WorldWideScience

Sample records for acetobacter

  1. Structure of cellulose acetobacter xylinum

    The data are presented on optimization of cellulose synthesis by Acetobacter xylinum (strain VKM V-880) and the structural characteristics of A. xylinum cellulose gel film synthesized during static cultivation. The structural changes caused by the removal of water from gel films are established and the structural organization of macromolecular chains in cellulose A. xylinum is studied

  2. Cellulose biosynthesis in Acetobacter xylinum

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-β-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 ± 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-[3H] glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I

  3. Oxidation of Metabolites Highlights the Microbial Interactions and Role of Acetobacter pasteurianus during Cocoa Bean Fermentation

    Moens, Frédéric; Lefeber, Timothy; De Vuyst, Luc

    2014-01-01

    Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus ...

  4. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the co...

  5. Oxidation of long-chain alkanes by Acetobacter rancens

    The degradation of hexadecane and tetradecane by Acetobacter rancens CCM 1774 was investigated. It was found that this strain is able to grow to a limited extent on hexadecane as a carbon source. The occurrence of n-alkanoic acids and alcohols among the reaction products of growing as well as resting cells indicates a monoterminal degradation of long-chain alkanes. Both alkane-grown and glucose-grown resting cells exhibited alkane oxidizing activities which were not influenced by chloramphenicol. This suggested a constitutive nature of the appropriate enzymes. (orig.)

  6. Role of Plasmid in Production of Acetobacter Xylinum Biofilms

    Abbas Rezaee

    2005-01-01

    Full Text Available Acetobacter xylinum has the ability to produce cellulotic biofilms. Bacterial cellulose is expected to be used in many industrial or biomedical materials for its unique characteristics. A. xylinum contains a complex system of plasmid DNA molecules. A 44 kilobases (kb plasmid was isolated in wild type of A. xylinum. To improve the cellulose producing ability of A. xylinum, role of the plasmid in production of cellulose was studied. The comparisons between wild type and cured cells of A. xylinum showed that there is considerably difference in cellulose production. In order to study the relationship between plasmid and the rate of cellulose production, bacteria were screened for plasmid profile by a modified method for preparation of plasmid. This method yields high levels of pure plasmid DNA that can be used for common molecular techniques, such as digestion and transformation, with high efficiency.

  7. Acetobacter aceti fast identification by Real Time PCR in spoiled wine samples

    Attila Kántor

    2014-11-01

    Full Text Available Wine is a beverage that made from grape berries. However, without beneficial bacteria, we would not produce good wine. But very often wines contain acetic acid bacteria, which are undesirable in winemaking process. Acetic acid bacteria as known as a vinegar bacteria are Gram-negative, aerobic, rod-shaped and ubiquitous bacteria. This study was focused on species of acetic acid bacteria, specifically Acetobacter aceti that make spoilage in wine.The aim of our study was the identification of Acetobacter aceti in spoiled red wine samples, with plate dilution method on agar plates and using sensitive Real-time PCR (qPCR method. We cultivated Acetobacter aceti on GYC agar at 30°C, 48h. The one of main objective in the present work was the test fast, sensitive and reliable technique such as quantitative Real-time PCR and detecting the presence of Acetobacter aceti in wine samples with positive Acetobacteraceti control on amplification plot and melting curve. The next objective before  qPCR analysis was DNA extraction from wine samples incubated for one week at 28°C aerobically. We used five different red wine samples for this experiment: Alibernet 2013, Blaufränkisch 2013, Cabernet Sauvignon 2013, Dunaj 2012 and Saint-Laurent 2012. Next we extracted DNA from wine samples and from pure Acetobacter aceti CCM 3620T strain purchased from Czech collection of microorganisms in Brno. Susceptibility ofAcetobacter aceti was varied in different isolates from 102 to 107 CFU.mL-1. The number of Acetobacter cells on GYC medium ranged from 4.05 to 4.83log CFU.mL-1 in differentwine samples.The higher number of Acetobacter cells (4.83 log CFU.mL-1 was found in Cabernet Sauvignon 2013 wine.

  8. Inkorporasi Asam Askorbat pada Pembentukan Selulosa Bakteri Dengan Menggunakan Acetobacter xylinum

    Yusak, Yuniarti

    2012-01-01

    Incorporation of ascorbic acid at forming bacterial cellulose by using Acetobacter xylinum. Coconut water as a substance, use for making bacterial cellulose thrugh phosphate pentose pathway with juice Acetobacter xylinum bacteria and it was used for making starter. And starter of coconut water used to synthesize bacterial cellulose . Making of bacterial cellulose by ascorbic acid various 0, 0,5, 1,0 ,1,5 and 2,0 gram from cellulose for fourteen days. The product was pr...

  9. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    France, Danielle Cook

    2016-07-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  10. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach.

    Illeghems, Koen; Pelicaen, Rudy; De Vuyst, Luc; Weckx, Stefan

    2016-09-01

    Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems. PMID:27217361

  11. Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene.

    Brede, G; Fjaervik, E; Valla, S

    1991-01-01

    The nucleotide sequence of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene was determined; this is the first procaryotic uridine diphosphoglucose pyrophosphorylase gene sequence reported. The sequence data indicated that the gene product consists of 284 amino acids. This finding was consistent with the results obtained by expression analysis in vivo and in vitro in Escherichia coli.

  12. Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar.

    Sainz, Florencia; Mas, Albert; Torija, María Jesús

    2016-01-01

    The present article reports the draft genome sequence of the strain Acetobacter malorum CECT 7742, an acetic acid bacterium isolated from strawberry vinegar. This species is characterized by the production of d-gluconic acid from d-glucose, which it further metabolizes to keto-d-gluconic acids. PMID:27340078

  13. Transformation of microorganisms with the plasmid vector with the replicon from pAC1 from Acetobacter pasteurianus.

    Grones, J; Turna, J

    1995-01-26

    A number of gram-negative and gram-positive bacteria species was screened for the expression of the gram-negative plasmid pACK5 and pACT72 with replicon of pAC1 plasmid from Acetobacter pasteurianus. As was described previously, both plasmids were expressed in Escherichia coli, Acetobacter pasteurianus, Acetobacter aceti, Shigella spp. and Citrobacter spp. Expressions of plasmids were successful in twelve species tested, Comamonas terrigena, Salmonella typhimurium, Serratia marcescens, Bacillus cereus, Bacillus megatericum, Bacillus subtilis, Lactobacillus helveticus, Micrococcus luteus, Sarcina lutea, Staphylococcus aureus, Staphylococcus epidermidis, Streptoccocus feacalis, and the stability of plasmid DNA was tested after cultivation in non-selective conditions. PMID:7832808

  14. Effect of tungsten concentration on growth of acetobacter xylinum as a promising agent for eco-friendly recycling system

    Nandiyanto, A. B. D.; Halimatul, H. S.; Rosyid, N. H.; Effendi, D. B.

    2016-04-01

    Effect of tungsten (W) concentration on Acetobacter xylinum growth was studied. In the experimental procedure, concentration of W in the bacterial growth medium containing pineapple peels waste was varied from 0.5 to 50 ppm. To confirm the influence of W, the bacterial incubation process was carried out for 72 hours. Spectrophotometer analysis showed that the growth rate of Acetobacter xylinum decreased with increasing concentration of W. The result from fourier transform infra red analysis showed a slightly change on the absorption peak intensities and informing the interaction of W ion and bacteria cell. The result confirmed that Acetobacter xylinum was able to uptake W concentration up to 15 ppm, indicating that Acetobacter xylinum might act as a promising agent for eco-friendly recycling system.

  15. Pengaruh Penambahan Amonium Sulfat dan Sukrosa pada Media Air Kelapa Terhadap Produksi dan Karakteristik Fisik Selulosa Mikrobial Acetobacter xylinum

    Debataraja, Chandra Oktavianus

    2016-01-01

    Acetobacter xylinum is a bacterium that produces microbial cellulose which has been commonly used in several industries factory such as food industry, paper, electronics, pharmacy, and biomedical. Study about the effects of ammonium sulphate and sucrose addition into coconut water media on the production and physical characteristics of microbial cellulose by Acetobacter xylinum has been conducted. Ammonium sulphate were 0, 0.5, 1 and 1.5 % which were combined with 0, 2, 4, 6...

  16. Biosintesis Vitamin C Dari Substrat D-Sorbitol Oleh Acetobacter Xylinum Dengan Metode Fermentasi Sistem Batch Culture Teraduk Kontinu

    Engellina

    2015-01-01

    The research of biosynthesis vitamin C from D-sorbitol substrate by Acetobacter xylinum with fermentation method of batch culture continuous mixing system is done. In this research, I used D-sorbitol as substrate and food supply for Acetobacter xylinum. The determination quantity of vitamin C using Polarimetri method, Iodometri Titration, Spectrophotometri UV-Visible and for accounting quantity of bacteria using Plate Count method. By using Polarimetri method ; Iodometri Titration and Spectro...

  17. Removal of Mercury from chlor-alkali Industry Wastewater using Acetobacter xylinum Cellulose

    A. Rezaee

    2005-01-01

    Full Text Available In this study, the removal of mercury ions by cellulose of Acetobacter xylinum was investigated in the synthetic and chlor-alkali wastewater. Biofilms of Acetobacter xylinum were grown in laboratory column bioreactors. The biofilms were continuously treated with sterile synthetic model wastewater or nonsterile, neutralized chloralkali wastewater.The extent of adsorption was studied as function of pH, adsorbent dose and contact time. Efficiency of mercury ion removal from chlor-alkali industry wastewater by aluminum sulfate and ferric chloride was also determined. Under acidic condition the adsorption of mercury by cellulose was quite low and increasing processing time more than 10min has no remarkably effect on the adsorption rate. Adsorption capacity of cellulose under dynamic condition for chlor-alkali wastewater was 65mg/µg which was less than the value (80mg/µg that obtained from batch adsorption experiments for synthetic wastewater.

  18. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, "Caspian Sea yogurt".

    Kiryu, Takaaki; Yamauchi, Kouhei; Masuyama, Araki; Ooe, Kenichi; Kimura, Takashi; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2012-01-01

    We have reported that lactobionic acid is produced from lactose by Acetobacter orientalis in traditional Caucasian fermented milk. To maximize the application of lactobionic acid, we investigated favorable conditions for the preparation of resting A. orientalis cells and lactose oxidation. The resting cells, prepared under the most favorable conditions, effectively oxidized 2-10% lactose at 97.2 to 99.7 mol % yield. PMID:22313756

  19. APPLICATION OF RT-PCR FOR ACETOBACTER SPECIES DETECTION IN RED WINE

    Attila Kántor

    2014-02-01

    Full Text Available Acetic acid bacteria play a negative role in wine making because they increase the volatile acidity of wines. They can survive in the various phases of alcoholic fermentation and it is very important to control their presence and ulterior development. The main objective of the present work is to test fast, sensitive and reliable technique such as real-time PCR (rt-PCR and detecting the presence of Acetobacter aceti, Acetobacter pasteurianus, Gluconobacter oxydans, Gluconacetobacter liquefaciens and Gluconacetobacter hansenii in red wine. The aim of our study was the identification of some species of acetic acid bacteria in red wine during the fermentation process using a classical microbiological method. The changes in different groups of microorganisms were monitored in total counts of bacteria, and Acetobacter cells. Microbiological parameters were observed during the current collection and processing of wine in 2012. Samples (Modry Portugal, MP and Frankovka modra, FM were taken during the fermentation process in wine enterprises and were storage with different conditions. The total counts of bacteria ranged from 4.21 in the wine MP at 4°C of storage to 5.81 log CFU.mL-1 in the wine MP at 25°C of storage, but the total counts of bacteria ranged from 4.85 in the wine FM at 4°C of storage to 5.63 log CFU.mL-1 in the wine FM at 25°C of storage. The higher number of Acetobacter cells was found in wine MP at 25°C.

  20. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles

    Verschuren, P.G.; Cardona, T.D.; Nout, M.J.R.; Gooijer, de K.D.; Heuvel, van den J.C.

    2000-01-01

    The static fermentation of coconut water sucrose by Acetobacter xylinum was carried out at initial pH's of 3.0, 4.0, 5.0 or 6.0. Cellulose was produced at the surface, and its production was most favourable at pH's 4.0 and 5.0. These pH values also allowed for optimal bacterial growth. Oxygen concen

  1. Cellulose Assemblies Produced by Acetobacter Xylinum (FUNDAMENTAL MATERIAL PROPERTIES-Molecular Dynamic Characteristics)

    Hirai, Asako; Horii, Fumitaka

    2000-01-01

    Structures of cellulose assemblies produced by Acetobacter xylinum under various conditions have been studied mainly by transmission electron microscopy. Native cellulose crystals are composites of cellulose Iα and Iβ . Twisted-ribbn cellulose assemblies produced in the HS medium at 28 °C were rich in cellulose Iα . On the contrary, splayed microfibrils produced in the presence of CMC at 28 °C were rich in Iβ . Not only the ribbon assembly but also the bundle of splayed microfibrils was deter...

  2. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae)

    Kounatidis, Ilias; Crotti, Elena; Sapountzis, Panagiotis;

    2009-01-01

    taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila......-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the...

  3. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  4. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  5. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    Jimenez-Salgado, T; Fuentes-Ramirez, L. E.; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E.; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N...

  6. Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase gene from Acetobacter xylinum.

    Petroni, E A; Ielpi, L

    1996-01-01

    A genetic locus from Acetobacter xylinum involved in acetan polysaccharide synthesis has been characterized. The chromosomal region was identified by screening a genomic library of A. xylinum in a Xanthomonas campestris mutant defective in xanthan polysaccharide synthesis. The A. xylinum cosmid clone can functionally complement a xanthan-negative mutant. The polymer produced by the recombinant strain was found to be indistinguishable from xanthan. Insertion mutagenesis and subcloning of the c...

  7. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization.

    Srikanth, Rapala; Siddartha, Gudimalla; Sundhar Reddy, Chinta H S S; Harish B S; Janaki Ramaiah, M; Uppuluri, Kiran Babu

    2015-06-01

    Levan is a homopolymer of fructose naturally obtained from both the plants and microorganisms. Along with the general properties of a biopolymer like bio-compatibility, bio-degradability, renewability, flexibility, and eco-friendliness, levan also offers some important biomedical properties such as anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-AIDS and hyperglycaemic inhibitor. In this study, we have demonstrated the microbial production of therapeutically potential levan by batch fermentation process in sucrose rich medium using Acetobacter xylinum NCIM 2526. The produced Levan was characterized using various physicochemical techniques such as FTIR, (1)H NMR, (13)C NMR spectroscopy, TGA and HPLC. The biomedical potential of the isolated A. xylinum levan for its anti-oxidant and anti-inflammatory activities was exploited in vitro. Further the present study also focused on the optimization of levan production using one factor at a time approach followed by a statistical method, central composite design (CCD) with selected variables. The yield of levan was increased significantly from 0.54 to 13.25g/L with the optimized variables. PMID:25843829

  8. Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water

    Denise Milleo Almeida

    2013-01-01

    Full Text Available The objective of this work is to verifying the consume of the minerals K, Na, Fe, Mg, P, S-SO4-2,B,N Total Kjedahl (NTK, NO3--N, and NH4+-N in the production of bacterial cellulose by Acetobacter xylinum, according to the medium and the manner of cultivation. The fermentative process was in ripe and green coconut water. K and Na were determined by flame emission photometry, Mg and Fe by atomic absorption spectrophotometry, P by molecular absorption spectrophotometry, S-SO4-2 by barium sulphate turbidimetry, B by Azomethin-H method, NTK by Kjeldahl method, N-NO3-and N-NH4+ by vapor distillation with magnesium oxide and Devarda's alloy, respectively. In Fermentation of ripe coconut water there were higher consumption of K (69%, Fe (84,3%, P (97,4%, S-SO2-2 (64,9%, B (56,1%, N-NO3 (94,7% and N-NH4+ (95,2%, whereas coconut water of green fruit the most consumed ions were Na (94,5%, Mg (67,7% and NTK (56,6%. The cultivation under agitation showed higher mineral consumption. The higher bacterial cellulose production, 6 g.L-1, was verified in the coconut water fermentative in ripe fruit, added KH2PO4, FeSO4 and NaH2PO4 kept under agitation.

  9. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark

    Bacterial cellulose (BC), biosynthesized by Acetobacter xylinum, was produced in a medium consisting of rice bark pre-treated with an enzymatic pool. Rice bark was evaluated as a carbon source by complete enzymatic hydrolysis and monosaccharide composition (GC-MS of derived alditol acetates). It was treated enzymatically and then enriched with glucose up to 4% (w/v). The BC produced by static and aerated processes was purified by immersion in 0.1 M NaOH, was characterized by FT-IR, X-ray diffraction and the biosynthetic nanostructures were evaluated by Scanning Electronic (SEM), Transmission Electronic (TEM) and Atomic Force Microscopy (AFM). The BC films arising from static fermentation with rice bark/glucose and glucose are tightly intertwined, partially crystalline, being type II cellulose produced with rice bark/glucose, and type I to the produced in a glucose medium. The nanostructurated biopolymer obtained from the rice bark/glucose medium, produced in a reactor with air flux had micro- and nanospheres linked to nanofibers of cellulose. These results indicate that the bark components, namely lignins, hemicelluloses or mineral contents, interact with the cellulose forming micro- and nanostructures with potential use to incorporate drugs

  10. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark

    Goelzer, F.D.E. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Faria-Tischer, P.C.S. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Laboratory of Biopolymers, UFPR-Universidade Federal do Parana, CxP 19081, 81531-990, Curitiba, Parana (Brazil); Vitorino, J.C. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Sierakowski, Maria-R. [Laboratory of Biopolymers, UFPR-Universidade Federal do Parana, CxP 19081, 81531-990, Curitiba, Parana (Brazil); Tischer, C.A. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil)], E-mail: cesarat@uol.com.br

    2009-03-01

    Bacterial cellulose (BC), biosynthesized by Acetobacter xylinum, was produced in a medium consisting of rice bark pre-treated with an enzymatic pool. Rice bark was evaluated as a carbon source by complete enzymatic hydrolysis and monosaccharide composition (GC-MS of derived alditol acetates). It was treated enzymatically and then enriched with glucose up to 4% (w/v). The BC produced by static and aerated processes was purified by immersion in 0.1 M NaOH, was characterized by FT-IR, X-ray diffraction and the biosynthetic nanostructures were evaluated by Scanning Electronic (SEM), Transmission Electronic (TEM) and Atomic Force Microscopy (AFM). The BC films arising from static fermentation with rice bark/glucose and glucose are tightly intertwined, partially crystalline, being type II cellulose produced with rice bark/glucose, and type I to the produced in a glucose medium. The nanostructurated biopolymer obtained from the rice bark/glucose medium, produced in a reactor with air flux had micro- and nanospheres linked to nanofibers of cellulose. These results indicate that the bark components, namely lignins, hemicelluloses or mineral contents, interact with the cellulose forming micro- and nanostructures with potential use to incorporate drugs.

  11. Identification, sequencing and structural analysis of a nifA-like gene of Acetobacter diazotrophicus.

    Teixeira, K R; Morgan, T; Meletzus, D; Galler, R; Baldani, J I; Kennedy, C

    1999-01-01

    A recombinant plasmid, pAD101, containing a DNA fragment of Acetobacter diazotrophicus strain PAL5 was isolated by its ability to restore Nif+ phenotype to a nifA- ntrC- double mutant of Azotobacter vinelandii. Hybridization with the nifA genes of Azospirillum brasilense located the nifA gene more precisely to specific fragments of pAD101. DNA sequencing of appropriate subclones of pAD101 revealed that the nifA gene was adjacent to the nifB gene in A. diazotrophicus, and the 5' end of the nifB gene was located downstream of the nitrogenase MoFe subunit gene, nifK. The deduced aminoacid sequence of A. diazotrophicus nifA and nifB gene were most similar to the NifA and NifB proteins of Azorhizobium caulinodans and Rhodobacter capsulatus, respectively. In addition, nucleotide sequences upstream of the A. diazotrophicus nifA-encoding region indicate features similar to those in the A. caulinodans nifA promoter region involved in O2 and fixed N regulation of nifA expression. PMID:10530336

  12. The optimal conditions for nata production from sugar palm syrup by Acetobacter xylinum TISTR 107

    Laochareonsuk, T.

