WorldWideScience

Sample records for acetic acid bacteria

  1. Adaptation and tolerance of bacteria against acetic acid.

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  2. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  3. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine. PMID:18237809

  4. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  5. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  6. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  7. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  8. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    Albert Mas; María Jesús Torija; María del Carmen García-Parrilla; Ana María Troncoso

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a ...

  9. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  10. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  11. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  12. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  13. Application of molecular techniques for identification and ennumeration of acetic acid bacteria

    González Benito, Angel

    2005-01-01

    Application of molecular techniques for identification and enumeration of acetic acid bacteria:Los principales objetivos de la tesis son el desarrollo de técnicas de biología molecular rápidas y fiables para caracterizar bacterias acéticas.Las bacterias acéticas son las principales responsables del picado de los vinos y de la producción de vinagre. Sin embargo, existe un desconocimiento importante sobre su comportamiento y evolución. Las técnicas de enumeración y de identificación basadas en ...

  14. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts

    B. Chouaia; Gaiarsa, S.; Crotti, E.; Comandatore, F.; Degli Esposti, M.; I. RICCI; Alma, A.; Favia, G.; Bandi, C.; D. Daffonchio

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait...

  15. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a...

  16. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  17. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  18. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  19. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  20. Biofilm-associated indole acetic acid producing bacteria and their impact in the proliferation of biofilm mats in solar salterns

    Kerkar, S.; Raiker, L.; Tiwari, A.; Mayilraj, S.; Dastager, S.

    viz. Nerul and Curca to find a possible reason for the rapid proliferation of these solar biofilms. Out of the 125 bacteria isolated from these biofilms, 16 produced indole-3-acetic acid (IAA). Rapid in-situ assay with Salkowski reagent and HPLC...

  1. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai; Thidarat Paemsom; Chittra Pobsuwan; Khanitta Somtrakoon; Hung Lee

    2016-01-01

    The use of indole-3-acetic acid (IAA)-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae) and Chromolaena odorata (Asteraceae). The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, t...

  2. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria.

    Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka

    2015-08-01

    Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment. PMID:25846935

  3. Preservation of Steamed Fish (Rastrelliger Sp With Combine Method Using Sodium Acetate, Lactic Acid Bacteria Culture and Vacuum Packaging

    Betty Sri Laksmi Jenie, . Nuratifa, . Suliantari

    2001-04-01

    Full Text Available This study was carried out to improve the safety and shelf life of cooked kembung fish (Rastrelliger sp, a traditional food called pindang fish. Fresh eviscerated fish was fisrt soaked in 2% NaCl solution for 15 minutes, drained, washed with tap water and drained again. Sodium chloride at 12% concentration (w/w was distributed on the whole surface of the fish. Fish was then laid on a wooden basket inside a clay pot, steamed for 30 minutes, and then cooled. Combine method applied to the steamed fish (pindang was soaking in a mixed culture of Lactobacillus plantarum kik and Lactococcus lactis subsp. cremoris in the ratio of 2 : 1 (v/v containing 4% Na-acetate for 2 hrs and after draining, the product was vacuum packed. The result showed that the combine method using mixed culture of lactic acid bacteria containing 4% Na-acetate could reduce the growth of Staphylococcus aureus by 3-6 log units, decrease the TMA (Trimethylamine content and maintain the organoleptic properties (texture, appearance and odor of pindang fish during 6 days storage at room temperature. Control treatment without 4% Na-acetate could only keep the pindang fish for 4 days. Vacuum and nonvacuum packaging did not show any significant difference.

  4. Antibiofilm Properties of Acetic Acid

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram...

  5. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  6. Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa

    Aswathy, Agnes Joseph; Jasim, B.; Jyothis, Mathew; Radhakrishnan, E. K.

    2012-01-01

    Curcuma longa is well known for its use as spice and medicine. The remarkable feature of the plant is the presence of rhizome, which provides an interesting habitat for association by various groups of bacteria. Some of these associated endophytic bacteria can have growth-promoting effects. In the current study, two species of endophytic Paenibacillus has been identified from the rhizome as indole 3 acetic acid producers. These isolates can thus have potential growth-regulating effect in rhiz...

  7. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.

    Rozenberga, Linda; Skute, Marite; Belkova, Lubova; Sable, Inese; Vikele, Laura; Semjonovs, Pavels; Saka, Madara; Ruklisha, Maija; Paegle, Longina

    2016-06-25

    Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than BC (0.3GPa). BC displayed high water retention values (86-95%) and a degree of polymerisation up to 2540. Nanofibers obtained were 80-120nm wide and 600-1200nm long with up to 15% higher crystallinity than the original BC. It was concluded that BC is an excellent source for easily obtainable, highly crystalline and strong nanofibers. PMID:27083790

  8. Production of acetic acid from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author)

  9. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  10. ACETIC ACID AND A BUFFER

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  11. Genome Sequences of the High-Acetic Acid-Resistant Bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (Reference Strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (Isolated from Vinegar) ▿

    Andrés-Barrao, Cristina; Falquet, Laurent; Sandra P Calderon-Copete; Descombes, Patrick; Ortega Pérez, Ruben; Barja, François

    2011-01-01

    Bacteria of the genus Gluconacetobacter are usually involved in the industrial production of vinegars with high acetic acid concentrations. We describe here the genome sequence of three Gluconacetobacter europaeus strains, a very common bacterial species from industrial fermentors, as well as of a Gluconacetobacter oboediens strain.

  12. Design and performance testing of a DNA extraction assay for sensitive and reliable quantification of acetic acid bacteria directly in red wine using real time PCR

    Cédric eLONGIN

    2016-06-01

    Full Text Available Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence there is a real need for a rapid, specific, sensitive and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR. Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP at 1% (v/v during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 mL to 10 mL. Thus the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage.

  13. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  14. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques.

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-04-01

    Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm. PMID:25475315

  15. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  16. Direct Oxidation of Ethene to Acetic Acid

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  17. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  18. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  19. 醋酸菌中CRISPR位点的比较基因组学与进化分析%Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria

    夏凯; 梁新乐; 李余动

    2015-01-01

    CRISPR (Clustered regularly interspaced short palindromic repeats)是近几年发现的一种广泛存在于细菌和古菌中,能够应对外源DNA干扰(噬菌体、病毒、质粒等),并提供免疫机制的重复序列结构。CRISPR系统通常由同向重复序列、前导序列、间隔序列和CRISPR相关蛋白组成。本研究以醋酸发酵中常见3个属醋杆菌属(Acetobacter)、葡糖醋杆菌属(Gluconacetobacter)和葡糖杆菌属(Gluconobacter)的48个菌株为研究对象,通过其基因组上CRISPR相关基因序列的生物信息学分析,探索CRISPR位点在醋酸菌中的多态性及其进化模式。结果表明48株醋酸菌中有32株存在CRISPR结构,大部分CRISPR-Cas结构属于type I-E和type I-C类型。除了葡糖杆菌属外,葡糖醋杆菌属和醋杆菌属中的部分菌株含有 II 类的 CRISPR-Cas 系统结构(CRISPR-Cas9)。来自不同属菌株的CRISPR结构中重复序列具有较强的保守性,而且部分菌株CRISPR结构中的前导序列具有保守的motif (与基因的转录调控有关)及启动子序列。进化树分析表明cas1适合用于醋酸菌株的分类,而不同菌株间 cas1基因的进化与重复序列的保守性相关,预示它们可能受相似的功能选择压力。此外,间隔序列的数量与噬菌体数量及插入序列(Insertion sequence, IS)数量有正相关的趋势,说明醋酸菌在进化过程中可能正不断受新的外源DNA入侵。醋酸菌中CRISPR结构位点的分析,为进一步研究不同醋酸菌株对醋酸胁迫耐受性差异及其基因组稳定性的分子机制奠定了基础。%The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immun-ity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic ac-id bacteria (AAB) play an

  20. The effect of lactic acid bacteria on cocoa bean fermentation.

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  1. Bacteria contributing to behaviour of radiocarbon in sodium acetate

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2-14C] sodium acetate, and the autoradiograms showed that all the colonies were positive for 14C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 deg. C. Phylogenetic analysis based on 16S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 deg. C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of 14C to for the safety assessment of geological disposal of transuranic waste. (authors)

  2. Lactic Acid Bacteria

    ToddKlaenhammer

    2013-04-01

    Full Text Available Lactic acid bacteria (LAB are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract. In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of surface dependent proteins (SDPs to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the gastrointestinal tract. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy associated and health promoting LAB.

  3. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  4. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82, 163.03 and 228.24 g NH3-N/L). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels compared to the hydrogenotrophic methanogens tested. Additionally...

  6. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  7. Biosynthesis of myristic acid in luminescent bacteria

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [14C] acetate in a nutrient-depleted medium accumulated substantial tree [14C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [14C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  8. Effects of Lactic Acid Bacteria Inoculated Fermentation on Pickled Cucumbers

    Xiaoyi Ji; Yuan Wu; Xingzhu Wu; Yonghua Lin; Weiwei Xu; Hui Ruan; Guoqing He

    2013-01-01

    The aim of this study was to determine the effects of Lactic Acid Bacteria (LAB) fermentation on the texture and organic acid of pickled cucumbers. Texture and sensory evaluation as well as a microscopic observation were performed to study the textural differences among fresh cucumber, Spontaneous fermentation (SF) cucumber and LAB Inoculating Fermentation (LABIF) cucumber. Accumulation of seven organic acids i.e., oxalic, tartaric, malic, lactic, acetic, citric and succinic acid during cucum...

  9. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  10. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  11. Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene + (Acetic Acid, Methyl Acetate and n-Propyl Acetate)and Methyl Acetate + n-Propyl Acetate in an Acetic Acid Dehydration Process

    HUANG Xiuhui; ZHONG Weimin; PENG Changjun; QIAN Feng

    2013-01-01

    The vapor-liquid equilibrium data of four binary systems(acetic acid + p-xylene,methyl acetate + n-propyl acetate,n-propyl acetate + p-xylene and methyl acetate + p-xylene)are measured at 101.33 kPa with Ellis equilibrium still,and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems.The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate + p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points.The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase,and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate + n-propyl acetate system,for which the latter gives more accurate correlations.

  12. Engineering robust lactic acid bacteria

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  13. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

    Moura, A. Vilela; Schuller, Dorit Elisabeth; Faia, A. Mendes; Silva, Rui D.; Chaves, S R; Sousa, Maria João; Côrte-Real, Manuela

    2011-01-01

    Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a byproduct of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this minireview, we present an o...

  14. Photodissociation spectroscopy of the Mg+-acetic acid complex

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p+, MgOH+, Mg(H2O)+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies

  15. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  16. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  17. Adsorption of acetic acid on different carbons

    K. Ouattara

    2012-10-01

    Full Text Available This study presents a double environmental aspect, on one hand, decline of the cost of the waste water treatment thanks to a cheap adsorbing, on the other hand, the valuation of coconut shells.The acetic acid was used as adsorbent because the knowledge of the size of its molecule (21 Å2 allows characterizing studied carbons.The model of Langmuir describes well the isotherms of adsorption on the various types of studied carbons. It stands out in this study that the capacity of adsorption of inactivated carbon grain (CNAG COCO doubles practically if this one is reduced in powder. Besides, the inactivated carbon powder (CNAP COCO and the activated carbon grain (CAG COCO have the same capacity of adsorption. So, the specific surfaces of the CNAP COCO and CAG COCO are identical: SL = 77 m2/g while that of the CNAG is only 32 m2/g. The use of inactivated carbon powder can be thus recommended to treat waste water opposite the inactivated grain carbon which isn’t of real interest.

  18. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  19. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  20. Solubilities of Isophthalic Acid in Acetic Acid + Water Solvent Mixtures

    CHENG Youwei; HUO Lei; LI Xi

    2013-01-01

    The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel.The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 =0 to 1.A new method to measure the solubility was developed,which solved the problem of sampling at high temperature.The experimental results indicated that within the temperature range studied,the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing temperature.The experimental solubilities were correlated by the Buchowski equation,and the calculate results showed good agreement with the experimental solubilities.Furthermore,the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility,which may be attributed to the intermolecular association between the solute and the solvent mixture.The maximum solubility effect was well modeled by the modified Wilson equation.

