteamine also inactivates HMG-CoA lyase. In this case, kinetic studies indicate that a bimolecular process is involved (k2 = 86.7M-1min-1 at 300, pH 7.0)

56

Chloropropionyl-CoA: a mechanism-based inhibitor of HMG-CoA synthase and fatty acid synthase  

Energy Technology Data Exchange (ETDEWEB)

Recent work on the mechanisms of inactivation of HMG-CoA synthase and fatty acid synthase by chloropropionyl-CoA (Cl-prop-CoA) suggests that this analog is a mechanism-based (suicide) inhibitor; the acyl group is enzymatically converted to an acrylyl derivative prior to alkylation of the target proteins. When Cl-(/sup 3/H)prop-CoA is incubated with the target enzymes, /sup 3/H/sub 2/O is produced concomitantly with enzyme inactivation; this suggests that deprotonation and chloride elimination to form an acrylyl moiety occurs. Difficulty in cleanly synthesizing acrylyl-CoA complicates direct demonstration of the intermediacy of this species. However, synthesis of a functionally equivalent reactive substrate analog, S-acrylyl-N-acetylcysteamine has been accomplished. This analog irreversibly inhibits both HMG-CoA synthase and fatty acid synthase in a site directed fashion. Concentrations required for effective inhibition (K/sub i/ values of 1.9 mM and 3.6 mM, respectively) are much higher than observed with Cl-prop-CoA. Maximal rates of inactivation (as vertical bar ..-->.. infinity) are comparable to those measured with Cl-prop-CoA, indicating that an acrylyl derivative is kinetically competent to function as an intermediate, as required if Cl-prop-CoA is a mechanism-based inhibitor. S-acrylyl-N-acetylcysteamine also inactivates HMG-CoA lyase. In this case, kinetic studies indicate that a bimolecular process is involved (k/sub 2/ = 86.7M/sup -1/min/sup -1/ at 30/sup 0/, pH 7.0).

Miziorko, H.M.; Ahmad, F.; Behnke, C.E.

1986-05-01

57

Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening.  

Science.gov (United States)

Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10?M, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100?M, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties. PMID:23886809

Magellan, Hervé; Boccara, Martine; Drujon, Thierry; Soulié, Marie-Christine; Guillou, Catherine; Dubois, Joëlle; Becker, Hubert F

2013-09-01

58

Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.  

Science.gov (United States)

Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale. PMID:20823611

Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

2010-09-01

59

Glutamine analogues containing a keto function--novel inhibitors of fungal glucosamine-6-phosphate synthase.  

Science.gov (United States)

A series of novel inhibitors of glucosamine-6-phosphate synthase, analogues of AADP and BADP, have been synthesized and their inhibitory, lipophilic and antifungal properties have been tested. The improvement in lipophilicity has not much affected the antifungal activity of the new compounds. Dipeptides containing norvaline and selected inhibitors have shown substantial activity against S. cerevisiae and C. glabrata and only poor activity against C. albicans strain. These peptides do not seem to be toxic towards human cells. PMID:16335051

Walkowiak, Aleksandra; Wakie?, Roland; Bontemps-Gracz, Maria M; Andruszkiewicz, Ryszard

2005-10-01

60

Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors.  

Science.gov (United States)

The present work reports the effects of caspofungin, a ?-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting ?-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the ?-glucan synthase inhibitor against this fungus. PMID:24614372

Fernandes, Chantal; Anjos, Jorge; Walker, Louise A; Silva, Branca M A; Cortes, Luísa; Mota, Marta; Munro, Carol A; Gow, Neil A R; Gonçalves, Teresa

2014-05-01

 
 
 
 
61

Human thromboxane synthase: comparative modeling and docking evaluation with the competitive inhibitors Dazoxiben and Ozagrel.  

Science.gov (United States)

Thromboxane synthase (TXAS) is a P450 epoxygenase that synthesizes thromboxane A2 (TXA2), a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. This enzyme plays an important role in several human diseases, including myocardial infarction, stroke, septic shock, asthma and cancer. Despite of the increasing interest on developing TXAS inhibitors, the structure and activity of TXAS are still not totally elucidated. In this study, we used a comparative molecular modeling approach to construct a reliable model of TXAS and analyze its interactions with Dazoxiben and Ozagrel, two competitive inhibitors. Our results were compatible with experimental published data, showing feasible cation-? interaction between the iron atom of the heme group of TXAS and the basic nitrogen atom of the imidazolyl group of those inhibitors. In the absence of the experimental structure of thromboxane synthase, this freely available model may be useful for designing new antiplatelet drugs for diseases related with TXA2. PMID:23914925

Sathler, Plínio Cunha; Santana, Marcos; Lourenço, André Luiz; Rodrigues, Carlos Rangel; Abreu, Paula; Cabral, Lúcio Mendes; Castro, Helena Carla

2014-08-01

62

Squalene synthase inhibitors: An update on the search for new antihyperlipidemic and antiatherosclerotic agents.  

Science.gov (United States)

Atherosclerosis and related heart disease is strongly associated with elevated blood levels of total (and LDL) cholesterol. Due to the widespread incidence as well as severity of this pathological condition, major efforts have been made for the discovery and development of hypocholesteroleamic agents. In the past few decades, HMG-CoA reductase inhibitors (statins) are being extensively used as lipid lowering drugs. These agents act predominantly by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) that is the rate limiting step of cholesterol biosynthesis. Both the success as well as drawbacks of HMGRIs, have led to the investigation and design of inhibitors of other (downstream) enzymes involved in the multistep cholesterol biosynthetic pathway. One such class of agents consists of the squalene sythase inhibitors which act at the first and solely committed step towards the biosynthesis of the cholesterol nucleus. This target is considered not to interfere with the biosynthesis of other biologically important molecules and thus a better side-effect profile is expected for these inhibitors. Several classes of squalene synthase inhibitors (SQSIs), such as substrate or transition-state analogues, zaragozic acids or 2,8- dioxabicyclo[3.2.1]octane derivatives, dicarboxylic acid and quinuclidine derivatives, 4,1-benzoxazepine as well as substituted morpholine derivatives, have been studied as potent inhibitors of squalene synthase. So far only one benzoxazepine derivative (TAK-475) has been evaluated in advanced clinical trials. In this article we review the up to date research and literature on the therapeutic potential of this relatively new class of compounds, the drug discovery efforts towards the development of active squalene synthase inhibitors, their activity profile and effectiveness, as well as their structure-activity relationships. PMID:21864285

Kourounakis, A P; Katselou, M G; Matralis, A N; Ladopoulou, E M; Bavavea, E

2011-01-01

63

Photo-control of nitric oxide synthase activity using a caged isoform specific inhibitor.  

Science.gov (United States)

Nitric oxide (NO) plays a critical role in a number of physiological processes and is produced in mammalian cells by nitric oxide synthase (NOS) isozymes. Because of the diverse functions of NO, pharmaceutical interventions which seek to abrogate adverse effects of excess NOS activity must not interfere with the normal regulation of NO levels in the body. A method has been developed for the control of NOS enzyme activity using the localized photochemical release of a caged isoform-specific NOS inhibitor. The caged form of an iNOS inhibitor has been synthesized and tested for photosensitivity and potency. UV and multiphoton uncaging were verified using a hemoglobin-based assay. IC(50) values were determined for the inhibitor (70+/-11 nM), the caged inhibitor (1098+/-172 nM), the UV uncaged inhibitor (67+/-26 nM) and the multiphoton uncaged inhibitor (73+/-11 nM). UV irradiation of the caged inhibitor resulted in a 86% reduction in iNOS activity after 5 min. Multiphoton uncaging had an apparent first order time constant of 0.007+/-0.001 min(-1). A therapeutic range exists, with molar excess of inhibitor to enzyme from 3- to 7-fold, over which the full dynamic range of the inhibition can be exploited. PMID:11937350

Montgomery, Heather J; Perdicakis, Basil; Fishlock, Dan; Lajoie, Gilles A; Jervis, Eric; Guy Guillemette, J

2002-06-01

64

Effect of a selective thromboxane synthase inhibitor on arterial graft patency and platelet deposition in dogs  

International Nuclear Information System (INIS)

This study examined the effect of selective thromboxane synthase inhibition and nonselective cyclooxygenase inhibition on vascular graft patency and indium 111-labeled platelet deposition in 35 mongrel dogs undergoing carotid artery replacement with 4 mm X 4 cm polytetrafluoroethylene (PTFE) (one side) and Dacron (opposite side) end-to-end grafts. Aspirin-dipyridamole therapy improved one-week graft patency, from 46% in untreated dogs to 93% in treated dogs. Thromboxane synthase inhibition (U-63557A) improved graft patency in these dogs to 81%. Both drug treatments reduced platelet deposition on Dacron and PTFE grafts by 48% to 68% compared with control dogs. Dacron grafts accumulated significantly more platelets than PTFE grafts but had comparable patency rates. Low-dose aspirin therapy had no significant effect on either graft patency or platelet deposition. All treatment groups showed a 60% to 76% reduction in serum thromboxane B2, but only thromboxane synthase inhibitor treatment increased plasma 6-keto-prostaglandin F1 alpha by 100%. Selective thromboxane synthase inhibition improved small-caliber prosthetic graft patency to the same extent as did conventional cyclooxygenase inhibition in this preliminary study

65

Effects of new nitric oxide synthase inhibitors on spontaneous locomotor activity  

Directory of Open Access Journals (Sweden)

Full Text Available Introduction. New nitric oxide synthase (NOS inhibitors: 3-bromo-7-nitro- indazole (3-Br-7-NI, 1-(2-trifluoromethylphenyl imidazole (TRIM, S-methyl-L-thiocitrulline (S-Me-TC and 7-nitroindazole (7-NI reduce spontaneous locomotor activity in mice. Material and methods. In order to elucidate central effects of NOS inhibitors on locomotor activity, the influence of 7-NI on electroencephalographic (EEG power spectrum in rats was investigated. Results. 7-NI reduced the EEG power density in all frequency bands in rats, suggesting a depression of the central neuronal activity. The electrophysiologic power was most reduced in the range of 7-9 Hz of the rhythmic slow activity (theta rhythm, which is in accordance with decreased locomotor activity observed following administration of NOS inhibitors. Conclusion. The present results indicate that nitric oxide exerts an excitatory effect on central neuronal structures involved in regulation of locomotion. .

Džolji? Eleonora

2006-01-01

66

Substituted pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis thymidylate synthase inhibitors.  

Science.gov (United States)

Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2'-chlorophenyl with a sulfur bridge with a Ki of 8.83±0.67 nM is discussed in terms of several Van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors. PMID:23927969

Kumar, Vidya P; Frey, Kathleen M; Wang, Yiqiang; Jain, Hitesh K; Gangjee, Aleem; Anderson, Karen S

2013-10-01

67

Arginine metabolism in keratinocytes and macrophages during nitric oxide biosynthesis: multiple modes of action of nitric oxide synthase inhibitors.  

Science.gov (United States)

Nitric oxide is an important cellular mediator produced in keratinocytes and macrophages from arginine by the enzyme nitric oxide synthase during inflammatory reactions in the skin. We found that gamma-interferon stimulated nitric oxide production and the expression of inducible nitric oxide synthase in both cell types. However, macrophages produced more nitric oxide and nitric oxide synthase protein, and at earlier times than keratinocytes. Keratinocytes treated with gamma-interferon took up more arginine than macrophages; however, they were less efficient in metabolizing this amino acid and exhibited reduced nitric oxide synthase enzyme activity. In both cell types, the nitric oxide synthase inhibitors, N(G)-monomethyl-L-arginine (NMMA), L-N5-(iminoethyl)ornithine, L-canavanine, and N(omega)-nitro-L-arginine, as well as lysine, ornithine, and homoarginine markedly reduced arginine uptake. In contrast, N(omega)-nitro-L-arginine methyl ester and N(omega)-nitro-L-arginine benzyl ester were poor inhibitors of arginine uptake, while aminoguanidine had no effect on uptake of arginine by the cells. Moreover, NMMA was found to inhibit simultaneously arginine uptake and nitric oxide synthase enzyme activity in both cell types, whereas aminoguanidine only affected nitric oxide synthase activity. No major differences were observed between keratinocytes and macrophages. Taken together, these data demonstrate that, although keratinocytes and macrophages both synthesize nitric oxide, its production is regulated distinctly in these two cell types. Furthermore, in these cells, nitric oxide synthase inhibitors such as NMMA exhibit at least two sites of action: inhibition of nitric oxide synthase and cellular uptake of arginine. PMID:9296356

DeGeorge, G L; Heck, D E; Laskin, J D

1997-07-01

68

A human fatty acid synthase inhibitor binds ?-ketoacyl reductase in the keto-substrate site.  

Science.gov (United States)

Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the ?-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor. PMID:25086508

Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

2014-09-01

69

Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain.  

Science.gov (United States)

Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed. PMID:24549364

Mukherjee, Paramita; Cinelli, Maris A; Kang, Soosung; Silverman, Richard B

2014-10-01

70

N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase.  

Science.gov (United States)

A series of N-substituted acetamidines and 2-methylimidazole derivatives structurally related to W1400 were synthesized and evaluated as Nitric Oxide Synthase (NOS) inhibitors. Analogs with sterically hindering isopropyl and phenyl substituents on the benzylic carbon connecting the aromatic core of W1400 to the acetamidine nitrogen, showed good inhibitory potency for nNOS (IC(50)=0.2 and 0.3 ?M) and selectivity over eNOS (500 and 1166) and to a lesser extent over iNOS (50 and 100). A molecular modeling study allowed to shed light on the effects of the structural modifications on the selectivity of the designed inhibitors toward the different NOS isoforms. PMID:20933416

Maccallini, Cristina; Patruno, Antonia; Lannutti, Fabio; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Felaco, Mario; Re, Nazzareno; Amoroso, Rosa

2010-11-15

71

A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.  

Science.gov (United States)

Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach. PMID:23924613

Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

2013-08-20

72

Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886.  

Science.gov (United States)

A series of potent and selective inhibitors of the inducible microsomal PGE2 synthase (mPGES-1) has been developed based on the indole FLAP inhibitor MK-886. Compounds 23 and 30 inhibit mPGES-1 with potencies in the low nanomolar range and with selectivities of at least 100-fold compared to their inhibition of mPGES-2, thromboxane synthase and binding affinity to FLAP. They also block the production of PGE2 in cell based assays but with a decreased potency and more limited selectivity compared to the enzyme assays. PMID:15953724

Riendeau, Denis; Aspiotis, Renee; Ethier, Diane; Gareau, Yves; Grimm, Erich L; Guay, Jocelyne; Guiral, Sébastien; Juteau, Hélène; Mancini, Joseph A; Méthot, Nathalie; Rubin, Joel; Friesen, Richard W

2005-07-15

73

7-nitroindazole, a selective neuronal nitric oxide synthase inhibitore in vivo, prevents kainate-induced intrahippocampal neurotoxicity  

Directory of Open Access Journals (Sweden)

Full Text Available We investigated the effects of 7-nitroindazole (7-NI, a selective neuronal nitric oxide synthase inhibitor in vivo, on nitrite concentration after kainic acid injection unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times in hippocampus, forebrain cortex, striatum, and cerebellum homogenates. 7-nitroindazole can effectively inhibit NO synthesis in rat brain after kainate-induced neurotoxicity and suppressed nitrite accumulation. The present results suggest that neuronal NO synthase inhibitors may be useful in the treatment of neurological diseases in which excitotoxic mechanisms play a role.

Radenovi? Lidija Lj.

2005-01-01

74

Fatty Acid Synthase Inhibitors from Plants and Their Potential Application in the Prevention of Metabolic Syndrome  

Directory of Open Access Journals (Sweden)

Full Text Available Fatty acid synthase (FAS attracts more and more attention recently as a potential target for metabolic syndrome, such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins, flavonoids, condensed and hydrolysable tannins, thioethers, pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fat-reducing and depression of cancer. From biochemical angle, FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have signi? cant potential application value in the treatment and prevention of metabolic syndromes.

Wei-xi Tian, Xiao-feng Ma, Shu-yan Zhang, Ying-hui Sun, Bing-hui Li

2011-03-01

75

Novel prostaglandin D synthase inhibitors generated by fragment-based drug design.  

Science.gov (United States)

We describe the discovery of novel inhibitors of prostaglandin D2 synthase (PGDS) through fragment-based lead generation and structure-based drug design. A library of 2500 low-molecular-weight compounds was screened using 2D nuclear magnetic resonance (NMR), leading to the identification of 24 primary hits. Structure determination of protein-ligand complexes with the hits enabled a hit optimization process, whereby we harvested increasingly more potent inhibitors out of our corporate compound collection. Two iterative cycles were carried out, comprising NMR screening, molecular modeling, X-ray crystallography, and in vitro biochemical testing. Six novel high-resolution PGDS complex structures were determined, and 300 hit analogues were tested. This rational drug design procedure culminated in the discovery of 24 compounds with an IC 50 below 1 microM in the in vitro assay. The best inhibitor (IC 50 = 21 nM) is one of the most potent inhibitors of PGDS to date. As such, it may enable new functional in vivo studies of PGDS and the prostaglandin metabolism pathway. PMID:18341273

Hohwy, Morten; Spadola, Loredana; Lundquist, Britta; Hawtin, Paul; Dahmén, Jan; Groth-Clausen, Ib; Nilsson, Ewa; Persdotter, Sofia; von Wachenfeldt, Karin; Folmer, Rutger H A; Edman, Karl

2008-04-10

76

Inducible Nitric Oxide Synthase Inhibitor SD-3651 Reduces Proteinuria in MRL/lpr Mice Deficient in the NOS2 Gene  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Several studies have demonstrated the effectiveness of arginine analog nitric oxide synthase (NOS) inhibitor therapy in preventing and treating murine lupus nephritis. However, MRL/MpJ-FASlpr (MRL/lpr) mice lacking a functional NOS2 (inducible NOS [iNOS]) gene (NOS2?/?) develop proliferative glomerulonephritis in a fashion similar to their wild-type (wt) littermates. This finding suggests that the effect of arginine analog NOS inhibitors is through a non-iNOS–mediated mechanism. This st...

Njoku, Chinedu; Ruiz, Philip; Gilkeson, Gary S.; Oates, Jim C.

2008-01-01

77

ELIGLUSTAT TARTRATE: Glucosylceramide Synthase Inhibitor Treatment of Type 1 Gaucher Disease.  

Science.gov (United States)

Eliglustat tartrate (Genz-112638) is a novel, orally administered agent currently in development for the treatment of lysosomal storage disorders, including type 1 Gaucher disease and Fabry disease. This glucosylceramide analogue acts as an inhibitor of glucosylceramide synthase, a Golgi complex enzyme that catalyzes the formation of glucosylceramide from ceramide and UDP-glucose and is the first step in the formation of glucocerebroside-based glycosphingolipids. Pre-clinical pharmacological studies demonstrate that the agent has a high therapeutic index, excellent oral bioavailability and limited toxicity. Phase I studies in healthy volunteers revealed limited toxicity with an excellent pharmacodynamic response, as measured by decreased plasma glucosylceramide concentrations. Phase II studies in patients with type 1 Gaucher disease have demonstrated promising clinical responses, as measured by decreases in spleen size, improvement in hemoglobin concentrations and increased platelet counts. Two randomized phase III trials testing the efficacy and safety of eliglustat tartrate are currently in progress. PMID:22563139

Shayman, J A

2010-08-01

78

Nitric oxide synthase inhibitors protect cholinergic neurons against quinolinic acid toxicity in the rat brain  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this study was to examine the effects of intrastriatally injected nitric oxide synthase (NOS inhibitors, N?-nitro-l-arginine methyl ester (L-NAME and 7-nitroindazole (7-NI, on quinolinic acid (QA-induced toxicity in selective vulnerable brain regions of adult Wistar rats. QA was administered into the striatum unilaterally, in a single dose of 150 nM/L with a stereotaxic instrument. The other two experimental groups were pretreated with L-NAME and 7-NI, respectively. The control group of animals was treated with 0.154 mM/L saline solution. The animals were decapitated seven days after the treatment. Samples of both striatum and forebrain cortex were prepared for measurement of acetylcholinesterase (AChE activity. QA injection revealed a significant increase in AChE activity in both the ipsi- and contralateral striatum and forebrain cortex compared to the control animals. Treatment with NOS inhibitors, followed by QA, very clearly demonstrated lower levels of AChE bilaterally in these brain structures, compared to the QA-treated group.

Stevanovi? Ivana

2013-01-01

79

Endogenous Nitric-Oxide Synthase Inhibitor ADMA after Acute Brain Injury  

Directory of Open Access Journals (Sweden)

Full Text Available Previous results on nitric oxide (NO metabolism after traumatic brain injury (TBI show variations in NO availability and controversial effects of exogenous nitric oxide synthase (NOS-inhibitors. Furthermore, elevated levels of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA were reported in cerebro-spinal fluid (CSF after traumatic subarachnoid hemorrhage (SAH. Therefore, we examined whether ADMA and the enzymes involved in NO- and ADMA-metabolism are expressed in brain tissue after TBI and if time-dependent changes occur. TBI was induced by controlled cortical impact injury (CCII and neurological performance was monitored. Expression of NOS, ADMA, dimethylarginine dimethylaminohydrolases (DDAH and protein-arginine methyltransferase 1 (PRMT1 was determined by immunostaining in different brain regions and at various time-points after CCII. ADMA and PRMT1 expression decreased in all animals after TBI compared to the control group, while DDAH1 and DDAH2 expression increased in comparison to controls. Furthermore, perilesionally ADMA is positively correlated with neuroscore performance, while DDAH1 and DDAH2 are negatively correlated. ADMA and its metabolizing enzymes show significant temporal changes after TBI and may be new targets in TBI treatment.

Carla S. Jung

2014-03-01

80

Endogenous Nitric-Oxide Synthase Inhibitor ADMA after Acute Brain Injury  

Science.gov (United States)

Previous results on nitric oxide (NO) metabolism after traumatic brain injury (TBI) show variations in NO availability and controversial effects of exogenous nitric oxide synthase (NOS)-inhibitors. Furthermore, elevated levels of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) were reported in cerebro-spinal fluid (CSF) after traumatic subarachnoid hemorrhage (SAH). Therefore, we examined whether ADMA and the enzymes involved in NO- and ADMA-metabolism are expressed in brain tissue after TBI and if time-dependent changes occur. TBI was induced by controlled cortical impact injury (CCII) and neurological performance was monitored. Expression of NOS, ADMA, dimethylarginine dimethylaminohydrolases (DDAH) and protein-arginine methyltransferase 1 (PRMT1) was determined by immunostaining in different brain regions and at various time-points after CCII. ADMA and PRMT1 expression decreased in all animals after TBI compared to the control group, while DDAH1 and DDAH2 expression increased in comparison to controls. Furthermore, perilesionally ADMA is positively correlated with neuroscore performance, while DDAH1 and DDAH2 are negatively correlated. ADMA and its metabolizing enzymes show significant temporal changes after TBI and may be new targets in TBI treatment. PMID:24663083

Jung, Carla S.; Wispel, Christian; Zweckberger, Klaus; Beynon, Christopher; Hertle, Daniel; Sakowitz, Oliver W.; Unterberg, Andreas W.

2014-01-01

 
 
 
 
81

2-alkylaminoethyl-1,1-bisphosphonic acids are potent inhibitors of the enzymatic activity of Trypanosoma cruzi squalene synthase.  

Science.gov (United States)

As part of our efforts aimed at searching for new antiparasitic agents, the effect of representative 2-alkylaminoethyl-1,1-bisphosphonic acids on Trypanosoma cruzi squalene synthase (TcSQS) was investigated. These compounds had proven to be potent inhibitors of T. cruzi. This cellular activity had been associated with an inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase. 2-Alkylaminoethyl-1,1-bisphosphonic acids appear to have a dual action, since they also inhibit TcSQS at the nanomolar range. PMID:22585217

Rodrígues-Poveda, Carlos A; González-Pacanowska, Dolores; Szajnman, Sergio H; Rodríguez, Juan B

2012-08-01

82

Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor.  

Science.gov (United States)

The triazolopyrimidine-2-sulfonanilide, discovered from preparing bioisosteres of the sulfonylurea herbicides, is an important class of acetohydroxyacid synthase (AHAS, EC 4.1.3.18) inhibitors. At least over ten triazolopyrimidine sulfonanilides have been commercialized as herbicides for the control of broadleaf weeds and grass with cereal crop selectivity. Herein, a series of triazolopyrimidine-2-sulfonanilides were designed and synthesized with the aim of discovery of new herbicides with higher activity. The assay results of the inhibition activity of the synthesized compounds against Arabidopsis thatiana AHAS indicated that some compounds showed a little higher activity against flumetsulam (FS), the first commercial triazolopyrimidine-2-sulfonanilide-type herbicide. The ki values of two promising compounds 3d and 8h are respectively, 1.61 and 1.29 microM, while that of FS is 1.85 microM. Computational simulation results indicated the ester group of compound 3d formed hydrogen bonds with the surrounding residues Arg'198 and Ser653, which accounts for its 11.5-folds higher AHAS inhibition activity than Y6610. Further green house assay showed that compound 3d has comparable herbicidal activity as FS. Even at the concentration of 37.5g.ai/ha, 3d showed excellent herbicidal activity against Galium aparine, Cerastium arvense, Chenopodium album, Amaranthus retroflexus, and Rmumex acetasa, moderate herbicidal activity against Polygonum humifusum, Cyperus iria, and Eclipta prostrate. The combination of in vitro and in vivo assay indicated that 3d could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study. PMID:20598554

Chen, Chao-Nan; Chen, Qiong; Liu, Yu-Chao; Zhu, Xiao-Lei; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

2010-07-15

83

A pharmacophore model for sulphonyl-urea (-cyanoguanidine) compounds with dual action, thromboxane receptor antagonists and thromboxane synthase inhibitors.  

Science.gov (United States)

A 3D pharmacophore model was developed for original sulphonyl-urea (-cyanoguanidine) compounds and known molecules which behave both as thromboxane receptor antagonists and as thromboxane synthase inhibitors. Five recognition sites appear to be essential for this dual activity: two hydrogen bond acceptors, an anionic site, a hydrophobic group and an aromatic ring. Such a model could be used to design new leads possessing the same pharmacological profile and to improve the activity of our compounds. PMID:12932901

Michaux, Catherine; Dogné, Jean-Michel; Rolin, Stéphanie; Masereel, Bernard; Wouters, Johan; Durant, François

2003-01-01

84

Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Background and purpose: Glycogen synthase kinase-3 (GSK-3) affects neuropathological events associated with Alzheimers disease (AD) such as hyperphosphorylation of the protein, tau. GSK-3beta expression, enzyme activity and tau phosphorylated at AD-relevant epitopes are elevated in juvenile rodent brains. Here, we assess five GSK-3beta inhibitors and lithium in lowering phosphorylated tau (p-tau) and GSK-3beta enzyme activity levels in 12-day old postnatal rats. Experimental approach: Bra...

Selenica, Maj-linda; Jensen, Henning S.; Larsen, Anna Kirstine; Pedersen, M. L.; Helboe, Lone; Leist, Marcel; Lotharius, Julie

2007-01-01

85

Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice  

Energy Technology Data Exchange (ETDEWEB)

Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

2012-05-02

86

Effect of thromboxane synthase inhibitor, CS-518, on propranolol-induced bronchoconstriction in guinea pigs.  

Science.gov (United States)

Beta-adrenoreceptor antagonists, such as propranolol, can provoke severe bronchoconstriction in asthmatic subjects. Recently we developed an animal model of propranolol-induced bronchoconstriction and investigated the involvement of chemical mediators in this reaction. The purpose of this study was to elucidate the role of thromboxane A2 in the development of propranolol-induced bronchoconstriction after allergic bronchoconstriction. Passively sensitized guinea pigs were anesthetized and treated with diphenhydramine hydrochloride and were then artificially ventilated. Propranolol at a concentration of 10 mg/ml was inhaled 20 min after an aerosolized antigen challenge. A potent and selective thromboxane A2 synthase inhibitor, CS-518, in doses of 0.01, 0.1 and 1 mg/kg and vehicle were administered intravenously 15 min after the antigen challenge. Another study was performed in naive guinea pigs; ascending doses of methacholine (12.5, 25, 50, 100 and 200 microg/ml) were inhaled for 20 sec at 5-min intervals, 10 min after intravenous administration of CS-518. Propranolol inhaled 20 min after the antigen challenge caused bronchoconstriction in sensitized guinea pigs. CS-518 administered 15 min after the antigen challenge significantly inhibited propranolol-induced bronchoconstriction in a dose-dependent manner, while CS-518 did not influence the dose-dependent response to inhaled methacholine in naive guinea pigs. We conclude that thromboxane A2 contributes to the development of propranolol-induced bronchoconstriction following allergic reaction in our guinea pig model. PMID:10894553

Ishiura, Y; Fujimura, M; Myou, S; Amemiya, T; Nobata, K; Liu, Q; Yamamori, C; Matsuda, T

2000-01-01

87

Effect of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, on behavioral and physiological parameters.  

Science.gov (United States)

The role of brain derived nitric oxide in the physiology and behavior remains disputable. One of the reasons of the controversies might be systemic side effects of nitric oxide synthase inhibitors. Therefore, under nNOS inhibition by 7-nitroindazole (7-NI) we carried out recordings of blood gasses, blood pressure and spontaneous EEG in conscious adult rats. Locomotion and spontaneous behavior were assessed in an open field. In addition skilled walking and limb coordination were evaluated using a ladder rung walking test. The blood gas analysis revealed a significant increase in pCO(2) 180 min and 240 min after the application of 7-NI. The power and entropy decreased simultaneously with a shift of the mean frequency of the spontaneous EEG toward slow oscillations after 7-NI treatment. The thresholds of evoked potentials underwent a significant drop and a trend towards a slight increase in the I-O curve slope was observed. 7-NI significantly suppressed open field behavior expressed as distance moved, exploratory rearing and grooming. As for the ladder rung walking test the 7-NI treated animals had more errors in foot placement indicating impairment in limb coordination. Therefore our findings suggest that 7-NI increased cortical excitability and altered some physiological and behavioral parameters. PMID:24908089

BroŽí?ková, C; Mikulecká, A; Otáhal, J

2014-11-27

88

Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain.  

Science.gov (United States)

Synthesis inhibition is the basis for the treatment of type 1 Gaucher disease by the glucosylceramide synthase (GCS) inhibitor eliglustat tartrate. However, the extended use of eliglustat and related compounds for the treatment of glycosphingolipid storage diseases with CNS manifestations is limited by the lack of brain penetration of this drug. Property modeling around the D-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP) pharmacophore was employed in a search for compounds of comparable activity against the GCS but lacking P-glycoprotein (MDR1) recognition. Modifications of the carboxamide N-acyl group were made to lower total polar surface area and rotatable bond number. Compounds were screened for inhibition of GCS in crude enzyme and whole cell assays and for MDR1 substrate recognition. One analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (CCG-203586), was identified that inhibited GCS at low nanomolar concentrations with little to no apparent recognition by MDR1. Intraperitoneal administration of this compound to mice for 3 days resulted in a significant dose dependent decrease in brain glucosylceramide content, an effect not seen in mice dosed in parallel with eliglustat tartrate. PMID:22058426

Larsen, Scott D; Wilson, Michael W; Abe, Akira; Shu, Liming; George, Christopher H; Kirchhoff, Paul; Showalter, H D Hollis; Xiang, Jianming; Keep, Richard F; Shayman, James A

2012-02-01

89

Discovery of a compound that acts as a bacterial PyrG (CTP synthase) inhibitor.  

Science.gov (United States)

PyrG (CTP synthase) catalyses the conversion of UTP to CTP, an essential step in the pyrimidine metabolic pathway in a variety of bacteria, including those causing community-acquired respiratory tract infections (RTIs). In this study, a luminescence-based ATPase assay of PyrG was developed and used to evaluate the inhibitory activity of 2-(3-[3-oxo-1,2-benzisothiazol-2(3H)-yl]phenylsulfonylamino) benzoic acid (compound G1). Compound G1 inhibited PyrG derived from Streptococcus pneumoniae with a 50?% inhibitory concentration value of 0.091 µM, and the inhibitory activity of compound G1 was 13 times higher than that of acivicin (1.2 µM), an established PyrG inhibitor. The results of saturation transfer difference analysis using nuclear magnetic resonance spectroscopy suggested that these compounds compete with ATP and/or UTP for binding to Strep. pneumoniae PyrG. Finally, compound G1 was shown to have antimicrobial activity against several different bacteria causing RTIs, such as Staphylococcus aureus and Haemophilus influenzae, suggesting that it is a prototype chemical compound that could be harnessed as an antimicrobial drug with a novel structure to target bacterial PyrG. PMID:22700553

Yoshida, Tatsuhiko; Nasu, Hatsumi; Namba, Eiko; Ubukata, Osamu; Yamashita, Makoto

2012-09-01

90

Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase.  

Science.gov (United States)

Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors. PMID:25127103

Kumar, Vidya P; Cisneros, Jose A; Frey, Kathleen M; Castellanos-Gonzalez, Alejandro; Wang, Yiqiang; Gangjee, Aleem; White, A Clinton; Jorgensen, William L; Anderson, Karen S

2014-09-01

91

Interaction between inhibitors of inducible nitric oxide synthase and cyclooxygenase in Brewer's yeast induced pyrexia in mice: an isobolographic study.  

Science.gov (United States)

We studied the interaction of S-methylisothiourea (a selective inducible nitric oxide synthase inhibitor) with rofecoxib (selective cyclooxygenase-2 inhibitor) and mefenamic acid (non-selective cyclooxygenase inhibitor) in Brewer's yeast-induced pyrexia in mice by isobolographic analysis. Each drug was effective in reducing pyrexia when used alone. Log-dose-response curves of all the three drugs did not show any significant departure from parallelism indicating thereby, a common mode of antipyretic action. However, rofecoxib exhibited significantly higher potency than S-methylisothiourea. Isobolographic analysis of combination of S-methylisothiourea with rofecoxib and mefenamic acid revealed additive interaction. Experimental ED(50) of the combinations was not significantly different from theoretical additive ED(50) of the corresponding drug combination, that substantiated the additive nature of interaction between inducible nitric oxide synthase and cyclooxygenase in Brewer's yeast-induced fever in mice. Results suggest involvement of a mediator that is subservient to both inducible nitric oxide synthase and cyclooxygenase-2 enzyme activities. For further investigation, peroxynitrite ion may be considered to be the putative mediator. PMID:15792781

Bhat, Abdul-Shakoor; Tandan, Surendra Kumar; Kumar, Dinesh; Krishna, Vamsi; Prakash, Vellanki Ravi

2005-03-28

92

A leishmaniasis study: structure-based screening and molecular dynamics mechanistic analysis for discovering potent inhibitors of spermidine synthase.  

Science.gov (United States)

Protozoa Leishmania donovani (Ld) is the main cause of the endemic disease leishmaniasis. Spermidine synthase (SS), an important enzyme in the synthetic pathway of polyamines in Ld, is an essential element for the survival of this protozoan. Targeting SS may provide an important aid for the development of drugs against Ld. However, absence of tertiary structure of spermidine synthase of Leishmania donovani (LSS) limits the possibilities of structure based drug designing. Presence of the same enzyme in the host itself further challenges the drug development process. We modeled the tertiary structure of LSS using homology modeling approach making use of homologous X-ray crystallographic structure of spermidine synthase of Trypanosoma cruzi (TSS) (2.5Å resolution). The modeled structure was stabilized using Molecular Dynamics simulations. Based on active site structural differences between LSS and human spermidine synthase (HSS), we screened a large dataset of compounds against modeled protein using Glide virtual screen docking and selected two best inhibitors based on their docking scores (-10.04 and -13.11 respectively) with LSS and having least/no binding with the human enzyme. Finally Molecular Dynamics simulations were used to assess the dynamic stability of the ligand bound structures and to elaborate on the binding modes. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22684087

Grover, Abhinav; Katiyar, Shashank Prakash; Singh, Sanjeev Kumar; Dubey, Vikash Kumar; Sundar, Durai

2012-12-01

93

Pharmacological profile and therapeutic potential of BM-573, a combined thromboxane receptor antagonist and synthase inhibitor.  