    2005-11-01

    Full Text Available The optimal conditions of nata production from the fermentation of sugar palm syrup by Acetobacter xylinum TISTR 107 was studied. The results showed that optimized production for a litre of sugar palm syrup medium should compose 15 ºBrix concentration, 7.0 g NH4H2PO4 and 0.7 g MgSO4. 7 H2O at pH 4.25 and incubation at room temperature. The thickness of nata production reached 1.15 cm in 9 days. Sensory evaluation showed that there were no significant difference in odor and acceptability between the nata from sugar palm syrup and the traditional nata production from coconut juice whereas there were significant differences in color and texture. However, the nata from sugar palm syrup gave a better texture. Chemical analysis of the nata produced under these optimal culture conditions revealed 0.13% protein, 0.012% fat, 2.74% fiber, 0.378% nitrogen-free extract, 0.11% ash and 96.63% moisture content. The results suggest that nata produced from sugar palm syrup can be used in food and confectionery.

  13. A Novel Carbonyl Reductase with Anti-Prelog Stereospecificity from Acetobacter sp. CCTCC M209061: Purification and Characterization

    Chen, Xiao-hong; Wei, Ping; Wang, Xiao-Ting; Zong, Min-Hua; Lou, Wen-Yong

    2014-01-01

    A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be use...

  14. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Veronica Massena Reis; Mauro Augusto de Paula; Johanna Döbereiner

    1999-01-01

    Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs) e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram ve...

  15. Interaction of Se0 nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum

    The sorption and desorption of poly(vinylpyrrolidone)-Se0 (PVP-Se0) nanoparticles on gel films of cellulose Acetobacter xylinum (CAX) are investigated. It is revealed that the hydrodynamic radius Rh of PVP-Se0 nanoparticles decreases from 57 nm in the initial solution (without CAX gel films) to 25 nm after the sorption of nanostructures on gel films and then increases to approximately 100 nm after the desorption of nanoparticles with water from dry samples of the CAX gel film-PVP-Se0 nanocomposite. It is found that selenium atoms do not penetrate into crystallites of the cellulose nanofibrils and replace water molecules sorbed by the primary hydroxyl groups of their walls. Poly(vinylpyrrolidone)-Se0 nanoclusters differ in the number and size upon their sorption inside the cellulose gel film and on the film surface

  16. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2013-01-01

    Background Acetobacter pasteurianus 386B, an acetic acid bacterium originating from a spontaneous cocoa bean heap fermentation, proved to be an ideal functional starter culture for coca bean fermentations. It is able to dominate the fermentation process, thereby resisting high acetic acid concentrations and temperatures. However, the molecular mechanisms underlying its metabolic capabilities and niche adaptations are unknown. In this study, whole-genome sequencing and comparative genome analy...

  17. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Veronica Massena Reis

    1999-10-01

    Full Text Available Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima do palhiço. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com água estéril.The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco, Brazil, were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2,070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State, especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Acaulospora sp. and Gigaspora margarita. A

  18. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  19. Involvement of Acetobacter orientalis in the production of lactobionic acid in Caucasian yogurt ("Caspian Sea yogurt") in Japan.

    Kiryu, T; Kiso, T; Nakano, H; Ooe, K; Kimura, T; Murakami, H

    2009-01-01

    Lactobionic acid was first found in a Caucasian fermented milk product popularly known as "Caspian Sea yogurt" in Japan. The presence of lactobionic acid in the fermented milk was indicated by the results of both high-performance anion-exchange chromatographic analysis with pulsed amperometric detection and mass spectrometric analysis. Thereafter, the acid was purified from the yogurt and analyzed by nuclear magnetic resonance. A substantial amount of lactobionic acid was found to be accumulated in the upper layer of the yogurt, especially within 10 mm from the surface. A total of 45 mg of lactobionic acid per 100 g of the upper yogurt layer was collected after 4 d of fermentation. The annual intake of lactobionic acid in individuals consuming 100 g of the yogurt every day would be 0.5 to 1.0 g. A lactose-oxidizing bacterium was isolated from the fermented milk and was identified as Acetobacter orientalis. Washed A. orientalis cells oxidized monosaccharides such as d-glucose at considerable rates, although their activities for substrates such as lactose, maltose, and cellobiose were much lower. When A. orientalis cells were cultivated in cow's milk, they exhibited lactose-oxidizing activity, suggesting that this bacterium was the main organism involved in the production of lactobionic acid in the yogurt. PMID:19109260

  20. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. PMID:26970695

  1. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    M. Supli Effendi

    2002-08-01

    Full Text Available Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of bioprocess design for aerobic fermentation in general and acetic acid fermentation from ethanol by Acetobacter aceti B127 in particular. Fermentation medium used was liquid waste of cocoa pulp with sugar content of 12.85%, and the addition of sucrosa and urea. The parameter observed was growth of Saccharomyces cerevisiae R60 and Acetobacter aceti B127, and chemical analysis including concentration of ethanol, total sugar and acetic acid, content. The research result showed that the  value was 0.048 hour-1, Y P was 0.676, Qp value was 0.033 hour-, and KLa value was 0.344, QO2.Cx value was 0.125 (mgO2L-1jam-1, Y X was s O2 0.378 (x 108selmL-1g-1¬¬O2, and dCT was 0.150 mgL-1hour-1. Concentration of acetic acid in the product was 4.24% or 42.4 gL-1

  2. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    de Lima-Neto João

    2009-03-01

    Full Text Available Abstract Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.

  3. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  4. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.

    Ahmed, Khan Behlol Ayaz; Kalla, Divya; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2014-11-01

    With a vision of finding greener materials to synthesize nanoparticles, we report the production and isolation of levan, a polysaccharide with repeating units of fructose, from Acetobacter xylinum NCIM2526. The isolated levan were characterized using potassium ferricyanide reducing power assay, Fourier transform infra-red (FTIR) spectroscopy and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR). To exploit levan in nanotechnology, we present a simple and greener method to synthesize silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using biopolymer, levan as both reducing and stabilizing agents. The morphology and stability of the AgNPs and AuNPs were examined by transmission electron microscopy (TEM) and UV-vis absorption (UV-vis) spectroscopy. The possible capping mechanism of the nanoparticles was postulated using FTIR studies. As synthesized biogenic nanoparticles showed excellent catalytic activity as evidenced from sodium borohydride mediated reduction of 4-nitro phenol and methylene blue. PMID:25129779

  5. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by 1H NMR cryoporometry and small-angle X-ray scattering

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se0 nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavities that are present in the gel film. 1H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.

  6. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    Photoaffinity labeling of purified cellulose synthase with [beta-32P]5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of [beta-32P]5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582

  7. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell.

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol. PMID:27185089

  8. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane

    The biosynthesis of Acetobacter xylinum ATCC 10821 cellulose has been studied with resting cells and a membrane preparation using 14C-pulse and chase reactions, with d-glucose and UDPGlc, respectively. Cellulose was biosynthesized from UDPGlc, and it was found to be tightly associated with both the cells and the membrane. The cellulose chains could be released from the cells and the membrane preparation by treating at pH 2, 100 C for 20 min. The cellulose chains that were released from the pulse and pulse-chase reactions were purified and separated from any low molecular weight substances by gel chromatography on Bio-Gel P4. They were then reduced with sodium borohydride and hydrolyzed with 4 M trifluoroacetic acid at 121 C for 2 h. Labeled products from the acid hydrolyzates were separated by paper chromatography and found to be d-glucose and d-glucitol. The amount of radioactivity in the products was determined by liquid scintillation counting. It was found that the pulsed products from the resting cells gave a ratio of d-[14C]glucitol to d-[14C]glucose of 1:11, and after chasing, the ratio decreased to 1:36. The pulsed products from the membrane gave a ratio of d-[14C]glucitol to d-[14C]glucose of 1:12, and after chasing for 5 min the ratio decreased to 1:43, and after 10 min, the ratio decreased to 1:66. These results show that the labeled d-glucitol obtained from the reducing end of the cellulose chain is chased into the interior of the cellulose chain during synthesis, showing that the cellulose chain is elongated from the reducing end. An insertion mechanism for the synthesis of cellulose from UDPGlc is proposed that involves lipid pyrophosphate glycosyl intermediates and three membrane enzymes: lipid phosphate:UDPGlc phosphotransferase, cellulose synthase, and lipid pyrophosphate phosphohydrolase. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Cloning and protein sequence analysis of alcohol dehydrogenase of Acetobacter pasteurianus AC2005%巴斯德醋酸杆菌AC2005乙醇脱氢酶基因克隆与蛋白序列分析

    张科平; 郑宇; 贾钧辉; 骆健美; 王敏

    2011-01-01

    以具有优良醋酸发酵性能的巴斯德醋酸杆菌AC2005基因组DNA为模板,利用PCR的方法分别克隆了编码乙醇脱氢酶亚基Ⅰ和乙醇脱氢酶亚基Ⅱ的基因adhA和adhB。序列分析表明,adhA与GenBank已报道的序列(accessio nnumber:D13893.1)具有94%的同源性,氨基酸序列同源性达98%;adhB与GenBank已报道的序列(accession number:D13893.1)同源性为93%,氨基酸序列同源性达97%。利用TMHMM 2.0软件,对乙醇脱氢酶跨膜结构进行了分析,发现乙醇脱氢酶亚基Ⅰ和乙醇脱氢酶亚基II均为膜结合蛋白。利用Swiss-Model在线软件模拟了巴斯德醋酸杆菌AC2005乙醇脱氢酶亚基I的三维立体结构。该研究对该酶的结构和功能的进一步分析提供了基础。%The genes,adhA and adhB,coding the subunit I and II of alcohol dehydrogenase(ADH)were amplified by the polymerase chain reaction(PCR),using genomic DNA of Acetobacter pasteurianus AC2005 as template,which had been demonstrated a potential strain for acetic acid production. The sequences were blasted in GenBank databases. The results showed that adhA shared 94% identity and 98% amino acid sequence homology,besides adhB shared 93% identity and 97% amino acid sequence homology with the reported gene(accession number:D13893. 1). The characterization of transbilayer helix of ADH was analyzed,using software of TMHMM 2. 0. It was found that the subunits I and II were both membrane-bound protein. Furthermore,the three dimensional structure of subunit I of ADH in A. pasteurianus AC2005 was produced by using Swiss-Model workspace. Those results provided that some information for further researching the relationship of structure and function of ADH.

  10. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications.

    Kwak, Moon Hwa; Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Son, Hong Joo; Kim, Hye Sung; Yun, Young Hyun; Jung, Young Jin; Hwang, Dae Youn

    2015-05-20

    Bacteria cellulose membranes (BCM) are used for wound dressings, bone grafts, tissue engineering, artificial vessels, and dental implants because of their high tensile strength, crystallinity and water holding ability. In this study, the effects of BCM application for 15 days on healing of burn wounds were investigated based on evaluation of skin regeneration and angiogenesis in burn injury skin of Sprague-Dawley (SD) rats. BCM showed a randomly organized fibrils network, 12.13 MPa tensile strength, 12.53% strain, 17.63% crystallinity, 90.2% gel fraction and 112.14 g × m(2)/h highest water vapor transmission rate (WVTR) although their swelling ratio was enhanced to 350% within 24h. In SD rats with burned skin, the skin severity score was lower in the BCM treated group than the gauze (GZ) group at all time points, while the epidermis and dermis thickness and number of blood vessels was greater in the BCM treated group. Furthermore, a significant decrease in the number of infiltrated mast cells and in vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) expression was observed in the BCM treated group at day 10 and 15. Moreover, a significant high level in collagen expression was observed in the BCM treated group at day 5 compared with GZ treated group, while low level was detected in the same group at day 10 and 15. However, the level of metabolic enzymes representing liver and kidney toxicity in the serum of BCM treated rats was maintained at levels consistent with GZ treated rats. Overall, BCM may accelerate the process of wound healing in burn injury skin of SD rats through regulation of angiogenesis and connective tissue formation as well as not induce any specific toxicity against the liver and kidney. PMID:25817683

  11. Effect of Organic Acids on Bacterial Cellulose Produced by Acetobacter xylinum

    Hongmei Lu

    2016-03-01

    Full Text Available Based on the difference of bacterial cellulose production from rice saccharificate medium and chemical medium under static cultivation, effect of organic acids in the process of bacterial cellulose produced by A. xylinum was studied. The results showed that the kinds and contents of organic acids were different in both culture medium, in which accumulated oxalic acid and tartaric acid inhibited A. xylinum producing BC in chemical medium, while pyruvic acid, malic acid, lactic acid, acetic acid, citric acid and succinic acid, as ethanol, promoted A. xylinum to produce BC. Compared to the blank BC production 1.48 g/L, the optimum addition concentrations of pyruvic acid, malic acid, lactic acid, acetic acid, citric acid, succinic acid, and ethanol in chemical medium were 0.15%, 0.1%, 0.3%, 0.4%, 0.1%, 0.2% , 4% and the BC productions were 2.49 g/L, 2.83 g/L, 2.12 g/L, 2.54 g/L, 2.27 g/L, 1.88 g/L , 2.63 g/L, respectively. The co-existence of above organic acids and ethanol increased BC production even further.

  12. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum

    Nakai, Tomonori; Tonouchi, Naoto; Konishi, Teruko; Kojima, Yukiko; Tsuchida, Takayasu; Yoshinaga, Fumihiro; Sakai, Fukumi; Hayashi, Takahisa

    1999-01-01

    Higher plants efficiently conserve energy ATP in cellulose biosynthesis by expression of sucrose synthase, in which the high free energy between glucose and fructose in sucrose can be conserved and used for the synthesis of UDP-glucose. A mixture of sucrose synthase and bacterial cellulose synthase proceeded to form UDP-glucose from sucrose plus UDP and to synthesize 1,4-β-glucan from the sugar nucleotide. The mutant sucrose synthase, which mimics phosphorylated sucrose synthase, enhanced the...

  13. Pemanfaatan Limbah Pulp Buah Semangka (Citrullus vulgaris, Schard) Untuk Pembuatan Nata De Watermelon Pulp Dengan Menggunakan Bakteri Acetobacter xylinum

    Mawaddah

    2011-01-01

    This research done to know can or not the waste of watermelon pulp use to produce nata and how the effect of mass variation using to nata’s quality. This research was done with mass variation of watermelon pulp that is 10 g, 20 g, 30 g, 40 g, 50 g, 60 g, and watermelon pulp without adding sugar as control. Statistical analysis count the thickness, water content, ash content, fiber content and organoleptic test of texture, color, aroma, and taste of nata de watermelon pulp. The result show...

  14. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. PMID:25662694

  15. Functional Bradyrhizobium japonicum NifA expression under a hybrid nptII-nifH promoter in E. coli and Acetobacter diazotrophicus SRT4.

    Menéndez, C; Selman-Housein, G; Arrieta, J G; Coego, A; Hernández, L

    1998-01-01

    A hybrid promoter consisting of the in tandem fusion of the Tn5 nptII and the Klebsiella pneumoniae nifH promoters was constructed to study the functionality of the nif genes transcriptional activator NifA from Bradyrhizobium japonicum in two different host bacteria. beta-galactosidase experiments in E. coli revealed that the hybrid nptII-nifH promoter can behave as a constitutive or a NifA-inducible promoter depending on the aeration conditions. Expression of the B. japonicum NifA from the hybrid nptII-nifH promoter (plasmid pBPF204) induced "in trans" lacZ transcription from the Azotobacter chroococcum nifH promoter in E. coli and A. diazotrophicus cells grown at low pO2. Similarly, the plasmid pBPF204 increased nitrogenase activity in A. diazotrophicus cells grown under microaerobic conditions. Based on these results, we suggest that the B. japonicum NifA could function as an efficient O2-sensitive transcriptional activator of nif genes in genetically distant diazotrophic bacteria. PMID:10932742

  16. Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system

    Wei, Ping; LIANG, JING; Cheng, Jing; Zong, Min-Hua; Lou, Wen-Yong

    2016-01-01

    Background Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a new class of promising green solvents, have recently gained increasing attention in biocatalysis for...

  17. Pengaruh Kadar Protein, Lemak Dan Serat Dari Sari Buah Alpukat (Persea Americana Mill) Pada Pembuatan Nata De Coco Dengan Menggunakan Acetobacter Xylinum

    Wahyuni, Sri

    2011-01-01

    One of the utilization of coconut water is to make nata de coco. With the addition of fruit juice modification Avocado (Persea Americana Mill) will be obtained nata de coco that have better nutritional value in terms of protein, fiber and fat. This is due to high nutrient content is owned by the fruit of avocado (Persea Americana Mill) Research carried out by using 100 grams of coconut water, 10 grams sucrose, 0.5 grams of urea and added the juice Avocado (Persea Americana Mill) and then ...

  18. Scale-up production of yacon fruit vinegar by Acetobacter%醋酸杆菌发酵雪莲果生产果醋饮料工程放大实验研究

    黄晓宾; 罗荣华; 张茜; 黄彪; 李媛媛; 唐湘华

    2011-01-01

    Using yacon fruits as main raw materials, yacon fruit vinegar was produced by two stages of alcoholic fermentation and acetic fermentation in 200L fermentor. The fermentation time was 200h and acetic acid concentration could reach 24.18g/L. The components of fermentation product were analyzed by GC-MS. The content of acid material reached 82.34%, in which, acetic acid content was 74.70%. The scale-up experiments provided an important reference for development of liquid fermentation fruit vinegar beverage.%通过以雪莲果为主要原料在200L发酵罐中经过酒精发酵和醋酸发酵2个阶段,获得雪莲果果醋产物,总发酵时间为200h,醋酸浓度可达到24.18g/L,对发酵产物进行GC-MS分析,发酵产物中酸类物质的含量占82.34%,其中醋酸的含量占到总量的74.70%.该放大实验的研究为液态发酵果醋饮料的发展和技术提升提供了重要的基础.

  19. Tissue cultured plantlets of sweet potato inoculated with the nitrogen-fixing bacterium Acetobacter diazotrophicus%甘薯组培苗接种固氮醋酸杆菌的初步研究

    宋亚娜; 郑伟文

    2001-01-01

    固氮醋酸杆菌是一种从甘蔗中分离的固氮细菌。通过对组织培养的甘薯进行接种,发现固氮醋酸杆菌可以侵染到甘薯体内并定殖;指示剂显色反应和从接种植株体再分离细菌结果显示,固氮醋酸杆菌可以从根系或茎基部的伤口进入植株体内,并可到达根、茎、叶等器官中定殖;研究还发现接种固氮醋酸杆菌可以显著提高甘薯组培苗的生物量和叶片叶绿素含量,表明其有利于植株生长和氮营养的改善。%Tissue cultured plantlets of sweet potato were inoculated withA.diazotrophicus originally isolated from field-grew sugarcane.The results showed that the plantlet of sweet potato could be infected by A.diazotrophicus. The bacterium on and within the plant tissues were confirmed by the color change from green to dark orange of medium.The chlorophyll content and fresh weight of asepticsweet potato plantlet inoculated with A.diazotrophicus was higher than those of asepticsweet potato plant without A.diazotrophicus.

  20. Fabrication of living soft matter by symbiotic growth of unicellular microorganisms

    Das, Anupam A.K.; Bovill, James; Ayesh, Maram; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2016-01-01

    We report the fabrication of living soft matter made as a result of the symbiotic relationship of two unicellular microorganisms. The material is composed of bacterial cellulose produced in situ by acetobacter (Acetobacter aceti NCIMB 8132) in the presence of photosynthetic microalgae (Chlamydomo

  1. Biosynthesis of monobactam compounds: origin of the carbon atoms in the beta-lactam ring.

    O'Sullivan, J; Gillum, A M; Aklonis, C A; Souser, M L; Sykes, R. B.

    1982-01-01

    The biosynthesis of monobactams by strains of Chromobacterium violaceum, Acetobacter sp., and Agrobacterium radiobacter was studied. Monobactams were produced during logarithmic growth by C. violaceum and Acetobacter sp. and during late log growth on glycerol and in stationary phase by A. radiobacter. The addition of various amino acids failed to significantly stimulate monobactam production in any of the producing organisms. Several 14C-amino acids and pyruvate were incorporated in vivo into...

  2. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    Luz Dary Carreño Pineda; Luis Alfonso Caicedo Mesa; Carlos Arturo Martínez Riascos

    2012-01-01

    Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the ma...

  3. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  4. UniProt search blastx result: AK287855 [KOME

    Full Text Available AK287855 J065196O16 Q9WX75|BCSA5_ACEXY Putative cellulose ... synthase 3 [Includes: Cellulose ... syntha ... ming] (EC 2.4.1.12); Cyclic di-GMP-binding domain (Cellulose ... synthase 3 regulatory subunit)] - Acetobacter xyli ...

