WorldWideScience

Sample records for acetic aldehyde

  1. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  2. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes.

    Denmark, Scott E; Heemstra, John R

    2006-02-01

    N,O-Silyl dienyl ketene acetals derived from unsaturated morpholine amides have been developed as highly useful reagents for vinylogous aldol addition reactions. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-3, N,O-silyl dienyl ketene acetal 8 undergoes high-yielding and highly site-selective addition to a wide variety of aldehydes with excellent enantioselectivity. Of particular note is the high yields and selectivities obtained from aliphatic aldehydes. Low catalyst loadings (2-5 mol %) can be employed. The morpholine amide serves as a useful precursor for further synthetic manipulation. PMID:16433495

  3. The use of anhydrous CeCl{sub 3} as a recyclable and selective catalyst for the acetalization of aldehydes and ketones

    Silveira, Claudio C.; Mendes, Samuel R.; Ziembowicz, Francieli I. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica; Lenardao, Eder J.; Perin, Gelson [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias

    2010-07-01

    An efficient, clean, chemoselective and solvent-free method for the synthesis of ketone and aldehyde dimethyl acetals was developed using trimethyl orthoformate and commercially available anhydrous CeCl{sub 3} as a recyclable catalyst. The method is general and affords the protected carbonyl compounds in good yields and under mild conditions, including aryl and alkyl ketones and activated aldehydes. The catalyst could be utilised directly for 3 cycles, without significant loss of activity. (author)

  4. Regioselective Addition of Silyl Enolates to α,β-Unsaturated Aldehyde and its Acetal Catalyzed by MgI2 Etherate

    Xing Xian ZHANG; Wei Dong Z. LI

    2003-01-01

    Regioselective addition reactions of silyl enolates to α,β -unsaturated aldehyde and its acetal catalyzed by MgI2 etherate give aldol adducts (1, 2-addition) preferentially over Michael adducts (1, 4-addition). This unique regioselectivity is distinctly different with other Lewis acidic promoters and may be attributed to the high oxyphilicity of IMg+.

  5. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1 when used as flavourings for all animal species

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-04-01

    Full Text Available Chemical group 1 (CG 1 consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic acid, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, oleic acid, decanol, dodecanol, decyl acetate and dodecyl acetate. The remaining substances are considered safe for all animal species at 5 mg/kg complete feed (with a margin of safety between 1 and 120 and at 25 mg/kg complete feed (ethyl acetate and hexyl acetate, with a margin of safety between 2 and 6; and at 1 mg/kg complete feed for pigs and poultry and 1.5 mg/kg complete feed for all other species (ethylacrylate, ethyl hex-3-enoate, ethyl trans-2-butenoate, ethyl isobutyrate, ethyl isovalerate, butyl isovalerate, methyl isovalerate, hexyl isobutyrate, methyl 2-methyl butyrate, pentyl isovalerate, butyl 2-methyl butyrate, hexyl isovalerate, ethyl 2-methyl butyrate, hexyl 2-methyl butyrate and methyl 2-methylvalerate. No safety concern would arise for the consumer from the use of compounds belonging to CG 1 up to the highest safe level in feedingstuffs for all animal species. The FEEDAP Panel considers it prudent to treat all compounds under assessment as irritants to skin, eyes and respiratory tract and as skin sensitizers. No risk for the safety for the environment is foreseen. Since all 85 compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  6. Scientific Opinion on the safety and efficacy of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes (chemical group 2 when used as flavourings for all animal species

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    Chemical group 2 consists of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes, of which 34 are currently authorised for use as flavours in food. The use of 2-methylpropionic acid, isopentyl acetate, 3-methylbutyl butyrate and 2-methylbutyl acetate is safe at the proposed use level of 25 mg/kg complete feed for cattle, salmonids and non food producing animals and at 5 mg/kg complete feed for pigs and poultry. 2-Methylpropan-1-ol, isopentanol, 2-ethylhexan-1-ol, 2-methylpropanal, 3-methylbutanal, 2-methylbutyraldehyde, 3-methylbutyric acid, 2-methylvaleric acid, 2-ethylbutyric acid, 2-methylbutyric acid, 2-methylheptanoic acid, 4-methyloctanoic acid, isobutyl acetate, isobutyl butyrate, 3-methylbutyl propionate, 3-methylbutyl formate, glyceryl tributyrate, isobutyl isobutyrate, isopentyl isobutyrate, isobutyl isovalerate, isopentyl 2-methylbutyrate, 2-methylbutyl isovalerate and 2-methylbutyl butyrate are safe at the proposed use level of 5 mg/kg complete feed for all animal species. 3,7-Dimethyloctan-1-ol, 2-methylundecanal, 4-methylnonanoic acid, 3-methylbutyl hexanoate, 3-methylbutyl dodecanoate, 3-methylbutyl octanoate and 3-methylbutyl 3-methylbutyrate are safe at a maximum of 1.5 mg/kg complete feed for cattle, salmonids and non food-producing animals and of 1.0 mg/kg complete feed for pigs and poultry. No safety concern was identified for the consumer from the use of these compounds up to the highest safe level in feedingstuffs for all animal species. All compounds should be considered as irritants to skin, eyes and respiratory tract, and as skin sensitisers. The compounds do not pose a risk to the environment when used at concentrations considered safe for the target species. Since all compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  7. Double stereodifferentiation in the "acetate-type" aldol reaction with garner's aldehyde. Stereocontrolled synthesis of polyhydroxylated gamma-amino carbonyl compounds.

    Vicario, Jose L; Rodriguez, Mónica; Badía, Dolores; Carrillo, Luisa; Reyes, Efraim

    2004-09-01

    [reaction: see text] The aldol reaction of acetamide enolates with protected chiral alpha-amino-beta-hydroxy aldehyde 1 (Garner's aldehyde) has been performed in a stereocontrolled way under double stereodifferentiation conditions using pseudoephedrine as the additional chiral information source attached to the enolate reagent. In addition, the obtained adduct has been transformed into other valuable chiral building blocks such as gamma-amino-beta,delta-dihydroxy acids, esters, and ketones. PMID:15330615

  8. Role of pseudoephedrine as chiral auxiliary in the "acetate-type" aldol reaction with chiral aldehydes; asymmetric synthesis of highly functionalized chiral building blocks.

    Ocejo, Marta; Carrillo, Luisa; Vicario, Jose L; Badía, Dolores; Reyes, Efraim

    2011-01-21

    We have studied in depth the aldol reaction between acetamide enolates and chiral α-heterosubstituted aldehydes using pseudoephedrine as chiral auxiliary under double stereodifferentiation conditions, showing that high diastereoselectivities can only be achieved under the matched combination of reagents and provided that the α-heteroatom-containing substituent of the chiral aldehyde is conveniently protected. Moreover, the obtained highly functionalized aldols have been employed as very useful starting materials for the stereocontrolled preparation of other interesting compounds and chiral building blocks such as pyrrolidines, indolizidines, and densely functionalized β-hydroxy and β-amino ketones using simple and high-yielding methodologies. PMID:21188970

  9. Synthesis of 5'-Aldehyde Oligonucleotide.

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  10. Volatile aldehydes in libraries and archives

    Fenech, Ann; Strlič, Matija; Kralj Cigić, Irena; Levart, Alenka; Gibson, Lorraine T.; de Bruin, Gerrit; Ntanos, Konstantinos; Kolar, Jana; Cassar, May

    2010-06-01

    Volatile aldehydes are produced during degradation of paper-based materials. This may result in their accumulation in archival and library repositories. However, no systematic study has been performed so far. In the frame of this study, passive sampling was carried out at ten locations in four libraries and archives. Despite the very variable sampling locations, no major differences were found, although air-filtered repositories were found to have lower concentrations while a non-ventilated newspaper repository exhibited the highest concentrations of volatile aldehydes (formaldehyde, acetaldehyde, furfural and hexanal). Five employees in one institution were also provided with personal passive samplers to investigate employees' exposure to volatile aldehydes. All values were lower than the presently valid exposure limits. The concentration of volatile aldehydes, acetic acid, and volatile organic compounds (VOCs) in general was also compared with that of outdoor-generated pollutants. It was evident that inside the repository and particularly inside archival boxes, the concentration of VOCs and acetic acid was much higher than the concentration of outdoor-generated pollutants, which are otherwise more routinely studied in connection with heritage materials. This indicates that further work on the pro-degradative effect of VOCs on heritage materials is necessary and that monitoring of VOCs in heritage institutions should become more widespread.

  11. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Yi, Xia; Gu, Hanqi; Gao, Qiuqiang; Liu, Z. Lewis; Bao, Jie

    2015-01-01

    Background Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenolic aldehyde inhibitors are rare. For ethanologenic strains, Zymomonas mobilis ZM4 is high in ethanol productivity and genetic manipulation feasibility, but sensitive to phenolic aldehyde inhibitors....

  12. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.

    Peterson, J. B.; LaRue, T A

    1982-01-01

    A soluble aldehyde dehydrogenase (EC 1.2.1.3) was partially purified from Rhizobium japonicum bacteroids and from free-living R. japonicum 61A76. The enzyme was activated by NAD+, NADH, and dithiothreitol, and it reduced NAD(P)+. Acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, and succinic semialdehyde were substrates. The Km for straight-chain aldehydes decreased with increasing carbon chain length. The aldehyde dehydrogenase was inhibited by 6-cyanopurine, but not by metronidazo...

  13. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  14. Selective Enzymatic Reduction of Aldehydes

    Patrizia Di Gennaro

    2006-05-01

    Full Text Available Highly selective enzymatic reductions of aldehydes to the corresponding alcohols was performed using an E. coli JM109 whole cell biocatalyst. A selective enzymatic method for the reduction of aldehydes could provide an eco-compatible alternative to chemical methods. The simplicity, fairly wide scope and the very high observed chemoselectivity of this approach are its most unique features.

  15. Process for producing furan from furfural aldehyde

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  16. Microsphere coated substrate containing reactive aldehyde groups

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  17. A Comparative 90 Day Toxicity Study of Allyl Acetate, Allyl Alcohol and Acrolein

    Auerbach, Scott S.; Mahler, Joel; Travlos, Gregory S.; Irwin, Richard D

    2008-01-01

    Allyl acetate (AAC), allyl alcohol (AAL), and acrolein (ACR) are used in the manufacture of detergents, plastics, pharmaceuticals, and chemicals and as agricultural agents. A metabolic relationship exists between these chemicals in which allyl acetate is metabolized to allyl alcohol and subsequently to the highly reactive,α,β-unsaturated aldehyde, acrolein. Due to the weaker reactivity of the protoxicants, allyl acetate and allyl alcohol, relative to acrolien we hypothesized the protoxicants ...

  18. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  19. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Multiple aldehyde reductases of human brain.

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  2. Acetate causes alcohol hangover headache in rats.

    Christina R Maxwell

    Full Text Available BACKGROUND: The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache. METHODS: We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats. RESULTS: Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia, followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity. DISCUSSION: Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction.

  3. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  4. Evans-Tishchenko coupling of heteroaryl aldehydes.

    Dorgan, Philip D; Durrani, Jamie; Cases-Thomas, Manuel J; Hulme, Alison N

    2010-11-01

    The low-temperature Evans-Tishchenko coupling of a range of functionalized heteroaryl aldehydes with β-hydroxy ketones in the presence of a Sm(III) catalyst has been achieved with high yields (90-99%) and good to excellent diastereoselectivity (90:10 → 95:5 dr). However, at room temperature a retro-aldol aldol-Tishchenko reaction was found to compete with the desired Evans-Tishchenko reaction. Identification of these byproducts has allowed the corresponding aldol-Tishchenko reaction to be optimized for several heteroaryl aldehydes. PMID:20929205

  5. Aldehyde dehydrogenase protein superfamily in maize.

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  6. Tricarbonylchrom-Komplexe aromatischer Aldehyde und Ketone

    Effenberger, Franz; Schöllkopf, Klaus

    1985-01-01

    Tricarbonylchrom (TCC)-Komplexe 2, 3 aromatischer Aldehyde und Ketone werden einmal durch basekatalysierte Carbodesilylierung von TCC-Aryltrimethylsilan-Komplexen 1 mit Dime-thylformamid bzw. Benzoylfluorid, zum anderen durch selektive Oxidation von TCC-Phenyl-methanol-Komplexen 5 mit speziell präpariertem Mangandioxid in Ether dargestellt.

  7. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  8. Deodorants: an experimental provocation study with cinnamic aldehyde

    Bruze, Magnus; Johansen, Jeanne Duus; Andersen, Klaus Ejner; Frosch, P; Lepoittevin, J-P; Rastogi, S; Wakelin, S; White, I; Menné, T

    2003-01-01

    of axillary dermatitis when used by individuals with and without contact allergy to cinnamic aldehyde. METHODS: Patch tests with deodorants and ethanol solutions with cinnamic aldehyde, and repeated open application tests with roll-on deodorants without and with cinnamic aldehyde at different...... concentrations, were performed in 37 patients with dermatitis, 20 without and 17 with contact allergy to cinnamic aldehyde. RESULTS: A repeated open application test with positive findings was noted only in patients hypersensitive to cinnamic aldehyde (P <.001) and only in the axilla to which the deodorants...

  9. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Mercury(II) Acetate

    Dejmek, Milan

    2012-01-01

    Roč. 23, č. 19 (2012), s. 2867-2868. ISSN 0936-5214 Institutional support: RVO:61388963 Keywords : mercury(II) acetate * oxymercuration Subject RIV: CC - Organic Chemistry Impact factor: 2.655, year: 2012

  11. Chiral allyl silane additions to chiral α-substituted aldehydes

    Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)

  12. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2012-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophili...

  13. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Bag, Soumabha; Hendricks, P.I. [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Reynolds, J.C. [Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire (United Kingdom); Cooks, R.G., E-mail: cooks@purdue.edu [Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)

    2015-02-20

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

  14. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry

    Highlights: • In-situ derivatization and simultaneous ionization used to detect aldehydes. • Biogenic aliphatic and aromatic aldehydes reacted with 4-aminophenol. • Derivatized products yield structurally characteristic fragment ions. • This measurement demonstrated using a miniaturized portable mass spectrometer. - Abstract: Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer

  15. Cyclodextrin Aldehydes are Oxidase Mimics

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin...... aldehydes were prepared containing one, two or more aldehydes at the primary rim (6-positions) or a ethoxy-2-al or propoxy-3-al at the secondary rim. 2-O-ethoxy-2-al- -cyclodextrin was found to be the best catalyst. The aldehydes are in many cases better catalysts than the ketones, because of their powerful...

  16. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  17. Olfactory responses of blowflies to aliphatic aldehydes.

    DETHIER, V G

    1954-07-20

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  18. The oxidation of the aldehyde groups in dialdehyde starch

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  19. Adamantane-1-ammonium acetate

    Elise J. C. de Vries

    2011-06-01

    Full Text Available In the title compound, C10H18N+·C2H3O2−, the ammonium H atoms of the cation are linked to three acetate anions via N—H...O hydrogen bonds, forming a chain structure extending along the b axis.

  20. Asymmetric α,γ-Regioselective [3 + 3] Formal Cycloadditions of α,β-Unsaturated Aldehydes via Cascade Dienamine-Dienamine Catalysis.

    Xiao, Wei; Yin, Xiang; Zhou, Zhi; Du, Wei; Chen, Ying-Chun

    2016-01-01

    Asymmetric α,γ-regioselective [3 + 3] formal cycloadditions of α,β-unsaturated aldehydes and 2-nitroallylic acetates have been developed for the first time. These reactions proceeded through a domino Michael addition-Michael addition sequence via an unusual cascade dienamine-dienamine catalysis of a chiral secondary amine, and multifunctional cyclohexene derivatives were generally constructed in moderate yields with excellent stereoselectivity after simple treatment with K2CO3. PMID:26653774

  1. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    Saúl Gómez-Manzo; José E. Escamilla; Abigail González-Valdez; Gabriel López-Velázquez; América Vanoye-Carlo; Jaime Marcial-Quino; Ignacio de la Mora-de la Mora; Itzhel Garcia-Torres; Sergio Enríquez-Flores; Martha Lucinda Contreras-Zentella; Roberto Arreguín-Espinosa; Kroneck, Peter M H; Martha Elena Sosa-Torres

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to ...

  2. Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry.

    Bag, Soumabha; Hendricks, P I; Reynolds, J C; Cooks, R G

    2015-02-20

    Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer. PMID:25682245

  3. Aldehyde concentrations in wet deposition and river waters

    The process of pollutants removal from the atmosphere can be responsible for the appearance of aldehydes in surface waters. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in precipitations as well as in surface water samples, while semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. Particularly high level of carbonyls concentration was noted after periods of drought and at the beginning of rainy periods. We estimated that ca. 40% of aldehydes from wet precipitations were delivered into river waters. The level of carbonyl concentration in river was positively correlated with specific local meteorological conditions such as solar radiation and ozone concentration, in contrast, there was negative correlation between aldehyde concentration in the river samples and the precipitation intensity. - Highlights: ► Atmosphere pollutants are responsible for the appearance of aldehydes in surface waters. ► Volatile aldehydes are commonly present in precipitations as well as in surface waters. ► Semi-volatile and poorly soluble aldehydes as nonanal and decanal were observed seasonally. ► High concentration of carbonyls were noted after periods of drought and at the beginning of rain. ► Carbonyl concentration in river is correlated to meteorological conditions

  4. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  5. Preparation and evaluation of 61Cu-thiophene-2-aldehyde thiosemicarbazone for PET studies

    Background: [61Cu]Thiophene-2-aldehyde thiosemicarbazone (61CuTATS) was prepared according to an analogy of carrier copper compound with antitumor activity, for eventual use in PET. Material and Methods: [61Cu]TATS was prepared using copper-61 acetate and in-house made ligand (TATS) in one step. 61Cu was produced via the natZn(p,x)61Cu nuclear reaction (180 eA, 22 MeV, 3.2 h) followed by a two-step chromatography method (222 GBq of 61Cu2+). 61Cu TATS preparation was optimized for reaction conditions (buffer concentration and temperature). The tracer was finally administered to normal rats for biodistribution studies. Results: Total radiolabelling of the tracer took 30 minutes with a radiochemical purity of more than 90% (using HPLC and RTLC) and specific activity of about 250-300 Ci/mmol. The complex was stable in the presence of human serum for an hour. The biodistribution of copper cation and the tracer was checked in wild-type rats for up to 2 hours with significant spleen and lung uptake of the tracer. Preparation and evaluation of 61Cu-thiophene-2-aldehyde thiosemicarbazone for PET studies. Conclusion: The production of 61Cu via the natZn(p,x)61Cu is an efficient and reproducible method with high specific activity leading to the production and preliminary evaluation of 61Cu TATS, a potential PET tracer, was reported. (authors)

  6. Preparing Process of Cerium Acetate and Rare Earth Acetate

    Qiao Jun; Ma Ying; Xu Yanhui; Zhang Jun; Chang Shu; Hao Xianku

    2004-01-01

    Preparing process was presented and the influences of concentration of acetic acid, reaction temperature, the ratio of cerium carbonate and acetic acid, heat preservation time to the yield of cerium acetate were discussed.The crystalline cerium acetate and rare earth acetate such as ( La, Ce, Pr, Nd) (Ac) 3, ( Ce, Pr, Nd) (Ac) 3, ( Pr, Nd, Er,Y) (Ac) 3 and yttrium acetate were prepared under this condition.The shape, structure and composition of the crystals were determined by the methods of SEM, TG-DTA, X-ray diffraction and chemical analysis.The optimum prepared conditions of cerium acetate were described.This prepared process has characteristics such as simple process route, low cost, high yield, good quality, no pollution to environment, etc.

  7. Turn on Fluorescent Probes for Selective Targeting of Aldehydes

    Ozlem Dilek

    2016-03-01

    Full Text Available Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP fluorophore and a xanthene-derived fluorophore (rosamine were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent in polar and apolar solvent. However, imine formation with salicylaldehyde on each fluorophore increases the fluorescence quantum yield by almost a factor of 10 (from 0.05 to 0.4. These fluorophores are therefore suitable candidates for development of fluorescence-based sensors for aldehydes.

  8. 4-Carbamoylpiperidinium acetate monohydrate

    Urs D. Wermuth

    2010-12-01

    Full Text Available In the structure of the title compound, C6H13N2O+·C2H3O2−·H2O, the amide H atoms of the cations form centrosymmetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set R42(8], which are conjoint with cyclic water-bridged amide–amide associations [R44(12] and larger R44(20 associations involving the water molecule and the acetate anions, which bridge through the piperidinium H-bond donors, giving an overall three-dimensional framework structure.

  9. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    Rodriguez Gabriel M

    2012-06-01

    Full Text Available Abstract Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol vs 0.14 g/L/OD600 (isobutyraldehyde. Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600 and decreased isobutanol production (0.4 g/L/OD600. By assessing production by

  10. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  11. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  12. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C;

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  13. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.

    Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi

    2016-04-01

    Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. PMID:26917342

  14. Aldehyde oxidase activity in fresh human skin.

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. PMID:25249692

  15. Sorption Behavior of an Aliphatic Series of Aldehydes in the Presence of Poly(ethylene terephthalate) Blends Containing Aldehyde Scavenging Agents

    Suloff, Eric Charles

    2002-01-01

    The quality of many beverages and food products is compromised by the presence of low molecular weight aldehydes. Aldehydes are commonly formed during storage by the oxidation of lipids or are introduced as migrants from polymeric packaging material. The objective of this project was to evaluate the effectiveness of three aldehyde scavenging agents, blended into poly(ethylene terephthalate) (PET) films, in removing an aliphatic series of aldehydes from an acidified aqueous model solution (p...

  16. ACETIC ACID AND A BUFFER

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  17. Reaction of tobacco smoke aldehydes with human hemoglobin.

    Hoberman, H D; San George, R C

    1988-01-01

    Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, and acrolein, all of which are constituents of tobacco smoke, were reacted in 5 mM concentration with the purified major fraction of normal adult human hemoglobin (hemoglobin Ao) in 1 mM concentration. A cigarette smoke condensate, diluted to contain 5 mM total aldehydes, was also reacted with 1 mM hemoglobin Ao. Cationic exchange high-performance liquid chromatography (HPLC) showed that the products formed from simple aliphatic aldehydes, with the exception of formaldehyde, were analogues of those formed from acetaldehyde, earlier shown by us to be imidazolidinone derivatives, that is, cyclic addition products of the N-terminal aminoamide function of alpha and beta chains. Formaldehyde and acrolein produced a heterogeneous mixture of derivatives including cross-linked hemoglobin dimers. The greater proportion of modified hemoglobins produced by condensate aldehydes resembled those formed from acetaldehyde, the most abundant aldehyde in the condensate. A smaller fraction consisted of cross-linked hemoglobin dimers, presumably due to the action of formaldehyde. Mass spectrometric and HPLC analyses of the 2,4-dinitrophenylhydrazones precipitated from the condensate documented the presence of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, furfural, and methylfurfural. The toxicity of aldehydes is briefly discussed in the context of the findings of this study. PMID:3236330

  18. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  19. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain.

    Szczyrba, Elżbieta; Greń, Izabela; Bartelmus, Grażyna

    2014-03-01

    Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their highest activity at 30-35 °C and pH 7.0-7.5. Esterase preferably hydrolyzed ester bonds with short fatty chains without plain differences for C2 or C4. Comparison of Km values for alcohol and aldehyde dehydrogenases for acetaldehyde suggested that this metabolite was preferentially oxidized than reduced. Activity of alcohol dehydrogenase reducing acetaldehyde to ethanol suggested that one mechanism of defense against the elevated concentration of toxic acetaldehyde could be its temporary reduction to ethanol. Esterase activity was inhibited by phenylmethanesulfonyl fluoride, while β-mercaptoethanol, dithiothreitol, and ethylenediaminetetraacetic acid had no inhibitor effect. From among metal ions, only Mg(2+) and Fe(2+) stimulated the cleavage of ester bond. PMID:23913099

  20. Catalytic Combustion of Ethyl Acetate

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2007-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  1. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.

    Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D

    2016-05-01

    A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days

  2. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans.

    Huang, Chao; Wu, Hong; Liu, Qiu-ping; Li, Yuan-yuan; Zong, Min-hua

    2011-05-11

    The effects of five representative aldehydes in lignocellulosic hydrolysates on the growth and the lipid accumulation of oleaginous yeast Trichosporon fermentans were investigated for the first time. There was no relationship between the hydrophobicity and the toxicity of aldehyde, and 5-hydroxymethylfurfural was less toxic than aromatic aldehydes and furfural. Binary combination of aromatic aldehydes caused a synergistic inhibitory effect, but combination of furan and aromatic aldehydes reduced the inhibition instead. A longer lag phase was found due to the presence of aldehydes and the decrease of sugar consumption rate, but more xylose was utilized by T. fermentans in the presence of aldehydes, especially at their low concentrations. The variation of malic enzyme activity was not related to the delay of lipid accumulation. Furthermore, the inhibition of aldehydes on cell growth was more dependent on inoculum size, temperature, and initial pH than that on lipid content. PMID:21443267

  3. Acetate catabolism by Methanosarcina barkeri

    Cell suspensions of Methanosarcina barkeri convert the carboxyl and methyl group carbons of acetate to carbon dioxide and methane at pH 6 under an atmosphere of 100% CO2. The rate of loss of radioactivity from [1-14C]acetate was over three times greater than that from [2-14C]acetate under these conditions. Control experiments with both labeled substrates present showed that the rates were additive. Addition of a high level of 2-bromoethanesulfonate to selectively inhibit methane formation largely inhibited release of 14C from methyl-labeled acetate but only marginally decreased the rate of loss from [1-14C]acetate. Thus, in the absence of the inhibitor loss of 14C from [1-14C]acetate likely reflects an isotopic exchange reaction with CO2 superimposed on the overall conversion of acetate to CO2 and CH4. The exchange reaction was inhibited by uncouplers such as 2,4-dinitrophenol, CCCP, and FCCP. Cells permeabilized by treatment with nonionic detergents or disrupted by passage through a French pressure cell failed to catalyze the exchange reaction. Exchange activity was not restored by addition of ATP or by use of [1-14C]acetyl CoA as substrate. No evidence for involvement of carbon monoxide dehydrogenase in the exchange was found in these experiments when CO2 was replaced by CO. However, the soluble extracts retained the ability to convert acetate to methane in the presence of H2 and ATP

  4. Acetate metabolism in Methanothrix soehngenii.

    Jetten, M. S. M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of relevance to our understanding of anaerobic processes and their optimal application in treatment of waste water from various sources.Until now only two genera of methane bacteria have been described which are ab...