Science.gov (United States)

BM-573 (N-terbutyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea), a torsemide derivative, is a novel non-carboxylic dual TXA2 synthase inhibitor and receptor antagonist. The pharmacological profile of the drug is characterized by a higher affinity for the thromboxane receptor than that of SQ-29548, one of the most powerful antagonists described to date, by a complete prevention of human platelet aggregation induced by arachidonic acid at a lower dose than either torsemide or sulotroban, and by a significantly prolonged closure time measured by the platelet function analyser (PFA-100). Moreover, at the concentrations of 1 and 10 microM, BM-573 completely prevented production of TXB2 by human platelets activated by 0.6 mM of arachidonic acid. BM-573 prevents rat fundus contraction induced by U-46619 but not by prostacyclin or other prostaglandins. Despite possessing a chemical structure very similar to that of a diuretic torsemide, BM-573 has no diuretic activity. BM-573 does not prolong bleeding time and, unlike some of the other sulfonylureas, has no effect on blood glucose levels. In vivo, BM-573 appears to have antiplatelet and antithrombotic activities since it reduced thrombus weight and prolonged the time to abdominal aorta occlusion induced by ferric chloride. BM-573 also relaxed rat aorta and guinea pig trachea precontracted with U-46619. In pigs, BM-573 completely antagonized pulmonary hypertensive effects of U-46619 and reduced the early phase of pulmonary hypertension in models of endotoxic shock and pulmonary embolism. Finally, BM-573 protected pigs from myocardial infarction induced by coronary thrombosis. These results suggest that BM-573 should be viewed as a promising therapeutic agent in the treatment of pulmonary hypertension and syndromes associated with platelet activation. PMID:15867944

Ghuysen, Alexandre; Dogné, Jean-Michel; Chiap, Patrice; Rolin, Stéphanie; Masereel, Bernard; Lambermont, Bernard; Kolh, Philippe; Tchana-Sato, Vincent; Hanson, Julien; D'Orio, Vincent

2005-01-01

94

Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.  

Science.gov (United States)

Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families. PMID:23627736

Capasso, Clemente; Supuran, Claudiu T

2014-06-01

95

Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats  

Directory of Open Access Journals (Sweden)

Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

IVANA STEVANOVI?

2009-05-01

96

Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors.  

Science.gov (United States)

Acyl carrier protein synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheinyl group from the coenzyme A to a serine residue in acyl carrier protein (ACP), thereby activating ACP, an important step in cell wall biosynthesis. The structure-based design of novel anthranilic acid inhibitors of AcpS, a potential antibacterial target, is presented. An initial high-throughput screening lead and numerous analogues were modeled into the available AcpS X-ray structure, opportunities for synthetic modification were identified, and an iterative process of synthetic modification, X-ray complex structure determination with AcpS, biological testing, and further modeling ultimately led to potent inhibitors of the enzyme. Four X-ray complex structures of representative anthranilic acid ligands bound to AcpS are described in detail. PMID:16335920

Joseph-McCarthy, Diane; Parris, Kevin; Huang, Adrian; Failli, Amedeo; Quagliato, Dominick; Dushin, Elizabeth Glasfeld; Novikova, Elena; Severina, Elena; Tuckman, Margareta; Petersen, Peter J; Dean, Charles; Fritz, Christian C; Meshulam, Tova; DeCenzo, Maureen; Dick, Larry; McFadyen, Iain J; Somers, William S; Lovering, Frank; Gilbert, Adam M

2005-12-15

97

Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors.  

Science.gov (United States)

Aldosterone is a key signaling component of the renin-angiotensin-aldosterone system and as such has been shown to contribute to cardiovascular pathology such as hypertension and heart failure. Aldosterone synthase (CYP11B2) is responsible for the final three steps of aldosterone synthesis and thus is a viable therapeutic target. A series of imidazole derived inhibitors, including clinical candidate 7n, have been identified through design and structure-activity relationship studies both in vitro and in vivo. Compound 7n was also found to be a potent inhibitor of 11?-hydroxylase (CYP11B1), which is responsible for cortisol production. Inhibition of CYP11B1 is being evaluated in the clinic for potential treatment of hypercortisol diseases such as Cushing's syndrome. PMID:24900631

Meredith, Erik L; Ksander, Gary; Monovich, Lauren G; Papillon, Julien P N; Liu, Qian; Miranda, Karl; Morris, Patrick; Rao, Chang; Burgis, Robin; Capparelli, Michael; Hu, Qi-Ying; Singh, Alok; Rigel, Dean F; Jeng, Arco Y; Beil, Michael; Fu, Fumin; Hu, Chii-Whei; LaSala, Daniel

2013-12-12

98

Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase  

International Nuclear Information System (INIS)

Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca2+ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting 32P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated 32P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor

99

Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors  

International Nuclear Information System (INIS)

Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD

100

Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase.  

Science.gov (United States)

Fatty acid synthase (FAS) catalyzes the synthesis of palmitate from the sequential condensation of an acetyl primer with two carbon units added from malonyl-CoA. Inhibition of the beta-ketoacyl synthase domain of mammalian FAS leads to selective cytotoxicity to various cancer cell lines in vitro and in vivo. Also, inhibitors of FAS can cause reduced food intake and body weight in mice. Naturally occurring thiolactomycin (TLM) was used as a template to develop a new class of type I FAS inhibitors. Using a flexible synthesis, families of TLM structural analogues were obtained that possess selective FAS activity and display anticancer and weight loss effects. Compounds 13a and 13d inhibit pure FAS (ZR-75-1 breast cancer, IC(50) = 50 microg/mL), and display effective weight loss in BalbC mice (>5%). Another subclass of TLM derivatives (23b-d, 31a) exhibits FAS activity (IC(50) = 5%), and is cytotoxic to cancer cells (IC(50) < 38 microg/mL). Finally, a third subclass (16b, 29, 30) is also active against FAS (IC(50) =

McFadden, Jill M; Medghalchi, Susan M; Thupari, Jagan N; Pinn, Michael L; Vadlamudi, Aravinda; Miller, Katherine I; Kuhajda, Francis P; Townsend, Craig A

2005-02-24

 
 
 
 
101

L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats  

Science.gov (United States)

A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

2001-01-01

102

Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs  

International Nuclear Information System (INIS)

High-dose statin treatment has been recommended as a primary strategy for aggressive reduction of LDL cholesterol levels and protection against coronary artery disease. The effectiveness of high-dose statins may be limited by their potential for myotoxic side effects. There is currently little known about the molecular mechanisms of statin-induced myotoxicity. Previously we showed that T-91485, an active metabolite of the squalene synthase inhibitor lapaquistat acetate (lapaquistat: a previous name is TAK-475), attenuated statin-induced cytotoxicity in human skeletal muscle cells [Nishimoto, T., Tozawa, R., Amano, Y., Wada, T., Imura, Y., Sugiyama, Y., 2003a. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A. Biochem. Pharmacol. 66, 2133-2139]. In the current study, we investigated the effects of lapaquistat administration on statin-induced myotoxicity in vivo. Guinea pigs were treated with either high-dose cerivastatin (1 mg/kg) or cerivastatin together with lapaquistat (30 mg/kg) for 14 days. Treatment with cerivastatin alone decreased plasma cholesterol levels by 45% and increased creatine kinase (CK) levels by more than 10-fold (a marker of myotoxicity). The plasma CK levels positively correlated with the severity of skeletal muscle lesions as assessed by histopathology. Co-administration of lapaquistat almost completely prevented the cerivastatin-induced myotoxicity. Administration of mevalonolactone (10ity. Administration of mevalonolactone (100 mg/kg b.i.d.) prevented the cerivastatin-induced myotoxicity, confirming that this effect is directly related to HMG-CoA reductase inhibition. These results strongly suggest that cerivastatin-induced myotoxicity is due to depletion of mevalonate derived isoprenoids. In addition, squalene synthase inhibition could potentially be used clinically to prevent statin-induced myopathy

103

NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity  

Science.gov (United States)

A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

2012-01-01

104

NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with ?-Opioid Agonist Activity.  

Science.gov (United States)

A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the ?-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the ?-opioid GPCR was predicated on the modulatory role of nitric oxide on ?-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 ?M), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent ?-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 ?M). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

2012-03-01

105

Arsenic toxicity induced endothelial dysfunction and dementia: pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors.  

Science.gov (United States)

Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate & brain GSH levels along with increase in serum & brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. PMID:23921152

Sharma, Bhupesh; Sharma, P M

2013-11-15

106

Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats  

Directory of Open Access Journals (Sweden)

Full Text Available Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (L-DOPA-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of L-DOPA-induced abnormal involuntary movements in 6-hydroxydopamine (6-OHDA-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-L-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated abnormal involuntary movements induced by chronic and acute L-DOPA. In contrast, rotational behavior was attenuated only after chronic L-DOPA. L-DOPA improved stepping test performance, and its chronic administration did not alter open field behavior. Our results indicated a correlation between apomorphine-induced rotation and the decrease in the number of adjusting steps performed with the contralateral forepaw in the 6-OHDA-lesioned rats.The 6-OHDA lesion and the L-DOPA treatment induced a bilateral increase (1.5 times in the nNOS protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/?FosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic L-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under L-DOPA acute and chronic treatment. The L-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that L-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the L-DOPA structural modifications in the parkinsonian brain. Taken together, these data provided a rationale for further evaluati

ElaineDel Bel

2011-06-01

107

Glycogen synthase kinase 3 beta inhibitors induce apoptosis in ovarian cancer cells and inhibit in vivo tumor growth  

Science.gov (United States)

Ovarian cancer is the most lethal gynecological malignancy among US women. Paclitaxel/carboplatin is the current drug therapy used to treat ovarian cancer, but most women develop drug resistance and recurrence of the disease, necessitating alternative strategies for treatment. A possible molecular target for cancer therapy is glycogen synthase kinase 3? (GSK3?), a downstream kinase in the Wnt signaling pathway that is overexpressed in serous ovarian cancer. Novel maleimide-based GSK3? inhibitors (GSK3?i) were synthesized, selected, and tested in vitro using SKOV3 and OVCA432 serous ovarian cancer cell lines. From a panel of 10 inhibitors, the GSK3?i 9ING41 was found to be the most effective in vitro. 9ING41 induced apoptosis as indicated by 4?6-diamidino-2-phenylindole (DAPI) positive nuclear condensation, poly (ADP-ribose) polymerase (PARP) cleavage, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The mechanism for apoptosis was through caspase-3 cleavage. GSK3?i upregulated phosphorylation of the inhibitory serine residue of GSK3? in the OVCA432 and SKOV3 cell lines as well as inhibited phosphorylation of the downstream target glycogen synthase. An in vivo xenograft study using SKOV3 cells demonstrated that tumor progression was hindered by 9ING41 in vivo. The maximum tolerated dose for 9ING41 was greater than 500 mg/kg in rats. Pharmacokinetic analysis showed 9ING41 to have a bioavailability of 4.5% and was well distributed in tissues. Therefore, GSK3? inhibitors alone or in combination with existing drugs may hinder growth of serous ovarian cancers. PMID:21878813

Hilliard, Tyvette S.; Gaisina, Irina N.; Muehlbauer, Amanda G.; Gaisin, Arsen M.; Gallier, Franck; Burdette, Joanna E.

2011-01-01

108

Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 biosynthesis.  

Science.gov (United States)

Globotriaosylceramide (Gb3) is a well known receptor for Shiga toxin (Stx), produced by enterohemorrhagic Escherichia coli and Shigella dysenteriae. The expression of Gb3 also affects several diseases, including cancer metastasis and Fabry disease, which prompted us to look for factors involved in its metabolism. In the present study, we isolated two cDNAs that conferred resistance to Stx-induced cell death in HeLa cells by expression cloning: ganglioside GM3 synthase and the COOH terminus region of glutamate receptor, ionotropic, N-methyl-D-asparate-associated protein 1 (GRINA), a member of the transmembrane BAX inhibitor motif containing (TMBIM) family. Overexpression of the truncated form, named GRINA-C, and some members of the full-length TMBIM family, including FAS inhibitory molecule 2 (FAIM2), reduced Gb3, and lactosylceramide was accumulated instead. The change of glycolipid composition was restored by overexpression of Gb3 synthase, suggesting that the synthase is affected by GRINA-C and FAIM2. Interestingly, the mRNA level of Gb3 synthase was unchanged. Rather, localization of the synthase as well as TGN46, a trans-Golgi network marker, was perturbed to form punctate structures, and degradation of the synthase in lysosomes was enhanced. Furthermore, GRINA-C was associated with Gb3 synthase. These observations may demonstrate a new type of posttranscriptional regulation of glycosyltransferases. PMID:20837469

Yamaji, Toshiyuki; Nishikawa, Kiyotaka; Hanada, Kentaro

2010-11-12

109

Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.  

Science.gov (United States)

mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3? sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3?-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. PMID:24626091

Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

2014-05-01

110

Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja Resistance of Bidens subalternans to the acetolactate synthase inhibitor herbicides used in soybean crop  

Digital Repository Infrastructure Vision for European Research (DRIVER)

O uso contínuo e prolongado de produtos com o mesmo mecanismo de ação pode provocar a manifestação de biótipos resistentes. Para verificar possíveis novos casos de resistência, bem como alternativas para prevenção e manejo, foram coletadas sementes de Bidens subalternans na região de São Gabriel D' Oeste-MS, em plantas que sobreviveram a tratamentos em que inibidores da ALS foram sistematicamente utilizados. Em experimento conduzido em vasos em casa de vegetação, o biótipo com ...

Gelmini, G. A.; Victo?ria Filho, R.; Novo, M. C. S. S.; Adoryan, M. L.

2002-01-01

111

Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration.  

Science.gov (United States)

The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (??m) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition. PMID:24964211

Rossato, Franco A; Zecchin, Karina G; La Guardia, Paolo G; Ortega, Rose M; Alberici, Luciane C; Costa, Rute A P; Catharino, Rodrigo R; Graner, Edgard; Castilho, Roger F; Vercesi, Aníbal E

2014-01-01

112

Characterisation of the antidepressant properties of nitric oxide synthase inhibitors in the olfactory bulbectomised rat model of depression.  

Science.gov (United States)

Nitric oxide synthase (NOS) inhibitors possess antidepressant-like properties in preclinical tests and in the current investigation the brain penetrant NOS inhibitor N(?)-nitro-L-arginine (l-NA) and the preferential inhibitor of neuronal NOS (nNOS) 1-(2-trifluoromethylphenyl) imidazole (TRIM) were assessed in the olfactory bulbectomised (OB) rat, a well-established animal model of depression. Magnetic resonance imaging (MRI) was employed to assess regional brain volumes, blood perfusion and T1 and T2 relaxometry times both with and without drug treatment. l-NA (10 mg/kg, once daily p.o. for 10 days) attenuated OB-related hyperactivity in the "open field" test in a comparable fashion to the tricyclic antidepressant imipramine (20 mg/kg, once daily p.o. for 14 days) indicative of an antidepressant-like response in the model. Treatment with TRIM (50 mg/kg, once daily s.c.) attenuated OB-related hyperactivity following 7 days of treatment when compared to vehicle treated controls. OB is associated with enlarged ventricular volume, increased periventicular perfusion and a decrease in T2 relaxation times in cortical and hippocampal regions, with enhanced perfusion and reduced T2 times attenuated by L-NA treatment. L-NA treatment was also associated with an increase in T1 relaxation times in limbic and cortical regions and found to reduce resting state hippocampal blood perfusion in OB animals. Behavioural observations are consistent with an antidepressant action of NOS inhibitors where associated changes in perfusion and T2 relaxation times may be related to the antidepressant action of L-NA in the model. PMID:24931298

Gigliucci, Valentina; Gormley, Shane; Gibney, Sinead; Rouine, Jennifer; Kerskens, Christian; Connor, Thomas J; Harkin, Andrew

2014-08-01

113

Thienopyrimidine bisphosphonate (ThPBP) inhibitors of the human farnesyl pyrophosphate synthase: optimization and characterization of the mode of inhibition.  

Science.gov (United States)

Human farnesyl pyrophosphate synthase (hFPPS) controls the post-translational prenylation of small GTPase proteins that are essential for cell signaling, cell proliferation, and osteoclast-mediated bone resorption. Inhibition of hFPPS is a clinically validated mechanism for the treatment of lytic bone diseases, including osteoporosis and cancer related bone metastases. A new series of thienopyrimidine-based bisphosphonates (ThP-BPs) were identified that inhibit hFPPS with low nanomolar potency. Crystallographic evidence revealed binding of ThP-BP inhibitors in the allylic subpocket of hFPPS. Simultaneous binding of inorganic pyrophosphate in the IPP subpocket leads to conformational closing of the active site cavity. The ThP-BP analogues are significantly less hydrophilic yet exhibit higher affinity for the bone mineral hydroxyapatite than the current N-BP drug risedronic acid. The antiproliferation properties of a potent ThB-BP analogue was assessed in a multiple myeloma cell line and found to be equipotent to the best current N-BP drugs. Consequently, these compounds represent a new structural class of hFPPS inhibitors and a novel scaffold for the development of human therapeutics. PMID:23998921

Leung, Chun Yuen; Park, Jaeok; De Schutter, Joris W; Sebag, Michael; Berghuis, Albert M; Tsantrizos, Youla S

2013-10-24

114

Food-Related Compounds That Modulate Expression of Inducible Nitric Oxide Synthase May Act as Its Inhibitors  

Directory of Open Access Journals (Sweden)

Full Text Available Natural compounds commonly found in foods may contribute to protect cells against the deleterious effects of inflammation. These anti-inflammatory properties have been linked to the modulation of transcription factors that control expression of inflammation-related genes, including the inducible nitric oxide synthase (iNOS, rather than a direct inhibitory action on these proteins. In this study, forty two natural dietary compounds, known for their ability to exert an inhibitory effect on the expression of iNOS, have been studied in silico as docking ligands on two available 3D structures for this protein (PDB ID: 3E7G and PDB ID: 1NSI. Natural compounds such as silibinin and cyanidin-3-rutinoside and other flavonoids showed the highest theoretical affinities for iNOS. Docking affinity values calculated for several known iNOS inhibitors significatively correlated with their reported half maximal inhibitory concentrations (R = 0.842, P < 0.0001, suggesting the computational reliability of the predictions made by our docking simulations. Moreover, docking affinity values for potent iNOS inhibitors are of similar magnitude to those obtained for some studied natural products. Results presented here indicate that, in addition to gene expression modulation of proteins involved in inflammation, some chemicals present in food may be acting by direct binding and possible inhibiting actions on iNOS.

Jesus Olivero-Verbel

2012-07-01

115

Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibitor herbicides.  

Science.gov (United States)

Suspected imazaquin-resistant accessions of Amaranthus palmeri were studied to determine the magnitude of resistance and cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides and compare differential tolerance of A palmeri and Amaranthus hybridus to ALS inhibitors. Five of seven A palmeri accessions were resistant to imazaquin. The most imazaquin-resistant accession, accession 7, also showed 74, 39 and 117 times higher resistance than the susceptible biotype to chlorimuron, diclosulam and pyrithiobac, respectively. Resistance to imazaquin and cross-resistance to other ALS inhibitors in A palmeri was due to a less-sensitive ALS enzyme. A palmeri was 70 times more tolerant to imazaquin than A hybridus. A palmeri was also seven times more tolerant to pyrithiobac than A hybridus. Differences in ALS enzyme sensitivity could not fully account for the high tolerance of A palmeri to imazaquin compared to A hybridus. Both species were equally affected by chlorimuron and diclosulam. PMID:11374163

Burgos, N R; Kuk, Y I; Talbert, R E

2001-05-01

116

Mechanism of differential inhibition of hepatic and pancreatic fatty acid ethyl ester synthase by inhibitors of serine-esterases: in vitro and cell culture studies  

International Nuclear Information System (INIS)

Earlier, we have shown that rat hepatic and pancreatic fatty acid ethyl ester (FAEE) synthases are structurally and functionally similar to rat liver carboxylesterase (CE) and pancreatic cholesterol esterase (ChE), respectively. We have also reported that only hepatic FAEE synthase is inhibited by tri-o-tolylphosphate (TOTP) in vivo and in human hepatocellular carcinoma (HepG2) cells. The metabolism of TOTP is a prerequisite for the inhibition of hepatic FAEE synthase as well as esterase activity. To further elucidate the mechanism of such differential inhibition by inhibitors of serine esterases, we synthesized two metabolites of TOTP, 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphoran-2-one (CBDP; cyclic saligenin phosphate) and di-o-tolyl-o-(?-hydroxy)tolylphosphate (HO-TOTP), and one ChE inhibitor, 3-benzyl-6-chloro-2-pyrone (3-BCP). The inhibitory effect of CBDP, HO-TOTP, and 3-BCP on FAEE synthase and esterase activity was studied using rat hepatic and pancreatic postnuclear (PN) fractions, commercial porcine hepatic CE and pancreatic ChE, and in HepG2 and rat pancreatic tumor (AR42J) cell lines. Only HO-TOTP and CBDP inhibited FAEE synthase as well as esterase activity of hepatic PN fraction and commercial CE and ChE in a concentration-dependent manner, and the inhibition was found to be irreversible. However, no inhibition was found in pancreatic PN fraction by both TOTP metabolites and 3-BCP. Although 3-BCP inhibited only the esterase activity of commercial ChE in esterase activity of commercial ChE in a concentration-dependent manner, the activity was reversible within 30 min of incubation. Studies with HepG2 cells also showed a significant inhibition of FAEE synthase-esterase activity by CBDP and HO-TOTP within 15 min of incubation, while no inhibition was observed in AR42J cells. 3-BCP did not inhibit FAEE synthase-esterase activity either in HepG2 or AR42J cells. Such differential inhibitory effect of the TOTP metabolites on hepatic and pancreatic FAEE synthase-esterase is supported by our earlier in vivo and in vitro studies. Further investigations are needed to understand the biochemical mechanism(s) of inactivation of TOTP metabolites and 3-BCP in the pancreas and AR42J cells towards FAEE synthase-esterase activities

117

The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer.  

Science.gov (United States)

Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer. PMID:25313139

Sadowski, Martin C; Pouwer, Rebecca H; Gunter, Jennifer H; Lubik, Amy A; Quinn, Ronald J; Nelson, Colleen C

2014-10-15

118

Bcl2L13 is a ceramide synthase inhibitor in glioblastoma.  

Science.gov (United States)

Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use. PMID:24706805

Jensen, Samuel A; Calvert, Andrea E; Volpert, Giora; Kouri, Fotini M; Hurley, Lisa A; Luciano, Janina P; Wu, Yongfei; Chalastanis, Alexandra; Futerman, Anthony H; Stegh, Alexander H

2014-04-15

119

Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.  

Science.gov (United States)

Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined. PMID:12502337

Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L

2002-12-01

120

Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change*s  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-s...

Li, Yi-ching; Chiang, Chia-wang; Yeh, Hui-chun; Hsu, Pei-yung; Whitby, Frank G.; Wang, Lee-ho; Chan, Nei-li

2008-01-01

 
 
 
 
121

Eliglustat tartrate, an orally active glucocerebroside synthase inhibitor for the potential treatment of Gaucher disease and other lysosomal storage diseases.  

Science.gov (United States)

Eliglustat tartrate (Genz-112638), currently under development by Genzyme Corp, is a glucocerebroside (glucosylceramide) synthase inhibitor for the treatment of Gaucher disease and other lysosomal storage disorders. Gaucher disease is an inherited defect of lysosomal functions caused by mutations in the GBA1 gene leading to accumulation of glucocerebroside, primarily in macrophages. Gaucher disease is characterized by visceromegaly and skeletal complications, including osteoporosis and painful episodes of osteonecrosis. In vitro studies demonstrated that, following exposure to eliglustat tartrate, the abundance of GM1 and GM3 gangliosides in cultured human erythroleukemia cells and murine melanoma cells was decreased. In vivo, eliglustat tartrate administered to Asp409Val/null mice lowered the concentrations of glucocerebroside in the liver, lung and spleen and reduced the number of Gaucher cells in the liver. In a phase Ib clinical trial in healthy volunteers, plasma glucocerebroside concentrations were decreased after dosing with eliglustat tartrate, and in phase II clinical trials in patients with type 1 (non-neuronopathic) Gaucher disease, spleen and liver volumes were diminished. Patients also demonstrated improved bone mineral density, correction of abnormal bone marrow signal with MRI and normalization of glucocerebroside and ganglioside GM3 levels. Eliglustat tartrate is orally active and, with potent effects on the primary identified molecular target for type 1 Gaucher disease and other glycosphingolipidoses, appears likely to fulfill high expectations for clinical efficacy. PMID:20872320

Cox, Timothy M

2010-10-01

122

Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain[S  

Science.gov (United States)

Synthesis inhibition is the basis for the treatment of type 1 Gaucher disease by the glucosylceramide synthase (GCS) inhibitor eliglustat tartrate. However, the extended use of eliglustat and related compounds for the treatment of glycosphingolipid storage diseases with CNS manifestations is limited by the lack of brain penetration of this drug. Property modeling around the D-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP) pharmacophore was employed in a search for compounds of comparable activity against the GCS but lacking P-glycoprotein (MDR1) recognition. Modifications of the carboxamide N-acyl group were made to lower total polar surface area and rotatable bond number. Compounds were screened for inhibition of GCS in crude enzyme and whole cell assays and for MDR1 substrate recognition. One analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (CCG-203586), was identified that inhibited GCS at low nanomolar concentrations with little to no apparent recognition by MDR1. Intraperitoneal administration of this compound to mice for 3 days resulted in a significant dose dependent decrease in brain glucosylceramide content, an effect not seen in mice dosed in parallel with eliglustat tartrate. PMID:22058426

Larsen, Scott D.; Wilson, Michael W.; Abe, Akira; Shu, Liming; George, Christopher H.; Kirchhoff, Paul; Showalter, H. D. Hollis; Xiang, Jianming; Keep, Richard F.; Shayman, James A.

2012-01-01

123

Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication.  

Science.gov (United States)

Injection of large doses of ammonium salts leads to the rapid death of animals. However, the molecular mechanisms involved in ammonia toxicity remain to be clarified. We reported that injecting ammonium acetate (7 mmol/kg) to rats increases the production of superoxide and reduces the activities of some antioxidant enzymes in rat liver and brain. We proposed that these effects induced by ammonia intoxication would be mediated by formation of nitric oxide. To test this possibility we tested whether injection of nitroarginine, an inhibitor of nitric oxide synthase, prevents the effects of ammonia intoxication on antioxidant enzymes and superoxide formation. Following injection of ammonia, glutathione peroxidase, superoxide dismutase and catalase activities were decreased in liver by 42%, 54% and 44%, respectively. In brain these activities were reduced by 35%, 46% and 65%, respectively. Glutathione reductase remained unchanged. Superoxide production in submitochondrial particles from liver and brain was increased by more than 100% in both tissues. Both reduction of activity of antioxidant enzymes and increased superoxide radical production were prevented by previous injection of 45 mg/kg of nitroarginine, indicating that ammonia induces increased formation of nitric oxide, which in turn reduces the activity of antioxidant enzymes, leading to increased formation of superoxide. PMID:9570638

Kosenko, E; Kaminsky, Y; Lopata, O; Muravyov, N; Kaminsky, A; Hermenegildo, C; Felipo, V

1998-03-01

124

Phytotoxicity of Acetohydroxyacid Synthase Inhibitors Is Not Due to Accumulation of 2-Ketobutyrate and/or 2-Aminobutyrate.  

Science.gov (United States)

Acetohydroxyacid synthase (AHAS) is the site of action of herbicides of different chemical classes, such as imidazolinones, sulfonylureas, and triazolopyrimidines. Inhibition of AHAS causes the accumulation of 2-ketobutyrate (2-KB) and 2-aminobutyrate (2-AB) (the transamination product of 2-KB), and it has been proposed that the phytotoxicity of these inhibitors is due to this accumulation. Experiments were done to determine the relationship between accumulation of 2-KB and 2-AB and the phytotoxicity of imazaquin to maize (Zea mays). Imazaquin concentrations that inhibit growth of maize plants also cause the accumulation of 2-KB and 2-AB in the shoots. Supplementation of imazaquin-treated plants with isoleucine reduced the pools of 2-KB and 2-AB in the plant but did not protect plants from the growth inhibitory effects of imazaquin. Conversely, feeding 2-AB to maize plants increased 2-KB and 2-AB pools to much higher levels than those observed in imazaquin-treated plants, yet such high pools of 2-KB and 2-AB in the plant had no significant effect on growth. These results conclusively demonstrate that growth inhibition following imazaquin treatment is not due to accumulation of 2-KB and/or 2-AB in plants. Changes in the amino acid profiles after treatment with imazaquin suggest that starvation for the branched-chain amino acids may be the primary cause of growth retardation of maize. PMID:12232015

Shaner, D. L.; Singh, B. K.

1993-12-01

125

Modulation of IL-1-induced cartilage injury by NO synthase inhibitors: a comparative study with rat chondrocytes and cartilage entities  

Science.gov (United States)

Nitric oxide (NO) is produced in diseased joints and may be a key mediator of IL-1 effects on cartilage. Therefore, we compared the potency of new [aminoguanidine (AG), S-methylisothiourea (SMT), S-aminoethylisothiourea (AETU)] and classical [N?-monomethyl-L-arginine (L-NMMA), N?-nitro-L-arginine methyl ester (L-NAME)] NO synthase (NOS) inhibitors on the inhibitory effect of recombinant human interleukin-1? (rhIL-1?) on rat cartilage anabolism. Three different culture systems were used: (1) isolated chondrocytes encapsulated in alginate beads; (2) patellae and (3) femoral head caps. Chondrocyte beads and cartilage entities were incubated in vitro for 48?h in the presence of rhIL-1? with a daily change of incubation medium to obtain optimal responses on proteoglycan synthesis and NO production. Proteoglycan synthesis was assessed by incorporation of radiolabelled sodium sulphate [Na235SO4] and NO production by cumulated nitrite release during the period of study. Chondrocytes and patellae, as well as femoral head caps, responded concentration-dependently to IL-1? challenge (0 to 250?U?ml?1 and 0 to 15?U?ml?1 respectively) by a large increase in nitrite level and a marked suppression of proteoglycan synthesis. Above these concentrations of IL-1? (2500?U?ml?1 and 30?U?ml?1 respectively), proteoglycan synthesis plateaued whereas nitrite release still increased thus suggesting different concentration-response curves. When studying the effect of NOS inhibitors (1 to 1000??M) on NO production by cartilage cells stimulated with IL-1? (25?U?ml?1 or 5?U?ml?1), we observed that: (i) their ability to reduce nitrite level decreased from chondrocytes to cartilage samples, except for L-NMMA and AETU; (ii) they could be roughly classified in the following rank order of potency: AETU>L-NMMA?SMT>AG?L-NAME and (iii) AETU was cytotoxic when used in the millimolar range. When studying the effect of NOS inhibitors on proteoglycan synthesis by cartilage cells treated with IL-1?, we observed that: (i) they had more marked effects on proteoglycan synthesis in chondrocytes than in cartilage samples; (ii) they could be roughly classified in the following rank order of potency: L-NAME?L-NMMA>>AG>SMT>>AETU and (iii) potentiation of the IL-1 effect by AETU was consistent with cytotoxicity in the millimolar range. D-isomers of L-arginine analog inhibitors (1000??M) were unable to correct nitrite levels or proteoglycan synthesis in IL-1? treated cells. L-arginine (5000??M) tended to reverse the correcting effect of L-NMMA (1000??M) on proteoglycan synthesis, thus suggesting a NO-related chondroprotective effect. However, data with L-NAME and SMT argued against a general inverse relationship between nitrite level and proteoglycan synthesis. Dexamethasone (0.1 to 100??M) (i) failed to inhibit NO production in femoral head caps and chondrocytes beads whilst reducing it in patellae (50%) and (ii) did not affect or worsened the inhibitory effect of IL-1? on proteoglycan synthesis. Such results suggested a corticosteroid-resistance of rat chondrocyte iNOS. Data from patellae supported a possible contribution of subchondral bone in NO production. In conclusion, our results suggest that (i) NO may account only partially for the suppressive effects of IL-1? on proteoglycan synthesis, particularly in cartilage samples; (ii) the chondroprotective potency of NOS inhibitors can not be extrapolated from their effects on NO production by joint-derived cells and (iii) L-arginine analog inhibitors are more promising than S-substituted isothioureas for putative therapeutical uses. PMID:9756389

Cipolletta, Christine; Jouzeau, Jean-Yves; Gegout-Pottie, Pascale; Presle, Nathalie; Bordji, Karim; Netter, Patrick; Terlain, Bernard

1998-01-01

126

Lack of tolerance for the anti-dyskinetic effects of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, in rats  

Directory of Open Access Journals (Sweden)

Full Text Available 7-Nitroindazole (7-NI inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval, day 26: 16.75 (15.88-17.00; day 28: 0.00 (0.00-9.63; day 29: 13.75 (2.25-15.50; day 30: 0.5 (0.00-6.25; day 31: 4.00 (0.00-7.13, and day 34: 0.5 (0.00-14.63, Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS. The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.

N. Novaretti

2010-11-01

127

Synthesis of Potent Inhibitors of ?-Ketoacyl-Acyl Carrier Protein Synthase III as Potential Antimicrobial Agents  

Directory of Open Access Journals (Sweden)

Full Text Available Mycobacterium tuberculosis FabH, an essential enzyme in the mycolic acid biosynthetic pathway, is an attractive target for novel anti-tubercolosis agents. Structure-based design and synthesis of 1-(4-carboxybutyl-4-(4-(substituted benzyloxyphenyl-1H-pyrrole-2-carboxylic acid derivatives 7a–h, a subset of eight potential FabH inhibitors, is described in this paper. The Vilsmeier-Haack reaction was employed as a key step. The structures of all the newly synthesized compounds were identified by IR, 1H-NMR, 13C-NMR, ESI-MS and HRMS. The alamarBlue™ microassay was employed to evaluate the compounds 7a–h against Mycobacterium tuberculosis H37Rv. The results demonstrate that the compound 7d possesses good in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (Minimum Inhibitory Concentration value [MIC], 12.5 µg/mL.These compounds may prove useful in the discovery and development of new anti-tuberculosis drugs.

Song Li

2012-04-01

128

Synthesis of potent inhibitors of ?-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents.  

Science.gov (United States)

Mycobacterium tuberculosis FabH, an essential enzyme in the mycolic acid biosynthetic pathway, is an attractive target for novel anti-tubercolosis agents. Structure-based design and synthesis of 1-(4-carboxybutyl)-4-(4-(substituted benzyloxy)phenyl)-1H-pyrrole-2-carboxylic acid derivatives 7a-h, a subset of eight potential FabH inhibitors, is described in this paper. The Vilsmeier-Haack reaction was employed as a key step. The structures of all the newly synthesized compounds were identified by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and HRMS. The alamarBlue™ microassay was employed to evaluate the compounds 7a-h against Mycobacterium tuberculosis H??Rv. The results demonstrate that the compound 7d possesses good in vitro antimycobacterial activity against Mycobacterium tuberculosis H??Rv (Minimum Inhibitory Concentration value [MIC], 12.5 µg/mL).These compounds may prove useful in the discovery and development of new anti-tuberculosis drugs. PMID:22534662

Liu, Yan; Zhong, Wu; Li, Rui-Juan; Li, Song

2012-01-01

129

Azole antifungals: weak inhibitors of inducible nitric oxide synthase in mouse and human cells.  

Science.gov (United States)

The effect of three azole antifungals on inducible nitric oxide (iNOS) activity in different mouse and human cells was evaluated. The iNOS activity was determined by L-citrulline and nitrite measurement. In the murine macrophage cell line RAW 264.7, in mouse peritoneal macrophages (MPM) and in human colorectal adenocarcinoma cells (DLD-1), iNOS activity could be induced with lipopolysaccharides and cytokines. Under similar conditions, no iNOS induction was found in human monocytes/macrophages. The concentration of itraconazole, ketoconazole or miconazole needed to inhibit iNOS activity by 50% in RAW 264.7 cells, MPM and DLD-1 cells was > or = 10 mumol l-1. This is at least 100 times more than the concentrations of these azole antifungals required to produce a 50% inhibition of yeast growth and ergosterol synthesis of, for example, Candida albicans after the same incubation period. These results show that azole antifungals are weak inhibitors of iNOS in intact cells. PMID:9375500

Vermuyten, K; Laurijssens, L; Vanden Bossche, H

1997-09-01

130

BM-573, a dual thromboxane synthase inhibitor and thromboxane receptor antagonist, prevents pig myocardial infarction induced by coronary thrombosis.  