  5. UniProt search blastx result: AK287855 [KOME

    Full Text Available AK287855 J065196O16 Q59167|ACSA2_ACEXY Cellulose ... synthase 2 [Includes: Cellulose ... synthase cataly ... ming] (EC 2.4.1.12); Cyclic di-GMP-binding domain (Cellulose ... synthase 2 regulatory domain)] - Acetobacter xylin ...

  6. UniProt search blastx result: AK287855 [KOME

    Full Text Available AK287855 J065196O16 Q9RBJ2|BCSA4_ACEXY Putative cellulose ... synthase 2 [Includes: Cellulose ... syntha ... ming] (EC 2.4.1.12); Cyclic di-GMP-binding domain (Cellulose ... synthase 2 regulatory subunit)] - Acetobacter xyli ...

  7. UniProt search blastx result: AK287855 [KOME

    Full Text Available AK287855 J065196O16 P21877|ACSA1_ACEXY Cellulose ... synthase 1 [Includes: Cellulose ... synthase cataly ... ming] (EC 2.4.1.12); Cyclic di-GMP-binding domain (Cellulose ... synthase 1 regulatory domain)] - Acetobacter xylin ...

  8. Bacteria and yeast microbiota in milk kefir grains from different Italian regions.

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Aquilanti, Lucia; De Filippis, Francesca; Stellato, Giuseppina; Di Mauro, Simone; Turchetti, Benedetta; Buzzini, Pietro; Ercolini, Danilo; Clementi, Francesca

    2015-08-01

    Kefir grains are a unique symbiotic association of different microrganisms, mainly lactic acid bacteria, yeasts and occasionally acetic acid bacteria, cohabiting in a natural polysaccharide and a protein matrix. The microbial composition of kefir grains can be considered as extremely variable since it is strongly influenced by the geographical origin of the grains and by the sub-culturing method used. The aim of this study was to elucidate the bacteria and yeast species occurring in milk kefir grains collected in some Italian regions by combining the results of scanning electron microscopy analysis, viable counts on selective culture media, PCR-DGGE and pyrosequencing. The main bacterial species found was Lactobacillus kefiranofaciens while Dekkera anomala was the predominant yeast. The presence of sub-dominant species ascribed to Streptococcus thermophilus, Lactococcus lactis and Acetobacter genera was also highlighted. In addition, Lc. lactis, Enterococcus sp., Bacillus sp., Acetobacter fabarum, Acetobacter lovaniensis and Acetobacter orientalis were identified as part of the cultivable community. This work further confirms both the importance of combining culture-independent and culture-dependent approaches to study microbial diversity in food and how the combination of multiple 16S rRNA gene targets strengthens taxonomic identification using sequence-based identification approaches. PMID:25846922

  9. Microbial Diversity and Biochemical Analysis of Suanzhou: A Traditional Chinese Fermented Cereal Gruel

    Qin, Huibin; Sun, Qinghui; Pan, Xuewei; Qiao, Zhijun; Yang, Hongjiang

    2016-01-01

    Suanzhou as a traditional Chinese gruel is fermented from proso millet and millet. The biochemical analysis showed Suanzhou had relatively high concentrations of lactic acid, acetic acid, and free amino acids. The metagenomics of Suanzhou were studied, with the analysis of the V4 region of 16S rRNA gene, the genera Lactobacillus and Acetobacter were found dominant with the average abundance of 58.2 and 24.4%, respectively; and with the analysis of the ITS1 region between 18S and 5.8S rRNA genes, 97.3% of the fungal community was found belonging to the genus Pichia and 2.7% belonging to five other genera. Moreover, the isolates recovered from 59 Suanzhou samples with various media were identified with the 16S rRNA or 18S rRNA gene analyses. Lactobacillus fermentum (26.9%), L. pentosus (19.4%), L. casei (17.9%), and L. brevis (16.4%) were the four dominant Lactobacillus species; Acetobacter lovaniensis (38.1%), A. syzygii (16.7%), A. okinawensis (16.7%), and A. indonesiensis (11.9%) were the four dominant Acetobacter species; and Pichia kudriavzevii (55.8%) and Galactomyces geotrichum (23.1%) were the two dominant fungal species. Additionally, L. pentosus p28-c and L. casei h28-c1 were selected for the fermentations mimicking the natural process. Collectively, our data demonstrate that Suanzhou is a nutritional food high in free amino acids and organic acids. Diverse Lactobacillus, Acetobacter, and yeast species are identified as the dominant microorganisms in Suanzhou. The isolated strains can be further characterized and used as starters for the industrial production of Suanzhou safely.

  10. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  11. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a...

  12. More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites.

    Lee, K Y; Buldum, G.; Mantalaris, A.; Bismarck, A.

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium...

  13. Self-supported silver nanoparticles containing bacterial cellulose membranes

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  14. Self-supported silver nanoparticles containing bacterial cellulose membranes

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Verelst, Marc; Dexpert-Ghys, Jeannette [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CEMES, UPR No. 8011 - Universite Toulouse III, B.P. 94347, 29 rue Jeanne Marvig, 31055 Toulouse Cedex (France); Messaddeq, Younes [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Ribeiro, Sidney J.L. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil)], E-mail: sidney@iq.unesp.br

    2008-05-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles.

  15. Lowering costs of microbial cellulose

    Pajuelo, María González; Bungay, Henry; Hogg, Tim; Vasconcelos, Isabel

    1997-01-01

    We have been conducting research with Acetobacter xylinium for microbial conversion of sugars to cellulose. A rotating disk biological contactor should lower costs considerably because its production rates are greater than for the usual method of surface culture. Another major cost saving comes from replacing expensive sugars in the medium with sugars derived from wastes. Extracts of spent grapes from wastes of Portuguese wine factories supply suitable sugars for good production of micr...

  16. Surface modification of cellulose materials : from wood pulps to artificial blood vessels

    Ahrenstedt, Lage

    2007-01-01

    This thesis describes the improvement of two radically different cellulose materials, paper and artificial blood vessels, constructed from two diverse cellulose sources, wood pulp and Acetobacter xylinum. The improvement of both materials was possible due to the natural affinity of the hemicellulose xyloglucan for cellulose. Chemical and mechanical pulps were treated with xyloglucan in the wet-end prior to hand sheet formation or by spray application of dry hand sheets, loading a comparable a...

  17. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    Luz Dary Carreño Pineda

    2012-12-01

    Full Text Available Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the main problem is the production in mass that is constrained by low yield. It is therefore necessaryto develop some alternatives. This paper presents a review about synthesis,production, properties and principal applications of bacterial cellulose, as wellas some alternatives to reduce the difficulties for process scaling.La celulosa bacteriana es un polímero obtenido por fermentación con microrganismosde los géneros Acetobacter, Rhizobium, Agrobacterium y Sarcina, delas cuales la especie más eficiente es la Acetobacter Xylinum. Este polímero presenta la misma estructura química de la celulosa de origen vegetal, pero difiereen su conformación y propiedades fisicoquímicas, lo que lo hace atractivo para diversas aplicaciones, especialmente en las áreas de alimentos, procesosde separación, catálisis y en medicina, gracias a su biocompatibilidad. Sin embargo, el principal problema es la producción a gran escala limitada por losbajos rendimientos, lo que genera la necesidad de desarrollar alternativas que permitan disminuir o eliminar las causas de esta limitación. En este artículo se hace una revisión acerca de la síntesis, producción, propiedades y principales aplicaciones de la celulosa bacteriana, así como de algunas alternativas estudiadas para disminuir los inconvenientes en el escalamiento del proceso.

  18. Microbial Diversity and Biochemical Analysis of Suanzhou: A Traditional Chinese Fermented Cereal Gruel.

    Qin, Huibin; Sun, Qinghui; Pan, Xuewei; Qiao, Zhijun; Yang, Hongjiang

    2016-01-01

    Suanzhou as a traditional Chinese gruel is fermented from proso millet and millet. The biochemical analysis showed Suanzhou had relatively high concentrations of lactic acid, acetic acid, and free amino acids. The metagenomics of Suanzhou were studied, with the analysis of the V4 region of 16S rRNA gene, the genera Lactobacillus and Acetobacter were found dominant with the average abundance of 58.2 and 24.4%, respectively; and with the analysis of the ITS1 region between 18S and 5.8S rRNA genes, 97.3% of the fungal community was found belonging to the genus Pichia and 2.7% belonging to five other genera. Moreover, the isolates recovered from 59 Suanzhou samples with various media were identified with the 16S rRNA or 18S rRNA gene analyses. Lactobacillus fermentum (26.9%), L. pentosus (19.4%), L. casei (17.9%), and L. brevis (16.4%) were the four dominant Lactobacillus species; Acetobacter lovaniensis (38.1%), A. syzygii (16.7%), A. okinawensis (16.7%), and A. indonesiensis (11.9%) were the four dominant Acetobacter species; and Pichia kudriavzevii (55.8%) and Galactomyces geotrichum (23.1%) were the two dominant fungal species. Additionally, L. pentosus p28-c and L. casei h28-c1 were selected for the fermentations mimicking the natural process. Collectively, our data demonstrate that Suanzhou is a nutritional food high in free amino acids and organic acids. Diverse Lactobacillus, Acetobacter, and yeast species are identified as the dominant microorganisms in Suanzhou. The isolated strains can be further characterized and used as starters for the industrial production of Suanzhou safely. PMID:27610102

  19. EFEKTIVITAS NIRA AREN SEBAGAI BAHAN PENGEMBANG ADONAN ROTI

    Mody Lempang; Albert D. Mangopang

    2013-01-01

    Fermentation is a natural process that happen in fresh-sweet sap of aren trees (Arenga pinnata Merr.), because many kinds of microorganism stay and life in this substance e.g. bakteria (Acetobacter acetic) and yeast (Saccharomyces tuac). Species of yeast from genus of Saccharomyses, e.g. Saccharomyses serivisae is wellknown as microorganism that can ferment sugar (glucose) into alchohol and CO2. This natural process as well happen in aren sap, so that this substance potencially using as a swo...

  20. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods.

    Medina, Eduardo; Pérez-Díaz, Ilenys M; Breidt, Fred; Hayes, Janet; Franco, Wendy; Butz, Natasha; Azcarate-Peril, María Andrea

    2016-01-01

    Fermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure- and cheese-like aromas is a challenge of significant economical impact for the pickling industry. Previous culture-based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, 4 Gram-positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp., and Propionibacterium and 1 Gram-negative genus, Pectinatus, as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture-independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture-independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 mo. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota. PMID:26605993

  1. Biosynthesis and Characterization of Nanocellulose-Gelatin Films

    Muenduen Phisalaphong; Pongpun Siripong; Sutasinee Seetabhawang; Siriporn Taokaew

    2013-01-01

    A nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR) results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a ...

  2. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  3. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Chen Xu; Xia Ma; Shiwen Chen; Meifeng Tao; Lutao Yuan; Yao Jing

    2014-01-01

    To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC) was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering...

  4. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    Eli Rohaeti; Endang WLFX; Anna Rakhmawati

    2016-01-01

    This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 day...

  5. 15-2-4 : セルロース生産微生物による機能性セルロースの創製 : セルロース合成における高次構造制御

    天野, 良彦; 神田, 鷹久

    2005-01-01

    Cerboxymethylcellulose (CMC) degrading activity and various sugars in addition to cellulose were detected in the culture broth after one day culture of Acetobacter xlinum. Cellulose morphology changed as it was cultured in the presence of oligosaccharides such as gentiobiose and cellobiose. It is confirmed that cellulose structures such as the width of microfibril and cellulose ribbon, the crystallinity, and the ratio of Ia and Ib were different from native bacterial cellulose when it was cul...

  6. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  7. 15-2-4 :セルロース生産微生物による機能性セルロースの創製; セルロース合成における高次構造制御

    天野, 良彦; 神田, 鷹久

    2004-01-01

    We tried to investigated various carbohydrates and cellulose degrading enzyme activityin the culture broth of cellulose producing microorganism, Acetobacter xylinum to clarify, the role of cellulase for cellulose production. Cerboxymethylcellulose (CMC) degrading activity and various sugars in addition to cellulose were detected in the culture broth after one day culture. These sugars increased gradually and were identified to some kinds of β-linked disaccharides such as gentiobiose and cello...

  8. Pembuatan Membran Selulosa Bakteri Coating Kitosan - Kolagen Untuk Aplikasi Gtr ( Guide Tissue Regeneration ) Sebagai Pembalut Luka Pada Mencit (Mus Musculus)Secara In Vivo

    Humaira, Nadia Maulida

    2015-01-01

    Bacterial cellulose produced from the fermentation process used in the development of Acetobacter xylinum to increase efficiency of bacterial cellulose one of them in the biomedical field , is membrane . This study aimed to determine the effect concentration of chitosan-collagen, see optimum characterization of bacterial cellulose membrane coating of chitosan-collagen that can be used in the application as wound dressings in mice by In Vivo. Preparation of the bacterial cellulose membrane usi...

  9. The microbial diversity of water kefir.

    Gulitz, Anna; Stadie, Jasmin; Wenning, Mareike; Ehrmann, Matthias A; Vogel, Rudi F

    2011-12-15

    The microbial diversity of water kefir, made from a mixture of water, dried figs, a slice of lemon and sucrose was studied. The microbial consortia residing in the granules of three water kefirs of different origins were analyzed. A collection of 453 bacterial isolates was obtained on different selective/differential media. Bacterial isolates were grouped with randomly amplified polymorphic DNA (RAPD)-PCR analyses. One representative of each RAPD genotype was identified by comparative 16S rDNA gene sequencing. The predominant genus in water kefirs I and II was Lactobacillus, which accounted for 82.1% in water kefir I and 72.1% in water kefir II of the bacterial isolates. The most abundant species in water kefirs I and II were Lactobacillus hordei and Lb. nagelii followed by considerably lower numbers of Lb. casei. Other lactic acid bacteria (LAB) were identified as Leuconostoc mesenteroides and Lc. citreum in all three water kefirs. The most abundant species in water kefir III was Lc. mesenteroides (28%) and Lc. citreum (24.3%). A total of 57 LAB belonging to the species of Lb. casei, Lb. hordei, Lb. nagelii, Lb. hilgardii and Lc. mesenteroides were able to produce exopolysacchrides from sucrose. Non LABs were identified as Acetobacter fabarum and Ac. orientalis. The Acetobacter species were more prevalent in consortium III. Cluster analyses of RAPD-PCR patterns revealed an interspecies diversity among the Lactobacillus and Acetobacter strains. Aditionally, Saccharomyces cerevisiae, Lachancea fermentati, Hanseniaospora valbyensis and Zygotorulaspora florentina were isolated and identified by comparison of partial 26S rDNA sequences and FTIR spectroscopy. PMID:22000549

  10. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  11. Production of bacterial cellulose from alternate feedstocks

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  12. Production of Bacterial Cellulose from Alternate Feedstocks

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. Use of ionizing irradiation to increase rates of production and yield of yeast from paraffins. Part of a coordinated programme on radiation microbiology

    The uptake of CO2 in the assimilation of n-alkanes by Candida tropicalis was determined using CO2 as tracer. It was confirmed that a net assimilation of CO2 takes place. The distribution of CO2 in tricarboxylic acid intermediates (Candida cultured on glucose, acetate or n-hexadecane) was also measured. The amount of ATP in microbial cells (Saccharomyces sp and Acetobacter) was determined to clarify why energy is wasted in the assimilation of n-alkanes (compared to the growth on carbohydrates)

  14. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature

    Jagannath, A.; Kumar, Manoranjan; Raju, P. S.; Batra, H. V.

    2014-01-01

    The current study reports the preparation and stabilization of novel functional drinks based on fruit and vegetable juices incorporating bacterial cellulose from Acetobacter xylinum. Pineapple, musk melon, carrot, tomato, beet root and a blend juice containing 20 % each of carrot and tomato juice with 60 % beet root juice has been studied. These juices have been stabilized over a storage period of 90 days at 28 °C, by the use of nisin and maintaining a low pH circumventing the need for any ch...

  15. Pengaruh Variasi Volume Sari Buah Delima (Punica granacum) dengan Air Nira terhadap Kadar Gula, Vitamin C dan Kadar Serat pada Pembuatan Nata De Arenga dengan Menggunakan Acetobbacter xylinum

    Ningsih, Supiya

    2016-01-01

    The effect of pomegranate juice (Punica granacum) for sugar, vitamin C and fiber content in making nata de arenga has been done using Acetobacter xylinum. The determination of fibe applied by the method of defatting and degastion. Determination of the levels of vitamin C applied with iodometric titration method and the determination of glucose applied by the method line eynon. The highest fiber content contained in the ratio of 50:50 was 93,14%. The levels of vitamin C was also presented in a...

  16. Regulatory mechanisms for the synthesis of β-glucans in plants

    The mechanism for synthesis of a polymer is integrated so closely with the regulation of its synthesis that studies of synthesis and regulation often occur in parallel. One case in point concerns the recent success reported for obtaining high rates of in vitro synthesis of beta-1,4-glucan using cell-free preparation derived from the bacterium, Acetobacter xylinum. In this paper, the authors present a tentative working model for a system of opposing modes of regulation for the synthesis of cellulose (beta-1,4-glucan) and callose (beta-1,3-glucan) in a higher plant, the developing cotton fiber

  17. Chemical Composition and Biological Activities of Essential Oil from the Rhizomes of Iris bulleyana

    DENG Guo-bin; ZHANG Han-bo; XUE Hong-fen; CHEN Shan-na; CHEN Xiao-lan

    2009-01-01

    Iris bulleyana has long been used as a remedy for detoxication and detumescence.Hydrodistillation was used to extract the essential oil from its rhizomes,and 0.23% oil yield was obtained.Using gas chromatography-mass spectrometry (GCMS) analysis,31 chemicals including aristolone,euparene,β-gurjunene,δ-amorphene,α-muurolene,α-cadinol,camphor,γ-elemene,and τ-eadinol were identified.The essential oil exhibited antibacterial activity against Acetobacter calcoacetica,Bacillus subtillis,Clostridium sporogenes,Clostridium perfringens,Escherichia coli,Salmonella typhii,Staphylococcus aureus,and Yersinia enterocolitica.Its antifungal and antioxidant activities were also tested.

  18. Microbes of fermented kefir-like using combination of kefir grains and Bifidobacterium longum

    Sri Usmiati1); Rarah Ram

    2012-01-01

    The objectives of research were to find out physico-chemical characters and to detect flavor volatile compound of kefir-like. Material used was skim milk TS 9.5% which was heated at 85oC for 30 minutes and cooled at 22oC before innoculation of the starter. Microorganisms used were (a) Lactobacillus acidophilus P155110, (b) Lactobacillus delbrueckii subsp. Bulgaricus NCIMB 11778, (c) Lactococcus lactis P155610, (d) Leuconostoc mesenteroides subsp. dextranicum NCIMB 3350, (e) Acetobacter aceti ...

  19. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  20. Badania nad zastosowaniem celulozy bakteryjnej w konserwacji i restauracji dzieł sztuki

    Rosa, Halina; Strzelczyk, Alicja Barbara; Jabłońska, Elżbieta; Kozielec, Tomasz; Karbowska-Berent, Joanna

    2012-01-01

    Bacterial cellulose (BC) obtained in the bacterial biosynthesis by Acetobacter xylinum is considered one of the most interesting materials tested and used in different areas of the human activity. Successful its applications in medicine and food industry launched a study of this material on a large scale. Many characteristic and unique properties of bacterial cellulose are used already in the paper industry Research and application of bacterial cellulose nano fibers made up of cellulose, its ...

  1. Preliminary Research on Structure and Properties of Nano-cellulose

    2007-01-01

    The structure of bacterial cellulose (BC) produced by Acetobacter xylinum NUST4 (A.xylinum NUST4) under static (SBC) and shake culture condition (ABC) was studied by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) and Fourier transform-infrared spectrum (FT-IR). It was revealed that BC is Ⅰ crystal cellulose and the proportion of cellulose Ⅰα exceeds 80% and BC diameter is 10-80 nm.Mechanical properties and water absorption capacity were also determined. These properties could result from crystalline and nanometer structure of BC.

  2. Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough “Masa Agria” (Maiz Añejo)

    Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D.; Paparella, Antonello

    2016-01-01

    Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1–3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential. PMID:27524979

  3. Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough "Masa Agria" (Maiz Añejo).

    Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D; Paparella, Antonello

    2016-01-01

    Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1-3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential. PMID:27524979

  4. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose.

    Keshk, Sherif; Sameshima, Kazuhiko

    2006-09-01

    Production of bacterial cellulose (BC) using sugar cane molasses (MO) with/without the presence of lignosulfonate (MOL) as a sole carbon source in a Hestrin-Schramm medium (HS) was investigated. Six strains of Acetobacter xylinum [American Type Culture Collection 10245 and Institute of Fermentation in Osaka (IFO) 13693, 13772, 13773, 14815, and 15237] were screened for their BC production. The yield of the BC among all the strains from both the MO and MOL media was much higher than that from the HS medium. Acetobacter xylinum IFO 13772 was the best BC producer for all media. Furthermore, physical properties of these BC from the HS, MO, and MOL media were studied using Fourier-transform infrared spectroscopy, X-ray diffractometer, and cross polarization/magic angle spinning 13C nuclear magnetic resonance. There are no significant differences in the crystallinity and the recorded Ialpha fraction among the BC produced from the different media. A remarkable difference was only recorded in terms of viscosity. These results indicate that MO is a better carbon source than glucose for most of the strains investigated. PMID:16450110

  5. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine.

    Song, Nho-Eul; Cho, Hyoun-Suk; Baik, Sang-Ho

    2016-01-01

    A high concentration of histamine, one of the biogenic amines (BAs) usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25°C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66mg/L from 5.29mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation. PMID:26991285

  6. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine

    Nho-Eul Song

    2016-06-01

    Full Text Available Abstract A high concentration of histamine, one of the biogenic amines (BAs usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25 °C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29 mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12 mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66 mg/L from 5.29 mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation.

  7. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar.

    Wang, Zong-Min; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2016-01-01

    Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar. PMID:27241188

  8. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar

    Wang, Zong-Min; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2016-01-01

    Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar. PMID:27241188

  9. Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing.

    Trček, Janja; Mahnič, Aleksander; Rupnik, Maja

    2016-04-16

    Unfiltered vinegar samples collected from three oxidation cycles of the submerged industrial production of each, red wine and organic apple cider vinegars, were sampled in a Slovene vinegar producing company. The samples were systematically collected from the beginning to the end of an oxidation cycle and used for culture-independent microbial analyses carried out by denaturing high pressure liquid chromatography (DHPLC) and Illumina MiSeq sequencing of 16S rRNA gene variable regions. Both approaches showed a very homogeneous bacterial structure during wine vinegar production but more heterogeneous during organic apple cider vinegar production. In all wine vinegar samples Komagataeibacter oboediens (formerly Gluconacetobacter oboediens) was a predominating species. In apple cider vinegar the acetic acid and lactic acid bacteria were two major groups of bacteria. The acetic acid bacterial consortium was composed of Acetobacter and Komagataeibacter with the Komagataeibacter genus outcompeting the Acetobacter in all apple cider vinegar samples at the end of oxidation cycle. Among the lactic acid bacterial consortium two dominating genera were identified, Lactobacillus and Oenococcus, with Oenococcus prevailing with increasing concentration of acetic acid in vinegars. Unexpectedly, a minor genus of the acetic acid bacterial consortium in organic apple cider vinegar was Gluconobacter, suggesting a possible development of the Gluconobacter population with a tolerance against ethanol and acetic acid. Among the accompanying bacteria of the wine vinegar, the genus Rhodococcus was detected, but it decreased substantially by the end of oxidation cycles. PMID:26897250

  10. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

  11. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  12. Pembuatan Film Selulosa dari Nata de Pina

    Iskandar Iskandar

    2010-06-01

    Full Text Available Preparation of cellulose film from nata de pina, a product of pinapple fermentation, using acetobacter xylinum was done at room temperature for 15 days. The aim of the research is to investigate the effect of sugar concentration and pH on film quality. The fermentation run at sugar concentration of 0, 5, 7.5, 10 and 12.5% and at pH of 3, 5 and 7. Results show that the best nata de pina was obtained at sugar concentration of 10% and pH 5. At these conditions, maximum nata precipitates rendemen was 26,80%, with a moisture content of 80,55%, and the thickness of 3,30 cm. The product nata then can be used to produce cellulose film. The characteristic of the produced film were 8,20 Kgf/mm2 and 11,71% for maximum tensile strength and elongation, respectively. Keywords: acetobacter xylinum, film, nata de pina, selulosa

  13. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments.

    Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G

    2015-06-01

    Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis

  14. Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis

    Cellulose was produced heterotrophically from different carbon substrates by carrot tissue cultures and Acetobacter xylinum (a cellulose-producing bacterium) and by castor bean seeds germinated in the dark, in each case in the presence of water having known concentration of oxygen-18 (18O). We used the relationship between the amount of 18O in the water and in the cellulose that was synthesized to determine the number and 18O content of the substrate oxygens that exchanged with water during the reactions leading to cellulose synthesis. Our observations support the hypothesis that oxygen isotope ratios of plant cellulose are determined by isotopic exchange occurring during hydration of carbonyl groups of the intermediates of cellulose synthesis. (author)

  15. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  16. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    Volkov, V. V.; Klechkovskaya, V. V.; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I.; Smyslov, R. Yu.

    2009-03-01

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  17. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    Suvorova, E. I.; Klechkovskaya, V. V.

    2010-12-01

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  18. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Smyslov, R. Yu. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  19. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    Suvorova, E. I., E-mail: suvorova@ns.crys.ras.ru; Klechkovskaya, V. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences (Russian Federation)

    2010-12-15

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  20. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples. PMID:15183874

  1. Engineering microporosity in bacterial cellulose scaffolds.

    Bäckdahl, Henrik; Esguerra, Maricris; Delbro, Dick; Risberg, Bo; Gatenholm, Paul

    2008-08-01

    The scaffold is an essential component in tissue engineering. A novel method to prepare three-dimensional (3D) nanofibril network scaffolds with controlled microporosity has been developed. By placing paraffin wax and starch particles of various sizes in a growing culture of Acetobacter xylinum, bacterial cellulose scaffolds of different morphologies and interconnectivity were prepared. Paraffin particles were incorporated throughout the scaffold, while starch particles were found only in the outermost area of the resulting scaffold. The porogens were successfully removed after culture with bacteria and no residues were detected with electron spectroscopy for chemical analysis (ESCA) or Fourier transform infra-red spectroscopy (FT-IR). Resulting scaffolds were seeded with smooth muscle cells (SMCs) and investigated using histology and organ bath techniques. SMC were selected as the cell type since the main purpose of the resulting scaffolds is for tissue engineered blood vessels. SMCs attached to and proliferated on and partly into the scaffolds. PMID:18615821

  2. PENGARUH MEDIUM PERENDAM TERHADAP SIFAT MEKANIK, MORFOLOGI, DAN KINERJA MEMBRAN NATA DE COCO

    Senny Widyaningsih

    2008-05-01

    Full Text Available Nata de coco is bacterial cellulose which is produced by Acetobacter xylinum in fermentation process of coconut water. Based on its properties, nata de coco can be used as a membrane. Soaking medium in purification of nata de coco gel can influence structure, morphology, and performance of nata de coco membrane. First medium was NaOCl 0.05% and NaOH 5%, Second medium was ultrasonic. Third medium was NaOH 1% and CH3COOH 1%. Mechanical property were analysized based on its tensile strength. Morphology of membrane was analysized using SEM. Performance of membrane was determined based on its permeability. The result showed that nata de coco membrane which had the best value on mechanical properties, morphology, and performance was membrane in third medium.

  3. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  4. Otimização da produção de nata (celulose bacteriana) por fermentação em superfície

    DANESI Eliane Dalva Godoy; Wosiacki, Gilvan

    1998-01-01

    A nata de coco, alimento glicídico obtido por fermentação em superfície promovida por Acetobacter xylinum, é bastante difundida em alguns países asiáticos, principalmente nas Filipinas. Como meio de cultivo são utilizadas a água ou o leite de coco, produtos de baixo valor econômico e resíduos de processamento da fruta; há indicativos na literatura, entretanto, de que outros resíduos agro-industriais como soro de leite ou mesmo suco de frutas podem ser utilizados. A fim de avaliar a produção d...

  5. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137Cs) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  6. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  7. Microbial Cellulose Assembly in Microgravity

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  8. High field nuclear magnetic resonance application to polysaccharide chemistry

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author)

  9. Inoculant production in developing countries - Problems, potentials and success

    Sustainable agriculture is a long-term goal that seeks to overcome some of problems and constraints that confront the economic viability, environmental soundness and social acceptance of agricultural production systems. In this context, bio-fertilizers assume special significance particularly because they are 'eco-friendly', but also since their alternative, chemical fertilizers are expensive. Undoubtedly, the most commonly used bio-fertilizers are soil bacteria of the genus Rhizobium, but others like Azolla, Azospirillum, various cyanobacteria also contribute significant amounts of N to e.g. rice. Other bacteria like Frankia and Acetobacter contribute N to trees of the genus Casuarina and sugarcane, respectively. Furthermore, although they are rarely used as inoculants, vesicular arbuscular mycorrhizae (VAM) and phosphobacteria help countless plants solubilise and assimilate soil phosphorus. Despite these advantages, bio-fertilizers could be more widely used in developing countries. Contingent upon greater use is improved quality of the inoculants, and all aspects of their production are discussed here. (author)

  10. Synthesis of Hydrogel Based on Nata De Coco and Acrylic Acid as Co-Monomer Using Free Radical Polymerization Method

    Nata de Coco or known as bacterial cellulose is produced by Acetobacter xylinum where it is more stable than plant cellulose. Moreover, it also provides outstanding advantages to be developed as an environmental responsive hydrogels. In this study the bacterial cellulose-g-acrylic acid hydrogel was synthesized by using a free radical polymerization method. Ammonium persulfate (APS) was used to initiate the reaction, while N,N'-methylene bis acrylamide has been used as the crosslinking agent. In order to test the hydrogel respond, swelling tests were made at different pH. Furthermore, ATR-FTIR analysis was used to determine the interactions between bacterial cellulose and acrylic acid. Finally, the determination of glass transition (Tg) was made by using DSC. (author)

  11. ANOTHER NITROGEN-FIXING MICROORGANISM IN SUGARCANE STALKS: Bacillus brevis?

    Lorelí de los A. Mirabal

    2000-01-01

    Full Text Available Con el objetivo de identificar un microorganismo formador de colonias blancas en medio de cultivo LGI, prove- niente de savia apoplástica del tallo de la caña de azúcar, se realizaron diferentes experimentos en los que se utilizó la variedad ML-318. De la misma se extrajo savia apoplástica, de la cual se aisló el microorganismo de interés, al que se le realizaron pruebas morfológicas, culturales y bioquímicas, las que revelaron un 65 % de probabilidad de que el microorganismo de interés se corresponde con Bacillus brevis. Se detectó actividad nitrogenasa por la reducción de acetileno a etileno. Además, los resultados indican interacción entre Acetobacter diazotrophicus y el microorganismo formador de colonias blancas identificado como Bacillus brevis.

  12. Biosynthesis and Characterization of Nanocellulose-Gelatin Films

    Muenduen Phisalaphong

    2013-02-01

    Full Text Available A nanocellulose-gelatin (bacterial cellulose gelatin (BCG film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v. The BCG films showed no cytotoxicity against Vero cells.

  13. Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar Occurrence of diazotrophic bacteria in different sugar cane genotypes

    FÁBIO BUENO DOS REIS JUNIOR

    2000-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a localização e o número de bactérias endofíticas em quatro genótipos de cana-de-açúcar e investigar sobre a possível existência de correlação com os resultados apresentados em trabalhos de quantificação da fixação biológica de nitrogênio (FBN. Fez-se um levantamento das bactérias diazotróficas presentes, e quantificou-se a população de Herbaspirillum spp. e Acetobacter diazotrophicus, em genótipos de cana-de-açúcar contrastantes quanto à capacidade de obter N da FBN. De acordo com o levantamento realizado neste trabalho, as bactérias estudadas (Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. e Acetobacter diazotrophicus estavam presentes nos quatro genótipos avaliados e em todas as partes da planta, exceto A. amazonense, que não foi isolado de amostras de folhas. A quantificação das bactérias Herbaspirillum spp. e A. diazotrophicus mostrou não haver diferenças significativas entre os genótipos, e que, geralmente, elas estão presentes em maior número nas raízes. Enquanto Herbaspirillum spp. mantém-se mais estável ao longo do ciclo da cultura, a população de A. diazotrophicus decresce com a aproximação do final do ciclo comercial. Pode-se sugerir que as diferenças entre as taxas de FBN encontradas nos diversos genótipos não é causada por diferenças na presença ou no número das bactérias aqui estudadas.The objective of this work was to find out the localization and number of endophytic bacteria in four sugar cane genotypes and investigate upon the possible existence of correlation to the results obtained in some studies about quantification of biological nitrogen fixation (BNF. A survey of the diazotrophic bacteria present in sugar cane genotypes differing in their capacity to obtain nitrogen through BNF was performed, and population of Herbaspirillum spp. and Acetobacter diazotrophicus was quantified. The bacteria tested in the

  14. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision

    Sun, Dongping; Yang, Jiazhi; Wang, Xin

    2010-02-01

    Bacterial cellulose (BC) nanofibers were biosynthesized by Acetobacter xylinum NUST5.2, and displayed a remarkable capability for orienting TiO2 nanoparticle arrays. Large quantities of uniform BC nanofibers coated with TiO2 nanoparticles can be easily prepared by surface hydrolysis with molecular precision, resulting in the formation of uniform and well-defined hybrid nanofiber structures. The mechanism of arraying spherical TiO2 nanoparticles on BC nanofibers and forming well-defined, narrow mesopores are discussed in this paper. The BC/TiO2 hybrid nanofibers were used as photocatalyst for methyl orange degradation under UV irradiation, and they showed higher efficiency than that of the commercial photocatalyst P25.Bacterial cellulose (BC) nanofibers were biosynthesized by Acetobacter xylinum NUST5.2, and displayed a remarkable capability for orienting TiO2 nanoparticle arrays. Large quantities of uniform BC nanofibers coated with TiO2 nanoparticles can be easily prepared by surface hydrolysis with molecular precision, resulting in the formation of uniform and well-defined hybrid nanofiber structures. The mechanism of arraying spherical TiO2 nanoparticles on BC nanofibers and forming well-defined, narrow mesopores are discussed in this paper. The BC/TiO2 hybrid nanofibers were used as photocatalyst for methyl orange degradation under UV irradiation, and they showed higher efficiency than that of the commercial photocatalyst P25. Electronic supplementary information (ESI) available: Thermogravimetric analysis curves for BC and BC/TiO2 hybrid nanofibers and XPS spectrum of an N-doped BC/TiO2 nanofiber sample. See DOI: 10.1039/b9nr00158a

  15. The evaluation of carrier material for increasing qualities of gel inoculum for nata de coco

    RUTH MELLIAWATI

    2008-10-01

    Full Text Available Producion of nata de coco is growing fast, in line with increasing product of biocellulose demand. It is requrire a pure inoculum to reach the best biocellulose product. The aim of this reseach is to evaluate the most appropriate carrier material of gel inoculum for nata de coco. The four carrier material are Carboxy Methyl Cellulose (CMC, Agar, Sagu starch and biocellulose pap and its inoculated by Acetobacter sp. RMG-2 and A. xylinum. After inoculation, then put in the plastic bag (50 g/bag and stored in 4° C. The texture of gel, population of cell and biocellulose production were observer in 7 days. The result shown that all matterial were suitable to used as carrier for gel inoculum. Both CMC and biocellulose pap have good texture as standard qualities. Population of A. xylinum was 1.28x109 cfu/mL (in CMC carrier, 1.6x106 cfu/mL (in biocellulose pap carrier after 15 weeks. The weight of biocellulose production was 500 g/L and 740 g/L medium respectively. While the population of Acetobacter sp. RMG-2 on CMC carrier was 1.79x108 cfu/mL and 7.75x107 cfu/mL on cellulose carrier with the weight of biocellulose production 630 g/L and 775 g/L medium respectively. Thus, the carrier material (CMC and Biocellulose pap are able to keep bacteria without loss their capability to produce cellulose.

  16. Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells

    Highlights: • Preparation of biocompatible chitosan–alginate electrode. • The synergism between Acetobacter aceti and Gluconobacter roseus. • Better biofilm formation and enhanced electricity generation. • Immobilized Prussian blue system replaces the conventional ferricyanide system. - Abstract: This work is aimed at finding new strategies for the modification of anode and cathode that can lead to improved performance of microbial fuel cells (MFCs). The electrochemical deposition of chitosan onto carbon felt followed by further modification with alginate led to the formation of a biocompatible platform for the prolific growth of microorganisms on the anode (Chit–Alg/carbon felt anode). The novel modification strategy for the formation of Prussian blue film, on the electrochemically deposited chitosan layer, has helped in circumventing the disadvantages of using ferricyanide in the cathode compartment and also for improving the electron transfer characteristics of the film in phosphate buffer. The anode was tested for its efficacy with four different substrates viz., glucose, ethanol, acetate and grape juice in a two compartment MFC. The synergistic effect of the mixed culture of Acetobacter aceti and Gluconobacter roseus was utilized for current generation. The electrocatalytic activity of the biofilm and its morphology were characterized by cyclic voltammetry and scanning electron microscopy, respectively. The power densities were found to be 1.55 W/m3, 2.80 W/m3, 1.73 W/m3 and 3.87 W/m3 for glucose, ethanol, acetate and grape juice, respectively. The performance improved by 20.75% when compared to the bare electrode

  17. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  18. 红茶菌中优势微生物的分离鉴定及系统发育分析%Isolation and Identification of Predominant Microbes from Kombucha and Phylogenic Analysis

    乔宏萍; 沙大年; 金泰廙; 杭晓敏

    2011-01-01

    In this manuscript, , the predominant microbes were isolated from Kombucha by different medium, 8. 3 106 cfu/mL of yeasts and 1. 4 107 cfu/mL of acetic bacteria were obtained. There were 4 strains of yeasts and 2 strains of acetic bacteria through purified from different colonies. By molecular identified and phylogenic analyzed, the isolate AC1 was identified as Acetobacter - senegalensis, AC2 as Gluconacetobacter saccharivoran, Yl as Pichia membranifaciens, Y2 as Pichia galeiformis, Y3 as Dekkera anomala, Y4 as Zygosaccharomyces bailii.%采用不同的培养基对红茶菌优势微生物进行了分离,共得到酵母菌8.3×106个/mL,醋酸菌1.4×107个/mL,选取不同的菌落进行纯化后得到2株醋酸菌和4株酵母菌.经过分子生物学鉴定和系统发育树分析后,初步确定AC1为醋酸杆菌Acetobacter senegalensis,AC2为葡糖醋杆菌Gluconacetobacter saccharivorans;Y1为膜璞毕赤酵母Pichia membrani aciens,Y2为毕赤酵母Pichia galei formis,Y3为异型德克酵母Dekkera anomala,Y4为拜耳接合酵母Zygosaccharomyces bailii.

  19. VARIETY OF MICROORGANISMS GROUPS LIVING ON BERRIES OF GRAPES

    Ageeva N. M.