  5. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    Rizzo, William B.

    2013-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize...

  6. Tandem Aldol Condensation – Platinacycle-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2012-01-01

    Tandem aldol condensation of aldehydes with methyl ketones followed by anionic four-electron donor-based (Type I) platinacycle-catalyzed addition reactions of arylboronic acids to form β-arylated ketones is described. Good to excellent yields of β-arylated ketones were obtained for the tandem reactions of aromatic/aliphatic aldehydes, methyl ketones and arylboronic acids, and moderate yields were observed for the tandem reaction with α, β-unsaturated aldehydes as the aldehyde source.

  7. Changes in nonpolar aldehydes in bean cotyledons during ageing

    Wilhelmová, Naděžda; Domingues, P.; Srbová, M.; Fuksová, H.; Wilhelm, J.

    2006-01-01

    Roč. 50, č. 4 (2006), s. 559-564. ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ageing * aldehydes * lipid peroxidation * lipofuscin-like pigments (LFP) Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  8. A thermostable transketolase evolved for aliphatic aldehyde acceptors.

    Yi, Dong; Saravanan, Thangavelu; Devamani, Titu; Charmantray, Franck; Hecquet, Laurence; Fessner, Wolf-Dieter

    2015-01-11

    Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step. PMID:25415647

  9. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    production of Temora longicornis were measured for six different diatom species as well as for a nondiatom control diet (Rhodomonas sp.). The experiments were accompanied by determinations of fatty acids, sterols, and polyunsaturated aldehydes (PUA) in the food. Although diatoms were generally ingested at...

  10. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  11. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes with no...

  12. Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes

    Broekhuis, R.R.; Lynn, S.; King, C.J. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1993-12-01

    A means is proposed for separating propylene glycol and other compounds bearing multiple hydroxyl groups by reversible chemical reaction. Glycols react with aldehydes in cyclic acetalization reactions to form substituted dioxolanes. Propylene glycol reacts with formaldehyde and acetaldehyde to form 4-methyl-1,3-dioxolane and 2,4-dimethyl-1,3-dioxolane. The reaction is catalyzed homogeneously by strong mineral acids or heterogeneously by cation exchange resins in the acid form. Separation processes utilizing this reaction would include an acetalization step, several distillative separation steps and finally a hydrolysis step in which the reaction is reversed. Both reaction steps must be forced to completion by removing the reaction product simultaneously. The equilibrium and kinetics of the reaction with formaldehyde were studied experimentally in systems catalyzed by Amberlite IR-120 ion exchange resin. A number of solvents were screened for their ability to extract 2,4-dimethyl-1,3-dioxolane from aqueous solution. Aromatic hydrocarbons exhibited the highest distribution into the organic phase. To achieve an effective separation of propylene glycol from aqueous solution by combined reaction with formaldehyde and distillation, formaldehyde would have to be present in excess and would be difficult and costly to separate from the aqueous solution. In reactive distillation using acetaldehyde as a reactant this is not a problem. A large flow of acetaldehyde would be necessary to recover the propylene glycol sufficiently in a distillative process. In a process combining reaction and extraction into an organic solvent this problem is avoided. Process simulation indicates the energy input of such a process is less than half of the energy required in a triple-effect evaporation process. This benefit is offset by higher capital costs and increased complexity in the reaction/extraction process.

  13. Radiation sterilization of hydrocortisone acetate

    The feasibility of using high energy ionizing radiation for the sterilization of hydrocortisone acetate was investigated. Hydrocortisone acetate in the form of powder was exposed to different dose levels of gamma radiation using a Cobalt-60 source. The irradiated samples were examined by various physico-chemical techniques in order to detect possible radiolysis products. It was of interest to know if one could insure sterility and retain biological properties of the drug by suitable choice of radiation dose. The results showed that a 10 KGy radiation dose causes no change in the physico-chemical properties of the drug and is sufficient to obtain contaminant-free product

  14. [Synthesis, structures, and acute toxicity of gossypol nonsymmetrical aldehyde derivatives].

    Tiliabaev, K Z; Kamaev, F G; Vypova, N L; Iuldashev, A M; Ibragimov, B T; Talipov, S A

    2010-01-01

    Nonsymmetrical aldehyde derivatives of gossypol, a yellow polyphenolic pigment of cottonseed, were synthesized by reactions with ammonia, aniline, 4-aminoantipyrine, and barbituric acid. Their structures were determined by UV spectrophotometry and IR and (1)H NMR spectroscopy methods. Their acute toxicities in white mice were compared with those of gossypol and the corresponding symmetrical analogues. It was demonstrated that in general, the fewer free aldehyde groups that contained the gossypol derivative, the lower its acute toxicity. Only in the case of a nonsymmetrical gossypol derivative bearing a 4-aminoantipyrine residue did we observe a deviation from the above correlation: its symmetrical counterpart was even more toxic, but still less toxic than gossypol. PMID:20644599

  15. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Ma YM; Zhao S

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, th...

  16. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter.

    Xie, Y Q; Takimoto, K; Pitot, H. C.; Miskimins, W K; Lindahl, R

    1996-01-01

    The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and ge...

  17. An efficient and versatile synthesis of aromatic nitriles from aldehydes

    Maryam Hajjami; Arash Ghorbani-Choghamarani; Mohammad Ali Zolfigol; Fatemeh Gholamian

    2012-01-01

    A simple and direct method has been developed for synthesis of nitriles based on one-pot reaction of aromatic aldehydes with three different kind of reagents:CeCl3·7H2O/KI/H2O2,CeCl3·7H2O/KI/UHP and (NH4)2Ce(NO3)6/KI/H2O2 in aqueous ammonia.

  18. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff. M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the...

  19. γ-Unsaturated aldehydes as potential Lilial replacers.

    Schroeder, Martin; Mathys, Marion; Ehrensperger, Nadja; Büchel, Michelle

    2014-10-01

    A series of Claisen rearrangements was undertaken in order to find a replacement for Lilial (=3-(4-(tert-butyl)phenyl)-2-methylpropanal), a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material [1]. 5,7,7-Trimethyl-4-methyleneoctanal (10), the synthesis of which is described, became the main lead. It possesses an odour which is very close to that of Lilial but lacks its substantivity. Aldehydes with higher molecular weights than that of 10 were, therefore, synthesised in order to boost substantivity and to understand the structural requirements for a 'Lilial' odour. The aldehydes were obtained via Claisen rearrangements of 'exo-methylidene' vinyl ethers, allenyl vinyl ethers, or allenyl allyl ethers. Alternatively, coupling of terminal alkynes with allyl alcohols led to the desired aldehydes. Derivatives of 10 and their sila analogues were also synthesised. The olfactory properties of all synthesised molecules were evaluated for possible structure-odour relationships (SOR). PMID:25329790

  20. Antibiofilm Properties of Acetic Acid

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram...

  1. The FEMA GRAS assessment of phenethyl alcohol, aldehyde, acid, and related acetals and esters used as flavor ingredients

    Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; Wagner, B.M.

    2005-01-01

    This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of int

  2. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping

    2016-08-01

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass. PMID:27003269

  3. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  4. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  5. Inoculum characterization: identification of acetate consumption routes

    García Ruiz, Javier; Flotats Ripoll, Xavier; Tey, Laura; Fernández García, Belén

    2015-01-01

    A mesophilic inoculum, likely to have syntrophic acetate oxidation bacteria (SAOB) and hydrogenotrophic methanogen (HM) activity due to operational conditions, was characterized by means of methanogenic activity tests, submitting it to different acetate and ammonia nitrogen (TAN) concentrations.

  6. Expression, crystallization and preliminary X-ray crystallographic analysis of aldehyde dehydrogenase (ALDH) from Bacillus cereus

    Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. The aldh gene from B. cereus was cloned; the protein was expressed, purified and crystallized, and a preliminary X-ray crystallography analysis was performed. Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. Most aldehydes are toxic at low levels. ALDHs are used to regulate metabolic intermediate aldehydes. The aldh gene from Bacillus cereus was cloned and the ALDH protein was expressed, purified and crystallized. A crystal of the ALDH protein diffracted to 2.6 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 83.5, b = 93.3, c = 145.5 Å, β = 98.05°. Four protomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å3 Da−1 and a solvent content of 51.8%

  7. Acetate reduces microglia inflammatory signaling in vitro

    Soliman, Mahmoud L; Puig, Kendra L.; Combs, Colin K.; Rosenberger, Thad A.

    2012-01-01

    Acetate supplementation increases brain acetyl-CoA and histone acetylation and reduces lipopolysaccharide (LPS)-induced neuroglial activation and interleukin (IL)-1β expression in vivo. To determine how acetate imparts these properties, we tested the hypothesis that acetate metabolism reduces inflammatory signaling in microglia. To test this, we measured the effect acetate treatment had on cytokine expression, mitogen-activated protein kinase (MAPK) signaling, histone H3 at lysine 9 acetylati...

  8. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2013-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptid...

  9. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  10. Pallidol hexaacetate ethyl acetate monosolvate

    Qinyong Mao

    2013-07-01

    Full Text Available The entire molecule of pallidol hexaacetate {systematic name: (±-(4bR,5R,9bR,10R-5,10-bis[4-(acetyloxyphenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å is 54.73 (6°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carboxy—C—C torsion angles = −70.24 (14, −114.43 (10 and −72.54 (13°]. In the crystal, a three-dimensional architecture is sustained by C—H...O interactions which encompass channels in which the disordered ethyl acetate molecules reside.

  11. Acet-oxy-γ-valerolactone.

    Tristram, Cameron; Gainsford, Graeme J; Hinkley, Simon

    2013-06-01

    Levulinyl cellulose esters have been produced as an effective renewable binder for architectural coatings. The title compound, C7H10O4 (systematic name: 2-methyl-5-oxo-tetra-hydro-furan-2-yl acetate), assigned as the esterifying species, was isolated and crystallized to confirm the structure. In the crystal, the mol-ecules pack in layers parallel to (102) utilizing weak C-H⋯O inter-actions. PMID:23795112

  12. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Ramin Rezaei; Mohammadi, Mohammad K; Tahereh Ranjbar

    2011-01-01

    Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  13. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited. PMID:26591999

  14. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Phillips, T. K.; Clarke, Stuart M.; Castro Arroyo, Miguel Ángel; Millán, Carmen; Medina, Santiago

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7, C 9 and C 11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue...

  15. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C7, C9 and C11) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C7 homologue the p2 plane group is preferred.

  16. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  17. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    *A. H. Banday

    2013-01-01

    An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemi...

  18. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    Gothelf, Kurt Vesterager; Kodal, Anne Louise Bank; Mortensen, Michael Rosholm; Rosen, Christian Bech; Tørring, Thomas

    2016-01-01

    Many medical and biotechnological applications rely on labeling of proteins, but one key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by mere residue-specific random labeling, but requires genetic engineering. Using site-selective DNA......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  19. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  20. Coordination polymers of La(III) acetate with terephthalaldehyde bis isonicotinic acid hydrazone (Paper No. AL-12)

    Polymerization reactions involving the formation of schiff base metal complexes by condensation have been described. Metal complexes of schiff bases of hyrazides with aldehydes and ketones have been of special interest in recent years, particularly in the context of therapeutic value of hydrazide and hydrazone. The coordination occurs both in keto as well as in enolic form of ligands with metal ions. Coordination polymers of 3-d series have been extensively studied but less attention has been paid on rare earths polymeric complexes. The synthesis and characterization of lanthanide (La, Pr, Nd, Sr and Gd) acetate complexes with a schiff base derived from terephthalaldehyde and isonicotinic acidhydrazide are reported. (author)

  1. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  2. Radon and aldehyde concentrations in the indoor environment. Final report

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim-3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  3. Conversion to eslicarbazepine acetate monotherapy

    Sperling, Michael R.; French, Jacqueline; Jacobson, Mercedes P.; Pazdera, Ladislav; Gough, Mallory; Cheng, Hailong; Grinnell, Todd; Blum, David

    2016-01-01

    Objective: To assess the efficacy and safety of eslicarbazepine acetate (ESL) monotherapy. Methods: This post hoc pooled analysis of 2 randomized double-blind studies (093-045 and -046) included adults with partial-onset seizures medically uncontrolled by 1 or 2 antiepileptic drugs (AEDs). Following the baseline period (8 weeks), eligible patients were randomized 2:1 to receive ESL 1,600 mg or 1,200 mg once daily for 18 weeks; the primary endpoint was study exit by meeting predefined exit cri...

  4. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  5. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).

    Buchhaupt, Markus; Guder, Jan; Sporleder, Fenja; Paetzold, Melanie; Schrader, Jens

    2013-03-01

    Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H(2)O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)(+) regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. PMID:23180547

  6. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, [3H](Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes

  7. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123. ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.396, year: 2014

  8. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism.

  9. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  10. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  11. Flavour release of aldehydes and diacetyl in oil/water systems

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller; Jensen, B.; Refsgaard, Hanne

    2000-01-01

    The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration......-dependent release experiment, the C-6-aldehydes were released in equal proportions from the aqueous and the emulsion systems, but in lower amounts from the pure oil. The amounts of C-9-aldehydes released decreased with increasing oil content. All aldehydes were released more rapidly from the aqueous system than...... from the pure oil. The release over time for diacetyl and (E,E)-2,4-hexadienal showed a linear relationship in all systems. The other compounds followed an exponential relationship between the time and the fraction released in the aqueous systems. It was demonstrated that the release of the volatile...

  12. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.

    Brett K Kaiser

    Full Text Available We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

  13. Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene + (Acetic Acid, Methyl Acetate and n-Propyl Acetate)and Methyl Acetate + n-Propyl Acetate in an Acetic Acid Dehydration Process

    HUANG Xiuhui; ZHONG Weimin; PENG Changjun; QIAN Feng

    2013-01-01

    The vapor-liquid equilibrium data of four binary systems(acetic acid + p-xylene,methyl acetate + n-propyl acetate,n-propyl acetate + p-xylene and methyl acetate + p-xylene)are measured at 101.33 kPa with Ellis equilibrium still,and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems.The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate + p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points.The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase,and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate + n-propyl acetate system,for which the latter gives more accurate correlations.

  14. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  15. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  16. Understanding Palladium Acetate from a User Perspective.

    Carole, William A; Colacot, Thomas J

    2016-06-01

    The behavior of palladium acetate is reviewed with respect to its synthesis, characterization, structure (in both solution and solid state), and activation pathways. In addition, comparisons of catalytic activities between pure palladium acetate and two common byproducts, Pd3 (OAc)5 (NO2 ) and polymeric [Pd(OAc)2 ]n , typically present in commercially available material are reviewed. Hence, this minireview serves as a concise guide for the users of palladium acetate from both academia and industry. PMID:27125630

  17. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  18. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  19. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [125I]FMIC and [125I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  20. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  1. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect. PMID:19441727

  2. Solubilities of carbon dioxide in 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate and 3-methoxybutyl acetate

    Highlights: • Measured solubility data of CO2 in 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate and 3-methoxybutyl acetate. • Calculated Henry’s constant and thermodynamic properties of selected systems. • Concluded that selected absorbents have potential research value for CO2 capture. - Abstract: The solubilities of CO2 in 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, and 3-methoxybutyl acetate were measured by isothermal synthesis method under pressures up to 1.2 MPa and at temperatures ranging from (293.15 to 333.15) K. Henry’s constant was calculated based on experimental data regression. The solubilities of CO2 were found to increase with decreased temperature and increased the methyl group to the molecular structure of the absorbent. Henry’s constant and volumetric solubility of selected absorbents at T = 298.15 K were compared with those of commercial absorbents and common solvents. 3-Methoxybutyl acetate showed the best performance by mole fraction, and 2-methoxyethyl acetate behaved the best by volumetric fraction. Based on Henry’s constant, thermodynamic properties such as Gibbs free energy of solution, enthalpy of solution, and absorption entropy of solution were determined. These properties are very essential for designing an absorption process

  3. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    Byers, D.M. (Dalhousie Univ., Halifax (Nova Scotia)); Meighen, E.A. (McGill Univ., Montreal, Quebec (Canada))

    1989-07-01

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with ({sup 3}H)myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10{mu}g/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from ({sup 14}C)acetate, whereas uptake and incorporation of exogenous ({sup 14}C)myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with ({sup 3}H)tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with ({sup 3}H)tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which ({sup 3}H)myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.

  4. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10μg/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction

  5. α,β-Unsaturated aldehyde of hyaluronan--Synthesis, analysis and applications.

    Buffa, Radovan; Šedová, Petra; Basarabová, Ivana; Moravcová, Martina; Wolfová, Lucie; Bobula, Tomáš; Velebný, Vladimír

    2015-12-10

    Hyaluronic acid (HA) modified with an aldehyde group (HA-CHO or HA-aldehyde) has been extensively used for various biomedical applications. The main advantage of the aldehyde moieties is the ability to react with a wide range of amino compounds under physiological conditions. Reactions of aldehydes with primary amines in water are reversible and equilibrium is thoroughly shifted towards starting aldehyde and amine. This work presents an unique modification of HA: α,β-unsaturated aldehyde of HA (4,5-anhydro-6(GlcNAc)-oxo HA or ΔHA-CHO), which allows the primary amines to be attached to HA more effectively in comparison to the saturated HA-CHO. Higher hydrolytic stability is caused by the conjugation of imine with an adjacent --C=C-- double bond. Two strategies for the preparation of unsaturated HA-aldehyde were developed and chemical structures were studied in details. Cross-linked materials prepared from this precursor are biocompatible and suitable for applications in drug delivery and regenerative medicine. PMID:26428127

  6. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N

  7. Human brain aldehyde reductases: relationship to succinic semialdehyde reductase and aldose reductase.

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-08-01

    Human brain contains multiple forms of aldehyde-reducing enzymes. One major form (AR3), as previously shown, has properties that indicate its identity with NADPH-dependent aldehyde reductase isolated from brain and other organs of various species; i.e., low molecular weight, use of NADPH as the preferred cofactor, and sensitivity to inhibition by barbiturates. A second form of aldehyde reductase ("SSA reductase") specifically reduces succinic semialdehyde (SSA) to produce gamma-hydroxybutyrate. This enzyme form has a higher molecular weight than AR3, and uses NADH as well as NADPH as cofactor. SSA reductase was not inhibited by pyrazole, oxalate, or barbiturates, and the only effective inhibitor found was the flavonoid quercetine. Although AR3 can also reduce SSA, the relative specificity of SSA reductase may enhance its in vivo role. A third form of human brain aldehyde reductase, AR2, appears to be comparable to aldose reductases characterized in several species, on the basis of its activity pattern with various sugar aldehydes and its response to characteristic inhibitors and activators, as well as kinetic parameters. This enzyme is also the most active in reducing the aldehyde derivatives of biogenic amines. These studies suggest that the various forms of human brain aldehyde reductases may have specific physiological functions. PMID:6778961

  8. Optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation☆

    Hui Tian; Suying Zhao; Huidong Zheng; Zhixian Huang

    2015-01-01

    Based on a previous investigation, a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distil ation. An experimental setup was established to verify the simulated results. The effects of various operating variables, such as ethanol feed location, acetic acid feed location, feed stage of reaction mixture of acetic acid and n-butanol, reflux ratio of ethyl acetate reactive distillation column, and distil-late to feed ratio of n-butyl acetate column, on the ethanol/n-butanol conversions, ethyl acetate/n-butyl acetate purity, and energy consumption were investigated. The optimal results in the simulation study are as follows:ethanol feed location, 15th stage;acetic acid feed location, eighth stage;feed location of reaction mixture of acetic acid and n-butanol, eighth stage;reflux ratio of ethyl acetate reactive distillation column, 2.0;and distillate to feed ratio of n-butyl acetate, 0.6.

  9. Direct Oxidation of Ethene to Acetic Acid

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  10. Carbon-isotopic analysis of dissolved acetate

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degree C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4 per-thousand for acetate samples larger than 5 μmol. A full treatment of uncertainties is outlined

  11. 21 CFR 173.228 - Ethyl acetate.

    2010-04-01

    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  12. Antimony(v) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α,β-unsaturated aldehydes, and 1,3,5-trioxanes.

    Arias Ugarte, Renzo; Devarajan, Deepa; Mushinski, Ryan M; Hudnall, Todd W

    2016-07-01

    1-Diphenylphosphinonaphthyl-8-triphenylstibonium triflate ([][OTf]) was prepared in excellent yield by treating 1-lithio-8-diphenylphosphinonaphthalene with dibromotriphenylstiborane followed by halide abstraction with AgOTf. This antimony(v) cation was found to be stable toward oxygen and water, and exhibited exceptional Lewis acidity. The Lewis acidity of [][OTf] was exploited in the catalytic reductive coupling of a variety of aldehydes into symmetric ethers of type in good to excellent yields under mild conditions using Et3SiH as the reductant. Additionally, [][OTf] was found to selectively catalyze the Aldol condensation reaction to afford α-β unsaturated aldehydes () when aldehydes with 2 α-hydrogen atoms were used. Finally, [][OTf] catalyzed the cyclotrimerization of aliphatic and aromatic aldehydes to afford the industrially-useful 1,3,5 trioxanes () in good yields, and with great selectivity. This phosphine-stibonium motif represents one of the first catalytic systems of its kind that is able to catalyze these reactions with aldehydes in a controlled, efficient manner. The mechanism of these processes has been explored both experimentally and theoretically. In all cases the Lewis acidic nature of the antimony(v) cation was found to promote these reactions. PMID:27326797

  13. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  14. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    Mechanism of selective action of oxide catalysts (on the base of V2O4, MoO3) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  15. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  16. Uncatalyzed Condensation Reactions between Aromatic Aldehydes and Thiobarbituric Acid in Water

    Bing Qin YANG; Jun LU; Min TIAN

    2003-01-01

    A series of 5-arylidene thiobarbituric acids were prepared from aromatic aldehydes and thiobarbituric acid in water without catalyst conditions in good yields. The structures were characterized by elemental analysis, IR and 1H NMR spectra.

  17. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction.

    Coombs, John R; Zhang, Liang; Morken, James P

    2015-04-01

    A highly stereoselective boron-Wittig reaction between stable and readily accessible 1,1-bis(pinacolboronates) and aldehydes furnishes a variety of synthetically useful di- and trisubstituted vinyl boronate esters. PMID:25799147

  18. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm-1 is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (To and Tp) of DASs are increased, whereas the gelatinization enthalpy decreased.

  19. Organocatalytic enantioselective Michael addition reactions of fluoromalonates with α,β-unsaturated aldehydes

    2010-01-01

    A new organocatalytic enantioselective Michael addition of α-fluoromalonate to enals has been developed.The process is efficiently catalyzed by readily available chiral diphenylpyrolinol TES ether under mild reaction conditions to afford versatile highly enantioenriched fluorinated aldehydes.

  20. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders; Norrby, Per-Ola; Madsen, Robert

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots...

  1. Tetrabutylammonium fluoride promoted regiospecific reactions of trimethylsilyl-o-carborane with aldehydes

    Trimethylsilyl-o-carborane serves as o-carborane carbanion upon fluoride ion promoted reaction with carbonyl compounds. Thus, in the presence of tetrabutylammonium fluoride, trimethylsilyl-o-carborane undergoes facile, unprecedented, carbodesilylation with aromatic and aliphatic aldehydes. (author)

  2. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

    Fitzmaurice, Arthur G; Rhodes, Shannon L; Lulla, Aaron; Murphy, Niall P; Lam, Hoa A; O'Donnell, Kelley C; Barnhill, Lisa; Casida, John E; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff M

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  3. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy

  4. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  5. Does acute exposure to aldehydes impair pulmonary function and structure?

    Abreu, Mariana de; Neto, Alcendino Cândido; Carvalho, Giovanna; Casquillo, Natalia Vasconcelos; Carvalho, Niedja; Okuro, Renata; Ribeiro, Gabriel C Motta; Machado, Mariana; Cardozo, Aléxia; Silva, Aline Santos E; Barboza, Thiago; Vasconcellos, Luiz Ricardo; Rodrigues, Danielle Araujo; Camilo, Luciana; Carneiro, Leticia de A M; Jandre, Frederico; Pino, Alexandre V; Giannella-Neto, Antonio; Zin, Walter A; Corrêa, Leonardo Holanda Travassos; Souza, Marcio Nogueira de; Carvalho, Alysson R

    2016-07-15

    Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1β, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group. PMID:27102012

  6. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. PMID:26342346

  7. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    Mikko Passiniemi

    2013-11-01

    Full Text Available Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde.

  8. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl a...

  9. Chromatographic Methods for the Analyses of 2-Halofatty Aldehydes and Chlorohydrin Species of Lysophosphatidylcholine

    Albert, Carolyn J; Anbukumar, Dhanalakshmi S.; Messner, Maria C.; Ford, David A.

    2008-01-01

    Plasmalogens are targeted by hypohalous acids resulting in the production of 2-chlorofatty aldehydes, 2-bromofatty aldehydes and chlorohydrin species of lysophosphatidylcholine. These novel lipids have required the development of techniques for their purification and quantification. Thin layer chromatography, high performance liquid chromatography and gas chromatography of these lipids and their derivatives have provided a battery of tools for their analyses. These lipids have been quantified...

  10. Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

    Mikko Passiniemi; Koskinen, Ari M P

    2013-01-01

    Since its introduction to the synthetic community in 1984, Garner’s aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner’s aldehyde.

  11. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy

    Ismahil, Mohamed Ameen; Hamid, Tariq; Haberzettl, Petra; Gu, Yan; Chandrasekar, Bysani; Srivastava, Sanjay; Bhatnagar, Aruni; Prabhu, Sumanth D.

    2011-01-01

    Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with ...

  12. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. PMID:26703808

  13. Formation of Aldehyde and Ketone Compounds during Production and Storage of Milk Powder

    Weijun Wang; Lanwei Zhang; Yanhua Li

    2012-01-01

    Certain aldehyde and ketone compounds can be used as indicators, at a molecular level, of the oxidized flavor of milk powder instead of sensory evaluation. This study investigated the formation of aldehyde and ketone compounds as affected by the heat-related processing and storage of milk powder. The compounds were extracted by solid phase microextraction fiber and determined using gas chromatography-mass spectrometry. In the results, higher contents of hexanal, 2-heptanone, octanal and 3-oct...

  14. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2008-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We obs...

  15. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification.