  1. Electron transport chains of lactic acid bacteria

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  2. Biogas Production through the Syntrophic Acetate-Oxidising Pathway. Characterisation and Detection of Syntrophic Acetate- Oxidising Bacteria

    Westerholm, Maria [Faculty of Natural Resources and Agricultural Sciences, Dept. of Microbiology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2012-11-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-step reaction, consisting of acetate oxidation to hydrogen and carbon dioxide by syntrophic acetate-oxidising bacteria (SAOB), followed by conversion of these products to methane by hydrogenotrophic methanogens. Ammonia and acetate concentration, hydraulic retention time, temperature and methanogenic population structure are operational parameters considered to influence the acetate conversion pathway. This thesis sought to increase understanding of SAO by examining syntrophic acetate oxidisers in pure culture, co-culture and methanogenic reactors. Two novel species of SAOB, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans, were isolated and their phenotypic and phylogenetic traits were characterised. Quantitative molecular approaches were developed and applied to determine structural dynamics in the methane-producing population in a mesophilic biogas reactor during an ammonia-induced shift from aceticlastic to syntrophic acetate degradation. The abundance of SAOB increased, with a simultaneous decrease in aceticlastic methanogens. The majority of known SAOB are considered acetogens, and gradually increased ammonia concentration was shown to cause distinct shifts in the putative acetogenic population structure in mesophilic biogas reactors. However, the acetogenic bacterial abundance remained relatively stable. Bioaugmentation of syntrophic acetate-oxidising cultures did not improve process performance or support establishment of SAO as the dominant acetate

  3. Protection of historical lead against acetic acid vapour

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  4. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  5. Uranyl complexes of n-alkanediaminotetra-acetic acids

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 deg in 0.10M and 1.00M KNO3. The influence of the length of the alkane chain of the ligands on the complexes formed is discussed. (author)

  6. Biosynthetic origin of acetic acid using SNIF-NMR

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2H and 1H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid. (author)

  7. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  8. Acetic acid as an intervention strategy to decontaminate beef carcasses in mexican commercial slaughterhouse

    Laura Reyes Carranza

    2013-09-01

    Full Text Available Beef can be contaminated during the slaughter process, thus other methods, besides the traditional water washing, must be adopted to preserve meat safety. The objective of this study was to evaluate the effect of 2% acetic acid interventions on the reduction of indicator bacteria on beef carcasses at a commercial slaughterhouse in Mexico. Reduction was measured by the count of mesophilic aerobic bacteria (TPC, total coliform (TC, and fecal coliform (FC (log CFU/ cm². Among the different interventions tested, treatments combining acetic acid solution sprayed following carcass water washing had greater microbial reduction level. Acetic acid solution sprayed at low pressure and longer time (10-30 psi/ 60 s reached higher TPC, TC, and FC reductions than that obtained under high pressure/ shorter time (1,700 psi/ 15 s; P<0.05. Exposure time significantly affected microbial reduction on carcasses. Acetic acid solution sprayed after carcass washing can be successfully used to control sources of indicator bacteria on beef carcasses under commercial conditions.

  9. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  10. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells

    VALENTINA A. KRATASYUK

    2012-11-01

    Full Text Available Reshetilov AN, Kitova AE, Arkhipova AV, Kratasyuk VA, Rai MK. 2012. Determination of ethanol in acetic acid containing samples by a biosensor based on immobilized Gluconobacter cells. Nusantara Bioscience 4: 97-100. A biosensor based on Gluconobacter oxydans VKM B-1280 bacteria was used for detection of ethanol in the presence of acetic acid. It was assumed that this assay could be useful for controlling acetic acid production from ethanol and determining the final stage of the fermentation process. Measurements were made using a Clark electrode-based amperometric biosensor. The effect of pH of the medium on the sensor signal and the analytical parameters of the sensor (detection range, sensitivity were investigated. The residual content of ethanol in acetic acid samples was analyzed. The results of the study are important for monitoring the acetic acid production process, as they represent a method of tracking its stages

  11. Ototoxicity of acetic acid on the guinea pig cochlea

    Yamano, Takafumi; Higuchi, Hitomi; Nakagawa, Takashi; Morizono, Tetsuo

    2015-01-01

    Background To evaluate the ototoxicity of acetic acid solutions. Methods Compound action potentials (CAPs) of the eighth nerve were measured in guinea pigs before and after the application of acetic acid in the middle ear cavity. The pH values of the acetic acid solutions were pH 3.0, 4.0, and 5.0, and the application times were 30 min, 24 h, and 1 week. Results Acetic acid solution (pH 3.0, N = 3) for 30 min caused no significant elevation in CAP threshold at 4 kHz, but a significant elevati...

  12. Genetics of Lactic Acid Bacteria

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  13. A NOVEL COPOLYMER-BOUND CIS- DICARBONYLRHODIUM COMPLEX FOR THE CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE

    YUAN Guoqing; CHEN Yuying; CHEN Rongyao

    1989-01-01

    A series of porous microspheres of linear and ethylene diacrylate (M ') cross-linked copolymers of 2 - vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol - acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.

  14. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  15. 分泌吲哚乙酸的蒌蒿内生耐镉细菌的筛选与鉴定%Screening and Identification of Indole Acetic Acid-Producing Cadmium-Resistant Endophytic Bacteria fromArtemisia Selengensis

    周小梅; 赵运林; 胥正钢; 董萌; 库文珍

    2014-01-01

    To isolate indole acetic acid (IAA)-producing cadmium-resistant endophytic bacteria fromArtemisia selengensis is to help build an effective combined remediation system of plant and microorganism. Using IAA-producing and cadmium-tolerance as the screening indexes, isolated IAA-producing cadmium-resistant endophytic bacteria from the root, stem and leafofArtemisia selengensis by the grinding method, and determinated the tolerance of lead, copper, antimony and the effect of the strains on growth ofAremisia selengensis. Strains were identified based on morphological, physiological and biochemical properties as well as 16S rDNA sequence analysis. The results showed that, two cadmium-resistant endophytic bacteria which both have strong abilities to secrete IAA, named as J2 and Y5, were isolated fromArtemisia selengensis. The cadmium tolerance mass concentration of strains J2 and Y5 were up to 90 mg·L-1. The IAA production of strains J2 and Y5 respectively were 23.108 mg·L-1, 15.192 mg·L-1. Strain J2 could significantly increase the plant height, the longest root length, the average root length, the fresh weight and the dry weight of Artemisia selengensis; strain Y5 could significantly improve the plant height, the fresh weight and the dry weight ofArtemisia selengensis. The lead tolerance mass concentration of strains J2 and Y5 were up to 1200 mg·L-1, while the copper tolerance mass concentration of strains J2 and Y5 respectively were 120 mg·L-1 and 160 mg·L-1, the antimony tolerancemass concentration of strains J2 and Y5 respectively were 50 mg·L-1 and 150 mg·L-1. The colony of strain J2 was yellow, suborbicular and sticky on LB tablet. The colony of strain Y5 was white, suborbicular and moist on LB tablet. Strains J2 and Y5 respectively obtained one about 1500 bp band by amplifying 16S rDNA sequences, and by comparing strains J2 and Y5 showed the closest similarity of 16S rDNA sequences to Pantoea agglomerans STY29(HQ220151) andPseudomonas fluorescens V7c10(KC

  16. Comparative analysis of acetic and citric acid on internal milieu of broiler chickens

    Marcela Capcarova

    2014-02-01

    Full Text Available Normal 0 21 false false false CS JA X-NONE The aim of the present study was to analyse the effect of two organic acids (acetic and citric acid inclusion on serum parameters and the level of antioxidant status of broiler chickens. Some organic acidifiers reduce the growth of many intestinal bacteria, reduce intestinal colonisation and reduce infectious processes, decrease inflammatory processes at the intestinal mucosa, increase villus height and function of secretion, digestion and absorption of nutrients. Broiler chickens hybrid Ross 308 (n=180 were divided into 3 groups: one control (C and two experimental groups (E1, E2. Experimental animals received acetic and citric acid per os in water in single dose 0.25% for 42 days. After 42 days of feeding blood samples were collected (n=10 in each group. Significant decrease of serum triglycerides in citric acid group when compared with the control group was recorded. Acetic acid administration resulted in increased sodium level. Significant increase of albumin content in both experimental groups and increase of bilirubin content in citric group was recorded. Acids administration had no significant effect on other serum and antioxidant parameters. Acetic and citric acid had no harmful influenced on internal milieu of broiler chickens. The research on the field of organic acid will be worthy of further investigation.

  17. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol−1 energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol−1) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol−1). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm−1, where the first OH stretching overtone vibrations of 1ccc and 2pcc

  18. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  19. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    It is well known that over 0.8 kg kg−1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg−1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L−1 and 0.52 mol L−1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L−1 to 3.33 mol L−1. It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L−1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg-1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  20. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  1. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  2. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  3. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  4. Crystal structure of febuxostat–acetic acid (1/1

    Min Wu

    2015-05-01

    Full Text Available The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-isobutyloxyphenyl-4-methylthiazole-5-carboxylic acid–acetic acid (1/1], C16H16N2O3S·CH3COOH, contains a febuxostat molecule and an acetic acid molecule. In the febuxostat molecule, the thiazole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2°]. In the crystal, the febuxostat and acetic acid molecules are linked by O—H...O, O—H...N hydrogen bonds and weak C—H...O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction. π–π stacking is observed between nearly parallel thiazole and benzene rings of adjacent molecules; the centroid-to-centroid distances are 3.8064 (17 and 3.9296 (17 Å.

  5. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid...... chromatography and conventional mass spectrometry (MS) methods, including MS-mass spectroscopy, UV spectroscopy, and high-performance liquid chromatography-MS. The identified products indicate a novel metabolic pathway in which IAA is metabolized via dioxindole-3-acetic acid, dioxindole, isatin, and 2......-aminophenyl glyoxylic acid (isatinic acid) to anthranilic acid, which is further metabolized. Degradation of 4-Cl-IAA apparently stops at the 4-Cl-dioxindole step in contrast to 5-Cl-IAA which is metabolized to 5-Cl-anthranilic acid. Udgivelsesdato: 1995-Oct...

  6. Catalytic Esterification of Methyl Alcohol with Acetic Acid

    2001-01-01

    Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ.mo1-1 for the formation of methyl acetate. The methyl acetate production was carried out aa batch and continuous in a packed bed restive distillation column with high purity methyl acetate produced.

  7. Lactic Acid Bacteria in the Gut

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  8. Comparative genomics of the lactic acid bacteria

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  9. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  10. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    Shiao, Y -S Jerry; Remijan, Anthony J; Snyder, Lewis E; Friedel, Douglas N

    2010-01-01

    Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\\times 10^{16}$ cm$^{-2}$ and the...

  11. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-Hefian

    2009-01-01

    The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1) having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC) were then obtained from the plots of contact angle or conductivity versus concentration.

  12. Acid stress adaptation protects saccharomyces cerevisiae from acetic acid-induced programme cell death

    Giannattasio, Sergio; Guaragnella, Nicoletta; Côrte-Real, Manuela; Passarella, Salvatore; Marra, Ersilia

    2005-01-01

    In this work evidence is presented that acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-mediated programmed cell death. Exponential-phase yeast cells, non-adapted or adapted to acid stress by 30 min incubation in rich medium set at pH 3.0 with HCl, have been exposed to increasing concentrations of acetic acid and time course changes of cell viability have been assessed. Adapted cells, in contrast to non-adapted cells, when exposed to 80 mM acetic acid for 200 min ...

  13. Quorum sensing mechanism in lactic acid bacteria

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  14. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  15. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  16. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  17. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  18. High resolution acetic acid survey and water vapor radiometer

    Shiao, Yu-Shao

    2008-08-01

    Planets, comets, stars, galaxies and the interstellar medium (ISM) emit complex but distinct molecular spectra. These spectra reveal the chemical composition and physical conditions in the objects. For example, many biologically important molecules, such as acetic acid, formic acid, vinyl cyanide and ethyl cyanide, have been detected in hot molecular cores in the ISM. A diversity of molecules creates complicated and yet interesting astrochemistry in hot cores. However, the formation mechanisms of large molecules are still unclear. Hence large molecule observations are essential to understand hot core chemistry. Among these molecules, acetic acid is one of the most important large species in hot cores. It is a possible precursor of glycine, the simplest amino acid. It only has been detected in high-mass hot cores without oxygen/nitrogen chemical differentiation, which is key to hot core chemical models. Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA), we have conducted an acetic acid survey in hot cores. In our survey, we have discovered a new acetic acid hot core, G19.61-0.23, which also shows no chemical differentiation. Therefore, we suggest that both large oxygen and nitrogen- bearing species play important roles in acetic acid formation. Ground-based interferometric observations are severely affected by atmospheric conditions. Phase correction is a technique to obtain high quality data and achieve great scientific goals. For our acetic acid survey, a better phase correction technique can not only detect weaker transitions of large molecules, but also increase the map resolution of hot cores. Water vapor radiometers (WVRs) are designed to improve the technique by observing tropospheric water vapor along the lines of sight of interferometers. We have numerically demonstrated the importance of phase correction for interferometric observations and examined the water vapor phase correction technique. Furthermore, we have built two WVR

  19. [Conversion of acetic acid to methane by thermophiles

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  20. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  1. Genetics of proteinases of lactic acid bacteria

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  2. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures

    Michal Magala

    2013-09-01

    Full Text Available Background. Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefi ts like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Material and methods. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability. Results. Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Conclusion. Variations in tarhana recipe (salt absence, increased proportion of yoghurt led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid. Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that

  3. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  4. Protection of historical lead against acetic acid vapour

    Pecenová Z.