    2015-09-01

    Candida. In the microflora of Cabernets, Risling and, especially, Karaburnu grapes, we have found lactic acid bacteria Lactobacillus plantarum and Lactobacillus brevis. Lactobacillus plantarum. Among the bacteria the total quantity of coccic flora composes - 56 %, the rod-shaped - 44 %. Two types of active acetous bacteria are identified – Acetobacter aceti and Acetobacter xelinum. Especially high was their surface concentration on the berries of Kachich type of grapes

  20. Avaliação da resposta inflamatória traqueal ao curativo de celulose bacteriana após escarificação cirúrgica em coelhos Tracheal inflammatory response to bacterial cellulose dressing after surgical scarification in rabbits

    Angelo D'urso Panerari

    2008-08-01

    Full Text Available Dentre as causas de insucesso nas cirurgias para a estenose traqueal está a formação de tecidos de cicatrização exuberantes. O uso de curativos para evitar esta reação pode ser de grande valia nestes casos. A celulose bacteriana produzida por acetobacter xylinun pode ser útil nestes casos. Não há estudos na região laringotraqueal. OBJETIVO: Avaliar a resposta tecidual subglótica de coelhos após escarificação e colocação de curativo de celulose, comparando com grupo controle. FORMA DE ESTUDO: Experimental MATERIAL E MÉTODOS: Foram estudados 26 coelhos, submetidos a escarificação da região laringotraqueal e tratados com curativo e comparados com controle. Foram estabelecidos 4 tempos de seguimento. Os seguimentos laringotraqueais foram examinados histologicamente e os resultados foram avaliados estaticamente. RESULTADOS: O grupo de estudo evoluiu com o passar do tempo com resultados estatisticamente semelhantes ao do grupo controle, nos parâmetros Congestão vascular, Exsudato purulento, Inflamação aguda, Integridade do epitélio, Proliferação fibrosa e Reação granulomatosa. CONCLUSÃO: Não foram observadas diferenças entre os grupos controle e de estudo quanto aos parâmetros inflamatórios ou cicatriciais. Não houve sinais inflamatórios relacionados ao uso da membrana de celulose que não tivessem ocorrido devido ao traumatismo cirúrgico.Exuberant scarring tissue formation is among the failure causes of tracheal stenosis surgery. Dressings that could avoid such reaction could be very helpful in these cases. Bacterial cellulose, produced by acetobacter xylinun can be useful in these cases. There are no studies in the laryngotracheal region. AIM: to assess subglottic tissue response in rabbits after scarification and placement of cellulose dressing, and comparing it to a control group. STUDY DESIGN: experimental. MATERIALS AND METHODS: 26 rabbits underwent laryngotracheal scarification, received the dressing and

  1. Study of Process for Bacterial Cellulose Fermentation with Pomace and Properties of the Product%利用苹果渣发酵生产细菌纤维素工艺及产物性能研究

    张雯; 葛万云; 齐香君

    2015-01-01

    In order to increase the producing efficiency of bacterial cellulose (BC )fermented by Acetobacter xylinum using pomace, single factor and orthogonal experiments were used to optimize the hydrolysis process of pomace. Meanwhile, the properties of BC were compared through fourier transform infrared (FT-IR) and X-ray diffraction (XRD). According to the results of experiments, the optimal hydrolysis process were determined as follows: liquid-solid ratio 4 mL/g, dosage of celluclast 16.8 EGU/g, pH5.5, hydrolytic temperature 55 ℃, hydrolytic time 40 h. Under these conditions, the productive rate of reducing sugar was 38.02%. The properties and structures of BC produced with pomace hydrolysate were confirmed to be basically same with BC produced with basic medium, which indicated that the pomace hydrolysate could be used as part of raw materials to ferment BC and would not affect the properties of BC.%为提高木醋杆菌(Acetobacter xylinum)发酵苹果渣生产细菌纤维素(Bacterial cellulose,BC)的生产效率,采用单因素及正交实验对纤维素酶水解苹果渣工艺进行优化,同时利用傅里叶红外光谱(FT-IR)和X-射线衍射(XRD)对发酵产物BC的性能和结构进行比较.单因素及响应面实验结果确定苹果渣最优水解工艺:液固比4 mL/g,酶用量16.8 EGU/g,pH5.5,水解温度55℃,水解时间40 h.此条件下,苹果渣水解产生还原糖产率为38.02%.苹果渣水解液发酵产物BC结构性能与基本培养基发酵产物BC基本一致. 研究结果表明苹果渣能够作为发酵原料发酵生产BC,且不影响BC性能.

  2. Synthesis of 14C-labelled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), nitrocellulose (NC) and glycidyl azide polymer (GAP) for use in assessing the biodegradation potential of these energetic compounds

    Within the framework of an R and D project on bioremediation of soils contaminated with energetic compounds, the biodegradation of energetic products such as hexogen (RDX), trinitrotoluene (TNT), nitrocellulose (NC) and glycidyl azide polymer (GAP) is under study. Microcosm assays must be performed with radioactive carbon-14 labelled products in order to follow the biodegradation process. 14C-RDX was prepared by nitration of hexamethylenetetramine (HMTA) according to the Hale process. 14C-ring and methyl labelled TNTs synthesized according to the Dorey and Carper procedure. 14C-cellulose was synthesized from 14C-glucose by Acetobacter xylinum. Nitration of the 14C-cellulose yielded 14C-nitrocellulose. 14C-glycidyl azide polymer was obtained by polymerization and azidation of 14C-epichlorohydrin (ECH) which was synthesized from 14C-glycerol. Hydrochlorination of 14C-glycerol and epoxidation of the resulting 14C-1,3-dichloro 2-propanol yielded 14C-ECH. The syntheses of these 14C-labelled explosives are described in this paper. (Author)

  3. Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process

    Straeuber, Heike; Kleinsteuber, Sabine [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy; UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Environmental Microbiology; Schroeder, Martina [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy

    2012-12-15

    Biogas production from lignocellulosic feedstock not competing with food production can contribute to a sustainable bioenergy system. The hydrolysis is the rate-limiting step in the anaerobic digestion of solid substrates such as straw. Hence, a detailed understanding of the metabolic processes during the steps of hydrolysis and acidogenesis is required to improve process control strategies. The fermentation products formed during the acidogenic fermentation of maize silage as a model substrate in a leach-bed process were determined by gas and liquid chromatography. The bacterial community dynamics was monitored by terminal restriction fragment length polymorphism analysis. The community profiles were correlated with the process data using multivariate statistics. The batch process comprised three metabolic phases characterized by different fermentation products. The bacterial community dynamics correlated with the production of the respective metabolites. In phase 1, lactic and acetic acid fermentations dominated. Accordingly, bacteria of the genera Lactobacillus and Acetobacter were detected. In phase 2, the metabolic pathways shifted to butyric acid fermentation, accompanied by the production of hydrogen and carbon dioxide and a dominance of the genus Clostridium. In phase 3, phylotypes affiliated with Ruminococcaceae and Lachnospiraceae prevailed, accompanied by the formation of caproic and acetic acids, and a high gas production rate. A clostridial butyric type of fermentation was predominant in the acidogenic fermentation of maize silage, whereas propionic-type fermentation was marginal. As the metabolite composition resulting from acidogenesis affects the subsequent methanogenic performance, process control should focus on hydrolysis/acidogenesis when solid substrates are digested. (orig.)

  4. Encapsulation of Platelet in Kefiran Polymer and Detection of Bioavailability of Immobilized Platelet in Probiotic Kefiran as A New Drug for Surface Bleeding

    Anahita Jenab

    2015-11-01

    Full Text Available Background : Kefir contains lactic acid bacteria (Lactobacillus, Lactococcus, Leuconostoc, Acetobacter and Streptococcus and yeasts (Kluyveromyces, Torula, Candida, Saccharomyces .Kefiran is the polysaccharide produced by lactic acid bacteria in kefir.Methods : Kefiran was prepared from milk containing 0.5% fat and 10 grams kefir grains and was separated from kefir by ethanol (0.02 gram following entrapping the platelets to this polymer. Ligand of the platelet-polysaccharide was studied by FTIR.Results : FTIR results showed that the bands of C-O and C-O-C connections were formed and the polysaccharides had been attached to the receptors of the platelet glycoproteins (GP Ib,GPIIb / IIIa. Stability and encapsulation of the platelet and kefiran were assessed by Coulter Counter. Encapsulation of the platelets by polysaccharide at the beginning caused to reduce the number of platelets following by releasing of 50% of the platelets after 3 hours.Conclusion : The platelets were encapsulated in kefiran polymer and detected for bioavailability as new drug for surface bleeding. Also, kefiran has antimicrobial and antifungal properties. On the other hand, the existence of nisin in kefiran could be useful as an antibacterial lantibiotic. 

  5. Optimization performance of an AnSBBR applied to biohydrogen production treating whey.

    Lima, D M F; Lazaro, C Z; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-03-15

    The present study investigated the influence of the influent concentration of substrate, feeding time and temperature on the production of biohydrogen from cheese whey in an AnSBBR with liquid phase recirculation. The highest hydrogen yield (0.80 molH2.molLactose(-1)) and productivity (660 mLH2 L(-1) d(-1)) were achieved for influent concentrations of 5400 mgDQO L(-1). No significant difference was noted in the biological hydrogen production for the feeding time conditions analyzed. The lowest temperature tested (15 °C) promoted the highest hydrogen yield and productivity (1.12 molH2 molLactose(-1) and 1080 mLH2 L(-1) d(-1)), and for the highest temperature (45 °C), hydrogen production did not occur. The indicator values for the hydrogen production obtained with this configuration were higher than those obtained in other studies using traditional configurations such as UASBr and CSTR. A phylogenetic analysis showed that the majority of the analyzed clones were similar to Clostridium. In addition, clones phylogenetically similar to the Lactobacilaceae family, notably Lactobacillus rhamnosus, and clones with similar sequences to Acetobacter indonesiensis were observed in small proportion in the reactor. PMID:26751813

  6. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.

    Lee, Koon-Yang; Buldum, Gizem; Mantalaris, Athanasios; Bismarck, Alexander

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium, pH, temperature, and oxygen content on the morphology and yield of BC are reviewed. In addition, the progress made to date on the genetic modification of bacteria to increase the yield of BC and the large-scale production of BC using various bioreactors, namely static and agitated cultures, stirred tank, airlift, aerosol, rotary, and membrane reactors, is reviewed. The challenges in commercial scale production of BC are thoroughly discussed and the efficiency of various bioreactors is compared. In terms of the application of BC, particular emphasis is placed on the utilization of BC in advanced fiber composites to manufacture the next generation truly green, sustainable and renewable hierarchical composites. PMID:23897676

  7. Microbial diversity and metabolite composition of Belgian red-brown acidic ales.

    Snauwaert, Isabel; Roels, Sanne P; Van Nieuwerburg, Filip; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2016-03-16

    Belgian red-brown acidic ales are sour and alcoholic fermented beers, which are produced by mixed-culture fermentation and blending. The brews are aged in oak barrels for about two years, after which mature beer is blended with young, non-aged beer to obtain the end-products. The present study evaluated the microbial community diversity of Belgian red-brown acidic ales at the end of the maturation phase of three subsequent brews of three different breweries. The microbial diversity was compared with the metabolite composition of the brews at the end of the maturation phase. Therefore, mature brew samples were subjected to 454 pyrosequencing of the 16S rRNA gene (bacteria) and the internal transcribed spacer region (yeasts) and a broad range of metabolites was quantified. The most important microbial species present in the Belgian red-brown acidic ales investigated were Pediococcus damnosus, Dekkera bruxellensis, and Acetobacter pasteurianus. In addition, this culture-independent analysis revealed operational taxonomic units that were assigned to an unclassified fungal community member, Candida, and Lactobacillus. The main metabolites present in the brew samples were L-lactic acid, D-lactic acid, and ethanol, whereas acetic acid was produced in lower quantities. The most prevailing aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, which might be of impact on the aroma of the end-products. PMID:26802571

  8. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    D. Darwis

    2012-08-01

    Full Text Available Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in–vitro degradation study in synthetic body fluid (SBF of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure

  9. Investigation the Effects of Different Doses Organic Fertilizers and Phosphate Solubilizing Bacterias on Yield and Nutrient Contents in Chickpea (Cicer arietinum L.

    Ferit SÖNMEZ

    2015-07-01

    Full Text Available The study was conducted to determine the effect of phosphate solubilizing bacteria (N2; Bacillus megaterium M-3, TV-6I; Cellulosimicrobium cellulans, TV-34A; Hafnia Alve, TV-69E; Acetobacter pasteurianus and TV-83F; Bacillus cereus and organic fertilizer (0, 10 and 20 ton / ha on the seed yield and nutrient content of chickpea under field conditions in 2010 and 2011 growing seasons. Phosphate solubilizing bacteria used in this study were determined by the separate investigation conducted in chamber room by using ten phosphate solubilizing bacteria and organic fertilizer (control, %5,%10. The tiral were laid out with a factorial design in randomized complete block with three replications. In this study, plant height, primary branches, secondary branches and number of pods per plant, number of seeds per pod, grain yield and biological yield and nutrient content of stem and seed were determined. According to the results of the study bacteria applications increased significantly biological and seed yield. Bacteria applications without organic fertilizer increased nutrient contents of seed and steed except cupper content. In case of inoculation with organic fertilizer provided more increases in biological and seed yields. The highest seed yield were obtained from application of 20 ton/ha + N2 (Bacillus megaterium M-3 with 1020 kg/ha and 1793 kg/ha in 2010 and 2011 years, respectively. Bacteria without organic fertilizer application were more active in terms of phosphorus uptake in both years. 

  10. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  11. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    Esther Meersman

    Full Text Available The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts, and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts. Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  12. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix.

    Zogaj, X; Nimtz, M; Rohde, M; Bokranz, W; Römling, U

    2001-03-01

    Production of cellulose has been thought to be restricted to a few bacterial species such as the model organism Acetobacter xylinus. We show by enzymatic analysis and mass spectrometry that, besides thin aggregative fimbriae, the second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The bcsA, bcsB, bcsZ and bcsC genes responsible for cellulose biosynthesis are not regulated by AgfD, the positive transcriptional regulator of the rdar morphotype. Transcription of the bcs genes was not co-expressed with the rdar morphotype under any of the environmental conditions examined. However, cellulose biosynthesis was turned on by the sole expression of adrA, a gene encoding a putative transmembrane protein regulated by agfD, indicating a novel pathway for the activation of cellulose synthesis. The co-expression of cellulose and thin aggregative fimbriae leads to the formation of a highly hydrophobic network with tightly packed cells aligned in parallel in a rigid matrix. As the production of cellulose would now appear to be a property widely distributed among bacteria, the function of the cellulose polymer in bacteria will have to be considered in a new light. PMID:11260463

  13. Development of self-assembled bacterial cellulose-starch nanocomposites

    Grande, Cristian J. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Torres, Fernando G., E-mail: fgtorres@pucp.edu.pe [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Gomez, Clara M., E-mail: Clara.Gomez@uv.es [Departament de Quimica Fisica and Institut de Ciencia dels Materials, Dr Moliner 50, Universitat de Valencia, E-46100 Burjassot, Valencia (Spain); Troncoso, Omar P. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Canet-Ferrer, Josep; Martinez-Pastor, Juan [Unit of Optoelectronic Materials and Devices of the University of Valencia, P.O. Box 22085, 46071 Valencia (Spain)

    2009-05-05

    A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)-starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assembled BC-starch nanocomposites showed a coherent morphology that was assessed by Atomic Force Microscopy (AFM) and Environmental Scanning Electron Microscopy (ESEM). The nanocomposites structure was studied using X-ray diffraction and ATR-FTIR spectroscopy. The degree of crystallinity of the final nanocomposites was used to estimate the volume fraction of BC. The aim of this paper is to explore a new methodology that could be used to produce nanomaterials by introducing a different phase into a cellulose nanofibre network during its assembly.

  14. Adaptability of microbial inoculators and their contribution to degradation of mineral oil and PAHs

    2006-01-01

    Five dominant bacteria strains(Acetobacter sp., Alcaligenes sp., Micrococcus sp., Arthrobacter sp. and Bacillus sp.) and five fungi strains (Cephalosporium sp. I, Cephalosporium sp. Ⅱ, Aspergillus sp. Ⅰ, Aspergillus sp. Ⅱ and Fusarium sp.) isolated from petroleum-contaminated soil were used to assess the potential capability of mineral oil and PAH enhanced degradation separately and jointly using the batch liquid medium cultivation with diesel oil spiked at 1000 mg/L. The experiment was performed on a reciprocal shaker in the darkness at 25℃ to 30℃ for 100 d. The dynamic variation in the activity of microbial inoculators in each treatment and the degradation of the target pollutants during the period of experiment were monitored. Results showed a more rapid biodegradation of mineral oil and PAHs at the beginning of the experiment (about 20 d) by dominant bacteria, fungi and their mixture than that of the indigenous microorganisms, however, thereafter an opposite trend was exhibited that the removal ratio by indigenous microorganisms was superior to any other dominant treatments and the tendency lasted till the end of the experiment, indicating the limited competitive capability of dominant microorganisms to degrade the contaminants, and the natural selection of indigenous microorganisms for use in the removal of the contaminants. At the end of the experiment, the removal ratio of mineral oil ranged from 56.8 % to 79.2 % and PAHs ranged from 96.8 % to 99.1% in each treatment by microbial inoculators.

  15. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  16. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  17. The bacterial communities of Drosophila suzukii collected from undamaged cherries.

    Chandler, James Angus; James, Pamela M; Jospin, Guillaume; Lang, Jenna M

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  18. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  19. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration. PMID:25525956

  20. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    Lima, Glaucia de Marco [Universidade do Vale do Itajai (PMCF/UNIVALI), Itajai, SC (Brazil). Programa de Mestrado em Ciencias Farmaceuticas; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A., E-mail: cesar.tischer@pq.cnpq.b [Universidade Federal do Parana (BIOPOL/UFPR), Curitiba, PR (Brazil). Lab. de Biopolimeros

    2009-07-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  1. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.

    Wei, Ping; Gao, Jia-Xin; Zheng, Gao-Wei; Wu, Hong; Zong, Min-Hua; Lou, Wen-Yong

    2016-07-20

    The novel anti-Prelog stereospecific carbonyl reductase from Acetobacter sp. CCTCC M209061 was successfully expressed in E. coli combined with glucose dehydrogenase (GDH) to construct an efficient whole-cell biocatalyst with coenzyme NADH regeneration. The enzymatic activity of GAcCR (AcCR with a GST tag) reached 304.9U/g-dcw, even 9 folds higher than that of wild strain, and the activity of GDH for NADH regeneration recorded 46.0U/mg-protein in the recombinant E. coli. As a whole-cell biocatalyst, the recombinant E. coli BL21(DE3)pLysS (pETDuet-gaccr-gdh) possessed a broad substrate spectrum for kinds of carbonyl compounds with encouraging yield and stereoselectivity. Besides, the asymmetric reduction of ethyl 4-chloroacetoacetate (COBE) to optically pure ethyl 4-chloro-3-hydroxybutyrate (CHBE) catalyzed by the whole-cell biocatalyst was systematically investigated. Under the optimal reaction conditions, the optical purity of CHBE was over 99% e.e. for (S)-enantiomer, and the initial rate and product yield reached 8.04μmol/min and 99.4%, respectively. Moreover, the space-time yield was almost 20 folds higher than that catalyzed by the wild strain. Therefore, a new, high efficiency biocatalyst for asymmetric reductions was constructed successfully, and the enantioselective reduction of prochiral compounds using the biocatalyst was a promising approach for obtaining enantiopure chiral alcohols. PMID:27211999

  2. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  3. Development of self-assembled bacterial cellulose-starch nanocomposites

    A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)-starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assembled BC-starch nanocomposites showed a coherent morphology that was assessed by Atomic Force Microscopy (AFM) and Environmental Scanning Electron Microscopy (ESEM). The nanocomposites structure was studied using X-ray diffraction and ATR-FTIR spectroscopy. The degree of crystallinity of the final nanocomposites was used to estimate the volume fraction of BC. The aim of this paper is to explore a new methodology that could be used to produce nanomaterials by introducing a different phase into a cellulose nanofibre network during its assembly.

  4. Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    Song, D D; Jacques, N A

    1999-01-01

    The recombinant fructosyltransferase (Ftf) of Streptococcus salivarius was expressed in Escherichia coli and purified to electrophoretic homogeneity after a combination of adsorption, ion-exchange and gel-filtration chromatography. The N-terminal signal sequence of the Ftf was removed by E. coli at the same site as in its natural host. The purified Ftf exhibited maximum activity at pH 6.0 and 37 degrees C, was activated by Ca2+, but inhibited by the metal ions Cu2+, Zn2+, Hg2+ and Fe3+. The enzyme catalysed the transfer of the fructosyl moiety of sucrose to a number of acceptors, including water, glucose and sucrose via a Ping Pong mechanism involving a fructosyl-enzyme intermediate. While this mechanism of catalysis is utilized by the levansucrases of Bacillus subtilis and Acetobacter diazotrophicus and the values of the kinetic constants for the three enzymes are similar, sucrose was a far more efficient fructosyl-acceptor for the Ftf of S. salivarius than for the two other enzymes. PMID:10393084

  5. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  6. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part 1: Molybdenum in plants.