    Xi, Fu-Gui; Liu, Hui; Yang, Ning-Ning; Gao, En-Qing

    2016-05-16

    Aldehyde-tagged UiO-67-type metal-organic frameworks (MOFs) have been synthesized via the direct solvothermal method or postsynthetic ligand exchange. Various functionalities have been introduced into the MOFs via postsynthetic modification (PSM) employing C-N and C-C coupling reactions of the aldehyde tag. Tandem PSM has also been demonstrated. An amino-functionalized MOF obtained by PSM is shown to be an efficient, heterogeneous, and recyclable catalyst for Knoevenagel condensation. PMID:27136395

  16. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    J. C. Gong; Zhu, T.; M. Hu; L. W. Zhang; Cheng, H.; L. Zhang; Tong, J; Zhang, J.

    2010-01-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's...

  17. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  18. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  19. Investigation of aldehyde oxidase and xanthine oxidoreductase in rainbow trout (Oncorhynchus mykiss)

    Aburas, Omaro A Emhmed

    2014-01-01

    Molybdo-flavoenzymes (MFEs), aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR) are involved in the oxidation of N-heterocyclic compounds and aldehydes, many of which are environmental pollutants, drugs and vitamins. This biotransformation generally generates more polar compounds that are more easily excreted, thus MFEs have been classed as detoxication enzymes. To date there has been scant study of the properties, substrate and inhibitor specificities of MFEs in non-mammalian vert...

  20. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  1. Substrate-Directed Hydroacylation: Rh-Catalyzed Coupling of Vinyl Phenols and Non-Chelating Aldehydes

    Murphy, Stephen K.; Bruch, Achim; Dong, Vy M.

    2014-01-01

    We report a protocol for branched-selective hydroacylation of vinylphenols with aryl, alkenyl and alkyl aldehydes. This cross-coupling yields α-aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of branched regioselectivity are obtained. We propose that aldehyde decarbonylation is overcome by using an anionic directing group on the olefin and a small bite-angle diphos...

  2. The pharmacology of nomegestrol acetate.

    Ruan, Xiangyan; Seeger, Harald; Mueck, Alfred O

    2012-04-01

    Nomegestrol acetate (NOMAC) is a 19-norprogesterone derivative with high biological activity at the progesterone receptor, a weak anti-androgenic effect, but with no binding to estrogen, glucocorticoid or mineralocorticoid receptors. At dosages of 1.5mg/day or more, NOMAC effectively suppresses gonadotropic activity and ovulation in women of reproductive age. Hemostasis, lipids and carbohydrate metabolism remain largely unchanged. In normal and cancerous human breast cells, NOMAC has shown favorable effects on estrogen metabolism. Like natural progesterone (but in contrast to some other synthetic progestogens), it does not appear stimulate the proliferation of cancerous breast cells. While there has been some experience of the use of NOMAC in combination with estrogens as a hormone replacement therapy, most of the data on the compound are reported in the context of its inclusion as a component of a new contraceptive pill comprising 2.5mg NOMAC combined with 1.5mg estradiol. Because of its strong endometrial efficacy, and due to its high antigonadotropic activity and long elimination half-life (about 50h), the contraceptive efficacy of the new pill is maintained even when dosages are missed. Furthermore, for the first time with a monophasic 24/4 regimen containing estradiol, cyclical stability can be achieved comparable with that obtained using pills containing ethinyl estradiol and progestogens like levonorgestrel or drospirenone. The addition of NOMAC to estradiol means that the beneficial effects of estrogen are not lost, which is of especial importance in relation to the cardiovascular system. On the basis both of its pharmacology and of studies performed during the development of the NOMAC/estradiol pill, involving some 4000 women in total, good long-term tolerability can be expected for NOMAC, although its safety profile is still to be fully ascertained, as the clinical endpoint studies are yet to be completed. PMID:22364709

  3. Conversion to eslicarbazepine acetate monotherapy

    French, Jacqueline; Jacobson, Mercedes P.; Pazdera, Ladislav; Gough, Mallory; Cheng, Hailong; Grinnell, Todd; Blum, David

    2016-01-01

    Objective: To assess the efficacy and safety of eslicarbazepine acetate (ESL) monotherapy. Methods: This post hoc pooled analysis of 2 randomized double-blind studies (093-045 and -046) included adults with partial-onset seizures medically uncontrolled by 1 or 2 antiepileptic drugs (AEDs). Following the baseline period (8 weeks), eligible patients were randomized 2:1 to receive ESL 1,600 mg or 1,200 mg once daily for 18 weeks; the primary endpoint was study exit by meeting predefined exit criteria (signifying worsening seizure control). In each study, treatment was considered effective if the upper 95% confidence limit for exit rate was lower than the historical control threshold (65.3%). Results: Pooled exit rates were as follows: ESL 1,600 mg = 20.6% (95% confidence interval: 15.6%–26.8%); ESL 1,200 mg = 30.8% (23.0%–40.5%). Use of 2 baseline AEDs or rescue medication, US location, epilepsy duration ≥20 years, and higher maximum baseline seizure frequency were associated with higher exit risks. Median percent reductions in standardized seizure frequency between baseline and the 18-week double-blind period were as follows: ESL 1,600 mg = 43.2%; ESL 1,200 mg = 35.7%; baseline carbamazepine use was associated with smaller reductions. Safety profiles were similar between ESL doses. Conclusions: Exit rates for ESL monotherapy (1,600 mg and 1,200 mg once daily) were lower than the historical control threshold, irrespective of baseline AED use and region, with no additional safety concerns identified. Clinical factors and location clearly influence treatment responses in conversion-to-monotherapy trials. Classification of evidence: This pooled analysis provides Class IV evidence that for adults with medically uncontrolled partial-onset seizures, ESL monotherapy is well tolerated and effective. PMID:26911639

  4. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    Zaldivar, J.; Ingram, L.O. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science; Martinez, A. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science]|[Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Biotecnologia

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  5. [Fatty aldehydes of the plasmalogenic form of phosphatidylethanolamine in the vertebrate brain].

    Kruglova, E E

    1979-01-01

    Studies have been made on the composition of fatty aldehydes of plasmalogen form of ethanolamine phospholipid in the brain of 28 fish species (13 cartilaginous and 15 teleost species, exhibiting different level of organization of the nervous system, marine and freshwater, dwelling in different habitats), as well as in the brain of other vertebrates. It was found that in all primitive species of cartilaginous fish high degree of unsaturation of fatty aldehydes is observed; in higher species the degree of unsaturation is much lower. The highest degree of unsaturation of fatty aldehydes was demonstrated for abyssal species of cartilaginous and teleost fishes. In warm-water species which dwell in the upper layers, unlike all other fishes investigated, almost all fatty aldehydes are saturated. The ratio of unsaturated and saturated fatty aldehydes in fish brain depends on the entity of phylogenetic and ecological factors. Studies on other vertebrates show that in warm-blooded animals saturated fatty aldehydes predominate, whereas in cold-blooded-unsaturated ones are more abundant. PMID:314210

  6. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. PMID:24411140

  7. Mafenide acetate allergy presenting as recurrent chondritis.

    Pickus, Evan J; Lionelli, Gerald T; Charles, E Woodall; Korentager, Richard A

    2002-02-01

    Acute chondritis has a strong predilection for recurrence. Mafenide acetate has been implicated in causing reactions that mimic this condition; however, these hypersensitivity reactions lack fever, fluctuance, and pain. The authors report a case of mafenide acetate allergy presenting as recurrent chondritis in a patient who had previously been treated successfully for this condition. In this patient, the allergic response resolved within 3 days after cessation of mafenide acetate. If unappreciated, it may have led to unnecessary operative intervention. Therefore, auricular edema and erythema, without fever, fluctuance, and pain, must be recognized by surgeons as a possible mafenide acetate allergy and must be considered in the differential diagnosis for patients who present with recurrent acute suppurative chondritis. PMID:11910229

  8. Nomegestrol acetate/estradiol: in oral contraception.

    Yang, Lily P H; Plosker, Greg L

    2012-10-01

    Nomegestrol acetate/estradiol is a combined oral contraceptive with approval in many countries. This fixed-dose combination tablet contains nomegestrol acetate, a highly selective progestogen, and estradiol, a natural estrogen. It is the first monophasic combined oral contraceptive to contain estradiol, and is taken in 28-day cycles, consisting of 24 active therapy days with 4 placebo days (i.e. 24/4-day cycles). In two large, 1-year, randomized, open-label, multicentre, phase III trials in healthy adult women (aged 18-50 years), nomegestrol acetate/estradiol was at least as effective as drospirenone/ethinylestradiol as contraceptive therapy, as the pregnancy rates in women aged 18-35 years (primary efficacy population) in terms of the Pearl Index (primary endpoint) were numerically lower with nomegestrol acetate/estradiol, although the between-group difference was not statistically significant. In both trials, nomegestrol acetate/estradiol was given in a 24/4-day cycle, and drospirenone/ethinylestradiol was given in a 21/7-day cycle. The criteria for using condoms in case of forgotten doses were less stringent in the nomegestrol acetate/estradiol group than in the drospirenone/ethinylestradiol group. Nomegestrol acetate/estradiol therapy for up to 1 year was generally well tolerated in healthy adult women, with an acceptable tolerability profile in line with that expected for a combined oral contraceptive. The most commonly reported adverse events were acne and abnormal withdrawal bleeding (most often shorter, lighter or absent periods). Overall, compared with drospirenone/ethinylestradiol, nomegestrol acetate/estradiol appeared to be associated with less favourable acne-related outcomes, and shorter, lighter or absent periods. PMID:22950535

  9. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    Vanisree Mulabagal

    2011-01-01

    Full Text Available Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO and cyclooxygenase (COX-1 and COX-2 enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 g/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 g/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50 at 9.7 g/mL. The analogs showed only marginal LPO activity at 6.25 g/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 g/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 g/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 g/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities.

  10. Demand boom boosts ethyl, butyl acetate

    US ethyl and butyl acetate markets are being described as 'extremely tight.' One major domestic producer is 'in a sold-out position' and has 'gone on sales control' with respect to these two products. Producers say that sales of both ethyl and butyl acetate have increased during the past year, and industry observers say they expect to see an April 1 price initiative of 2 cts to 3 cts/lb, and possibly a second increase in October. While one producer suggests that this market strength could be 'a sign that the coatings industry is turning around,' most agree that reformulation is the principal driver of growth. Ethyl acetate is said to be replacing methyl ethyl ketone in many formulations, while butyl acetate and butyl acetate blends are substituting for methyl isobutyl ketone. In addition, both ethyl and butyl acetate work as substitutes for xylene and toluene in certain applications. In an effort to conform to the requirements of the Clean Air Act of 1990 and to cooperate with the Environmental Protection Agency's 33/50 voluntary emissions reduction program, coatings manufacturers are moving as quickly as possible to eliminate solvents from their products. And although solvents as a whole will eventually see a dramatic decline in consumption, the temporary beneficiaries of reformulation will be certain of the oxygenated solvents, says Jeff Back, business manager at Kline ampersand Co

  11. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates. PMID:25076127

  12. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  13. [Aldehyde dehydrogenase activity and level of dopamine in certain sections of the brain of rats preferring and refusing ethanol].

    Kharchenko, N K

    2000-01-01

    Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol. PMID:10979563

  14. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: aldehydes and ketones

    Barsanti, Kelley C.; Pankow, James F.

    The term "accretion reactions" is introduced here to refer to the large collection of reactions by which atmospheric organic molecules can add mass, especially as by combination with other organic molecules. A general thermodynamic approach is developed for evaluating the tendency of atmospheric constituents (e.g., C 10 aldehydes) to undergo accretion reactions (e.g., dimerization) and thereby form less volatile molecules (e.g., aldol condensation products) that may subsequently condense and so contribute to the levels of organic particulate matter (OPM) observed in the atmosphere. As an example, gaseous compounds A and B may contribute to OPM formation by the net overall reaction A g+B g=C liq. This reaction may occur according to any of three kinetic schemes. Scheme I: (1) A g+B g=C g (accretion in the gas phase): then (2) C g=C liq (condensation of the accretion product); Scheme II: (1) B g=B liq (condensation of B); then (2) A g+B liq=C liq (heterogeneous accretion reaction of gaseous A with condensed B); or Scheme III: (1) A g+B g=A liq+B liq (condensation of A and B); then (2) A liq+B liq=C liq (accretion of A with B within the PM phase). For all three schemes, the net overall reaction remains A g+B g=C liq. The overall thermodynamic tendency of the net reaction remains the same regardless of the actual predominating kinetic mechanism. If an accretion reaction between two atmospheric components is to produce significant new OPM, appreciable amounts of the product C must form, and the vapor pressure of C must be relatively low so that a significant proportion of C can condense into the multicomponent liquid OPM phase. This study considers the thermodynamics of accretion reactions of atmospheric aldehydes including: (a) hydration, polymerization (i.e., oligomer formation), hemiacetal/acetal formation; and (b) aldol condensation. It was concluded regarding OPM formation that: (1) the reactions in the first group are not thermodynamically favored, either in the

  15. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species. PMID:25945412

  16. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    NA Stephens-Camacho

    2015-02-01

    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  17. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  18. Synthesis of Some Novel Compounds of Saccharinyl Acetic Acid Containing Nucleus and Evaluation of Their Biological Activities as Antimicrobial

    Magda H. Abdellattif

    2016-03-01

    Full Text Available A new series of Compounds of Saccharinyl Acetic acid Containing nucleus have been prepared via an improved synthetic procedure. Where saccharinyl moiety have been introduced to 4-benzylidine-2-methyl-1,3-oxazole-5-one in position 2 , compound (3 which has been reacted with nitrogen neucleophiles as hydrazine hydrate , phenyl haydrazine, aniline, p-toludine, m,p-aminobezoic acid to get compounds from (4-6. Also the reaction of compound (3 witharomatic substrate in presence of anhydrous AlCl3 (Friedel – Crafts reaction afforded acetamide derivative (7 via the elimination of arylidine group. Moreover saccharinyl acetic acid hydrazide (8 was refluxed in acetic anhydride to give benzisothiazole derivative (9, which reacted with carbon nuleophiles (Grignard reagent to afford compound (10. But when compound (9 reacted with PCl5/POCl3 it gave compound (11 which reacted with urea and thiourea to give compound (12(a, and b. Also the condensation of compound (9 with aromatic aldehyde gave compound (13. Structures of all synthesized compounds were elucidated from I.R., 1HNMR, mass-spectroscopy, and elemental analysis.

  19. Acetalization of carbonyl compounds with 2,2,4-trimethyl-1,3-pentanedio catalyzed by novel carbon based solid acid catalyst

    Ling Liu; Yuechang Zhao; Shan Gan; Xuezheng Liang; Jianguo Yang; Mingyuan He

    2008-01-01

    The synthesis of 2, 4-diisopropyl-5,5-dimethyl-1,3-dioxane through the acetalization of isobutyraldehyde with 2, 2,4-trimethyl-1,3-pentanediol (TMPD) catalyzed by the novel carbon based acid was first carried out. High conversion (≥98%) and specific selectivity were obtained using the novel carbon based acid, which kept high activity after it was reused 5 times.Moreover, the catalyst could be used to catalyze the acetalization and ketalization of different aldehydes and ketones with superior yield. The yield of several products was over 90%. The novel heterogeneous catalyst has the distinct advantages of high activity, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the success of the green process greatly.

  20. Upper-airway inflammation in relation to dust spiked with aldehydes or glucan

    Bønløkke, Jakob Hjort; Stridh, G; Sigsgaard, T.;

    2006-01-01

    Objectives Organic dust is associated with adverse effects on human airways. This study was done to investigate whether the addition of β-(1,3)-D glucan or aldehydes to office dust causes enhanced inflammation in human airways. Methods Thirty-six volunteers were exposed randomly to clean air, off...... concentration increased after exposure to dust spiked with glucan (P=0.045). Conclusions β-(1,3)-D glucan and aldehydes in office dust enhance the inflammatory effects of dust on the upper airways.......Objectives Organic dust is associated with adverse effects on human airways. This study was done to investigate whether the addition of β-(1,3)-D glucan or aldehydes to office dust causes enhanced inflammation in human airways. Methods Thirty-six volunteers were exposed randomly to clean air...

  1. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation.

    Pelletier, Julien; Bozzolan, Françoise; Solvar, Marthe; François, Marie-Christine; Jacquin-Joly, Emmanuelle; Maïbèche-Coisne, Martine

    2007-12-01

    Signal inactivation is a crucial step in the dynamic of olfactory process and involves various Odorant-Degrading Enzymes. In the silkworm Bombyx mori, one of the best models for studying olfaction in insects, the involvement of an antennal-specific aldehyde oxidase in the degradation of the sex pheromone component bombykal has been demonstrated over the three past decades by biochemical studies. However, the corresponding enzyme has never been characterized at the molecular level. Bioinformatic screening of B. mori genome and molecular approaches have been used to isolate several candidate sequences of aldehyde oxidases. Two interesting antennal-expressed genes have been further characterized and their putative functions are discussed in regard to their respective expression pattern and to our knowledge on aldehyde oxidase properties. Interestingly, one gene appeared as specifically expressed in the antennae of B. mori and associated in males with the bombykal-sensitive sensilla, strongly suggesting that it could encode for the previously biochemically characterized enzyme. PMID:17904312

  2. The profile of volatile compounds in the outer and inner parts of broiled pork neck is strongly influenced by the acetic-acid marination conditions.

    Biller, Elżbieta; Boselli, Emanuele; Obiedziński, Mieczysław; Karpiński, Piotr; Waszkiewicz-Robak, Bożena

    2016-11-01

    Raw pork neck cutlets were marinated in an aqueous solution of acetic acid (pH4, 24h, 4°C) without (M) or with 1% (w/w) of glucose. The control (K) was formed by non-treated raw pork neck. The cutlets were then broiled (185°C, 30min). In all K cutlets, significant higher amounts of volatile compounds (VCs) were developed after broiling than the other samples. Significant more aldehydes and alcohols were present in the inner parts than in the surface. The correlation between surface and internal layers was high only for aldehydes. Marinating decreased the differences among VCs and led to the standardization of the processed meat. The addition of glucose to the marinade led to more volatile aldehydes, carboxylic acids, esters, furan, pyran, pyrazine, pyrrol and pyridine derivatives than in M samples. Several (53) specific VCs explained the differences among the surface samples related to the marinating process. However, only 16 VCs explained the variance among the inner parts. PMID:27395822

  3. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. The authors examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: (i) Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown; (ii) release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent; (iii) direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown

  4. Nephelauxetic and hypersensitive nature of neodymium(III) complexes with α-pyridyl-thiosemicarbazide and its furfural-2-aldehyde and thiophene-2-aldehyde derivatives

    A new series of octahedral Nd(III) complexes with recently synthesised α-pyridylthiosemicarbazide (C6H8N4S or 'PT'), N-(α-pyridyl)furfural-2-aldehyde-thiosemicarbazone (C11H10N4SO or 'PFT') and N-(α-pyridyl)thiophene-2-aldehyde-thiosemicarbazone (C11H10N4S2 or 'PTT'), have been isolated and characterised on the basis of their elemental analysis, magnetic and reflectance and ir spectral data revealing 'PT' as bidentate (pyridinic-N and thioketo-S) and 'PFT' and 'PTT' as tetradentate with pyridinic-N, thioketo-S, imine-N and furfuryl-O/thiophenyl-S as donor sites. Isolation and characterisation of Nd(III) complexes with 'PT', 'PFT' and 'PTT' and their nephelauxetic and hypersensitive nature are studied in order to evaluate the stereochemistry of the ligands around Nd(III) ion. (author). 12 refs., 2 tables

  5. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592.

    Yan, R T; Chen, J S

    1990-01-01

    Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol...

  6. Aryl-aldehyde formation in fungal polyketides: Discovery and characterization of a distinct biosynthetic mechanism

    Wang, Meng; Beissner, Mirko; Zhao, Huimin

    2014-01-01

    Aryl-aldehydes are a common feature in fungal polyketides, which are considered to be exclusively generated by the R domain of non-reducing polyketide synthases (NR-PKSs). However, by cloning and heterologous expression of two cryptic NR-PKS and non-ribosomal peptide synthase (NRPS)-like genes from Aspergillus terreus in Saccharomyces cerevisiae, we discovered a distinct mechanism for aryl-aldehyde formation in which a NRPS-like protein activates and reduces an aryl-acid produced by the accom...

  7. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 co...

  8. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  9. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields an

  10. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  11. Vinyl acetate polymerization by ionizing radiation

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  12. Formation of asymmetric cellulose acetate membranes

    Bokhorst, H.; Altena, F.W.; Smolders, C.A.

    1981-01-01

    Cellulose acetate membranes were prepared from casting solutions containing dioxane as a solvent and varying concentrations (up to 6%) of maleic acid as an additive. Coagulation took place in water at different temperatures. The effect of these variables on membrane structure and membrane properties

  13. Advanced Colloids Experiment (ACE-T1)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  14. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. PMID:23843370

  15. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  16. 1,2-disubstituted cyclohexane derived tripeptide aldehydes as novel selective thrombin inhibitors.

    Harmat, N J; Di Bugno, C; Criscuoli, M; Giorgi, R; Lippi, A; Martinelli, A; Monti, S; Subissi, A

    1998-05-19

    A series of tripeptide arginine aldehydes was synthesized by replacement of proline with 1,2-disubstituted cyclohexane derivatives in the sequence of D-MePhe-Pro-Arg-H. Based on molecular modeling, further modification of the D-MePhe residue resulted in a potent and selective thrombin inhibitor. PMID:9871744

  17. The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water

    Da Qing SHI; Jing CHEN; Qi Ya ZHUANG; Xiang Shan WANG; Hong Wen HU

    2003-01-01

    The condensation of aromatic aldehydes with acidic methylene compounds such as malononitrile, methyl cyanoacetate, cyanoacetamide, 5,5-dimethyl-1,3-cyclohexanedione, bartbituric acid and 2-thiobarbituric acid proceeded very efficiently in water in the presence of triethylbenzylammonium chloride (TEBA) and the products were isolated simply by filtration.

  18. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144. ISSN 0936-5214 Grant ostatní: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  19. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long

    2000-01-01

    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  20. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David;

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  1. Perfluoroalkanesulfonamide Organocatalysts for Asymmetric Conjugate Additions of Branched Aldehydes to Vinyl Sulfones

    Kosuke Nakashima

    2013-11-01

    Full Text Available Asymmetric conjugate additions of branched aldehydes to vinyl sulfones promoted by sulfonamide organocatalyst 6 or 7 have been developed, allowing facile synthesis of the corresponding adducts with all-carbon quaternary stereocenters in excellent yields with up to 95% ee.

  2. An Improved Protocol for the Pd-catalyzed α-Arylation of Aldehydes with Aryl Halides

    Martín, Rubén; Buchwald, Stephen L.

    2008-01-01

    An improved protocol for the Pd-catalyzed α-arylation of aldehydes with aryl halides has been developed. The new catalytic system allows for the coupling of an array of substrates including challenging electron-rich aryl bromides and less reactive aryl chlorides. The utility of this method has been demonstrated in a new total synthesis of (±)-sporochnol.

  3. STUDY ON THE CARDANOL-ALDEHYDE CONDENSATION POLYMER CONTAINING BORON-NITROGEN COORDINATE BOND

    1998-01-01

    Cardanol-aldehyde condensation polymer containing boron-nitrogen coordinate bond (CFBN) has been synthesized and characterized by IR, XPS, HPLC and DTA-TG. Its properties were also investigated. The results show that the coating film of CFBN has excellent physico-mechanical properties, good anticorrosive properties and stable at high temperature.

  4. Phosphite Ligand Modified Supported Rhodium Catalyst for Hydroformylation of Internal Olefins to Linear Aldehydes

    LI Xian-ming; DING Yun-jie; JIAO Gui-ping; LI Jing-wei; YAN Li; ZHU He-jun

    2009-01-01

    A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.

  5. Integrated quantification and identification of aldehydes and ketones in biological samples

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-01-01

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by

  6. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  7. Phenyl versus Ethyl Transfer in the Addition of Organozincs to Aldehydes: A Theoretical Study

    Rudolph, Jens; Rasmussen, Torben; Bolm, Carsten; Norrby, Per-Ola

    2003-01-01

    The dramatic improvement in diphenylzinc addition to aldehydes that is obtained by adding diethylzinc was investigated by DFT methods. The strong preference for phenyl over ethyl transfer can be understood in terms of overlap with the phenyl 31 system in the transition state (see picture). Reason...... for the high ee value in the presence of Et$-2$/Zn are discussed....

  8. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    Zhang, Liming, E-mail: zhanglmd@yahoo.com.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China); Liu, Peng; Wang, Yugao [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Gao, Wenyuan [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2011-01-10

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm{sup -1} is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (T{sub o} and T{sub p}) of DASs are increased, whereas the gelatinization enthalpy decreased.

  9. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats. PMID:22159964

  10. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes

    Hessler, F.; Korotvička, A.; Nečas, D.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 2014, č. 12 (2014), s. 2543-2548. ISSN 1434-193X Grant ostatní: GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : synthetic methods * asymmetric catalysis * organocatalysis * allylation * aldehydes * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  11. NaBH4/C: A Convenient System for Reductive Amination of Aldehydes

    Sajjad Taie Hasanloie

    2014-03-01

    Full Text Available In this context, NaBH4 in the presence of activated charcoal has been used for thereductive aminationofa varietyof aldehydes withanilines. The reductive amination reactions have been performed within 60-100 min in THFunder reflux conditionsin high to excellent yields of products (85-90%.

  12. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren;

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the...

  13. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie; Engelbrekt, Christian; Riisager, Anders

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  14. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes

    Kreis, Michael; Palmelund, Anders; Bunch, Lennart; Madsen, Robert

    2006-01-01

    A practical protocol for the decarbonylation of a wide range of aldehydes has been developed by using commercially available RhCl3x3H2O and dppp in a diglyme solution. This method gives rise to decarbonylated products in good to high yield and is particularly useful because of its experimental si...

  15. APPLICATION OF MULTISPECTRAL TECHNIQUES TO THE PRECISE IDENTIFICATION OF ALDEHYDES IN THE ENVIRONMENT

    By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...