Science.gov (United States)

The aim of this study was to characterize the effects of BM-573 [N-terbutyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl] urea], a novel dual thromboxane A2 receptor antagonist and thromboxane synthase inhibitor, on myocardial infarction induced by topical ferric chloride (FeCl3) application to the left anterior descending (LAD) coronary artery in anesthetized pigs. All control animals (n = 6) developed an occlusive thrombus in the LAD coronary artery. The mean infarct size, revealed by triphenyl tetrazolium chloride (TTC), and the area at risk, evidenced by Evans blue, corresponded to 35.3 +/- 2.2 and 36.9 +/- 2.1% of the left ventricular mass, respectively. In the BM-573-treated group (n = 6), a drug infusion (10 mg. kg-1. h-1) started 30 min before FeCl3 application and continued throughout the experimentation. Among the BM-573-treated group, four pigs did not develop coronary artery thrombus and their myocardium appeared healthy. Histopathological examination of FeCl3-injured coronary artery revealed an occlusive and adherent thrombus in control group, while pretreatment with BM-573 prevented thrombus formation. In infarcted zones, lack of desmin staining and muscle structure disorganization were obvious. Depletion of myocardial ATP content was observed in the myocardial necrotic region of the control group, but not in myocardial samples of BM-573-treated pigs that did not develop myocardial infarction. When BM-573 prevented LAD artery occlusion, the area under the curve of plasmatic troponin T was reduced by 77% over 6 h. These data suggest that BM-573 could be useful for the prevention of myocardial infarction. PMID:12721335

Rolin, S; Petein, M; Tchana-Sato, V; Dogne, J M; Benoit, P; Lambermont, B; Ghuysen, A; Kolh, P; Masereel, B

2003-07-01

131

Thiazolidinediones/PPAR? agonists and fatty acid synthase inhibitors as an experimental combination therapy for prostate cancer.  

Science.gov (United States)

The prostate cancer (PCa) cell lines LNCaP, PC-3, and DU-145 express peroxisome proliferator-activated receptor ? (PPAR?) but its role in PCa is unclear. Thiazolidinediones (TZDs), a family of PPAR? activators and type 2 anti-diabetic drugs, exhibit anti-tumor apoptotic effects in human PCa cell lines. Likewise, pharmacological inhibitors of fatty acid synthase (FASN), a metabolic enzyme highly expressed in PCa, induce apoptosis in prostate and other cancer cells. Here, we show positive correlation between PPAR? and FASN protein in PCa cell lines and synergism between TZDs and FASN blockers in PCa cell viability reduction and apoptosis induction. Combined TZDs/FASN has enhanced anti-tumor properties in both androgen-dependent LNCaP and androgen-independent PC-3 and DU-145 cells when compared with single drug exposure. Low concentrations (5-10 ?M) of the TZD drug rosiglitazone failed to alter cell viability but, paradoxically, upregulated lipogenic genes [PPAR?, FASN, sterol regulatory element binding protein-1c (SREBP-1c) and acetyl-Co A carboxylase-1 (ACC1)], which diminish the apoptotic effects of rosiglitazone. The mean IC50 in all cell lines was 45 ± 2 ?M for rosiglitazone compared with significantly lower 5 ± 1 ?M for rosiglitazone plus the FASN blocker cerulenin, and 10.2 ± 2 ?M for rosiglitazone plus the cerulenin synthetic analog C75. The IC50 for the combined rosiglitazone and FASN blockers contrasts with the relatively higher IC50 for rosiglitazone (45 ± 2 ?M), the TZD drug troglitazone (13 ± 2 ?M), cerulenin (32 ± 1 ?M), or C75 (26 ± 3 ?M) when these drugs were used alone. In summary, this study shows proof-of-principle for combining FASN blockers and TZDs for PCa treatment. PMID:21170507

Mansour, Mahmoud; Schwartz, Dean; Judd, Robert; Akingbemi, Benson; Braden, Tim; Morrison, Edward; Dennis, John; Bartol, Frank; Hazi, Amanda; Napier, India; Abdel-Mageed, Asim B

2011-02-01

132

Effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase in patients and rats with diabetes.  

Science.gov (United States)

This study was designed to investigate the effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase N(G), N(G)-asymmetric dimethylarginine (ADMA) in patients and rats with diabetes, and to determine whether elevated endogenous ADMA is implicated in endothelial dysfunction or macroangiopathy in diabetes. Experimental diabetic model was induced by a single intraperitoneal injection of streptozotocin to male Sprague-Dawley rats and fed for 2-, 4- and 8-week, respectively. Type 2 diabetic patients with different diabetic duration were recruited from Xiangya Hospital. Plasma glucose and serum ADMA levels were measured in both patients and rats. Moreover, endothelium-dependent relaxation of thoracic aortas and some parameters of metabolic control were examined in rats. Serum ADMA concentrations were significantly elevated in type 2 diabetic patients compared with healthy subjects (3.44 +/- 0.40 vs 1.08 +/- 0.14 micromol/L, n = 50 in diabetic patients and n = 40 in healthy subjects, P serum levels of ADMA in patients with macroangiopathy were higher than the patients without macroangiopathy (P serum ADMA concentrations between groups of patients with different diabetic duration. Similarly, serum levels of ADMA in diabetic rats were also significantly elevated at 2-week duration compared with duration-matched control (3.71 +/- 0.20 vs 1.04 +/- 0.23 micromol/L, n = 5 approximately 6, P diabetic groups. The elevation of ADMA was accompanied by impairment of endothelium-dependent relaxation and poor metabolic control in diabetic rat. These results first reveal that the extent of elevation in serum ADMA in both rats and patients with diabetes is not proportion with the length of their diabetic duration but rather with the metabolic control of this disease. Elevated endogenous ADMA may be implicated in diabetes-induced endothelial dysfunction and macroangiopathy. This study is helpful to prevention and treatment of diabetic-induced endothelial dysfunction or macroangiopathy. PMID:15862600

Xiong, Yan; Lei, Minxiang; Fu, Sihai; Fu, Yunfeng

2005-05-27

133

The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas.  

Science.gov (United States)

Fatty acid synthase (FASN) is the biosynthetic enzyme responsible for the endogenous synthesis of fatty acids. It is downregulated in most normal cells, except in lipogenic tissues such as liver, lactating breast, fetal lung, and adipose tissue. Conversely, several human cancers, including head and neck squamous cell carcinomas (HNSCC), overexpress FASN, which has been associated with poor prognosis and recently suggested as a metabolic oncoprotein. Orlistat is an irreversible inhibitor of FASN activity with cytotoxic properties on several cancer cell lines that inhibits tumor progression and metastasis in prostate cancer xenografts and experimental melanomas, respectively. To explore whether the inhibition of FASN could impact oral tongue squamous cell carcinoma (OTSCC) metastatic spread, an orthotopic model was developed by the implantation of SCC-9 ZsGreen LN-1 cells into the tongue of BALB/c nude mice. These cells were isolated through in vivo selection, show a more invasive behavior in vitro than the parental cells, and generate orthotopic tumors that spontaneously metastasize to cervical lymph nodes in 10 to 15 days only. SCC-9 ZsGreen LN-1 cells also exhibit enhanced production of MMP-2, ERBB2, and CDH2. The treatment with orlistat reduced proliferation and migration, promoted apoptosis, and stimulated the secretion of VEGFA165b by SCC-9 ZsGreen LN-1 cells. In vivo, the drug was able to decrease both the volume and proliferation indexes of the tongue orthotopic tumors and, importantly, reduced the number of metastatic cervical lymph nodes by 43%. These results suggest that FASN is a potential molecular target for the chemotherapy of patients with OTSCC. PMID:24362464

Agostini, Michelle; Almeida, Luciana Y; Bastos, Débora C; Ortega, Rose M; Moreira, Fernanda S; Seguin, Fabiana; Zecchin, Karina G; Raposo, Helena F; Oliveira, Helena C F; Amoêdo, Nivea D; Salo, Tuula; Coletta, Ricardo D; Graner, Edgard

2014-03-01

134

The Discovery of Potentially Selective Human Neuronal Nitric Oxide Synthase (nNOS Inhibitors: A Combination of Pharmacophore Modelling, CoMFA, Virtual Screening and Molecular Docking Studies  

Directory of Open Access Journals (Sweden)

Full Text Available Neuronal nitric oxide synthase (nNOS plays an important role in neurotransmission and smooth muscle relaxation. Selective inhibition of nNOS over its other isozymes is highly desirable for the treatment of neurodegenerative diseases to avoid undesirable effects. In this study, we present a workflow for the identification and prioritization of compounds as potentially selective human nNOS inhibitors. Three-dimensional pharmacophore models were constructed based on a set of known nNOS inhibitors. The pharmacophore models were evaluated by Pareto surface and CoMFA (Comparative Molecular Field Analysis analyses. The best pharmacophore model, which included 7 pharmacophore features, was used as a search query in the SPECS database (SPECS®, Delft, The Netherlands. The hit compounds were further filtered by scoring and docking. Ten hits were identified as potential selective nNOS inhibitors.

Guanhong Xu

2014-05-01

135

Gerfelin, a novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities.  

Science.gov (United States)

A new compound, gerfelin, was isolated from a culture broth of Beauveria felina QN22047. It was purified by column chromatography on silica gel and by HPLC. Gerfelin has the molecular formula C15H14O6. It inhibited synthesis of geranylgeranyl diphosphate, which was mediated by recombinant human geranylgeranyl diphosphate synthase (hGGPP synthase) in vitro. The inhibitory pattern of gerfelin was noncompetitive against isopentenyl diphosphate, and uncompetitive against farnesyl diphosphate. PMID:14513904

Zenitani, Satoko; Tashiro, Satoshi; Shindo, Kazutoshi; Nagai, Koji; Suzuki, Kenichi; Imoto, Masaya

2003-07-01

136

Evaluation of BM-573, a novel TXA(2) synthase inhibitor and receptor antagonist, in a porcine model of myocardial ischemia-reperfusion  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Aims: To investigate whether BM-573 (N-tert-butyl-N'-[2-(4'-methylphenylam\\ino)-5-nitro-benzenesulfonyl]urea), an original combined thromboxane A(2) synthase inhibitor and receptor antagonist, prevents reperfusion injury in acutely ischemic pigs. Methods: Twelve animals were randomly divided in two groups: a control group (n = 6) intravenously infused with vehicle, and a BM-573-treated group (n = 6) infused with BM-573 (10 mg kg(-1) h(-1)). In both groups, the left anterior descending (LAD) c...

Kolh, Philippe; Rolin, S.; Tchana-sato, Vincent; Petein, M.; Ghuysen, Alexandre; Lambermont, Bernard; Hanson, Julien; Magis, David; Segers, P.; Masereel, B.; D Orio, Vincenzo; Dogne?, Jean-michel

2006-01-01

137

Tools for discovery of inhibitors of the 1-deoxy-D-xylulose 5-phosphate (DXP) synthase and DXP reductoisomerase: an approach with enzymes from the pathogenic bacterium Pseudomonas aeruginosa.  

Science.gov (United States)

Two Pseudomonas aeruginosa genes encoding the enzymes 1-deoxy-D-xylulose 5-phosphate (DXP) synthase and DXP reductoisomerase, both involved in the mevalonate-independent biosynthesis of isoprenoids, have been expressed as recombinant enzymes in Escherichia coli. The purified P. aeruginosa DXP reductoisomerase was inhibited by submicromolar concentrations of the antibiotics fosmidomycin and FR-900098 in a well established method. A novel and convenient spectrophotometric assay was developed to determine activity and inhibition of P. aeruginosa DXP synthase. Fluoropyruvate is described as a first inhibitor of DXP synthase. PMID:11034300

Altincicek, B; Hintz, M; Sanderbrand, S; Wiesner, J; Beck, E; Jomaa, H

2000-09-15

138

Inhibitors of dihydropteroate synthase: substituent effects in the side-chain aromatic ring of 6-[[3-(aryloxy)propyl]amino]-5-nitrosoisocytosines and synthesis and inhibitory potency of bridged 5-nitrosoisocytosine-p-aminobenzoic acid analogues.  

Science.gov (United States)

We previously reported that 6-(methylamino)-5-nitrosoisocytosine (5) is a potent inhibitor (I50 = 1.6 microM) of Escherichia coli dihydropteroate synthase. It was noted that 6-amino substituents larger than methyl were detrimental to binding, although the adverse steric effect could be overcome by a positive ancillary binding contribution of a phenyl ring attached at the terminus of certain 6-alkylamino substituents. We selected the 6-[[3-(aryloxy)propyl]amino]-5-nitrosoisocytosine structure as a parent system and explored the effects of aromatic substituents on synthase inhibition. The nature of the aryl substitution influences binding, as shown by a 30-fold range of inhibitory potencies observed for the 15 aryl analogues (I50 values = 0.6-18 microM), although there is no apparent correlation between synthase inhibition and the electronic or hydrophobic characteristics of the aryl substituents. To explore the possibility that the aryl ring of these inhibitors might interact with the synthase binding site for the substrate p-aminobenzoic acid (PABA), three compounds were synthesized in which a PABA analogue is bridged to the nitrosoisocytosine moiety by linkage to an amino group at C-6 of the isocytosine. The bridged analogues significantly inhibited the synthase (I50 values = 2.5-8.9 microM) but were of unexceptional potency compared with other members of the (aryloxy)propyl series. Structure-activity considerations and inhibition kinetics did not support the PABA binding site as the synthase region that interacts with the aryl ring of these inhibitors. Despite the potent synthase inhibition exhibited by many of the nitrosoisocytosines studied, none of the 18 new analogues showed significant antibacterial activity. PMID:3486292

Lever, O W; Bell, L N; Hyman, C; McGuire, H M; Ferone, R

1986-05-01

139

[Expression of acetohydroxyacid synthase isozyme genes ilvBN, ilvGM, ilvIH and their resistance to AHAS-inhibitor herbicides].  

Science.gov (United States)

Acetohydroxyacid synthase (AHAS) catalyses the first reaction in the pathway for synthesis of the branched-chain amino acids. AHAS is the target for sulfonylurea, imidazolinone and other AHAS-inhibitor herbicides. Herbicides-resistant AHAS genes have potential application in plant transgenetic engineering and development of new generation herbicide. The AHAS isozyme genes ilvBN, ilvGM and ilvIH were cloned from metsulfuron-methyl resistant strain Klebsiella sp. HR11 and metsulfuron-methyl sensitive strain Klebsiella pneumoniae MGH 78578. Homologous sequences comparison indicated that the differences in AHAS isozyme genes at amino acid levels between strain HR11 and strain MGH 78578 were mainly on the large subunits of ilvBN and ilvGM. The three AHAS isozyme genes from HR11 and MGH 78578 were ligated into the expression vector pET29a(+) and expressed in Escherichia coli BL21, respectively. The results of enzyme inhibition assay showed that only ilvBN and ilvGM from strain HR11 showed strong resistance to AHAS-inhibitor herbicides, while ilvIH from strain HR11 and ilvBN, ilvGM and ilvIH from strain MGH78578 were sensitive to AHAS-inhibitor herbicides. PMID:19835141

Shen, Jingjing; Li, Yongfeng; Huang, Xing; Yu, Xinyan; He, Jian; Li, Shunpeng

2009-07-01

140

Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor.  

Science.gov (United States)

Triazolopyrimidine-2-sulfonamide belongs to a herbicide group called acetohydroxyacid synthase inhibitors. With the aim to discover new triazolopyrimidine sulfonanilide compounds with high herbicidal activity and faster degradation rate in soil, the methyl group of Flumetsulam (FS) was modified into a methoxy group to produce a new herbicidal compound, N-2,6-difluorophenyl-5-methoxy-1,2,4-triazolo[1,5-a]pyrimidine-2-sulfonamide (experimental code: Y6610). The enzymatic kinetic results indicated that compound Y6610 and FS have k(i) values of 3.31x10(-6) M and 3.60x10(-7) M against Arabidopsis thaliana AHAS, respectively. The 10-fold lower enzyme-inhibiting activity of Y6610 was explained rationally by further computational simulations and binding free energy calculations. In addition, compound Y6610 was found to display the same level in vivo post-emergent herbicidal activity as FS against some broad-leaf weeds and good safety to rice, maize, and wheat at the dosages of 75-300 gai/ha. Further determination of the half-lives in soil revealed that the half-life in soil of Y6610 is 3.9 days shorter than that of FS. The experimental results herein showed that compound Y6610 could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study. PMID:19342247

Chen, Chao-Nan; Lv, Li-Li; Ji, Feng-Qin; Chen, Qiong; Xu, Hui; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

2009-04-15

 
 
 
 
141

Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells  

International Nuclear Information System (INIS)

Highlights: •EV-077 reduced TNF-? induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNF? incubation, whereas concentrations of 6-keto PGF1? in supernatants of endothelial cells incubated with TNF? were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNF?-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy

142

Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells  

Energy Technology Data Exchange (ETDEWEB)

Highlights: •EV-077 reduced TNF-? induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNF? incubation, whereas concentrations of 6-keto PGF1? in supernatants of endothelial cells incubated with TNF? were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNF?-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

2013-11-15

143

Design and synthesis of active site inhibitors of the human farnesyl pyrophosphate synthase: apoptosis and inhibition of ERK phosphorylation in multiple myeloma cells.  

Science.gov (United States)

Human farnesyl pyrophosphate synthase (hFPPS) controls intracellular levels of FPP and post-translational prenylation of small GTPase proteins, which are essential for cell signaling and cell proliferation. Clinical investigations provide evidence that N-BP inhibitors of hFPPS are disease modifying agents that improve survival of multiple myeloma (MM) patients via mechanisms unrelated to their skeletal effects. A new series of N-BPs was designed that interact with a larger portion of the GPP subpocket, as compared to the current therapeutic drugs, and rigidify the (364)KRRK(367) tail of hFPPS in the closed conformation in the absence of IPP. An analogue of this series was used to demonstrate inhibition of the intended biological target, resulting in apoptosis and down-regulation of ERK phosphorylation in human MM cell lines. PMID:22390415

Lin, Yih-Shyan; Park, Jaeok; De Schutter, Joris W; Huang, Xian Fang; Berghuis, Albert M; Sebag, Michael; Tsantrizos, Youla S

2012-04-12

144

Dose effects of chronically infused nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester on anabolic response and arginine metabolism in rats with subacute peritonitis.  

Science.gov (United States)

Nitric oxide synthase (NOS) inhibitors alleviate the adverse effects of nitric oxide (NO) overproduction that occurs during peritonitis, a clinical condition that is accompanied by arginine deficiency. However, the variations in the disease severity and the dosage, route, and period of NOS inhibitor administration are debatable. Therefore, we investigated the dose effects of chronically infused NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME) on the anabolism, inflammatory responses, and arginine metabolism in parenterally fed rats with cecal puncture-induced subacute peritonitis. Male Wistar rats were divided into 4 groups and were administered total parenteral nutrition solutions with 0, 5 (low dose), 25 (medium dose), or 50 (high dose) mg·kg(-1)·d(-1) of L-NAME for 7 d. Sham-operated rats administered total parenteral nutrition solution and normal healthy rats fed chow diet were also included. Our results showed that parenteral infusion significantly decreased body weight gain and plasma citrulline concentrations. In rats with subacute peritonitis, the parenteral infusion-induced increases in circulating white blood cells and NO were significantly decreased, whereas the decrease in serum albumin levels was significantly increased. Rats with subacute peritonitis that were administered chronic infusion of L-NAME had a significantly reduced nitrogen balance. In addition, rats administered the medium dose of L-NAME had significantly increased plasma arginine, ornithine, glutamate, and proline. In conclusion, chronic infusion of NOS inhibitors may not alter systemic NO homeostasis and inflammatory response but may facilitate the production of arginine-associated amino acids and nitrogen excretion in cases of subacute peritonitis. PMID:21415524

Hsiao, Chien-Chou; Lee, Chien-Hsing; Tsao, Lon-Yen; Lo, Hui-Chen

2011-01-01

145

Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors.  

Science.gov (United States)

We reported previously that IGF-I inhibits burn-induced muscle proteolysis. Recent studies suggest that activation of the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway with downstream phosphorylation of Forkhead box O transcription factors is an important mechanism of IGF-I-induced anabolic effects in skeletal muscle. The potential roles of other mechanisms in the anabolic effects of IGF-I are less well understood. In this study we tested the roles of mammalian target of rapamycin and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation as well as MAPK- and calcineurin-dependent signaling pathways in the anticatabolic effects of IGF-I by incubating extensor digitorum longus muscles from burned rats in the presence of IGF-I and specific signaling pathway inhibitors. Surprisingly, the PI3K inhibitors LY294002 and wortmannin reduced basal protein breakdown. No additional inhibition by IGF-I was noticed in the presence of LY294002 or wortmannin. Inhibition of proteolysis by IGF-I was associated with phosphorylation (inactivation) of GSK-3beta. In addition, the GSK-3beta inhibitors, lithium chloride and thiadiazolidinone-8, reduced protein breakdown in a similar fashion as IGF-I. Lithium chloride, but not thiadiazolidinone-8, increased the levels of phosphorylated Foxo 1 in incubated muscles from burned rats. Inhibitors of mammalian target of rapamycin, MAPK, and calcineurin did not prevent the IGF-I-induced inhibition of muscle proteolysis. Our results suggest that IGF-I inhibits protein breakdown at least in part through a PI3K/Akt/GSK3beta-dependent mechanism. Additional experiments showed that similar mechanisms were responsible for the effect of IGF-I in muscle from nonburned rats. Taken together with recent reports in the literature, the present results suggest that IGF-I inhibits protein breakdown in skeletal muscle by multiple mechanisms, including PI3K/Akt-mediated inactivation of GSK-3beta and Foxo transcription factors. PMID:15802492

Fang, Cheng-Hui; Li, Bing-Guo; James, J Howard; King, Jy-Kung; Evenson, Amy R; Warden, Glenn D; Hasselgren, Per-Olof

2005-07-01

146

Inhibition of prostaglandin D2 clearance in rat hepatocytes by the thromboxane receptor antagonists daltroban and ifetroban and the thromboxane synthase inhibitor furegrelate.  

Science.gov (United States)

Prostanoids, i.e. prostaglandins and thromboxane, regulate liver-specific functions both in homeostasis and during defense reactions. For example, prostanoids are released from Kupffer cells, the resident liver macrophages, in response to the inflammatory mediator anaphylatoxin C5a, and mediate an enhanced glucose output from hepatocytes as energy supply. In perfused rat livers, the thromboxane receptor antagonist daltroban enhanced C5a-induced prostanoid overflow and reduced glucose output. It was the aim of this study to elucidate whether daltroban interfered with prostanoid release from Kupffer cells or prostanoid clearance by hepatocytes, and/or whether it directly influenced prostanoid-dependent glucose metabolism in these cells. In perfused rat livers, daltroban enhanced prostaglandin (PG)D(2) overflow not only after infusion of C5a (15-fold), but also after PGD(2) (10-fold). Neither daltroban nor another receptor antagonist, ifetroban, or the thromboxane synthase inhibitor furegrelate enhanced prostanoid release from Kupffer cells. In contrast, all inhibitors reduced clearance, i.e. uptake and degradation, of PGD(2) by hepatocytes: within 5 min uptake of 1 nmol/L PGD(2) was reduced from 43+/-5 fmol (controls) to 22+/-6 fmol (daltroban), 24+/-6 fmol (ifetroban) and 21+/-6 fmol (furegrelate). PGD(2) in the medium was reduced to 39+/-7% in the controls, but remained at 93+/-9%, 93+/-11% and 60+/-3% in the presence of the inhibitors. PGD(2)-dependent glucose output in the perfused liver or activation of glycogen phosphorylase in isolated hepatocytes remained unaffected by daltroban. These data clearly demonstrate that the thromboxane-inhibitors reduced PGD(2) clearance by hepatocytes, presumably by inhibition of prostanoid transport into the cells. In contrast, they did not interfere with PGD(2)-dependent glucose metabolism, suggesting an independent mechanism for the inhibition of glucose output from the liver. PMID:12906929

Pestel, Sabine; Nath, Annegret; Jungermann, Kurt; Schieferdecker, Henrike L

2003-08-15

147

Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models.  

Science.gov (United States)

Nature in silico: Virtual screening using validated pharmacophore models identified lichen depsides and depsidones as potential inhibitors of mPGES-1, an emerging target for NSAIDs. Evaluation of the virtual hits in a cell-free assay revealed physodic acid and perlatolic acid as potent inhibitors of mPGES-1 (IC(50) = 0.4 and 0.43 ?M, respectively), indicating that these natural products have potential as novel anti-inflammatory agents. PMID:23109349

Bauer, Julia; Waltenberger, Birgit; Noha, Stefan M; Schuster, Daniela; Rollinger, Judith M; Boustie, Joel; Chollet, Marylene; Stuppner, Hermann; Werz, Oliver

2012-12-01

148

The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain. Results Enzymatic mollusc chitin synthesis was investigated in vivo by using the small-molecule drug NikkomycinZ, a structural analogue to the sugar donor substrate UDP-N-acetyl-D-glucosamine (UDP-GlcNAc. The impact on mollusc shell formation was analyzed by binocular microscopy, polarized light video microscopy in vivo, and scanning electron microscopy data obtained from shell material formed in the presence of NikkomycinZ. The partial inhibition of chitin synthesis in vivo during larval development by NikkomycinZ (5 ?M – 10 ?M dramatically alters the structure and thus the functionality of the larval shell at various growth fronts, such as the bivalve hinge and the shell's edges. Conclusion Provided that NikkomycinZ mainly affects chitin synthesis in molluscs, the presented data suggest that the mollusc chitin synthase fulfils an important enzymatic role in the coordinated formation of larval bivalve shells. It can be speculated that chitin synthesis bears the potential to contribute via signal transduction pathways to the implementation of hierarchical patterns into chitin mineral-composites such as prismatic, nacre, and crossed-lamellar shell types.

Weiss Ingrid M

2007-11-01

149

?-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions.  

Science.gov (United States)

Lactic Acid Bacteria (LAB) are recognized as safe microorganisms with the capacity to improve the quality of dairy products. When the LAB Lactococcus lactis is employed as starter for the production of fermented foods, high quantities of important aroma compounds such as diacetyl are generated by means of the diacetyl/acetoin pathway. Our previous results obtained with L. lactis strains report that this pathway is activated under acidic conditions. In this study, we describe the metabolism of pyruvate, a diacetyl/acetoin precursor, and its contribution to pH homeostasis in this microorganism. L lactis strain IL1403 is able to cometabolize pyruvate and glucose at low pH, producing lactate, acetate as well as diacetyl/acetoin compounds. In contrast, the als defective strain, which is incapable of producing C4 compounds, appeared sensitive to pyruvate under acidic conditions rendering it unable to grow. Accordingly, the als-mutant strain showed a simultaneous inability to alkalinize internal and external media. These results demonstrate that the decarboxylation reactions associated to the diacetyl/acetoin pathway represent a competitive advantage in a condition of intracellular pyruvate accumulation during growth at low pH. Interestingly, a genomic comparative analysis shows that this pathway has been conserved in L. lactis during the domestication of different strains. Also, our analysis shows that the recent acquisition of the cit cluster required for citrate metabolism, which contributes to diacetyl/acetoin production as well, is the specific feature of the biovar. diacetylactis. In this regard, we present for first time genetic evidence supporting the proposal made by Passerini et al. (2013) who postulated that the expression "biovar. citrate" should be more appropriate to define this specific industrial strain. PMID:25100661

Zuljan, Federico A; Repizo, Guillermo D; Alarcon, Sergio H; Magni, Christian

2014-10-01

150

Role of nitric oxide in sleep regulation: effects of L-NAME, an inhibitor of nitric oxide synthase, on sleep in rats.  

Science.gov (United States)

The effect of N(G)-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of enzyme nitric oxide synthase (NOS), on spontaneous sleep during the light period, was studied in adult rats implanted for chronic sleep recordings. L-NAME was injected by subcutaneous (s.c.) or intracerebroventricular (i.c.v.) routes or was infused directly into the dorsal raphe nuclei (DRN). Subcutaneous (1.25-5.0 mg/kg) or i.c.v. (0.25-1.0 mg) administration of L-NAME increased waking (W) and reduced slow wave sleep (SWS) and rapid-eye-movement sleep (REMS) during the first 3 h of recording. On the other hand, direct application of L-NAME into the DRN (50.0-150.0 microg) induced an increment of W and a reduction of SWS without suppressing REMS. Values of W and SWS were significantly different compared with those of controls during the 6-h recording period. The effects of L-NAME observed after s.c. or i.c.v. administration confirm previous studies in rabbits and rats, in which the NOS inhibitor reduced sleep and increased W in a dose-dependent manner. It is possible that REMS suppression after L-NAME could be related to a reduction of acetylcholine release in areas critical for REMS promotion. A decrease in gamma-aminobutyric acid (GABA) release after nitric oxide synthesis inhibition could play a role in the reduction of SWS. PMID:10212067

Monti, J M; Hantos, H; Ponzoni, A; Monti, D; Banchero, P

1999-04-01

151

Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo.  

Science.gov (United States)

Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) is currently pursued as potential pharmacological strategy for treatment of inflammation and cancer. Here we present a series of 26 novel 2-aminothiazole-featured pirinixic acid derivatives as dual 5-LO/mPGES-1 inhibitors with improved potency (exemplified by compound 16 (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid) with IC50 = 0.3 and 0.4 ?M, respectively) and bioactivity in vivo. Computational analysis presumes binding sites of 16 at the tip of the 5-LO catalytic domain and within a subpocket of the mPGES-1 active site. Compound 16 (10 ?M) hardly suppressed cyclooxygenase (COX)-1/2 activities, failed to inhibit 12/15-LOs, and is devoid of radical scavenger properties. Finally, compound 16 reduced vascular permeability and inflammatory cell infiltration in a zymosan-induced mouse peritonitis model accompanied by impaired levels of cysteinyl-leukotrienes and prostaglandin E2. Together, 2-aminothiazole-featured pirinixic acids represent potent dual 5-LO/mPGES-1 inhibitors with an attractive pharmacological profile as anti-inflammatory drugs. PMID:24171493

Hanke, Thomas; Dehm, Friederike; Liening, Stefanie; Popella, Sven-Desiderius; Maczewsky, Jonas; Pillong, Max; Kunze, Jens; Weinigel, Christina; Barz, Dagmar; Kaiser, Astrid; Wurglics, Mario; Lämmerhofer, Michael; Schneider, Gisbert; Sautebin, Lidia; Schubert-Zsilavecz, Manfred; Werz, Oliver

2013-11-27

152

Structure-Based Design of Novel Pyrimido[4,5-c]pyridazine Derivatives as Dihydropteroate Synthase Inhibitors with Increased Affinity  

Energy Technology Data Exchange (ETDEWEB)

Dihydropteroate synthase (DHPS) is the validated drug target for sulfonamide antimicrobial therapy. However, due to widespread drug resistance and poor tolerance, the use of sulfonamide antibiotics is now limited. The pterin binding pocket in DHPS is highly conserved and is distinct from the sulfonamide binding site. It therefore represents an attractive alternative target for the design of novel antibacterial agents. We previously carried out the structural characterization of a known pyridazine inhibitor in the Bacillus anthracis DHPS pterin site and identified a number of unfavorable interactions that appear to compromise binding. With this structural information, a series of 4,5-dioxo-1,4,5,6-tetrahydropyrimido[4,5-c]pyridazines were designed to improve binding affinity. Most importantly, the N-methyl ring substitution was removed to improve binding within the pterin pocket, and the length of the side chain carboxylic acid was optimized to fully engage the pyrophosphate binding site. These inhibitors were synthesized and evaluated by an enzyme activity assay, X-ray crystallography, isothermal calorimetry, and surface plasmon resonance to obtain a comprehensive understanding of the binding interactions from structural, kinetic, and thermodynamic perspectives. This study clearly demonstrates that compounds lacking the N-methyl substitution exhibit increased inhibition of DHPS, but the beneficial effects of optimizing the side chain length are less apparent.

Zhao, Ying; Hammoudeh, Dalia; Yun, Mi-Kyung; Qi, Jianjun; White, Stephen W.; Lee, Richard E. (Tennessee-HSC); (SJCH)

2012-05-29

153

Statins and the squalene synthase inhibitor zaragozic acid stimulate the non-amyloidogenic pathway of amyloid-beta protein precursor processing by suppression of cholesterol synthesis.  

Science.gov (United States)

Cholesterol-lowering drugs such as statins influence the proteolytic processing of the amyloid-beta protein precursor (AbetaPP) and are reported to stimulate the activity of alpha-secretase, the major preventive secretase of Alzheimer's disease. Statins can increase the alpha-secretase activity by their cholesterol-lowering properties as well as by impairment of isoprenoids synthesis. In the present study, we elucidate the contribution of these pathways in alpha-secretase activation. We demonstrate that zaragozic acid, a potent inhibitor of squalene synthase which blocks cholesterol synthesis but allows synthesis of isoprenoids, also stimulates alpha-secretase activity. Treatment of human neuroblastoma cells with 50 microM zaragozic acid resulted in a approximately 3 fold increase of alpha-secretase activity and reduced cellular cholesterol by approximately 30%. These effects were comparable to results obtained from cells treated with a low lovastatin concentration (2 microM). Zaragozic acid-stimulated secretion of alpha-secretase-cleaved soluble AbetaPP was dose dependent and saturable. Lovastatin- or zaragozic acid-stimulated increase of alpha-secretase activity was completely abolished by a selective ADAM10 inhibitor. By targeting the alpha-secretase ADAM10 to lipid raft domains via a glycosylphosphatidylinositol anchor, we demonstrate that ADAM10 is unable to cleave AbetaPP in a cholesterol-rich environment. Our results indicate that inhibition of cholesterol biosynthesis by a low lovastatin concentration is sufficient for alpha-secretase activation. PMID:20413873

Kojro, Elzbieta; Füger, Petra; Prinzen, Claudia; Kanarek, Anna Maria; Rat, Dorothea; Endres, Kristina; Fahrenholz, Falk; Postina, Rolf

2010-01-01

154

A Head to Head Comparison of Eneamide and Epoxyamide Inhibitors of Glucosamine-6-P Synthase from the Dapdiamide Biosynthetic Pathway  

Science.gov (United States)

The dapdiamides are a family of antibiotics that have been presumed to be cleaved in the target cell to enzyme-inhibitory N-acyl-2,3-diaminopropionate (DAP) warheads containing two alternative electrophilic moieties. Our prior biosynthetic studies revealed that an eneamide warhead is made first and converted to an epoxyamide via a three enzyme branch pathway. Here we provide a rationale for this logic. We report that the RR-epoxyamide warhead is a more efficient covalent inactivator of glucosamine-6-phosphate synthase by an order of magnitude over the eneamide, and this difference correlates with a more than ten-fold difference in antibiotic activity for the corresponding acyl-DAP dipeptides. PMID:21520904

Hollenhorst, Marie A.; Ntai, Ioanna; Badet, Bernard; Kelleher, Neil L.; Walsh, Christopher T.

2011-01-01

155

Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure?activity relationships with Trypanosoma brucei GSK-3  

Energy Technology Data Exchange (ETDEWEB)

Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18{_}V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 {angstrom} resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3{beta} (HsGSK-3{beta}) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

Ojo, Kayode K.; Arakaki, Tracy L.; Napuli, Alberto J.; Inampudi, Krishna K.; Keyloun, Katelyn R.; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A.; Van Voorhis, Wesley C. (UWASH)

2012-04-24

156

Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann-Pick C mice.  

Science.gov (United States)

Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction. PMID:22366055

Nietupski, Jennifer B; Pacheco, Joshua J; Chuang, Wei-Lien; Maratea, Kimberly; Li, Lingyun; Foley, Joseph; Ashe, Karen M; Cooper, Christopher G F; Aerts, Johannes M F G; Copeland, Diane P; Scheule, Ronald K; Cheng, Seng H; Marshall, John

2012-04-01

157

Synthesis and structure-activity relationship of 4-quinolone-3-carboxylic acid based inhibitors of glycogen synthase kinase-3?.  