    2016-03-01

    Full Text Available Historical lead artefacts (small figurines, appliques, bull (metal seal can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous corrosion products are formed and fall off the surface. These corrosion products do not have any protection ability. The lead could be protected against acid environment by layer of “metal soup” which is formed on surface after immersion in solution of salt of carboxylic acid for 24 hours. The solutions of acids (with vary long of carbon chain and their salts are examined. Longer carbon chain provides better efficiency convers layer. The disadvantages are low solubility of carboxylic acids in water and bad abrasion resistance of formed layer.

  5. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  6. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  7. Microwave Irradiation Promoted Synthesis of Aryloxy Acetic Acids

    LIN Min; ZHOU Jin-mei; XIA Hai-ping; YANG Rui-feng; LIN Chen

    2004-01-01

    Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%-97.4%) were obtained when the molar ratio of the reactants was n(ArOH) : n(NaOH): n(ClCH2CO2H) =1: 2.5: 1.2 with microwave irradiation power of 640 W for 65-85 s.

  8. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-hefian

    2009-11-01

    Full Text Available The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1 having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC were then obtained from the plots of contact angle or conductivity versus concentration.

  9. Kinetics of xylose dehydration into furfural in acetic acid

    Zhou Chen; Weijiang Zhang; Jiao Xu; Pingli Li

    2015-01-01

    In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematical y. The reaction order of both furfural and xylose dehydration was determined and the reaction activation energy was obtalned by nonlinear regression. The effect of acetic acid concentration was also investi-gated. Reaction rate constants were galned. Reaction rate constant of xylose dehydration is k1 ¼ 4:189 . 1010 ½A.0:1676 exp −108:6.1000RT . ., reaction rate constant of furfural degradation is k2 ¼ 1:271 . 104½A.0:1375 exp−63:413.1000RT . and reaction rate constant of condensation reaction is k3 ¼ 3:4051 . 1010½A.0:1676 exp−104:99.1000RT .. Based on this, the kinetics equation of xylose dehydration into furfural in acetic acid was set up according to theory of Dunlop and Furfural generating rate equation is dd½F.t ¼ k1½X.0e−k1t−k2½F.−k3½X.0e−k1t½F.. © 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  10. Comparative genomics of the lactic acid bacteria

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  11. Amino Acid Decarboxylase Activity of Some Lactic Acid Bacteria

    Pelin ERTÜRKMEN; Turhan, İlkay; Öner, Zübeyde

    2015-01-01

    Microorganisms which have decarboxylase activity can form biogenic amine by enzymatic decarboxylation of amino acids in foods. Histamine poisoning results from consumption of foods typically certain types of fish and cheeses that contain unusually high levels of histamine. Therefore, decarboxylase activity is an important problem at the selection of lactic acid bacteria as a starter culture in fermented products. In this study, decarboxylase activities of 161 lactic acid bacteria (LAB) strain...

  12. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  13. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    Lindinger Michael I

    2007-12-01

    Full Text Available Abstract Aim Sodium acetate (NaAcetate has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial; or 2 a hay/grain meal alone (Control trial. Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse.

  14. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed;

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...... fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main...

  15. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. PMID:25865525

  16. Detection of CIN by naked eye visualization after application of acetic acid.

    Londhe M; George S; Seshadri L

    1997-01-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test p...

  17. Hydrogen production by photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} strain on acetate in continuous panel photobioreactors

    Deo Androga, Dominic; Ozgur, Ebru; Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Guenduez, Ufuk [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    Photobiological hydrogen production from organic acids occurs in the presence of light and under anaerobic conditions. Stable and optimized operation of the photobioreactors is the most challenging task in the photofermentation process. The aim of this study was to achieve a stable and high hydrogen production on acetate, using the photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} (uptake hydrogenase deleted strain) in continuous panel photobioreactors. An indoor experiment with continuous illumination (1500-2500 lux, corresponding to 101-169 W/m{sup 2}) and controlled temperature was carried out in a 8 L panel photobioreactor. A modified form of basal culture media containing 40 mM of acetate and 2 mM of glutamate with a feeding rate of 0.8 L/day was used. Stable hydrogen productivity of 0.7 mmol H{sub 2}/l{sub c}.h was obtained, however, biomass decreased during the continuous operation. Further indoor experiments with a biomass recycle and different feed compositions were carried out to optimise the feed composition for a stable biomass and hydrogen production. The highest hydrogen productivity of 0.8 mmol H{sub 2}/l{sub c}.h and yield of 88% was obtained in the 40 mM/ 4 mM acetate/glutamate continuously fed photobioreactor for a period of 21 days. (orig.)

  18. KINETIC STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A NOVEL COPOLYMER- BOUND CIS- DICARBONYLRHODIUM COMPLEX

    CHEN Yuying; YUAN Guoqing; CHEN Rongyao

    1989-01-01

    The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh)coordinated with the ethylene diacrylate (M')crosslinked copolymer of methyl acrylate (M) and 2 - vinylpyridine (V) shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex . Polar solvents can accelerate the reaction .Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system . A mechanism similar to that of soluble rhodium catalyst was proposed .

  19. Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst

    Mallaiah Mekala; Venkat Reddy Goli

    2015-01-01

    In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L−1 to 0.3268 mol·L−1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot. The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.

  20. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  1. EFFECT OF GOSSYPOL ACETIC ACID ON CHROMOSOME ABERRATIONS AND ANEUPLOIDIES IN OOCYTES AND ZYGOTES OF MICE

    WANGRen-Li; ZHANGZhong-Shu

    1989-01-01

    It was reported that gossypol acetic acid could effectively inhibit th~ implantation in ratA. This finding indicated that gossypol acet/c acid might also be used as a female contraceptive. The Present study further investigated the genetic effect of gossypol acetic

  2. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  3. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král

    2011-05-01

    Full Text Available Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drinking water and probiotics mixed with feed mixture. Body weight, FCR and GIT pH were recorded. The performance showed no statistically significant increase in body weight (P>0.05 in the weeks 1, 2, 3 and 4 of age. The body weight of broiler chickens was significant increase (P0.05 in weeks 5, and 6 of age. In different segments of the GIT was not statistically significant (P>0.05 difference of pH between the control and experimental groups.

  4. Environmental Risk Limits for Ethylene Diamine Tetra Acetic acid (EDTA)

    Kalf DF; Hoop MAGT van den; Rila JP; Posthuma C; Traas TP; SEC

    2003-01-01

    In this report maximum permissible concentration (MPC) and negligible concentration (NC) in water are derived for Ethylene Diamine Tetra Acetic acid (EDTA; CAS No. 64-02-8, EINECS No. 200-573-9), based on the EU risk assessment report for this compound. The Maximum Permissible Concentration (MPC) for the water compartment is 2.2 mg/l, and the Negligible Concentration (NC) is 0.022 mg/l. Calculation of MPCs for sediment or soil is not possible due to complex speciation of EDTA.

  5. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  6. Study of fatty acid-bacteria interactions

    Complete text of publication follows. During our work we investigated fatty acid-bacteria interactions. The antibacterial property of fatty acids was reported by several authors. Despite of them there is not reassuring explanation about the mechanism of the antibacterial activity of these compounds. An effect can considerably change in case of different structured fatty acids. Our earlier studies conduct that small changes in the structures can modify changes in their behavior towards bacteria. The stearic acid does not cause any antibacterial effects during the first few hours of the investigation, may even help the bacterial growth. However, linolic acid (C18:2) shows a strong antibacterial effect during the first hours. After 24 hours this effect wears out and the bacteria have adapted to the stress. We studied the antibacterial activity using direct bioautography. This method has the advantage to allow examining lipophilic compounds. The linoleic acid decomposes in time under different physiological conditions creating numerous oxidized molecules. This may be the reason of its antimicrobial effect. For studying this phenomenon we used infrared and mass spectroscopic methods. We applied infrared spectroscopy for indicating any changes in the spectra of the fatty acids after the interaction of fatty acids with bacteria. So we are able to deduct on what could happen during these process. We paid great attention towards the changes of double bonds, on methylation and demethylation processes. Using mass spectroscopy we searched for oxidized products that may play important role in this process. These studies are only part of our more widespreading investigations, dealing with the antimicrobial properties of fatty acids.

  7. Acid resistance in enteric bacteria.

    Gorden, J; Small, P L

    1993-01-01

    Shigella species require a uniquely small inoculum for causing dysentery. One explanation for the low infective dose is that Shigella species are better able to survive the acidic conditions encountered in the stomach than are other enteric pathogens. We have tested Shigella species, Escherichia coli, and Salmonella species for the ability to survive at pH 2.5 for at least 2 h. Most isolates of Shigella and E. coli survived this treatment, whereas none of the Salmonella isolates were able to ...

  8. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri

    Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S F; FABER, F; Driehuis, F

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and ...

  9. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O2, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  10. Discovering lactic acid bacteria by genomics

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in ferment

  11. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid

    Zhong; He; Xianqin; Wang

    2013-01-01

    The supported Pt catalysts(1 wt%)were prepared by the incipient impregnation method and analyzed using synchrotron-based X-ray diffraction,BET surface area,oxygen adsorption,CO pulse chemisorption,temperature-programmed desorption(TPD)of acetic acid,H2-TPD,NH3-TPD,O2-TPD,and H2-TPR.The reactivity of Pt-based catalysts was studied using a fixed bed reactor at 300 C and 4 MPa for hydrodeoxygenation of acetic acid,where Pt/TiO2 was very selective for ethane production.TPD experiments revealed that several conditions must be satisfied to achieve this high selectivity to ethane from acetic acid,such as Pt sites,moderate acidity,and medium metal-oxygen bond strength in the oxide support.This work provides insights in developing novel catalytic materials for hydrocarbon productions from various organics including bio-fuels.

  12. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  13. Ionic liquid mediated esterification of alcohol with acetic acid

    Beilei ZHOU; Yanxiong FANG; Hao GU; Saidan ZHANG; Baohua HUANG; Kun ZHANG

    2009-01-01

    Highly efficient esterification of alcohols with acetic acid by using a Bransted acidic ionic liquid, i.e., 1-methyl-2-pyrrolidonium hydrogen sulfate ([Hnmp]HSo4), as catalyst has been realized. The turnover numbers (TON) were able to reach up to 11000 and turnover frequency (TOF) was 846. The catalytic system is suitable for the esterification of long chain aliphatic alcohols, benzyl alcohol and cyclohexanol with good yields of esters. The procedure of separating the product and catalyst is simple, and the catalyst could be reused. [Hnmp]HSO4 had much weaker corrosiveness than H2SO4. The corrosive rate of H2SO4 was 400 times more than that of [Hnmp]HSO4 to stainless steel.

  14. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic and...

  15. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  16. Study on fluorescence spectra of molecular association of acetic acid-water

    Caiqin Han; Ying Liu; Yang Yang; Xiaowu Ni; Jian Lu; Xiaosen Luo

    2009-01-01

    Fluorescence spectra of acetic acid-water solution excited by ultraviolet (UV) light are studied, and the relationship between fluorescence spectra and molecular association of acetic acid is discussed. The results indicate that when the exciting light wavelength is longer than 246 nm, there are two fluorescence peaks located at 305 and 334 nm, respectively. By measuring the excitation spectra, the optimal wavelengths of the two fluorescence peaks are obtained, which are 258 and 284 nm, respectively. Fluorescence spectra of acetic acid-water solution change with concentrations, which is primarily attributed to changes of molecular association of acetic acid in aqueous solution. Through theoretical analysis, three variations of molecular association have been obtained in acetic acid-water solution, which are the hydrated monomers, the linear dimers, and the water separated dimers. This research can provide references to studies of molecular association of acetic acid-water, especially studies of hydrogen bonds.

  17. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. PMID:21316945

  18. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  19. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  20. Recovery of Ammonium Nitrate and Reusable Acetic Acid from Effluent Generated during HMX Production

    V. D. Raut; R. S. Khopade; M. V. Rajopadhye; V. L. Narasimhan

    2004-01-01

    Production of HMX on commercial scale is mainly carried out by modified Bachmann process, and acetic acid constitutes major portion of effluenttspent liquor produced during this process. The recovery of glacial acetic acid from this spent liquor is essential to make the process commercially viable besides making it eco-friendly by minimising the quantity of disposable effluent. The recovery of glacial acetic acid from spent liquor is not advisable by simple distillation since it contains, in ...

  1. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  2. Development of Acetic Acid Removal Technology for the UREX+Process

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  3. Development of Acetic Acid Removal Technology for the UREX+Process

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  4. [Removal of tattoos by CO2 laser and acetic acid].