  16. Cu(I)-NHC-catalyzed silylation of allenes: diastereoselective three-component coupling with aldehydes.

    Rae, James; Hu, Ya Chu; Procter, David J

    2014-10-01

    Copper-catalyzed silylation of aryl allenes using a silylborane reagent affords vinyl silane building blocks with high efficiency. The use of a seven-membered NHC ligand proved crucial for high regioselectivity. The catalytically generated allylcoppper intermediates were intercepted by aldehydes in a diastereoselective three-component coupling to furnish homoallylic alcohols. PMID:25146221

  17. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  18. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    P. O. Wennberg

    2010-04-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  19. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  20. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  1. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  2. Microbial acetate oxidation in horizontal rotating tubular bioreactor

    A Slavica; B Šantek; S Novak; V Marić

    2004-06-01

    The aim of this work was to investigate the possibility of conducting a continuous aerobic bioprocess in a horizontal rotating tubular bioreactor (HRTB). Aerobic oxidation of acetate by the action of a mixed microbial culture was chosen as a model process. The microbial culture was not only grown in a suspension but also in the form of a biofilm on the interior surface of HRTB. Efficiency of the bioprocess was monitored by determination of the acetate concentration and chemical oxygen demand (COD). While acetate inlet concentration and feeding rate influenced efficiency of acetate oxidation, the bioreactor rotation speed did not influence the bioprocess dynamics significantly. Gradients of acetate concentration and pH along HRTB were more pronounced at lower feeding rates. Volumetric load of acetate was proved to be the most significant parameter. High volumetric loads (above 2 g acetate l–1 h–1) gave poor acetate oxidation efficiency (only 17 to 50%). When the volumetric load was in the range of 0.60–1.75 g acetate l–1 h–1, acetate oxidation efficiency was 50–75%. At lower volumetric loads (0.14–0.58 g acetate l–1 h–1), complete acetate consumption was achieved. On the basis of the obtained results, it can be concluded that HRTB is suitable for conducting aerobic continuous bioprocesses.

  3. Addressing Cellulose Acetate Microfilm from a British Library perspective

    Helen Shenton

    2005-08-01

    Full Text Available This paper is about cellulose acetate microfilm from the British Library perspective. It traces how acetate microfilm became an issue for the British Library and describes cellulose acetate deterioration. This is followed by details of what has already been done about the situation and what action is planned for the future.

  4. Fermentation characteristics of Fusarium oxysporum grown on acetate

    Panagiotou, Gianni; Pachidou, Fotini; Petroutsos, Dimitris;

    2008-01-01

    In this study, the growth characteristics of Fusarium oxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F oxysporum cells could tolerate was 0.8% w/v while glucose...

  5. PHOTOCOPOLYMERIZATION OF MALEIC ANHYDRIDE AND VINYL ACETATE

    LI Xiaofang; LI Shanjun; QIN Anwei; YU Tongyin

    1990-01-01

    The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.

  6. Acet­oxy-γ-valerolactone

    Tristram, Cameron; Graeme J. Gainsford; Hinkley, Simon

    2013-01-01

    Levulinyl cellulose esters have been produced as an effective renewable binder for architectural coatings. The title compound, C7H10O4 (systematic name: 2-methyl-5-oxo­tetra­hydro­furan-2-yl acetate), assigned as the esterifying species, was isolated and crystallized to confirm the structure. In the crystal, the mol­ecules pack in layers parallel to (102) utilizing weak C—H⋯O inter­actions.

  7. The addition of norethindrone acetate to leuprolide acetate for ovarian suppression has no adverse effect on ovarian stimulation

    Ditkoff, Edward C.; Prosser, Robert; Zimmermann, Ralf C; Lindheim, Steven; Sauer, Mark V.

    1997-01-01

    Purpose: Our goal was to determine if the addition of norethindrone acetate (NETA) to leuprolide acetate (LA) has an adverse effect on controlled ovarian stimulation (COH) during in vitro fertilization (IVF).

  8. A NOVEL COPOLYMER-BOUND CIS- DICARBONYLRHODIUM COMPLEX FOR THE CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE

    YUAN Guoqing; CHEN Yuying; CHEN Rongyao

    1989-01-01

    A series of porous microspheres of linear and ethylene diacrylate (M ') cross-linked copolymers of 2 - vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol - acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.

  9. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  10. Simultaneous Determination and Pharmacokinetic Study of Protocatechuic Aldehyde and Its Major Active Metabolite Protocatechuic Acid in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry.

    Wang, Xiangyang; Yan, Kaijing; Ma, Xiaohui; Li, Wei; Chu, Yang; Guo, Jiahua; Li, Shuming; Zhou, Shuiping; Zhu, Yonghong; Liu, Changxiao

    2016-05-01

    A very simple and selective high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS-MS) method was developed for simultaneous determination and pharmacokinetic study of protocatechuic aldehyde (PAL) and its active metabolite protocatechuic acid (PCA). The method involves a simple liquid-liquid extraction with ethyl acetate. The separation was performed on a Hypersil GOLD C18column (2.1 × 150 mm, 3.0 µm; particle, Thermo, USA) with isocratic elution using a mobile phase consisted of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection of target compounds was done by using low-energy collision dissociation tandem mass spectrometry (CID-MS-MS) using the selective reaction monitoring scan mode. The method was linear for all analytes over the investigated range for all correlation coefficients greater than 0.9950. The lower limits of quantification were 2.0 ng/mL for PAL and PCA. The intra- and interday precisions (relative standard deviation, RSD %) were <6.84 and 5.54%, and the accuracy (relative error, RE %) was between -2.85 and 0.74% (n= 6). The developed method was applied to study the pharmacokinetics of PAL and its major active metabolite PCA in rat plasma after oral and intravenous administration of PAL. PMID:26969682

  11. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  12. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  13. Adaptation and tolerance of bacteria against acetic acid.

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  14. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H2O2) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS4)) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS4). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS4)/H2O2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS4)/H2O2 system

  15. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  16. The concise synthesis of chiral tfb ligands and their application to the rhodium-catalyzed asymmetric arylation of aldehydes

    Nishimura, Takahiro; Kumamoto, Hana; Nagaosa, Makoto; Hayashi, Tamio

    2009-01-01

    New C2-symmetric tetrafluorobenzobarrelene ligands were prepared and applied successfully to the rhodium-catalyzed asymmetric addition of arylboronic acids to aromatic aldehydes giving chiral diarylmethanols in high yield with high enantioselectivity.

  17. Enantioselective Pinacol Coupling of Aromatic Aldehydes Mediated by TiCl4(THF)2/Zn with Tartaric Ester

    LI You-Gui李有桂; JIANG Chen江辰; ZHAO Jun赵俊; TIAN Qing-Shan田青杉; YOU Tian-Pa尤田耙

    2004-01-01

    Asymmetric pinacol coupling of aromatic aldehydes mediated by low valent titanium complexes of chiral ligands derived from natural tartaric acid provided corresponding pinacols in good yields with excellent diastereoselectivities and moderate enantioselectivities.

  18. New Aldehyde Reductase Genes of Saccharomyces cerevisiae Contribute In Situ Detoxification of Lignocellulose-to-Ethanol Conversion Inhibitiors

    Furfural and 5-hydroxymethylfurfural (HMF) are inhibitory compounds commonly encountered during lignocellulose-to-ethanol conversion for cleaner transportation fuels. It is possible to in situ detoxify the aldehyde inhibitors by tolerant ethanologenic yeast strains. Multiple gene-mediated reductio...

  19. Synthesis of chiral N-ferrocenylmethylaminoalcohols and their applica-tion in enantioselective addition of diethylzinc to aldehydes

    Jian Feng GE; Zong Xuan SHEN; Ya Wen ZHANG

    2004-01-01

    Three chiral N-ferrocenylmethylaminoalcohols were synthesized from readily available natural L-valine, leucine and phenylanine, and used as chiral ligands in the enantioselective addition of diethylzinc to aldehydes.

  20. Therapeutic potential of targeting lipid aldehydes and lipoxidation end-products in the treatment of ocular disease.

    McDowell, Rosemary E; McGeown, J Graham; Stitt, Alan W; Curtis, Tim M

    2013-02-01

    Lipoxidation reactions and the subsequent accumulation of advanced lipoxidation end products (ALEs) have been implicated in the pathogenesis of many of the leading causes of visual impairment. Here, we begin by outlining some of the major lipid aldehydes produced through lipoxidation reactions, the ALEs formed upon their reaction with proteins, and the endogenous aldehyde metabolizing enzymes involved in protecting cells against lipoxidation mediated damage. Discussions are subsequently focused on the clinical and experimental evidence supporting the contribution of lipid aldehydes and ALEs in the development of ocular diseases. From these discussions, it is clear that inhibition of lipoxidation reactions and ALE formation could represent a new therapeutic avenue for the treatment of a broad range of ocular disorders. Current and emerging pharmacological strategies to prevent or neutralize the effects of lipid aldehydes and ALEs are therefore considered, with particular emphasis on the potential of these drugs for treatment of diseases of the eye. PMID:23360143

  1. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    Edenberg, Howard J

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date pri...

  2. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALD...

  3. Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer

    Jiang, Feng; Qiu, Qi; Khanna, Abha; Todd, Nevins W.; Deepak, Janaki; Xing, Lingxiao; Wang, Huijun; Liu, Zhenqiu; Su, Yun; Stass, Sanford A.; Katz, Ruth L

    2009-01-01

    Tumor contains small population of cancer stem cells (CSC) that are responsible for its maintenance and relapse. Analysis of these CSCs may lead to effective prognostic and therapeutic strategies for the treatment of cancer patients. We report here the identification of CSCs from human lung cancer cells using Aldefluor assay followed by fluorescence-activated cell sorting analysis. Isolated cancer cells with relatively high aldehyde dehydrogenase 1 (ALDH1) activity display in vitro features o...

  4. Aqueous DMSO Mediated Conversion of (2-(Arylsulfonyl)vinyl)iodonium Salts to Aldehydes and Vinyl Chlorides.

    Zawia, Eman; Moran, Wesley J

    2016-01-01

    Vinyl(aryl)iodonium salts are useful compounds in organic synthesis but they are under-utilized and their chemistry is under-developed. Herein is described the solvolysis of some vinyl(phenyl)iodonium salts, bearing an arylsulfonyl group, in aqueous DMSO leading to aldehyde formation. This unusual process is selective and operates under ambient conditions. Furthermore, the addition of aqueous HCl and DMSO to these vinyl(aryl)iodonium salts allows their facile conversion to vinyl chlorides. PMID:27537866

  5. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  6. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function.

    Garaycoechea, Juan I; Crossan, Gerry P; Langevin, Frederic; Daly, Maria; Arends, Mark J; Patel, Ketan J

    2012-09-27

    Haematopoietic stem cells (HSCs) regenerate blood cells throughout the lifespan of an organism. With age, the functional quality of HSCs declines, partly owing to the accumulation of damaged DNA. However, the factors that damage DNA and the protective mechanisms that operate in these cells are poorly understood. We have recently shown that the Fanconi anaemia DNA-repair pathway counteracts the genotoxic effects of reactive aldehydes. Mice with combined inactivation of aldehyde catabolism (through Aldh2 knockout) and the Fanconi anaemia DNA-repair pathway (Fancd2 knockout) display developmental defects, a predisposition to leukaemia, and are susceptible to the toxic effects of ethanol-an exogenous source of acetaldehyde. Here we report that aged Aldh2(-/-) Fancd2(-/-) mutant mice that do not develop leukaemia spontaneously develop aplastic anaemia, with the concomitant accumulation of damaged DNA within the haematopoietic stem and progenitor cell (HSPC) pool. Unexpectedly, we find that only HSPCs, and not more mature blood precursors, require Aldh2 for protection against acetaldehyde toxicity. Additionally, the aldehyde-oxidizing activity of HSPCs, as measured by Aldefluor stain, is due to Aldh2 and correlates with this protection. Finally, there is more than a 600-fold reduction in the HSC pool of mice deficient in both Fanconi anaemia pathway-mediated DNA repair and acetaldehyde detoxification. Therefore, the emergence of bone marrow failure in Fanconi anaemia is probably due to aldehyde-mediated genotoxicity restricted to the HSPC pool. These findings identify a new link between endogenous reactive metabolites and DNA damage in HSCs, and define the protective mechanisms that counteract this threat. PMID:22922648

  7. Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?

    Randall, Matthew J.; Hristova, Milena; van der Vliet, Albert

    2013-01-01

    Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8 hrs by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein a...

  8. "Dopamine-first" mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    Lichman, B. R.; Gershater, M. C.; Lamming, E. D.; Pesnot, T.; Sula, A.; Keep, N.H.; Hailes, H. C.; Ward, J. M.

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two propo...

  9. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV Halide

    Guigen Li

    2002-01-01

    Full Text Available a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95% and up to 72% yield have been obtained for 7 examples.

  10. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV) Halide

    Guigen Li; Gao, Joe J.; Han-Xun Wei; Sun Hee Kim

    2002-01-01

    a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV) halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95%) and up to 72% yield have been obtained for 7 examples.

  11. Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides

    Vizcaíno-Milla, Pascuala; Sansano Gil, José Miguel; Nájera Domingo, Carmen; Fiser, Béla; Gómez Bengoa, Enrique

    2015-01-01

    Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemica...

  12. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  13. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  14. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Francisco León; Jaime Ríos-Motta Ríos-Motta; Augusto Rivera

    2006-01-01

    The reaction between diaminomaleonitrile (DAMN) and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol), we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free†conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear ...

  15. Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Ohman-Strickland, Pamela; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-05-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3 ± 15.1 μg/m3, 27.1 ± 15.7 μg/m3 and 2.3 ± 1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants.

  16. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    Wang, Yi; Jiang, Yang; IKEDA, JUN-ICHIRO; TIAN, TIAN; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-01-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, mi...

  17. Breast cancer and depot-medroxyprogesterone acetate

    1985-01-01

    The preliminary results of a study of the incidence of breast cancer in relation to use of depot-medroxyprogesterone acetate (DMPA) are presented. The findings are based on data from three participating centres in Thailand, and one each in Kenya and Mexico. A relative risk for breast cancer of 0.7 was observed in women who had ever used DMPA; this was not statistically significant. Although no consistent decrease in risk with duration of use was observed, the lowest relative risk (0.5) was ob...

  18. Reaction of arylsulfonylhydrazones of aldehydes with alpha-magnesio sulfones. A novel olefin synthesis.

    Kurek-Tyrlik, A; Marczak, S; Michalak, K; Wicha, J; Zarecki, A

    2001-10-19

    Reactions of representative tosylhydrazones of aldehydes and ketones with alpha-metalated sulfones were examined in order to develop a practical olefination method. Treatment of aldehyde tosylhydrazone 2 with an excess of alpha-lithiated methyl phenyl or dimethyl sulfones yielded 3a. The reaction of 2 with sterically unhindered lithiated alkyl sulfones gave mixtures of the respective olefination products 3b-d along with the Shapiro fragmentation product 4. Sterically hindered lithiated sulfones afforded Shapiro products exclusively. In contrast, aldehyde tosylhydrazones 2 or 6 in reactions with a variety of alpha-magnesio primary or secondary alkyl sulfones gave olefination products 3a-j and 7a-c in high yields (Tables 1 and 2). beta-Branched alkyl sulfones afforded predominantly (E)-alkenes, whereas unhindered primary sulfones gave mixtures of (E)- and (Z)-alkenes with low selectivity. Reaction of the 2,4,6-triisopropylbenzenesulfonylhydrazone (trisylhydrazone) of cyclodecanone 11c with alpha-magnesio methyl phenyl sulfone afforded the methylidene derivative 12a contaminated with the Shapiro product 13. Tosylhydrazone 2 resisted reaction with i-PrMgCl and gave only a small amount of the addition product in reaction with Bu(2)Mg. Some mechanistic aspects of the reaction of tosylhydrazones with organomagnesium compounds are discussed. PMID:11597219

  19. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity

    Pryor, W.A.; Church, D.F. (Biodynamics Institute, Louisiana State University, Baton Rouge (United States))

    1991-01-01

    It is generally agreed that unsaturated fatty acids (UFA) are an important class of target molecule for reaction with ozone when polluted air is inhaled. Most discussions have implicated the UFA in cell membranes, but lung lining fluids also contain fatty acids that are from 20 to 40% unsaturated. Since UFA in lung lining fluids exist in a highly aquated environment, ozonation would be expected to produce aldehydes and hydrogen peroxide, rather than the Criegee ozonide. In agreement with this expectation, the authors find that ozonations of emulsions of fatty acids containing from one to four double bonds give one mole of H2O2 for each mole of ozone reacted. Ozonation of oleic acid emulsions and dioleoyl phosphatidyl choline gives similar results, with two moles of aldehydes and one mole of H2O2 formed per mole of ozone reacted. The net reaction that occurs when ozone reacts with pulmonary lipids is suggested to be given by equation 1. (formula: see text). From 5 to 10% yields of Criegee ozonides also appear to be formed. In addition, a direct reaction of unknown mechanism occurs between ozone and UFA in homogeneous organic solution, in homogeneous solutions in water, in aqueous emulsions, and in lipid bilayers to give organic radicals that can be spin trapped. These radicals are suggested to be responsible for initiating lipid peroxidation of polyunsaturated fatty acids. Thus, aldehydes, hydrogen peroxide, and directly produced organic radicals are suggested to be mediators of ozone-induced pathology.39 references.

  20. Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.

    Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya

    2014-08-01

    The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. PMID:25044902

  1. Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.

    Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli

    2014-01-01

    Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield. PMID:24600854

  2. A new aldehyde oxidase catalyzing the conversion of glycolaldehyde to glycolate from Burkholderia sp. AIU 129.

    Yamada, Miwa; Adachi, Keika; Ogawa, Natsumi; Kishino, Shigenobu; Ogawa, Jun; Kataoka, Michihiko; Shimizu, Sakayu; Isobe, Kimiyasu

    2015-04-01

    We found a new aldehyde oxidase (ALOD), which catalyzes the conversion of glycolaldehyde to glycolate, from Burkholderia sp. AIU 129. The enzyme further oxidized aliphatic aldehydes, an aromatic aldehyde, and glyoxal, but not glycolate or alcohols. The molecular mass of this enzyme was 130 kDa, and it was composed of three different subunits (αβγ structure), in which the α, β, and γ subunits were 76 kDa, 36 kDa, and 14 kDa, respectively. The N-terminal amino acid sequences of each subunit showed high similarity to those of putative subunits of xanthine dehydrogenase. Metals (copper, iron and molybdenum) and chelating reagents (α,α'-dipyridyl and 8-hydroxyquinoline) inhibited the ALOD activity. The ALOD showed highest activity at pH 6.0 and 50°C. Twenty mM glycolaldehyde was completely converted to glycolate by incubation at 30°C for 3 h, suggesting that the ALOD found in this study would be useful for enzymatic production of glycolate. PMID:25283808

  3. Crystallization and preliminary X-ray analysis of aldehyde dehydrogenase from Vibrio harveyi.

    Croteau, N.; Vedadi, M.; Delarge, M.; Meighen, E.; Abu-Abed, M.; Howell, P. L.; Vrielink, A.

    1996-01-01

    Aldehyde dehydrogenase from Vibrio harveyi catalyzes the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique among the family of aldehyde dehydrogenases in that it exhibits much higher specificity for the cofactor NADP+ than for NAD+. The sequence of this form of the enzyme varies significantly from the NAD+ dependent forms, suggesting differences in the three-dimensional structure that may be correlated to cofactor specificity. Crystals of the enzyme have been grown both in the presence and absence of NADP+ using the hanging drop vapor diffusion technique. In order to improve crystal size and quality, iterative seeding techniques were employed. The crystals belong to space group P2(1), with unit cell dimensions a = 79.4 A, b = 131.1 A, c = 92.2 A, and beta = 92.4 degrees. Freezing the crystal to 100 K has enabled a complete set of data to be collected using a rotating anode source (lambda = 1.5418 A). The crystals diffract to a minimum d-spacing of 2.6 A resolution. Based on density calculations, two homodimers of molecular weight 110 kDa are estimated to be present in the asymmetric unit. Self-rotation functions show the presence of 3 noncrystallographic twofold symmetry axes. PMID:8897616

  4. Overriding Felkin Control: A General Method for Highly Diastereoselective Chelation-Controlled Additions to α-Silyloxy Aldehydes

    Stanton, Gretchen R.; Johnson, Corinne N.; Walsh, Patrick J.

    2010-01-01

    According to the Felkin-Anh and Cram-chelation models, nucleophilic additions to α-silyloxy aldehydes procees through a non-chelation pathway due to the steric and electronic properties of the silyl group, giving rise to Felkin addition products. Herein we describe a general method to promote chelation-control in additions to α-silyloxy aldehydes. Dialkylzincs, functionalized dialkylzincs, and (E)-disubstituted, (E)-trisubstituted, and (Z)-disubstituted vinylzinc reagents add to silyl-protect...

  5. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    Nicholas, H B; Persson, B; Jörnvall, H; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same c...

  6. SnAP-eX Reagents for the Synthesis of Exocyclic 3-Amino- and 3-Alkoxypyrrolidines and Piperidines from Aldehydes.

    Luescher, Michael U; Bode, Jeffrey W

    2016-06-01

    SnAP-eX (tin amine protocol, exocyclic heteroatoms) reagents allow the single-step transformation of aldehydes and ketones into 2,3-disubstituted pyrrolidines and piperidines containing exocyclic amine or alkoxy groups. These saturated N-heterocycles are of importance in modern drug discovery approaches and are prepared in moderate yields using an operationally simple protocol that is compatible with a range of functional groups and heterocyclic aldehydes. PMID:27192447

  7. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  8. Identification and Quantification of Aldehydes in Mezcal by Solid Phase Microextraction with On-fiber Derivatization - Gas Cromatography

    Guadalupe Medina Valtierra; Rocío Juárez Ciprés; Araceli Peña Álvarez

    2011-01-01

    A headspace solid phase microextraction with on fiber derivatization procedure followed by gas chromatography and flame ionization detection was applied for the determination of aldehydes in mezcal. A derivatization agent o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed onto a Polydimethylsiloxane/ divinyl benzene (PDMS/DVB, 65 ¿m) fiber and exposed to the headspace of a vial with a mezcal sample. The aldehydes selectively reacted with PFBHA, and the oximes were desorbed int...

  9. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods. PMID:27128101

  10. Methylprednisolon acetate in the management of

    N. Khaci, M.D.

    2008-01-01

    Full Text Available AbstractBackground and Purpose: Acute renal colic is a common complaint from patients entering the emergency departments. Although, urethral lithotripsy and extracorporeal shock wave lithotripsy are known to be effective, the role of medical-expulsive therapy for the treatment of this disease has not yet been established. This study assessed the clinical efficacy of addition methylprednisolon acetate in the medical-expulsive therapy of distal ureterolithiasis.Materials and Methods: Eighty five (85 consecutive patients with a symptomatic distal urethral stone were included in our study and randomized to one of two home treatment groups. Group A patients (n = 45 received tramadol (50mg bid and hydrochlorothiazide (50 mg daily for 21 days, and group B patients (n = 40 were treated with a corticosteroid drug (methylprednisolon acetate 40mg intra-muscular on 0, 7 and 14 days after treatment, in addition to tramadol and hydrochlorothiazide. The treatment duration was 21 days. All patients were re-evaluated after 21days with a clinical examination and KUB.Results: The mean stone size was 5.2mm and 5.8mm in groups A and B respectively (P value>0.05. Both groups had a significant difference in expulsion rate (20(44.4% for group A and 32 (88% for group B; (P value<0.001.Conclusion: Our results suggest that the use of a corticosteroid drug in association with tramadol and hydro-cholorothiazid appeared to induce an increase in the expulsion ra

  11. Immunotoxicity of trenbolone acetate in Japanese quail

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  12. Effect of medroxyprogesterone acetate (Provera) on ovarian radiosensitivity

    Jarrell, J.; YoungLai, E.V.; McMahon, A.; Barr, R.; O' Connell, G.; Belbec, L.

    1989-04-01

    Medroxyprogesterone acetate (Provera) is a drug that is commonly given to young women with cancer during chemotherapy and radiation to control heavy bleeding associated with anovulation. Because hypothalamic-pituitary-ovarian suppression has been associated with ovarian protection from the effects of chemotherapy and medroxyprogesterone acetate has been identified as a radiosensitizing agent, we explored the effects of medroxyprogesterone acetate on a rat model with known radiation injury characteristics. Sprague-Dawley rats were treated with medroxyprogesterone acetate or vehicle from day 22 to day 37 of life and were either irradiated or sham-irradiated on day 30 of life and then killed on day 44. Radiation with medroxyprogesterone acetate administration produced a greater loss in preantral and healthy control follicles than in control follicles. No suppression of luteinizing hormone or follicle-stimulating hormone had occurred by day 30 but ovarian glutathione content was reduced. These findings indicate that the administration of medroxyprogesterone acetate with radiotherapy may enhance ovarian injury.

  13. Compound list: desmopressin acetate [Open TG-GATEs

    Full Text Available desmopressin acetate DDAVP 00159 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LA...TEST/Rat/in_vivo/Liver/Single/desmopressin_acetate.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/a...rchive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/desmopressin_acetate.Rat.in_vivo.Liver.Repeat.zip ftp://...ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/desmopressin_aceta...te.Rat.in_vivo.Kidney.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/desmopressin_acetate.Rat.in_vivo.Kidney.Repeat.zip ...

  14. A radioimmunoassay for serum medroxyprogesterone acetate.

    Shrimanker, K; Saxena, B N; Fotherby, K

    1978-04-01

    When injected intramuscularly in a dose of 150 mg, Depo Provera, a microcrystalline suspension of medroxyprogesterone acetate (MPA), will provide a contraceptive effect for at least 3 months. This paper describes a sensitive radioimmunoassay for MPA which has been used in the author's laboratory for the past 2 years. MPA was converted to MPA-3-CMO and the oxime was conjugated with bovine serum albumin (BSA) by the mixed anahydride method. 4 rabbits were immunized with the antiserum. A high titre of MPA antibodies was detected 6 months after immunization. Serum from the rabbit with the highest titre of antibodies to MPA was subjected to radioimmunoassay. 7 days after the intramuscular injection of 150 mg Depo-Provera, serum levels of MPA were found in the range of 1750 to 9000 pg/ml. By 75 days, the levels had decreased to 680-2600 pg/ml. The method was found to have adequate accuracy, precision and sensitivity. PMID:661315

  15. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  16. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD50 values of 7 and 20 μM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 μM of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD50 of decadienal by approximately a third for both species. 1 μM of copper chloride in solutions of decadienal reduced the 24 h LD50 of decadienal to A. salina nauplii by approximately 11% and 1 μM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 μM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed

  17. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  18. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  19. Different cerebrovascular effects of medroxyprogesterone acetate and norethisterone acetate in the New Zealand White rabbit

    Pedersen, S H; Pedersen, N G; Dalsgaard, T;

    2004-01-01

    overall differences were seen between CEE and E2. CONCLUSIONS: In rabbit cerebral arteries, MPA treatment causes a higher development in arterial tension compared with NETA, indicating that different progestins may display different cerebrovascular effects. However, when accompanied by estrogens, as in......OBJECTIVE: The lack of a cardioprotective effect of hormone replacement therapy (HRT), as suggested by the Heart and Estrogen/progestin Replacement Study (HERS) and Women's Health Initiative (WHI) may in part be explained by the progestin used. The aim of this study was to elucidate the effect of...... different progestins on cerebrovascular reactivity in an animal model. METHODS: Fifty-six ovariectomized New Zealand White rabbits were randomized into seven groups receiving hormone treatment for 4 weeks: medroxyprogesterone acetate (MPA) (10 mg/day); norethisterone acetate (NETA) (3 mg/day); conjugated...