Science.gov (United States)

The synthesis, GSK-3? inhibitory activity, and anti-microbial activity of bicyclic and tricyclic derivatives of the 5,7-diamino-6-fluoro-4-quinolone-3-carboxylic acid scaffold were studied. Kinase selectivity profiling indicated that members of this class were potent and highly selective GSK-3 inhibitors. PMID:21873061

Cociorva, Oana M; Li, Bei; Nomanbhoy, Tyzoon; Li, Qiang; Nakamura, Ayako; Nakamura, Kai; Nomura, Masahiro; Okada, Kyoko; Seto, Shigeki; Yumoto, Kazuhiro; Liyanage, Marek; Zhang, Melissa C; Aban, Arwin; Leen, Brandon; Szardenings, Anna Katrin; Rosenblum, Jonathan S; Kozarich, John W; Kohno, Yasushi; Shreder, Kevin R

2011-10-01

158

The selective neuronal nitric oxide synthase inhibitor 7-nitroindazole has acute analgesic but not cumulative effects in a rat model of peripheral neuropathy  

Directory of Open Access Journals (Sweden)

Full Text Available Liliane J Dableh, James L HenryDepartment of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, CanadaAbstract: Chronic neuropathic pain that may arise from various nerve injuries or insults remains notoriously difficult to manage. The neuronal isoform of the enzyme nitric oxide synthase (nNOS has been shown to be involved in the spinal transmission of nociception in animal models of chronic pain. The aim of this study is to evaluate the effect of single dose and repeated administration of a selective nNOS inhibitor. Rats were unilaterally implanted with a 2-mm polyethylene cuff around the sciatic nerve. Paw withdrawal thresholds were measured using von Frey filament stimulation. Rats were given 10, 20, or 30 mg/kg of 7-nitroindazole (7-NI, or vehicle, on days 2, 5, and 7 after model induction, respectively. Paw withdrawal thresholds were measured before and at 30 and 60 min after injection. 7-NI significantly increased paw withdrawal thresholds at 60 min at the 20 and 30 mg/kg dosages. In the second part of this study, rats were given 20 mg/kg 7-NI daily for five days starting immediately after cuff implantation (days 0 to 4, and the cuff was removed on day 4. Withdrawal thresholds were measured intermittently over a 24-day observation period. No differences in withdrawal thresholds were observed between drug and vehicle-treated rats. Therefore, early and repeated administration of 7-NI did not affect the development or progression of the model. In conclusion, inhibition of nNOS had an analgesic but not a pre-emptive effect in this model of peripheral neuropathic pain.Keywords: neuronal nitric oxide synthase, nitric oxide, 7-nitroindazole, neuropathic pain, peripheral nerve injury, nociception 

Henry JL

2011-03-01

159

Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium  

Directory of Open Access Journals (Sweden)

Full Text Available THE aim of the current study was to investigate the effect of inhibition of nitric oxide (NO production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response.

Adam Curtis

1992-01-01

160

Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in hyperthyroid patients.  

Science.gov (United States)

Cardiovascular manifestations are frequent findings in patients with thyroid hormone disorders. Nitric oxide (NO) plays a key role in vascular, endothelial-mediated relaxation. NO is synthesized from L-arginine by NO synthase, an enzyme inhibited by endogenous compounds, mainly asymmetric dimethylarginine [asymmetric N(G),N(G)-dimethyl-L-arginine (ADMA)]. The aim of our work was to investigate whether plasma L-arginine and dimethylarginine concentrations and NO production are altered in hypo- and hyperthyroid patients, compared with control subjects. L-arginine, ADMA and symmetric dimethylarginine were analyzed by HPLC. NO was measured as plasma nitrite plus nitrate (NO(x)) concentration by a colorimetric method based on Griess reagent. L-arginine, ADMA, and symmetric dimethylarginine plasma levels in the hypothyroid group were similar to those of the control group; whereas in hyperthyroidism, these values were significantly increased. However, the L-arginine/ADMA ratio was decreased in hyperthyroid patients, resulting in diminished NO(x) production. When all subjects were analyzed together, free T(4) levels were directly correlated with ADMA and inversely correlated with NO(x). PMID:12466365

Hermenegildo, Carlos; Medina, Pascual; Peiró, Marta; Segarra, Gloria; Vila, José M; Ortega, Joaquín; Lluch, Salvador

2002-12-01

 
 
 
 
161

Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats  

International Nuclear Information System (INIS)

Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/?CT imaging. GSK-3 inhibitors caused ?-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/?CT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats

162

Quinolone derivatives containing strained spirocycle as orally active glycogen synthase kinase 3? (GSK-3?) inhibitors for type 2 diabetics.  

Science.gov (United States)

The design, synthesis, and evaluation of 6-6-7 tricyclic quinolones containing the strained spirocycle moiety aiming at the GSK-3? inhibitor were described. Among the synthesized compounds, 44, having a cyclobutane ring on a spirocycle, showed excellent GSK-3? inhibitory activity in both cell-free and cell-based assays (IC(50) = 36nM, EC(50) = 3.2?M, respectively). Additionally, 44 decreased the plasma glucose concentration dose-dependently after an oral glucose tolerance test in mice. PMID:22261023

Seto, Shigeki; Yumoto, Kazuhiko; Okada, Kyoko; Asahina, Yoshikazu; Iwane, Aya; Iwago, Maki; Terasawa, Reiko; Shreder, Kevin R; Murakami, Koji; Kohno, Yasushi

2012-02-01

163

Lack of tolerance for the anti-dyskinetic effects of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, in rats  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english 7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could i [...] nterfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P

N., Novaretti; F.E., Padovan-Neto; V., Tumas; C.A., da-Silva; E.A., Del Bel.

164

Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor  

International Nuclear Information System (INIS)

Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS+ and cyclooxygenase-2+) and alternatively activated profibrotic (YM-1+ and galectin-3+) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ? Nitrogen mustard (NM) induces acute lung injury and fibrosis. ? Pulmonary toxicity is associated with increased expression of iNOS. ? Transient inhibition of iNOS attenuates acute lung injury induced by NM.

165

Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor  

Energy Technology Data Exchange (ETDEWEB)

Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ? Nitrogen mustard (NM) induces acute lung injury and fibrosis. ? Pulmonary toxicity is associated with increased expression of iNOS. ? Transient inhibition of iNOS attenuates acute lung injury induced by NM.

Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

2012-12-15

166

Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents.  

Science.gov (United States)

A series of novel 1-methyl-3-substituted quinazoline-2,4-dione derivatives were designed, synthesized, and characterized by (1)H NMR, (13)C NMR and MS spectral data. Their inhibition against chitin synthase (CHS) and antifungal activities were evaluated in vitro. Results showed compounds 5b, 5c, 5e, 5f, 5j, 5k, 5l, and 5o had strong inhibitory potency against CHS. Compound 5c, which has the highest potency among these compounds, had a half-inhibition concentration (IC50) of 0.08mmol/L, while polyoxin B as positive drug had IC50 of 0.18mmol/L. These IC50 values of compounds 5i, 5m, 5n, and 5s were greater than 0.75mmol/L, which revealed that those compounds had weak inhibition activity against CHS. Moreover, most of these compounds exhibited moderate to excellent antifungal activities. In detail, to Candida albicans, the activities of compound 5g and 5k were 8-fold stronger than that of fluconazole and 4-fold stronger than that of polyoxin B; to Aspergillus flavus, the activities of 5g, 5l and 5o were16-fold stronger than that of fluconazole and 8-fold stronger than that of polyoxin B; to Cryptococcus neoformans, the minimum-inhibition-concentration (MIC) values of compounds 5c, 5d, 5e and 5l were comparable to those of fluconazole and polyoxin B. The antifungal activities of these compounds were positively correlated to their IC50 values against CHS. Furthermore, these compounds had negligible actions to bacteria. Therefore, these compounds were promising selective antifungal agents. PMID:24856180

Ji, Qinggang; Yang, Dan; Wang, Xin; Chen, Chunyan; Deng, Qiao; Ge, Zhiqiang; Yuan, Lvjiang; Yang, Xiaolan; Liao, Fei

2014-07-01

167

Lack of tolerance for the anti-dyskinetic effects of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, in rats  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english 7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could i [...] nterfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P

N., Novaretti; F.E., Padovan-Neto; V., Tumas; C.A., da-Silva; E.A., Del Bel.

1047-10-01

168

A quantitative structure-activity relationship (QSAR) study on a few series of potent, highly selective inhibitors of nitric oxide synthase.  

Science.gov (United States)

QSAR study was performed on a series of 1,2-dihydro-4-quinazolinamines, 4,5-dialkylsubstituted-2-imino-1,3-thiazolidine derivatives and 4,5-disubstituted-1,3-oxazolidin-2-imine derivatives studied by Tinker et al. [J Med Chem (2003), 46, 913-916], Ueda et al. [Bioorg Med Chem (2004) 12, 4101-4116] and Ueda et al. [Bioorg Med Chem Lett (2004) 14, 313-316], respectively, as potent, highly selective inhibitors of inducible nitric oxide synthase (iNOS). The iNOS inhibition activity of the whole series of compounds was analyzed in relation to the physicochemical and molecular properties of the compounds. The QSAR analysis revealed that the inhibition potency of the compounds was controlled by a topological parameter 1chi(v) (Kier's first order valence molecular connectivity index), density (D), surface tension (St) and length (steric parameter) of a substituent. This suggested that the drug-receptor interaction predominantly involved the dispersion interaction, but the bulky molecule would face steric problem because of which the molecule may not completely fit in active sites of the receptor and thus may not have the optimum interaction. PMID:24791414

Bharti, Vishwa Deepak; Gupta, Satya P; Kumar, Harish

2014-02-01

169

Effects of aminoguanidine, a potent nitric oxide synthase inhibitor, on myocardial and organ structure in a rat model of hemorrhagic shock  

Science.gov (United States)

Background: Nitric oxide (NO) has been shown to increase following hemorrhagic shock (HS). Peroxynitrite is produced by the reaction of NO with reactive oxygen species, leads to nitrosative stress mediated organ injury. We examined the protective effects of a potent inhibitor of NO synthase, aminoguanidine (AG), on myocardial and multiple organ structure in a rat model of HS. Materials and Methods: Male Sprague Dawley rats (300-350 g) were assigned to 3 experimental groups (n = 6 per group): (1) Normotensive rats (N), (2) HS rats and (3) HS rats treated with AG (HS-AG). Rats were hemorrhaged over 60 min to reach a mean arterial blood pressure of 40 mmHg. Rats were treated with 1 ml of 60 mg/kg AG intra-arterially after 60 min HS. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normo-tension. Biopsy samples were taken for light and electron microscopy. Results: Histological examination of hemorrhagic shocked untreated rats revealed structural damage. Less histological damage was observed in multiple organs in AG-treated rats. AG-treatment decreased the number of inflammatory cells and mitochondrial swollen in myocardial cells. Conclusion: AG treatment reduced microscopic damage and injury in multiple organs in a HS model in rats. PMID:25114430

Soliman, Mona M.

2014-01-01

170

Angiotensin-converting enzyme activity is involved in the mechanism of increased endogenous nitric oxide synthase inhibitor in patients with type 2 diabetes mellitus.  

Science.gov (United States)

The renin-angiotensin system plays an important role in the elevation of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in hypertensive patients, so the present study was designed to examine whether angiotensin-converting enzyme (ACE) activity is also involved in the mechanism of ADMA elevation in type 2 diabetes mellitus (NIDDM). A crossover study was performed to determine if ACE inhibition with perindopril (4 mg/day) for 4 weeks decreases serum ADMA concentration and plasma von Willebrand factor (vWF) level (a marker of endothelial injury) in 11 patients with NIDDM. None of the patients was treated with insulin or oral hypoglycemic drugs, and none had major diabetic complications. Before the protocol began, serum ADMA and plasma vWF were significantly higher in the 11 NIDDM patients, when compared with 8 control subjects without diabetes. Perindopril did not affect blood pressure or glucose metabolism, but did significantly decrease serum ADMA and plasma vWF. These results suggest that endothelial injury associated with ADMA elevation may be present even in patients with non-complicated NIDDM, and that increased activity of ACE may be involved in such endothelial dysfunction. PMID:12224817

Ito, Akira; Egashira, Kensuke; Narishige, Takahiro; Muramatsu, Kouhei; Takeshita, Akira

2002-09-01

171

Elevated levels of the serum endogenous inhibitor of nitric oxide synthase and metabolic control in rats with streptozotocin-induced diabetes.  

Science.gov (United States)

This study was designed to determine the relationship between elevated levels of the endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), and metabolic control in rats with streptozotocin-induced diabetes. Serum levels of ADMA were measured by high-performance liquid chromatography at 8 weeks after diabetes was induced. Endothelium-dependent relaxation to acetylcholine was tested in aortic rings from nondiabetic age-matched control, untreated diabetic, and insulin-treated diabetic rats to evaluate endothelial function. Serum concentrations of glucose, glycosylated serum protein, and malondialdehyde were examined to estimate metabolic control. Serum levels of ADMA increased dramatically in untreated diabetic rats compared with control rats. This elevation in ADMA levels was accompanied by impairment of the endothelium-dependent relaxation response to acetylcholine in aortic rings. Long-term insulin treatment not only prevented the elevation of serum ADMA levels, but also improved the impairment of endothelium-dependent relaxation in diabetic rats. Serum levels of glucose, glycosylated serum protein, and malondialdehyde were significantly increased in parallel with the elevation of ADMA in untreated diabetic rats compared with control rats. These parameters were normalized after diabetic rats received insulin treatment for 8 weeks. These results provide the first evidence that an elevation in the concentration of ADMA in rats with streptozotocin-induced diabetes is closely related to metabolic control of the disease. PMID:12883321

Xiong, Yan; Fu, Yun-feng; Fu, Si-hai; Zhou, Hong-hao

2003-08-01

172

Effects of soluble epoxide hydrolase inhibitor on the expression of fatty acid synthase in peripheral blood mononuclear cell in patients with acute coronary syndrome  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Researches have shown that soluble epoxide hydrolase inhibitors (sEHi can protect against the development of atherosclerosis. Simultaneously, emerging evidences have implicated the association between fatty acid synthase (FAS and acute coronary syndrome (ACS. We tested the hypothesis that sEHi could reduce the occurrence of ACS by regulating FAS. Methods Hospitalized ACS patients were selected as the ACS group (n = 65 while healthy normal subjects as the control group (n = 65. The blood levels of lipoproteins, fasting glucose, myocardial enzyme and high-sensitivity C-reactive protein (hs-CRP were measured within 24 hours after admission. The peripheral blood mononuclear cells (PBMCs were isolated and cultured. Trans-4-[4-(3-Adamantan-1-ylureidocyclohexyloxy] benzoic acid (t-AUCB, a kind of sEHi, was then added to cells in various concentrations (0, 10, 50, 100 ?mol/L. The expression of FAS, interleukin-6 (IL-6 mRNA and protein was detected by real-time PCR or Western blot, respectively. Results (1 Compared with the control group, the serum concentration of hs-CRP in the ACS group was increased (PPPPP Conclusions sEH inhibition regulated FAS and inhibited inflammation in cultured PBMCs from ACS patients, a mechanism that might prevent rupture of atherosclerotic lesions and protect against development of ACS.

Zhao Xuan

2013-01-01

173

Constitutive activation of glycogen synthase kinase-3? correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Aberrant regulation of glycogen synthase kinase-3? (GSK-3? has been implicated in several human cancers; however, it has not been reported in the gastric cancer tissues to date. The present study was performed to determine the expression status of active form of GSK-3? phosphorylated at Tyr216 (pGSK-3? and its relationship with other tumor-associated proteins in human gastric cancers. Methods Immunohistochemistry was performed on tissue array slides containing 281 human gastric carcinoma specimens. In addition, gastric cancer cells were cultured and treated with a GSK-3? inhibitor lithium chloride (LiCl for immunoblot analysis. Results We found that pGSK-3? was expressed in 129 (46% of 281 cases examined, and was higher in the early-stages of pathologic tumor-node-metastasis (P P P P P Conclusions GSK-3? activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis. Thus, these findings suggest that GSK-3? activation is a useful prognostic marker for the early-stage gastric cancer.

Cho Yu

2010-08-01

174

21 CFR 173.115 - Alpha-acetolactate decarboxylase (?-ALDC) enzyme preparation derived from a recombinant Bacillus...  

Science.gov (United States)

...preparation derived from a recombinant Bacillus subtilis. 173.115 Section 173...preparation derived from a recombinant Bacillus subtilis. The food additive alpha-acetolactate...enzyme preparation derived from a modified Bacillus subtilis strain that contains the...

2010-04-01

175

Glucose/citrate cometabolism in Lactococcus lactis subsp. lactis biovar diacetylactis with impaired alpha-acetolactate decarboxylase.  

Science.gov (United States)

The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in alpha-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The alpha-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, alpha-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on alpha-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired alpha-acetolactate decarboxylase activity accumulated alpha-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions. PMID:10937822

Curic, M; de Richelieu, M; Henriksen, C M; Jochumsen, K V; Villadsen, J; Nilsson, D

1999-10-01

176

Structure of 2-deoxy-scyllo-inosose synthase, a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics, in complex with a mechanism-based inhibitor and NAD+.  

Science.gov (United States)

A key enzyme in the biosynthesis of clinically important aminoglycoside antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose through a multistep reaction. This reaction mechanism is similar to the catalysis by dehydroquinate synthase (DHQS) of the cyclization of 3-deoxy-D-arabino-heputulosonate-7-phosphate to dehydroquinate in the shikimate pathway, but significant dissimilarity between these enzymes is also known, particularly in the stereochemistry of the phosphate elimination reaction and the cyclization. Here, the crystal structures of DOIS from Bacillus circulans and its complex with the substrate analog inhibitor carbaglucose-6-phosphate, NAD+, and Co2+ have been determined to provide structural insights into the reaction mechanism. The complex structure shows that an active site exists between the N-terminal and C-terminal domains and that the inhibitor coordinates a cobalt ion in this site. Two subunits exist as a dimer in the asymmetric unit. The two active sites of the dimer were observed to be different. One contains a dephosphorylated compound derived from the inhibitor and the other includes the inhibitor without change. The present study suggested that phosphate elimination proceeds through syn-elimination assisted by Glu 243 and the aldol condensation proceeds via a boat conformation. Also discussed are significant similarities and dissimilarities between DOIS and DHQS, particularly in terms of the structure at the active site and the reaction mechanism. PMID:17879343

Nango, Eriko; Kumasaka, Takashi; Hirayama, Toshifumi; Tanaka, Nobuo; Eguchi, Tadashi

2008-02-01

177

Inhibitors  

Science.gov (United States)

... clotting concentrates to stop or prevent a bleeding episode. Treatment Treating people who have inhibitors is complex and ... implemented to explore the following questions: Does a change in treatment products (from one type of factor product to ...

178

Chronic treatment with the nitric oxide synthase inhibitor, L-NAME, attenuates estradiol-mediated improvement of learning and memory in ovariectomized rats  

Directory of Open Access Journals (Sweden)

Full Text Available INTRODUCTION: The role of ovarian hormones and nitric oxide in learning and memory has been widely investigated. OBJECTIVE: The present study was carried out to evaluate the effect of the nitric oxide synthase (NOS inhibitor, N (G-nitro-L-arginine methyl ester (L-NAME, on the ability of estradiol to improve learning in OVX rats using the Morris water maze. METHODS: Forty rats were divided into five groups: (1 ovariectomized (OVX, (2 ovariectomized-estradiol (OVX-Est, (3 ovariectomized-L-NAME 10 (OVX-LN 10, (4 ovariectomized-L-NAME 50 (OVX-LN 50 and (5 ovariectomized-estradiol-L-NAME 50 (OVX-Est-LN 50. The animals in the OVX-Est group were treated with a weekly injection of estradiol valerate (2 mg/kg; i.m.. The OVX-LN 10 and OVX-LN 50 groups were treated with daily injections of 10 and 50 mg/kg L-NAME (i.p., respectively. The animals in the OVX-Est-LN 50 group received a weekly injection of estradiol valerate and a daily injection of 50 mg/kg L-NAME. After 8 weeks, all animals were tested in the Morris water maze. RESULTS: The animals in the OVX-Est group had a significantly lower latency in the maze than the OVX group (p<0.001. There was no significant difference in latency between the OVX-LN 10 and OVX-LN 50 groups in comparison with the OVX group. The latency in the OVX-Est-LN 50 group was significantly higher than that in the OVX-Est group (p<0.001. CONCLUSION: These results show that L-NAME treatment attenuated estradiol-mediated enhancement of spatial learning and memory in OVX rats, but it had no significant effect in OVX rats without estrogen, suggesting an interaction of nitric oxide and estradiol in these specific brain functions.

Hamid Azizi-Malekabadi

2011-01-01

179

Vascular hyporeactivity to angiotensin II induced by Escherichia coli endotoxin is reversed by N?-Nitro-L-Arginine, an inhibitor of nitric oxide synthase  

Directory of Open Access Journals (Sweden)

Full Text Available

Septic shock or sepsis is reported to be one of the major causes of death when followed by systemic infectious trauma in humans and other mammals. Its development leads to a large drop in blood pressure and a reduction in vascular responsiveness to physiological vasoconstrictors which, if not contained, can lead to death. It is proposed that this vascular response is due to the action of bacterial cell wall products released into the bloodstream by the vascular endothelium and is considered a normal response of the body`s defenses against infection. A reduction in vascular reactivity to epinephrine and norepinephrine is observed under these conditions. In the present study in rats, the aim was to assess whether those effects of hypotension and hyporeactivity are also related to another endogenous vasoconstrictor, angiotensin II (AII. We evaluated the variation in the power of this vasoconstrictor over the mean arterial pressure in anesthetized rats, before and after the establishment of hypotension by Escherichia coli endotoxin (Etx. Our results show that in this model of septic shock, there is a reduction in vascular reactivity to AII and this reduction can be reversed by the inhibitor of nitric oxide synthase, N?-Nitro-L-Arginine (N?NLA. Our results also suggest that other endogenous factors (not yet fully known are involved in the protection of rats against septic shock, in addition to the L-arginine NO pathway. Keywords: vascular hyporeactivity; NO; rat; angiotensin II; N?NLA Escherichia coli endotoxin.

J. F. Fracasso

2009-01-01

180

Celastrol, an inhibitor of heat shock protein 90? potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes.  

Science.gov (United States)

Overexpression of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have long been suggested to play crucial roles in the progression of osteoarthritis. Studies have showed that selective MMPs, iNOS and COX-2 inhibitors possess great potential as chondroprotective agents for osteoarthritis. Therefore, there have been intensive efforts to develop novel natural compounds that target MMPs, iNOS and COX-2 activation. As interleukin-1? (IL-1?) is one of the key proinflammatory cytokines contributing to the progression in osteoarthritis, we investigated the effect of celastrol, a triterpenoid compound extracted from the Chinese herb Tript erygium wilfordii Hook F, in neutralizing the inflammatory effects of IL-1? on MMPs, iNOS and COX-2 expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production. Protein expression was detected by Western blotting or by enzyme-linked immunosorbent assay (ELISA); messenger RNA (mRNA) expression was examined by real-time reverse transcription-polymerase chain reaction analysis and the involvement of signal pathway was assessed by transient transfection and luciferase activity assay. We found that treatment of primary human osteoarthritic chondrocytes with various concentrations of celastrol resulted in striking decrease in the expression of MMP-1, MMP-3, MMP-13, iNOS-2 and COX-2. In addition, celastrol treatment of cells also inhibited the activation of nuclear factor-kappa B (NF-kappaB). Taken together, we provide evidence that celastrol can protect human chondrocytes by downregulating the expression of MMPs, iNOS and COX-2. We suggest that celastrol could be a useful agent for prevention and treatment of osteoarthritis. PMID:23396231

Ding, Qian-Hai; Cheng, Ye; Chen, Wei-Ping; Zhong, Hui-Ming; Wang, Xiang-Hua

2013-05-15

 
 
 
 
181

[Alpha-acetolactate decarboxylase from B. licheniformis AS10106: cloning and expression gene in E. coli and S. cerevisiae].  

Science.gov (United States)

A genomic library of B. licheniformis AS10106 that contained the alpha-acetolactate decarboxylase gene(alpha-ALDC) was constructed with vector pUC19 and host E. coli JM109 strain. The inserted fragments of foreign DNA ranged from 4 to 10 kb in the 4800 clones thus obtained. Six positive clones were detected after screening the plated library by the method of clony coloration. Subcloning of the DNA fragment containing the alpha-acetolactate decarboxylase gene showed that the alpha-acetolactate decarboxylase gene was on an 1.6 kb BamH I-EcoR I fragment. Preliminary analysis of the enzyme expressed from one recombinant plasmid pGEA showed that the properties of the recombinant enzyme, such as the optimal temperature and pH of reaction, were identical to those of the native enzyme. Using yeast-E. coli shuttle vector pYES2, an expression recombinant plasmid pYEA containing B. licheniformis AS10106 alpha-acetolactate decarboxylase gene was constructed. S. cerevisiae H158 transformed with pYEA had expressed alpha-acetolactate decarboxylase activity and shown the ability to reduce the formation of diacetyl during beer fermentation. PMID:10887685

Qin, Y J; Gao, D; Wang, Z N

2000-01-01

182

Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity  

International Nuclear Information System (INIS)

Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAMxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and toxicity. These results indicate that NO can be hepatoprotective against CYP2E1-dependent toxicity, preventing AA-induced oxidative stress

183

Synthesis and in vivo distribution of no-carrier-added N(?)-nitro-L-arginine [11C]methyl ester, a nitric oxide synthase inhibitor  

International Nuclear Information System (INIS)

N(?)-nitro-L-arginine methyl ester (L-NAME) was labelled with carbon-11 as a potential PET tracer for NO synthase. N(?)-t-butoxycarbonyl-N(?)-nitro-L-arginine was reacted with [11C]diazomethane. After deprotection with trifluoroacetic acid the formed [11C]L-NAME was purified using HPLC. Biodistribution studies in rats and PET studies in monkeys and dogs showed no correlation between radioactivity distribution and NO synthase localization in brain and heart. Substantial amounts of [11C]methanol were detected in dog plasma shortly after injection. These findings preclude the use of [11C]L-NAME as a PET tracer

184

Patterns of resistance to ALS herbicides in inhibitors in Smallflower Umbrella Sedge (Cyperus difformis) and Ricefield Bulrush (Schoenoplectus mucronatus)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Biotypes of smallflower umbrella sedge and ricefield bulrush resistant to acetolactate synthase (ALS)-inhibiting herbicides have been reported in several rice areas of the world. Here, we present results of a study conducted on whole plants of seven smallflower umbrella sedge and four ricefield bulrush biotypes collected in Italian, Spanish, and Californian rice fields to evaluate cross-resistance to ALS herbicides in these important weeds of temperate rice. The following herbicides were test...

Ferrero, Aldo; Vidotto, Francesco; Busi, Roberto

2006-01-01

185

2,4-Diamino-5-methyl-6-substituted Arylthio-furo[2,3-d]pyrimidines as Novel Classical and Nonclassical Antifolates as Potential Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors1a,b  

Science.gov (United States)

A novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 6–16 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6–16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5. Compound 5 is the first example, to our knowledge, of a 2,4-diamino furo[2,3-d]pyrimidine classical antifolate that has inhibitory activity against both human DHFR and human TS. The classical analog 5 was a nanomolar inhibitor and remarkably selective inhibitor of P. carinii DHFR and M. avium DHFR at 263-fold and 2107-fold respectively compared to mammalian DHFR. The nonclassical analogs 6–16 were moderately potent against pathogen DHFR or TS. This study shows that the furo[2,3-d]pyrimidine scaffold is conducive to dual human DHFR-TS inhibitory activity and to high potency and selectivity for pathogen DHFR. PMID:20056546

Gangjee, Aleem; Jain, Hiteshkumar D.; Phan, Jaclyn; Guo, Xin; Queener, Sherry F.; Kisliuk, Roy L.

2010-01-01

186

2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors.  

Science.gov (United States)

A novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 6-16 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6-16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5. Compound 5 is the first example, to our knowledge, of a 2,4-diamino furo[2,3-d]pyrimidine classical antifolate that has inhibitory activity against both human DHFR and human TS. The classical analog 5 was a nanomolar inhibitor and remarkably selective inhibitor of Pneumocystis carinii DHFR and Mycobacterium avium DHFR at 263-fold and 2107-fold, respectively, compared to mammalian DHFR. The nonclassical analogs 6-16 were moderately potent against pathogen DHFR or TS. This study shows that the furo[2,3-d]pyrimidine scaffold is conducive to dual human DHFR-TS inhibitory activity and to high potency and selectivity for pathogen DHFR. PMID:20056546

Gangjee, Aleem; Jain, Hiteshkumar D; Phan, Jaclyn; Guo, Xin; Queener, Sherry F; Kisliuk, Roy L

2010-01-15

187

6-Position optimization of tricyclic 4-quinolone-based inhibitors of glycogen synthase kinase-3?: discovery of nitrile derivatives with picomolar potency.  

Science.gov (United States)

We previously disclosed tricylic, 6-carboxylic acid-bearing 4-quinolones as GSK-3? inhibitors. Herein we discuss the optimization of this series to yield a series of more potent 6-nitrile analogs with insignificant anti-microbial activity. Finally, kinase profiling indicated that members of this class were highly specific GSK-3 inhibitors. PMID:22202172

Li, Bei; Cociorva, Oana M; Nomanbhoy, Tyzoon; Li, Qiang; Nakamura, Kai; Nomura, Masahiro; Okada, Kyoko; Yumoto, Kazuhiro; Liyanage, Marek; Zhang, Melissa C; Aban, Arwin; Szardenings, Anna Katrin; Kozarich, John W; Kohno, Yasushi; Shreder, Kevin R

2012-01-15

188

2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta with good brain permeability.  

Science.gov (United States)

Glycogen synthase kinase 3beta (GSK-3beta) inhibition is expected to be a promising therapeutic approach for treating Alzheimer's disease. Previously we reported a series of 1,3,4-oxadiazole derivatives as potent and highly selective GSK-3beta inhibitors, however, the representative compounds 1a,b showed poor pharmacokinetic profiles. Efforts were made to address this issue by reducing molecular weight and lipophilicity, leading to the identification of oxadiazole derivatives containing a sulfinyl group, (S)-9b and (S)-9c. These compounds exhibited not only highly selective and potent inhibitory activity against GSK-3beta but also showed good pharmacokinetic profiles including favorable BBB penetration. In addition, (S)-9b and (S)-9c given orally to mice significantly inhibited cold water stress-induced tau hyperphosphorylation in mouse brain. PMID:19775160

Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Iwashita, Hiroki; Uno, Yumiko; Onishi, Tomohiro; Uchiyama, Noriko; Kawamoto, Tomohiro; Tanaka, Toshimasa; Mol, Clifford D; Dougan, Douglas R; Textor, Garret P; Snell, Gyorgy P; Takizawa, Masayuki; Itoh, Fumio; Kori, Masakuni

2009-10-22

189

The Mutated Acetolactate Synthase Gene from Rice as a Non-Antibiotic Selection Marker for Transformation of Bamboo Cells  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT) and neomycin phosphotransferase II gene (NPT II). Although these marker genes could introduce to several tissue cultured organs (e.g. leaves, buds, and calli) of Phyllostachs bamboo species, some organs showed a high susceptibility and/or a low selectivity to hygromycin and kanamycin. In this report, therefore, we describe advant...

Nanaka Kikuchi; Shinjiro Ogita; Taiji Nomura; Yasuo Kato

2012-01-01

190

Role of polymorphisms in factor V (FV Leiden), prothrombin, plasminogen activator inhibitor type-1 (PAI-1), methylenetetrahydrofolate reductase (MTHFR) and cystathionine ?-synthase (CBS) genes as risk factors for thrombophilias.  

Science.gov (United States)

Thrombophilias are defined as a predisposition to thrombosis due to hematological changes which induce blood hypercoagulability; they can be inherited or acquired. They are individually characterized by a large phenotypic variability, even when they occur within the same family. Hereditary thrombophilias are, in most cases, due to changes related to physiological coagulation inhibitors or mutations in the genes of coagulation factors. High levels of plasma homocysteine may also be responsible for vaso-occlusive episodes and may have acquired (nutritional deficiencies of folate and vitamins B6 and B12) and/or genetic causes (mutations in the genes responsible for expression of enzymes involved in the intracellular metabolism of homocysteine). Considering that: (1) thromboses are events of multigenic and multifactorial etiopathology; (2) the presence of mutations in several genes significantly increases the risk of their occurrence; (3) the vascular territory (venous and/or arterial) affected involves different pathophysiological mechanisms and treatments, knowledge of genetic variants that may contribute to the risk and variability of the phenotypic manifestations of these diseases is extremely important. This understanding may provide support for a more individualized and therefore more effective treatment for thrombophilia carriers. Thus, this mini-review aims to address a comprehensive summary of thrombophilias and thrombosis, and discuss the role of polymorphisms in Factor V (FV Leiden), Prothrombin, Plasminogen activator inhibitor type-1 (PAI-1), Methylenetetrahydrofolate reductase (MTHFR) and Cystathionine ?-synthase (CBS) genes as risk factors for thrombophilias. PMID:22512572

Miranda-Vilela, A L

2012-09-01

191

A head-to-head comparison of eneamide and epoxyamide inhibitors of glucosamine-6-phosphate synthase from the dapdiamide biosynthetic pathway.  

Science.gov (United States)

The dapdiamides make up a family of antibiotics that have been presumed to be cleaved in the target cell to enzyme-inhibitory N-acyl-2,3-diaminopropionate (DAP) warheads containing two alternative electrophilic moieties. Our prior biosynthetic studies revealed that an eneamide warhead is made first and converted to an epoxyamide via a three-enzyme branch pathway. Here we provide a rationale for this logic. We report that the R,R-epoxyamide warhead is a more efficient covalent inactivator of glucosamine-6-phosphate synthase by 1 order of magnitude versus the eneamide, and this difference correlates with a >10-fold difference in antibiotic activity for the corresponding acyl-DAP dipeptides. PMID:21520904

Hollenhorst, Marie A; Ntai, Ioanna; Badet, Bernard; Kelleher, Neil L; Walsh, Christopher T

2011-05-17

192

Pharmacological evaluation of both enantiomers of (R,S)-BM-591 as thromboxane A2 receptor antagonists and thromboxane synthase inhibitors.  

Science.gov (United States)

The aim of this work is to evaluate the anti-thromboxane activity of two pure enantiomers of (R,S)-BM-591, a nitrobenzene sulfonylurea chemically related to torasemide, a loop diuretic. The drug affinity for thromboxane A2 receptor (TP) of human washed platelets has been determined. In these experiments, (R)-BM-591 (IC50 = 2.4+/-0.1 nM) exhibited a significant higher affinity than (S)-BM-591 (IC50 = 4.2+/-0.15 nM) for human washed platelets TP receptors. Both enantiomers were stronger ligands than SQ-29548 (IC50 = 21.0+/-1.0 nM) and sulotroban (IC50 = 930+/-42 nM), two reference TXA2 receptor antagonists. Pharmacological characterisations of (S)-BM-591 and (R)-BM-591 were compared in several models. Thus, (R)-BM-591 strongly prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) and U-46619 (1 microM) while (S)-BM-591 showed a lower activity. On isolated tissues pre-contracted by U-46619, a stable TXA2 agonist, (S)-BM-591 was more potent in relaxing guinea-pig trachea (EC50 = 0.272+/-0.054 microM) and rat aorta (EC50 = 0.190+/-0.002 microM) than (R)-BM-591 (EC50 of 9.60+/-0.63 microM and 0.390+/-0.052 microM, respectively). Moreover, at 1 microM, (R)-BM-591 totally inhibited TXA2 synthase activity, expressed as TXB2 production from human platelets, while at the same concentration, (S)-BM-591 poorly reduced the TXB2 synthesis (22%). Finally, in rats, both enantiomers lost the diuretic activity of torasemide. In conclusion, (R)-BM-591 exhibits a higher affinity and antagonism on human platelet TP receptors than (S)-BM-591 as well as a better thromboxane synthase inhibitory potency. In contrast, (S)-BM-591 is more active than the (R)-enantiomer in relaxing smooth muscle contraction of rat aorta and trachea guinea pig. Consequently, (R)-BM-591 represents the best candidate for further development in the field of thrombosis disorders. PMID:15560117

Rolin, S; Dogne, J M; Vastersaegher, C; Hanson, J; Masereel, B

2004-10-01

193

In vitro and in vivo pharmacological characterization of BM-613 [N-n-pentyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], a novel dual thromboxane synthase inhibitor and thromboxane receptor antagonist.  