    Di Quirico, R; Pallini, G; Di Domenicantonio, G; Astolfi, A; Bindi, F; Gianfelice, F

    1992-10-31

    The Authors pay attention to small tattoo removal by means of the utilization of the CO2 laser. Moreover, the Authors emphasize the drawback of double treatment which, usually, the patient suffers in tattoo removal by CO2 laser. Then, the pressure of the Authors is small sized tattoo removal in only one sitting achieving so an excellent esthetic result. Besides, the Authors, in this medical study, explains two methods for tattoo removal. In the study's results, the Authors describes the manner and the time of the two lesion recovery by the different manners of treatment. Finally, the Authors affirms the great consequence of the surgical CO2 laser, they don't fail, however, to affirm that the laser and acetic acid combination is an excellent procedure for small tattoo removal. PMID:1480288

  5. Freeze-drying of lactic acid bacteria.

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  6. Detection of CIN by naked eye visualization after application of acetic acid.

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries. PMID:9491668

  7. Inflammatory cells′ role in acetic acid-induced colitis

    Mohammad H Sanei

    2014-01-01

    Full Text Available Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD. Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1, ex vivo (group 3, and enema after immune suppression (group 5. Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H 2 O 2 , we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful.

  8. Food preservation using antifungal lactic acid bacteria

    Crowley, Sarah Catherine Mary

    2013-01-01

    Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spe...

  9. Recovery of Ammonium Nitrate and Reusable Acetic Acid from Effluent Generated during HMX Production

    V. D. Raut

    2004-04-01

    Full Text Available Production of HMX on commercial scale is mainly carried out by modified Bachmann process, and acetic acid constitutes major portion of effluenttspent liquor produced during this process. The recovery of glacial acetic acid from this spent liquor is essential to make the process commercially viable besides making it eco-friendly by minimising the quantity of disposable effluent. The recovery of glacial acetic acid from spent liquor is not advisable by simple distillation since it contains, in addition to acetic acid, a small fraction of nitric acid, traces of RDX, HMX, and undesired nitro compounds. The process normally involves neutralising the spent mother liquor with liquor ammonia and then distillating the ueutralised mother liquor under vacuum to recover dilute acetic acid (strength approx. 30 %. The dilute acetic acid, in turn, is concentrated to glacial acetic acid by counter current solvent extraction, followed by distillation. The process is very lengthy and the energy requirement is also veryhigh, rendering the process economically unviable. Hence, a novel method has been developed on bench-scale to obtain glacial acetic acid directly from the mother liquor after the second ageing process.

  10. Progress in Acetic Acid Industry%醋酸工业现状及发展

    李好管; 闫慧芳

    2001-01-01

    醋酸是用途最广泛的有机酸之一。分析了醋酸的生产和消费趋势;综述了醋酸工艺的进展;介绍了具有工业化前景或学术价值的醋酸合成新工艺的研究开发概况。对我国醋酸工业发展提出了建议。%Acetic acid is one of the organic acids which have many uses.This paper analyzed the production and consumption of acetic acid,summarized the progress of acetic acid technology,introduced the research and development of acetic acid new process.Some suggestions on China's acetic acid industry were also put forward.

  11. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately and...

  12. Fabrication of First Chinese Made Reactor for Oxosvnthesis of Acetic Acid in Xi'an

    2008-01-01

    @@ The first set of Chinese made reactor for oxo-synthesis of acetic acid has been fabricated by the Xi'an Nuclear Equipment Company,Ltd.This reactor has been transported to the site of equipment installation at the acetic acid production project owned by Shandong Yimeng Company,Ltd.,which has shattered the long-time precedent of relying upon imported equipment.

  13. Cervical cancer risk factors and feasibility of visual inspection with acetic acid screening in Sudan

    Ibrahim, Ahmed; Rasch, Vibeke; Pukkala, Eero;

    2011-01-01

    To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan.......To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan....

  14. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage

    Elena Gonzalez-Fandos

    2014-09-01

    Full Text Available This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v or distilled water (control. Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0, L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05 inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  15. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  16. Recovery of Dilute Acetic Acid by Catalytic Distillation Using NKC-9 as Catalyst

    ZHANG Zhigang; LI Xiaofeng; XU Shimin; LI Xingang

    2006-01-01

    The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 x 104 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optimal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15%-30% dilute acetic acid.

  17. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  18. Kinetics of reaction between acetic acid and Ag2+ in nitric acid medium

    The reaction kinetics between acetic acid and Ag2+ in nitric acid medium is studied by spectrophotometry. The effects of concentrations of acetic acid (HAc), H+, NO3- and temperature on the reaction are investigated. The rate equation has been determined to be -dc(Ag2+)/dt=kc(Ag2+)c(HAc)c-1(H+), where k = (610±15) (mol/L)-1·min-1 with an activation energy of about (48.8±3.5) kJ·mol-1 when the temperature is 25degC and the ionic strength is 4.0 mol/L. The reduction rate of Ag2+ increases with the increase of HAc concentration or temperature and the decrease of HNO3 concentration. However, the effect of NO3- concentrations on the reaction rate is negligible. (author)

  19. Bacteriocins produced by lactic acid bacteria: A review

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  20. Effect of ammonia on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82,163.03 and 228.24 g NH3-N/L)(Westerholm, et al., 2011; Satoshi, et al., 2000; Jacob, et al., 1997). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels...

  1. Metabolism of Flavone-8-acetic Acid in Mice.

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  2. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  3. IDENTIFICATION OF INDUSTRIALLY IMPORTANT LACTIC ACID BACTERIA IN FOODSTUFFS

    Prosekov, A.; Babich, O.; Bespomestnykh, K.

    2013-01-01

    Universal genus-specific primers for comparative analysis of two aligned 16S rRNA gene nucleotide sequences of lactic acid bacteria were constructed. The method to identify lactic acid bacteria and a comprehensive plan for their genus and species identification may be used to characterize isolated strains of the Lactobacillus genus bacteria and in quality control of foodstuffs enriched with Lactobacillus.

  4. The Effects of Lactic Acid Bacteria and Lactic Acid Bacteria+Enzyme Mixture Silage Inoculants on Maize Silage Fermentation and Nutrient Digestibility in Lambs

    M. L. Ozduven

    2005-01-01

    Full Text Available This study was carried out to determine the effects of lactic acid bacteria and lact ic acidbacteria+enzyme mixture inoculants as silage additives, on the fermentation, aerobic stability, cell wallcontent, and nutrient digestibility in lambs of maize silages. Pioneer 1174 (Iowa, USA, and Maize -All(Alltech, UK were used as lactic acid bacteria and lactic acid bacteria+enzyme mixture inoculants. Plantmaterials were fermented for 60 days in bunker type silos. Aerobic stability test was applied to all silosopened in the end of fermentation period. Relating to silage fermentation analysis of pH, ammonia nitrogen,water soluble carbohydrate, organic acids (lactic, acetic and butyric acid were carried out andmicrobiological analyses had been done. Digestional value of crude nutritive matters of silages determinedwith classical digestive experiments. Both inoculants increased characteristics of fermentation but impairedaerobic stability of maize silages. Inoculants were not effect on the nutritient digestibility of silages. Lacticacid bacteria+enzyme mixture inoculant decreased neutral and acid detergent fiber content.

  5. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  6. Effect of acetic acid on rice seeds coated with rice husk ash

    2013-01-01

    Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência), five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed) and five concentrations of acetic acid (0, 3,...

  7. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  9. Probiotic Lactic Acid Bacteria and Skin Health.

    Jeong, Ji Hye; Lee, Chang Y; Chung, Dae Kyun

    2016-10-25

    Human skin is the first defense barrier against the external environment, especially microbial pathogens and physical stimulation. Many studies on skin health with Lactic acid bacteria (LAB) have been published for many years, including prevention of skin disease and improvement of skin conditions. LAB, a major group of gram-positive bacteria, are known to be beneficial to human health by acting as probiotics. Recent studies have shown that LAB and their extracts have beneficial effects on maintenance and improvement of skin health. Oral administration of Lactobacillus delbrueckii inhibits the development of atopic disease. In addition, LAB and LAB extracts are known to have beneficial effects on intestinal diseases, with Lactobacillus plantarum having been shown to attenuate IL-10 deficient colitis. In addition to intestinal health, L. plantarum also has beneficial effects on skin. pLTA, which is lipoteichoic acid isolated from L. plantarum, has anti-photoaging effects on human skin cells by regulating the expression matrix meralloprotionase-1 (MMP-1) expression. While several studies have proposed a relationship between diseases of the skin and small intestines, there are currently no published reviews of the effects of LAB for skin health through regulation of intestinal conditions and the immune system. In this review, we discuss recent findings on the effects of LAB on skin health and its potential applications in beauty foods. PMID:26287529

  10. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  11. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.

    2011-02-15

    Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions [coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)] over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the “fines” fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.

  12. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

    2011-02-21

    Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

  13. Effects of acetlysalicylic acid with indole-3-acetic acid on rooting and pigmentation in Amygdalus L.

    Yiğit, Emel; Beker Akbulut, Gülçin

    2014-01-01

    Vegetative propagation is a key step, playing an important role in the succesful production of elite clones. The use of plant hormanes can increase the rroting capacity of cuttings. In this experiment, we investigated whether exogenously applied acetylsalicylic acid (ASA) with indole-3-acetic acit (IAA) (50, 100 mg/L) through the rooting medium could increase effects on Amygdalus spp or not. In the experiment, one year old semihardwood shootcuttings were used. The highest callus formation was...

  14. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    M Robinson; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture.

  15. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.

    Narendranath, N V; Thomas, K C; Ingledew, W M

    2001-03-01

    Specific growth rates (mu) of two strains of Saccharomyces cerevisiae decreased exponentially (R2 > 0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30 degrees C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05-0.1% w/v and lactic acid at concentrations of 0.2-0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30 degrees C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P < or = 0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. PMID:11420658

  16. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk;

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... The dehydrogenation experiments were carried out in a flow through lab scale tubular reactor. Based on 71 data sets a power law kinetic expression has been derived for the description of the dehydrogenation of acetaldehyde to acetic acid. The apparent reaction order was 0.89 with respect to water and...

  17. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  18. 5.3. The kinetics of acetic acid decomposition of calcined borosilicate concentrate

    Present article is devoted to kinetics of acetic acid decomposition of calcined borosilicate concentrate. The experimental data of kinetics of boron oxide extraction from the calcined danburite concentrate at acetic acid decomposition was obtained at 30-90 deg C temperature ranges and 15-60 minutes process duration. It was defined that at temperature increasing the extraction rate of boron oxide from the calcined danburite concentrate significantly increases. The influence of extraction rate of boron oxide on process duration at acetic acid decomposition was studied.

  19. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites. PMID:26754813

  20. Electrochemical evaluation of the inhibitory effects of acetic acid on Saccharomyces cerevisiae

    Yuan Zhenhong; Zhao Jinsheng; Yan Yongjie; Yang Zhengyu

    2006-01-01

    A mediated electrochemical method was proposed for toxic evaluation of acetic acid on S. cerevisiae AS.380, and menadione/ferricyanide was chosen as the mediator system. The variance in electrochemical response in the absence and presence of increasing concentrations of acetic acid were used to indicate the inhibitory effects of weak acid on the yeast. The inhibitory effects of acetic acid on glucose consumption during menadione mediated reduction of ferricyanide were also measured for comparison purpose. The relative limiting current and the glucose consumption were reduced by 64.5 % and 61%, respectively, in the presence of 4g/L acetic acid at pH 4.0. The results showed that the electrochemical method can provide us with an appropriate and convenient tool for cytotoxic evaluation.

  1. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite

    Ferreira, P; Fonseca, I.; Ramos, A.; Vital, J; Castanheiro, Jose

    2009-01-01

    The esterification of glycerol with acetic acid was carried out over dodecamolybdophosphoric acid (PMo) encaged in the USY zeolite. The products of glycerol acetylation were monoacetin, diacetin and triacetin. A series of PMo encaged in the NaUSY zeolite with different PMo loading from 0.6 to 5.4 wt.% were prepared. It was observed that the catalytic activity increases with the amount of PMo immobilized in the NaUSY zeolite, being the PMo3_NaUSY (with 1.9 wt.%) the most active sample...

  2. Functional genomics of lactic acid bacteria: from food to health

    Douillard, F.P.; Vos, de, W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumen...

  3. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  4. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  5. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Octavian BASTON; Oana Emilia CONSTANTIN

    2012-01-01

    Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regardi...

  6. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  7. Synthesis of 2-(Benzodioxol-2-yl)acetic Acids as PPARδ Agonists

    Jian Lei KANG; Zhi Bing ZHENG; Dan QIN; Li Li WANG; Song LI

    2006-01-01

    A new series of compounds, 2-(benzodioxol-2-yl)acetic acids, have been synthesized. Their structures were confirmed by MS and 1H-NMR. The preliminary pharmacological screening showed that these compounds exhibited potent human PPARδ agonist activities.

  8. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  9. Bioproduction of usnic acid from acetate by kaolinite immobilized cells of Cladonia substellata Vain.