  20. Integrated quantification and identification of aldehydes and ketones in biological samples.

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-05-20

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde. PMID:24745975

  1. The effects of using oxygenated fuels on the concentrations of Aldehydes in Denver

    The State of Colorado has mandated the winter use of oxygenated fuels in motor vehicles since January 1988. The purpose of using oxygenated fuels is to reduce the emissions of carbon monoxide (CO), and hence the ambient concentration of carbon monoxide. The use of oxygenated fuels is known to increase the emissions of aldehydes. Formaldehyde emissions increase when methyl tertiary butyl ether (MTBE) blended fuels are used, while acetaldehyde emissions also increase when ethanol blended fuels are used. Early in the program, MTBE blended fuels constituted about 95% of the fuels used. The market penetration of the ethanol blended fuels is believed to have increased to about 20% in recent years. Our research group has been collecting four-hour averaged aldehyde samples, 24 hours a day in Denver for much of the time since December 1987. This has included six seasons during which oxygenated fuels were used. In this paper, the diurnal and seasonal variability in the aldehyde concentrations are discussed. These data suggest that motor vehicles are a major source of formaldehyde during the winter. Other sources of formaldehyde, including photochemical sources, are of greater importance during the summer. These data will be analyzed to try to evaluate the impact of using oxygenated fuels on the atmospheric concentration of formaldehyde in Denver. The 1990 Clean Air requires the use of oxygenated fuels in over forty metropolitan areas with carbon monoxide problems. It must be verified that one is not causing new problems by the use of oxygenated fuels in an attempt to reduce carbon monoxide concentrations

  2. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study.

    Siah, Maryam; Farzaei, Mohammad Hosein; Ashrafi-Kooshk, Mohammad Reza; Adibi, Hadi; Arab, Seyed Shahriar; Rashidi, Mohammad Reza; Khodarahmi, Reza

    2016-02-01

    Aldehyde oxidase (AO), a cytosolic molybdenum-containing hydroxylase, is predominantly active in liver and other tissues of mammalian species and involved in the metabolism of extensive range of aldehydes and nitrogen-containing compounds. A wide range of natural components including polyphenols are able to interfere with AO-catalyzed reactions. Polyphenols and flavonoids are one of the extensive secondary plant metabolites ubiquitously present in plants considered an important part of the human diet. The aim of the present study was to investigate inhibitory effect of selected phenolic compounds from three subclasses of aurone, flavanone and phenolic lactone compounds on the activity of AO, spectrophotometrically. AO enzyme was partially purified from liver of guinea pig. Then, inhibitory effects of 10 flavonoid compounds including 8 derivatives of 2-benzylidenebenzofuran-3(2H)-ones, as well as naringenin and ellagic acid on the activity of aldehyde oxidase were assessed compared with the specific inhibitor of AO, menadione. Among the phenolic compounds with inhibitory effects on the enzyme, ellagic acid (IC50=14.47μM) was the most potent agent with higher inhibitory action than menadione (IC50=31.84μM). The mechanisms by which flavonoid compounds inhibit AO activity have been also determined. The inhibitory process of the assessed compounds occurs via either a non-competitive or mixed mode. Although flavonoid compounds extensively present in the nature, mainly in dietary regimen, aurones with promising biological properties are not widely distributed in nature, so synthesis of aurone derivatives is of great importance. Additionally, aurones seem to provide a promising scaffold in medicinal chemistry for the skeleton of new developing drugs, so the results of the current study can be valuable in order to better understanding drug-food as well as drug-drug interaction and also appears to be worthwhile in drug development strategies. PMID:26722818

  3. Clean Synthesis in Water:Darzens Condensation Reaction of Aromatic Aldehydes with Phenacyl Chloride

    史达清; 张姝; 庄启亚; 王香善; 屠树江; 胡宏纹

    2003-01-01

    The Darzens condensation reaction of aromatic aldehydes with phenacyl chloride proceeded very efficiently in a water suspension medium in the presence of triethylbenzylammonium chloride and only trans-2,3-epoxy-1,3-diaryl-1-propanones were formed which can be isolated simply by filtration.The structures of these compounds were confirmed by elemental analysis,IR and 1H NMR spectra.Therir configurations are in agreement with that of the same compounds reported in the literature.Compared to the classical Darzens condensation,this new method has the advantages of good yields,high stereoselectivity,low running cost inexpensive and environmentally benign procedure.

  4. From ribonucleoside 5'-aldehydes to ribonucleoside 5'-C-phosphpnates as building blocks for oligonucleotide synthesis

    Petrová, Magdalena; Králíková, Šárka; Buděšínský, Miloš; Rosenberg, Ivan

    -, č. 52 (2008), s. 591-592. ISSN 0261-3166. [Joint Symposium of the International Roundtable on Nucleosides, Nucleotides and Nucleic Acids /18./ and the International Symposium on Nucleic Acid Chemistry /35./. Kyoto, 08.09.2008-12.09.2008] R&D Projects: GA MŠk(CZ) LC06061; GA MŠk(CZ) LC06077 Grant ostatní: EMIL-FP6(XE) 503569 Institutional research plan: CEZ:AV0Z40550506 Keywords : 5'-aldehydes * 5'-C-phosphonates Subject RIV: CC - Organic Chemistry

  5. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH4CN, CH3CN, and C2H4CN, that had received multikilogray doses of 60Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  6. Photocycloaddition of aromatic and aliphatic aldehydes to isoxazoles: Cycloaddition reactivity and stability studies

    Hidehiro Kotaka

    2011-01-01

    Full Text Available The first photocycloadditions of aromatic and aliphatic aldehydes to methylated isoxazoles are reported. The reactions lead solely to the exo-adducts with high regio- and diastereoselectivities. Ring methylation of the isoxazole substrates is crucial for high conversions and product stability. The 6-arylated bicyclic oxetanes 9a–9c were characterized by X-ray structure analyses and showed the highest thermal stabilities. All oxetanes formed from isoxazoles were highly acid-sensitive and also thermally unstable. Cleavage to the original substrates is dominant and the isoxazole derived oxetanes show type T photochromism.

  7. Benzazole derivatives. IV. Reaction of 1,2,3-trimethylbenzimidazolium salts with aromatic aldehydes

    CORINA CERNATESCU

    2005-12-01

    Full Text Available 1,2,3-Trimethylbenzimidazolium iodide and its analogue salts with one or two substituents on benzene ring (X = NO2, Br,Cl, CH3 are, due to the reactivity of the 2-methyl group, able to react with para-substituted aromatic aldehydes (X = OH, OCH3, CH3, NMe2, NO2 using piperidine as a catalyst. 1-Methyl-2-styrylbenzimidazole iodomethylates were obtained and their structure elucidated by means of NMR and IR spectroscopy. The compounds are interesting as hemicyanine dyes. They lend themselves to studies based on electronic absorption spectroscopy and they have potential practical applications linked to their photosensitive properties.

  8. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  9. Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases

    Ma, Heng; Byra, Emily A.; Yu, Lu; Hu, Nan; Kitagawa, Kyoko; Nakayama, Keiichi I.; Kawamoto, Toshihiro; Ren, Jun

    2010-01-01

    Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-d...

  10. Catalyst for Gas Phase Hydrogenation of Aldehydes Successfully Developed by Daqing Chemical Research Center

    2008-01-01

    @@ A national invention patent has been granted to the method for preparation of the Cu-Zn-Al system catalyst for gas phase hydrogenation of aldehydes developed by the Daqing Chemi-cal Research Center (DCRC) under the PetroChina Petro-chemical Research Institute. This technology is mainly ap-plied to the gas phase process for hydrogenation of butanal/crotonaldehyde to manufacture butanol/octanol and has brought about hundreds of million RMB of economic ben-efits since its application.

  11. Facile Aldol Reaction Between Unmodified Aldehydes and Ketones in Bronsted Acid Ionic Liquids

    LIU Bao-you; ZHAO Di-shun; XU Dan-qian; XU Zhen-yuan

    2007-01-01

    A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α ,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs) was explored. 1-Butyl-3-methylimidazolium hydrogen sulphate( BMImHSO4 ) acting as an effective media and catalyst in aldol reactions was compared with other BAILs, with the advantages of high conversion and selectivity. The product was easily isolated andthe left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency. The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.

  12. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira;

    2004-01-01

    - methylimidazolium hexafluorophosphate [bmim][PF 6], and in a 1-butyl-3-methylimidazolium bromide ([bmim][Br]) - benzene system. The reactions with acrolein and crotonaldehyde afforded Michael addition products, those with citral resulted in Knoevenagel addition products. Sonication increased the yields of the...... Michael adducts. The ionic liquid [bmim][PF 6] can be recovered and repeatedly used in the reactions.......Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3...

  13. Chiral phenoxyimino-amido aluminum complexes for the asymmetric cyanation of aldehydes.

    Ternel, J; Agbossou-Niedercorn, F; Gauvin, R M

    2014-03-21

    The reactivity of triethylaluminum towards salicylaldimine sulfonamides was probed, affording well-defined complexes through consecutive protonolysis of two Al-C bonds by the proligand. These complexes, when combined with an achiral anilinic N-oxide, catalyze the asymmetric addition of trimethylsilylcyanide to a wide range of aldehydes, with good activity and enantioselectivity (up to 91% ee). Insertion of the benzaldehyde substrate into the Al-N amido bond was observed, bringing elements for discussion around the nature of the actual active species. PMID:24434893

  14. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR DETERMINATION OF AROMATIC ALDEHYDES IN WINE DISTILLATES

    Elena Nezalzova

    2011-06-01

    Full Text Available Quality control of alcoholic beverages, coming into the market, is a defining element in preventing the production and supplying of defective products. One of the main criteria for quality control of wine distillates is to estimate their age, and more precisely the period of maturation as the dominant factor in determining the quality of cognacs and, consequently, their market price. On the opinion of majority scientists, one of the main factors, which determines the age of wine distillates, is the content of aromatic aldehydes, mostly vanillin, and their ratio.

  15. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Francisco León

    2006-11-01

    Full Text Available The reaction between diaminomaleonitrile (DAMN and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol, we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free” conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations.

  16. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  17. 21 CFR 522.960b - Flumethasone acetate injection.

    2010-04-01

    ... injection should not exceed 3 days of therapy. With chronic conditions intramuscular therapy may be followed... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flumethasone acetate injection. 522.960b Section... § 522.960b Flumethasone acetate injection. (a) Chemical name. 6-alpha,9-alpha-difluoro - 16 -...

  18. Acetalization of furfural with zeolites under benign reaction conditions

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro;

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  19. Acetate transport across the intestinal epithelium of an herbivorous teleost

    3H-acetate transport across the upper intestine of the tilapia, Oreochromis mossabicus, using brush border and basolateral membrane vesicles, and intestinal sheets mounted in modified Ussing chambers was investigated. Brush border and basolateral vesicles demonstrated qualitatively similar anion antiport activity where, in the presence of a full profile of organic and inorganic anions, volatile fatty acids (VFA; acetate, propionate, butyrate) and bicarbonate showed reciprocal trans-stimulation and cis-inhibition of 3H-acetate influx, suggesting both membranes had the same VFA/bicarbonate exchange mechanism. Kinetic analysis of 3H-acetate influx into brush border and basolateral vesicles revealed different half-saturation constants (Km) as a function of external acetate concentrations (6.43 mM and 11.91 mM, respectively) and as a function of internal bicarbonate (5.89 mM and 0.41 mM, respectively). Intestinal sheets supported net absorptive fluxes when serosal acetate concentrations were held steady at 1.0 mM and mucosal acetate was varied from 1.60 to 10.0 mM. Unidirectional fluxes were significantly diminished by the addition of acetazolamide. This study postulates a transcellular transport pathway for VFA whereby qualitatively similar antiporters in series lead to a downhill flow of luminal acetate to the blood, which is driven by intracellular carbonic anhydrase and a transmural VFA concentration gradient

  20. Proteomic Analysis on Acetate Metabolism in Citrobacter sp. BL-4

    Young-Man Kim, Sung-Eun Lee, Byeoung-Soo Park, Mi-Kyung Son, Young-Mi Jung, Seung-Ok Yang, Hyung-Kyoon Choi, Sung-Ho Hur, Jong Hwa Yum

    2012-01-01

    Full Text Available Mass production of glucosamine (GlcN using microbial cells is a worthy approach to increase added values and keep safety problems in GlcN production process. Prior to set up a microbial cellular platform, this study was to assess acetate metabolism in Citrobacter sp. BL-4 (BL-4 which has produced a polyglucosamine PGB-2. The LC-MS analysis was conducted after protein separation on the 1D-PAGE to accomplish the purpose of this study. 280 proteins were totally identified and 188 proteins were separated as acetate-related proteins in BL-4. Acetate was converted to acetyl-CoA by acetyl-CoA synthetase up-regulated in the acetate medium. The glyoxylate bypass in the acetate medium was up-regulated with over-expression of isocitrate lyases and 2D-PAGE confirmed this differential expression. Using 1H-NMR analysis, the product of isocitrate lyases, succinate, increased about 15 times in the acetate medium. During acetate metabolism proteins involved in the lipid metabolism and hexosamine biosynthesis were over-expressed in the acetate medium, while proteins involved in TCA cycle, pentose phosphate cycle and purine metabolism were down-regulated. Taken together, the results from the proteomic analysis can be applied to improve GlcN production and to develop metabolic engineering in BL-4.

  1. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans.

    Sobreira, Tiago J P; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S L; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  2. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans

    Sobreira, Tiago J. P.; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C.; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J.; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S. L.; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  3. Photodissociation spectroscopy of the Mg+-acetic acid complex

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p+, MgOH+, Mg(H2O)+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies

  4. Pharmacokinetics of depot medroxyprogesterone acetate contraception.

    Mishell, D R

    1996-05-01

    Depot medroxyprogesterone acetate (DMPA) is an aqueous suspension of 17-acetoxy 6-methyl progestin administered by intramuscular injection for long-term contraception. This highly effective injectable formulation of medroxyprogesterone acetate (MPA) has a prolonged duration of action since the progestin is released slowly from the muscle. MPA is detected in the serum within 30 minutes after an injection of 150 mg. Serum concentrations vary between individual women but generally plateau at about 1.0 ng/mL for about three months, after which there is a gradual decline. In some women, MPA can be detected in the serum for as long as nine months after a single injection of 150 mg. The circulating MPA initially inhibits the midcycle leutinizing hormone (LH) peak, but LH and follicle stimulating hormone (FSH) levels remain in the range of those for the luteal phase of a pretreatment control cycle. Since ovulation is inhibited, serum progesterone levels remain low (< 0.4 ng/mL) for several months following an injection of DMPA. When MPA levels fall below 0.1 ng/mL, ovulation resumes. Thus, return to fertility is delayed for several months if a woman wishes to conceive after receiving one or more injections of DMPA. Following an injection of DMPA, serum estradiol levels initially are in the early to midfollicular phase range (mean approximately 50 pg/nL). Serum estradiol levels begin to rise about four months after a single injection when MPA levels fall below 0.5 ng/mL. For women who have used DMPA for several years, serum estradiol levels range between 10 and 92 pg/mL, with mean levels of about 40 pg/mL. Despite these low levels of estradiol, hot flushes are a rare event, and the vaginal epithelium remains moist and well rugated. Women using DMPA for several years do not observe a change in breast size. DMPA causes the endometrium to become atrophic, with small, straight endometrial glands and decidualized stroma. The cervical mucus remains thick and viscid. DMPA is a

  5. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  6. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  7. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  8. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    Lindinger Michael I

    2007-12-01

    Full Text Available Abstract Aim Sodium acetate (NaAcetate has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial; or 2 a hay/grain meal alone (Control trial. Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse.

  9. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  10. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  11. Antisickling activity evaluation of 4 aromatic aldehydes using proton magnetic relaxation

    The formation of a Shiff base aduct hemoglobin-aromatic aldehyde, has been reported as inhibitor of the hemoglobin S polymerization. Using the Proton Magnetic Resonance methodology, the polymerization kinetics can be studied and the delay time can be determined. Our studies in vitro show the inhibitor effect of the isovanillin, o-vanillin, m-hydroxybenzaldehyde and the p-hydroxybenzaldehyde, using molar ratio (hemoglobin S/compound) 1:1, 1:4 and 1:8. The td increment (expressed in percents) obtained for each one of the molar ratio was the following: isovanillin: 34±6% (1:1), 68±16% (1:4), ovanillin: 26±10% (1:1), 63±20% (1:4), m-hydroxybelzaldehyde: 16±4% (1:1), 44±12% (1:4) and the phydroxybenzaldehyde: 10±3% (1:1), 32±8% (1:4). In the case of 1:8, the characteristic kinetics curve was not obtained. At the used concentrations, hemolytic activity was not found on the red blood cell. These results confirm the antisickling activity of these aromatic aldehydes, for a technique different to that reported in literature that also allows the quantification of concentration effect. The same ones will facilitate the study of the therapeutic usefulness of these compounds in the sickle cell anemia treatment. (author)

  12. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.

    Goldszer, F; Tindell, G L; Walle, U K; Walle, T

    1981-11-01

    Propranolol is N-dealkylated to N-desisopropylpropranolol (DIP) by microsomal enzymes. DIP was shown in this study to be rapidly deaminated by monoamine oxidase (MAO). Thus, incubation of DIP (10(-4) M) with rat liver mitochondria for 90 min demonstrated 74.8 +/- 4.1% metabolism which was almost completely blocked by the MAO inhibitor pargyline (10(-5) M). The end products of this deamination were 3-(alpha-naphthoxy)-1,2-propylene glycol (Glycol) and 3-(alpha-naphthoxy)lactic acid (NLA). In the presence of excess NADH the Glycol was the major product whereas NLA was the major product in the presence of excess NAD+. The intermediate aldehyde in this deamination reaction, 3-(alpha-naphthoxy)-2-hydroxypropanal (Ald), was extremely labile and decomposed quantitatively to alpha-naphthol when removed from the incubates. However, the addition of methoxyamine hydrochloride directly to the incubates made it possible to chemically trap the intact Ald as an O-methyloxime and prove its structure by gas chromatography-mass spectrometry. The deamination of the primary amine of oxprenolol also gave rise to a labile aldehyde which could be trapped and identified as its O-methyloxime. PMID:7335950

  13. Pressure- and light-induced luminescence of several aldehydes dissolved in polymer matrices

    Dreger, Z.A.; Lang, J.M.; Drickamer, H.G. [Univ. of Illinois, Urbana, IL (United States)

    1996-03-14

    The pressure- and light-induced emissions of four aldehydes - benzaldehyde (BA), 4-(dimethylamino)-benzaldehyde (DMABA), 4-(dibutylamino)-benzaldehyde (DBABA), and 4-(dimethylamino)-1-naphthaldehyde (DMANA) - dissolved in solid polymers have been investigated. All compounds studied exhibit under pressure as well as under continuous irradiation a significant enhancement of the luminescence emission. In the case of substituted aldehydes, both the fluorescence and phosphorescence increase markedly when pressure increases. For BA only increasing phosphorescence is observed. These changes are explained in terms of a model which takes a mixing of the lowest triplet state character as a controlling factor of the pressure effect. Thus, the pressure-induced emission arises from a decrease of the n,{pi}{sup *} character of the lowest triplet state and as a result an increase of its radiative rate and decrease of the intersystem crossing. The lowest triplet state is also assumed to be a precursor for the light-induced effect. In this case, the emission is proposed to occur as a result of the triplet reactivity and consequently the creation of a light-emitting species. 17 refs., 20 figs.

  14. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  15. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    Rayne, Sierra; Forest, Kaya

    2016-06-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  16. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  17. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Highlights: • Mo2C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η2(C,O)-propanal). • Mo2C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds

  18. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  19. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  20. Determination of aliphatic aldehydes by liquid chromatography with pulsed amperometric detection.

    Casella, Innocenzo G; Contursi, Michela

    2005-01-21

    An electrochemical detection method for short-chain saturated and unsaturated aliphatic aldehydes separated by liquid chromatography in moderately acidic medium is described. A triple-step waveform of the potentials applied to the polycrystalline platinum electrode, is proposed for sensitive detection of aliphatic aldehydes in flowing streams avoiding tedious pre- or post-column derivatization and/or cleanup procedures. The influences of the perchloric acid concentration and dissolved oxygen in the mobile phase, on the amperometric and chromatographic performance were evaluated and considered in terms of sensitivity and selectivity. Under the optimised experimental conditions (i.e., deoxygenated 50mM HClO4) the proposed analytical method allowed detection limits between 0.2 microM for acrolein and 2.5 microM for valeraldehyde. Regression analysis of calibration data indicates that responses for all investigated compounds are linear over about 2 orders of magnitude above the LOD, with correlation coefficients >0.990. The method was successfully applied to the determination of formaldehyde, acetaldehyde, propionaldehyde and acrolein in real matrices such as spiked water and red wines with good mean recoveries (81-97%). PMID:15700464

  1. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-01

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest. PMID:20540589

  2. Metabolism of ent-Kaurene to Gibberellin A(12)-Aldehyde in Young Shoots of Normal Maize.

    Suzuki, Y; Yamane, H; Spray, C R; Gaskin, P; Macmillan, J; Phinney, B O

    1992-02-01

    Young shoots of normal maize (Zea mays L.) were used to determine both the stepwise metabolism of ent-kaurene to gibberellin A(12)-aldehyde and the endogenous presence of the members in this series. Each of the five steps in the sequence was established by feeds of 17-(13)C, (3)H-labeled kauranoids to cubes from the cortex of elongating internodes, to homogenates from the cortex of elongating internodes, and/or to homogenates from dark-grown seedlings. The (13)C-metabolites were identified by Kovats retention indices (KRI) and full-scan capillary gas chromatography-mass spectrometry (GC-MS). Five substrates and the final product in this sequence were shown to be native by the isotopic dilution of 17-(13)C, (3)H-labeled substrates added as internal standards to extracts obtained from elongating internodes. Evidence for the isotopic dilution was obtained by KRI and full-scan capillary GC-MS. Thus, we document the presence in young maize shoots of the metabolic steps, ent-kaurene --> ent-kaurenol --> ent-kaurenal --> ent-kaurenoic acid --> ent-7 alpha-hydroxykaurenoic acid --> gibberellin A(12)-aldehyde. PMID:16668684

  3. Eslicarbazepine acetate for partial-onset seizures.

    Rauchenzauner, Markus; Luef, Gerhard

    2011-12-01

    Eslicarbazepine acetate (ESL), a new voltage-gated sodium channel blocker that is chemically related to carbamazepine and partially metabolized to oxcarbazepine, has attracted attention as results of previous Phase II and III studies demonstrated and confirmed efficacy and tolerability of ESL 800 and 1200 mg once daily as add-on therapy for adult patients with drug-resistant partial-onset seizures. In children, efficacy data point towards a dose-dependent decrease in seizure frequency and tolerability analyses showed a low incidence of mild drug-related adverse effects at 5 and 15 mg/kg/day. The most frequently reported adverse effects were dizziness, somnolence, headache, diplopia, nausea and vomiting. The convenience of once-daily dosing and a short/simple titration regimen in combination with a comparative efficacy and tolerability profile might promote ESL as a valid alternative to the current adjunctive antiepileptic drug therapy armamentarium for drug-resistant partial seizures in adults. Since clinical trials in children and adolescents on ESL efficacy and safety are ongoing and data already published are far from conclusive, the therapeutic value of ESL in this special population has to be established in the near future. PMID:22091592

  4. Pharmacokinetics and drug interactions of eslicarbazepine acetate.

    Bialer, Meir; Soares-da-Silva, Patricio

    2012-06-01

    Eslicarbazepine acetate (ESL) is a novel once-daily antiepileptic drug (AED) approved in Europe since 2009 that was found to be efficacious and well tolerated in a phase III clinical program in adult patients with partial onset seizures previously not controlled with treatment with one to three AEDs, including carbamazepine (CBZ). ESL shares with CBZ and oxcarbazepine (OXC) the dibenzazepine nucleus bearing the 5-carboxamide substitute, but is structurally different at the 10,11 position. This molecular variation results in differences in metabolism, preventing the formation of toxic epoxide metabolites such as carbamazepine-10,11-epoxide. Unlike OXC, which is metabolized to both eslicarbazepine and (R)-licarbazepine, ESL is extensively converted to eslicarbazepine. The systemic exposure to eslicarbazepine after ESL oral administration is approximately 94% of the parent dose, with minimal exposure to (R)-licarbazepine and OXC. After ESL oral administration, the effective half-life (t(1/2,eff) ) of eslicarbazepine was 20-24 h, which is approximately two times longer than its terminal half-life (t(1/2)). At clinically relevant doses (400-1,600 mg/day) ESL has linear pharmacokinetics (PK) with no effects of gender or moderate liver impairment. However, because eslicarbazepine is eliminated primarily (66%) by renal excretion, dose adjustment is recommended for patients with renal impairment. Eslicarbazepine clearance is induced by phenobarbital, phenytoin, and CBZ and it dose-dependently decreases plasma exposure of oral contraceptive and simvastatin. PMID:22612290

  5. Adsorption of acetic acid on different carbons

    K. Ouattara

    2012-10-01

    Full Text Available This study presents a double environmental aspect, on one hand, decline of the cost of the waste water treatment thanks to a cheap adsorbing, on the other hand, the valuation of coconut shells.The acetic acid was used as adsorbent because the knowledge of the size of its molecule (21 Å2 allows characterizing studied carbons.The model of Langmuir describes well the isotherms of adsorption on the various types of studied carbons. It stands out in this study that the capacity of adsorption of inactivated carbon grain (CNAG COCO doubles practically if this one is reduced in powder. Besides, the inactivated carbon powder (CNAP COCO and the activated carbon grain (CAG COCO have the same capacity of adsorption. So, the specific surfaces of the CNAP COCO and CAG COCO are identical: SL = 77 m2/g while that of the CNAG is only 32 m2/g. The use of inactivated carbon powder can be thus recommended to treat waste water opposite the inactivated grain carbon which isn’t of real interest.