Science.gov (United States)

Thromboxane A2 (TXA2) is a key mediator of platelet aggregation and smooth muscle contraction. Its action is mediated by its G protein-coupled receptor of which two isoforms, termed TPalpha and TPbeta, occur in humans. TXA2 has been implicated in pathologies such as cardiovascular diseases, pulmonary embolism, atherosclerosis, and asthma. This study describes the pharmacological characterization of BM-613 [N-n-pentyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], a new combined TXA2 receptor antagonist and TXA2 synthase inhibitor. It exhibits a strong affinity for human platelet TP receptors (IC50 = 1.4 nM), TPalpha and TPbeta expressed in COS-7 cells (IC(50) = 2.1 and 3.1 nM, respectively), and TPs expressed in human coronary artery smooth muscle cells (IC50 = 29 microM). BM-613 shows a weak ability to prevent contraction of isolated rat aorta (ED50 = 1.52 microM) and guinea pig trachea (ED50 = 2.5 microM) induced by TXA2 agonist U-46619 (9.11-dideoxy-9.11-methanoepoxy-prostaglandin F2). Besides, BM-613 antagonizes TPalpha (IC50 = 0.11 microM) and TPbeta (IC50 = 0.17 microM) calcium mobilization induced by U-46619 and inhibits human platelet aggregation induced by U-46619 (ED50 = 0.278 microM), arachidonic acid (ED50 = 0.375 microM), and the second wave of ADP. BM-613 also dose dependently prevents TXA2 production by human platelets (IC50 = 0.15 microM). In a rat model of ferric chloride-induced thrombosis, BM-613 significantly reduces weight of formed thrombus by 79, 49, and 28% at 5, 2, and 1 mg/kg i.v., respectively. In conclusion, BM-613 is a dual and potent TP receptor antagonist and TXA2 synthase inhibitor characterized by a strong antiplatelet and antithrombotic potency. These results suggest that BM-613 could be a potential therapeutic drug for thrombotic disorders. PMID:15626721

Hanson, Julien; Rolin, Stephanie; Reynaud, Denis; Qiao, Na; Kelley, Leanne P; Reid, Helen M; Valentin, François; Tippins, John; Kinsella, B Therese; Masereel, Bernard; Pace-Asciak, Cecil; Pirotte, Bernard; Dogné, Jean-Michel

2005-04-01

194

Vanillic acid: A potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase.  

Science.gov (United States)

The objective of the present study is to investigate the effects of vanillic acid on blood pressure, cardiac marker enzymes, left ventricular function and endothelial nitric oxide synthase (eNOS) expression in N(?)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertension in male albino Wistar rats. In hypertensive rats, mean arterial pressure (MAP), heart rate, cardiac marker enzymes and organ weight were increased. Impaired left ventricular function and decreased aortic eNOS expression was also observed in hypertensive rats. Moreover, treatment with vanillic acid exhibited beneficial effect on blood pressure, left ventricular function and cardiac marker enzymes. In addition, treatment with vanillic acid on hypertensive rats had upregulated eNOS expression and showed beneficial effects evidenced by histopathology and ultrastructural observations of aorta. In conclusion, vanillic acid has enough potential to normalize hypertension and left ventricular function in l-NAME induced hypertensive rats. With additional studies, vanillic acid might be used as a functional drug or as an adjuvant in the management of hypertension. PMID:25218092

Kumar, Subramanian; Prahalathan, Pichavaram; Raja, Boobalan

2014-09-01

195

Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the absence of bound IPP. Q242 plays the role of a gatekeeper and directly controls the anchoring of R351 side chain. The interactions between the residues K57 and N59 and those upstream and downstream of Y349 are likely responsible for the switch activation. The findings of this study can be exploited for structure-guided optimization of existing inhibitors as well as development of new pharmacophores.

Park Jaeok

2012-12-01

196

Effect of the ATPase inhibitor protein IF{sub 1} on H{sup +} translocation in the mitochondrial ATP synthase complex  

Energy Technology Data Exchange (ETDEWEB)

The H{sup +} F{sub o}F{sub 1}-ATP synthase complex of coupling membranes converts the proton-motive force into rotatory mechanical energy to drive ATP synthesis. The F{sub 1} moiety of the complex protrudes at the inner side of the membrane, the F{sub o} sector spans the membrane reaching the outer side. The IF{sub 1} component of the mitochondrial complex is a basic 10 kDa protein, which inhibits the F{sub o}F{sub 1}-ATP hydrolase activity. The mitochondrial matrix pH is the critical factor for the inhibitory binding of the central segment of IF{sub 1} (residue 42-58) to the F{sub 1}-{alpha}/{beta} subunits. We have analyzed the effect of native purified IF{sub 1} the IF{sub 1}-(42-58) synthetic peptide and its mutants on proton conduction, driven by ATP hydrolysis or by [K{sup +}] gradients, in bovine heart inside-out submitochondrial particles and in liposome-reconstituted F{sub o}F{sub 1} complex. The results show that IF{sub 1}, and in particular its central 42-58 segment, displays different inhibitory affinity for proton conduction from the F{sub 1} to the F{sub o} side and in the opposite direction. Cross-linking of IF{sub 1} to F{sub 1}-{alpha}/{beta} subunits inhibits the ATP-driven H{sup +} translocation but enhances H{sup +} conduction in the reverse direction. These observation are discussed in terms of the rotary mechanism of the F{sub o}F{sub 1} complex.

Zanotti, Franco [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy); Gnoni, Antonio; Mangiullo, Roberto [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Papa, Sergio, E-mail: papabchm@cimedoc.uniba.it [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy)

2009-06-19

197

A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S?)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer's disease.  

Science.gov (United States)

Alzheimer's disease (AD) is a neurodegenerative disorder leading to a progressive loss of cognitive function and is pathologically characterized by senile plaques and neurofibrillary tangles. Glycogen synthase kinase-3 (GSK-3) is involved in AD pathogenesis. GSK-3 is reported not only to phosphorylate tau, a major component of neurofibrillary tangles, but also to regulate the production of amyloid ?, which is deposited in senile plaques. Therefore, pharmacological inhibition of GSK-3 is considered an attractive therapeutic approach. In this study, we report the pharmacological effects of a novel GSK-3 inhibitor, 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole (MMBO), which displays high selectivity for GSK-3 and brain penetration following oral administration. MMBO inhibited tau phosphorylation in primary neural cell culture and also in normal mouse brain. When administered to a transgenic mouse model of AD, MMBO significantly decreased hippocampal tau phosphorylation at GSK-3 sites. Additionally, chronic MMBO administration suppressed tau pathology as assessed by AT8-immunoreactivity without affecting amyloid ? pathology. Finally, in behavioral assessments, MMBO significantly improved memory and cognitive deficits in the Y-maze and in novel object recognition tests in the transgenic AD mouse model. These results indicate that pharmacological GSK-3 inhibition ameliorates behavioral dysfunction with suppression of tau phosphorylation in an AD mouse model, and that MMBO might be beneficial for AD treatment. PMID:21992552

Onishi, Tomohiro; Iwashita, Hiroki; Uno, Yumiko; Kunitomo, Jun; Saitoh, Morihisa; Kimura, Eiji; Fujita, Hisashi; Uchiyama, Noriko; Kori, Masakuni; Takizawa, Masayuki

2011-12-01

198

Molecular modeling studies and synthesis of novel methyl 2-(2-(4-oxo-3-aryl-3,4-dihydroquinazolin-2-ylthio)acetamido)alkanoates with potential anti-cancer activity as inhibitors for methionine synthase.  

Science.gov (United States)

Cobalamin-dependant cytosolic enzyme methionine synthase (MetS) catalyses the transfer of a methyl group from the methyltetrahydrofolate (MTHF) to homocysteine (Hcy) to produce methionine and tetrahydrofolate (THF). MetS is over-expressed in the cytosol of certain breast and prostate tumour cells. Methionine used as a source of one carbon atom for the building of the DNA of the tumour cells, structural protein and enzymes. In this study, we designed, synthesized and evaluated the cytotoxic activity of a series of substituted methyl 2-(2-(4-oxo-3-aryl-3,4-dihydroquinazolin-2-ylthio)acetamido)acetate and dipeptide that mimic the substructure of MTHF. These inhibitors were docked in to the MTHF binding domain in such the same way as MTHF in its binding domain. The free energies of the binding were calculated and compared to the IC50 values. This series has been developed by dicyclohexylcarbodiimide (DCC) and azide coupling methods of amino acid esters with carboxylic acid derivatives, respectively. Compound methyl 3-hydroxy-2-(2-(3-(4-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-ylthio)acetamido)propanoate exhibited the highest IC50 value 20?µg/mL against PC-3 cell line and scored the lowest free energy of the binding (-207.19?kJ/mol). PMID:24990505

Elfekki, Ismail Mahmoud; Hassan, Walid Fathalla Mohamed; Elshihawy, Hosam Eldin Abd Elhamed; Ali, Ibrahim Ahmed Ibrahim; Eltamany, Elsayed Hussein Mostafa

2014-01-01

199

Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.  

Science.gov (United States)

Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts. PMID:22283980

Latosi?ska, J N; Latosi?ska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

2012-02-01

200

Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor  

Science.gov (United States)

This study examined whether a prior electrolytic lesion of the tissue surrounding the anteroventral third ventricle (AV3V) would affect the increase in mean arterial blood pressure (MAP) and the fall in heart rate (HR) produced by systemic injection of the nitric oxide synthesis (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 25 micromol/kg, i.v.) in conscious rats. L-NAME produced a smaller increase in MAP in AV3V-lesion than in sham-lesion rats (+19+/-3 vs. +40+/-3 mmHg, respectively; Prats (-103+/-15 vs. -97+/-8 bpm, respectively; P<0.05). These findings demonstrate that the L-NAME-induced pressor response is dependent upon the integrity of the AV3V region, whereas the L-NAME-induced bradycardia is not. Copyright 1999 Elsevier Science B. V.

Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

1999-01-01

 
 
 
 
201

Role of glycogen synthase kinase 3 beta (GSK3? in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA in MCF-7 breast cancer cells  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Histone deacetylase inhibitors (HDACIs have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1 complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3?, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3? in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA, a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3? in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA resulted in the dephosphorylation of Akt and GSK3?. Selective inhibition of GSK3? attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3? as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells.

Lam Eric

2006-10-01

202

Role of glycogen synthase kinase 3 beta (GSK3?) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells  

Science.gov (United States)

Histone deacetylase inhibitors (HDACIs) have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1) complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3?, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3? in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA), a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3? in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA) resulted in the dephosphorylation of Akt and GSK3?. Selective inhibition of GSK3? attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3? as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells. PMID:17018141

Alao, John P; Stavropoulou, Alexandra V; Lam, Eric W-F; Coombes, R Charles

2006-01-01

203

Effects of nitric oxide synthase inhibitor (L-NAME) on cytopathologic changes due to cholestasis in hepatic cells of adult male rats.  

Science.gov (United States)

Obstructive cholestasis is associated with overproduction of endogenous opioids, nitric oxide (NO) and cytokines in the blood stream. Nitro-L-arginine methyl ester (L-NAME) administration decreases the NO serum level and it is able to reduce related complications. The aim of this research is to survey the effects of the NO inhibitor on complications relating to cholestasis in liver cells and intrahepatic biliary ducts. We used five groups of animals: control, sham-operated (surgical control), bile duct ligated (BDL) group, BDL and normal saline infused group, and BDL with L-NAME administrated group. After 3 weeks all animals were killed, histopathology of liver cells and intrahepatic biliary ducts were evaluated by hematoxylin-eosin (HE), PAS (periodic acid-Schiff) and trichrome staining. The status of inflammation and fibrosis was evaluated by the modified Knodell score system. Microscopic study of different groups showed that the necro-inflammatory score in the control group was 0.36, it was 1 in the sham-operated group and it raised to 15.2 in the cholestatic group. After administration of L-NAME it had a meaningful decrease to 7, but in the saline-treated group, the score was 16. L-NAME with the mentioned dose was capable of decreasing the serum nitric oxide level, although it is able to decrease the unfavorable complications of cholestatic jaundice. PMID:23359193

Monsef, Alireza

2012-12-01

204

Inhibition of endothelial nitric oxyde synthase increases capillary formation via Rac1-dependent induction of hypoxia-inducible factor-1? and plasminogen activator inhibitor-1.  

Science.gov (United States)

Disruption of endothelial homeostasis results in endothelial dysfunction, characterised by a dysbalance between nitric oxide (NO) and reactive oxygen species (ROS) levels often accompanied by a prothrombotic and proproliferative state. The serine protease thrombin not only is instrumental in formation of the fibrin clot, but also exerts direct effects on the vessel wall by activating proliferative and angiogenic responses. In endothelial cells, thrombin can induce NO as well as ROS levels. However, the relative contribution of these reactive species to the angiogenic response towards thrombin is not completely clear. Since plasminogen activator inhibitor-1 (PAI-1), a direct target of the proangiogenic transcription factors hypoxia-inducible factors (HIFs), exerts prothrombotic and proangiogenic activities we investigated the role of ROS and NO in the regulation of HIF-1?, PAI-1 and capillary formation in response to thrombin. Thrombin enhanced the formation of NO as well as ROS generation involving the GTPase Rac1 in endothelial cells. Rac1-dependent ROS formation promoted induction of HIF-1?, PAI-1 and capillary formation by thrombin, while NO reduced ROS bioavailability and subsequently limited induction of HIF-1?, PAI-1 and the angiogenic response. Importantly, thrombin activation of Rac1 was diminished by NO, but enhanced by ROS. Thus, our findings show that capillary formation induced by thrombin via Rac1-dependent activation of HIF-1 and PAI-1 is limited by the concomitant release of NO which reduced ROS bioavailability. Rac1 activity is sensitive to ROS and NO, thereby playing an essential role in fine tuning the endothelial response to thrombin. PMID:23014943

Petry, Andreas; BelAiba, Rachida S; Weitnauer, Michae; Görlach, Agnes

2012-11-01

205

Structure and inhibition of tuberculosinol synthase and decaprenyl diphosphate synthase from Mycobacterium tuberculosis.  

Science.gov (United States)

We have obtained the structure of the bacterial diterpene synthase, tuberculosinol/iso-tuberculosinol synthase (Rv3378c) from Mycobacterium tuberculosis , a target for anti-infective therapies that block virulence factor formation. This phosphatase adopts the same fold as found in the Z- or cis-prenyltransferases. We also obtained structures containing the tuberculosinyl diphosphate substrate together with one bisphosphonate inhibitor-bound structure. These structures together with the results of site-directed mutagenesis suggest an unusual mechanism of action involving two Tyr residues. Given the similarity in local and global structure between Rv3378c and the M. tuberculosis cis-decaprenyl diphosphate synthase (DPPS; Rv2361c), the possibility exists for the development of inhibitors that target not only virulence but also cell wall biosynthesis, based in part on the structures reported here. PMID:24475925

Chan, Hsiu-Chien; Feng, Xinxin; Ko, Tzu-Ping; Huang, Chun-Hsiang; Hu, Yumei; Zheng, Yingying; Bogue, Shannon; Nakano, Chiaki; Hoshino, Tsutomu; Zhang, Lilan; Lv, Pin; Liu, Wenting; Crick, Dean C; Liang, Po-Huang; Wang, Andrew H-J; Oldfield, Eric; Guo, Rey-Ting

2014-02-19

206

Bacterial NO Synthases.  

Science.gov (United States)

Unlike mammalian NO synthases, bacterial NO synthases do not contain a reductase domain. The only exception from this rule is the NO synthase from myxobacterium Sorangium cellulosum, but its reductase domain has unusual structure and location in the enzyme molecule. Recent achievements in bacterial genome sequencing have revealed the gene coding NO synthase (represented as an oxygenase domain) in some bacteria and have advanced the study of structure and functions of bacterial NO synthases. Important features of structure, sources of reducing equivalents, evolutionary connections, and functions of bacterial NO synthases (i.e. participation in nitration of the indole ring of Trp, in reparation of UV-radiation damage, role in adaptation of bacteria to oxidative stress, participation in the synthesis of cGMP, and resistance of bacteria against antibiotics) are described. PMID:21166639

Filippovich, S Iu

2010-10-01

207

A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation.  

Science.gov (United States)

The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

Curic, M; Stuer-Lauridsen, B; Renault, P; Nilsson, D

1999-03-01

208

A General Method for Selection of ?-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation  

Science.gov (United States)

The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the ?-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

1999-01-01

209

Higher plant cellulose synthases  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The sole function of cellulose synthases, which are found in plants bacteria, fungi, and animals, is to produce the biopolymer cellulose. Although no crystal structure has yet been solved, a considerable amount is known about their structure, function and evolution.

Richmond, Todd

2000-01-01

210

Development of 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as microsomal prostaglandin E2 synthase-1 inhibitors.  

Science.gov (United States)

mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed. A set of analogs (28, 48, 49) were identified with <10nM potencies in the recombinant human mPGES-1 enzyme and in the A549 cellular assays. These analogs were also found to be potent in the human whole blood assay (<400nM). Furthermore, the representative compound 48 was shown to be selective with other prostanoid synthases and was able to effectively regulate PGE2 biosynthesis in clinically relevant inflammatory settings, in comparison with celecoxib. PMID:25260492

Banerjee, Abhisek; Pawar, Mahesh Y; Patil, Sandip; Yadav, Pravin S; Kadam, Pradip A; Kattige, Vidya G; Deshpande, Durga S; Pednekar, Pallavi V; Pisat, Monali K; Gharat, Laxmikant A

2014-10-15

211

Síntese e modificações de derivados heterocíclicos de D-arabinose: potenciais inibidores de glicose-6-fosfato isomerase e de glicosamina-6-fosfato sintase / Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese [...] Abstract in english The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(D-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from D-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the [...] opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethylphosphoryl chloride. The resulting 5-[D-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase.

Renato Márcio Ribeiro, Viana; Maria Auxiliadora Fontes, Prado; Ricardo José, Alves.

1710-17-01

212

Pharmacological characterization of N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea (BM-573), a novel thromboxane A2 receptor antagonist and thromboxane synthase inhibitor in a rat model of arterial thrombosis and its effects on bleeding time.  

Science.gov (United States)

The present study was undertaken to characterize the antiplatelet and antithrombotic effects of BM-573 [N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], an original combined thromboxane receptor antagonist and thromboxane synthase inhibitor in rats, and to determine its effects on mice bleeding time. Intraperitoneal injection of a single dose of 5 mg/kg BM-573 to rats inhibited U-46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F(2))-induced washed platelet aggregation 30 min and 1, 2, and 4 h after drug administration with a maximum antiplatelet effect observed after 1 and 2 h. In a rat model of thrombosis induced by ferric chloride application on the abdominal aorta, BM-573 significantly reduced the thrombus weight by 92.53, 80.20, 64.75, and 18.21% at doses of 5, 2, 0.5, and 0.2 mg/kg, respectively. Time to occlusion of abdominal aorta in the BM-573-treated group (41.50 +/- 5.21 min) was significantly prolonged compared with the vehicle-treated rats (16.16 +/- 0.79 min). Like furegrelate, seratrodast, and acetylsalicylic acid, BM-573 did not affect the tail bleeding time induced by tail transection in mice compared with vehicle-treated mice. Moreover, BM-573, a close derivative of the loop diuretic torasemide, failed to induce a significant increase in diuresis in rat and did not produce a decrease in blood glucose concentration as observed with the sulfonylurea glibenclamide. In conclusion, we have demonstrated that the nitrobenzenic sulfonylurea BM-573, an original combined thromboxane receptor antagonist and thromboxane synthase inhibitor, is a potent antithrombotic agent that does not affect bleeding time. Moreover, BM-573 lost the diuretic property of torasemide and has no impact on glycemia. PMID:14742735

Dogné, Jean-Michel; Hanson, Julien; de Leval, Xavier; Kolh, Philippe; Tchana-Sato, Vincent; de Leval, Laurence; Rolin, Stéphanie; Ghuysen, Alexandre; Segers, Patrick; Lambermont, Bernard; Masereel, Bernard; Pirotte, Bernard

2004-05-01

213

Chitin synthase 2 inhibitory activity of O-methyl pisiferic acid and 8,20-dihydroxy-9(11),13-abietadien-12-one, isolated from Chamaecyparis pisifera.  

Science.gov (United States)

In the course of search for potent chitin synthase inhibitors from plant extracts, the chitin synthase 2 inhibitors, O-methyl pisiferic acid and 8,20-dihydroxy-9(11),13-abietadien-12-one which have diterpene skeleton, were isolated from the leaves of Chamaecyparis pisifera. These compounds inhibited chitin synthase 2 of Saccharomyces cerevisiae with the IC50 values of 5.8 and 226.4 microM, respectively. Especially, O-methyl pisiferic acid showed 15.3-fold stronger inhibitory activity than polyoxin D (IC50=88.6 microM), a well-known chitin synthase inhibitor. These compounds exhibited weaker inhibitory activities against chitin synthase 1 than chitin synthase 2, whereas it showed no inhibitory activity for chitin synthase 3. The compound exhibited mixed competitive inhibition with respect to UDP-N-acetyl-D-glucosamine as substrate (Ki=5 microM). These results indicated that O-methyl pisiferic acid is a specific inhibitor of chitin synthase 2. The compound also inhibited chitin synthase 1 of Candida albicans, which represents analogues to chitin synthase 2 of S. cerevisiae, with an IC50 of 75.6 microM, which represents 1.8-fold weaker activity than that of polyoxin D. Although O-methyl pisiferic acid has been reported for antibacterial and insecticidal activities, the present study is the first report on its inhibitory activity against chitin synthase 2. PMID:18379078

Kang, Tae Hoon; Hwang, Eui Il; Yun, Bong Sik; Shin, Chul Soo; Kim, Sung Uk

2008-04-01

214

Geranyl diphosphate synthase from mint  

Science.gov (United States)

A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

1999-01-01

215

Geranyl diphosphate synthase from mint  

Energy Technology Data Exchange (ETDEWEB)

A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

1999-03-02

216

Design, synthesis, and biological evaluation of 1-phenylpyrazolo[3,4-e]pyrrolo[3,4-g]indolizine-4,6(1H,5H)-diones as new glycogen synthase kinase-3? inhibitors.  

Science.gov (United States)

Compound 5 was selected from our in-house library as a suitable starting point for the rational design of new GSK-3? inhibitors. MC/FEP calculations of 5 led to the identification of a structural class of new GSK-3? inhibitors. Compound 18 inhibited GSK-3? with an IC50 of 0.24 ?M and inhibited tau phosphorylation in a cell-based assay. It proved to be a selective inhibitor of GSK-3 against a panel of 17 kinases and showed >10-fold selectivity against CDK2. Calculated physicochemical properties and Volsurf predictions suggested that compound 18 has the potential to diffuse passively across the blood-brain barrier. PMID:24295046

La Pietra, Valeria; La Regina, Giuseppe; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Plotkin, Batya; Eldar-Finkelman, Hagit; Brancale, Andrea; Ballatore, Carlo; Crowe, Alex; Brunden, Kurt R; Marinelli, Luciana; Novellino, Ettore; Silvestri, Romano

2013-12-27

217

Inibidores seletivos de prostaglandina endoperóxido sintase-2 (PGHS-2): nova estratégia para o tratamento da inflamação / Selective inhibitors of prostaglandin endoperoxide synthase-2 (PGHS-2): new target to the treatment for inflammatory diseases  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese [...] Abstract in english Prostaglandins (PG's), produced from arachidonic acid metabolism, are potent mediators of inflammation. Nonsteroidal anti-inflammatory (NSAIDs) exert their effects by inhibition of prostaglandin endoperoxide synthase (PGHS) enzyme, which catalyses the first committed step in arachidonic acid metabol [...] ism. Two isoforms of PGHS are known: PGHS-1, constitutively expressed in most tissues, and is responsible for physiological production of PG's. The second isoform, PGHS-2, is induced by cytokines, mitogens and endotoxins in inflammatory cells, and appears to be responsible for the elevated production of PG's during inflammation. With the recent discovery of the inducible PGHS (PGHS-2), the medicinal chemist now possesses a novel target for designing therapeutic agents that could provide suitable anti-inflammatory activity without the ulcerogenic and renal side effects associated with currently available NSAIDs, all of which inhibit both PGHS-1 and PGHS-2.

Adriana dos Santos, Lages; Nelilma Correia, Romeiro; Carlos Alberto Manssour, Fraga; Eliezer Jesus, Barreiro.

1998-11-01

218

Synthesis and Antibacterial Activity of Cinnamaldehyde Acylhydrazone with a 1,4-Benzodioxan Fragment as a Novel Class of Potent ?-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Inhibitor.  

Science.gov (United States)

Fatty acid biosynthesis is essential for bacterial survival. ?-Ketoacyl-acyl carrier protein (ACP) synthase III (FabH), is a particularly attractive antibacterial target, since it is central to the initiation of fatty acid biosynthesis. Three series of 21 cinnamaldehyde acylhydrazone derivatives, A3-9, B3-9, and C3-9, were synthesized and evaluated for FabH-inhibitory activity. Compound B6 showed the most potent biological activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis (minimum inhibitory concentrations (MICs) values: 1.56-3.13?µg/mL) and was comparable with the positive control. Docking simulation by positioning compound B6 in the FabH structure active site was performed to explore the possible binding model. PMID:25196128

Song, Xiaoda; Yang, Yushun; Zhao, Jing; Chen, Yangjian

2014-11-01

219

Potent inhibition of chitin synthase by an azasugar--investigation of synergistic effect with UDP.  

Science.gov (United States)

We identified 6-deoxy-homoDMDP as a potent inhibitor of chitin synthase (Ki = 38 microM), displaying an uncompetitive inhibition pattern. Dual inhibition was also performed with the enzymatic reaction product uridine 5'-diphosphate in order to evaluate the concurrent effect of both inhibitors. An interaction coefficient alpha of 0.9 was found, revealing synergistic inhibition. PMID:15968816

Djebaili, Mounira; Behr, Jean-Bernard

2005-04-01

220

Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target.  

Science.gov (United States)

Adenosine triphosphate (ATP) synthase produces ATP in cells and is found on the inner membrane of mitochondria or the cell plasma membrane (ectopic ATP synthase). Here, we summarize the functions of ectopic ATP synthase in vascular endothelial cells (ECs). Ectopic ATP synthase is involved in adenosine metabolism on the cell surface through its ATP generation or hydrolysis activity. The ATP/ADP generated by the enzyme on the plasma membrane can bind to P2X/P2Y receptors and activate the related signalling pathways to regulate endothelial function. The ?-chain of ectopic ATP synthase on the EC surface can recruit inflammatory cells and activate cytotoxic activity to damage ECs and induce vascular inflammation. Angiostatin and other angiogenesis inhibitors can have anti-angiogenic functions by inhibiting ectopic ATP synthase on ECs. Moreover, ectopic ATP synthase on ECs is a receptor for apoA-I, the acceptor of cholesterol efflux, which implies that endothelial ectopic ATP synthase is involved in cholesterol metabolism. Coupling factor 6 (CF6), a part of ectopic ATP synthase, is released from ECs and can inhibit prostacyclin synthesis and promote nitric oxide (NO) degradation to enhance NO bioactivity. Because ATP/ADP generated by ectopic ATP synthase can induce NO production, substances such as CF6 can inhibit NO generation by inhibiting surface ATP/ADP production. Thus, the components of ectopic ATP synthase are associated with regulation of vascular tone. Through these functions, ectopic ATP synthase on ECs is considered a potential and novel therapeutic target for atherosclerosis, hypertension and lipid disorders. PMID:21247400

Fu, Yi; Zhu, Yi

2010-01-01

 
 
 
 
221

Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates: A Crystallographic and Computational Investigation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We report the x-ray structures of several bisphosphonate inhibitors of geranylgeranyl diphosphate synthase, a target for anti-cancer drugs. Bisphosphonates containing unbranched sidechains bind to either the farnesyl diphosphate (FPP) substrate site, the geranylgeranyl diphosphate (GGPP) product site, and in one case, both sites, with the bisphosphonate moiety interacting with 3 Mg2+ that occupy the same position as found in FPP synthase. However, each of three “V-shaped” bisphosphonates ...

Chen, Cammy K. -m; Hudock, Michael P.; Zhang, Yonghui; Guo, Rey-ting; Cao, Rong; No, Joo Hwan; Liang, Po-huang; Ko, Tzu-ping; Chang, Tao-hsin; Chang, Shiou-chi; Song, Yongcheng; Axelson, Jordan; Kumar, Anup; Wang, Andrew H. -j; Oldfield, Eric

2008-01-01

222

Farnesyl diphosphate synthase assay.  

Science.gov (United States)

Farnesyl diphosphate synthase (FPS) catalyzes the sequential head-to-tail condensation of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to produce farnesyl diphosphate (FPP, C15). This short-chain prenyl diphosphate constitutes a key branch-point of the isoprenoid biosynthetic pathway from which a variety of bioactive isoprenoids that are vital for normal plant growth and survival are produced. Here we describe a protocol to obtain highly purified preparations of recombinant FPS and a radiochemical assay method for measuring FPS activity in purified enzyme preparations and plant tissue extracts. PMID:24777789

Arró, Montserrat; Manzano, David; Ferrer, Albert

2014-01-01

223

Análise de crescimento de biótipos de amendoim-bravo (Euphorbia heterophylla) resistente e suscetível aos herbicidas inibidores da ALS / Growth analysis of wild poinsettia (Euphorbia heterophylla) biotypes resistant and susceptible to ALS inhibitor herbicides  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese A aplicação contínua de herbicidas do grupo químico das imidazolinonas, nas mesmas áreas de produção de soja, durante anos seguidos, no município de Cafelândia, PR, favoreceu a seleção de um biótipo resistente de amendoim-bravo (Euphorbia heterophylla) aos herbicidas inibidores da acetolactato sinta [...] se (ALS). Um estudo comparativo das características do crescimento do biótipo resistente e do suscetível foi realizado em casa de vegetação da Embrapa Soja, Londrina-PR, a fim de identificar diferenças no crescimento e no desenvolvimento das plantas e de seus órgãos. A produção de matéria seca total, a área foliar, a matéria seca dos caule, das raízes e das folhas, bem como a altura por planta, foram avaliadas em 13 vezes a intervalos regulares, iniciando aos 14 dias após a semeadura. A partir desses parâmetros, foram calculadas a taxa de crescimento relativo, a taxa assimilatória líquida, a razão de área foliar, a razão de peso foliar e a área foliar específica, que decrescem com a ontogenia das plantas de amendoim-bravo, sendo similares para ambos os biótipos. A matéria seca total acumulada pelas plantas e seus órgãos, a área foliar e a altura apresentaram comportamentos semelhantes para os biótipos resistente e suscetível. O ciclo vegetativo dos dois biótipos estudados não mostrou diferença significativa quanto ao crescimento e ao desenvolvimento. Abstract in english Repetitive spraying of imidazolinone herbicides year after year to control weeds in the soybean grown areas of Cafelândia, Paraná, Brazil, has favored the selection of an ALS (acetolactate synthase) inhibitor herbicide resistant biotype of wild poinsettia (Euphorbia heterophylla). A comparative stud [...] y of growth and development of wild poinsettia resistant and susceptible to ALS inhibitor herbicides was carried out in the greenhouse of the experimental station of Soybean Embrapa in Londrina, Paraná, Brazil. Total dry biomass yield, leaf area, shoot dry weight, leaf dry weight, root dry weight and height per plant were measured 13 times at 2 week intervals, starting 14 days after sowing. Relative growth rate, net assimilation rate, leaf area ratio, leaf weight ratio and specific leaf area decreased with plant ontogeny and behaved similarly in both biotypes. The total dry matter of the plants and their organs as well as the leaf area and plant height exhibited similar ranges of variability in both biotypes. There were no significant differences between biotypes both for growth and development characteristics.

A.M., Brighenti; D.L.P., Gazziero; E., Voll; F.S., Adegas; W.M.C., Val.

224

Structures of human constitutive nitric oxide synthases.  

Science.gov (United States)

Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure-activity-relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme-inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03?Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73?Å resolution. PMID:25286850

Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A; Silverman, Richard B; Poulos, Thomas L

2014-10-01

225

Characterization of potential drug targets farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase in Schistosoma mansoni.  

Science.gov (United States)

Schistosomiasis affects over 200 million people worldwide, with over 200,000 deaths annually. Currently, praziquantel is the only drug available against schistosomiasis. We report here that Schistosoma mansoni farnesyl diphosphate synthase (SmFPPS) and geranylgeranyl diphosphate synthase (SmGGPPS) are potential drug targets for the treatment of schistosomiasis. We expressed active, recombinant SmFPPS and SmGGPPS for subsequent kinetic characterization and testing against a variety of bisphosphonate inhibitors. Recombinant SmFPPS was found to be a soluble 44.2-kDa protein, while SmGGPPS was a soluble 38.3-kDa protein. Characterization of the substrate utilization of the two enzymes indicates that they have overlapping substrate specificities. Against SmFPPS, several bisphosphonates had 50% inhibitory concentrations (IC50s) in the low micromolar to nanomolar range; these inhibitors had significantly less activity against SmGGPPS. Several lipophilic bisphosphonates were active against ex vivo adult worms, with worm death occurring over 4 to 6 days. These results indicate that FPPS and GGPPS could be of interest in the context of the emerging resistance to praziquantel in schistosomiasis therapy. PMID:24041901

Ziniel, Peter D; Desai, Janish; Cass, Cynthia L; Gatto, Craig; Oldfield, Eric; Williams, David L

2013-12-01

226

Role of glycogen synthase kinase 3 beta (GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells.  

Science.gov (United States)

Histone deacetylase inhibitors (HDACIs) have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1) complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3beta, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3beta in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA), a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3beta in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA) resulted in the dephosphorylation of Akt and GSK3beta. Selective inhibition of GSK3beta attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3beta as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells. PMID:17018141

Alao, John P; Stavropoulou, Alexandra V; Lam, Eric W-F; Coombes, R Charles

2006-01-01

227

Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3? (GSK-3?) phosphorylation inhibitors.  

Science.gov (United States)

A series of N-alkyl or aryl substituted isoindigo derivatives have been synthesized and their anti-proliferative activity was evaluated by Sulforhodamine B (SRB) assay. Some of the target compounds exhibited significant antitumor activity, including compounds 6h and 6k (against K562 cells), 6i (against HeLa cells) and 6j (against A549 cells). N-(p-methoxy-phenyl)-isoindigo (6k) exhibited a high and selective anti-proliferative activity against K562 cells (IC50 7.8 ?M) and induced the apoptosis of K562 cells in a dose-dependent manner. Compound 6k arrested the cell cycle at S phase in K562 cells by decreasing the expression of cyclin A and CDK2, which played critical roles in DNA replication and passage through G2 phase. Moreover, compound 6k down-regulated the expression of p-GSK-3? (Ser9), ?-catenin and c-myc proteins, up-regulated the expression of GSK-3?, consequently, suppressed Wnt/?-catenin signaling pathway and induced the apoptosis of K562 cells. The binding mode of compound 6k with GSK-3? was simulated using molecular docking tools. All of these studies gave a better understanding to the molecular mechanisms of this class of agents and clues to develop dual CDK2/GSK-3? (Ser9) phosphorylation inhibitors applied in cancer chemotherapy. PMID:25151579

Zhao, Ping; Li, Yanzhong; Gao, Guangwei; Wang, Shuai; Yan, Yun; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin; Chen, Shaoxiong; Wang, Liqun

2014-10-30

228

Structure of dihydrodipicolinate synthase from Methanocaldococcus jannaschii  

Science.gov (United States)

In bacteria and plants, dihydrodipicolinate synthase (DHDPS) plays a key role in the (S)-lysine biosynthesis pathway. DHDPS catalyzes the first step of the condensation of (S)-aspartate-?-semialdehyde and pyruvate to form an unstable compound, (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. The activity of DHDPS is allosterically regulated by (S)-lysine, a feedback inhibitor. The crystal structure of DHDPS from Methanocaldococcus jannaschii (MjDHDPS) was solved by the molecular-replacement method and was refined to 2.2?Å resolution. The structure revealed that MjDHDPS forms a functional homo­tetramer, as also observed in Escherichia coli DHDPS, Thermotoga maritima DHDPS and Bacillus anthracis DHDPS. The binding-site region of MjDHDPS is essentially similar to those found in other known DHDPS structures. PMID:20054116

Padmanabhan, Balasundaram; Strange, Richard W.; Antonyuk, Svetlana V.; Ellis, Mark J.; Hasnain, S. Samar; Iino, Hitoshi; Agari, Yoshihiro; Bessho, Yoshitaka; Yokoyama, Shigeyuki

2009-01-01

229

Applying Molecular Dynamics Simulations to Identify Rarely Sampled Ligand-bound Conformational States of Undecaprenyl Pyrophosphate Synthase, an Antibacterial Target  

Energy Technology Data Exchange (ETDEWEB)

Undecaprenyl pyrophosphate synthase is a cis-prenyltransferase enzyme, which is required for cell wall biosynthesis in bacteria. Undecaprenyl pyrophosphate synthase is an attractive target for antimicrobial therapy. We performed long molecular dynamics simulations and docking studies on undecaprenyl pyrophosphate synthase to investigate its dynamic behavior and the influence of protein flexibility on the design of undecaprenyl pyrophosphate synthase inhibitors. We also describe the first X-ray crystallographic structure of Escherichia coli apo-undecaprenyl pyrophosphate synthase. The molecular dynamics simulations indicate that undecaprenyl pyrophosphate synthase is a highly flexible protein, with mobile binding pockets in the active site. By carrying out docking studies with experimentally validated undecaprenyl pyrophosphate synthase inhibitors using high- and low-populated conformational states extracted from the molecular dynamics simulations, we show that structurally dissimilar compounds can bind preferentially to different and rarely sampled conformational states. By performing structural analyses on the newly obtained apo-undecaprenyl pyrophosphate synthase and other crystal structures previously published, we show that the changes observed during the molecular dynamics simulation are very similar to those seen in the crystal structures obtained in the presence or absence of ligands. We believe that this is the first time that a rare 'expanded pocket' state, key to drug design and verified by crystallography, has been extracted from a molecular dynamics simulation.