    Eugenia C. Pereira

    2014-02-01

    Full Text Available Cells of the lichen Cladonia substellata, immobilized in kaolinite and supplied with acetate, produce at room temperature large amounts of usnic acid which can be recovered from the washing solution.

  10. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease

    Dryahina, Kseniya; Pospíšilová, Veronika; Sovová, Kristýna; Shestivska, Violetta; Kubišta, Jiří; Spesyvyi, Anatolii; Pehal, F.; Turzíková, J.; Votruba, J.; Španěl, Patrik

    2014-01-01

    Roč. 8, č. 3 (2014), 037109. ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : SIFT-MS * gastro-esophageal reflux * acetic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  11. Towards lactic acid bacteria-based biorefineries.

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  12. SINOPEC,BP TO LAUNCH ACETIC ACID JOINT VENTURE IN NANJING

    2005-01-01

    @@ Sinopec Corp and BP signed a 50%-50% joint venture contract on March 15 to build a world-class 500,000-ton acetic acid plant in Nanjing, the capital of East China's Jiangsu Province. The joint venture, which is expected to be on stream in the second half of 2007,will adopt BP's world leading CativaR technology to make this project become a acetic acid production base with great competitiveness.

  13. KINETIC OF ESTERIFICATION OF ETHYL ALCOHOL BY ACETIC ACID ON A CATALYTIC RESIN

    Erol İNCE

    2002-01-01

    Full Text Available The conversion kinetics of diluted acetic acid to ethyl acetate by ethanol esterification in a batch reactor in liquid phase with an acidic polymer catalyst (lewatit series was studied. The intrinsic rate constants have been correlated with the reaction temperature, concentration of catalyst, initial ratios of reactants and initial water concentrations. The kinetic analysis was restricted to the system at hand in which a liquid and vapor phase are at equilibrium.

  14. KINETIC OF ESTERIFICATION OF ETHYL ALCOHOL BY ACETIC ACID ON A CATALYTIC RESIN

    Erol İNCE

    2002-01-01

    The conversion kinetics of diluted acetic acid to ethyl acetate by ethanol esterification in a batch reactor in liquid phase with an acidic polymer catalyst (lewatit series) was studied. The intrinsic rate constants have been correlated with the reaction temperature, concentration of catalyst, initial ratios of reactants and initial water concentrations. The kinetic analysis was restricted to the system at hand in which a liquid and vapor phase are at equilibrium.

  15. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid

    Youssef A. Attia

    2013-04-01

    Full Text Available In order to evaluate the effect of acetic acid on growing and laying performance of Japanese Quail (JQ, 180 15-day-old JQ were divided into 4 groups. During the growing (15-42 days of age and laying (43-84 days of age periods, the groups fed the same basal diets supplemented with 0, 1.5, 3 and 6% of acetic acid. Each diet was fed to five replicates of 9 JQ (3 males:6 females during the growing period. During the laying period, 128 birds were housed in 32 cages (4 birds per cage, 1 male and 3 females, 8 replicates per treatment. Birds were housed in wire cages (46L×43W×20H cm in an open room. Acetic acid supplementation at 3% in the diets significantly increased the growth and laying rate and the Haugh unit score. The liver percentage significantly decreased with acetic acid at 6%. Acetic acid at 3% significantly increased hemoglobin concentrations at 6 weeks of age and increased weight of day old chicks hatched. Acetic acid affected the immune system as manifested by an excess of cellular reactions in the intestine as well as lymphoid hyperplasia in the spleen tissue. Degenerative changes in the covering epithelium of the intestinal villi were noted at the 6% concentration of acetic acid. Hepatocyte vacuolation and fatty changes were also observed at this concentration of treatment. In conclusion, 3% acetic acid may be used as a feed supplement for JQ during the growing and laying period to improve the productive performance.

  16. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... metabolites produced. Besides diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....... for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strains, and in addition, isolation and identification of various antifungal metabolites produced by...

  17. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum

    Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. The authors found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid

  18. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    Päivi Ylitervo

    2014-07-01

    Full Text Available The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1 and very high (100–200 g·L−1 yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.

  19. Stress Physiology of Lactic Acid Bacteria.

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  20. Production of acetic from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    Umar, J.M. [National Atomic Energy Agency, Jakarta (Indonesia). Center for Application of Isotopes and Radiation; Matsuhashi, Shinpei; Hashimoto, Shoji

    1996-03-01

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author).

  1. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870. ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  2. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria†

    Kaplan, Handan; Hutkins, Robert W.

    2000-01-01

    Lactic acid bacteria and bifidobacteria were screened of their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS.

  3. Functional genomics of lactic acid bacteria: from food to health

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria a

  4. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  5. Antibiotic resistance of lactic acid bacteria

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  6. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz;

    2015-01-01

    containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller...

  7. Formic and acetic acid: Valence threshold photoelectron and photoionisation total ion yield studies

    Highlights: ► High-resolution threshold photoelectron spectrum of formic acid. ► High-resolution total photo-ion yield spectrum of formic acid. ► High-resolution threshold photoelectron spectrum of acetic acid. ► High-resolution total photo-ion yield spectrum of acetic acid. -- Abstract: The carboxylic acids (formic and acetic) have been studied using threshold photoelectron (TPE) and total photoion yield (TPIY) spectroscopies; simultaneously obtained spectra of formic acid (HCOOH) were recorded over the entire valence ionisation region from 11–21 eV at a resolution of ∼12 meV. Higher resolution spectra (∼6 meV) were also obtained in the energy region of the lowest two cationic states. Analysis of the TPE spectrum in this energy range agreed very favorably with the best available conventional photoelectron (PE) spectrum of formic acid. Autoionising Rydberg structure was observed in the TPIY spectrum of formic acid and is attributed primarily to the presence of the npa′ ← 8a′ Rydberg series converging on to the 32A′ ionic state of formic acid. Preliminary results, at a resolution of ∼8 meV, were obtained for acetic acid (CH3COOH) over the onset of the ionisation energy region. The TPE spectrum was found to be very similar to the best published photoelectron spectrum, but no Rydberg structure was observed in the TPIY spectrum.

  8. Effect of acetic acid on rice seeds coated with rice husk ash

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  9. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims at...... describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...... bacterial stimulation. Methods: CD3-CD56+ NK cells were isolated from buffy coats by negative isolation using a lineage specific antibody cocktail and magnetic beads binding the labelling antibodies on non-NK cells. NK cells were incubated either with 10 microg/ml UV-inactivated lactic acid bacteria or 10...

  10. COMPARISON OF OCCURENCE LACTIC ACID BACTERIA IN CHOSEN YOGURTS

    Silvia Pinterová

    2010-11-01

    Full Text Available The yogurt is healthy food, which contains at least 100 million cultures per gram. Probiotic bacteria have been proven to reduce the effects of some gastrointestinal problems, probiotics can greatly reduce lactose intolerance, have also been proven to prevent colon cancers, there are also a natural immune system booster. In our research we detected numbers of lactid acid bacteria in yogurts in slovak market. There were classical yogurts, yogurts with probiotics, yogurts with fat and non fat. We numbered lactid acid bacteria from and after expiration, in agars MRS and Lee´s. In examined yogurts we detected from expiration from 78.107  to 169.107  and after expiration from 59.107 to 133.107 lactic acid bacteria in 1 ml of yogurt. In agreement with Food Codex of SR (2010 of rules all these yogurts satisfy number of lactid acid bacteria. doi:10.5219/31

  11. The impact of lactic acid bacteria on sourdough fermentation

    Savić Dragiša S.; Joković Nataša

    2005-01-01

    The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable...

  12. Large prebiotic molecules in space: photo-physics of acetic acid and its isomers

    Puletti, Fabrizio; Mulas, Giacomo; Cecchi-Pestellini, Cesare

    2009-01-01

    An increasing number of large molecules have been positively identified in space. Many of these molecules are of biological interest and thus provide insight into prebiotic organic chemistry in the protoplanetary nebula. Among these molecules, acetic acid is of particular importance due to its structural proximity to glycine, the simplest amino acid. We compute electronic and vibrational properties of acetic acid and its isomers, methyl formate and glycolaldehyde, using density functional theory. From computed photo-absorption cross-sections, we obtain the corresponding photo-absorption rates for solar radiation at 1 AU and find them in good agreement with previous estimates. We also discuss glycolaldehyde diffuse emission in Sgr B2(N), as opposite to emissions from methyl formate and acetic acid that appear to be concentrate in the compact region Sgr B2(N-LMH).

  13. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In2O3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  14. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  15. Selectivity of colour reactions between elements and organic reagents in organo-aqueous acetic acid media

    Reasons, responsible for selectivity of photometric reactions in organo-aqueous acetic acid media, have been studied taking aluminium, gallium, and indium reactions as examples. Solution-and paper electrophoresis as well as distribution chromatography were used to examine the state of the elements in various media, including those for most selective determination of aluminium in the presence of gallium and indium. A high selectivity is due to the formation of an electrically neutral species of aluminium. And chloride complexes of gallium and indium in organo-aqueous acetic acid media. Coloured ternary complexes of aluminium with organic reagents and phosphoric acid are formed in the presence of the latter

  16. Colour reactions of aluminium, titanium and other elements in organo-aqueous media containing acetic acid

    Colour reactions of titanium, aluminium, gallium, and indium in water-organic media, which also contain organic acids (acetic, formic, or their mixtures with acetone and propanol) are considered with the aim of using them in photometric methods for determining these elements. The reactants used were 2.7-bisazosubstituted components of chromotropic acid. It was established that the rate of development of colouring, the contrast and selectivity increase in water-organic media as compared with aqueous solutions. A favourable effect of acetic acid on the development of colour reactions is noted

  17. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  18. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.

    Yukphan, Pattaraporn; Potacharoen, Wanchern; Tanasupawat, Somboon; Tanticharoen, Morakot; Yamada, Yuzo

    2004-03-01

    Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60.2-60.5 mol% G+C, with a range of 0.3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q(10). On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08(T) (=BCC 12978(T)=TISTR 1524(T)=NBRC 100057(T)=NRIC 0535(T)), which had a DNA G+C content of 60.3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand. PMID:15023938

  19. Impact of acetic acid concentration of fermented liquid feed on growth performance of piglets

    Canibe, Nuria; Pedersen, Anni Øyan; Jensen, Bent Borg

    2010-01-01

    acid in FLF on feed intake of weaners. Three experimental FLF diets were prepared to contain varying levels of acetic acid (30, 60, and 120 mM). Twenty piglets per treatment, weaned at 4 weeks of age and housed individually, were fed the experimental diets during six weeks starting at weaning. Feed...

  20. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  1. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS and...... liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors was not...... covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used. As...

  2. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  3. The influence of stress conditions on the growth of selected lactic acid bacteria

    A study was undertaken to determine the effects of certain stress conditions on selected lactic acid bacteria. Where recontamination occurred, lactic acid bacteria was already the dominant bacterial group, with counts of higher than 106/g in vacuum-packaged 'shelf stable' meat products after 1 week storage at 25 and 37 degrees Celsius respectively. Some of the isolates were capable of growing at a pH of 3,9. The minimum pH for growth of a specific culture was dependant on the type of acid that was used to lower the pH. Lactic and acetic acid had the highest inhibitory action. Hydrochloric and citric acid showed similar inhibitory effects, while the effects when using ascorbic acid or gluconic acid for lowering the pH were also fairly similar. Increase in the activity of certain lactic acid bacteria was noticed where the ratio of undissociated to dissociated citric acid in the medium was increased. After exceeding a concentration of 0,048 moles/l undissosiated citric acid in the medium, the activity of the majority of cultures was progressively inhibited. This phenomenon was also found with acetic acid for certain cultures. Selected lactic acid bacteria were resistant to an water activity (a (sub w)) of 0,94 in MRS broth, where NaCl or glycerol was used as a humectant. The minimum a (sub w) for growth was dependent on the type of humectant used. Concentrations of sodium benzoate and potassium sorbate were necessary to inhibit the majority of strains. The % inhibition by sodium benzoate and methyl paraben did not significantly change with a lowering in the pH of the growth medium. Except in the case of lactic acid, the different acids used to lower the pH of the medium did not have a significant effect on the % inhibition by the chemical preservatives. For the cocci, gamma D10 values of between 0,82 and 1,29 kGy were recorded, whereas the lactobacilli were less resistant to gamma rays, with D10 values of between 0,21 and 0,54 kGy

  4. Quorum sensing mechanism in lactic acid bacteria

    Hatice Yılmaz - Yıldıran; Aynur Gül Karahan; Gülden Başyiğit - Kılıç

    2015-01-01

    For a long time, microorganisms were considered as just multiplying, finding nutrients and living by themselves organisms. But that belief changed 50 years ago along with the discovery of bacteria communication with each other and environment by microbiologists. The language used in the communication consists of signal molecules and these molecules are generally called 'auto inducer'. Bacteria are capable of measuring density of these molecules and by this way they are able to detect amoun...

  5. Factors involved in the anti-cancer activity of the investigational agents LM985 (flavone acetic acid ester) and LM975 (flavone acetic acid).