    Anke, M; Seifert, M

    2007-09-01

    In 1930, Bortels showed that molybdenum is necessary for nitrogen fixation in Acetobacter, and in 1939 Arnon and Stout reported that molybdenum is essential for life in higher plants. Nitrogenase is the nitrogen-fixing enzyme complex, while nitrate reductase requires molybdenum for its activity. Molybdenum occurs in the earth crust with an abundance of 1.0-1.4 mg/kg. The molybdenum content of the vegetation is determined by the amount of this element in the soil and its pH-value. The weathering soils of granite, porphyry, gneiss and Rotliegendes produce a molybdenum-rich vegetation. Significantly poorer in Mo is the vegetation on loess, diluvial sands, alluvial riverside soils and especially on Keuper and Muschelkalk weathering soils, which produce legumes and, e.g. cauliflower with molybdenum deficiency symptoms. The molybdenum content of the flora decreases with increasing age. Legumes store the highest molybdenum levels in the bulbs of their roots; on average, they accumulate more molybdenum than herbs and grasses do. The danger of molybdenum toxicity in plants is small. PMID:17899788

  7. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials.

    Ripari, Valery; Gänzle, Michael G; Berardi, Enrico

    2016-09-01

    The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus graminis, or Lactobacillus rossiae, and Saccharomyces cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material. PMID:27240218

  8. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  9. 宏基因组学技术分析传统食醋发酵过程微生物多样性%Metagenomic Analysis of Microbial Diversity in the Traditional Vinegar Fermentation Process

    聂志强; 韩玥; 郑宇; 申雁冰; 王敏

    2013-01-01

    传统食醋具有悠久的历史,生产工艺独特,酿造过程中复杂的微生物群落及其代谢产物赋予了传统食醋独特的风味.采用宏基因组学技术对天津独流老醋醋酸发酵过程中细菌群落组成及其多样性进行分析.结果表明:在醋酸发酵前期细菌具有较高的多样性,主成分分析表明与醋酸发酵过程相关的细菌为乳杆菌属(Lactobacillus)、醋杆菌属(Acetobacter)和念珠藻属(Nostoc).随着醋酸发酵的进行,醋酸菌的含量呈增加趋势,乳酸菌的丰度降低,在整个醋酸发酵过程中乳酸菌的丰度远远高于其他细菌,说明乳酸菌可能对食醋的风味形成具有重要作用.

  10. EFEKTIVITAS NIRA AREN SEBAGAI BAHAN PENGEMBANG ADONAN ROTI

    Mody Lempang

    2013-12-01

    Full Text Available Fermentation is a natural process that happen in fresh-sweet sap of aren trees (Arenga pinnata Merr., because many kinds of microorganism stay and life in this substance e.g. bakteria (Acetobacter acetic and yeast (Saccharomyces tuac. Species of yeast from genus of Saccharomyses, e.g. Saccharomyses serivisae is wellknown as microorganism that can ferment sugar (glucose into alchohol and CO2. This natural process as well happen in aren sap, so that this substance potencially using as a swollen agent of bread or cake dough. This research objective is to recognize the effectiveness of aren sap as a swollen agent of bread dough. Fermentation duration of bread dough was one hour by using swollen agent of fresh, 10 hours old and 20 hours old of aren sap. Daily yield of sap tapped from aren trees in Maros district, South Sulawesi province was 7 litre (4-5 litre collected in the morning and 2-3 litre colected in the afternoon. Aren sap containt some of nutritions e.g. carbohydrate, protein, fat, vitamin C and mineral. Sweet taste of aren sap caused by it’s charbohydrate content of 11.18%. The effectiveness of aren sap as a swollen agent of bread dough is lower than instant (commercial yeast. The older of aren sap the lower of it’s effectiveness as a swollen agent of dough and kuality of bread yield.    Keywords : Sap, Arenga pinnata, swollen agent, bread dough

  11. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content.

    Huang, Jia-Hsin; Douglas, Angela E

    2015-09-01

    Gut microorganisms are essential for the nutritional health of many animals, but the underlying mechanisms are poorly understood. This study investigated how lipid accumulation by adult Drosophila melanogaster is reduced in flies associated with the bacterium Acetobacter tropicalis which displays oral-faecal cycling between the gut and food. We demonstrate that the lower lipid content of A. tropicalis-colonized flies relative to bacteria-free flies is linked with a parallel bacterial-mediated reduction in food glucose content; and can be accounted for quantitatively by the amount of glucose acquired by the flies, as determined from the feeding rate and assimilation efficiency of bacteria-free and A. tropicalis-colonized flies. We recommend that nutritional studies on Drosophila include empirical quantification of food nutrient content, to account for likely microbial-mediated effects on diet composition. More broadly, this study demonstrates that selective consumption of dietary constituents by microorganisms can alter the nutritional balance of food and, thereby, influence the nutritional status of the animal host. PMID:26382071

  12. PEMANFAATAN MEMBRAN NATA DE COCO SEBAGAI MEDIA FILTRASI UNTUK REKOVERIMINYAK JELANTAH

    Senny Widyaningsih

    2013-05-01

    Full Text Available Peningkatan kualitas minyak jelantah telah dilakukan dengan metode filtrasi menggunakan membran selulosa bakterial yang terbuat dari nata de coco. Pembuatan membran nata de coco dilakukan dengan cara memurnikan nata de coco hasil proses fermentasi bakteri Acetobacter xylinum. Karakterisasi membran meliputi berat jenis, nilai fluks, dan koefisien rejeksi. Proses filtrasi minyak jelantah menggunakan tekanan sebesar 4 kgf/cm2 dengan metode dead-end. Hasil penelitian menunjukkan bahwa karakterisasi membran nata de coco memiliki berat jenis sebesar 0,6314 g/cm3, nilai fluks air sebesar 104,021 L/m2.jam, fluks minyak sebesar 1,004 L/m2.jam dan fluks Dekstran T-500 sebesar 52,208 L/m2.jam. Nilai rejeksi membran sebesar 15,11%. Peningkatan kualitas minyak jelantah dibanding sebelum rekoveri dapat dilihat dari penurunan angka asam sebesar 54,95%, kadar air sebesar 93,22%, serta peningkatan angka penyabunan sebesar 29,09% dan angka iod sebesar 8,14%.

  13. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. PMID:26489032

  14. Bioskin: A New Biomaterial for Therapeutical and Biotechnological Purposes

    Xavier-Filho L

    2005-01-01

    @@ 1Results and Discussion Bioskin is new material by Acetobacter xylinum, Saccharomyces cerevisae and Schyzosaccharomyces pombe in mixed culture on sucrose. The Material has been revealed as hypoaller- genic,antibiotic,antithermic and sedative. It is widely used for skin regeneration in therapy of burns as well as in odontological surgery.Bioskin contains high amounts of D-glucosamine and N-acetyl-D-glucosamine. It does not produce ash after heating at 600 ℃ and its combustion heat is similar to that of several current woods, such as pine oak or maple Bioskin has been used to immobilize algal cells, fungal spores and Bacteria in order to study some metabolic events. In addition, immobilization, of several enzymes has been performed using bioskin as inert matrix.Catalase was immobilized at pH 7.0 by ionic adsorption (aminosugars provide a net positive charge neutral pH values) whereas several glycoproteins can be immobilized on bioskin by an affinity mechanism.

  15. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine. PMID:26090420

  16. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    Feng Hong

    2015-01-01

    Full Text Available Bacterial nanocellulose (BNC has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  17. Microbes Associated with Freshly Prepared Juices of Citrus and Carrots

    Kamal Rai Aneja

    2014-01-01

    Full Text Available Fruit juices are popular drinks as they contain antioxidants, vitamins, and minerals that are essential for human being and play important role in the prevention of heart diseases, cancer, and diabetes. They contain essential nutrients which support the growth of acid tolerant bacteria, yeasts, and moulds. In the present study, we have conducted a microbiological examination of freshly prepared juices (sweet lime, orange, and carrot by serial dilution agar plate technique. A total of 30 juice samples were examined for their microbiological quality. Twenty-five microbial species including 9 bacterial isolates, 5 yeast isolates, and 11 mould isolates were isolated from juices. Yeasts and moulds were the main cause of spoilage of juices. Aspergillus flavus and Rhodotorula mucilaginosa were observed in the maximum number of juice samples. Among bacteria Bacillus cereus and Serratia were dominant. Escherichia coli and Staphylococcus aureus were detected in few samples. Candida sp., Curvularia, Colletotrichum, and Acetobacter were observed only in citrus juice samples. Alternaria, Aspergillus terreus, A. niger, Cladosporium, and Fusarium were also observed in tested juice samples. Some of the microorganisms detected in these juice samples can cause disease in human beings, so there is need for some guidelines that can improve the quality of fruit juices.

  18. Permeabilidad hidráulica e hinchamiento de membranas de celulosa bacteriana

    L.A. Caicedo

    2006-01-01

    Full Text Available El grado de hinchamiento y la permeabilidad hidráulica fueron evaluados en membranas de celulosa bacteriana obtenida por cultivo estático de Acetobacter sp. por tres y nueve días, en medio con glucosa y extracto de levadura. Las pruebas de hinchamiento fueron realizadas en disoluciones etanólicas de 0, 10, 50 y 95 % (v/v de etanol, por 24 h a (18 ± 1 °C . El grado de hinchamiento definido como la relación entre la diferencia de peso final e inicial y peso inicial de la membrana, mostró que estas pueden retener 690 veces su peso en agua, en tanto que en disoluciones del 95 % solo se retiene 10 veces su peso seco. Membranas prehinchadas en agua retienen cerca de 4 veces más con respecto a las no prehinchadas. El flujo de permeado es proporcional a la presión aplicada y la permeabilidad hidráulica para membranas de nueve días fue de 0,227 3 mL/kPa199 · cm2 · min, cerca del 50 % de la permeabilidad obtenida en membranas de 3 d . Con disoluciones de etanol las membranas presentaron permeabilidades menores en relación con las obtenidas con agua.

  19. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter. PMID:26742622

  20. Brazilian kefir: structure, microbial communities and chemical composition

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  1. The Eschericia coli Growth Inhibition Activity of Some Fermented Medicinal Plant Leaf Extract from the Karo Highland, North Sumatra

    NOVIK NURHIDAYAT

    2009-10-01

    Full Text Available A lot of traditional medicinal plant has antibacterial acitivities. Most of these plants are freshly chewed or grounded and used directly to treat infectious bacterial deseases. However, some practices employ a traditionally spontaneous fermentation on boiled extracted leaf, root or other parts of the plant. This work reports a laboratory stimulated spontaneous fermentation of leaf extracts from selected medicinal plants collected from the Karo Higland. The spontaenous fermentation was stimulated to be carried out by the Acetobacter xylinum and Saccharomyces cerevisiae. The anti-infectious agent activity was assayed on the Eschericia coli growth inhibition. A complementary non fermented leaf extract was also made and assayed as a comparative measure. Indeed, the fermented leaf extract of bitter bush (Eupatorium pallescens, cacao (Theobroma cacao, avocado (Persia gratissima, passion fruit (Passiflora edulis, cassava (Cassava utillissima, diamond flower (Hedyotis corymbosa, periwinkle (Catharanthus roseus, and gandarusa (Justicia gendarussa have relatively higher anti-E.coli acitivity than those of non fermented ones. However, there were no anti-E.coli activity was detected in both fermented and non fermented leaf extract of the guava (Psidium guajava and common betel (Piper nigrum.

  2. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    Anam eYousaf

    2015-09-01

    Full Text Available Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS. In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four SS genes (i.e. SSA, SS1, SS2 and SS3, the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43% and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes.

  3. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    Manggau Marianti

    2011-11-01

    Full Text Available Three terpenoids, including two diterpenes (curcusone B and jatrophone and a triterpene (stigmasterol have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLCtechnique with silica gel as an adsorben and some solvents as eluents. The compound structures were determined byspectroscopic methodes i.e. UV-vis, FTIR, NMR (1-D, 2-D and were then compared based on their spectroscopic datawith similiar data from literatures. The biological properties of these compounds were evaluated against four strains ofbacteria (Acetobacter sp., Eschericia coli, Staphylococcus aureus, and Streptococcus sp., 4 strains of fungi (Aspergilusniger, Penicillium sp. (grey, Penicillium sp. (white and Rhizopus sp. and murine leukemia P-388 cells. The resultsshowed that cytotoxic property of curcusone B towards murine leukemia P-388 cells is better than jatrophone andstigmasterol which are IC50 = 0.57 μg/mL (1.93 μM for curcusone B and IC50 > 100 μg/mL for jatrophone andstigmasterol. Meanwhile, activities against bacteria, jatrophone is better than curcusone B and stigmasterol. Jatrophoneis the most active against S. aureus (bacteria with growth inhibition zone 36 mm and A.niger (fungi is 44 mm. Furtherstudy indicated that jatrophone was bacteriostatic against S. aureus.

  4. 袋装变质食醋产膜菌的分离鉴定及其控制%Identification and controlling of producing membrane strains isolated from bagged deterioration vinegar

    赵爽; 朱亚琴; 刘书亮; 张奶英; 韩新锋; 周康; 何利; 李建龙

    2014-01-01

    从货架期内袋装产膜醋中分离得到8株产膜菌,对其中两株代表菌株D23、D24,进行形态学特征和16S rDNA鉴定,并以这两株产膜菌为对象,研究不同酸度、热杀菌条件及防腐剂对其控制.结果表明,菌株D23为木葡糖醋酸杆菌(Gluconacetobacter oboediens),菌株D24为巴氏醋杆菌(Acetobacter pasteurianus);当食醋的酸度≥3.5g/100mL,2%接种量的产膜菌不能在食醋中生长繁殖并产膜;产膜菌的热致死条件是60℃ 10min;三种防腐剂(尼泊金乙酯、山梨酸钾、苯甲酸钠)对产膜菌产膜均有良好的抑制作用.

  5. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  6. Microbially influenced corrosion communities associated with fuel-grade ethanol environments.

    Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R

    2015-08-01

    Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion. PMID:26092755

  7. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    Eli Rohaeti

    2016-05-01

    Full Text Available This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 days. The dried bacterial cellulose was composited with chitosan and glycerol by immersion method on 2% of chitosan solution and 0.5% of glycerol solution. UV-Vis spectroscopy is used to determine the formation of silvernanoparticles and Particle Size Analyzer to test the size and particle size distribution. Characterization was conducted to bacterial cellulose and its composite included functional groups by FTIR, the mechanical properties by Tensile Tester, crystallinity by XRD, surface photograph by SEM, and antibacterial test against S. aureus and E. coli by the shake flask turbidimetry method. Silver nanoparticle characterization indicated that silver nanoparticles are formed at a wavelength of 421.80 nm, yellow, diameter particle size of 61.8 nm. SEM images showed that the surface of bacterial cellulose had deposited silver nanoparticles and antibacterial test showed an inhibitory effect of bacterial cellulose, bacterial cellulose-chitosan composite, and bacterial cellulose-chitosan-glycerol composite which are deposited silver nanoparticles against the growth of S. aureus and E. coli bacteria.

  8. Research on the Application of Bacterial Cellulose in Papermaking%细菌纤维素在造纸工业中的应用

    汤卫华; 贾士儒; 王芃; 殷海松

    2013-01-01

    细菌纤维素是由细菌产生的纯度很高的纳米级纤维素,具有结晶度和纯度高、机械强度大和生物相容性好等特点.在植物纤维中添加细菌纤维素,可改善纸张性能.细菌纤维素可用于制备特种纸和“电子纸”.%Bacterial cellulose (BC) is secreted by Acetobacter xylinum. Compared with plant fiber, it possesses an array of unique properties , including high crystallinity, high water content, biocompatibility, high mechanical strength and an ultra-fine fiber network. Bacterial cellulose can be used for making unusually strong paper, because it consists of extremely small clusters of cellulose microbrils, this property greatly upgrades the strength and durability of the paper when it is added to the paper. There are some issues in large-scale application of bacterial cellulose to be solved, such as the high cost, low yield, mechanical stability and so on.

  9. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites. PMID:26754813

  10. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. PMID:25998816

  11. Study on fermentation conditions of palm juice vinegar by response surface methodology and development of a kinetic model

    S. Ghosh

    2012-09-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for palm juice vinegar production from palm juice (Borassus flabellifer wine, this biochemical process being aided by Acetobacter aceti (NCIM 2251. The physical parameters of the fermentation conditions such as temperature, pH, and time were investigated by Response Surface Methodology (RSM with 2³ factorial central composite designs (CCD. The optimum pH, temperature and time were 5.5, 30 °C and 72 hrs for the highest yield of acetic acid (68.12 g / L. The quadratic model equation had a R² value of 0.992. RSM played an important role in elucidating the basic mechanisms in a complex situation, thus providing better process control by maximizing acetic acid production with the respective physical parameters. At the optimized conditions of temperature, pH and time and with the help of mathematical kinetic equations, the Monod specific growth rate ( µ max= 0.021 h-1, maximum Logistic specific growth rate ( µ 'max = 0.027 h-1 and various other kinetic parameters were calculated, which helped in validation of the experimental data. Therefore, the established kinetic models may be applied for the production of natural vinegar by fermentation of low cost palm juice.

  12. Bacaba beverage produced by Umutina Brazilian Amerindians: Microbiological and chemical characterization

    Cláudia Puerari

    2015-01-01

    Full Text Available Bacaba chicha is a beverage prepared by the indigenous Umutina people from the bacaba fruit (Oenocarpus bacaba, a purple berry that is rich in fat and carbohydrates, as well as a source of phenolic compounds. In this study, samples of bacaba chicha beverage were collected, and the microbial community was assessed using culture-dependent and -independent techniques. The nutritional composition and metabolite profiles were analyzed, and species belonging to lactic acid bacteria (LAB and yeasts were detected. The LAB group detected by culture-dependent analysis included Enterococcus hormaechei and Leuconostoc lactis. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE detected additional Propionibacterium avidum, Acetobacter spp., and uncultured bacteria. Pichia caribbica and Pichia guilliermondii were detected in a culture-dependent method, and Pichia caribbica was confirmed by PCR-DGGE analysis. The pH value of the beverage was 6.2. The nutritional composition was as follows: 16.47 ± 0.73 g 100 mL-1dry matter, 2.2 ± 0.0 g 100 mL-1 fat, 3.36 ± 0.44 g 100 mL-1 protein, and 10.87 ± 0.26 g 100 mL-1carbohydrate. The metabolites detected were 2.69 g L-1 succinic acid, 0.9 g L-1 acetic acid, 0.49 g L-1 citric acid, 0.52 g L-1ethanol, and 0.4 g L-1 glycerol. This is the first study to identify microbial diversity in bacaba chicha spontaneous fermentation. This study is also the starting step in the immaterial record of this Brazilian indigenous beverage prepared from bacaba fruit.

  13. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  14. The effect of lactic acid bacteria on cocoa bean fermentation.

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  15. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content.

    Li, Yanbing; Nishino, Naoki

    2013-09-01

    The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages

  16. Structure and Physical Properties of Natural Gellous Materials

    Yudianti, Rike; Indrarti, Lucia; Azuma, Jun-Ichi

    This study presents two types of natural gellous materials as cellulose resources including gellous material synthesized by Acetobacter xylinum in fermentation process of coconut water with common name Bacterial Cellulose (BC) and gellous material isolated from seed of Ocimum americanum called hydrogel. Morphological surface of BC and hydrogel was observed by Scanning Electron Microscope (SEM). These images show randomly arrangement of fibres in three dimensional network having length of 1-5 µm and 3-12µm, respectively in forming a dense reticulated structure. Hydrated fibres were observed evidently by Atomic Force Microscope (AFM) showing that BC and hydrogel have fibres in nanometer scale diameter, 7-10 and 2-3 nm, respectively. At glance, X-Ray diffraction profile of hydrogel shows broadening peaks at 2θ, 16° and 22°. While BC has peaks at 2θ, 14.7, 16.7, 20.5 and 22.5°, attributed to lattice diffractions (100), (010), and (110), respectively. The sharp profile present in BC lead to ordered structure, confirmed by higher crystallinity degree of BC (75%) compared to that`s of hydrogel (35%). Water Holding Capacity (WHC) of BC and hydrogel has values about 5.5 and 39.2 mL g-1, respectively while swelling ability of BC and hydrogel in water is 6.2 and 102.2%, respectively. Neutral sugar compositions of BC resulted in less 0.1% arabinose and rhamnose, 1.1% galactose, 98.5% glucose, 0.2 xylose and 0.2 mannose indicating high cellulose content. Meanwhile, hydrogel contains 11.9% (arabinose), 4.5% (rhamnose), 18.6% (galactose), 50.5% (glucose), 13.2% (xylose), 1.3% (mannose) indicating high hemicellulose contents leading to branching of arabinogalactan attached to cellulose.