Sinko, William; de Oliveira, César; Williams, Sarah; Van Wynsberghe, Adam; Durrant, Jacob D.; Cao, Rong; Oldfield, Eric; McCammon, J. Andrew (UIUC); (UCSD); (Hamilton)

2012-04-30

230

Mechanism of Action and Inhibition of dehydrosqualene Synthase  

Energy Technology Data Exchange (ETDEWEB)

'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

2011-12-31

231

Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment.  

Science.gov (United States)

Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystallization, especially in the case of this protein. PMID:21169700

Tanaka, Hiroaki; Tsurumura, Toshiharu; Aritake, Kosuke; Furubayashi, Naoki; Takahashi, Sachiko; Yamanaka, Mari; Hirota, Erika; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo; Inaka, Koji; Urade, Yoshihiro

2011-01-01

232

Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine.  

Science.gov (United States)

Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 Å resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K(d) of 1.1 ± 0.3 ?M in the absence of putrescine and 3.2 ± 0.1 ?M in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold. PMID:21898642

Se?kut?, Jolita; McCloskey, Diane E; Thomas, H Jeanette; Secrist, John A; Pegg, Anthony E; Ealick, Steven E

2011-11-01

233

Liver isozyme of glycogen synthase  

International Nuclear Information System (INIS)

The work described was aimed at comparing the liver isozymes of glycogen synthase in terms of primary structure and phosphorylation patterns, with the better studied muscle counterpart. Rat liver glycogen synthase was purified to apparent homogeneity. It was subjected to multiple phosphorylation by eight protein kinases. Phosphorylation sites were distributed between two CNBr-fragments, CB-1 (14,000) and CB-2 (28,000). Amino acid sequences of phosphopeptides of rabbit liver glycogen synthases modified by cyclic AMP-dependent protein kinase were determined and three phosphorylation sites were identified. A simple and effective procedure for determining the location of phosphorylation sites in phosphopeptides was also developed. The method employed measurement of [32P]inorganic phosphate release during Edman degradation cycles using the gas phase sequencer. Comparison of the liver and muscle isozymes has shown that similarities are more prominent than differences and isozymes share several important properties in multiple phosphorylation and hormonal regulation

234

Pharmacological modulation of human platelet leukotriene C4-synthase.  

Science.gov (United States)

The aim of this study was to test if human platelet leukotriene C4-synthase (LTC4-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC4-S inhibitors. Leukotriene C4 (LTC4) synthesis by washed human platelets supplemented with synthetic leukotriene A4 (LTA4) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC4 production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC4-S was inhibited by MK-886 and BAY-X1005 (IC50 of 4.7 microM and 91.2 microM, respectively), but not by zileuton (inactive up to 300 microM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 microM, 0.85 microM, and 1.5 microM, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC4-S. LTC4-S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC4-S with FLAP, Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC4-S inhibitor. PMID:9113110

Sala, A; Folco, G; Henson, P M; Murphy, R C

1997-03-21

235

NADPH diaphorase staining suggests localization of nitric oxide synthase within mature vertebrate olfactory neurons.  

Science.gov (United States)

Nitric oxide, a simple gas which serves as a neurotransmitter in the CNS, has been proposed to serve as an interneuronal second messenger in olfactory transduction. However, the role of nitric oxide in olfaction has been questioned by experiments in which nitric oxide synthase, the enzyme that generates nitric oxide, could not be localized to the olfactory epithelium. We have localized nitric oxide synthase to the olfactory neurons in adult rat and catfish olfactory epithelia using a modified nicotinamide adenine dinucleotide phosphate diaphorase technique. In the rat, staining was also found in cells with morphology reminiscent of microvillar olfactory cells. In contrast, the respiratory epithelium and the sustentacular cells in the olfactory epithelium displayed no staining. The nicotinamide adenine dinucleotide phosphate diaphorase reaction, which has been shown to co-localize with immunohistochemical staining for nitric oxide synthase in the brain, was stimulated by addition of the nitric oxide synthase substrate L-arginine, and was inhibited by the nitric oxide synthase inhibitor L-NG-nitro arginine, indicating that staining was specific for nitric oxide synthase. Unilateral bulbectomy, which causes degeneration of mature olfactory neurons on the bulbectomized size, markedly reduced nicotinamide adenine dinucleotide phosphate diaphorase staining. These observations were substantiated by biochemical assays for nitric oxide synthase by monitoring the production of [3H]-L-citrulline from [3H]-L-arginine. This is the first demonstration of specific NADPH diaphorase staining of mature olfactory neurons in rat and catfish olfactory epithelial suggesting the presence of nitric oxide synthase in these cells. Our histological and biochemical findings, in conjunction with data from other research, are supportive of a role for nitric oxide synthase in olfactory function. PMID:7543662

Dellacorte, C; Kalinoski, D L; Huque, T; Wysocki, L; Restrepo, D

1995-05-01

236

Extramitochondrial citrate synthase activity in bakers' yeast.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We isolated the gene for citrate synthase (citrate oxaloacetate lyase; EC 4.1.3.7) from Saccharomyces cerevisiae and ablated it by inserting the yeast LEU2 gene within its reading frame. This revealed a second, nonmitochondrial citrate synthase. Like the mitochondrial enzyme, this enzyme was sensitive to glucose repression. It did not react with antibodies against mitochondrial citrate synthase. Haploid cells lacking a gene for mitochondrial citrate synthase grew somewhat slower than wild-typ...

Rickey, T. M.; Lewin, A. S.

1986-01-01

237

Microsomal prostaglandin E synthase-1 in rheumatic diseases  

Directory of Open Access Journals (Sweden)

Full Text Available Microsomal prostaglandin E synthase-1 (mPGES-1 is a well recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis and inflammatory myopathies. Novel findings regarding regulation of mPGES1 cell expression as well as enzyme inhibitors are also summarized.

MarinaKorotkova

2011-01-01

238

Calcium-Dependent Nitric Oxide Synthase Activity in Rat Thymocytes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We examined the conversion of L-[3H]arginine to L-[3H]citrulline in lysate from rat thymocytes, which was dependent on Ca2+and cofactors (FAD, BH4, NADPH). Removal of Ca2+of the medium, reduced the total L-[3H]citrulline formation by about 97%. The L-[3H]citrulline formation was completely inhibited by the NO synthase inhibitors, NG-nitro-L-arginine and NG-monomethyl-L-arginine, with values for IC50of 1.2 [mu]M and 19.4 [mu]M, respectively. In intact thymocytes, the L-[3H]citrulline formation...

Cruz, M. T.; Carmo, A.; Carvalho, A. P.; Lopes, M. C.

1998-01-01

239

STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leadi...

Tsai, Shiou-chuan; Ames, Brian Douglas

2009-01-01

240

Induction of 1-aminocyclopropane-1-carboxylate synthase mRNA by auxin in mung bean hypocotyls and cultured apple shoots.  

Science.gov (United States)

Auxin is known to promote ethylene production in vegetative tissues by increasing the activity of 1-aminocyclopropane-1-carboxylate (ACC) synthase; therefore, we have studied the effect of auxins on ACC synthase mRNA expression. Total RNA was isolated from auxin-incubated cultured apple (Malus sylvestris Mill.) shoots or mung bean (Vigna radiata L.) hypocotyls. These RNAs and a set of oligonucleotide primers corresponding to two conserved amino acid sequences (SNPLGTT and MSSFGLV) found in ACC synthases isolated from other species were used for polymerase chain reaction-based amplification of DNA fragments encoding the ACC synthase-active site domain. We obtained and sequenced a 290-base pair cDNA fragment (pAA1) from cultured apple shoots and a 328-base pair cDNA clone (pMBA1) from mung bean hypocotyls. Comparisons of their deduced amino acid sequences with those of previously characterized ACC synthase cDNAs indicate that both fragments are, indeed, closely related to ACC synthase cDNA. Northern blot analyses further showed that the expression of these transcripts is regulated by auxin treatment. These data indicate that auxin induces ethylene production transcriptionally by increasing the ACC synthase transcripts. The pAA1 shares 46% amino acid sequence homology with ripening-regulated apple fruit ACC synthase, indicating that ripening-regulated and auxin-regulated ACC synthases are encoded by different genes. In mung bean hypocotyls, aminooxyacetic acid, a potent inhibitor of ACC synthase activity, promoted the expression of auxin-induced ACC synthase mRNA, but cycloheximide inhibited this induction. PMID:16668663

Kim, W T; Silverstone, A; Yip, W K; Dong, J G; Yang, S F

1992-02-01

 
 
 
 
241

Aziridine ring opening for the synthesis of sphingolipid analogues: inhibitors of sphingolipid-metabolizing enzymes.  

Science.gov (United States)

A library of sphingolipid analogues is designed and tested as inhibitors against mammalian and fungal sphingolipid enzymes. The synthesis of sphingolipid analogues is based on the nucleophilic ring-opening reactions of N-activated aziridine derivatives with thiols, ?-thioglycosyl thiols, phosphorothioates, phosphates, and amines to afford compounds having different lipid backbones and substituents representative of the naturally occurring sphingolipid families. The screening on mammalian sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS) and yeast inositol phosphorylceramide synthase (IPCS) enzymes identified several inhibitors of GCS and IPCS, but no inhibition of SMS was observed among the tested compounds. PMID:24641332

Alcaide, Anna; Llebaria, Amadeu

2014-04-01

242

Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases.  

Science.gov (United States)

The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (?-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511

Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred; Moser, Jürgen

2012-03-01

243

Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo  

DEFF Research Database (Denmark)

The aim of the present study was to investigate the effect of methylene blue, a guanylate cyclase inhibitor, on the hippocampal nitric oxide synthase activity in vivo. We used a microdialysis-based technique of measuring conversion of [3H]l-arginine to [3H]l-citrulline in freely moving rats. The administration of methylene blue (0.1 and 1 mM) via the microdialysis probe caused a dose-dependent decrease in [3H]l-citrulline efflux comparable with the effect of unselective NOS inhibitor NG-nitro-L-arginine (2 mM). We conclude that methylene blue inhibits brain NOS activity in vivo and thus interferes with NO-cGMP cascade in different levels.

Volke, V; Wegener, Gregers

1999-01-01

244

Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.  

Science.gov (United States)

Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-?-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. PMID:23550753

Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

2013-04-01

245

Human isoprenoid synthase enzymes as therapeutic targets.  

Science.gov (United States)

In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

Park, Jaeok; Matralis, Alexios N; Berghuis, Albert M; Tsantrizos, Youla S

2014-01-01

246

Human Isoprenoid Synthase Enzymes as Therapeutic Targets  

Directory of Open Access Journals (Sweden)

Full Text Available The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP and geranylgeranyl pyrophosphate (GGPP are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

YoulaSTsantrizos

2014-07-01

247

Human isoprenoid synthase enzymes as therapeutic targets  

Science.gov (United States)

In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

2014-01-01

248

CHARACTERIZATION OF BARLEY SUCROSE PHOSPHATE SYNTHASE  

Directory of Open Access Journals (Sweden)

Full Text Available Sucrose phosphate synthase (SPS is one of a number of sucrose-metabolizing enzymes that regulates the sucrose synthesis pathway. SPS was assayed from green barley(HordeurnvulgareL. seedlings (GBS,from etiolated barley seedlings (DBS that were continuously grown in darkness, and barley seedlings that were grown in darkness and illuminated only for 30 minutes before returning to the dark conditions again (EBS.Except for DBS, both GBS and EBSSPS activities wereallosterically regulated by G-6-P(activator or Pi (inhibitor.Thiol reagents became sensitized to the enzyme activity, but could be restored with DTT or ?-ME. Glucose, maltose and lactose activated the enzymewhile ?-gluconolactone and mannose inhibited it. When compared to those plants which were maintained in total darkness, extractable sucrose-Psynthase activity of 30-min.illuminated seedlings increased about 4 folds by 1h .The activity remained constant for an additional two hours and then decreased to about 50% of maximal 5 h post illumination.

Amani Abdel-Latif

2014-08-01

249

Molecular docking of glucosamine-6-phosphate synthase in Rhizopus oryzae.  

Science.gov (United States)

Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands. PMID:22355222

Banerjee, Kamalika; Gupta, Utkarsh; Gupta, Sanjay; Wadhwa, Gulshan; Gabrani, Reema; Sharma, Sanjeev Kumar; Jain, Chakresh Kumar

2011-01-01

250

Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase.  

Science.gov (United States)

The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

Li, Fuli; Hagemeier, Christoph H; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K

2007-06-01

251

Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay.  

Science.gov (United States)

Inositol phosphorylceramide synthase (IPC synthase) is an essential and unique enzyme in fungal sphingolipid biosynthesis and is the target of the cyclic nonadepsipeptide antibiotic aureobasidin A. As a first step towards understanding the mechanism of aureobasidin A inhibition, we developed a fluorometric HPLC assay for IPC synthase using the Saccharomyces cerevisiae enzyme and the fluorescent substrate analog 6-[N-(7-nitro-2,1, 3-benzoxadiazol-4-yl)amino]-hexanoyl ceramide (C(6)-NBD-cer). The kinetic parameters for C(6)-NBD-cer were comparable to those for the synthetic substrate N-acetylsphinganine used previously. Aureobasidin A acted as a tight-binding, non-competitive inhibitor with respect to C(6)-NBD-cer and had a K(i) of 0.55 nM. PMID:10606729

Zhong, W; Murphy, D J; Georgopapadakou, N H

1999-12-17

252

Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A.  

Science.gov (United States)

By using a detergent-washed membrane preparation, the interaction of the fungal natural product inhibitor aureobasidin A (AbA) with inositol phosphorylceramide synthase (IPC synthase) was studied by kinetic analysis of wild-type and mutant enzyme-catalyzed reactions. AbA inhibited the wild-type enzyme from both Candida albicans and Saccharomyces cerevisiae in an irreversible, time-dependent manner, with apparent K(i) values of 183 and 234 pM, respectively. Three synthetic chemistry-derived AbA derivatives, PHA-533179, PHA-556655, and PHA-556656, had affinities 4 to 5 orders of magnitude lower and were reversible inhibitors that competed with the donor substrate phosphatidylinositol (PI). AbA was a reversible, apparently noncompetitive inhibitor, with a K(i) of 1.4 microM, of the IPC synthase from an AbA-resistant S. cerevisiae mutant. The K(m) values for both substrates (ceramide and PI) were similar when they interacted with the mutant and the wild-type enzymes. By contrast, the V(max) for the mutant enzyme was less than 10% of that for the wild-type enzyme. A comparison of the results obtained with AbA with those obtained with two other natural products inhibitors, rustmicin and khafrefungin, revealed that while rustmicin appeared to be a reversible, noncompetitive inhibitor of the wild-type enzyme, with a K(i) of 16.0 nM, khafrefungin had the kinetic properties of a time-dependent inhibitor and an apparent K(i) of 0.43 nM. An evaluation of the efficiencies of these compounds as inhibitors of the mutant enzyme revealed for both a drop in the apparent affinity for the enzyme of more than 2 orders of magnitude. PMID:19047657

Aeed, Paul A; Young, Casey L; Nagiec, Marek M; Elhammer, Ake P

2009-02-01

253

A functional cellulose synthase from ascidian epidermis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian Ciona savignyi that is expressed in the epidermis. The predicted C. savignyi cellulose synthase ami...

Matthysse, Ann G.; Deschet, Karine; Williams, Melanie; Marry, Mazz; White, Alan R.; Smith, William C.

2004-01-01

254

Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase  

Energy Technology Data Exchange (ETDEWEB)

It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

Maley, F.; Maley, G.F.

1983-01-01

255

Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes.  

Science.gov (United States)

Complex glycophosphosphingolipids present in plants are composed of ceramide, inositolphosphate, and diverse polar oligosaccharide substituents. The activity of inositolphosphorylceramide (IPC) synthase (phosphatidylinositol:ceramide inositolphosphate transferase), the enzyme proposed to catalyze the initial committed step in the formation of these complex sphingolipids, was characterized in wax bean hypocotyl microsomes. Enzyme activity was assayed by monitoring the incorporation of fluorescent NBD-C(6) ceramide or [3H]inositolphosphate from radiolabeled phosphatidylinositol (PI) into product identified by TLC. IPC synthase was found to utilize nonhydroxy fatty acid-containing ceramide, hydroxy fatty acid-containing ceramide, and NBD-C(6) ceramide as substrate. Maximum product formation was observed at PI concentrations in excess of 600 microM (with half-maximum activity at approximately 200 microM). Both endogenous PI and ceramide appeared to serve as substrates. Aureobasidin A and rustmicin, two potent inhibitors of fungal IPC synthase, inhibited enzyme activity in bean microsomes with values for IC(50) of 0.4-0.8 and 16-20 nM, respectively. IPC synthase activity appeared most closely associated with the Golgi based on results using selected marker enzymes. Enzyme activity was detected in a variety of plant tissues. This report, the first to characterize IPC synthase in plant tissues, demonstrates the similarities between the plant enzyme and its yeast counterpart, and provides insight into plant glycophosphosphingolipid biology. PMID:12941304

Bromley, Pamela E; Li, Yuneng O; Murphy, Shawn M; Sumner, Catherine M; Lynch, Daniel V

2003-09-15

256

Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization.  

Science.gov (United States)

Fungal sphingolipids have inositol-phosphate head groups, which are essential for the viability of cells. These head groups are added by inositol phosphorylceramide (IPC) synthase, and AUR1 has been thought to encode this enzyme. Here, we show that an essential protein encoded by KEI1 is a novel subunit of IPC synthase of Saccharomyces cerevisiae. We find that Kei1 is localized in the medial-Golgi and that Kei1 is cleaved by Kex2, a late Golgi processing endopeptidase; therefore, it recycles between the medial- and late Golgi compartments. The growth defect of kei1-1, a temperature-sensitive mutant, is effectively suppressed by the overexpression of AUR1, and Aur1 and Kei1 proteins form a complex in vivo. The kei1-1 mutant is hypersensitive to aureobasidin A, a specific inhibitor of IPC synthesis, and the IPC synthase activity in the mutant membranes is thermolabile. A part of Aur1 is missorted to the vacuole in kei1-1 cells. We show that the amino acid substitution in kei1-1 causes release of Kei1 during immunoprecipitation of Aur1 and that Aur1 without Kei1 has hardly detectable IPC synthase activity. From these results, we conclude that Kei1 is essential for both the activity and the Golgi localization of IPC synthase. PMID:19726565

Sato, Keisuke; Noda, Yoichi; Yoda, Koji

2009-10-01

257

Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum.  

Science.gov (United States)

We report the first X-ray crystal structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a site-directed mutagenesis investigation into catalytic activity. The structure is very similar to that of the ? domains of modern plant terpene cyclases, a result that is of interest since it has been proposed that many plant terpene cyclases may have arisen from bacterial diterpene cyclases. The ent-copalyl diphosphate substrate binds to a hydrophobic pocket near a cluster of Asp and Arg residues that are essential for catalysis, with the carbocations formed on ionization being protected by Leu, Tyr and Phe residues. A bisphosphonate inhibitor binds to the same site. In the kaurene synthase from the moss Physcomitrella patens, 16-?-hydroxy-ent-kaurane as well as kaurene are produced since Leu and Tyr in the P. patens kaurene synthase active site are replaced by smaller residues enabling carbocation quenching by water. Overall, the results represent the first structure determination of a bacterial diterpene cyclase, providing insights into catalytic activity, as well as structural comparisons with diverse terpene synthases and cyclases which clearly separate the terpene cyclases from other terpene synthases having highly ?-helical structures. PMID:25269599

Liu, Wenting; Feng, Xinxin; Zheng, Yingying; Huang, Chun-Hsiang; Nakano, Chiaki; Hoshino, Tsutomu; Bogue, Shannon; Ko, Tzu-Ping; Chen, Chun-Chi; Cui, Yunfeng; Li, Jian; Wang, Iren; Hsu, Shang-Te Danny; Oldfield, Eric; Guo, Rey-Ting

2014-01-01

258

Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum  

Science.gov (United States)

We report the first X-ray crystal structure of ent-kaur-16-ene synthase from Bradyrhizobium japonicum, together with the results of a site-directed mutagenesis investigation into catalytic activity. The structure is very similar to that of the ? domains of modern plant terpene cyclases, a result that is of interest since it has been proposed that many plant terpene cyclases may have arisen from bacterial diterpene cyclases. The ent-copalyl diphosphate substrate binds to a hydrophobic pocket near a cluster of Asp and Arg residues that are essential for catalysis, with the carbocations formed on ionization being protected by Leu, Tyr and Phe residues. A bisphosphonate inhibitor binds to the same site. In the kaurene synthase from the moss Physcomitrella patens, 16-?-hydroxy-ent-kaurane as well as kaurene are produced since Leu and Tyr in the P. patens kaurene synthase active site are replaced by smaller residues enabling carbocation quenching by water. Overall, the results represent the first structure determination of a bacterial diterpene cyclase, providing insights into catalytic activity, as well as structural comparisons with diverse terpene synthases and cyclases which clearly separate the terpene cyclases from other terpene synthases having highly ?-helical structures. PMID:25269599

Liu, Wenting; Feng, Xinxin; Zheng, Yingying; Huang, Chun-Hsiang; Nakano, Chiaki; Hoshino, Tsutomu; Bogue, Shannon; Ko, Tzu-Ping; Chen, Chun-Chi; Cui, Yunfeng; Li, Jian; Wang, Iren; Hsu, Shang-Te Danny; Oldfield, Eric; Guo, Rey-Ting

2014-01-01

259

Producing biofuels using polyketide synthases  

Science.gov (United States)

The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-04-16

260

Lack of Cross-Resistance of Imidazolinone-Resistant Cell Lines of Datura innoxia P. Mill. to Chlorsulfuron 1  

Science.gov (United States)

Two cell lines of Datura innoxia resistant to two imidazolinone herbicides, imazapyr and imazaquin, were isolated from mutagenized, predominantly haploid cell suspension cultures. Both of the resistant variants were >1000-fold more resistant than the wild-type to the two imidazolinones. The variant resistant to imazapyr showed cross-resistance to imazaquin and vice versa, but no cross-resistance to a structurally different inhibitor, chlorsulfuron, a sulfonylurea herbicide, was observed. The target enzyme, acetolactate synthase, extracted from imidazolinone-resistant cell lines was not inhibited by imazapyr or imazaquin but was sensitive to chlorsulfuron indicating separable sites of action for these inhibitors. The variation in resistance and cross-resistance of chlorsulfuron-resistant (PK Saxena, J King [1988] Plant Physiol 86: 863-867) and imidazolinone-resistant cell lines of Datura innoxia demonstrates the possibility of separate mutations of acetolactate synthase gene resulting in specific phenotypes. PMID:16667804

Saxena, Praveen K.; King, John

1990-01-01

 
 
 
 
261

Lack of Cross-Resistance of Imidazolinone-Resistant Cell Lines of Datura innoxia P. Mill. to Chlorsulfuron : Evidence for Separable Sites of Action on the Target Enzyme.  

Science.gov (United States)

Two cell lines of Datura innoxia resistant to two imidazolinone herbicides, imazapyr and imazaquin, were isolated from mutagenized, predominantly haploid cell suspension cultures. Both of the resistant variants were >1000-fold more resistant than the wild-type to the two imidazolinones. The variant resistant to imazapyr showed cross-resistance to imazaquin and vice versa, but no cross-resistance to a structurally different inhibitor, chlorsulfuron, a sulfonylurea herbicide, was observed. The target enzyme, acetolactate synthase, extracted from imidazolinone-resistant cell lines was not inhibited by imazapyr or imazaquin but was sensitive to chlorsulfuron indicating separable sites of action for these inhibitors. The variation in resistance and cross-resistance of chlorsulfuron-resistant (PK Saxena, J King [1988] Plant Physiol 86: 863-867) and imidazolinone-resistant cell lines of Datura innoxia demonstrates the possibility of separate mutations of acetolactate synthase gene resulting in specific phenotypes. PMID:16667804

Saxena, P K; King, J

1990-11-01

262

Reuptake Inhibitor  

Directory of Open Access Journals (Sweden)

Full Text Available (R-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka´s catalyst.

\\u00C2ngelo de F\\u00E1tima

2005-01-01

263

GLYCOGEN SYNTHASE KINASE-3 IS A NEGATIVE REGULATOR OF EXTRACELLULAR SIGNAL-REGULATED KINASE  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Glycogen-synthase kinase-3 (GSK-3) and extracellular signal-regulated kinase (ERK) are critical downstream signaling proteins for the PI3-kinase/Akt and Ras/Raf/MEK-1 pathway, respectively, and regulate diverse cellular processes including embryonic development, cell differentiation and apoptosis. Here, we show that inhibition of GSK-3 using GSK-3 inhibitors or RNA interference (RNAi) significantly induced the phosphorylation of ERK1/2 in human colon cancer cell lines HT29 and Caco-2. Pretrea...

Wang, Qingding; Zhou, Yuning; Wang, Xiaofu; Evers, B. Mark

2006-01-01

264

Selective inhibition of inducible nitric oxide synthase by derivatives of acetamidine.  

Science.gov (United States)

A new series of phenyl- and heteryl acetamidines were synthesized and evaluated as inhibitors of nitric oxide synthases (NOS). While the N-substitution of the acetamidine moiety with different heterocycles appears to completely destroy the activity, linking the phenyl core preserves it. Moreover, it was observed a strong dependence of the phenylacetamidines potency of action from the length of the alkyl chain that connects the aromatic ring to the acetamidine moiety. PMID:22741778

Maccallini, Cristina; Patruno, Antonia; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Tricca, Maria Luisa; Amoroso, Rosa

2012-11-01

265

Intracellular compartmentation of CTP synthase in Drosophila.  

Science.gov (United States)

Compartmentation is essential for the localization of biological processes within a eukaryotic cell. ATP synthase localizes to organelles such as mitochondria and chloroplasts. By contrast, little is known about the subcellular distribution of CTP synthase, the critical enzyme in the production of CTP, a high-energy molecule similar to ATP. Here I describe the identification of a novel intracellular structure containing CTP synthase, termed the cytoophidium, in Drosophila cells. I find that cytoophidia are present in all major cell types in the ovary and exist in a wide range of tissues such as brain, gut, trachea, testis, accessory gland, salivary gland and lymph gland. In addition, I find CTP synthase-containing cytoophidia in other fruit fly species. The observation of compartmentation of CTP synthase now permits a broad range of questions to be addressed concerning not only the structure and function of cytoophidia but also the organization and regulation of CTP synthesis. PMID:20513629

Liu, Ji-Long

2010-05-01

266

Nitric Oxide synthases and atrial fibrillation  

Directory of Open Access Journals (Sweden)

Full Text Available Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases, which normally produce nitric oxide in the heart. Two nitric oxide synthase isoforms (1 and 3 are normally expressed in the heart. During pathologies such as heart failure, there is induction of nitric oxide synthase 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for nitric oxide synthases in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of nitric oxide synthase activity may be beneficial, although further investigation of this strategy is needed.

CynthiaAnnCarnes

2012-04-01

267

Structural analysis of chorismate synthase from Plasmodium falciparum: a novel target for antimalaria drug discovery.  

Science.gov (United States)

The shikimate pathway in Plasmodium falciparum provides several targets for designing novel antiparasitic agents for the treatment of malaria. Chorismate synthase (CS) is a key enzyme in the shikimate pathway which catalyzes the seventh and final step of the pathway. P. falciparum chorismate synthase (PfCS) is unique in terms of enzymatic behavior, cellular localization and in having two additional amino acid inserts compared to any other CS. The structure of PfCS along with cofactor FMN was predicted by homology modeling using crystal structure of Helicobacter pylori chorismate synthase (HpCS). The quality of the model was validated using structure analysis servers and molecular dynamics. Dimeric form of PfCS was generated and the FMN binding mechanism involving movement of loop near active site has been proposed. Active site pocket has been identified and substrate 5-enolpyruvylshikimate 3-phosphate (EPSP) along with screened potent inhibitors has been docked. The study resulted in identification of putative inhibitors of PfCS with binding efficiency in nanomolar range. The selected putative inhibitors could lead to the development of anti-malarial drugs. PMID:21801743

Tapas, Satya; Kumar, Abhinav; Dhindwal, Sonali; Preeti; Kumar, Pravindra

2011-11-01

268

Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure.  

Science.gov (United States)

Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts ATP, dATP, GTP, CTP, and UTP as diphosphoryl donors. All of these properties are characteristic for class II PRPP synthases. K(m) values for ATP and ribose 5-phosphate are 77 and 48 microM, respectively. Gel filtration reveals a molecular mass of the native enzyme of approximately 110 kD, which is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two enzymes are essentially conserved. Amino acid sequence comparison reveals that residues of class I PRPP synthases interacting with allosteric inhibitors are not conserved in class II PRPP synthases. Similarly, residues important for oligomerization of the B. subtilis enzyme show little conservation in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4. PMID:11604537

Krath, B N; Hove-Jensen, B

2001-11-01

269

IPC synthase as a useful target for antifungal drugs.  

Science.gov (United States)

Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification. PMID:15578972

Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

2004-12-01

270

Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi.  

Science.gov (United States)

Based on comparative amino-acid sequence alignment of geranylgeranyl diphosphate (GGPP) synthase from filamentous fungi, degenerated oligonucleotide primers were designed for searching GGPP synthase gene(s) in entomopathogenic fungi. Polymerase chain reaction with the designed primers amplified GGPP synthase homologues from five representative entomopathogenic fungi: Metarhizium anisopliae, Beauveria bassiana, Verticillium lecanii, Paecilomyces farinosus, and Nomuraea rileyi. Sequence comparison of the amplified of GGPP synthase homologue fragments revealed that M. anisopliae and B. bassiana have at least two different types of the GGPP synthase gene homologues. The first type (designated as ggs1), which is highly conserved among the five strains, has a unique Ser-rich region, SSXSSVSGSSS (X refers to L, A, V, or S), and is constitutively expressed throughout growth. In contrast, the second type of GGPP synthase gene homologue (ggs2) was discovered only in some strains, and genes of this type possessed high similarity to each other but showed relatively weak similarity to the ggs1 genes, with no detectable transcription under the cultivation conditions applied in this experiment. The ggs1 cloned from M. anisopliae, which encoded a putative protein of 359 amino acid residues, was heterologously expressed in E. coli. The recombinant protein showed activity to synthesize GGPP from farnesyl diphosphate and isopentenyl diphosphate. These results strongly suggested that the ggs1 gene encodes a GGPP synthase involved in primary metabolism. PMID:19690851

Singkaravanit, Suthitar; Kinoshita, Hiroshi; Ihara, Fumio; Nihira, Takuya

2010-02-01

271

Corn silk induces nitric oxide synthase in murine macrophages.  

Science.gov (United States)

Corn silk has been purified as an anticoagulant previously and the active component is a polysaccharide with a molecular mass of 135 kDa. It activates murine macrophages to induce nitric oxide synthase (NOS) and generate substantial amounts of NO in time and dose-dependent manners. It was detectable first at 15 h after stimulation by corn silk, peaked at 24 h, and undetectable by 48 h. Induction of NOS is inhibited by pyrolidine dithiocarbamate (PDTC) and genistein, an inhibitor of nuclear factor kappa B (NF-kappaB) and tyrosine kinase, respectively, indicating that iNOS stimulated by corn silk is associated with tyrosine kinase and NF-kappaB signaling pathways. IkappaB-alpha degradation was detectible at 10 min, and the level was restored at 120 min after treatment of corn silk. Corn silk induced nuclear translocation of NF-kappaB by phosphorylation and degradation of IkappaB-alpha. PMID:15665587

Kim, Kyung A; Choi, Sang Kyu; Choi, Hye Seon

2004-12-31

272

Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene.  

Science.gov (United States)

We have identified a Saccharomyces cerevisiae gene necessary for the step in sphingolipid synthesis in which inositol phosphate is added to ceramide to form inositol-P-ceramide, a reaction catalyzed by phosphatidylinositol:ceramide phosphoinositol transferase (IPC synthase). This step should be an effective target for antifungal drugs. A key element in our experiments was the development of a procedure for isolating mutants defective in steps in sphingolipid synthesis downstream from the first step including a mutant defective in IPC synthase. An IPC synthase defect is supported by data showing a failure of the mutant strain to incorporate radioactive inositol or N-acetylsphinganine into sphingolipids and, by using an improved assay, a demonstration that the mutant strain lacks enzyme activity. Furthermore, the mutant accumulates ceramide when fed exogenous phytosphingosine as expected for a strain lacking IPC synthase activity. Ceramide accumulation is accompanied by cell death, suggesting the presence of a ceramide-activated death response in yeast. A gene, AUR1 (YKL004w), that complements the IPC synthase defect and restores enzyme activity and sphingolipid synthesis was isolated. Mutations in AUR1 had been shown previously to give resistance to the antifungal drug aureobasidin A, leading us to predict that the drug should inhibit IPC synthase activity. Our data show that the drug is a potent inhibitor of IPC synthase with an IC50 of about 0.2 nM. Fungal pathogens are an increasing threat to human health. Now that IPC synthase has been shown to be the target for aureobasidin A, it should be possible to develop high throughput screens to identify new inhibitors of IPC synthase to combat fungal diseases. PMID:9092515

Nagiec, M M; Nagiec, E E; Baltisberger, J A; Wells, G B; Lester, R L; Dickson, R C

1997-04-11

273

Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation  

Science.gov (United States)

Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

Paliyath, G.; Poovaiah, B. W.

1988-01-01

274

Arabidopsis CDS blastp result: AK109628 [KOME  

Full Text Available AK109628 002-138-C02 At3g48560.1 acetolactate synthase, chloroplast / acetohydroxy-acid synthase ... (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 0.0 ...

275

Arabidopsis CDS blastp result: AK242817 [KOME  

Full Text Available AK242817 J090063G17 At3g48560.1 68416.m05302 acetolactate synthase, chloroplast / acetohydroxy-a ... cid synthase (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 0.0 ...

276

Arabidopsis CDS blastp result: AK058963 [KOME  

Full Text Available AK058963 001-020-C04 At3g48560.1 acetolactate synthase, chloroplast / acetohydroxy-acid synthase ... (ALS ) nearly identical to SP|P17597 Acetolactate syntha ... ormerly EC 4.1.3.18) (Acetohydroxy-acid synthase) (ALS ) {Arabidopsis thaliana} 2e-15 ...

277

Flavonoids and nitric oxide synthase.  