    Bibby, M. C.; Double, J A; Phillips, R. M.; Loadman, P.M.

    1987-01-01

    LM985 has been shown previously to hydrolyse to flavone acetic acid (LM975) in mouse plasma and to produce significant anti-tumour effects in transplantable mouse colon tumours (MAC). It has undergone Phase I clinical trials and dose limiting toxicity was acute reversible hypotension. Substantially higher doses of LM975 can be given clinically without dose limiting toxicity. We have investigated the activity of LM975 against a panel of MAC tumours and also the in vitro cytotoxicity of both LM...

  6. Interaction of neptunium with humic acid and anaerobic bacteria

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  7. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  8. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  9. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  10. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  11. Production of Value-added Products by Lactic Acid Bacteria

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  12. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites. PMID:21567472

  13. Inhibition of seafood-borne bacteria in cooked mackerel (Rastrelliger kanagurta) fish meat by lactic acid bacteria

    Kanappan, S.; G. Gopikrishna

    2008-01-01

    Antagonistic activity of lactic acid bacteria (LAB) namely Streptococcus faecalis, Pediococcus cerevisiae and Lactobacillus casei was tested against seafood-borne bacteria such as Staphylococcus aureus, Bacillus cereus, Escherichia coli, Clostridium perfringens and Listeria monocytogenes. Three lactic acid bacteria such as Streptococcus faecalis, Lactobacillus casei and Pediococcus cerevisiae were coated on cooked mackerel meat, individually and in combination against fish-borne bacteria. S. ...

  14. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine

    Rasrendra, C. B.; Girisuta, B.; van de Bovenkamp, H. H.; Winkelman, J. G. M.; Leijenhorst, E. J.; Venderbosch, R. H.; Windt, M.; Meier, D.; Heeres, H. J.

    2011-01-01

    The application of reactive extraction to isolate organic acids, particularly acetic acid, from the aqueous stream of phase splitted pyrolysis oil using a long chain aliphatic tertiary amine is reported. Acetic acid recovery was optimized by selecting the proper amine and diluent combination and adj

  15. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  16. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  17. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  18. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  19. Cell wall structure and function in lactic acid bacteria

    Kulakauskas, Saulius

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionall...

  20. Controlled overproduction of proteins by lactic acid bacteria

    Kuipers, Oscar P; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; de Vos, Willem M

    1997-01-01

    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable protein by lactic acid bacteria. Some systems benefit from the fact that the expression vectors, marker genes and inducing factors can be used directly in food applications since they are all derived ...

  1. Flow cytometric assessment of viability of lactic acid bacteria

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F. M.; Abee, T

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcu...

  2. Improving cyclodextrin complexation of a new antihepatitis drug with glacial acetic acid

    Johnson, Jennifer L. H.; He, Yan; Jain, Akash; Yalkowsky, Samuel H.

    2006-01-01

    The purpose of this study was to develop and evaluate a solid nonaqueous oral dosage form for a new hepatitis C drug, PG301029, which is insoluble and unstable in water. Hydroxypropyl-β-cyclodextrin (HPβCD) and PG301029 were dissolved in glacial acetic acid. The acetic acid was removed by rotoevaporation such that the drug exists primarily in the complexed form. The stability of formulated PG301029 was determined upon dry storage and after reconstitution in simulated intestinal fluid (SIF), s...

  3. THE EFFECTS OF ANIMAL AGE AND ACETIC ACID CONCENTRATION ON PIGSKIN GELATIN CHARACTERISTICS

    Y. Pranoto; A. Pertiwiningrum; Triatmojo, S.; M. Sompie

    2012-01-01

    This research was aimed to study the influence of animal age and concentration of the acetic acid solution on physical and chemical properties of pigskin gelatin. The experiment used Completely Randomized Design (CRD) with two factors. The first factor was animal age consisted of 3 levels (5, 7 and 9 months). The second factor was concentration of acetic acid solution consisted of 3 levels (2, 4 and 6 percents). The result showed that animal age had significant effect (P0.05) on the yields,...

  4. Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V.

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH re...

  5. Reaction Kinetics Between Acetic Acid and Ag2+

    2008-01-01

    <正>The application of the salt-free reagents in the spent fuel reprocessing process has been investigated so much in the last years. Preferable result was obtained in the application of acetohydroxamic acid in the

  6. The impact of lactic acid bacteria on sourdough fermentation

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  7. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  8. KRAFT MILL BIOREFINERY TO PRODUCE ACETIC ACID AND ETHANOL: TECHNICAL ECONOMIC ANALYSIS

    Haibo Mao

    2010-05-01

    Full Text Available The “near neutral hemicellulose extraction process” involves extraction of hemicellulose using green liquor prior to kraft pulping. Ancillary unit operations include hydrolysis of the extracted carbohydrates using sulfuric acid, removal of extracted lignin, liquid-liquid extraction of acetic acid, liming followed by separation of gypsum, fermentation of C5 and C6 sugars, and upgrading the acetic acid and ethanol products by distillation. The process described here is a variant of the “near neutral hemicellulose extraction process” that uses the minimal amount of green liquor to maximize sugar production while still maintaining the strength quality of the final kraft pulp. Production rates vary between 2.4 to 6.6 million gallons per year of acetic acid and 1.0 and 5.6 million gallons per year of ethanol, depending upon the pulp production rate. The discounted cash flow rate of return for the process is a strong function of plant size, and the capital investment depends on the complexity of the process. For a 1,000 ton per day pulp mill, the production cost for ethanol was estimated to vary between $1.63 and $2.07/gallon, and for acetic acid between $1.98 and $2.75 per gallon depending upon the capital equipment requirements for the new process. To make the process economically attractive, for smaller mill sizes the processing must be simplified to facilitate reductions in capital cost.

  9. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  11. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Lina Lindberg

    Full Text Available When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D and Zygosaccharomyces bailii (CBS7555 cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP2C 2.2× and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP2C 2.7×, when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to

  12. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method

  13. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study

    Sedira, Sofiane, E-mail: sofianebilel@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Ayachi, Ahmed Abdelhakim, E-mail: ayachi-med@hotmail.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Lakehal, Sihem, E-mail: lakehal.lakehal@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Fateh, Merouane, E-mail: merouane.fateh@gmail.com [Microbiological Laboratory Engineering and Application, University of Constantine1, Constantine (Algeria); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria)

    2014-08-30

    Graphical abstract: - Highlights: • Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method. • Ag NPs exert their bactericidal effect mainly by Ag{sup +} ions. • CH{sub 3}COOH addition to Ag NPs improves bactericidal effect more than ZnO Qds addition. • E. coli and P. aeruginosa are more sensitive to NPs than K. pneumonia and S. aureus. - Abstract: Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag{sup +}. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag{sup +} release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV–vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM)

  14. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  15. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  16. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    F. Paulot

    2010-10-01

    Full Text Available We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  17. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William;

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  18. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    2010-07-14

    ... Register of November 19, 2008, (FR 69635) (FRL- 8389-6), EPA issued a notice pursuant to section 408(d)(3... as alcoholic beverage undergo fermentation. Acetic acid has been used as a food additive in most... a final rule dated August 3, 2005, (70 FR 44483) (FRL-7717-2), EPA established an exemption from...

  19. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    Aditi Narendra Borkar

    Full Text Available Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  20. Stability of cadmium complex with octaphenyltetrazaporphin and its solvoprotolytic dissociation in pyridine-acetic acid medium

    Berezin, B.D.; Khelevina, O.G. (Ivanovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1982-01-01

    Solvoprotolytic dissociation of octaphenyltetrazaporphin cadmium complex in acetic acid solutions in pyridine is investigated. It is stated that its dissociation is obeyed submitted the first order by the complex and the second order by solvated proton. Comparison with cadmium complexes of other porphyrins is carried out.

  1. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  2. Ultrastructure of sheep primordial follicles cultured in the presence of indol acetic acid, EGF, and FSH

    Andrade, Evelyn Rabelo; Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz;

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured in ...

  3. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  4. Making More of Milk Sugar by Engineering Lactic Acid Bacteria

    Vos, Willem M. de; Hols, Pascal; Kranenburg, Richard van; Luesink, Evert; Kuipers, Oscar P.; Oost, John van der; Kleerebezem, Michiel; Hugenholtz, Jeroen

    1998-01-01

    By exploiting their genetic and metabolic capacity, lactic acid bacteria can be used to generate a variety of products from milk sugar lactose other than the archetypical lactic acid. This review will outline the different genetic and metabolic engineering strategies that can be applied to lactic ac

  5. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  6. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  7. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  8. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    Lyndon Jones

    2012-01-01

    Full Text Available Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials.

  9. PREPARATION AND CHARACTERIZATION OF ACETIC ACID LIGNIN-BASED EPOXY BLENDS

    Fangeng Chen,; Pan Feng

    2012-01-01

    Lignin-based epoxy resin (LER) was prepared from phenolated lignin (PL) and epichlorohydrin (ECH) in the presence of sodium hydroxide. The eucalyptus acetic acid lignin (AAL) was first reacted with phenol in the presence of sulfuric acid to obtain PL. Then, PL was reacted with ECH in aqueous sodium hydroxide to obtain LER. LER was mixed with diglycidyl ether of bisphenol A (E-44) and then cured with triethylenetetramine (TETA). The initial thermal degradation temperature (Td) of the cured epo...

  10. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    Keene, William C; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold; Castro, Mark; Farmer, J. Carl; Galloway, James N.; Hoffmann, Michael R.; Li, Shao-Meng; Maben, John R.; Munger, J. William; Norton, Richard B.; Pszenny, Alexander A. P.; Puxbaum, Hans

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH_3COOH) were intercompared in central Virginia. HCOOH and CH_3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH impregnated quartz filters, K_2CO_3 and Na_2CO_3 impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters usi...

  11. THE STUDY OF HENNA LEAVES EXTRACT AS GREEN CORROSION INHIBITOR FOR MILD STEEL IN ACETIC ACID.

    H. G. Chaudhari; R. T. Vashi

    2016-01-01

    The inhibitive action of henna leaves extract on mild steel in acetic acid solution have been investigated by weight-loss, A C impedence and potentiodynamic polarization measurements. The study indicates that as acid concentration increases corrosion rate increases. The corrosion inhibition efficiency increases with increase in concentration of extract. The result obtained revealed that henna leaves extract act as efficient inhibitor. The adsorption of the henna leaves extract obeyed Langmuir...

  12. Computational and comparative investigations of syntrophic acetate-oxidising bacteria (SAOB)

    Manzoor, Shahid

    2014-01-01

    Today's main energy sources are the fossil fuels petroleum, coal and natural gas, which are depleting rapidly and are major contributors to global warming. Methane is produced during anaerobic biodegradation of wastes and residues and can serve as an alternative energy source with reduced greenhouse gas emissions. In the anaerobic biodegradation process acetate is a major precursor and degradation can occur through two different pathways: aceticlastic methanogenesis and syntrop...

  13. PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS

    SHEN Zhiquan; ZHANG Fuyao; ZHANG Yifeng

    1995-01-01

    Pervaporation separation of water-acetic acid mixtures through Poly (AN-co-AA)membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.

  14. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  15. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi

    Trias Mansilla, Rosalia; Bañeras Vives, Lluís; Montesinos Seguí, Emilio; Badosa Romañó, Esther

    2008-01-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibit...

  16. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general knowledge in the area of amino acid metabolism. The three well-known lactic acid bacteria that were used in these studies...

  17. Fatty acid composition of cream fermented by probiotic bacteria

    Lutfiye Yilmaz-Ersan

    2013-01-01

    The production of fatty acids in cream containing one of the three probiotic microorganisms (Bifidobacterium lactis, Lactobacillus acidophilus and Lactobacillus rhamnosus) was evaluated at 4±1 °C for up to 15 days. Gas chromatographic analysis of the fatty acid content showed that during storage the amount of linoleic and α-linolenic acids increased in the probiotic cream fermented with B. lactis compared to the control cream. Probiotic bacteria were all associated with increases in medium ch...

  18. Food-grade Selection Markers in Lactic Acid Bacteria

    Song He; Fanghong Gong; Ya'nan Guo; Dechun Zhang.

    2012-01-01

    Lactic acid bacteria (LAB) are generally regarded as safe (GRAS) microorganisms and widely used in industry and medicine. We are trying to add additional properties to them by gene engineering. However, the genetically modified bacteria are not acceptable to use in food and medicine due to the presence of antibiotic resistance genes in plasmids. Thus, it is necessary to develop food-grade selection markers. Food-grade markers can be divided into three classes based on their selected character...