  17. CARS and SHG microscopy for the characterization of bacterial cellulose

    Enejder, Annika; Brackmann, Christian; Bodin, Aase; Åkeson, Madeleine; Gatenholm, Paul

    2009-02-01

    We have developed a protocol employing dual-mode non-linear microscopy for the monitoring of the biosynthesis of bacterial cellulose at a single-fiber level, with the fundamental aim to achieve a product with material properties similar to those of human blood vessels. Grown in a tubular geometry it could then be used as a natural and biocompatible source of replacement tissue in conjunction with cardiovascular surgery. The bacteria (Acetobacter xylinum) were selectively visualized based on the CH2 vibration of its organic macromolecular contents by the Coherent Anti-Stokes Raman Scattering (CARS) process and, simultaneously, the non-centrosymmetrically ordered, birefringent cellulose fibers were depicted by the Second Harmonic Generation (SHG) process. This dual-channel detection approach allows the monitoring of cellulose-fiber formation in vivo and to determine the influence of e.g. different growth conditions on fiber thickness and orientation, their assembling into higher-order structures and overall network density. The bacterial and fiber distributions were monitored in a simple microscope cultivation chamber, as well as in samples harvested during the actual fermentation process of tubular cellulose grafts. The CARS and SHG co-localization images reveal that highest bacterial population densities can be observed in the surface regions of the cellulose tissue, where the primary growth presumably takes place. The cellulose network morphology was also compared with that of human arteries and veins, from which we conclude that the cellulose matrix is comparatively homogeneous in contrast to the wavy band-like supra-formations of collagen in the native tissue. This prompts for sophisticated fermentation methods by which tunnels and pores of appropriate sizes and shapes can be introduced in the cellulose network in a controllable way. With this protocol we hope to contribute to the fundamental knowledge required for optimal production of bioengineered cellulose

  18. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

    Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2016-02-01

    Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes. PMID:27162390

  19. A multiphasic hollow fiber reactor for the whole-cell bioconversion of 2-methyl-1,3-propanediol to (r)-beta-hydroxyisobutyric acid.

    León, R; Prazeres, D M; Fernandes, P; Molinari, F; Cabral, J M

    2001-01-01

    This paper describes the bioconversion of 2-methyl-1,3-propanediol to (R)-beta-hydoxyisobutyric acid (HIBA) by Acetobacter ALEI in a hollow fiber membrane bioreaction system arrangement that allows the integration of three liquid phases: the aqueous bioconversion phase, the organic phase consisting of a solution of trioctyl phosphine oxide (TOPO) in isooctane, and the third phase consisting of a basic stripping solution that allows reextraction of HIBA from the organic phase. A comparison of HIBA mass transfer experiments was carried out in the membrane reactor with two and three phases for different pH and TOPO concentrations. The use of the three-phase arrangement allows the extraction of high quantities of HIBA from the aqueous medium (higher than 85%) independently of the pH, whereas in the two-phase system the percentage of HIBA extracted from the aqueous medium was lower, 42% in the best case, and strongly influenced by the pH. The percentage of the extractive agent TOPO in the organic phase influenced on the mass transfer rate in both bi- and triphasic arrangements. By simply integrating the re-extraction phase in the system it was possible to increase the extraction yield by 2-fold, reduce the amount of TOPO by 4-fold, and operate at the more favorable pH 4. A bioconversion experiment was done in these conditions (pH = 4, TOPO = 5%) to confirm the advantages of including the third stripping solution. Fed-batch operation of the triphasic membrane reactor was maintained for more than 20 h, reaching an HIBA concentration in the stripping solution of 29 g L(-)(1). PMID:11386867

  20. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions

  1. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health. PMID:24748441

  2. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  3. Utilization of Tritium and Carbon-14 in Studies of Isotope Effects

    The utility of tritium in organic research has been augmented by the development of a simple method for determining C14 and tritium in the same sample. The non-volatile, radioactive material, in a film that is 'infinitely thick' to tritium radiation, is counted in a windowless, gas-fiow proportional counter; the film is then re-counted when covered with a screen that stops all radiation from tritium but allows a fraction of that from C14 to pass. By introduction of one isotope at a point removed from the reaction centre, an isotope effect for the other can be determined from changes in the tritium-C14 ratio in the reactant and/or products as the reaction proceeds. Carriers of reactant, products or derivatives can be added at any point to facilitate isolation, because the analytical method depends primarily on the tritium-C14 ratio. Methods for utilizing the double-label technique will be illustrated by a study of isotope effects in the oxidation of the penultimate carbon of certain labelled polyols with Acetobacter suboxydans. Six D-mannitols position-labelled either with C14 or with tritium at C1, C2 or C3 were prepared. For these, isotope effects (k*/k) of 0.93, 0.23, and 0.71, respectively, were found with C14 at C2, tritium at C2, and tritium at C3; no detectable isotope effects were found for the remaining Dmannitols. In the oxidation of position-labelled D-glucitols, an isotope effect of 0.24 was found for tritium at C5; no detectable effect was found for either C14 or tritium at C1. The techniques are suitable for studying a variety of chemical and biological reactions. (author)

  4. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  5. Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria.

    Goda, Sayed K; Elsayed, Iman E; Khodair, Taha A; El-Sayed, Walaa; Mohamed, Mervat E

    2010-11-01

    Five malathion-degrading bacterial strains were enriched and isolated from soil samples collected from different agricultural sites in Cairo, Egypt. Malathion was used as a sole source of carbon (50 mg/l) to enumerate malathion degraders, which were designated as IS1, IS2, IS3, IS4, and IS5. They were identified, based on their morphological and biochemical characteristics, as Pseudomonas sp., Pseudomonas putida, Micrococcus lylae, Pseudomonas aureofaciens, and Acetobacter liquefaciens, respectively. IS1 and IS2, which showed the highest degrading activity, were selected for further identification by partial sequence analysis of their 16S rRNA genes. The 16S rRNA gene of IS1 shared 99% similarity with that of Alphaprotoebacterium BAL284, while IS2 scored 100% similarity with that of Pseudomonas putida 32zhy. Malathion residues almost completely disappeared within 6 days of incubation in IS2 liquid cultures. LC/ESI-MS analysis confirmed the degradation of malathion to malathion monocarboxylic and dicarboxylic acids, which formed as a result of carboxylesterase activity. A carboxylesterase gene (CE) was amplified from the IS2 genome by using specifically designed PCR primers. The sequence analysis showed a significant similarity to a known CE gene in different Pseudomonas sp. We report here the isolation of a new malathion-degrading bacteria from soils in Egypt that may be very well adapted to the climatic and environmental conditions of the country. We also report the partial cloning of a new CE gene. Due to their high biodegradation activity, the bacteria isolated from this work merit further study as potential biological agents for the remediation of soil, water, or crops contaminated with the pesticide malathion. PMID:20401686

  6. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Adam Collins Caldwell

    Full Text Available Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates and 10 control sites (soil 5 m away from the coffee plantation at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum, but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while

  7. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  8. Preparation and characterization of novel wound dressing based on silver nanoparticle-impregnated bacterial cellulose and bacterial cellulose-aloe vera

    Ideal wound dressings stimulate wound healing, control unpleasant odors, and provide antimicrobial action in wounds. However, most traditional wound dressings such as gauze and biological dressings exhibit exudate leaking which increases the risk of infection and delayed wound healing of tissues. This study aims to develop and characterize a bio-composite of bacterial cellulose and aloe vera having the ideal features of a wound dressing from Acetobacter xylinum-activated culture medium supplemented with various aloe vera concentrations from )-50% (v/v) and the film which exhibits the most uniform results is used for the incorporation of silver nanoparticle as an antibacterial agent. The biopolymer composites of bacterial cellulose and aloe vera were developed by adding 0-50% aloe vera (v/v) in the A. xylinum-activated coconut water medium during biosynthesis in static cultivation for 10 days. The films obtained after drying the membranes were named as bacterial cellulose-aloe vera (BC-A) films. The moisture content of films reached 99% which indicates that the films may be suitable for providing a moist environment to facilitate wound healing fast. With the addition of aloe vera up to 30% (v/v) during BC synthesis, it resulted in a significant improvement in the water absorption capacity of the films showing a WAC ration of 36.46 (r.s.d.= 12.17%, n=3) compared to the unmodified film having a ratio of 9.03 (r.s.d.= 13.95%, n=3). However, the addition of aloe vera at a concentration greater than 30% (v/v) resulted in a decrease in pellicle formation which can be observed from the very weak properties of the films. The BC-A (30%) displayed significantly improved in comparison to the unmodified BC film. Also, it is capable of absorbing high amount of water than its weight and can act as a potential wound dressing which reduces irritation and inflammation. (author)

  9. Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore

    Doyun Shin

    2015-04-01

    Full Text Available In the present study, the feasibility to use phosphate solubilizing bacteria (PSB to develop a biological leaching process of rare earth elements (REE from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the widest. In the phosphate solubilization test in liquid media, Azospirillum lipoferum, P. rhizosphaerae, B. megaterium, and A. aceti caused the leaching of 6.4%, 6.9%, 7.5%, and 32.5% of calcium, respectively. When PSB were used to leach REE from monazite-bearing ore, ~5.7 mg/L of cerium (0.13% of leaching efficiency and ~2.8 mg/L of lanthanum (0.11% were leached by A. aceti, and Azospirillum brasilense, A. lipoferum, P. rhizosphaerae and M. ciceri leached 0.5–1 mg/L of both cerium and lanthanum (0.005%–0.01%, as measured by concentrations in the leaching liquor. These results indicate that determination of halo zone formation was found as a useful method to select high-capacity bacteria in REE leaching. However, as the leaching efficiency determined in our experiments was low, even in the presence of A. aceti, further studies are now underway to enhance leaching efficiency by selecting other microorganisms based on halo zone formation.

  10. Microbes of fermented kefir-like using combination of kefir grains and Bifidobacterium longum

    Sri Usmiati

    2005-03-01

    Full Text Available The objectives of research were to find out physico-chemical characters and to detect flavor volatile compound of kefir-like. Material used was skim milk TS 9.5% which was heated at 85oC for 30 minutes and cooled at 22oC before innoculation of the starter. Microorganisms used were (a Lactobacillus acidophilus P155110, (b Lactobacillus delbrueckii subsp. Bulgaricus NCIMB 11778, (c Lactococcus lactis P155610, (d Leuconostoc mesenteroides subsp. dextranicum NCIMB 3350, (e Acetobacter aceti P154810, (f Bifidobacterium longum BF1, and (g Saccharomyces cerevisiae P156252. The treatments consist of P1 = without (b; P2 = without (a; and P3= used (a until (g. The physico-chemical characters identified were lactic acid and lactose percentages, pH, viscosity, organoleptic test for intensity of kefir-like sensory attributes. Results indicated that B. longum was potential bacterium use for starter combination on kefir-like making. The use starter P1 combination has high acidity and viscosity, low pH and lactose percentage, and high intensity on attribute creamy-white color, soft and curdle consistency, and kefir specific aroma on kefir-like. Volatile compound acid group were dominate by high acidity character on kefir-like resulted from starter P1 combination. Compound of 3-hydroxi-2-butanone (acetoin was affecting butter-like of P3 character. This compound resulted from which is a character of fermented milk flavor was not detected on P1 kefir-like.

  11. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    Amnuaikit T

    2011-06-01

    Full Text Available Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05 after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user

  12. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288.

    Matsutani, Minenosuke; Ito, Kohei; Azuma, Yoshinao; Ogino, Hidetaka; Shirai, Mutsunori; Yakushi, Toshiharu; Matsushita, Kazunobu

    2015-09-01

    Gluconacetobacter xylinus (formerly Acetobacter xylinum and presently Komagataeibacter medellinensis) is known to produce cellulose as a stable pellicle. However, it is also well known to lose this ability very easily. We investigated the on and off mechanisms of cellulose producibility in two independent cellulose-producing strains, R1 and R2. Both these strains were isolated through a repetitive static culture of a non-cellulose-producing K. medellinensis NBRC 3288 parental strain. Two cellulose synthase operons, types I and II, of this strain are truncated by the frameshift mutation in the bcsBI gene and transposon insertion in the bcsCII gene, respectively. The draft genome sequencing of R1 and R2 strains revealed that in both strains the bcsBI gene was restored by deletion of a nucleotide in its C-rich region. This result suggests that the mutations in the bcsBI gene are responsible for the on and off mechanism of cellulose producibility. When we looked at the genomic DNA sequences of other Komagataeibacter species, several non-cellulose-producing strains were found to contain similar defects in the type I and/or type II cellulose synthase operons. Furthermore, the phylogenetic relationship among cellulose synthase genes conserved in other bacterial species was analyzed. We observed that the cellulose genes in the Komagataeibacter shared sequence similarities with the γ-proteobacterial species but not with the α-proteobacteria and that the type I and type II operons could be diverged from a same ancestor in Komagataeibacter. PMID:25913006

  13. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing. PMID:25926011

  14. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  15. N-acetylglucosamine 6-phosphate deacetylase (nagA is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

    Vikas Yadav

    Full Text Available Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum. For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r; named as ΔnagA via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.

  16. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  17. Function and X-ray crystal structure of Escherichia coli YfdE.

    Elwood A Mullins

    Full Text Available Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC. OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT, YfdU (OXC, and YfdE, a class III CoA-transferase that is ~30% identical to YfdW. YfdW and YfdU are necessary and sufficient for oxalate-induced protection against a subsequent acid challenge; neither of the other genes has a known function. We report the purification, in vitro characterization, 2.1-Å crystal structure, and functional assignment of YfdE. YfdE and UctC, an orthologue from the obligate aerobe Acetobacter aceti, perform the reversible conversion of acetyl-CoA and oxalate to oxalyl-CoA and acetate. The annotation of YfdE as acetyl-CoA:oxalate CoA-transferase (ACOCT expands the scope of metabolic pathways linked to oxalate catabolism and the oxalate-induced acid tolerance response. FCOCT and ACOCT active sites contain distinctive, conserved active site loops (the glycine-rich loop and the GNxH loop, respectively that appear to encode substrate specificity.

  18. Study on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae and the Influence of Magnetic field on Saccharomyces cerevisiae Inoculum for the production of Alcohol and Vinegar from apple juice.

    Rabiul Haque

    2014-12-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for apple juice vinegar production from aple juice wine, this biochemical process being aided by Acetobacter aceti.We have studied on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae for the production of alcohol. Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomassdirected processes. It results from elevated apple juice containing sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high initial sugar concentrations From the results it is clear that strain T2. which has been exposed to 15% alcohol for 18 hrs is the high yielding strain, as it gives 16% alcohol after distillation. We also find that as the exposure is increased, that is, with increasing exposure to 20% alcohol for 5 hrs, 18 hrs, and 20 hrs, the production of alcohol decreases. Saccharomyces cerevisiae yeast cells strain T2. which has been exposed to 15% alcohol for 18 hrs were exposed to a homogenous static magnetic field of 125 mT for periods of 24, 48 or 72 hours and then used as inoculum for the alcoholic fermentation. The exposure to the magnetic field improved the fermentation process kinetics. Biomass and ethanol yields of fermentations inoculated with treated inoculum were higher than those in the control fermentation, which

  19. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    M. Kaleem eABBASI

    2015-03-01

    Full Text Available AbstractThe present study was conducted to characterize the native plant growth promoting bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK, Pakistan. Nine bacterial isolates were purified, screened in vitro for plant growth promoting (PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.. Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK–3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these PGPR strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76% and root N contents (up to 32% was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  20. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

    Li, Yanbing; Nishino, Naoki

    2013-01-01

    The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages

  1. 醋酸菌中CRISPR位点的比较基因组学与进化分析%Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria

    夏凯; 梁新乐; 李余动

    2015-01-01

    CRISPR (Clustered regularly interspaced short palindromic repeats)是近几年发现的一种广泛存在于细菌和古菌中,能够应对外源DNA干扰(噬菌体、病毒、质粒等),并提供免疫机制的重复序列结构。CRISPR系统通常由同向重复序列、前导序列、间隔序列和CRISPR相关蛋白组成。本研究以醋酸发酵中常见3个属醋杆菌属(Acetobacter)、葡糖醋杆菌属(Gluconacetobacter)和葡糖杆菌属(Gluconobacter)的48个菌株为研究对象,通过其基因组上CRISPR相关基因序列的生物信息学分析,探索CRISPR位点在醋酸菌中的多态性及其进化模式。结果表明48株醋酸菌中有32株存在CRISPR结构,大部分CRISPR-Cas结构属于type I-E和type I-C类型。除了葡糖杆菌属外,葡糖醋杆菌属和醋杆菌属中的部分菌株含有 II 类的 CRISPR-Cas 系统结构(CRISPR-Cas9)。来自不同属菌株的CRISPR结构中重复序列具有较强的保守性,而且部分菌株CRISPR结构中的前导序列具有保守的motif (与基因的转录调控有关)及启动子序列。进化树分析表明cas1适合用于醋酸菌株的分类,而不同菌株间 cas1基因的进化与重复序列的保守性相关,预示它们可能受相似的功能选择压力。此外,间隔序列的数量与噬菌体数量及插入序列(Insertion sequence, IS)数量有正相关的趋势,说明醋酸菌在进化过程中可能正不断受新的外源DNA入侵。醋酸菌中CRISPR结构位点的分析,为进一步研究不同醋酸菌株对醋酸胁迫耐受性差异及其基因组稳定性的分子机制奠定了基础。%The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immun-ity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic ac-id bacteria (AAB) play an

  2. Cellulose Synthesis in Agrobacterium tumefaciens

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  3. Study of fermentation process in yacon-passion fruit mixed vinegar%雪莲果西番莲复合果醋发酵工艺的研究

    潘嫣丽; 黄友琴; 黄夏; 姜元欣; 梁荣慧; 朱其斌; 朱才

    2012-01-01

    Yacon and passion fruit were selected to make fermented yacon-passion fruit mixed vinegar by dry activate wine yeast and acetobacter in liquid fermentation. The ethanol fermentation, acetic acid fermentation and fruit vinegar purification conditions were studied to determine the best process. Results showed that the best ethanol fermentation condition is initial sugar content 14%, yeast inoculum 0.012% and fermentation temperature 28℃;The best acetic acid fermentation condition is fermentation temperature 34℃, ethanol content 8%vol, fermentation period 4d, vaccination content 4%. Diatomite content 0.06% yield a good purification rate and led to a transmittance rate 90.5%. Final product of yacon-passion fruit mixed vinegar is purified with a strong vinegar smell. It has all the delightful characteristic of both yacon and passion fruit.%以雪莲果和西番莲为原料,选用葡萄酒用活性干酵母、醋酸杆菌作为发酵菌种进行液体发酵酿造雪莲果西番莲复合果醋,对酒精发酵、醋酸发酵及果醋澄清等工艺进行研究,确定最佳加工工艺参数.结果表明:酒精发酵的最佳条件为:初始糖度14%,酵母菌接种量0.012%,发酵温度28℃;醋酸发酵的最佳条件为:发酵温度34℃、酒精度8%vol、发酵时间4d、接种量4%;硅藻土用量为0.06%,澄清效果较佳,透光率可达90.5%.酿制出来的雪莲果西番莲复合果醋澄清透亮,醋味浓郁,同时具有雪莲果和西番莲的特殊清香味.

  4. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  5. 利用大豆糖蜜制备细菌纤维素%Fermentation of Soybean Molasses for Bacterial Cellulose Preparation

    吕鸿皓; 黄莉; 党苗苗; 费楠; 曹亮; 吴磊; 夏秀芳

    2015-01-01

    选用大豆糖蜜为发酵基质,利用木醋杆菌发酵制备细菌纤维素。研究糖蜜浓度、酵母浸粉添加量、发酵时间、发酵温度、接种量以及初始pH对细菌纤维素合成量、持水性和复水率的影响,结果表明:大豆糖蜜营养丰富,在大豆糖蜜浓度为15%时,在其中添加1.5%酵母浸粉、接种量为6%、初始pH4.5、30℃恒温静止发酵6 d后细菌纤维素合成量为1.17 g/100 mL,持水性为98.16%,复水率为292%,并利用傅里叶红外分析表明产物为细菌纤维素。%Bacterial cellulose (BC) was prepared from soybean molasses fermented by Acetobacter xylinum. The research explored parts of fermentation conditions on bacterial cellulose production , water holding capacity and rehydration rate as well, such as the soy molasses concentration, the amount of yeast extract, fermentation time, fermentation temperature, inoculum size and the initial pH. Results showed that the soybean molasses was rich in nutrients. The yield of BC was 1.17 g/100 mL when 15%soy molasses with the addition of 1.5%yeast extract was conducted to static fermentation at pH 4.5 , 6%inoculum size and 30℃for 6 days. Water holding capacity of bacterial cellulose was 98.16 %, bacterial cellulose rehydration was 292 %. The product was bacterial cellulose by Fourier transform infrared analysis.