Science.gov (United States)

Induction of NOS-2 in macrophages and smooth muscles within vascular wall with concomittant suppression of endothelial NOS-3 activity is considered to be a hallmark of vascular inflammation that triggers atherogenesis. Accordingly, drugs designed to reverse these changes should not only support vaning function of NOS-3 but also suppress proinflammatory NO production by NOS-2. It means that using selective inhibitors of induction of NOS-2 (they spare ex definitione constitutive activity of NOS-3) is a more rational approach than using "selective" inhibitors of activity of previously induced NOS-2. First of all, those drugs are never sufficiently selective. In our work we tried to identify inhibitors of NOS-2 induction within the group of flavonoids, known stimulators of NOS-3 with putative antiatherogenic effects. Representatives of four main groups of flavonoids: flavonols (kaempferol, quercetin, rutin), flavones (apigenin, primuletin), flavanols (catechine) and flavanones (hesperetin, hesperidin, naringenin) were tried on NOS-2 induction and activity in the in vitro model of LPS-treated macrophages (cell line J774.2). While none of these compounds inhibited activity of NOS-2, all with unexpectedly scattered potencies inhibited induction of NOS-2 protein in LPS-treated J774.2 cells, as evidenced by Western blotting technique. Subsequently, RT-PCR and Northern blotting methods revealed that so far the most potent compounds, kaempferol and apigenin, at micromolar concentrations did inhibit NOS-2 induction at the level of NOS-2 gene transcription. We conclude that some of flavonoids are potent inhibitors of NOS-2 induction. At the same time they may increase endothelial NOS-3 activity. Could these flavonoids become natural parents of future drugs, which will be used for reversal of inflammatory component of atherothrombosis? PMID:12512693

Olszanecki, R; Gebska, A; Kozlovski, V I; Gryglewski, R J

2002-12-01

278

Unique animal prenyltransferase with monoterpene synthase activity  

Science.gov (United States)

Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

2009-06-01

279

Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species.  

Science.gov (United States)

Inositol phosphorylceramide (IPC) synthase is an enzyme common to fungi and plants that catalyzes the transfer of phosphoinositol from phosphatidylinositol to ceramide to form IPC. The reaction is a key step in fungal sphingolipid biosynthesis and the target of the antibiotics galbonolide A, aureobasidin A, and khafrefungin. As a first step toward understanding the antifungal spectrum of IPC synthase inhibitors, we examined the sensitivity of IPC synthase to aureobasidin A in membrane preparations of Candida species (Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei) and Aspergillus species (Aspergillus fumigatus, A. flavus, A. niger, and A. terreus). As expected, preparations from the five Candida species, all exquisitely susceptible to aureobasidin A (MICs, aureobasidin A (50% inhibitory concentrations [IC(50)s], 2 to 4 ng/ml). Surprisingly, preparations from the four Aspergillus species, including A. fumigatus and A. flavus, which are intrinsically resistant to aureobasidin A (MICs, >50 microgram/ml), had IPC synthase activity (specific activity, 1 to 3 pmol/min/mg of protein) also sensitive to aureobasidin A (IC(50)s, 3 to 5 ng/ml). The mammalian multidrug resistance modulators verapamil, chlorpromazine, and trifluoperazine lowered the MIC of aureobasidin A for A. fumigatus from >50 microgram/ml to 2 to 3 microgram/ml, suggesting that the resistance of this major fungal pathogen is the result of increased efflux. PMID:10681333

Zhong, W; Jeffries, M W; Georgopapadakou, N H

2000-03-01

280

Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699  

Energy Technology Data Exchange (ETDEWEB)

A ..beta..-lactone isolated from Fusarium sp. has been shown to be a potent specific inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase from rat liver. The structure of this ..beta..-lactone, termed L-659,699, is (E,E)-11-(3-hydroxymethyl)-4-oxo-2-oxytanyl)-3,5,7-trimethyl-2,4-undecadienenoic acid. A partially purified preparation of cytoplasmic HMG-CoA synthase from rat liver was inhibited by L-659,699 with an IC/sub 50/ of 0.12 ..mu..M. The enzymes HMG-CoA reductase, ..beta..-ketoacyl-CoA thiolase, acetoacetyl-CoA synthetase, an fatty acid synthase were not inhibited to any extent by this compound. In cultured Hep G2 cells, the compound inhibited the incorporation of (/sup 14/C)acetate into sterols with an IC/sub 50/ of 6 ..mu..M, while incorporation of (/sup 3/H)mevalonate into sterols in these cells was not affected. The activity of HMG-CoA reductase in the cultured Hep G2 cells was induced in a dose-dependent manner by incubation with L-659,699. A 37-fold increase in reductase was observed after a 24-hr incubation with 62 ..mu..M L-659,699. The effect of a number of analogs of L-659,699 on HMG-CoA synthase is also discussed.

Greenspan, M.D.; Yudkovitz, J.B.; Lo, C.Y.L.; Chen, J.S.; Alberts, A.W.; Hunt, V.M.; Chang, M.N.; Yang, S.S.; Thompson, K.L.; Chiang, Y.C.P.; Chabala, J.C.

1987-11-01

 
 
 
 
281

UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP synthase (EC 4.1.2.15 catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs. A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase.

Ramani Shilpa

2010-08-01

282

Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper.  

Science.gov (United States)

Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants. PMID:23274393

Li, Jinjie; Pandeya, Devendra; Jo, Yeong Deuk; Liu, Wing Yee; Kang, Byoung-Cheorl

2013-04-01

283

Mechanistic insight with HBCH2CoA as a probe to polyhydroxybutyrate (PHB) synthases.  

Science.gov (United States)

Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of 3-(R)-hydroxybutyrate coenzyme A (HBCoA) to produce polyoxoesters of 1-2 MDa. A substrate analogue HBCH2CoA, in which the S in HBCoA is replaced with a CH2 group, was synthesized in 13 steps using a chemoenzymatic approach in a 7.5% overall yield. Kinetic studies reveal it is a competitive inhibitor of a class I and a class III PHB synthases, with Kis of 40 and 14 ?M, respectively. To probe the elongation steps of the polymerization, HBCH2CoA was incubated with a synthase acylated with a [(3)H]-saturated trimer-CoA ([(3)H]-sTCoA). The products of the reaction were shown to be the methylene analogue of [(3)H]-sTCoA ([(3)H]-sT-CH2-CoA), saturated dimer-([(3)H]-sD-CO2H), and trimer-acid ([(3)H]-sT-CO2H), distinct from the expected methylene analogue of [(3)H]-saturated tetramer-CoA ([(3)H]-sTet-CH2-CoA). Detection of [(3)H]-sT-CH2-CoA and its slow rate of formation suggest that HBCH2CoA may be reporting on the termination and repriming process of the synthases, rather than elongation. PMID:24896226

Zhang, Wei; Shrestha, Ruben; Buckley, Rachael M; Jewell, Jamie; Bossmann, Stefan H; Stubbe, JoAnne; Li, Ping

2014-08-15

284

[Syk inhibitors].  

Science.gov (United States)

Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk. PMID:23961675

Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

2013-07-01

285

Functional deterioration of endothelial nitric oxide synthase after focal cerebral ischemia.  

Science.gov (United States)

Endothelial nitric oxide synthase (eNOS) dysfunction is related to secondary injury and lesion expansion after cerebral ischemia. To date, there are few reports about postischemic alterations in the eNOS regulatory system. The purpose of the present study was to clarify eNOS expression, Ser1177 phosphorylation, and monomer formation after cerebral ischemia. Male Wistar rats were subjected to transient focal cerebral ischemia. Endothelial nitric oxide synthase messenger RNA (mRNA) and protein expression increased ? 8-fold in the ischemic lesion. In the middle cerebral artery core, eNOS-Ser1177 phosphorylation increased 6 hours after ischemia; however, there was an approximately 90% decrease in eNOS-Ser1177 phosphorylation observed 24 hours after ischemia that continued until at least 7 days after ischemia. Endothelial nitric oxide synthase monomer formation also increased 24 and 48 hours after ischemia (Pfasudil, a Rho-kinase inhibitor, on eNOS phosphorylation and dimerization. Postischemic treatment with fasudil suppressed lesion expansion and dephosphorylation and monomer formation of eNOS. In conclusion, functional deterioration of eNOS progressed after cerebral ischemia. Rho-kinase inhibitors can reduce ischemic lesion expansion as well as eNOS dysfunction in the ischemic brain. PMID:23820645

Yagita, Yoshiki; Kitagawa, Kazuo; Oyama, Naoki; Yukami, Toshiro; Watanabe, Akihiro; Sasaki, Tsutomu; Mochizuki, Hideki

2013-10-01

286

Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L. 1  

Science.gov (United States)

Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism. PMID:16664820

Berger, Michael G.; Sprengart, Michael L.; Kusnan, Misri; Fock, Heinrich P.

1986-01-01

287

Identification of avian wax synthases  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities.

Biester Eva-Maria

2012-02-01

288

Syk inhibitors.  

Science.gov (United States)

Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation. PMID:23994797

Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

2013-01-01

289

Nitric oxide synthase activity in the molluscan CNS.  

Science.gov (United States)

Putative nitric oxide synthase (NOS) activity was assayed in molluscan CNS through histochemical localization of NADPH-diaphorase and through measurement of L-arginine/L-citrulline conversion. Several hundreds of NADPH-dependent diaphorase-positive neurons stained consistently darkly in the nervous system of the predatory opisthobranch Pleurobranchaea californica, whereas stained neurons were relatively sparse and/or light in the other opisthobranchs (Philine, Aplysia, Tritonia, Flabellina, Cadina, Armina, Coriphella, and Doriopsilla sp.) and cephalopods (Sepia and Rossia sp.). L-Arginine/L-citrulline conversion was beta-NADPH dependent, insensitive to removal of Ca2+, inhibited by the calmodulin blocker trifluoperazine, and inhibited by the competitive NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) but not D-NAME. Inhibitors of arginase [L-valine and (+)-S-2-amino-5-iodoacetamidopentanoic acid)] did not affect L-citrulline production in the CNS. NOS activity was largely associated with the particulate fraction and appeared to be a novel, constitutive Ca(2+)-independent isoform. Enzymatic conversion of L-arginine/L-citrulline in Pleurobranchaea and Aplysia CNS was 4.0 and 9.8%, respectively, of that of rat cerebellum, L-Citrulline formation in gill and muscle of Pleurobranchaea was not significant. The localization of relatively high NOS activity in neuron somata in the CNS of Pleurobranchaea is markedly different from the other opisthobranchs, all of which are grazers. Potentially, this is related to the animal's opportunistic predatory lifestyle. PMID:8592165

Moroz, L L; Chen, D; Gillette, M U; Gillette, R

1996-02-01

290

The Structure of the L-myo-inositol-1-phosphate Synthase-NAD[superscript +]-2-deoxy-D-glucitol 6-(E)-Vinylhomophosphonate Complex Demands a Revision of the Enzyme Mechanism  

Energy Technology Data Exchange (ETDEWEB)

1l-myo-inositol 1-phosphate (MIP) synthase catalyzes the conversion of D-glucose 6-phosphate to 1l-myo-inositol 1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, enolization, intramolecular aldol cyclization, and reduction. Here we present the structure of MIP synthase in complex with NAD{sup +} and a high-affinity inhibitor, 2-deoxy-D-glucitol 6-(E)-vinylhomophosphonate. This structure reveals interactions between the enzyme active site residues and the inhibitor that are significantly different from that proposed for 2-deoxy-D-glucitol 6-phosphate in the previously published structure of MIP synthase-NAD{sup +}-2-deoxy-D-glucitol 6-phosphate. There are several other conformational changes in NAD{sup +} and the enzyme active site as well. Based on the new structural data, we propose a new and completely different mechanism for MIP synthase.

Jin, Xiangshu; Foley, Kathleen M.; Geiger, James H. (MSU)

2010-11-16

291

A genomic approach to characterization of the Citrus terpene synthase gene family  

Directory of Open Access Journals (Sweden)

Full Text Available Terpenes are a very large and structurally diverse group of secondary metabolites which are abundant in many essential oils, resins and floral scents. Additionally, some terpenes have roles as phytoalexins in plant-pathogen relationships, allelopathic inhibitors in plant-plant interactions, or as airborne molecules of plant-herbivore multitrophic signaling. Thus the elucidation of the biochemistry and molecular genetics of terpenoid biosynthesis has paramount importance in any crop species. With this aim, we searched the CitEST database for clusters of expressed sequence tags (ESTs coding for terpene synthases. Herein is a report on the identification and in silico characterization of 49 putative members of the terpene synthase family in diverse Citrus species. The expression patterns and the possible physiological roles of the identified sequences are also discussed.

Marcelo Carnier Dornelas

2007-01-01

292

Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness.  

Science.gov (United States)

CTP Synthase from Trypanosoma brucei (TbCTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of antiprotozoal agents. GTP activates glutamine-dependent CTP formation catalyzed by TbCTPS at concentrations below 0.2 mM, but inhibits this activity at concentrations above 0.2 mM. TbCTPS catalyzes ammonia-dependent CTP formation, which is inhibited by purine derivatives such as GTP, guanosine, caffeine, and uric acid with IC(50) values of 460, 380, 480, and 100 ?M, respectively. These observations suggest that the purine ring may serve as a useful scaffold for the development of inhibitors of trypanosomal CTP synthase. PMID:21840216

Steeves, Craig H; Bearne, Stephen L

2011-09-15

293

Molecular cloning of prostacyclin (PGI2) synthase  

International Nuclear Information System (INIS)

PGI2 synthase is a hemoprotein which may be a cytochrome P450. To test this possibility, they have begun molecular cloning of PGI2 synthase. A cDNA library has been constructed in bacteriophage lambda-gt 10 using poly(A+) RNA prepared from cultured bovine endothelial cells. They are currently screening this library with synthetic 32P-labeled oligonucleotide probes. Synthesis of these probes is based on amino acid sequence data obtained with the holoenzyme purified by immunoaffinity chromatography and with tryptic peptides isolated by HPLC. The N-terminal sequence of bovine aortic PGI2 synthase is MSWAVVFGLLAALLLLLLLTRRRRRMPGERL. This N-terminal sequence shows significant (29% and 26%) homology with rabbit and rat phenobarbital(PB)-inducible P450s, respectively, but no significant sequence homologies (2 synthase and PB-inducible P450s differ in their amino acid compositions, particularly in their contents of tryptophan, cysteine and isoleucine. The sequences of three tryptic peptides have been determined. One pentapeptide contains one of the three cysteine residues present in PGI2 synthase; this peptide shows no homology with highly conserved cysteine peptides from cytochrome P-450s. Two other peptides (a penta- and a decapeptide) also show no homology with other P450s

294

Cell-free synthesis and functional characterization of sphingolipid synthases from parasitic trypanosomatid protozoa.  

Science.gov (United States)

The Trypanosoma brucei genome has four highly similar genes encoding sphingolipid synthases (TbSLS1-4). TbSLSs are polytopic membrane proteins that are essential for viability of the pathogenic bloodstream stage of this human protozoan parasite and, consequently, can be considered as potential drug targets. TbSLS4 was shown previously to be a bifunctional sphingomyelin/ethanolamine phosphorylceramide synthase, whereas functions of the others were not characterized. Using a recently described liposome-supplemented cell-free synthesis system, which eliminates complications from background cellular activities, we now unambiguously define the enzymatic specificity of the entire gene family. TbSLS1 produces inositol phosphorylceramide, TbSLS2 produces ethanolamine phosphorylceramide, and TbSLS3 is bifunctional, like TbSLS4. These findings indicate that TbSLS1 is uniquely responsible for synthesis of inositol phosphorylceramide in insect stage parasites, in agreement with published expression array data (17). This approach also revealed that the Trypanosoma cruzi ortholog (TcSLS1) is a dedicated inositol phosphorylceramide synthase. The cell-free synthesis system allowed rapid optimization of the reaction conditions for these enzymes and site-specific mutagenesis to alter end product specificity. A single residue at position 252 (TbSLS1, Ser(252); TbSLS3, Phe(252)) strongly influences enzymatic specificity. We also have used this system to demonstrate that aureobasidin A, a potent inhibitor of fungal inositol phosphorylceramide synthases, does not significantly affect any of the TbSLS activities, consistent with the phylogenetic distance of these two clades of sphingolipid synthases. These results represent the first application of cell-free synthesis for the rapid preparation and functional annotation of integral membrane proteins and thus illustrate its utility in studying otherwise intractable enzyme systems. PMID:20457606

Sevova, Elitza S; Goren, Michael A; Schwartz, Kevin J; Hsu, Fong-Fu; Turk, John; Fox, Brian G; Bangs, James D

2010-07-01

295

Crosstalk between phosphodiesterase 7 and glycogen synthase kinase-3: two relevant therapeutic targets for neurological disorders.  

Science.gov (United States)

Chronic neuroinflammation has been increasingly recognized as a primary mechanism underlying acute brain injury and neurodegenerative diseases. Enhanced expression of diverse pro-inflammatory agents in glial cells has been shown to contribute to the cell death that takes place in these disorders. Previous data from our group have shown that different inhibitors of the cyclic adenosine monophosphate (cAMP) specific phosphodiesterase 7 (PDE7) and glycogen synthase kinase-3 (GSK-3) enzymes are potent anti-inflammatory agents in different models of brain injury. In this study, we investigated cross-talk between PDE7 and GSK-3, two relevant therapeutic targets for neurological disorders, using a chemical approach. To this end, we compared specific inhibitors of GSK-3 and PDE7 with dual inhibitors of both enzymes with regard to anti-inflammatory effects in primary cultures of glial cells treated with lipopolysaccharide. Our results show that the GSK-3 inhibitors act exclusively by inhibition of this enzyme. By contrast, PDE7 inhibitors exert their effects via inhibition of PDE7 to increase intracellular cAMP levels but also through indirect inhibition of GSK-3. Activation of protein kinase A by cAMP results in phosphorylation of Ser9 of GSK-3 and subsequent inhibition. Our results indicate that the indirect inhibition of GSK-3 by PDE7 inhibitors is an important mechanism that should be considered in the future development of pharmacological treatments. PMID:24437940

Morales-Garcia, Jose A; Palomo, Valle; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Martinez, Ana; Perez-Castillo, Ana

2014-03-19

296

Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design  

Energy Technology Data Exchange (ETDEWEB)

Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

2006-01-01

297

Regulatory properties of citrate synthase from Rickettsia prowazekii.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Citrate synthase [citrate (si)-synthase] (EC 4.1.3.7) was partially purified from extracts of highly purified typhus rickettsiae (Rickettsia prowazekii). Molecular exclusion and affinity column chromatography were used to prepare 200-fold-purified citrate synthase that contained no detectable malate dehydrogenase (EC 1.1.1.37) activity. Rickettsial malate dehydrogenase also was partially purified (200-fold) via this purification procedure. Catalytically active citrate synthase exhibited a rel...

Phibbs, P. V.; Winkler, H. H.

1982-01-01

298

Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how ...

Buzhynskyy, Nikolay; Sens, Pierre; Prima, Valerie; Sturgis, James N.; Scheuring, Simon

2007-01-01

299

Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.  

Science.gov (United States)

Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics. PMID:25275027

Scheit, Katrin; Bauer, Georg

2014-10-01

300

Gamma-irradiation and exogenous iron induce nitric oxide synthase synthesis in mouse liver in vivo  

International Nuclear Information System (INIS)

The inhibitor of protein biosynthesis, cyclocheximide (CHI) and the exogenous antioxidant, phenazan, attenuated the synthesis of nitric acid oxide (NO) in mouse liver in vivo induced by gamma-irradiation, bacterial lipopolysaccharide (LPS) or LPS+Fe2+-citrate treatment of experimental animals. The latter were formed as a result of NO binding to selective NO traps (DETC complexes with exogenous or endogenous FE2+ ions) and measured by the EPR method. A conclusion is drawn that the activation of NO biosynthesis under the action of gamma-irradiation, LPS or LPS+Fe2+-citrate treatment was due to the induction of NO synthase synthesis inhibited by CHI

 
 
 
 
301

A Protecting Group-Free Synthesis of Deazathiamine: A Step Toward Inhibitor Design  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deaza...

Zhao, Hong; Carvalho, Luiz Pedro S.; Nathan, Carl; Ouerfelli, Ouathek

2010-01-01

302

Purification of ATP synthase from beef heart mitochondria (F0F1) and co-reconstitution with monomeric bacteriorhodopsin into liposomes capable of light-driven ATP synthesis.  

Science.gov (United States)

ATP synthase was isolated from beef heart mitochondria by extraction with N,N-bis-(3-D-gluconamidopropyl)deoxycholamide or by traditional cholate extraction. The enzyme was purified subsequently by ion-exchange and gel-permeation chromatographies in the presence of glycerol and the protease inhibitor diisopropylfluorophosphate. The ATP synthase consisted of 12-14 subunits and contained three tightly bound nucleotides. The co-reconstitution of crude or purified ATP synthase with monomeric bacteriorhodopsin by the method of detergent incubation of liposomes yielded proteoliposomes capable of light-driven ATP synthesis, as detected with a luciferase system for at least 30 min. The reaction was suppressed by the inhibitors oligomycin (> 90%) and dicyclohexylcarbodiimide (85%) and by the uncoupler carbonylcyanide-p-trifluormethoxyphenylhydrazone (> 95%). The purified ATP synthase was apparently free of cytochrome impurities and of adenylate kinase activity, i.e. the enzyme exhibited light-driven ATP synthesis without the dark reaction. For the first time, this is demonstrated with purified ATP synthase from beef heart mitochondria. PMID:8269926

Deisinger, B; Nawroth, T; Zwicker, K; Matuschka, S; John, G; Zimmer, G; Freisleben, H J

1993-12-01

303

Cloning of parsley flavone synthase I.  

Science.gov (United States)

A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin. PMID:11524111

Martens, S; Forkmann, G; Matern, U; Lukacin, R

2001-09-01

304

Producing dicarboxylic acids using polyketide synthases  

Science.gov (United States)

The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-10-29

305

Globe fringerush (Fimbristylis miliacea) cross resistance to als-inhibitor herbicides under field conditions in irrigated rice in the south of Brazil / Resistência cruzada de herbicidas inibidores da als em cuminho (Fimbristylis miliacea) sob condições de campo em lavouras de arroz irrigado no sul do Brasil  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Herbicidas inibidores da ALS geralmente apresentam controle adequado de plantas daninhas em lavouras de arroz irrigado. Após anos consecutivos de uso, a espécie Cyperaceae cuminho (Fimbristylis miliacea) foi selecionada com resistência a herbicidas inibidores da ALS (acetolactato sintase). O cuminho [...] é uma das mais problemáticas plantas daninhas resistentes a herbicidas em arroz irrigado em Santa Catarina, Brasil. O objetivo desta pesquisa foi investigar a resistência cruzada aos inibidores da ALS em cuminho em condições de campo. Experimentos foram realizados em lavoura de arroz naturalmente infestada com cuminho resistente a ALS em Santa Catarina, nas safras 2008/09 e 2009/10. As unidades experimentais foram dispostas em delineamento de blocos casualizados, com cinco repetições consistindo de dois fatores (herbicida e dose) em arranjo fatorial 4 x 5. Os herbicidas inibidores da ALS foram bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-etyl e penoxsulam. Plantas de cuminho com seis folhas foram pulverizados com doses de herbicida equivalentes a 0, 0,5, 1, 2 e 4X as doses recomendadas, com volume de calda de 200 L ha?1. Número de colmos, grãos cheios e estéril, estatura de planta, massa seca da parte aérea e produtividade de grãos foram avaliados na cultura do arroz. O controle de cuminho foi avaliado aos 28 e 70 dias após a aplicação do herbicida (DAA) e a massa seca da parte aérea 13 semanas após a aplicação do herbicida. A competição com cuminho reduziu o número de colmos e a produtividade de grãos de arroz. A população de cuminho nessa lavoura, foi resistente a todos os herbicidas inibidores da ALS testados. Penoxsulam apresentou maior atividade entre os tratamentos aos 28 e 70 DAA, porém o nível de controle foi de apenas 50 e 42%, respectivamente, no segundo ano de avaliação, não sendo suficiente para evitar perda de produtividade da cultura. Herbicidas alternativos e estratégias de controle são necessários para evitar perdas na produtividade das lavouras de arroz com infestação de cuminho resistente a herbicidas inibidores da ALS. Abstract in english ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problemat [...] ic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses

C.E., Schaedler; J.A., Noldin; D.S., Eberhardt; D., Agostinetto; N.R., Burgos.

2013-12-01

306

Práticas de manejo e a resistência de Euphorbia heterophylla aos inibidores da ALS e tolerância ao glyphosate no Rio Grande do Sul / Management practices x Euphorbia heterophylla resistance to ALS-inhibitors and tolerance to glyphosate in Rio Grande do Sul  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese A utilização intensiva do glyphosate nas lavouras de soja Roundup Ready® (RR) no Rio Grande do Sul (RS), nos últimos anos, pode ter selecionado biótipos de leiteira (Euphorbia heterophylla) resistentes ao herbicida. Esse cenário dificultará ainda mais o manejo da espécie, já que permanecem indícios [...] da presença de biótipos resistentes também em herbicidas inibidores da acetolactato sintase (ALS). Assim, os objetivos deste trabalho foram avaliar a sensibilidade da leiteira a herbicidas inibidores da ALS e ao glyphosate, verificar a distribuição dos biótipos resistentes no RS e determinar os principais fatores agronômicos associados a falhas de controle. Para isso, amostras de sementes de plantas de leiteira foram coletadas em lavouras de soja RR localizadas em 56 municípios do Estado do RS. Por ocasião das coletas, os agricultores responderam a questionário que abordava o manejo das plantas daninhas na área. Usando-se as sementes coletadas, foram conduzidos dois experimentos em casa de vegetação: no primeiro, avaliou-se a resposta de 86 biótipos ao herbicida glyphosate, aplicado na dose de 2.160 g e.a. ha-1; e, no segundo, a resposta de 73 biótipos ao herbicida imazethapyr, aplicado na dose de 200 g i.a. ha-1. Os resultados obtidos evidenciam que todos os biótipos de leiteira avaliados são suscetíveis ao glyphosate, porém existem biótipos resistentes aos inibidores da ALS. As respostas do questionário indicam que práticas de manejo como uso de subdoses e/ou utilização intensiva do glyphosate e a ausência de rotação de culturas favorecem falhas no controle de leiteira pelo herbicida glyphosate em soja. Abstract in english The intensive use of glyphosate in Roundup Ready® (RR) soybean fields in Rio Grande do Sul (RS), in recent years may have selected wild poinsettia (Euphorbia heterophylla) biotypes resistant to the herbicide. This scenario will further complicate the management of this species, since evidence remain [...] s of the presence of herbicide resistant biotypes also in acetolactate synthase (ALS)-inhibitors. Thus, the objectives of this work were to evaluate wild poinsettia's sensitivity to the ALS-inhibiting herbicides and glyphosate; to investigate the distribution of resistant biotypes in the state of RS;and to determine the main agronomic factors associated with control failures. Seeds of wild poinsettia plants that survived glyphosate applications were collected from RR soybean fields located in 56 municipalities in the state of RS. On the occasion, the farmers were interviewed through a questionnaire aiming to collect information on the management of the area. Using the seeds collected, two experiments were conducted under greenhouse conditions. The first evaluated the response of 86 biotypes to glyphosate, applied at the rate of 2.160 g ha-1 while the second experiment evaluated the response of the herbicide imazethapyr to 73 biotypes, applied at a dose of 200 g a.i. ha?1. The results show that all the wild poinsettia biotypes evaluated are susceptible to glyphosate, but some are resistant to ALS-inhibitors. The survey responses indicate that management practices such as the use of sub doses and/or intensive use of glyphosate, as well as lack of crop rotation favor failures in wild poinsettia control by glyphosate in soybean.

L., Vargas; M.A., Nohatto; D., Agostinetto; M.A., Bianchi; J.M., Paula; E., Polidoro; R.E., Toledo.

2013-06-01

307

Competition effects with mixed stands of wheat and kochia (Kochia scoparia) biotypes resistant and susceptible to acetolactase synthase inhibitor herbicides / Efeitos competitivos da mistura de stands de trigo e biotipos de kochia (Kochia scoparia) resistentes e susceptíveis aos herbicidas inibidores da acetolactase sintase  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Experimentos foram instalados em condições de casa-de-vegetação com o objetivo de comparar a capacidade competitiva de biotipos resistentes e suscetíveis aos herbicidas inibidores da enzima acetolactase synthase da planta daninha kochia (Kochia scoparia L. Schard) comparada com trigo. Os resultados [...] de diversos experimentos, utilizando a metodologia chamada de substitutiva, indicaram que o trigo foi o competidor dominante, e em média uma planta de trigo reduziu o crescimento da planta de kochia resistente igual ao efeito de 4,8 plantas de kochia resistente ou 5,4 plantas de kochia suscetível. A competição chamada de intraespecífíca foi mais importante que a competição interespecífica para o trigo, porém o inverso foi verdadeiro para os biotípos resistentes e susceptíveis de kochia. Os resultados do índice de diferenciação ecológica indicaram que trigo e qualquer um dos dois biotípos de kochia estudados foram limitados apenas parcialmente pelos mesmos recursos de crescimento. No entanto, o crescimento dos biotípos resistentes e susceptíveis de kochia foram limitados pelos mesmos fatores de crescimento. Abstract in english Greenhouse experiments were conducted to compare the competitive ability of sulfonylurea resistant and susceptible kochia (Kochia scoparia L. Schard) compared to wheat. The results of several replacement series experiments indicate that wheat was the dominant competitor, and an average of one wheat [...] plant reduced resistant kochia yield per plant equal to the effect of 4.8 resistant kochia or 5.4 susceptible kochia plants. Intraspeciflc competition was more important than interspecific competition for wheat, whereas the reverse was true for the resistant and susceptible kochia. The results of the niche differentiation index (NDI) indicate that wheat and either resistant or susceptible kochia are only partly limited by the same resources. The resistant and susceptible kochia, however, are limited by the same resources.

P.J., Christoffoleti; P., Westra.

308

Competition effects with mixed stands of wheat and kochia (Kochia scoparia biotypes resistant and susceptible to acetolactase synthase inhibitor herbicides Efeitos competitivos da mistura de stands de trigo e biotipos de kochia (Kochia scoparia resistentes e susceptíveis aos herbicidas inibidores da acetolactase sintase  

Directory of Open Access Journals (Sweden)

Full Text Available Greenhouse experiments were conducted to compare the competitive ability of sulfonylurea resistant and susceptible kochia (Kochia scoparia L. Schard compared to wheat. The results of several replacement series experiments indicate that wheat was the dominant competitor, and an average of one wheat plant reduced resistant kochia yield per plant equal to the effect of 4.8 resistant kochia or 5.4 susceptible kochia plants. Intraspeciflc competition was more important than interspecific competition for wheat, whereas the reverse was true for the resistant and susceptible kochia. The results of the niche differentiation index (NDI indicate that wheat and either resistant or susceptible kochia are only partly limited by the same resources. The resistant and susceptible kochia, however, are limited by the same resources.Experimentos foram instalados em condições de casa-de-vegetação com o objetivo de comparar a capacidade competitiva de biotipos resistentes e suscetíveis aos herbicidas inibidores da enzima acetolactase synthase da planta daninha kochia (Kochia scoparia L. Schard comparada com trigo. Os resultados de diversos experimentos, utilizando a metodologia chamada de substitutiva, indicaram que o trigo foi o competidor dominante, e em média uma planta de trigo reduziu o crescimento da planta de kochia resistente igual ao efeito de 4,8 plantas de kochia resistente ou 5,4 plantas de kochia suscetível. A competição chamada de intraespecífíca foi mais importante que a competição interespecífica para o trigo, porém o inverso foi verdadeiro para os biotípos resistentes e susceptíveis de kochia. Os resultados do índice de diferenciação ecológica indicaram que trigo e qualquer um dos dois biotípos de kochia estudados foram limitados apenas parcialmente pelos mesmos recursos de crescimento. No entanto, o crescimento dos biotípos resistentes e susceptíveis de kochia foram limitados pelos mesmos fatores de crescimento.

P.J. Christoffoleti

1994-08-01

309

Inhibitors of thymine nucleotide biosynthesis: antimetabolites that provoke genetic change via primary non-DNA targets.  

Science.gov (United States)

Folate antagonists and direct-acting inhibitors of thymidylate synthase are potent genotoxic antimetabolites. These agents induce genetic change not by attacking DNA, but by interfering with the control of DNA precursor metabolism. This review surveys the genetic effects attributable to selected representatives of this class of antimetabolites. PMID:8781581

Kunz, B A

1996-08-17

310

Geranyl diphosphate synthase large subunit, and methods of use  

Science.gov (United States)

A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

Croteau, Rodney B. (Pullman, WA); Burke, Charles C. (Moscow, ID); Wildung, Mark R. (Colfax, WA)

2001-10-16

311

Truncation of human squalene synthase yields active, crystallizable protein.  

Science.gov (United States)

Squalene synthase catalyzes the first committed step in cholesterol biosynthesis and thus is important as a potential target for therapeutic intervention. In order to determine the important functional domains of the protein, the amino and carboxyl terminal regions thought to be involved in membrane association of the enzyme were removed genetically. The 30 N-terminal amino acids were deleted with no apparent effect on activity. Additional deletion of 81 or 97 amino acids from the C-terminus completely ablated activity. However, a protein with a C-terminal deletion of 47 amino acids retained full activity. The latter enzyme was readily overexpressed in Escherichia coli and purified to homogeneity. The pure, doubly truncated enzyme exhibited a specific activity similar to that reported for the protease-solubilized rat liver enzyme, had a KM for farnesyl diphosphate similar to that observed for native enzyme, and was inhibited by anionic compounds to the same degree as native enzyme. Using the vapor diffusion method, the protein was crystallized as an enzyme-inhibitor complex, yielding orthorhombic crystals which diffracted to 2.2 A. PMID:9473303

Thompson, J F; Danley, D E; Mazzalupo, S; Milos, P M; Lira, M E; Harwood, H J

1998-02-15

312

Fatty acid synthase as a novel target for meningioma therapy.  

Science.gov (United States)

High levels of fatty acid synthase (FAS) expression have been reported in hormone receptor-positive tumors, including prostate, breast, and ovarian cancers, and its inhibition reduces tumor growth in vitro and in vivo. Similar to other hormone receptor-positive tumor types, meningiomas are progesterone receptor- and estrogen receptor-immunoreactive brain tumors. To define the role of FAS in human meningioma growth control, we first analyzed the FAS expression using a tissue microarray containing 38 meningiomas and showed increased FAS expression in 70% of atypical WHO grade II and anaplastic WHO grade III meningiomas compared with 10% of benign WHO grade I tumors. We next confirmed this finding by real-time PCR and Western blotting. Second, we demonstrated that treatment with the FAS inhibitor, cerulenin (Cer), significantly decreased meningioma cell survival in vitro. Third, we showed that Cer treatment reduced FAS expression by modulating Akt phosphorylation (activation). Fourth, we demonstrated that Cer treatment of mice bearing meningioma xenografts resulted in significantly reduced tumor volumes associated with increased meningioma cell death. Collectively, our data suggest that the increased FAS expression in human meningiomas represents a novel therapeutic target for the treatment of unresectable or malignant meningioma. PMID:20511185

Haase, Daniela; Schmidl, Stefan; Ewald, Christian; Kalff, Rolf; Huebner, Christian; Firsching, Raimund; Keilhoff, Gerburg; Evert, Matthias; Paulus, Werner; Gutmann, David H; Lal, Anita; Mawrin, Christian

2010-08-01

313

Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin  

Energy Technology Data Exchange (ETDEWEB)

Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.

Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.; Barta, Michael L.; Geisbrecht, Brian V.; Miziorko, Henry M. (UMKC)

2012-07-25

314

[Advances in sesquiterpene synthases cyclases of Artemisia annua].  