  6. Nomegestrol acetate: pharmacology, safety profile and therapeutic efficacy.

    Lello, Stefano

    2010-03-26

    This review summarizes the pharmacology, safety and clinical efficacy of nomegestrol acetate, based on the available published literature, and assesses the pharmacological characteristics that underlie a role in different gynaecological disorders and hormone replacement therapy (HRT), and a potential role in combination estrogen/progestogen oral contraception. Nomegestrol acetate is a potent, orally active progestogen with a favourable tolerability profile and neutral metabolic characteristics. Unlike the majority of older progestogens, which were 19-nortestosterone derivatives synthesized primarily for their antigonadotropic activity as a component of hormonal contraception in combination with an estrogen, nomegestrol acetate is a 19-norprogesterone derivative designed to bind specifically to the progesterone receptor, and is relatively lacking in affinity for other steroid receptors. Nomegestrol acetate exerts strong antiestrogenic effects at the level of the endometrium and has potent antigonadotropic activity, but without any residual androgenic or glucocorticoid properties. At a dosage of 1.25 mg/day, nomegestrol acetate inhibits ovulation while permitting follicle growth, whereas at dosages of 2.5 or 5 mg/day, both ovulation and follicle development are suppressed. The antigonadotropic action of nomegestrol acetate is mediated, like other progestins, at the hypothalamic and pituitary level. Moreover, nomegestrol acetate has partial antiandrogenic activity. Absorption of nomegestrol acetate is rapid after oral administration, reaching a peak serum concentration within 4 hours, with a terminal half-life of approximately 50 hours. Nomegestrol acetate has been used successfully for the treatment of some gynaecological disorders (menstrual disturbances, dysmenorrhoea, premenstrual syndrome) and as a component of HRT in combination with estradiol for the relief of menopausal symptoms; it has been approved in Europe as monotherapy for the treatment of the menopausal

  7. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.

    Ahvazi, B; Coulombe, R; Delarge, M; Vedadi, M; Zhang, L; Meighen, E; Vrielink, A

    2000-01-01

    Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provide the basis for understanding the molecular features that dictate these unique properties and will enhance our understanding of the mechanism of catalysis for this class of enzyme. The X-ray structure of aldehyde dehydrogenase from V. harveyi has been solved to 2.5-A resolution as a partial complex with the cofactor NADP(+) and to 2. 1-A resolution as a fully bound 'holo' complex. The cofactor preference exhibited by different forms of the enzyme is predominantly determined by the electrostatic environment surrounding the 2'-hydroxy or the 2'-phosphate groups of the adenosine ribose moiety of NAD(+) or NADP(+), respectively. In the NADP(+)-dependent structures the presence of a threonine and a lysine contribute to the cofactor specificity. In the V. harveyi enzyme an arginine residue (Arg-210) contributes to the high cofactor affinity through a pi stacking interaction with the adenine ring system of the cofactor. Further differences between the V. harveyi enzyme and other aldehyde dehydrogenases are seen in the active site, in particular a histidine residue which is structurally conserved with phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This may suggest an alternative mechanism for activation of the reactive cysteine residue for nucleophilic attack. PMID:10903148

  8. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  9. Biogas Production through the Syntrophic Acetate-Oxidising Pathway. Characterisation and Detection of Syntrophic Acetate- Oxidising Bacteria

    Westerholm, Maria [Faculty of Natural Resources and Agricultural Sciences, Dept. of Microbiology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2012-11-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-step reaction, consisting of acetate oxidation to hydrogen and carbon dioxide by syntrophic acetate-oxidising bacteria (SAOB), followed by conversion of these products to methane by hydrogenotrophic methanogens. Ammonia and acetate concentration, hydraulic retention time, temperature and methanogenic population structure are operational parameters considered to influence the acetate conversion pathway. This thesis sought to increase understanding of SAO by examining syntrophic acetate oxidisers in pure culture, co-culture and methanogenic reactors. Two novel species of SAOB, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans, were isolated and their phenotypic and phylogenetic traits were characterised. Quantitative molecular approaches were developed and applied to determine structural dynamics in the methane-producing population in a mesophilic biogas reactor during an ammonia-induced shift from aceticlastic to syntrophic acetate degradation. The abundance of SAOB increased, with a simultaneous decrease in aceticlastic methanogens. The majority of known SAOB are considered acetogens, and gradually increased ammonia concentration was shown to cause distinct shifts in the putative acetogenic population structure in mesophilic biogas reactors. However, the acetogenic bacterial abundance remained relatively stable. Bioaugmentation of syntrophic acetate-oxidising cultures did not improve process performance or support establishment of SAO as the dominant acetate

  10. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  11. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    Nhi Dinh Bui; Ngo Dinh Vu; Thao Thi Minh; Huong Thi Thanh Dam; Regina Romanovna Spiridonova; Semenovich Alexandr Sirotkin

    2016-01-01

    The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.%) has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate group...

  12. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R2C=O), where R could be H, OH, NH2, or CH3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  13. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R

    2007-12-01

    Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation. PMID:17988135

  14. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  15. Studies on the Gamma-Initiated Polymerization of Vinyl Acetate in Aqueous Media

    1. Gamma-initiated Polymerization of Vinyl Acetate in an Aqueous Solution of Uranyl Acetate. From a consideration of the rate and degree of polymerization of the gamma- initiated polymerization of vinyl-acetate in three systems (vinyl acetate-acetic acid, vinyl acetate-acetic acid, water, and vinyl acetate-acetic acid-water-uranyl acetate), the G-values of each component for the initiation of polymerization are estimated as follows G vinylacetateinitiation = 10,6; G aceticacidinitiation = 52; G waterinitiation = 480; G uranylacetateinitiation = 23,000. 2. Gamma-initiated Polymerization of Vinyl Acetate in Aqueous Solutions of Detergents. The emulsion polymerization of vinyl acetate in the presence of anionic, cationic and non ionic detergents is discussed. The rate is found to be greatest for the anionic detergent lauryl benzene sulphonate. The rate and degree of polymerization increase with detergent concentration. It is found that the rate of polymerization is ∝ (Intensity)0.25.

  16. Uranyl complexes of n-alkanediaminotetra-acetic acids

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 deg in 0.10M and 1.00M KNO3. The influence of the length of the alkane chain of the ligands on the complexes formed is discussed. (author)

  17. Biosynthetic origin of acetic acid using SNIF-NMR

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2H and 1H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid. (author)

  18. Characterization of the Aldehydes and Their Transformations Induced by UV Irradiation and Air Exposure of White Guanxi Honey Pummelo (Citrus Grandis (L.) Osbeck) Essential Oil.

    Li, Li Jun; Hong, Peng; Chen, Feng; Sun, Hao; Yang, Yuan Fan; Yu, Xiang; Huang, Gao Ling; Wu, Li Ming; Ni, Hui

    2016-06-22

    Aldehydes are key aroma contributors of citrus essential oils. White Guanxi honey pummelo essential oil (WPEO) was investigated in its aldehyde constituents and their transformations induced by UV irradiation and air exposure by GC-MS, GC-O, and sensory evaluation. Nine aldehydes, i.e., octanal, nonanal, citronellal, decanal, trans-citral, cis-citral, perilla aldehyde, dodecanal, and dodecenal, were detected in WPEO. After treatment, the content of citronellal increased, but the concentrations of other aldehydes decreased. The aliphatic aldehydes were transformed to organic acids. Citral was transformed to neric acid, geranic acid, and cyclocitral. Aldehyde transformation caused a remarkable decrease in the minty, herbaceous, and lemon notes of WPEO. In fresh WPEO, β-myrcene, d-limonene, octanal, decanal, cis-citral, trans-citral, and dodecenal had the highest odor dilution folds. After the treatment, the dilution folds of decanal, cis-citral, trans-citral, and dodecenal decreased dramatically. This result provides information for the production and storage of aldehyde-containing products. PMID:27226192

  19. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization.

    Lin, Yi-Liang; Wang, Po-Yen; Hsieh, Ling-Ling; Ku, Kuan-Hsuan; Yeh, Yun-Tai; Wu, Chien-Hou

    2009-09-01

    A simple and sensitive method is described for the determination of picomolar amounts of C(1)-C(9) linear aliphatic aldehydes in waters containing heavy metal ions. In this method, aldehydes were first derivatized with 2,4-dinitrophenylhydrazine (DNPH) at optimized pH 1.8 for 30 min and analyzed by HPLC with UV detector at 365 nm. Factors affecting the derivatization reaction of aldehydes and DNPH were investigated. Cupric ion, an example of heavy metals, is a common oxidative reagent, which may oxidize DNPH and greatly interfere with the determination of aldehydes. EDTA was used to effectively mask the interferences by heavy metal ions. The method detection limits for direct injection of derivatized most aldehydes except formaldehyde were of the order of 7-28 nM. The detection limit can be further lowered by using off-line C(18) adsorption cartridge enrichment. The recoveries of C(1)-C(9) aldehydes were 93-115% with a relative standard deviation of 3.6-8.1% at the 0.1 microM level for aldehydes. The HPLC-DNPH method has been applied for determining aldehyde photoproducts from Cu(II)-amino acid complex systems. PMID:19643424

  20. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations.

    Luli, G W; Strohl, W R

    1990-04-01

    The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH. PMID:2187400

  1. KINETIC STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A NOVEL COPOLYMER- BOUND CIS- DICARBONYLRHODIUM COMPLEX

    CHEN Yuying; YUAN Guoqing; CHEN Rongyao

    1989-01-01

    The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh)coordinated with the ethylene diacrylate (M')crosslinked copolymer of methyl acrylate (M) and 2 - vinylpyridine (V) shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex . Polar solvents can accelerate the reaction .Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system . A mechanism similar to that of soluble rhodium catalyst was proposed .

  2. Measurement and modelization of VLE of binary mixtures of propyl acetate, butyl acetate or isobutyl acetate with methanol at pressure of 0.6 MPa

    P Susial; D Garca; R Susial; YC Clavijo; A Martn

    2016-01-01

    The vapor–liquid equilibrium of binary mixtures of propyl acetate, butyl acetate and isobutyl acetate with meth-anol has been determined at a constant pressure of 0.6 MPa. Results have been modeled with the Peng–Robinson equation, a traditional cubic equation of state widely employed in chemical industries, as well as with the perturbed-chain statistical associating fluid PC-SAFT theory of Gross–Sadowski. By correlation of the binary inter-action parameters of these equations, the measured vapor–liquid equilibrium data can be accurately predicted. Thus, this work shows that these models are able to represent the experimental data for systems with associating compounds via hydrogen bonding.

  3. Catalytic Esterification of Methyl Alcohol with Acetic Acid

    2001-01-01

    Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ.mo1-1 for the formation of methyl acetate. The methyl acetate production was carried out aa batch and continuous in a packed bed restive distillation column with high purity methyl acetate produced.

  4. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  5. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  6. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  7. Ototoxicity of acetic acid on the guinea pig cochlea

    Yamano, Takafumi; Higuchi, Hitomi; Nakagawa, Takashi; Morizono, Tetsuo

    2015-01-01

    Background To evaluate the ototoxicity of acetic acid solutions. Methods Compound action potentials (CAPs) of the eighth nerve were measured in guinea pigs before and after the application of acetic acid in the middle ear cavity. The pH values of the acetic acid solutions were pH 3.0, 4.0, and 5.0, and the application times were 30 min, 24 h, and 1 week. Results Acetic acid solution (pH 3.0, N = 3) for 30 min caused no significant elevation in CAP threshold at 4 kHz, but a significant elevati...

  8. Acetoxychavicol Acetate, an Antifungal Component of Alpinia galanga1.

    Janssen, A M; Scheffer, J J

    1985-12-01

    The essential oils from fresh and dried rhizomes of ALPINIA GALANGA showed an antimicrobial activity against gram-positive bacteria, a yeast and some dermatophytes, using the agar overlay technique. The main components of the oils were also tested and terpinen-4-ol was found most active. An N-pentane/diethyl ether extract of dried rhizomes was active against TRICHOPHYTON MENTAGROPHYTES. 1'-Acetoxychavicol acetate, 1'-acetoxyeugenol acetate and 1'-hydroxychavicol acetate identified by MS and NMR were found in the antifungally active fractions obtained by LSC. Acetoxychavicol acetate was active against the seven fungi tested and its MIC value for dermatophytes ranged from 50 to 250 microg/ml. Dried sliced rhizomes contained 1.5% of this compound. The compound was not found in rhizomes of ALPINIA OFFICINARUM, ZINGIBER OFFICINALE and KAEMPFERIA GALANGA. PMID:17345272

  9. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza

    Krause, Katrin; Henke, Catarina; Asiimwe, Theodore; Ulbricht, Andrea; Klemmer, Sandra; Schachtschabel, Doreen; Boland, Wilhelm

    2015-01-01

    Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morphogenesis and on ectomycorrhiza. Tricholoma vaccinum produces IAA from tryptophan via indole-3-pyruvate, with the last step of this biosynthetic pathway being catalyzed by an aldehyde dehydrogenase. The gene ald1 was found to be highly expressed in ectomycorrhiza and induced by indole-3-acetaldehyde. The export of IAA from fungal cells is supported by the multidrug and toxic extrusion (MATE) transporter Mte1 found in T. vaccinum. The addition of IAA and its precursors induced elongated cells and hyphal ramification of mycorrhizal fungi; in contrast, in saprobic fungi such as Schizophyllum commune, IAA did not induce morphogenetic changes. Mycorrhiza responded by increasing its Hartig net formation. The IAA of fungal origin acts as a diffusible signal, influencing root colonization and increasing Hartig net formation in ectomycorrhiza. PMID:26231639

  10. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza.

    Krause, Katrin; Henke, Catarina; Asiimwe, Theodore; Ulbricht, Andrea; Klemmer, Sandra; Schachtschabel, Doreen; Boland, Wilhelm; Kothe, Erika

    2015-10-01

    Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morphogenesis and on ectomycorrhiza. Tricholoma vaccinum produces IAA from tryptophan via indole-3-pyruvate, with the last step of this biosynthetic pathway being catalyzed by an aldehyde dehydrogenase. The gene ald1 was found to be highly expressed in ectomycorrhiza and induced by indole-3-acetaldehyde. The export of IAA from fungal cells is supported by the multidrug and toxic extrusion (MATE) transporter Mte1 found in T. vaccinum. The addition of IAA and its precursors induced elongated cells and hyphal ramification of mycorrhizal fungi; in contrast, in saprobic fungi such as Schizophyllum commune, IAA did not induce morphogenetic changes. Mycorrhiza responded by increasing its Hartig net formation. The IAA of fungal origin acts as a diffusible signal, influencing root colonization and increasing Hartig net formation in ectomycorrhiza. PMID:26231639

  11. Functionalization of cellulose acetate fibers with engineered cutinases

    Matamá, Maria Teresa; Araújo, Rita; Gübitz, Georg M.; Casal, Margarida; Paulo, Artur Cavaco

    2009-01-01

    In the present work, we describe for the first time the specific role of cutinase on surface modification of cellulose acetate fibers. Cutinase exhibits acetyl esterase activity on diacetate and triacetate of 0.010 U and 0.007 U, respectively. An increase on the hydroxyl groups at the fiber surface of 25% for diacetate and 317% for triacetate, after a 24 h treatment, is estimated by an indirect assay. Aiming at further improvement of cutinase affinity toward cellulose acetate, chimeric cutina...

  12. Protection of historical lead against acetic acid vapour

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  13. Microorganisms having enhanced resistance to acetate and methods of use

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.

  14. New reactions of cyclic oxygen, nitrogen and sulfur acetal derivatives

    Mann, S. E.

    2011-01-01

    This thesis describes the development of new reactions of cyclic oxygen, nitrogen and sulfur acetal derivatives and their applications in a diverse range of synthetic organic and organometallic chemistry. Detailed herein are advances in three main areas of acetal chemistry, namely: studies towards a new methodology for the synthesis of medium ring heterocycles; the use of thioacetals as directing groups for the palladium-mediated oxidation of olefins; and multi-component reactions for the syn...

  15. Biogas production through the syntrophic acetate-oxidising pathway

    Westerholm, Maria

    2012-01-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-st...

  16. Hydroxypropyl Methylcellulose Acetate Succinate: Potential Drug–Excipient Incompatibility

    Dong, Zedong; Choi, Duk Soon

    2008-01-01

    The stability of hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and its potential incompatibility with active pharmaceutical ingredients (API) carrying hydroxyl group(s) were investigated in this research. HPMC-AS may undergo hydrolysis under harsh processing conditions with the generation of succinic acid and acetic acid, which can form ester bond(s) with the hydroxyl group(s) in API. In this case, the hot-melt extrusion (HME) product prepared from HPMC-AS and our model compound (...

  17. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  18. QSTR with extended topochemical atom (ETA) indices. 14. QSAR modeling of toxicity of aromatic aldehydes to Tetrahymena pyriformis

    Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)

    2010-11-15

    Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.

  19. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD+-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  20. Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Ionic liquids (ILs) have been applied as recyclable reaction media in the decarbonylation of aldehydes in the presence of a rhodium-phosphine complex catalyst. The performance of several new catalytic systems based on imidazolium-based ILs and [Rh(dppp)2]Cl (dppp: 1,3-diphenylphosphinopropane) we...... biphasic system with the product allowing recovery and reuse of the employed catalyst....

  1. Fish larval deformity caused by aldehydes and unknown byproducts in ozonated effluents from municipal wastewater treatment systems.

    Yan, Zhiming; Zhang, Yu; Yuan, Hongying; Tian, Zhe; Yang, Min

    2014-12-01

    Ozonated secondary effluents (SEs) from municipal wastewater treatment plants (MWTPs) have been found to cause developmental retardation of fish embryos. This study explored the potential cause of the embryo toxicity formed in ozonated SEs by exposing Japanese medaka (Oryzias latipes) (d-rR) embryos to ozonated SE from a MWTP in Tianjin, China. The increase of ozone dose from 0.26 to 0.96 mg O3/mg DOC0 (consumed ozone per initial DOC), which produced total aldehyde (mixture of formaldehyde, acetaldehyde, propionaldehyde, and glyoxal) from 41.5 to 114.7 μg/L, resulted in an increase in the percentage of deformed larvae from 2.2% to 24.1%. Increases in larval deformity and embryo mortality were also observed in ozonated SEs from other MWTPs. The exposure experiment using the mixture aldehyde solution showed that the production of aldehydes could explain approximately 13.6% of larval deformity caused by ozonation of SEs. Pilot experimental results in Tianjin and Beijing, China showed that biofiltration as a post-treatment technology was effective in removing the aldehydes as well as reducing embryo toxicity caused by ozonation. PMID:25243655

  2. Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride under ambient conditions

    2007-01-01

    Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has been proved to be an excellent catalyst for the system in the presence of molecular oxygen and isobutryaldehyde at room temperature.

  3. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  4. InCl3.4H2O Catalyzed Aldol Condensation of Cycloalkanones with Aromatic Aldehydes

    2001-01-01

    InCl3·4H2O catalyzes the cross-aldol condensation of cycloalkanones with aromatic aldehydes in sealed tube under solvent free condition to afford an efficient method for the synthesis of α, α-bis(substituted)benzylidenecycloalkanones.

  5. Targeted LC-MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Eggink, M.; Wijtmans, M.; Kretschmer, A.; Kool, J.; Lingeman, H.; Esch, de I.J.P.; Niessen, W.M.A.; Irth, H.

    2010-01-01

    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatiza

  6. Lewis base activation of Lewis acids. Catalytic enantioselective addition of silyl enol ethers of achiral methyl ketones to aldehydes.

    Denmark, Scott E; Heemstra, John R

    2003-06-26

    A highly enantioselective addition of silyl enol ethers derived from simple methyl ketones is described. The catalyst system of silicon tetrachloride activated by a chiral bisphosphoramide (R,R)-7 effectively promotes the addition of a variety of unsubstituted silyl enol ethers to aromatic, olefinic, and heteroaromatic aldehydes in excellent yield. [reaction: see text] PMID:12816434

  7. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  8. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  9. Dicyano-Functionalized MCM-41-Supported Palladium Complex as An Efficient Catalyst for Allylation of Aldehydes and Ketones

    ZHAO Hong; CAI Ming-Zhong

    2006-01-01

    Dicyano-functionalized MCM-41-supported palladium complex was prepared from dicyano-functionalized MCM-41 and palladium chloride. This complex exhibited high catalytic activity in the allylation of aldehydes and ketones with allylic chlorides in the presence of SnCl2. This polymeric palladium complex can be recovered and reused without noticeable loss of activity.

  10. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.The oxidation of 1-alkyl(aryl)-3-aminocarbonylpyridi

  11. Enantioselective addition of diethylzinc to aryl aldehydes catalyzed by 1,2,3,4-tetrahydroisoquinoline β-amino alcohol

    2010-01-01

    A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.

  12. Hydrogenation of aromatic ketones, aldehydes, and epoxides with hydrogen and Pd(0)EnCat™ 30NP

    Perni Remedios H; Pears David; Stewart-Liddon Angus JP; Ley Steven V; Treacher Kevin

    2006-01-01

    Abstract Aromatic aldehydes and ketones as well as aromatic epoxides are selectively reduced to the corresponding alcohols under mild conditions using conventional hydrogen in the presence of Pd(0)EnCat™ 30NP catalyst. The reactions were performed at room temperature during 16 hours with high to excellent conversions of the corresponding products.

  13. Fluoride-promoted rearrangement of organo silicon compounds : A new synthesis of 2-(arylmethyl)aldehydes from 1-alkynes

    Aronica, LA; Raffa, P; Caporusso, AM; Salvadori, P

    2003-01-01

    A new approach to 2-(arylmethyl)aldehydes 4 based upon a 1,2-anionotropic rearrangement of an aryl group is presented. The synthetic sequence begins with a silylformylation reaction of terminal acetylenes 5 with aryl and heteroaryl silanes 6, followed by treatment of the products (Z)-1 with TBAF. Th

  14. Synthesis of Aldehyde-Linked Nucleotides and DNA and Their Bioconjugations with Lysine and Peptides through Reductive Amination

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-01-01

    Roč. 18, č. 13 (2012), s. 4080-4087. ISSN 0947-6539 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleotides * aldehydes * DNA * reductive amination * bioconjugations Subject RIV: CC - Organic Chemistry Impact factor: 5.831, year: 2012

  15. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels. PMID:24027980

  16. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-08-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH/sub 4/CN, CH/sub 3/CN, and C/sub 2/H/sub 4/CN, that had received multikilogray doses of /sup 60/Co ..gamma.. radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond.

  17. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes.

    Elangovan, Saravanakumar; Topf, Christoph; Fischer, Steffen; Jiao, Haijun; Spannenberg, Anke; Baumann, Wolfgang; Ludwig, Ralf; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced. PMID:27219853

  18. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes

    Visalakshi Ravindran; V S Muralidharan

    2006-06-01

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical characterization of zinc-nickel electrodeposits obtained from sulphamate bath containing substituted aldehydes was carried out using hardness testing, X-ray diffraction, and corrosion resistance measurements. The corrosion behaviour of these samples in a 3.5% NaCl solution was examined. The decrease in corr and high charge transfer resistance indicated the improved corrosion resistance of these deposits.

  19. Biological Evaluation and 3D-QSAR Studies of Curcumin Analogues as Aldehyde Dehydrogenase 1 Inhibitors

    Hui Wang

    2014-05-01

    Full Text Available Aldehyde dehydrogenase 1 (ALDH1 is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship of curcumin analogues (CAs against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.

  20. Water dispersible microbicidal cellulose acetate phthalate film

    Li Yun-Yao

    2003-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1, herpesviruses (HSV and other sexually transmitted disease (STD pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS. The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. Methods CAP and hydroxypropyl cellulose (HPC were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. Results The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable, and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH. The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. Conclusions Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into

  1. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  2. Fixing of metallic acetates on an anion-exchange resin

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc3- complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author)

  3. Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature

    Black, William J.; Stagos, Dimitrios; Marchitti, Satori A.; Nebert, Daniel W.; Tipton, Keith F.; Bairoch, Amos; Vasiliou, Vasilis

    2011-01-01

    OBJECTIVE The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily. PMID:19823103

  4. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  5. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  6. Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms.

    Foti, Alessandro; Hartmann, Tobias; Coelho, Catarina; Santos-Silva, Teresa; Romão, Maria João; Leimkühler, Silke

    2016-08-01

    Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme's role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies. PMID:26842593

  7. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Highlights: ► Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. ► PCA inhibits proliferation and migration in PDGF-induced VSMCs. ► PCA has anti-platelet effects in ex vivo rat whole blood. ► We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2′-deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 μM). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA’s antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  8. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  9. Rhodium(III)-catalyzed C-C coupling of 7-azaindoles with vinyl acetates and allyl acetates.