  6. Combined Application of Microbial Cellulose and Papaver macrostomum Extract on Bedsore Microorganisms

    Anita Khanafari,

    2013-05-01

    Full Text Available Background: Bedsore is one of the major problems in all the societies as patients are confined to bed. Due to antibiotic resistant strains being a significant obstacle for cure, many plants and herbs are being used by researchers as medicinal compounds..Objectives: The investigation of synergistic effect of cellulose biopolymer and Papaver macrostomum extract on bedsores bacterial community..Materials and Methods: Acetobacter xylinum PTTC 1734 was cultured in Schramm-Hestrin (SH medium and incubated at 30°C for 24-48 hours. NaOH treatment and absolute ethanol were used to extract cellulose biopolymer and plant antimicrobial substance, respectively. The Biopolymer structure was scanned by a Scanning electron microscope (SEM. Antimicrobial activities, minimum inhibitory concentration (MIC, and minimum bactericidal concentration (MBC of these extracts were all determined separately. The effective concentration of each extract's alone, combined, and synergistic effects were evaluated. Biopolymer absorption efficiency was assayed as the absorbent bed..Results: Pesudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were the dominate bacteria isolated from bedsore samples. Antimicrobial effects of cellulose, P. macrostomum extract, and the combination of both were determined on the isolated bacteria as 1, 10, and 15 mm respectively. 100-1000μl/mL of flower ethanol extract concentrations of P. macrostomum indicated the maximum effect on mixed bedsore's bacteria rather than leaf and mixed extraction. Concentrations 500-1000μl/mL decreased the bacterial bedsore's growth and completely inhibited it. 3.5g/L of cellulose biopolymer was obtained from A. xylinum broth culture medium. Scanning electron microscopy analysis confirmed the branched structure of this polymer. Cellulose absorption efficiency was evaluated to be 14.5ml/g in this investigation. Because of high-absorbance of bio-cellulose, combined plant extraction with this biopolymer

  7. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach.

    Escalante, Adelfo; Giles-Gómez, Martha; Hernández, Georgina; Córdova-Aguilar, María Soledad; López-Munguía, Agustín; Gosset, Guillermo; Bolívar, Francisco

    2008-05-31

    In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After

  8. Terrestrial research in Mars analogue environments

    Osipov, G.

    Fatty acids (FA) content was measured by GC-MS SIM technique in Sulfide ores of present day (Mid-Atlantic Ridge and others) and ancient (Ural Paleocene, Russia) black smokers; Early Proterozoic kerites of Volyn; Siberian, Canadian and Antarctic permafrosts and also in rocks of East-European platform Achaean crystalline basement. Analysis was shown presence those and only those fatty acids which are specific to microorganisms. FA with 12 up 19 of carbon atoms are thought to be a bacterial biomass sign. 3-Hydroxy fatty acids also found in samples and are strong specific markers of gram-negative bacteria. Cultivation yield living bacteria in some cases. The East-European platform Achaean crystalline basement rocks opened by Vorotilov Deep Well (VDW) drilled through Puchezh-Katunski impact structure were studied within depths 2575 - 2805 m. 34 microbial lipid markers were detected by GC-MS and 22 species were identified. Bacteria of g. Bacillus reached 6,8 % in subsurface communities. However, members of gg. Clostridium (37,1 - 33,2 %) and Rhodococcus (27,6 - 33,7 %) were absolute dominants within studied depth interval. Some lipid patterns of kerite samples could be assessed to definite genera or, in special cases, to species of contemporary microorganisms. For instance, 2-hydroxylauric acid is specific to Pseudomonas putida group or Acinetobacter spp., and hydroxymyristic together with hydroxypalmitic are specific to P.cepacea and cyanobacteria. 3-hydroxystearic acid was known as component of Acetobacter diazothrophycus and Gloebacter violaceous cyanobacterium. 10-hydroxystearic acid associated with Nocardia spp., which oxidizes oleic acid in organic substrates. 10-methylhexadecanoic (10Me16) acid together with 10Me14, 10Me15 and 10Me17 analogues are markers of actinomycetes. Significant part of Black Smokers organic matter is probably biogenic. Fatty acid features strongly assigns it to bacterial, microeucariotic and planta cells. Par example 3-hydroxy acids are

  9. Biobased and biodegradable polymer nanocomposites

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  10. The microbial ecology of wine grape berries.

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  11. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. December 1961, January and February 1962

    Various,

    1962-04-03

    Progress is reported in investigations on the polymerization of formaldehyde, ultraviolet irradiation of aqueous HC/sup 14/N, radiation chemistry of nucleic acid constituents, oxidation of free sugars and aldonic acid derivatives by Acetobacter suboxydans, preparation and isolation of C/sup 14/O/ sub 2/~ enzyme, metabolism of C/sup 14/-ribulose diphosphate by Nitrobacter agilis, C/sup 14/O/sub 2/ metabolism of Hordeum valgare seedlings during the development of the photosynthetic apparatus, location and chemical characterization of RNA in the chloroplasts of Spinacea oleracea, inhibition of dark bleaching by stroma extracts and by inert gases, ESR studies on chromatophores from Rhodospirillium rubrum and on quantasomes from spinach chloroplasts, and phthalocyanine manganese and etioporphyrin manganese complexes. (J.R.D.) It has been known for a hundred years that formaldehyde polymerizes to carbohydrate substances in alkaline media. Although the reaction has long attracted much attention, only recently has a detailed qualitative analysis of the products been carried out by chromatographic methods. We have started to re-examine this reaction by combining chromatography with radioactive tracer techniques in the hope of refining the quantitative aspects of the analysis. Our particular interest has been to develop methods for determining the relative proportions of ribose and ribulose in the mixtures of sugars formed in basic media, as well as under other polymerizing conditions. The finding of large amounts of these sugars might help to explain the occurrence of ribose as the only basic sugar in the fundamental replicating molecules--the nucleic acids. Formaldehyde is thought to have been present in the primitive reducing atmosphere which existed before life first appeared. The ribonucleic acids must have appeared in the constitution of reproducing systems at a very early stage in the development of living organisms. In this study, the polymerizations of formaldehyde

  12. Effect of Gamma Irradiation on Microbial Cellulose Membrane For Application In Guided Bone Regeneration (GBR)

    The synthesis and effect of gamma irradiation on characteristics of microbial cellulose membrane have been evaluated. Microbial cellulose gel (nata de coco) was produce using bacteria Acetobacter xylinum incubated in bacterial growth medium containing coconut water as a micro nutrient source. Microbial cellulose membrane was prepared using mould compression at 120°C for 5 minutes. The membranes were irradiated using gamma rays with doses of 25 and 50 kGy respectively at dose rate of 10 kGy/h. Several parameters such as water absorption, surface morphology, thermal and mechanical properties of un-irradiated and irradiated membranes were analyzed. The results showed that optimum production of microbial cellulose by A. Xylinum is 10 to 12 days at incubation temperature of 30°C and pH 4. Chemically treatments of MC membrane by NaOH and NaOCl solution were effective to remove the bacteria contaminant, bacterial cells embedded in the polymer net and endotoxin which occurred during cellulose production as well as produced membrane with more white colour. Water absorption properties of MC membranes showed maximum value at immersion temperature of 25°C, 37°C and 50°C were 110, 137 and 140 %, respectively. Water absorption of MC membrane decreases by increasing irradiation dose. Microscopic photograph of MC membrane showed that the membrane was consisted of interconnected nano to micro porous structures with diameter ranging from 0.05 to 0.5 μm. Thermal properties of MC showed that decomposition temperature of un-irradiated and irradiated MC membrane at dose of 25 and 50 kGy were 328°C, 328°C and 295°C, respectively. Tensile strength of un-irradiated MC membrane in dry state was 102 MPa. Irradiation at 25 and 50 kGy reduced tensile strength to become 85 and 51 MPa respectively. The decrease of thermal property and mechanical strength of MC membrane by irradiation is due to decomposition of polymeric cellulose to the lower molecular weight. This degradation hopefully

  13. Fermentation of Soybean Molasses for Bacterial Cellulose Preparation%利用大豆糖蜜制备细菌纤维素

    吕鸿皓; 黄莉; 党苗苗; 费楠; 曹亮; 吴磊; 夏秀芳

    2015-01-01

    Bacterial cellulose (BC) was prepared from soybean molasses fermented by Acetobacter xylinum. The research explored parts of fermentation conditions on bacterial cellulose production , water holding capacity and rehydration rate as well, such as the soy molasses concentration, the amount of yeast extract, fermentation time, fermentation temperature, inoculum size and the initial pH. Results showed that the soybean molasses was rich in nutrients. The yield of BC was 1.17 g/100 mL when 15%soy molasses with the addition of 1.5%yeast extract was conducted to static fermentation at pH 4.5 , 6%inoculum size and 30℃for 6 days. Water holding capacity of bacterial cellulose was 98.16 %, bacterial cellulose rehydration was 292 %. The product was bacterial cellulose by Fourier transform infrared analysis.%选用大豆糖蜜为发酵基质,利用木醋杆菌发酵制备细菌纤维素。研究糖蜜浓度、酵母浸粉添加量、发酵时间、发酵温度、接种量以及初始pH对细菌纤维素合成量、持水性和复水率的影响,结果表明:大豆糖蜜营养丰富,在大豆糖蜜浓度为15%时,在其中添加1.5%酵母浸粉、接种量为6%、初始pH4.5、30℃恒温静止发酵6 d后细菌纤维素合成量为1.17 g/100 mL,持水性为98.16%,复水率为292%,并利用傅里叶红外分析表明产物为细菌纤维素。

  14. BIODIVERSITE MICROBIENNE ET PARAMETRES PHYSICOCHIMIQUES DE QUELQUES VINS DE RONIER (BORASSUS AKEASSII PRODUITS TRADITIONNELLEMENT AU BURKINA FASO

    N. BARRO

    2011-10-01

    Full Text Available La présente étude traite de la biodiversité microbienne et des paramètres physico-chimiques de quelques vins de rônier produits traditionnellement au Burkina Faso. Elle a consisté à la détermination des paramètres physico-chimiques et microbiologiques du vin de rônier issu de la fermentation spontanée de la sève de rônier.L’étude de la composition physico-chimique et des aspects microbiologiques a été réalisée à l’aide des méthodes standards de microbiologie et de physico-chimie. Douze échantillons de sève de rônier fermentée naturellement ont été collectés dans la région de Bobo Dioulasso où ce vin est abondamment produit.Le pH, l’acidité totale, la teneur en sucres totaux et en alcool variaient entre 3,6 et 4,5 ; 0,1 et 1,28 % (m/v ; 0,58 et 8,72 % (m/v ; 4,08 et 7,25 % (v/v respectivement. La flore mésophile totale était entre 1,4.108 et 2,5.108UFC et la flore de levures entre 3,4 106 et 2,85 107UFC par millilitre de vin.Les coliformes totaux étaient présents dans 25 % des échantillons (BFH1, BFH5 et BFH10 à un nombre de l’ordre de 1,28.106 à 4,6.106UFC/ml témoignant une qualité hygiénique pauvre. Lactobacillus, Bacillus, et Acetobacter thermo-tolérants et alcoolo-tolérants impliqués dans le processus de fermentation spontanée de la sève de rônier ont été également isolés et identifiés dans les échantillons BFH1, BFH9 et BFH12.La connaissance des paramètres physico-chimiques et microbiologiques de la sève fermentée du rônier est nécessaire non seulement pour la valorisation de cette boisson locale et traditionnelle mais aussi pour l’exploitation de la biodiversité microbienne.

  15. Fechamento de perfuração septal nasal em coelhos com celulose bacteriana Nasal septal perforation closure with bacterial cellulose in rabbits

    Eulógio Emílio Martinez Neto

    2010-08-01

    Full Text Available Biomateriais podem ser válidos à somação de tecido e estrutura para o fechamento da perfuração do septo nasal. OBJETIVO: Testar celulose produzida pela bactéria Acetobacter xylinum associada à cola biológica no fechamento de perfurações septais em coelhos. Comparar histologicamente fibrose, inflamação, congestão vascular, integridade do enxerto e fechamento da perfuração septal. MATERIAL E MÉTODO: Quinze coelhos foram distribuídos em dois grupos: Controle (5 coelhos e celulose - Bionext® associado à cola de fibrina - Tissucol® (10 coelhos. Foi realizada uma perfuração cirúrgica no septo nasal em todos os coelhos. Nos animais do grupo Bionext® foi realizado o fechamento da perfuração com a colocação de celulose e aplicação de cola de fibrina. RESULTADOS: Dois coelhos foram a óbito. No grupo com celulose ocorreu o fechamento de duas perfurações e em 4 casos a celulose manteve-se impactada entre os bordos das perfurações. No grupo controle não ocorreu fechamento da perfuração septal em nenhum dos coelhos operados. CONCLUSÃO: Não houve diferença estatística significante nos quesitos inflamação aguda, congestão vascular e fibrose, avaliado histologicamente. Nos casos onde o enxerto se manteve posicionado, não houve alteração quanto à sua integridade. Pode ser útil à somação do arsenal terapêutico como base para re-epitelização dos bordos da perfuração.Alloplastic materials can be used together with tissue and structure to close nasal septal perforation. AIM: to test cellulose use in the closure of septal perforation in rabbits and to compare fibrosis, inflammation, vascular congestion and graft integrity. MATERIALS AND METHODS: Fifteen rabbits. The rabbits were divided into two groups: Control: Five rabbits and Bionext® and fibrin glue Tissucol®: Ten rabbits. Septal perforations were done in all of them. In the Bionext® group the closure was performed with the placement of cellulose

  16. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

    Steenhoudt, O; Vanderleyden, J

    2000-10-01

    Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular

  17. Chemical and microbiological analysis of red wines during storage at different temperatures

    Attila Kántor

    2014-11-01

    for one wine sample. Microbiological parameters were observed during wine storing after filtration through different microfilters. We determined the total count of bacteria (TCB, Acetobacter cells, Lactobacillus cells, yeast and molds in wine samples with classic plate dilution method. The highest quality wines from microbiological properties were wines from 2013, which was filtered through microfilter and aseptically filled into the bottles, but wines from 2011 was filtered through cross-flow filter and samplesdirectly collected from the storage tanks without microfiltration.

  18. 山西老陈醋发酵过程中细菌群落组成与有机酸变化的关系研究%Study on the Relationship between Bacterial Community Composition and Changes of Organic Acids during Fermentation Process of Shanxi Aged Vinegar

    杜宏福; 聂志强; 刘贤; 王敏; 郑宇

    2015-01-01

    during acetic acid fermentation.Acetic acids and lactic acids are the main organic acids,which offer over 90% of total organic acids of Shanxi aged vinegar.Canonical correspondence analysis (CCA)shows that bacteria which contribute to acetic acid formation are Acetobacter pasteurianus > Gluconacetobacter liquefaciens >Lactobacilluspanis >Lactobacillushelveticus,and bacteria which contribute to lactic acid formation are Lactobacillusreuteri >Lactobacillusmalefermentans >Lactobacillus fermentum respectively.

  19. 密闭法生物合成小口径细菌纤维素管%Biosynthesis of Small Caliber Bacterial Cellulose Tube by Enclosure Method

    陈欢; 胡凌俊; 陈胜杰; 曹献英

    2012-01-01

    [Objective] To explore the feasibility of biosynthesizing small caliber bacterial cellulose tube by using the batch enclosure method to culture Acetobacter xylinum, and characterize the tube. [ Method] I1 sing coconut water as medium and silicone tube as the vector of oxygen permeation, bacterial cellulose tube was cultured in closed vessel. Then the water content and porosity of cultured products were determined, the effects of thermal drying and freeze drying on cultured products were compared, and the cultured products were scanned. [ Result] Small caliber bacterial cellulose tube can be synthesized by using batch closed culture method. Compared thermal drying with freeze drying, the latter was more suitable to tube storage and next research, compact mesh structure of tube wall and layered structure of tube section were observed by using SEM to scan tube wall and cross section. [Conclusion] Small caliber bacterial cellulose tube can be synthesized by using batch closed culture method, and tube wall with nanometer aperture had potential to be used as separation membrane.%[目的]采用间歇式密闭培养法培养木醋杆菌,探讨该方法合成小口径细菌纤维素管的可行性并对管进行表征研究.[方法]以椰子水为培养基、硅胶管为渗氧载体,在密闭罐中培养木醋杆菌,以合成小口径细菌纤维素管,之后测定产物的湿态含水率,孔隙率,比较热干燥与冷冻干燥2种干燥条件的差异,并通过扫描电镜(SEM)观察培养产物的形貌.[结果]密闭式间歇培养法能生物合成小口径细菌纤维素管;通过不同干燥条件的比较发现,相比于热干燥,冷冻干燥更适合于管的储存及后续工作;通过扫描电镜观察合成的管壁及横截面结构,发现该管壁处有较致密的网孔结构,且管断面有明显的层状结构.[结论]小口径细菌纤维素管可通过间歇式密闭法合成,且管的管壁有纳米级孔径,提示其有作为分离膜的潜力.

  20. Biogenic hydrogen peroxide as a possible adaptation of life on Mars: the search for biosignatures

    Houtkooper, J. M.; Schulze-Makuch, D.

    2007-08-01

    The hypothesis that putative Martian organisms incorporate H2O2 into their intracellular liquids (Houtkooper and Schulze-Makuch, 2007) has significant implications, as it explains the Viking observations quite well; it provides a functional adaptation to Martian environmental conditions; and, it is feasible as an adaptation based on the biochemistry of terrestrial organisms. It would explain many of the puzzling Viking observations such as (1) the lack of organics detected by GC-MS, (2) the lack of detected oxidant(s) to support a chemical explanation, (3) evolution of O2 upon wetting (GEx experiment), (4) limited organic synthesis reactions (PR experiment), and (5) the gas release observations made (LR experiment). An intracellular liquid containing a high concentration of H2O2 has advantages such as providing a low freezing point, a source of oxygen, and hygroscopicity, allowing an organism to obtain water vapor from the Martian atmosphere or from the adsorbed layers of water molecules on mineral grains. Perhaps surprisingly, H2O2 is used by many terrestrial organisms for diverse purposes, e.g., metabolism (Acetobacter peroxidans), as defense mechanism (Bombardier beetle), and also to mediate diverse physiological responses such as cell proliferation, differentiation, and migration. The detection of H2O2-containing organisms may well suffer from the same problems as the Viking experiments: Because of the excess oxidative contents, as derived from the GEx experiment, the organisms may decompose completely into H2O, CO2, O2 and N2. This can happen when exposed to an excess of water vapor (through hyperhydration), too high a temperature or a combination of both. Therefore, the addition of too much water vapor may be fatal. Moreover, employing pyrolysis in order to detect organic molecules may result in the organisms autooxidizing completely. Although the instrument suite aboard the Phoenix Lander offers some interesting possibilities (Schulze-Makuch and Houtkooper

  1. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  2. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    Nelson Walter Osorio Vega

    2007-06-01

    participan en el biocontrol de patógenos de plantas. Debido a estos beneficios sobre la nutrición y el crecimiento vegetal estas bacterias rizosfericas han sido llamadas “rizobacterias promotoras del crecimiento vegetal” (PGPR, por sus siglas en inglés.This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N2 forming specialized structures (e.g., Rhizobium and related genera or simply establishing associative relationships (e.g. Azospirillium, Acetobacter. On the other hand, bacterial ammonifiers and nitrifiers are responsible for the conversion of organic N compounds into inorganic forms (NH4+ and NO3- which are available for plants. Rhizosphere bacteria can also enhance the solubility of insoluble minerals that control the availability of phosphorus (native or applied using for that organic acids or producing phosphatases that act on organic phosphorus pools. The availability of sulfur, iron and manganese are also affected by redox reactions carried out by rhizosphere bacteria. Likewise, chelating agents can control the availability of micronutrients and participate in mechanisms of biocontrol of plant pathogens. Due to these and other benefits on plant growth, some rhizosphere bacteria have been called Plant Growth