Science.gov (United States)

Artemisinin,a new and a very potent antimalarial drug, is produced by the plant Artemisia annua L. with a very low yield ranging from 0.01% to 0.8% on a dry-weight basis. This makes artemisinin an expensive drug. Several studies reported chemical synthesis of the artemisinin, but none of them seems a viable economical alternative compared with the isolation of artemisinin from the plant. Hence, a higher artemisinin concentration in the plant is necessary for cheap antimalarial drug production. Many types of cyclic sesquiterpenes in Artemisia annua have been characterized to date, each derived from the common cyclic precursor FDP in a reaction catalyzed by a sesquiterpene synthase. Sesquiterpene synthases are widely regarded as the rate-determining regulatory enzymes in the pathways they participate, and a number of sesquiterpene synthases have been cloned from Artemisia annua up to now. This report is a brief review on the following sesquiterpene synthases: epi-cedrol synthase, amorpha-4,11-diene synthase, beta-caryophyllene synthase, (E)-beta-farnesene synthase, germacrene A synthase, as well as a new sesquiterpene synthase whose function remains largely unknown. The report is of help for a better understanding of metabolic engineering of Artemisia annua. PMID:18257222

Shen, Hai-Yan; Li, Zhen-Qiu; Wang, Hong; Ma, Lan-Qing; Liu, Ben-Ye; Yan, Fang; Li, Guo-Feng; Ye, He-Chun

2007-11-01

315

Nitric oxide synthase in the pineal gland  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

Lopez-figueroa, M. O.; Moller, M.

1996-01-01

316

Characterization of a Chitin Synthase Encoding Gene and Effect of Diflubenzuron in Soybean Aphid, Aphis Glycines  

Directory of Open Access Journals (Sweden)

Full Text Available Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR of chitin synthases. The quantitative real-time PCR (qPCR analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument; however, it had the highest expression in integument (~3.5 fold compared to gut. Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®, a chitin-synthesis inhibitor, on A. glycines' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression.

Raman Bansal, M. A. Rouf Mian, Omprakash Mittapalli, Andy P. Michel

2012-01-01

317

Oligosaccharide Binding in Escherichia coli Glycogen Synthase  

Energy Technology Data Exchange (ETDEWEB)

Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.; (MSU)

2010-11-17

318

Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis.  

Science.gov (United States)

Members of a large family of cellulose synthase-like genes (CSLs) are predicted to encode glycosyl transferases (GTs) involved in the biosynthesis of plant cell walls. The CSLA and CSLF families are known to contain mannan and glucan synthases, respectively, but the products of other CSLs are unknown. Here we report the effects of disrupting ATCSLD5 expression in Arabidopsis. Both stem and root growth were significantly reduced in ATCSLD5 knock-out plants, and these plants also had increased susceptibility to the cellulose synthase inhibitor isoxaben. Antibody and carbohydrate-binding module labelling indicated a reduction in the level of xylan in stems, and in vitro GT assays using microsomes from stems revealed that ATCSLD5 knock-out plants also had reduced xylan and homogalacturonan synthase activity. Expression in Nicotiana benthamiana of ATCSLD5 and ATCSLD3, fluorescently tagged at either the C- or the N-terminal, indicated that these GTs are likely to be localized in the Golgi apparatus. However, the position of the fluorescent tag affected the subcellular localization of both proteins. The work presented provides a comprehensive analysis of the effects of disrupting ATCSLD5 in planta, and the possible role(s) of this gene and other ATCSLDs in cell wall biosynthesis are discussed. PMID:17892446

Bernal, Adriana Jimena; Jensen, Jakob Krüger; Harholt, Jesper; Sørensen, Susanne; Moller, Isabel; Blaukopf, Claudia; Johansen, Bo; de Lotto, Robert; Pauly, Markus; Scheller, Henrik Vibe; Willats, William G T

2007-12-01

319

Marked Increase in Nitric Oxide Synthase mRNA in Rat Dorsal Root Ganglia after Peripheral Axotomy: In situ Hybridization and Functional Studies  

Science.gov (United States)

Using in situ hybridization, we studied nitric oxide (NO) synthase (EC 1.14.23.-) mRNA in lumbar dorsal root ganglia after peripheral transection of the sciatic nerve in rats. The effect of the NO synthase inhibitor N^?-nitro-L-arginine methyl ester on the nociceptive flexor reflex was also studied in axotomized rats. Nerve section induced a dramatic increase in number of NO synthase mRNA-positive cells in the ipsilateral dorsal root ganglia. In some of these cells the peptides galanin and/or vasoactive intestinal polypeptide and/or neuropeptide Y were also strongly up-regulated. Intravenous administration of nitro-L-arginine methyl ester blocked spinal hyperexcitability at much lower dosages in axotomized than in normal animals. The results suggest involvement of NO in the function of lumbar sensory neurons, especially after axotomy, perhaps preferentially at peripheral sites.

Verge, Valerie M. K.; Xu, Zhang; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna; Hokfelt, Tomas

1992-12-01

320

Cellulose synthase interacting protein: A new factor in cellulose synthesis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

Gu, Ying; Somerville, Chris

2010-01-01

 
 
 
 
321

Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same  

Energy Technology Data Exchange (ETDEWEB)

In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

Croteau, Rodney Bruce (Pullman, WA); Burke, Charles Cullen (Moscow, ID)

2008-06-24

322

The cellulose synthase superfamily in fully sequenced plants and algae  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results

Xu Ying; Huang Jinling; Yin Yanbin

2009-01-01

323

Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase.  

Science.gov (United States)

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the target for the sulfonylurea herbicides, which act as potent inhibitors of the enzyme. Chlorsulfuron (marketed as Glean) and sulfometuron methyl (marketed as Oust) are two commercially important members of this family of herbicides. Here we report crystal structures of yeast AHAS in complex with chlorsulfuron (at a resolution of 2.19 A), sulfometuron methyl (2.34 A), and two other sulfonylureas, metsulfuron methyl (2.29 A) and tribenuron methyl (2.58 A). The structures observed suggest why these inhibitors have different potencies and provide clues about the differential effects of mutations in the active site tunnel on various inhibitors. In all of the structures, the thiamin diphosphate cofactor is fragmented, possibly as the result of inhibitor binding. In addition to thiamin diphosphate, AHAS requires FAD for activity. Recently, it has been reported that reduction of FAD can occur as a minor side reaction due to reaction with the carbanion/enamine of the hydroxyethyl-ThDP intermediate that is formed midway through the catalytic cycle. Here we report that the isoalloxazine ring has a bent conformation that would account for its ability to accept electrons from the hydroxyethyl intermediate. Most sequence and mutation data suggest that yeast AHAS is a high-quality model for the plant enzyme. PMID:15709745

McCourt, Jennifer A; Pang, Siew Siew; Guddat, Luke W; Duggleby, Ronald G

2005-02-22

324

Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background We reported increased levels of Phosphatidyl Inositol synthase (PI synthase, (enzyme that catalyses phosphatidyl inositol (PI synthesis-implicated in intracellular signaling and regulation of cell growth in smokeless tobacco (ST exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC and premalignant lesions (leukoplakia, and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST exposure. Methods Tissue microarray (TMA Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Results Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000. Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005 and tobacco consumption (p = 0.03, OR = 9.0. Exposure of oral cell systems to smokeless tobacco (ST in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K and cyclin D1 levels. Conclusion Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco.

Srivastava Anurag

2010-04-01

325

Divinyl ether synthase gene and protein, and uses thereof  

Science.gov (United States)

The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

Howe, Gregg A. (East Lansing, MI); Itoh, Aya (Tsuruoka, JP)

2011-09-13

326

Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1?, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1?. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1?, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

Üçeyler Nurcan

2010-03-01

327

Acute nitric oxide synthase inhibition and endothelin-1-dependent arterial pressure elevation  

Directory of Open Access Journals (Sweden)

Full Text Available Key evidence that endogenous nitric oxide (NO inhibits the continuous, endothelin (ET-1-mediated drive to elevate arterial pressure includes demonstrations that ET-1 mediates a significant component of the pressure elevated by acute exposure to NO synthase (NOS inhibitors. This review examines the characteristics of this pressure elevation in order to elucidate potential mechanisms associated with the negative regulation of ET-1 by NO and, thereby, provide potential insight into the vascular pathophysiology underlying NO dysregulation. We surmise that the magnitude of the ET-1-dependent component of the NOS inhibitor-elevated pressure is 1 independent of underlying arterial pressure and other pressor pathways activated by the NOS inhibitors and 2 dependent on relatively higher NOS inhibitor dose, release of stored and de novo synthesized ET-1, and ETA receptor-mediated increased vascular resistance. Major implications of these conclusions include: 1 the marked variation of the ET-1-dependent component, i.e., from 0-100% of the pressure elevation, reflects the NO-ET-1 regulatory pathway. Thus, NOS inhibitor-mediated, ET-1-dependent pressure elevation in vascular pathophysiologies is an indicator of the level of compromised/enhanced function of this pathway; 2 NO is a more potent inhibitor of ET-1-mediated elevated arterial pressure than other pressor pathways, due in part to inhibition of intravascular pressure-independent release of ET-1. Thus, the ET-1-dependent component of pressure elevation in vascular pathophysiologies associated with NO dysregulation is of greater magnitude at higher levels of compromised NO.

RobertRapoport

2014-04-01

328

Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage  

International Nuclear Information System (INIS)

The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N?-nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N6-(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

329

Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid.  

Science.gov (United States)

An oxidosqualene cyclase cDNA, LcIMS1, was isolated from cultured cells of Luffa cylindrica Roem. by heterologous hybridization with cDNA of Glycyrrhiza glabra beta-amyrin synthase. Expression of LcIMS1 in yeast lacking endogenous oxidosqualene cyclase activity resulted in the accumulation of isomultiflorenol, a triterpene. This is consistent with LcIMS1 encoding isomultiflorenol synthase, an oxidosqualene cyclase involved in bryonolic acid biosynthesis in cultured Luffa cells. The deduced amino-acid sequence of LcIMS1 shows relatively low identity with other triterpene synthases, suggesting that isomultiflorenol synthase should be classified into a new group of triterpene synthases. The levels of isomultiflorenol synthase and cycloartenol synthase mRNAs, which were measured with gene-specific probes, correlated with the accumulation of bryonolic acid and phytosterols over a growth cycle of the Luffa cell cultures. Isomultiflorenol synthase mRNA was low during the early stages of cell growth and accumulated to relatively high levels in the late stages. Induction of this mRNA preceded accumulation of bryonolic acid. In contrast, cycloartenol synthase mRNA accumulated in the early stages of the culture cycle, whereas phytosterols accumulated at the same relative rate throughout the whole growth cycle. These results suggest independent regulation of these two genes and of the accumulation of bryonolic acid and phytosterols. PMID:11733028

Hayashi, H; Huang, P; Inoue, K; Hiraoka, N; Ikeshiro, Y; Yazaki, K; Tanaka, S; Kushiro, T; Shibuya, M; Ebizuka, Y

2001-12-01

330

A comparative evaluation of thromboxane receptor blockade, thromboxane synthase inhibition and both in animal models of arterial thrombosis.  

Science.gov (United States)

The combination of thromboxane (TX) synthase inhibition and prostaglandin (PG) H2/TXA2 receptor antagonism yields enhanced antithrombotic effects as compared with either intervention alone. However, it is not known whether the enhancing effect of TX synthase inhibition is expressed also in the presence of complete blockade of PGH2/TXA2 receptors. Thus we evaluated the antithrombotic effects of increasing doses of the PGH2/TXA2 receptor antagonist L 670596 alone and in combination with a dose of the TX synthase inhibitor FCE 22178 causing > 95% inhibition of platelet TXB2 production. In the dog model of electrically induced coronary thrombosis, occlusion time in control animals (n = 14) averaged 72 +/- 29 min. L 670596 alone dose-dependently antagonized platelet PGH2/TXA2 receptors and prolonged occlusion time. The addition of FCE 22178 displaced the dose-occlusion time relation of L 670596 in a parallel fashion without modifying receptor occupancy. In the rabbit model of copper coil-induced carotid artery thrombosis, occlusion was very rapid (14 +/- 4 min) in control animals (n = 17) and was not modified by either aspirin or FCE 22178. L 670596 caused a dose-related receptor blockade and prolongation of occlusion time. The association with FCE 22178 enhanced significantly the antithrombotic effect of L 670596 at all doses. We conclude that the full therapeutic potential of PGH2/TXA2 receptor antagonism is expressed at > 90% platelet receptor occupancy. The additive effect of TX synthase inhibition suggests that conversion of PGH2 to platelet-inhibitor and vasodilator prostaglandins might be of therapeutic importance, irrespective of the extent of PGH2/TXA2 receptor blockade. PMID:8169831

Salvati, P; Dho, L; Ukmar, G; Vaga, L; Rimoldi, O; Patrono, C

1994-04-01

331

Involvement of neuronal nitric oxide synthase in desensitisation of µ-opioid receptors in the rat locus coeruleus.  

Science.gov (United States)

Nitric oxide (NO) has been recently shown to enhance µ-opioid receptor (MOR) desensitisation in locus coeruleus (LC) neurons. The aim of this study was to evaluate by single-unit extracellular recordings in rat brain slices whether the neuronal NO synthase is involved in MOR desensitisation in LC neurons. As expected, a high concentration of the opioid agonist Met(5)-enkephalin (ME; 10 µM, 10 min) strongly desensitised the inhibition induced by a test application of ME (0.8 µM, 1 min), whereas lower ME concentrations (1 and 3 µM) only weakly desensitised it. The neuronal NO synthase inhibitors 7-nitroindazole (10-100 µM), S-methyl-L-thiocitrulline (0.01-10 µM) and N(?)-propyl-L-arginine (1-10 µM) attenuated ME (10 µM)-induced opioid desensitisation, although the endothelial NO synthase inhibitor N(5)-(1-iminoethyl)-L-ornithine (3-30 µM) failed to change it. The NO donor sodium nitroprusside (1 mM), but not its inactive analog potassium ferricyanide (1 mM), enhanced the ME (3 µM)-induced desensitisation and prevented the effect of S-methyl-L-thiocitrulline (10 µM). Sodium nitroprusside (1 mM) failed to change the desensitisation of ?2-adrenoceptors by noradrenaline (100 µM, 10 min). These results suggest the contribution of NO and a neuronal type of NO synthase in homologous MOR desensitisation in rat LC neurons. PMID:24961237

Santamarta, María T; Llorente, Javier; Mendiguren, Aitziber; Pineda, Joseba

2014-10-01

332

Primary structure of porcine heart citrate synthase.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The sequence of 437 amino acid residues of porcine heart citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO leads to acetyl-CoA), EC 4. 1. 3. 7] has been determined by the alignment of fragments generated by cleavage with cyanogen bromide and with trypsin. Isolation of the peptides was facilitated by recent developments in the high-performance liquid chromatography of peptide mixtures. The alignment of these peptides was consistent with that previously deduced from fragments derived ...

Bloxham, D. P.; Parmelee, D. C.; Kumar, S.; Wade, R. D.; Ericsson, L. H.; Neurath, H.; Walsh, K. A.; Titani, K.

1981-01-01

333

Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells  

International Nuclear Information System (INIS)

Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.

334

Thiol oxidation of mitochondrial FO-c subunits: a way to switch off antimicrobial drug targets of the mitochondrial ATP synthase.  

Science.gov (United States)

A primary goal in antimicrobial drug design is to find molecules which inhibit key proteins in bacteria without affecting mammalian homologues. To this aim, structural differences between eukaryotic and prokaryotic enzyme proteins involved in life processes are widely exploited. The membrane-bound enzyme complex ATP synthase synthesizes the energy currency molecule of the cell. Due to its bioenergetic role, it represents "the enzyme of life" of all living beings. The enzyme complex has the unique bi-functional property of exploiting either the electrochemical transmembrane gradient to make ATP or, conversely, the free energy of ATP hydrolysis to build an electrochemical gradient across the membrane. The catalytic mechanism of ATP synthesis/hydrolysis, based on the coupling between the two rotary sectors FO and F1 is shared by eukaryotes and prokaryotes. However slight structural differences distinguish prokaryotic ATP synthases, embedded in cell membrane, from eukaryotic ones localized in the mitochondrial inner membrane. In spite of its fundamental task in living organisms, up to now the ATP synthase has been poorly exploited as target in antibacterial therapy, mainly due to harmful effects on patients. Recent advances shoulder the use of drugs targeting the ATP synthase to fight mycobacteria and treat human tuberculosis. Macrolide antibiotics and other antimicrobial drugs specifically bind to the c-ring of the membrane-embedded FO domain, thus blocking ion translocation through FO which is essential for both ATP synthesis and ATP hydrolysis. Our findings show that, once bound to the ATP synthase, probably through different binding sites on a common binding region on FO, the macrolide antibiotics oligomycin, venturicidin and bafilomycin behave as enzyme inhibitors. Interestingly, the c subunits of mitochondrial ATP synthase contain conserved cysteine residues which are absent in bacteria. We pointed out that when these crucial cysteine thiols are oxidized, the common drug binding site of the enzyme is somehow destabilized, thus weakening the enzyme-drug interactions and making the ATP synthase insensitive to drug inhibition. On these bases we hypothesize that the selective oxidation of these cysteine thiols can be exploited to desensitize the mitochondrial ATP synthase to drugs which target FO and maintain their inhibitory potency on bacterial ATP synthases. According to our hypothesis, this strategy could represent an intriguing tool to prevent adverse effects of antimicrobial drugs in mammals, thus enhancing the number of natural and synthetic compounds which can be used in therapy. To this aim studies should be addressed to the identification and formulation of compounds and/or treatments able to selectively oxidize the crucial cysteine thiols of c-subunits without affecting the overall functionality of the mitochondrial ATP synthase and other thiol containing proteins. PMID:24932580

Nesci, S; Ventrella, V; Trombetti, F; Pirini, M; Pagliarani, A

2014-08-01

335

AcEST: DK959414 [AcEST  

Full Text Available TST39A01NGRL0004_K01 672 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0004_K01. 5' end seq ... |ILVI_BUCBP Acetolactate synthase large subunit OS=Buch ... 87 8e-17 sp|P57321|ILVI_BUCAI Acetolactate synt ... hase large subunit OS=Buch ... 84 5e-16 sp|O85293|ILVI_BUCAP Acetolactate synt ... hase large subunit OS=Buch ... 84 9e-16 sp|Q04789|ILVX_BACSU Acetolactate synt ... |ILVI_BUCSC Acetolactate synthase large subunit OS=Buch ... 78 5e-14 sp|P00893|ILVI_ECOLI Acetolactate synt ...

336

ATP synthases from archaea: the beauty of a molecular motor.  

Science.gov (United States)

Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed. PMID:24650628

Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

2014-06-01

337

Localization of nitric oxide synthase in human skeletal muscle  

DEFF Research Database (Denmark)

The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed in the sarcolemma as well as the cytoplasm of type I muscle fibres. NADPH diaphorase activity confirmed a higher level of NO synthase activity in the sarcolemma as well as the cytoplasm of type I muscle fibers. Histochemical staining for cytochrome oxidase showed a staining pattern similar to that observed for type I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different cellular compartments and suggest that NO may have specific actions in relation to its site of production. The localization of type I NO synthase in the vicinity of mitochondria supports a specific action of NO on mitochondrial respiration, whereas the localization of type III NO synthase in vascular endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle.

Frandsen, Ulrik; Lopez-Figueroa, M.

1996-01-01

338

Loss of LRPPRC causes ATP synthase deficiency.  

Science.gov (United States)

Defects of the oxidative phosphorylation system, in particular of cytochrome-c oxidase (COX, respiratory chain complex IV), are common causes of Leigh syndrome (LS), which is a rare neurodegenerative disorder with severe progressive neurological symptoms that usually present during infancy or early childhood. The COX-deficient form of LS is commonly caused by mutations in genes encoding COX assembly factors, e.g. SURF1, SCO1, SCO2 or COX10. However, other mutations affecting genes that encode proteins not directly involved in COX assembly can also cause LS. The leucine-rich pentatricopeptide repeat containing protein (LRPPRC) regulates mRNA stability, polyadenylation and coordinates mitochondrial translation. In humans, mutations in Lrpprc cause the French Canadian type of LS. Despite the finding that LRPPRC deficiency affects the stability of most mitochondrial mRNAs, its pathophysiological effect has mainly been attributed to COX deficiency. Surprisingly, we show here that the impaired mitochondrial respiration and reduced ATP production observed in Lrpprc conditional knockout mouse hearts is caused by an ATP synthase deficiency. Furthermore, the appearance of inactive subassembled ATP synthase complexes causes hyperpolarization and increases mitochondrial reactive oxygen species production. Our findings shed important new light on the bioenergetic consequences of the loss of LRPPRC in cardiac mitochondria. PMID:24399447

Mourier, Arnaud; Ruzzenente, Benedetta; Brandt, Tobias; Kühlbrandt, Werner; Larsson, Nils-Göran

2014-05-15

339

STRUCTURAL ANALYSIS AND MOLECULAR DYNAMICS STUDY OF PHB SYNTHASE  

Directory of Open Access Journals (Sweden)

Full Text Available Polyhydroxybutyrate (PHB is a polyhydroxyalkanoate (PHA, a polymer belonging to polyesters class and is composed of hydroxy fatty acids. PHB is produced by microorganisms apparently in response to conditions of physiological stress. PHB synthases are the key enzymes of PHB biosynthesis. The PHB synthases obtained from Chromobacterium violaceum, belongs to the class I PHA synthases. Due to the limited structural information of PHB synthase, its functional properties including catalysis are unknown. Therefore, this study seeks to investigate the structural and functional properties of PHB synthase (phaC by predicting its three dimensional structure using bioinformatics methods. Present 15 ns molecular dynamics study provides an overall insight about some of the parameters such as energy, RMSD (Root Mean Square Deviation, SASA (Solvent Accessible Surface Area, hydrogen bonds, etc., Protein-protein docking reveals the binding mode of the protein in the active dimer state.

T. Femlin Blessia

2012-02-01

340

Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Phosphoinositide 3-kinase (PI3K) negatively regulates Toll-like receptor (TLR)–mediated interleukin-12 (IL-12) expression in dendritic cells (DCs). We show here that 2 signaling pathways downstream of PI3K, mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3 (GSK3), differentially regulate the expression of IL-12 in lipopolysaccharide (LPS)–stimulated DCs. Rapamycin, an inhibitor of mTOR, enhanced IL-12 production in LPS-stimulated DCs, whereas the activation of mTOR by le...

Ohtani, Masashi; Nagai, Shigenori; Kondo, Shuhei; Mizuno, Shinta; Nakamura, Kozue; Tanabe, Masanobu; Takeuchi, Tsutomu; Matsuda, Satoshi; Koyasu, Shigeo

2008-01-01

 
 
 
 
341

Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells.  

Science.gov (United States)

Endoplasmic reticulum (ER) stress, often resulting from cellular accumulation of misfolded proteins, occurs in many neurodegenerative disorders, in part because of the relatively long lifetime of neurons. Excessive accumulation of misfolded proteins activates the unfolded protein response (UPR) that dampens protein synthesis and promotes removal of misfolded proteins to support survival of ER-stressed cells. However, the UPR also initiates apoptotic signaling to kill cells if recovery is not achieved. Thus, there is much interest in identifying determinants of the life-death switch and interventions that promote recovery and survival. One intervention that has consistently been shown to protect cells from ER stress-induced apoptosis is application of inhibitors of glycogen synthase kinase-3 (GSK3). Therefore, we examined where in the UPR pathway GSK3 inhibitors intercede to impede signaling towards apoptosis. Apoptosis following UPR activation can be mediated by activation of two transcription factors, ATF4 and ATF6, that activate expression of the death-inducing transcription factor C/EBP homologous protein (CHOP/GADD153) following ER stress. We found that ER stress activated ATF6 and ATF4, but these responses were not inhibited by pretreatment with GSK3 inhibitors. However, inhibition of GSK3 effectively reduced the expression of CHOP, and this was apparent in several types of neural-related cells and was evident after application of several structurally diverse GSK3 inhibitors. Therefore, reduction of CHOP activation provides one mechanism by which inhibitors of GSK3 are capable of shifting cell fate towards survival instead of apoptosis following ER stress. PMID:21356208

Meares, Gordon P; Mines, Marjelo A; Beurel, Eléonore; Eom, Tae-Yeon; Song, Ling; Zmijewska, Anna A; Jope, Richard S

2011-07-01

342

Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation  

International Nuclear Information System (INIS)

Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with [?-32P]ATP. Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25 degrees C before assay. The spontaneous inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg2+ and was relatively insensitive to Ca2+ and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with [32P]Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25 C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate

343

Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis.  

Science.gov (United States)

Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 ? resolution unveils a ?/? hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a ?/? fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude ?-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates. PMID:22589546

Liew, Chong Wai; Nilsson, Martina; Chen, Ming Wei; Sun, Huihua; Cornvik, Tobias; Liang, Zhao-Xun; Lescar, Julien

2012-06-29

344

Para-Aminobenzoic Acid (PABA) Synthase Enhances Thermotolerance of Mushroom Agaricus bisporus  

Science.gov (United States)

Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom’s innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA) synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase) under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins. PMID:24614118

Lu, Zhonglei; Kong, Xiangxiang; Lu, Zhaoming; Xiao, Meixiang; Chen, Meiyuan; Zhu, Liang; Shen, Yuemao; Hu, Xiangyang; Song, Siyang

2014-01-01

345

Biosynthetic potential of sesquiterpene synthases: Alternative products of tobacco 5-epi-aristolochene synthase  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Nicotiana tabacum (tobacco) 5-epi-aristolochene synthase (TEAS) serves as an useful model for understanding the enzyme mechanisms of sesquiterpene biosynthesis. Despite extensive bio-chemical and structural characterization of TEAS, a more detailed analysis of the reaction product spectrum is lacking. This study reports the discovery and quantification of several alternative sesquiterpene products generated by recombinant TEAS in the single-vial GC–MS assay. The combined use of chiral and n...

O’maille, Paul E.; Chappell, Joe; Noel, Joseph P.

2006-01-01

346

Nitric oxide in sepsis-syndrome: potential treatment of septic shock by nitric oxide synthase antagonists.  

Science.gov (United States)

Nitric oxide (NO) is an effector molecule with multiple effects on various organ systems. The most prominent physiological actions of NO as a biological mediator include cGMP-dependent vasodilation and cytotoxicity against pathogens in the unspecific immune defense. Sepsis syndrome is a complex disease entity mostly caused by overwhelming bacterial infections. It has a high mortality rate of 40 to 60%. Catecholamine-resistant hypotension and myocardial depression are regarded as major factors contributing to death in septic patients. In septic shock, a pathophysiologically increased NO production occurs due to an excessive induction of the inducible NO synthase (iNOS). Inducible nitric oxide synthase up-regulation is probably caused by bacterial endo- and exotoxins as well as by an increase of circulating pro-inflammatory cytokines. It may be a key factor leading to pronounced vasodilation and myocardial toxicity. Experimental studies have confirmed that NO overproduction causes severe hypotension in septic animals. Treatment with competitive NOS-inhibitors abolishes this hypotension in animals as well as in septic patients. However, their use is complicated by concomitant decreases in cardiac index and oxygen delivery. Conclusive data on mortality in animals and patients with sepsis-syndrome treated by NOS antagonists are not available. This article discusses current concepts concerning the L-arginine/NO system in the pathophysiology of and as a potential therapeutic target in septic shock. PMID:9475485

Ketteler, M; Cetto, C; Kirdorf, M; Jeschke, G S; Schäfer, J H; Distler, A

1998-02-01

347

Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats  

Directory of Open Access Journals (Sweden)

Full Text Available Backgrounds: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by N?-nitro-L-arginine methyl ester (L-NAME. Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days. Results: There were the increase (PPP Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress. Keywords: Catalase, L-NAME, Malondialdehyde, Oxidative stress, Propolis, Rat

Oguz Cakir

2013-06-01

348

Characterisation of the tryptophan synthase alpha subunit in maize  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase ???? heterotetramer. Plants have evolved multiple ? (TSA and ? (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase ?-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the ?-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native ?-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as ?-subunit in this complex.

Gierl Alfons

2008-04-01

349

CTP synthase forms cytoophidia in the cytoplasm and nucleus.  

Science.gov (United States)

CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. PMID:24503052

Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

2014-04-15

350

Nitric oxide synthase gene G298 allele  

International Nuclear Information System (INIS)

Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G298 allele was higher in the hy298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant gene showed a significant increase in isolated HPN and in patients with CAD

351

Inhibitors of histone demethylases  

DEFF Research Database (Denmark)

Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the inhibitors are either previously reported inhibitors of related enzymes or compounds derived from these. Development in terms of selectivity and potency is still pertinent. Several reports on the development of functional assays have been published.

Lohse, Brian; Kristensen, Jesper L

2011-01-01

352

Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase.  

Science.gov (United States)

Fatty acid synthase (FAS) is highly expressed in many kinds of human cancers, including liver cancer. Curcumin is the major active ingredient of Curcuma longa and has long been used to treat a variety of maladies. In the present study, we investigated the potential use of curcumin as a kind of FAS inhibitor for chemoprevention of liver cancer. Curcumin induced HepG2 cell apoptosis with the IC50 value of 8.84 ?g/ml. It inhibited intracellular FAS activity, and downregulated expression and mRNA level of FAS in a dose-dependent manner. In addition, sodium palmitate could rescue cell apoptosis induced by curcumin. Further studies reviewed that siRNA of FAS showed similar results as curcumin. These findings suggested that curcumin might be useful for preventing or treating liver cancer. PMID:23821378

Fan, Huijin; Tian, Weixi; Ma, Xiaofeng

2014-09-01

353

Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase  

Science.gov (United States)

Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

2012-09-01

354

Exogenous iron and ?-irradiation induce NO-synthase synthesis in mouse liver  

International Nuclear Information System (INIS)

Protein synthesis inhibitor (cycloheximide, CHI) and exogenous antioxidant (phenazan) suppress the synthesis of NO in mouse liver in vivo which is induced by administration to the animals of ?-irradiation, bacterial lipopolysaccharide (LPS), or Fe2+-citrate together with LPS. Biosynthesis of NO was monitored by the ESR signal of paramagnetic mononitrosyl iron complexes with the exogenous ligand diethyldithiocarbamate (MNIC-DETC) 30 min after addition of the ligand. The complexes arise from NO binding to DETC complexes with exogenous and endogenous Fe2+, which act as selective NO traps. The enhancement of NO biosynthesis after ?-irradiation or LPS or LPS + Fe2+-citrate is apparently due to the induction of the synthesis of NO-synthase, which is inhibited by cycloheximide. This process is triggered by reactive oxygen species, presumably through the activation of the transcription factor protein NFkB. The accumulation of free radical oxygen species is inhibited by the antioxidant phenazan

355

Pseudoguaianolides isolated from Inula britannica var. chinenis as inhibitory constituents against inducible nitric oxide synthase.  

Science.gov (United States)

Three pseudoguaianolide type sesquiterpenes, bigelovin (1), 2,3-dihydroaromaticin (2), and ergolide (3) were isolated as inhibitory constituents against inducible nitric oxide synthase (iNOS) from the flowers of Inula britannica var. chinensis. Bigelovin (1) exhibited a highly potent inhibitory activity on lipopolysaccharide (LPS)-induced iNOS in murine macrophage RAW 264.7 cells with an IC50 value of 0.46 mM, which is about 8 times more potent than the known selective inhibitor of iNOS, L-N6-(1-iminoethyl)lysine (IC50 3.49 microM). 2,3-Dihydroaromaticin (2) and ergolide (3) also exhibited potent inhibitory activities on LPS-induced iNOS with IC50 values of 1.05 and 0.69 microM, respectively. PMID:12009027

Lee, Hyun-Tai; Yang, Seung-Won; Kim, Kyeong Ho; Seo, Eun-Kyoung; Mar, Woongchon

2002-04-01

356

Famotidine inhibits glycogen synthase kinase-3?: an investigation by docking simulation and experimental validation.  

Science.gov (United States)

Famotidine was investigated as an inhibitor of glycogen synthase kinase-3? (GSK-3?) in an attempt to explain the molecular mechanism of its hypoglycemic side effects. The investigation included simulated docking experiments, in vitro enzyme inhibition assay, glycogen sparing studies using animal models and single dose oral glucose tolerance test (OGTT). Docking studies showed how famotidine is optimally fit within the binding pocket of GSK-3? via numerous attractive interactions with some specific amino acids. Experimentally, famotidine could inhibit GSK-3? (IC?? = 1.44 ?M) and increased significantly liver glycogen spares in fasting animal models. Moreover, a single oral dose of famotidine was shown to decrease the glycemic response curve after 75 g OGTT. PMID:22512725

Mohammad, Mohammad; Al-Masri, Ihab M; Issa, Ala; Al-Ghussein, Mohamed A S; Fararjeh, Mohammad; Alkhatib, Hatim; Taha, Mutasem O; Bustanji, Yasser

2013-08-01

357

HTRF-based assay for microsomal prostaglandin E2 synthase-1 activity.  

Science.gov (United States)

Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E2 (PGE2) from the endoperoxide prostaglandin H2 (PGH2). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH2 substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE2 produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition. PMID:18626113

Goedken, Eric R; Gagnon, Andrew I; Overmeyer, Gary T; Liu, Junjian; Petrillo, Richard A; Burchat, Andrew F; Tomlinson, Medha J

2008-08-01

358

Crystallization and preliminary neutron diffraction experiment of human farnesyl pyrophosphate synthase complexed with risedronate.  

Science.gov (United States)

Nitrogen-containing bisphosphonates (N-BPs), such as risedronate and zoledronate, are currently used as a clinical drug for bone-resorption diseases and are potent inhibitors of farnesyl pyrophosphate synthase (FPPS). X-ray crystallographic analyses of FPPS with N-BPs have revealed that N-BPs bind to FPPS with three magnesium ions and several water molecules. To understand the structural characteristics of N-BPs bound to FPPS, including H atoms and hydration by water, neutron diffraction studies were initiated using BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ). FPPS-risedronate complex crystals of approximate dimensions 2.8 × 2.5 × 1.5?mm (?3.5?mm(3)) were obtained by repeated macro-seeding. Monochromatic neutron diffraction data were collected to 2.4?Å resolution with 98.4% overall completeness. Here, the first successful neutron data collection from FPPS in complex with N-BPs is reported. PMID:24699741

Yokoyama, Takeshi; Ostermann, Andreas; Mizuguchi, Mineyuki; Niimura, Nobuo; Schrader, Tobias E; Tanaka, Ichiro

2014-04-01

359

Dynamic modeling of human 5-lipoxygenase-inhibitor interactions helps to discover novel inhibitors.  

Science.gov (United States)

Human 5-lipoxygenase (5-LOX) is one of the key anti-inflammatory drug targets due to its key role in leukotrienes biosynthesis. We have built a model for the active conformation of human 5-LOX using comparative modeling, docking of known inhibitors, and molecular dynamics simulation. Using this model, novel 5-LOX inhibitors were identified by virtual screen. Of the 105 compounds tested in a cell-free assay, 30 have IC(50) values less than 100 ?M and 11 less than 10 ?M with the strongest inhibition of 620 nM. Compounds 4, 7, and 11 showed strong inhibition activity in the human whole blood (HWB) assay with IC(50) values of 8.6, 9.7, 8.1 ?M, respectively. Moreover, compounds 4 and 7 were also found to inhibit microsomal prostaglandin E synthase (mPGES)-1 with micromolar IC(50) values, similar to licofelone, a dual functional inhibitor of 5-LOX/mPGES-1. The compounds reported here provide new scaffolds for anti-inflammatory drug design. PMID:22380511

Wu, Yiran; He, Chong; Gao, Yang; He, Shan; Liu, Ying; Lai, Luhua

2012-03-22

360

Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution  

International Nuclear Information System (INIS)

The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

 
 
 
 
361

Nutritional and hormonal regulation of fatty acid synthase.  

Science.gov (United States)

Fasting causes a decrease in the rate of synthesis of fatty acid synthase, the central enzyme in fatty acid synthesis, while refeeding carbohydrate increases synthesis. Insulin also increases the synthesis of fatty acid synthase, while glucagon causes a decline. The mechanism was shown to be transcriptional activation-mediated through a 2.1-kb stretch of the 5'-flanking sequence of the fatty acid synthase gene promoter that contains an insulin response element. These effects were confirmed by in vivo experiments with transgenic mice. PMID:8710241

Wolf, G

1996-04-01

362

Monitoring the rotary motors of single F °F I-ATP synthase by synchronized multi channel TCSPC  

Science.gov (United States)

Confocal time resolved single-molecule spectroscopy using pulsed laser excitation and synchronized multi channel time correlated single photon counting (TCSPC) provides detailed information about the conformational changes of a biological motor in real time. We studied the formation of adenosine triphosphate, ATP, from ADP and phosphate by F °F I-ATP synthase. The reaction is performed by a stepwise internal rotation of subunits of the lipid membrane-embedded enzyme. Using Förster-type fluorescence resonance