  19. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  20. Improvement in ionic conductivities of poly-(2-vinylpyridine) by treatment with crotonic acid and vinyl acetic acid

    Anna Gogoi; Neelotpal Sen Sarma

    2015-06-01

    The synthesis, characterization and improved ionic conductivities of the salts of poly-(2-vinylpyridine) with crotonic acid and vinyl acetic acid are reported here. In this study, the alternating current conductivity measurements were carried out within the temperature range of 30–90° C and the frequency range of 1 Hz–100 kHz in solid state. A two- to three-fold increase in conductivity was observed for vinyl acetic acid salt whereas one- to twofold increase was observed for crotonic acid salt. The ionic transport numbers of the salts were measured with the help of the Wagner polarization technique which reveals that the percentage of ionic character of the salts are significantly higher compared with the polymer. The percentage of water uptake by the polymer and its salts were also observed.

  1. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  2. Depressing effect of phenoxyl acetic acids on flotation of minerals containing Ca2+/Mg2+ gangues

    2007-01-01

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite,mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl cellulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  3. Biodiesel Production Using Supercritical Methanol with Carbon Dioxide and Acetic Acid

    Chao-Yi Wei

    2013-01-01

    Full Text Available Transesterification of oils and lipids in supercritical methanol is commonly carried out in the absence of a catalyst. In this work, supercritical methanol, carbon dioxide, and acetic acid were used to produce biodiesel from soybean oil. Supercritical carbon dioxide was added to reduce the reaction temperature and increase the fats dissolved in the reaction medium. Acetic acid was added to reduce the glycerol byproduct and increase the hydrolysis of fatty acids. The Taguchi method was used to identify optimal conditions in the biodiesel production process. With an optimal reaction temperature of 280°C, a methanol-to-oil ratio of 60, and an acetic acid-to-oil ratio of 3, a 97.83% yield of fatty acid methyl esters (FAMEs was observed after 90 min at a reaction pressure of 20 MPa. While the common approach to biodiesel production results in a glycerol byproduct of about 10% of the yield, the practices reported in this research can reduce the glycerol byproduct by 30.2% and thereby meet international standards requiring a FAME content of >96%.

  4. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  5. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal;

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including the...... interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods for...... manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  6. Possibility of formic and acetic acids as active substrates for methanogenesis in the groundwater in Horonobe, Hokkaido

    Groundwater samples in Horonobe district, Hokkaido, were analyzed to evaluate the possibility that formic and acetic acids are active substrates for methanogens in Quaternary and Neogene (Koetoi formation) formations. ΔGr corresponding to CH4-producing reactions indicates that both acids could be active substrates in almost all sampling locations. However, acetic acid was recognized to be an active substrate only in the Koetoi formation on the basis of the principle of competitive exclusion (CE) of microorganisms. The limited possibility by the CE principle suggests that dynamic equilibrium between substrate production rates and consumption rates is established only in the Koetoi formation for acetic acid. (author)

  7. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  8. ldentification and Mutagenesis of Lactic Acid Bacteria from Chinese Sauerkraut

    Yajing CHAl; Hao SHl; Ri NA

    2015-01-01

    ln order to analyze the fermentation properties of lactic acid bacteria in Chinese sauerkraut and to improve acid production, 21 samples of Chinese sauerkraut from lnner Mongolia and Northeast China were col ected and isolated with a Man-Rogosa-Sharpe (MRS) culture. Sixteen strains of lactic acid bacteria were identified by combining both phenotype and genotype methods. After activation, the 16 strains were inoculated into the MRS medium with a concentration of 4%and then incubated at 37 ℃. The pH and the absorbance of the culture were mea-sured. The activated strains were then mutagenized in a field of 4 KV/cm mutation, with dosages administered within 20 minutes and 30 minutes, respectively. The variation curves of the pH and the absorbance of the culture were determined. The experimental results showed that the lactic acid bacteria isolated from the soup were identified as Lactobacil us and the acid production of the bacteria was signifi-cantly improved by the mutagenesis of the corona electric field.

  9. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  10. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  11. AN EXPLORATORY STUDY ON THE REMOVAL OF ACETIC AND FORMIC ACIDS FROM BIO-OIL

    Badmakhand Sukhbaatar

    Full Text Available Bio-oil produced from fast pyrolysis of biomass contains various levels of acetic and formic acids derived from breakdown of cellulose and hemi-cellulose components. Removal of these organic acids from bio-oil was investigated for use as industrial chemicals as well as to improve the quality of recovered bio-oil as fuel in various applications. Calcium oxide and a quaternary ammonium anion-exchange resin were used to form acid salts of the organic acids, which were then separated, and the organic acids were generated by reacting with sulfuric acid. Both methods were found to be effective in limited ways and various difficulties encountered in this approach are discussed.

  12. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    Sha, Sheng-Chun; Zhang, Jiadi; Walsh, Patrick J.

    2015-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described.

  13. Analysis of Indole-3-Acetic Acid and Related Indoles in Culture Medium from Azospirillum lipoferum and Azospirillum brasilense

    Crozier, Alan; Arruda, Paulo; Janie M Jasmim; Monteiro, Ana Maria; Sandberg, Göran

    1988-01-01

    Analysis of neutral and acidic ethyl acetate extracts from culture medium of Azospirillum brasilense 703Ebc by high-performance liquid chromatography (HPLC) and combined gas chromatography-mass spectrometry demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol, indole-3-methanol, and indole-3-lactic acid. IAA in media of 20 strains of A. brasilense and Azospirillum lipoferum was analyzed quantitatively by both the colorimetric Salkowski assay and HPLC-based isotopic diluti...

  14. The influence of Ni loading on coke formation in steam reforming of acetic acid

    An, Lu; Dong, Changqing; Yang, Yongping; Zhang, Junjiao; He, Lei [National Engineering Laboratory of Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206 (China)

    2011-03-15

    Steam reforming of acetic acid on Ni/{gamma}-Al{sub 2}O{sub 3} with different nickel loading for hydrogen production was investigated in a tubular reactor at 600 C, 1 atm, H2O/HAc = 4, and WHSV = 5.01 g-acetic acid/g-cata.h{sup -1}. The catalysts were characterized by temperature programmed oxidation (TPO) and differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that the amount of deposited carbidic-like carbon decreased and graphitic-like carbon increased with Ni loading increasing from 9 to 15 wt%. The Ni/{gamma}-Al{sub 2}O{sub 3} catalyst with 12 wt% Ni loading had higher catalytic activity and lower coke deposited rate. (author)

  15. Synthesis of 2, 4-- dichloro phenoxy acetic acid [ Carboxy- 14 C] as herbicide

    One of the important herbicide, that can be used for the practical mechanism investigations and studies of metabolism functions of different plants is 2,4 dichlorophenoxy acetic acid compound. In this article, the production method for labeling the titled compound is explained. At the first stage of this research work, barium[14C] carbonate is converted into potassium [14C] by using potassium azid at a reasonable temperature. Then, after a few synthesis reaction, the compound 2,4 dichlorophenoxy methyl iodide is produced via 2,4 dichlorophenoxy as a starting material. At the next stage, the real material as a herbicide: 2,4 dichlorophenoxy acetic acid [carboxy- 14C] is prepared and produced, by the coupling reaction between 2,4 dichlorophenoxy methyl iodide and potassium [14C] cyanide, and then the resulting nitrile has been hydrolyzed

  16. Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria

    Haskard, Carolyn A.; El-Nezami, Hani S.; Kankaanpää, Pasi E.; Salminen, Seppo; Ahokas, Jorma T.

    2001-01-01

    Specific lactic acid bacterial strains remove toxins from liquid media by physical binding. The stability of the aflatoxin B1 complexes formed with 12 bacterial strains in both viable and nonviable (heat- or acid-treated) forms was assessed by repetitive aqueous extraction. By the fifth extraction, up to 71% of the total aflatoxin B1 remained bound. Nonviable bacteria retained the highest amount of aflatoxin B1. Lactobacillus rhamnosus strain GG (ATCC 53103) and L. rhamnosus strain LC-705 (DS...

  17. Unique chemosensitivity of MAC 16 tumours to flavone acetic acid (LM975, NSC 347512).

    Bibby, M. C.; Double, J A; Loadman, P.M.

    1988-01-01

    MAC 16 is one of a series of mouse colon tumours originally induced by dimethylhydrazine. It is a relatively slow growing subcutaneous adenocarcinoma which becomes necrotic as it grows and causes severe body wasting in the host. This study has indicated that the tumour is resistant to a large number of standard anti-cancer drugs but is highly responsive to the investigational agent flavone acetic acid (FAA). The levels of FAA achieved in tumours are lower than those necessary for activity in ...

  18. The role of MAPK signalling pathways in acetic acid-induced cell death of Saccharomyces cerevisiae

    Azevedo, Flávio Humberto Torres Dias Feio de

    2011-01-01

    Dissertação de mestrado em Genética Molecular Mitogenic Activated Protein Kinase (MAPK) cascades are important signalling pathways that allow yeast cells to swiftly adapt to changing environmental conditions. Previous studies suggested that the High Osmolarity Glycerol (HOG) MAPK pathway and ceramide production are involved in acetic-acid induced apoptosis in yeast. Evidence that changes in the levels of endogenous ceramides can affect yeast cell fate has also been put forth...

  19. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    Nader Tanideh; Akram Jamshidzadeh; Masood Sepehrimanesh; Masood Hosseinzadeh; Omid Koohi-Hosseinabadi; Asma Najibi; Mozhdeh Raam; Sajad Daneshi; Seyedeh-Leili Asadi-Yousefabad

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and o...

  20. Sustainable activity of hydrothermally synthesized mesoporous silicates in acetic acid esterification

    ŞİMŞEK, VELİ; DEĞİRMENCİ, LEVENT; MÜRTEZAOĞLU, KIRALİ

    2015-01-01

    A hydrothermal method was applied in the synthesis of mesoporous silicates containing silicotungstic acid (STA). The synthesis procedures were developed by modification of procedures previously applied in the synthesis of MCM-41 and SBA-15. The synthesized catalysts were named MCM-41-S and SBA-15-S based on MCM-41 and SBA-15. Their activities were investigated in ethyl acetate production, which was selected as the model reaction. The results indicated that the activity of SBA-15-S catalysts i...

  1. In Planta Production of Indole-3-Acetic Acid by Colletotrichum gloeosporioides f. sp. aeschynomene

    Maor, Rudy; Haskin, Sefi; Levi-Kedmi, Hagit; Sharon, Amir

    2004-01-01

    The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the ...

  2. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    DINGSE PANDIANGAN

    2006-09-01

    Full Text Available The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA. NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  3. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    DINGSE PANDIANGAN; NELSON NAINGGOLAN

    2006-01-01

    The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA). NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  4. Copper methanesulfonate-acetic acid as a novel catalytic system for tetrahydropyranylation of alcohols and phenols

    2007-01-01

    A synergistic catalytic effect between copper methanesulfonate and acetic acid in tetrahydropyranylation of alcohols and phenol at room temperature under solvent free condition has been described. Both alcohols (primary, secondary and tertiary) and phenols reacted with 3,4-dihydro-2H-pyran smoothly to afford the corresponding tetrahydropyranyl ethers in good yields.(C) 2007 Min Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  5. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  6. Mucosal Vaccination and Therapy with Genetically Modified Lactic Acid Bacteria

    Wells, J.

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that

  7. Lactic acid bacteria in a changing legislative environment

    Feord, J.

    2002-01-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients, pr

  8. Make use of lactic acid bacteria in biomass to biofuel

    Lactic acid bacteria (LAB) have been widely used in dairy fermentations, nutraceuticals, and probiotic/prebiotic applications. Selected strains from the LAB could potentially be used as microbial catalysts for production of fuels and chemicals from lignocellulosic biomass. The unique traits of lac...

  9. PRODUCTION OF MANNITOL BY LACTIC ACID BACTERIA: A REVIEW

    Mannitol, a naturally occurring polyol, can be produced by lactic acid bacteria (LAB) by fermentation. Some homofermentative LAB produce small amounts of mannitol from glucose. Several heterofermentative LAB can produce mannitol effectively from fructose. In this article, a review on mannitol pro...

  10. Identification and characterisation of probiotic lactic acid bacteria

    Španová, A.; Rittich, B.; Horák, Daniel; Dráb, V.; Drbohlav, J.

    Hydebarad : Osmania University, 2008. s. 17. [International Congress on Bioprocesses in Food Industries /3./ & Convention of the Biotech Research Society India /5./. 06.11.2008-08.11.2008, Hyderabad] Institutional research plan: CEZ:AV0Z40500505 Keywords : probiotic lactic acid bacteria Subject RIV: CE - Biochemistry

  11. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test.