    Li, Shuai-Shuai; Wang, Cheng-Qi; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2016-01-01

    The behaviour of electron-rich alkenes with 7-azaindoles in rhodium(III)-catalyzed C-H activation is investigated. Various substituted vinyl acetates and allyl acetates as coupling partners reacted smoothly providing a wide variety of 7-azaindole derivatives, and the selectivity of the coupling reaction is alkene-dependent. In addition, the approaches of rhodium(III)-catalyzed dehydrogenative Heck-type reaction (DHR) and carbonylation reaction were quite novel and simple. PMID:26553424

  10. Pulmonary and percutaneous absorption of 2-propoxyethyl acetate and 2-ethoxyethyl acetate in beagle dogs

    A comparison was made of the absorption and elimination rates of 2-propoxyethyl acetate (PEA) and 2-ethoxyethyl acetate (EEA) following inhalation, dermal application of IV administration. Male beagle dogs were exposed to 50 ppm PEA or EEA for 5 hr, and breath samples were collected during the exposure and a 3-hr recovery period. Both compounds were rapidly absorbed through the lungs. After 10 min of exposure, the concentrations of the parent compounds in the expired breath were 5 to 10 ppm (80-90% absorption) and reached plateau values at about 3 hr of 13 ppm for PEA (74% absorption) and 16 ppm for EEA (68% absorption). Post-exposure breath samples declined exponentially to 0.5 ppm and 2 ppm after 3 hr for PEA and EEA, respectively. Expired concentrations of PEA were slightly, but significantly (p 14C]PEA, the urine contained 61% and 88% of the dose in 4 and 24 hr, respectively. [14C]EEA was eliminated more slowly, with 20% and 61% of the dose appearing in the urine in 4 and 24 hr, respectively. Blood elimination half-lives were 1.6 hr for [14C]PEA and 7.9 hr for [14C]EEA. Only trace amounts of 14CO2 (14C]PEA or [14C]EEA was added to undiluted compounds and applied in a glass cell to a shaved area on a dog's thorax for 30 or 60 min. Blood and expired air were collected for 8 hr and urine for 24 hr. The pattern of urinary elimination for each compound was similar to that seen after IV dosing with [14C]PEA being excreted more rapidly than [14C]EEA. 15 references, 4 figures, 4 tables

  11. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol−1 energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol−1) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol−1). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm−1, where the first OH stretching overtone vibrations of 1ccc and 2pcc

  12. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  13. Reaction of the oximes of aliphatic aldehydes and ketones with alkoxyethenes

    In the reaction of acetone oxime with alkyl vinyl ethers in the presence of zinc chloride variable amounts of acetone 0,0'-(2-propylidene)dioxime, acetaldehyde dialkyl acetal, acetaldehyde 0-(1-alkoxyethyl)oxide, and acetone 0-(1-alkoxy-1-methylethyl)oxime, depending on the reaction conditions, are formed in addition to acetone 0-(1-alkoxyethyl)oxime (the initial addition product). In the reaction of acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde dialkyl acetal was isolated in addition to acetaldehyde 0-(1-alkoxyethyl)oxime. A mechanism for the formation of the obtained compounds is proposed

  14. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    It is well known that over 0.8 kg kg−1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg−1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L−1 and 0.52 mol L−1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L−1 to 3.33 mol L−1. It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L−1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg-1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  15. Continuous production of palm biofuel under supercritical ethyl acetate

    Highlights: • Continuous synthesized biofuel from palm oil in supercritical ethyl acetate was examined. • Mass flow rate of palm oil and ethyl acetate mixture influent to biofuel production in continuous system. • Water addition to reacting mixture improves the production of fatty acid ethyl esters and triacetin. • The generated acetic acid from ETA hydrolysis can protect the products from thermal decomposition. - Abstract: The interesterification of palm oil in supercritical ethyl acetate (ETA) to produce fatty acid ethyl ester (FAEEs) or biofuel was conducted in a continuous tubular reactor. The density of the mixtures in the system was estimated using the Peng–Robinson equation of state process simulator, and the residence time was calculated. The effects of the reaction conditions, including the molar ratios of palm oil to ethyl acetate, the temperature, and the pressure, were investigated under various mass flow rates of the mixtures and optimized. The results showed that reaction temperatures above 653 K and long residence times affected the content of FAEEs and triacetin, a valuable by-product. The addition of water to the mixture in a 1:30:10 M ratio of palm oil to ethyl acetate to water at 653 K, 16 MPa, and a mixture mass flow rate of 1.5 g/min increased the total production of FAEEs and triacetin from 90.9 to 101.5 wt% in 42.4 min. The main finding of the present study is that triglyceride associated with ETA hydrolysis used to form acetic acid protected the products from decomposition at high temperatures and long residence times. The results will aid the selection of an efficient and economical process for alternative biofuel production from palm oil in supercritical ETA

  16. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  17. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. PMID:26376451

  18. Leuprorelin Acetate in Prostate Cancer: a European Update

    Persad R

    2002-01-01

    Full Text Available This review provides an update on leuprorelin acetate, the world's most widely prescribed depot luteinising hormone-releasing hormone analogue. Leuprorelin acetate has been in clinical use in the palliative treatment of prostate cancer for more than 20 years, but advances continue to be made in terms of convenience and flexibility of administration, and in the incorporation of leuprorelin acetate into novel treatment regimens. The drug is administered in the form of a depot injection containing leuprorelin acetate microspheres, and is at least as effective in suppressing testosterone secretion as orchiectomy. In patients with prostate cancer, serum testosterone levels are reduced to castrate levels (= 50 ng/dl within 2-3 weeks of the first one-month depot injection of 3.75 mg or three-month depot injection of 11.25 mg. Both the one-month and three-month formulations are effective in delaying tumour progression and alleviating symptoms of locally advanced and metastatic prostate cancer. Tolerability is generally good, with side-effects reflecting effective testosterone suppression. Recent studies have investigated the place of leuprorelin acetate as part of continuous or intermittent maximal androgen blockade (MAB and in neoadjuvant therapy (ie, to reduce the size of the prostate and downsize the tumour before radiotherapy. Additional formulations and presentations are in development, including a six-month injection, with the aim of adding to the clinical flexibility and patient acceptability of this important palliative treatment for prostate cancer.

  19. Adiabatic calorimetry (RSST and VSP) tests with sodium acetate

    Kirch, N.W.

    1993-09-01

    As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.

  20. Eslicarbazepine acetate: an update on efficacy and safety in epilepsy.

    Verrotti, Alberto; Loiacono, Giulia; Rossi, Alessandra; Zaccara, Gaetano

    2014-01-01

    Epilepsy is a common neurological disorder. Despite a broad range of commonly used antiepileptic drugs, approximately 30% of patients with epilepsy have drug resistance or encounter significant adverse effects. Eslicarbazepine acetate is a new central nervous system-active compound with anticonvulsant activity whose mechanism of action is by blocking the voltage-gated sodium channel. Eslicarbazepine acetate was approved by the European Medicines Agency and launched onto the European market in 2009 for adjunctive treatment in adult subjects of partial-onset seizures, with or without secondary generalization. This article provides an overview on the recent studies on eslicarbazepine acetate in the treatment of drug-resistant partial epilepsy. Efficacy and safety of this drug for partial-onset seizures were assessed in four randomized clinical trials with responder rates ranged between 17% and 43%. Adverse events were usually mild to moderate in intensity and the most common were dizziness, somnolence, nausea, diplopia, headache, vomiting, abnormal coordination, blurred vision, vertigo and fatigue. Eslicarbazepine acetate is not recommended below 18 years, but a published phase II trial had the main goal to evaluate the pharmacokinetics, efficacy and safety of this drug in pediatric population. Eslicarbazepine acetate appears to be a safe and effective drug with a linear pharmacokinetics, very low potential for drug-drug interactions and therefore it can offer a valid alternative to current antiepileptic drugs. Additionally, it is undergoing investigation for monotherapy in subjects with partial epilepsy, and other neurological and psychiatric disorders. PMID:24225327

  1. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  2. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

    Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to

  3. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biofiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly

  4. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  5. Cellulose acetate as solid phase in ELISA for plague

    Barbosa AD

    2000-01-01

    Full Text Available Antigen from Yersinia pestis was adsorbed on cellulose acetate discs (0.5 cm of diameter which were obtained from dialysis membrane by using a paper punch. ELISA for human plague diagnosis was carried out employing this matrix and was capable to detect amount of 1.3 µg of antigen, 3,200 times diluted positive serum using human anti-IgG conjugate diluted 1:4,000. No relevant antigen lixiviation from the cellulose acetate was observed even after washing the discs 15 times. The discs were impregnated by the coloured products from the ELISA development allowing its use in dot-ELISA. Furthermore, cellulose acetate showed a better performance than the conventional PVC plates.

  6. Crystal structure of febuxostat–acetic acid (1/1

    Min Wu

    2015-05-01

    Full Text Available The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-isobutyloxyphenyl-4-methylthiazole-5-carboxylic acid–acetic acid (1/1], C16H16N2O3S·CH3COOH, contains a febuxostat molecule and an acetic acid molecule. In the febuxostat molecule, the thiazole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2°]. In the crystal, the febuxostat and acetic acid molecules are linked by O—H...O, O—H...N hydrogen bonds and weak C—H...O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction. π–π stacking is observed between nearly parallel thiazole and benzene rings of adjacent molecules; the centroid-to-centroid distances are 3.8064 (17 and 3.9296 (17 Å.

  7. Enhanced alignment of Mn 12-acetate micro-crystals

    Seo, D.; Teizer, W.; Zhao, H.; Dunbar, K. R.

    2007-05-01

    A dilute Mn 12-acetate suspension composed of microscopic single crystals and single molecules in isopropanol was used for magnetic studies of Mn 12-acetate single molecule magnets. We observed magnetic properties of the frozen Mn 12-acetate suspension similar to large single crystals, specifically several sharp steps in the low-temperature hysteresis loop, indicating significantly enhanced alignment as compared to prior studies of micro-crystals. The greater the external magnetic field during alignment, the sharper the steps were in the low-temperature hysteresis loops, indicating that this method can be used for continuous control of alignment. A magnetic field of ˜0.5 T was sufficient to align the micro-crystals in the organic solvent to a degree previously observed only in much larger single crystals.

  8. [Conversion of acetic acid to methane by thermophiles

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  9. Syntrophic acetate oxidation in industrial CSTR biogas digesters.

    Sun, Li; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2014-02-10

    The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia. PMID:24333792

  10. Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production.

    Yang, Wenqiang; Catalanotti, Claudia; D'Adamo, Sarah; Wittkopp, Tyler M; Ingram-Smith, Cheryl J; Mackinder, Luke; Miller, Tarryn E; Heuberger, Adam L; Peers, Graham; Smith, Kerry S; Jonikas, Martin C; Grossman, Arthur R; Posewitz, Matthew C

    2014-11-01

    Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes. PMID:25381350

  11. High purity neodymium acetate from mixed rare earth carbonates

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A., E-mail: cqueiroz@ipen.b, E-mail: smrrocha@ipen.b, E-mail: mstela@ipen.b, E-mail: rmlobo@ipen.b, E-mail: jaseneda@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pedreira, Walter dos R., E-mail: walter.pedreira@fundacentro.gov.b [Fundacao Jorge Duprat Figueiredo de Seguranca e Medicina do Trabalho (FUNDACENTRO), Sao Paulo, SP (Brazil)

    2011-07-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd{sub 2}O{sub 3} in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in {mu}g g{sup -1}: Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  12. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.05 of the...... emulsifier concentration, but independent of the initiator concentration. The limiting viscosity number of the polymers produced was independent of the initiator concentration and number of polymer particles. It is suggested that the mechanism of vinyl acetate emulsion polymerization is similar to that of...

  13. Abiraterone Acetate and Castration Resistant Ductal Adenocarcinoma of the Prostate

    Edgar Linden-Castro

    2014-01-01

    Full Text Available Ductal adenocarcinoma of the prostate is a rare histological variant that only represents <1% of prostate tumors. This histological variant has several important clinical implications with respect to their evolution, clinical prognosis, and treatment. We report the case of a 64-year-old patient with ductal adenocarcinoma of the prostate, which progresses to castration-resistant prostate cancer, that was treated with abiraterone acetate with good clinical response, to our knowledge, the first case of ductal adenocarcinoma of the prostate in treatment with abiraterone acetate.

  14. Captive solvent [11C]acetate synthesis in GMP conditions

    Reliable procedure for the production of 1-[11C]acetate in GMP conditions was developed based on a combination of the captive-solvent Grignard reaction conducted in the sterile catheter followed by the convenient solid-phase extraction purification on a series of ion-exchange cartridges. The described procedure proved to be reliable in more than 30 patient productions. The process provides stable radiochemical yields (65% EOB) of sodium acetate (1-[11C]) of the Ph.Eur. quality (radiochemical purity better than 95%) in a short time (5 min)

  15. Migration of 2-butoxyethyl acetate from polycarbonate infant feeding bottles

    Petersen, Jens Højslev; Lund, K.H.

    2003-01-01

    An enforcement campaign was carried out to assess the migration of 2-butoxyethyl acetate (2-BEA) from polycarbonate infant feeding bottles intended for repeated use. Migration was measured by three successive migration tests into two of the European Union official food simulants: distilled water...... and 3% acetic acid testing at 40degrees C for 10 days. The Danish Veterinary and Food Administration (DVFA) has assessed that a migration above 0.33 mg for 2-BEA and a group of eight related substances kg(-1) foodstuff from plastics articles used exclusively for infants is unacceptable. Migration of 2...

  16. The preparation of multideuterated racemic alpha-tocopheryl acetate

    A new synthetic method was developed for the preparation of gram quantities of d,1-α-tocopheryl acetate labeled with deuterium to d6 and d11. Mannich reaction of phenol was followed by conversion to the corresponding acetate and bromide. Reduction with D2 afforded deuterated 2,4,6-trimethylphenol which provided the key intermediate (trimethyl hydroquinone) on oxidation. Subsequent reactions to the desired product were carried out following literature procedures. A second procedure using the less expensive LiAlD4 was also developed in which the ester was eventually converted to TMHQ-d6. 4 refs

  17. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  18. L-Proline catalyzed aldol reactions between acetone and aldehydes in supercritical fluids:An environmentally friendly reaction procedure

    2010-01-01

    The direct asymmetric aldol reaction between various aldehydes and acetone catalyzed by L-proline catalyst was successfully carried out in supercritical CO2 (scCO2) and 1,1,1,2-tetrafluoroethane (R-134a) fluids.The enantioselectivity of 84% ee to the targeted product was achieved under 20 MPa,40 °C,and 15 mol% of the catalyst in supercritical CO2 (scCO2) fluid.The effects of reaction parameters,such as temperature,pressure,catalyst loading and different substituted aldehydes on both enantioselectivity and aldol yield were discussed.The titled reaction was also performed in 1,1,1,2-tetrafluoroethane,and the obtained results were compared with those in scCO2.This new reaction procedure provides an environmental asymmetric aldol reaction system as compared with that in organic solvents.

  19. Study on Chemical Constituents of Ethyl Acetate Fraction of Euscaphis japonica%鸡眼睛乙酸乙酯部位化学成分研究

    周雯; 刘智; 王海军; 李勇军; 王爱民; 许祖超; 廖尚高

    2013-01-01

    Objective; To investigate the chemical constituents of the ethyl acetate fraction of ethanol extract of Euscaphis japonica. Method; Various preparative chromatographic techniques were used for the isolation and purification of the compounds and their structures were determined by comparison of their chromatographic and spectral data with those of the authentic samples and those reported in the literature. Result; Seven compounds were obtained and identified as vanillin (1) , vanillic acid (2) , 5-hydroxymethylfurfural (3) , sinapic aldehyde (4), oleanolic acid (5), gallic acid (6), and protocatechuic acid (7). Conclusion; Compounds 2-7 were isolated from the genus Euscaphis for the first time.%目的:研究鸡眼睛乙醇提取物中等极性的乙酸乙酯萃取部位的化学成分,为民族药鸡眼睛的开发应用提供科学依据.方法:通过各种色谱分离技术对鸡眼睛乙醇提取物乙酸乙酯萃取部位进行分离纯化,根据化合物的理化性质和波谱数据鉴定其结构.结果:从鸡眼睛乙醇提取物乙酸乙酯萃取部位分离得到7个化合物,分别鉴定为:香草醛(vanillin,1),香草酸(vanillic acid,2),5-羟甲基糠醛(5-hydroxymethylfurfural,3),芥子醛(sinapic aldehyde,4),齐墩果酸(oleanolic acid,5),没食子酸(gallic acid,6),原儿茶酸(protocatechuic acid,7).结论:其中化合物2~7为首次从该属植物中分离得到.

  20. Product ion distributions for the reactions of NO+ with some physiologically significant aldehydes obtained using a SRI-TOF-MS instrument

    Mochalski, P.; Unterkofler, K.; Španěl, Patrik; Smith, D.; Amann, A.

    2014-01-01

    Roč. 363, APR 2014 (2014), s. 23-31. ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : aldehydes * SRI-TOF-MS * NO+ reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.972, year: 2014

  1. Aldehydes react with scribed silicon to form alkyl monolayers Characterization by ToF-SIMS suggests an even-odd effect

    Alkyl monolayers are formed when silicon is chemomechanically scribed in the presence of aldehydes (from butanal to nonanal). X-ray photoelectron spectroscopy (XPS), wetting, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) suggest increasingly thick and hydrophobic monolayers with increasing aldehyde chain length. Superimposed on the general trend of stronger ToF-SIMS signals for hydrocarbon fragments from longer aldehyde precursors is an even-odd effect. This effect is most pronounced for smaller (one- and two-carbon) hydrocarbon fragments and for monolayers prepared with shorter aldehyde precursors. This is the first time than an even-odd effect has been demonstrated for monolayers on scribed silicon

  2. Metalated N-heterocyclic reagents prepared by the frustrated Lewis pair TMPMgCl center dot BF3 and their addition to aromatic aldehydes and activated ketones

    Manolikakes, Sophia M.; Jaric, Milica; Karaghiosoff, Konstantin; Knochel, Paul

    2013-01-01

    Treatment of pyridines, quinoline and methylthiopyrazine with the frustrated Lewis pair TMPMgCl center dot BF3 (1) leads to organotrifluoro borates which react readily with a variety of aromatic aldehydes in the absence of a transition metal catalyst.

  3. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio.

    Zhang, Bo; He, Fei; Zhou, Pan-Pan; Liu, Yue; Duan, Chang-Qing

    2016-05-15

    Copigmentation was investigated in model solutions between the anthocyanin malvidin-3-O-glucoside and three phenolic aldehydes (vanillic, syringic and coniferyl aldehydes) as a function of the pH and the pigment/copigment molar ratio. Tristimulus colorimetry was applied to evaluate the chromatic variations induced by copigmentation process. The results indicated that the greatest magnitude of copigmentation was obtained at pH 3.0 and molar ratio of 1:100, being significantly higher with coniferyl aldehyde, followed by syringic and vanillic aldehydes. The equilibrium constant (K) and Gibbs free energies (ΔG°) determined here show a spontaneous exothermic reaction. Theoretical calculations (ΔGbinding, ΔE) specified the relative arrangement of the pigment and copigment molecules within the complexes. In addition, an atoms in molecules (AIM) analysis was used to explore the main driving forces contributing to the formation of copigmentation complexes. PMID:26775964

  4. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    Li, Shi-Yan; Gilbert, Sara A. B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  5. Reactivity of TEMPO anion as a nucleophile and its applications for selective transformations of haloalkanes or acyl halides to aldehydes

    Inokuchi, Tsutomu; Kawafuchi, Hiroyuki

    2004-01-01

    Sodium 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO−Na+), generated by reduction of TEMPO· with sodium naphthalenide in THF, reacted with alkyl halides or acyl halides to produce O-alkylated or acylated TEMPOs, which were in turn oxidized with mCPBA or reduced with DIBAL-H to afford the corresponding aldehydes, thus accomplishing a new protocol for the halides-carbonyls conversion.

  6. Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use–dependent inhibitor of dopamine synthesis

    Yao, Lina; Fan, Peidong; Arolfo, Maria; Jiang, Zhang; Olive, M. Foster; Zablocki, Jeff; Sun, Hai-Ling; Chu, Nancy; Lee, Jeongrim; Kim, Hee-Yong; Leung, Kwan; Shryock, John; Blackburn, Brent; Diamond, Ivan

    2010-01-01

    There is no effective treatment for cocaine addiction despite extensive knowledge of the neurobiology of drug addiction1–4. Here we show that a selective aldehyde dehydrogenase-2 (ALDH-2) inhibitor, ALDH2i, suppresses cocaine self-administration in rats and prevents cocaine- or cue-induced reinstatement in a rat model of cocaine relapse-like behavior. We also identify a molecular mechanism by which ALDH-2 inhibition reduces cocaine-seeking behavior: increases in tetrahydropapaveroline (THP) f...

  7. Formation of 4-hydroxynonenal and further aldehydic mediators of inflammation during bromotrichlorornethane treatment of rat liver cells

    Olaf Sommerburg; Tilman Grune; Sabine Klee; Ungemach, Fritz R.; Werner G. Siems

    1993-01-01

    Bromotrichloromethane (CBrCl3) treatment is a model for studies on molecular mechanisms of haloalkane toxicity with some advantages compared with CCl4 treatment. The formation of 4-hydroxynonenal and similar aldehydic products of lipid peroxidation, which play a role as mediators of inflammatory processes, was clearly demonstrated in rat hepatocytes treated with CBrCl3. It may be assumed that haloalkane toxicity is connected with the biological effects of those inflammation mediatory aldehydi...

  8. Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Eggink, M.; Wijtmans, M; Kretschmer, A.; Kool, J.; Lingeman, H.; Esch, van, H.; Niessen, W.M.A.; Irth, H.

    2010-01-01

    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add add...

  9. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  10. TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid [bmim][PF6].

    Ansari, Imtiaz A; Gree, Rene

    2002-05-01

    [reaction: see text]. A simple and mild TEMPO-CuCl catalyzed aerobic oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones in ionic liquid [bmim][PF6] with no trace of overoxidation to carboxylic acids has been developed. The product can be isolated by a simple extraction with organic solvent, and the ionic liquid can be recycled or reused. PMID:11975615

  11. Visible-Light-Mediated Synthesis of Amides from Aldehydes and Amines via in Situ Acid Chloride Formation.

    Iqbal, Naeem; Cho, Eun Jin

    2016-03-01

    An efficient visible-light photocatalysis-based one-pot amide synthesis method was developed; visible-light irradiation of a mixture of an aldehyde, tert-butyl hydrogen peroxide, and N-chlorosuccinimide using a Ru(bpy)3Cl2 photocatalyst afforded an acid chloride, which subsequently reacted with amine to yield the corresponding amide. The reaction was used to synthesize moclobemide and a D3 receptor intermediate. PMID:26836367

  12. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H2O2. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1kd cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1kd cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H2O2) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H2O2 among AOX1kd cells confirmed production of H2O2 in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H2O2

  13. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  14. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Peter J. Lavrentyev; Gayantonia Franzè; Pierson, James J.; Stoecker, Diane K.

    2015-01-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the...

  15. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  16. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy.

    Sarika, P R; Nirmala, Rachel James

    2016-08-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452±8nm with a zeta potential of -27mV. The nanogels possess an encapsulation efficiency of 65±3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. PMID:27157759

  17. Research on Odor Interaction between Aldehyde Compounds via a Partial Differential Equation (PDE Model

    LuchunYan

    2015-01-01

    Full Text Available In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.

  18. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice.

    Langevin, Frédéric; Crossan, Gerry P; Rosado, Ivan V; Arends, Mark J; Patel, Ketan J

    2011-07-01

    Reactive aldehydes are common carcinogens. They are also by-products of several metabolic pathways and, without enzymatic catabolism, may accumulate and cause DNA damage. Ethanol, which is metabolised to acetaldehyde, is both carcinogenic and teratogenic in humans. Here we find that the Fanconi anaemia DNA repair pathway counteracts acetaldehyde-induced genotoxicity in mice. Our results show that the acetaldehyde-catabolising enzyme Aldh2 is essential for the development of Fancd2(-/-) embryos. Nevertheless, acetaldehyde-catabolism-competent mothers (Aldh2(+/-)) can support the development of double-mutant (Aldh2(-/-)Fancd2(-/-)) mice. However, these embryos are unusually sensitive to ethanol exposure in utero, and ethanol consumption by postnatal double-deficient mice rapidly precipitates bone marrow failure. Lastly, Aldh2(-/-)Fancd2(-/-) mice spontaneously develop acute leukaemia. Acetaldehyde-mediated DNA damage may critically contribute to the genesis of fetal alcohol syndrome in fetuses, as well as to abnormal development, haematopoietic failure and cancer predisposition in Fanconi anaemia patients. PMID:21734703

  19. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  20. Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson's disease.

    Xin Zhao

    Full Text Available Protocatechuic aldehyde (PAL has been reported to bind to DJ-1, a key protein involved in Parkinson's disease (PD, and exerts potential neuroprotective effects via DJ-1 in SH-SY5Y cells. In this study, we investigated the neuroprotective pharmacological effects of PAL against neurotoxin-induced cell and animal models of PD. In cellular models of PD, PAL markedly increased cell viability rates, mitochondrial oxidation-reduction activity and mitochondrial membrane potential, and reduced intracellular ROS levels to prevent neurotoxicity in PC12 cells. In animal models of PD, PAL reduced the apomorphine injection, caused turning in 6-OHDA treated rats, and increased the motor coordination and stride decreases in MPTP treated mice. Meanwhile, in an MPTP mouse model, PAL prevented a decrease of the contents of dopamine (DA and its metabolites in the striatum and TH-positive dopaminergic neuron loss in the substantia nigra (SN. In addition, PAL increased the protein expression of DJ-1 and reduced the level of α-synuclein in the SN of MPTP lesioned mice. PAL also increased the spine density in hippocampal CA1 neurons. The current study demonstrates that PAL can efficiently protect dopaminergic neurons against neurotoxin injury in vitro and in vivo, and that the potential mechanisms may be related to its effects in increasing DJ-1, decreasing α-synuclein and its growth-promoting effect on spine density.

  1. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease

    Yu, Rwei-Ling; Tan, Chun-Hsiang; Lu, Ying-Che; Wu, Ruey-Meei

    2016-01-01

    Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson’s disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ2 = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe “disorganization” and “hyper-sexuality” behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD. PMID:27453488

  2. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  3. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    Stefano Varrella

    2014-04-01

    Full Text Available Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs, which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations, as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.

  4. Mechanism of the Stereoselective α-Alkylation of Aldehydes Driven by the Photochemical Activity of Enamines.

    Bahamonde, Ana; Melchiorre, Paolo

    2016-06-29

    Herein we describe our efforts to elucidate the key mechanistic aspects of the previously reported enantioselective photochemical α-alkylation of aldehydes with electron-poor organic halides. The chemistry exploits the potential of chiral enamines, key organocatalytic intermediates in thermal asymmetric processes, to directly participate in the photoexcitation of substrates either by forming a photoactive electron donor-acceptor complex or by directly reaching an electronically excited state upon light absorption. These photochemical mechanisms generate radicals from closed-shell precursors under mild conditions. At the same time, the ground-state chiral enamines provide effective stereochemical control over the enantioselective radical-trapping process. We use a combination of conventional photophysical investigations, nuclear magnetic resonance spectroscopy, and kinetic studies to gain a better understanding of the factors governing these enantioselective photochemical catalytic processes. Measurements of the quantum yield reveal that a radical chain mechanism is operative, while reaction-profile analysis and rate-order assessment indicate the trapping of the carbon-centered radical by the enamine, to form the carbon-carbon bond, as rate-determining. Our kinetic studies unveil the existence of a delicate interplay between the light-triggered initiation step and the radical chain propagation manifold, both mediated by the chiral enamines. PMID:27267587

  5. Spatially defined silver mirror reaction on a micropatterned aldehyde-terminated self-assembled monolayer

    A simple microfabrication technique for silver (Ag) based on spatially defined silver mirror reaction using a photolithographically micropatterned aldehyde (CHO)-terminated self-assembled monolayer (SAM) is proposed. First, both a Si substrate covered with native oxide and a quartz glass plate were exposed to a vapor of triethoxysilylundecanal (TESUD) diluted with absolute toluene for 3 h at 403 K. This vapor phase treatment produced a 1.2-nm-thick TESUD-SAM with a flat, homogeneous surface. Several samples were then photolithographically micropatterned using an excimer lamp radiating 172 nm vacuum ultraviolet light, and subsequently employed as templates for area-selective electroless Ag plating. Optical microscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) confirmed that Ag metal was preferentially deposited on the CHO-terminated regions, resulting in the formation of well-ordered Ag microstructures composed of rectangular 5 μm x 25 μm features. The CHO terminal groups of the TESUD-SAM were found to be effective in reducing Ag ionic species at the solid/liquid interface

  6. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.

    Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2016-01-01

    Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy. PMID:26660478

  7. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine

  8. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties

    Piyali Paul; Samaresh Bhattacharya

    2014-09-01

    Reaction of pyrrole-2-aldehyde thiosemicarbazone (abbreviated as H2L, where H2 stands for the two potentially dissociable protons) with [Pd(PPh3)2Cl2] in ethanol in the presence of NEt3 afforded two complexes, [Pd(PPh3)(HLNS)Cl] and [Pd(PPh3)(LNNS)], where the thiosemicarbazone ligand is coordinated to the metal centre respectively as monoanionic N,S-donor (depicted by HLNS) and dianionic N,N,S-donor (depicted by LNNS). Similar reaction with Na2[PdCl4] afforded a bis-complex, [Pd(HLNS)2]. Crystal structures of all the three complexes have been determined.With reference to the structure of the uncoordinated thiosemicarbazone (H2L), the N,S-coordinationmode observed in [Pd(PPh3)(HLNS)Cl] and [Pd(HLNS)2] is associated with a geometrical change around the imine bond.While the N,N,S-mode of binding observed in [Pd(PPh3)(LNNS)] takes place without any such geometrical change. All three complexes display intense absorptions in the visible and ultraviolet regions, which have been analyzed by TDDFT method.

  9. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  10. Fate and residues of trenbolone acetate in edible tissues from sheep amd calves implanted with tritium-labeled trenbolone acetate

    In order to study the fate and residues of trenbolone acetate in edible tissues, two groups of six animals from two ruminant species (ewes and calves) were implanted with [3H]trenbolone acetate. The distribution of extractable radioactive residues was measured in liver, kidney and muscle. We found that the largest proportion of residues was not extractable and thus was considered as covalently bound residues. The proportion of the main extractable metabolites (17 alpha-trenbolone, trendione, 17 beta-trenbolone) was measured. The evaluation of the distribution of trenbolone acetate metabolites directly soluble in water showed that unknown metabolite(s) were predominant. The covalent binding to nucleic acids was measured. It was so low that it was not detectable. The results are discussed in light of the data presented in the scientific report on anabolic agents in animal production from the European scientific working group

  11. Fate and residues of trenbolone acetate in edible tissues from sheep amd calves implanted with tritium-labeled trenbolone acetate

    Evrard, P.; Maghuin-Rogister, G.; Rico, A.G. (Univ. of Liege (Belgium))

    1989-06-01

    In order to study the fate and residues of trenbolone acetate in edible tissues, two groups of six animals from two ruminant species (ewes and calves) were implanted with (3H)trenbolone acetate. The distribution of extractable radioactive residues was measured in liver, kidney and muscle. We found that the largest proportion of residues was not extractable and thus was considered as covalently bound residues. The proportion of the main extractable metabolites (17 alpha-trenbolone, trendione, 17 beta-trenbolone) was measured. The evaluation of the distribution of trenbolone acetate metabolites directly soluble in water showed that unknown metabolite(s) were predominant. The covalent binding to nucleic acids was measured. It was so low that it was not detectable. The results are discussed in light of the data presented in the scientific report on anabolic agents in animal production from the European scientific working group.

  12. Selective inhibition of JAK2/STAT1 signaling and iNOS expression mediates the anti-inflammatory effects of coniferyl aldehyde.

    Akram, Muhammad; Kim, Kyeong-A; Kim, Eun-Sun; Shin, Young-Jun; Noh, Dabi; Kim, Eunji; Kim, Jeong-Hyeon; Majid, Arshad; Chang, Sun-Young; Kim, Jin-Ki; Bae, Ok-Nam

    2016-08-25

    Urgent needs still exist for selective control of excessive inflammation. Despite the therapeutic potential of natural compounds against inflammation-associated chronic conditions, lack of specific molecular targets renders these bioactive compounds difficult for further development. Here we examined the bioactivity of coniferyl aldehyde (CA), a natural phenolic compound found in several dietary substances and medicinal plants, elucidating its efficacy both in vivo and in vitro with underlying molecular mechanisms. IFN-γ/TNF-α-stimulated human keratinocytes and lipopolysaccharide (LPS)-stimulated murine macrophages were used to examine the effect of CA in vitro and to elucidate the underlying mechanisms. In vivo models of phorbol 12-myristate 13-acetate (TPA)-induced ear edema and carrageenan (CRG)-induced paw edema were employed to investigate the topical and systemic anti-inflammatory effects of CA, respectively. CA significantly reduced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages. While nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) pathways, the representative cellular pathways for iNOS induction, were not affected by CA, phosphorylation of Janus kinase 2 (JAK2) and signal Transducers and Activators of Transcription 1 (STAT1) and subsequent nuclear translocation of p-STAT1 were significantly decreased by CA. The effect of CA on JAK2-STAT1-iNOS axis was also observed in human keratinocytes stimulated with IFN-γ/TNF-α. Topical application of CA to mice produced significant protection against TPA-induced ear edema along with suppressed epidermal hyperproliferation and leucocyte infiltration. Systemic administration of CA significantly reduced CRG-induced paw edema in rats, where CRG-induced iNOS expression and STAT1 phosphorylation were decreased by CA. In summary, CA has significant anti-inflammatory properties both in vitro and in vivo, mediated by

  13. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein. PMID:26577640

  14. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum.

    Stefanie Wolfram

    Full Text Available Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.

  15. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibrob...

  16. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across

  17. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  18. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  19. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    Previous 18O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [18O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18O-labeled apple fruit tissue and measured the extent and position of 18O incorporation by tandem mass spectrometry. 18O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18O in the carbonyl of ABA-aldehyde can be the cause of loss of 18O from the side chain of [18O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABA → ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  20. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie;

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  1. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  2. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  3. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    Nhi Dinh Bui

    2016-01-01

    Full Text Available The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.% has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate groups possess the ability of biodegradation. The physical-mechanical properties of sample and molecular mass reduce after 28 days of incubation.

  4. Application of two analytic techniques of sampling for the determination of aldehydes in air and in rain water in three areas of Costa Rica

    The aldehydes are of supreme interest in the quality of the air of Costa Rica; reason why it is very important to determine them qualitative and quantitatively. This study has as objectives the identification and quantification of aldehydes in samples of air and of rain water in three areas of Costa Rica, to compare two methods of taking of samples of air and to correlate the concentration of the aldehydes in the different points of taking of samples. The sampling one carries out in three located stations, in the Hill of the Piroclasticos (3 km. To the Northeast of the active crater of the Volcano Irazu), Escazu (it plants potabilizadora of water) and in Turrucares (facilities of the Rural Watch). The used sampling devices, denuders and cartridges, they were recovered with a breakup of 2,4-dinitrofenilhidrazina o'clock like absorbent reagent, which I form the corresponding hidrazonas in presence of the aldehydes. The identification and quantification of the aldehydes, one carries out by means of chromatography it liquidates of high resolution. The comparison among the concentrations of the aldehydes in air gathered by the two used sampling methods indicates that a significant difference exists among them, at a level of trust of 95%

  5. Photocatalytic decomposition of cortisone acetate in aqueous solution

    Sobral Romao, Joana; Hamdy, Mohamed S.; Mul, Guido; Baltrusaitis, Jonas

    2015-01-01

    The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L−1 min−1 at 10 mg L−1 concentration, using the following he

  6. Preparation and properties of polyvinyl acetal sponge modified by chitosan

    2008-01-01

    The polyvinyl acetal sponge modified by chitosan was prepared by adding chitosan/polyvinyl alcohol (PVA) solution during the acetalation reaction of PVA and formaldehyde.The effect of vesicant and chitosan to the pore morphology,water absorption ratio,water absorption rate,expansion time and mechanical properties were studied.The polyvinyl acetal sponge modified by chitosan was used as a hemostatic packing material for the injured rabbit nasal tissue.The hemostatic effect and the healing effect of the modified sponge on the nasal mucosa after nasal surgery were studied.The results indicated that the polyvinyl acetal sponge modified by chitosan has an interconnected pore structure and the wall between large pores also has small pores.The chitosan adhered on the inner surface of the pores.The increased content of vesicant led to an increase in pore diameter,in the water absorption ratio and in expansion time.However,there was only a small change in the water absorption rate and a decrease in tensile strength and compression strength were noted.With an increase in chitosan content,the pore diameter and interconnection of the sponge was reduced.Water absorption ratio,expansion time and water absorption rate decreased,but tensile strength and compression strength improved.Observation of the rabbit nasal tissue after surgical operation suggested that polyvinyl acetal sponge modified by chitosan has an anti-inflammatory,hemostatic and antiadherent characteristic and could promote the healing and functional recovery of rabbit nasal mucosa.

  7. Intrinsic hydration of monopositive uranyl hydroxide, nitrate, and acetate cations.

    Chien, Winnie; Anbalagan, Victor; Zandler, Melvin; Van Stipdonk, Michael; Hanna, Dorothy; Gresham, Garold; Groenewold, Gary

    2004-06-01

    The intrinsic hydration of three monopositive uranyl-anion complexes (UO(2)A)(+) (where A = acetate, nitrate, or hydroxide) was investigated using ion-trap mass spectrometry (IT-MS). The relative rates for the formation of the monohydrates [(UO(2)A)(H(2)O)](+), with respect to the anion, followed the trend: Acetate > or = nitrate > hydroxide. This finding was rationalized in terms of the donation of electron density by the strongly basic OH(-) to the uranyl metal center, thereby reducing the Lewis acidity of U and its propensity to react with incoming nucleophiles, viz., H(2)O. An alternative explanation is that the more complex acetate and nitrate anions provide increased degrees of freedom that could accommodate excess energy from the hydration reaction. The monohydrates also reacted with water, forming dihydrates and then trihydrates. The rates for formation of the nitrate and acetate dihydrates [(UO(2)A)(H(2)O)(2)](+) were very similar to the rates for formation of the monohydrates; the presence of the first H(2)O ligand had no influence on the addition of the second. In contrast, formation of the [(UO(2)OH)(H(2)O)(2)](+) was nearly three times faster than the formation of the monohydrate. PMID:15144967

  8. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    Shiao, Y -S Jerry; Remijan, Anthony J; Snyder, Lewis E; Friedel, Douglas N

    2010-01-01

    Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\\times 10^{16}$ cm$^{-2}$ and the...

  9. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-Hefian

    2009-01-01

    The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1) having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC) were then obtained from the plots of contact angle or conductivity versus concentration.

  10. Acetate stimulates secretion in the rabbit mandibular gland

    Novak, I; Young, J A

    1989-01-01

    In isolated perfused rabbit mandibular glands undergoing stimulation with 0.8 microM acetylcholine, replacement of HCO3- with acetate (25 mM) increased fluid secretion by more than 100%. Other short-chain fatty acids, except for propionate, had a similar effect. We focused our further studies on...

  11. Eslicarbazepine acetate in the management of refractory bipolar disorder.

    Nath, Kamal; Bhattacharya, Arnab; Praharaj, Samir Kumar

    2012-01-01

    Eslicarbazepine acetate is a novel third-generation antiepileptic related to carbamazepine and oxcarbazepine with a benign adverse effect profile. We report a patient with bipolar mania with intolerance to multiple antimanic drugs, responding to eslicarbazepine without any serious adverse effect. PMID:23151469

  12. Demixing and gelation behavior of ternary cellulose acetate solutions

    Reuvers, A.J.; Altena, F.W.; Smolders, C.A.

    1986-01-01

    The demixing behavior on cooling of ternary systems of cellulose acetate/solvent/water has been examined for CA concentrations up to 40 wt% CA in several solvents. Cloud points have been measured as a function of cooling rate. The rapid process of liquid - liquid demixing can be discriminated from t

  13. Quantitative analysis and purity evaluation of medroxyprogesterone acetate by HPLC.

    Cavina, G; Valvo, L; Alimenti, R

    1985-01-01

    A reversed-phase high-performance liquid chromatographic method was developed for the assay of medroxyprogesterone acetate and for the detection and determination of related steroids present as impurities in the drug. The method was compared with the normal-phase technique of the USP XX and was also applied to the analysis of tablets and injectable suspensions. PMID:16867645

  14. Transformation of Schizosaccharomyces pombe: Lithium Acetate/ Dimethyl Sulfoxide Procedure.

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-04-01

    Transformation ofSchizosaccharomyces pombewith DNA requires the conditioning of cells to promote DNA uptake followed by cell growth under conditions that select and maintain the plasmid or integration event. The three main methodologies are electroporation, treatment with lithium cations, and transformation of protoplasts. The lithium acetate method described here is widely used because it is simple and reliable. PMID:27037075

  15. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    Mladenovska, Zuzana

    , utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...

  16. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  17. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  18. Glucose metabolism and effect of acetate in ovine adipocytes.

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  19. Eslicarbazepine Acetate Monotherapy: A Review in Partial-Onset Seizures.

    Shirley, Matt; Dhillon, Sohita

    2016-04-01

    Eslicarbazepine acetate (Aptiom(®)) is a once-daily, orally administered antiepileptic drug (AED) approved previously in the EU, USA and several other countries for use as adjunctive therapy for the treatment of partial-onset seizures. Based on the findings of two randomized, dose-blinded, conversion-to-monotherapy phase III trials in patients with uncontrolled partial epilepsy, the US license for eslicarbazepine acetate has recently been expanded to include use as monotherapy for partial-onset seizures. The pivotal trials demonstrated that seizure control following conversion from other AEDs was superior for eslicarbazepine acetate monotherapy (1200 or 1600 mg once daily) compared with a pseudo-placebo historical control. Other efficacy outcomes appeared to support the benefit of treatment, with up to 10 % of patients remaining seizure free and up to 46 % of patients experiencing a ≥50 % reduction from baseline in standardized seizure frequency during the monotherapy periods of the trials. Eslicarbazepine acetate monotherapy was generally well tolerated, with most treatment-emergent adverse events being mild to moderate in severity. Its tolerability profile was generally consistent with the established profile of the drug based on its use as adjunctive therapy. Thus, once-daily eslicarbazepine acetate, either as monotherapy or adjunctive therapy, represents a useful option for the treatment of patients with partial-onset seizures. The recent licensing of the drug in the USA as monotherapy expands the range of treatment options for patients with partial-onset seizures and increases the opportunity to tailor therapy to the individual patient. PMID:27055527

  20. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  1. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway

  2. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  3. Inhalation of the reactive aldehyde acrolein promotes antigen sensitization to ovalbumin and enhances neutrophilic inflammation.

    O'Brien, Edmund; Spiess, Page C; Habibovic, Aida; Hristova, Milena; Bauer, Robert A; Randall, Matthew J; Poynter, Matthew E; van der Vliet, Albert

    2016-01-01

    Acrolein (ACR), an α,β-unsaturated aldehyde and a major component of tobacco smoke, is a highly reactive electrophilic respiratory irritant implicated in asthma pathogenesis and severity. However, few studies have directly investigated the influence of ACR exposure on allergen sensitization and pulmonary inflammation. The present study was designed to examine the impact of ACR inhalation on allergic sensitization to the inhaled antigen ovalbumin (OVA), as well as pulmonary inflammation during subsequent OVA challenge. Adult male C57BL/6 mice were exposed to inhaled OVA (1%, 30 min/day, 4 days/week) and/or ACR (5 ppm, 4 h/day, 4 days/week) over 2 weeks and subsequently challenged with aerosolized OVA (1%, 30 min/day) over three consecutive days. Serum anti-OVA IgG1 levels were increased significantly in animals exposed to both OVA and ACR, compared to animals exposed to either OVA or ACR alone. In addition, differential cell counts and histological analysis revealed an increase in BAL neutrophils in animals exposed to both OVA and ACR. However, exposure to both OVA and ACR did not influence mRNA expression of the cytokines il5, il10, il13 or tnfa, but significantly increased mRNA expression of ccl20. Moreover, ACR exposure enhanced lung mRNA levels of il17f and tgfb1, suggesting development of enhanced inhalation tolerance to OVA. Overall, the findings indicate that ACR inhalation can promote airway-mediated sensitization to otherwise innocuous inhaled antigens, such as OVA, but also enhances immune tolerance, thereby favoring neutrophilic airway inflammation. PMID:25875327

  4. Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H2O2, 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H2O2-, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H2O2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST) (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD

  5. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity.

    Hess, David A; Meyerrose, Todd E; Wirthlin, Louisa; Craft, Timothy P; Herrbrich, Phillip E; Creer, Michael H; Nolta, Jan A

    2004-09-15

    Human hematopoietic stem cells (HSCs) are commonly purified by the expression of cell surface markers such as CD34. Because cell phenotype can be altered by cell cycle progression or ex vivo culture, purification on the basis of conserved stem cell function may represent a more reliable way to isolate various stem cell populations. We have purified primitive HSCs from human umbilical cord blood (UCB) by lineage depletion (Lin(-)) followed by selection of cells with high aldehyde dehydrogenase (ALDH) activity. ALDH(hi)Lin(-) cells contained 22.6% +/- 3.0% of the Lin(-) population and highly coexpressed primitive HSC phenotypes (CD34(+) CD38(-) and CD34(+)CD133(+)). In vitro hematopoietic progenitor function was enriched in the ALDH(hi)Lin(-) population, compared with ALDH(lo)Lin(-) cells. Multilineage human hematopoietic repopulation was observed exclusively after transplantation of ALDH(hi)Lin(-) cells. Direct comparison of repopulation with use of the nonobese diabetic/severe combined immunodeficient (NOD/SCID) and NOD/SCID beta2 microglobulin (beta2M) null models demonstrated that 10-fold greater numbers of ALDH(hi)-Lin(-) cells were needed to engraft the NOD/SCID mouse as compared with the more permissive NOD/SCID beta2M null mouse, suggesting that the ALDH(hi)Lin(-) population contained committed progenitors as well as primitive repopulating cells. Cell fractionation according to lineage depletion and ALDH activity provides a viable and prospective purification of HSCs on the basis of cell function rather than cell surface phenotype. PMID:15178579

  6. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    Zhang, Liang, E-mail: countryspring@sina.com; Ji, Yunxia, E-mail: 413499057@qq.com; Kang, Zechun, E-mail: davidjiangwl@163.com; Lv, Changjun, E-mail: Lucky_lcj@sina.com; Jiang, Wanglin, E-mail: jwl518@163.com

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  7. High resolution acetic acid survey and water vapor radiometer

    Shiao, Yu-Shao

    2008-08-01

    Planets, comets, stars, galaxies and the interstellar medium (ISM) emit complex but distinct molecular spectra. These spectra reveal the chemical composition and physical conditions in the objects. For example, many biologically important molecules, such as acetic acid, formic acid, vinyl cyanide and ethyl cyanide, have been detected in hot molecular cores in the ISM. A diversity of molecules creates complicated and yet interesting astrochemistry in hot cores. However, the formation mechanisms of large molecules are still unclear. Hence large molecule observations are essential to understand hot core chemistry. Among these molecules, acetic acid is one of the most important large species in hot cores. It is a possible precursor of glycine, the simplest amino acid. It only has been detected in high-mass hot cores without oxygen/nitrogen chemical differentiation, which is key to hot core chemical models. Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA), we have conducted an acetic acid survey in hot cores. In our survey, we have discovered a new acetic acid hot core, G19.61-0.23, which also shows no chemical differentiation. Therefore, we suggest that both large oxygen and nitrogen- bearing species play important roles in acetic acid formation. Ground-based interferometric observations are severely affected by atmospheric conditions. Phase correction is a technique to obtain high quality data and achieve great scientific goals. For our acetic acid survey, a better phase correction technique can not only detect weaker transitions of large molecules, but also increase the map resolution of hot cores. Water vapor radiometers (WVRs) are designed to improve the technique by observing tropospheric water vapor along the lines of sight of interferometers. We have numerically demonstrated the importance of phase correction for interferometric observations and examined the water vapor phase correction technique. Furthermore, we have built two WVR

  8. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  9. Detection of CIN by naked eye visualization after application of acetic acid.

    Londhe M; George S; Seshadri L

    1997-01-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test p...

  10. Preparation and evaluation of mafenide acetate liposomal formulation as eschar delivery system

    Zahra Azh; Armita Azarpanah; Behzad Sharif Makhmalzadeh

    2011-01-01

    Mafenide acetate is a commonly known antimicrobial agent for wound infection. Permeability of mafenide acetate through eschar is very high and it may lead to systemic toxicity after topical application. We wish to investigate whether topical use of mafenide acetate – including vesicles could result in drug trapping in rat skin, in comparison to mafenide acetate aqueous solution. In this study, liposomes were prepared with two techniques: Solvent evaporation and Microencapsulation vesicular (M...

  11. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus

    Gong, Zhiwei; Shen, Hongwei; Zhou, Wengting; Wang, Yandan; Yang, Xiaobing; Zhao, Zongbao K.

    2015-01-01

    Background Acetic acid is routinely generated during lignocelluloses degradation, syngas fermentation, dark hydrogen fermentation and other anaerobic bioprocesses. Acetate stream is commonly regarded as a by-product and detrimental to microbial cell growth. Conversion of acetate into lipids by oleaginous yeasts may be a good choice to turn the by-product into treasure. Results Ten well-known oleaginous yeasts were evaluated for lipid production on acetate under flask culture conditions. It wa...

  12. Dissolution of paracetamol crystallized in the presence of poly(vinyl acetate-co-maleic anhydride)

    Raval D; Parikh D; Patel V

    2006-01-01

    Copolymer of vinyl acetate and maleic anhydride, poly (vinyl acetate-co-maleic anhydride) was prepared by precipitation polymerization and characterized. Paracetamol was crystallized in presence of different concentrations of poly (vinyl acetate-co-maleic anhydride). Crystals were characterized by sieve analysis, solubility and dissolution study. Crystallization of paracetamol in presence of poly (vinyl acetate-co-maleic anhydride) caused a marked enhancement in its dissolution rate with incr...

  13. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules.

    Liakos, Ioannis L; D'autilia, Francesca; Garzoni, Alice; Bonferoni, Cristina; Scarpellini, Alice; Brunetti, Virgilio; Carzino, Riccardo; Bianchini, Paolo; Pompa, Pier Paolo; Athanassiou, Athanassia

    2016-08-30

    Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus. PMID:26827919

  14. Biological carbon monoxide conversion to acetate production by mixed culture.

    Nam, Chul Woo; Jung, Kyung A; Park, Jong Moon

    2016-07-01

    To utilize waste CO for mixed culture gas fermentation, carbon sources (CO, CO2) and pH were optimized in the batch system to find out the center point and boundary of response surface method (RSM) for higher acetate (HAc) production (center points: 25% CO, 40% CO2, and pH 8). The concentrations of CO and CO2, and pH had significant effects on acetate production, but the pH was the most significant on the HAc production. The optimum condition for HAc production in the gas fermentation was 20.81% CO, 41.38% CO2, 37.81% N2, and pH 7.18. The continuous gas fermentation under the optimum condition obtained 1.66g/L of cell DW, 23.6g/L HAc, 3.11g/L propionate, and 3.42g/L ethanol. PMID:27035481

  15. Evaluation of lanthanide salts as alternative stains to uranyl acetate.

    Hosogi, Naoki; Nishioka, Hideo; Nakakoshi, Masamichi

    2015-12-01

    Uranyl acetate (UAc) has been generally used not only as a superb staining reagent for ultrathin sections of plastic-embedded biological materials, but also as high-contrast negative stains for biological macromolecules such as particles of protein or virus. However, the use and purchase of radioactive UAc have been restricted. In this study, we determine the performance of ytterbium triacetate, lutetium triacetate, samarium triacetate and gadolinium triacetate as new staining reagents for biological electron microscopy. We observed chemically fixed spinach (Spinacia oleracea) leaves stained with these reagents. Ultrathin sections were stained with these reagents. Some of them were counterstained with lead citrate. The transmission electron microscopy contrast of spinach organelles was evaluated in sections exposed to the conventional stain and new stains. We show acetate salts of samarium, gadolinium, ytterbium and lutetium could be excellent substitutes for UAc for thin section staining and for negative staining. In addition, each reagent showed appreciable negative-staining effects. PMID:26374081

  16. EFFECT OF GOSSYPOL ACETIC ACID ON CHROMOSOME ABERRATIONS AND ANEUPLOIDIES IN OOCYTES AND ZYGOTES OF MICE

    WANGRen-Li; ZHANGZhong-Shu

    1989-01-01

    It was reported that gossypol acetic acid could effectively inhibit th~ implantation in ratA. This finding indicated that gossypol acet/c acid might also be used as a female contraceptive. The Present study further investigated the genetic effect of gossypol acetic

  17. Synthesis of 13C-labelled medroxyprogesterone acetate with three 13C isotopes [1

    17α-hydroxyprogesterone was condensed with phenyl acetate 13C2 in the presence of sodium hydride. Treatment with acetic and hydrochloric acids and acetylation gave 17α-acetoxyprogesterone 13C2. Treatment with tetrabromomethane 13C and hydrogenation yielded medroxyprogesterone acetate with three 13C isotopes. (U.K.)

  18. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in §...

  19. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    2010-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856...

  20. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and...