    Kawaura, Kazuaki; Miki, Risa; Urashima, Yuri; Honda, Sokichi; Shehata, Ahmed M; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2011-01-25

    Several antidepressants have been used to treat severe pain in clinics. Recently, we reported that the centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test, although the mechanism of action appears to be quite different from that of known antidepressants. In the present study, we investigated whether a combination of tipepidine and carbamazepine acts synergistically to induce an antinociceptive effect in the acetic acid-induced writhing test in mice. Prior to studying the combination of tipepidine and carbamazepine, the analgesic action of tipepidine alone was also examined in mice. Tipepidine at 5-40mg/kg i.p. significantly reduced the number of writhes induced by acetic acid in mice. Carbamazepine at 20mg/kg i.p. also significantly reduced the writhing reaction. Furthermore, co-administration of carbamazepine (5 and 10mg/kg, i.p.) and tipepidine (2.5mg/kg i.p.) significantly decreased the number of writhes induced by acetic acid. This finding suggests that a combination of carbamazepine and tipepidine may be a new strategy for the treatment of neuropathic pain such as what occurs in trigeminal neuralgia, because the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic efficacy by microsomal enzyme induction. PMID:21114989

  12. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass.

    Lynam, Joan G; Coronella, Charles J; Yan, Wei; Reza, Mohammad T; Vasquez, Victor R

    2011-05-01

    As a renewable non-food resource, lignocellulosic biomass has great potential as an energy source or feedstock for further conversion. However, challenges exist with supply logistics of this geographically scattered and perishable resource. Hydrothermal carbonization treats any kind of biomass in 200 to 260°C compressed water under an inert atmosphere to produce a hydrophobic solid of reduced mass and increased fuel value. A maximum in higher heating value (HHV) was found when 0.4 g of acetic acid was added per g of biomass. If 1g of LiCl and 0.4 g of acetic acid were added per g of biomass to the initial reaction solution, a 30% increase in HHV was found compared to the pretreatment with no additives, along with greater mass reduction. LiCl addition also reduces reaction pressure. Addition of acetic acid and/or LiCl to hydrothermal carbonization each contribute to increased HHV and reduced mass yield of the solid product. PMID:21411315

  13. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 oC. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, KIC, and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 oC, feldspar content up to 10% improved flexural strength and KIC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 oC but a beneficial effect on KIC of ceramics sintered at 1600 oC. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  14. Antireflectance coating on shielding window glasses using glacial acetic acid at ambient temperature

    High density lead glasses having thickness of several centimeters and large dimensions are used as shielding windows in hot cells. To improve visibility, the reflection of light from its optically polished surfaces needs to be minimized to improve transmission as absorption of light in the thick glasses can not be avoided. Antireflectance coating of a material having low refractive index is required for this purpose. Selective leaching of lead at ambient temperature in glacial acetic acid develops a silica rich leached layer on glass surface. Since silica has low refractive index, the leached layer serves as antireflectance coating. Two optically polished discs of shielding window glasses were leached in glacial acetic acid at ambient temperature for 2, 5 and 10 days and their reflectance and transmittance spectra were taken to find effect of leaching. For transparent glass transmittance could be improved from 78.76% to 85.31% after 10 days leaching. Reflectance from the glass could be decreased from 12.48 to 11.67%. For coloured glass transmittance improved from 87.77% to 88.24% after 5 days leaching while reflectance decreased from 12.28% to 5.6% during same period. Based on data generated, 10 days leaching time is recommended for developing anti reflectance coating on transparent shielding window glass and 5 days for coloured shielding window glass. The procedure can be used for shielding windows of any dimensions by fabrication a PVC tank of slightly high dimensions and filling with acetic acid (author)

  15. Behaviour of Tributylamine as Entrainer for the Separation of Water and Acetic Acid with Reactive Extractive Distillation

    雷志刚; 李成岳; 陈标华

    2003-01-01

    A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.

  16. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    Elwardany, A.

    2014-07-16

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  17. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xATFA molecules form not a chain structure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xATFA molecules are considerably dissociated to hydrogen ions and trifluoroacetate in the mixtures. 1H, 13C, and 19F NMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  18. Electrochemical oxidation of substituted benzylamines in aquo-acetic acid medium: substituent and solvent effects

    A Thirumoorthi; K P Elango

    2007-07-01

    Electrochemical oxidation of nine para- and meta-substituted benzylamines in varying mole fractions of acetic acid in water has been investigated in the presence of 0.1 M sulphuric acid as supporting electrolyte. The oxidation potentials correlate well with Hammett’s substituent constants affording negative reaction constants. The correlation of potential values with macroscopic solvent parameters is non-linear suggesting that the operation of both specific and non-specific solvent-solvent-solute interaction mechanisms. Multiple correlation analysis of the experimental data with Kamlet-Taft solvatochromic parameters is employed.

  19. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed. PMID:12469319

  20. Lactic Acid Bacteria – Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating a-(1,6) and a-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, we have developed improved...

  1. Antibiotic resistance in food lactic acid bacteria--a review.

    Mathur, Shalini; Singh, Rameshwar

    2005-12-15

    Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria. PMID:16289406

  2. Antimicrobial Potentials of Lactic Acid Bacteria Isolated From a Nigerian Menstruating Woman

    Funmilola Abidemi Ayeni

    2013-06-01

    Full Text Available ABSTRACT Background: Racial differences affect the composition of lactic acid bacteria (LAB in women’s vagina. However, the bacteria present in women’s vagina exert protective effect against invading uropathogens through production of several inhibitory compounds. The LAB composition of the vagina of a menstruating Nigerian woman was examined to detect any difference between the subject’s vaginal LAB flora and reported cases of women from western world and to investigate the antimicrobial activities of these lactic acid bacteria against potential uropathogens and enteropathogens with analysis of possible compounds that may be responsible for inhibition. Methods: Informed consent was obtained from the subject. LAB were identified by partially sequencing the 16S rRNA gene. The organic acids were detected through High Performance Liquid Chromatography (HPLC while the volatile compounds were detected by gas chromatography. The hydrogen peroxide production was assayed through enzymatic reactions. Results: Enterococcus faecalis FAA025 and Streptococcus equines FAA026 were the only bacterial strains isolated. The two LAB strains inhibited the growth of all tested uropathogens and enteropathogens to remarkable degree. Both strains produced high quantities of lactic acid while high quantities of hydrogen peroxide, acetic acid and ethanol were only observed in Streptococcus equines FAA026. Conclusions: The results of this study suggest that in spite of absence of lactobacilli during menstruation in the subject, other LAB present (Enterococcus faecalis FAA025 and Streptococcus equines FAA026 can exert protective effects against invading uropathogens. Also, the LAB composition of the Nigerian woman is similar to her counterparts in the West. [TAF Prev Med Bull 2013; 12(3.000: 283-290

  3. Lactic acid bacteria as a cell factory for riboflavin production.

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  4. Occurrence and role of lactic acid bacteria in seafood products

    Leroi, Francoise

    2010-01-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO2 enriched, the growth of the Gram-ne...

  5. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    Y. Tan

    2011-06-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008 proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM–10 mM was oxidized by OH radical. Products were analyzed by ion chromatography (IC, electrospray ionization mass spectrometry (ESI-MS, and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  6. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  7. Direct Oxidation of Ethene to Acetic Acid over Pd-H4SiW12O40-Based Catalyst

    2001-01-01

    @@The direct oxidation of ethene to acetic acid has the advantages of abundant raw materials and low cost of equipment[1],hence the research for this process has been of much interest in industry application.

  8. INTERACTIONS OF GOSSYPOL ACETIC ACID,INJECTIO LEONURI AND PROGESTERONE ON MYOMETRIALSTRIPS AN IN VITRO EXPERIMENT OF ELECTRIC FIELD STIMULAION

    TENGJia-Min; TANGDa-Chun; XIAWen-Jia; WUXi-Rui

    1989-01-01

    Effects ofgossypol acetic acid, Injectio Leonuri and progesterone on contractility, tension and stimulation threshold of myometrial strips isolated from mature, nonpregnant rabbits were studied in an electric field stimulation experiment. Results showed that:

  9. MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization.

    Wang, Peng; Feng, Jian; Zhao, Yupei; Wang, Shaobin; Liu, Jian

    2016-09-14

    A strong solid acid, tungstated zirconia (WZ), has been prepared first using tungstate immobilized UiO-66 as precursors through a "double-solvent" impregnation method under mild calcination temperature. With moderate W contents, the as-synthesized WZ catalysts possess a high density of acid sites, and the proper heat treatment also has facilely led to a bunch of oligomeric tungsten clusters on stabilized tetragonal ZrO2. The resultant solid acids show an improved catalytic performance toward the benzaldehyde's acetalization in comparison with traditional zirconium hydroxide-prepared WZ. Notably, due to large surface area and additionally introduced strong acid sites, the MOF-derived WZ catalysts afforded conversion up to 86.0%. The facile method endows the WZ catalysts with superior catalytic activities and excellent recyclability, thus opening a new avenue for preparation of metal oxide-based solid superacids and superbases. PMID:27557351

  10. Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid.

    Liu, Yan; Dong, Haitao; Zhang, Wenzhu; Ye, Zhiqiang; Wang, Guilan; Yuan, Jingli

    2010-06-15

    A novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid (IAA) has been fabricated by using green emissive quantum dots of cadmium telluride (CdTe QDs) as a background layer and a red emissive europium chelate, [4'-(9-anthryl)-2,2':6',2''-terpyridine-6,6''-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu(3+) (ATTA-Eu(3+)), as a specific sensing layer coated on the surface of glass slide, respectively. The luminescence response of the sensor strip is given by the dramatic changes in emission colors from green to red at different IAA concentrations. This approach provides a simple, rapid, sensitive and accurate method for the detection of IAA without using any special scientific instruments. PMID:20353890

  11. Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae.

    Zhao, Jinsheng; Wang, Min; Yang, Zhenyu; Gong, Qintao; Lu, Yao; Yang, Zhengyu

    2005-02-01

    The toxic effects of furfural and acetic acid on two yeasts, Saccharomyces cerevisiae and Candida shehatae, were evaluated using an electrochemical method. Intracellular redox activities were lowered by 40% and 78% for S. cerevisiae and C. shehatae, respectively, by 8 g furfural l(-1), and by 46% and 67%, respectively, by 8 g acetic acid l(-1). The proposed method can accurately measure the effects of inhibitors on cell cultures. PMID:15717131

  12. Rabbit gastric ulcer models: comparison and evaluation of acetic acid-induced ulcer and mucosectomy-induced ulcer

    Maeng, Jin Hee; Lee, Eunhye; Lee, Don Haeng; YANG, SU-GEUN

    2013-01-01

    In this study, we examined rabbit gastric ulcer models that can serve as more clinically relevant models. Two types of ulcer model were studied: acetic acid-induced ulcers (AAU) and mucosal resection-induced ulcers (MRU). For AAU, rabbit gastric mucosa was exposed by median laparotomy and treated with bottled acetic acid. MRU was examined as a model for endoscopic mucosal resection (EMR). Normal saline was injected into the submucosal layer and the swollen mucosa was resected with scissors. E...

  13. Influence of Dilute Acetic Acid Treatments on Survival of Monoecious Hydrilla Tubers in the Oregon House Canal, California

    Spencer, David F.; Ksander, Gregory G.

    1999-01-01

    Hydrilla (Hydrilla verticillata (L.f.)Royle), a serious aquatic weed, reproduces through formation of underground tubers. To date, attacking this life-cycle stage has been problematic. The purpose of this study was to measure the impact of exposure to dilute acetic acid on monoecious hydrilla tubers under field conditions. In this field experiment, treatments were acetic acid concentration (0, 2.5, or 5%) and sediment condition (perforated or not perforated). Each of 60, 1x1 m plots (in t...

  14. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  15. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. PMID:26742620

  16. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid.

    Ross, John J; Tivendale, Nathan D; Davidson, Sandra E; Reid, James B; Davies, Noel W; Quittenden, Laura J; Smith, Jason A

    2012-12-01

    Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana, although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further. Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway. PMID:23073010

  17. Cell wall structure and function in lactic acid bacteria.

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  18. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  19. Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines

    Mahfud, F. H.; van Geel, F. P.; Venderbosch, R. H.; Heeres, H. J.

    2008-01-01

    Flash pyrolysis oil or Bio-oil (BO), obtained by flash pyrolysis of lignocellulosic biomass, is very acidic in nature. The major component responsible for this acidity is acetic acid, present in levels up to 2-10 wt%. Here, we report an exploratory study on BO upgrading by reactive extraction of ace

  20. Remedial methods for intergranular attack of alloy 600 tubing. Volume 3. Boric acid and acetic acid remedial methods. Final report

    An important cause of recent tube degradation in recirculating pressurized water reactor (PWR) steam generators with open tube/tubesheet crevices is intergranular attack (IGA) of alloy 600 tubing in the crevice region. The attack appears to occur on the hot leg tubing because of high concentrations of caustic species formed from remnants of past phosphate water treatment, combined with materials from inleakage from freshwater-cooled condensers. The concept of using neutralizers to modify the aggressiveness of the crevice environment was examined. It appears that this can be accomplished by neutralizing the caustic species with an acid. Two ways to apply the acid are by off-line flushing during plant shutdown and by on-line treatment during operation. The substance that appears to be most suitable for off-line flushing is acetic acid, with boric acid as a second choice. Concentrations should be in the range of from 1000 to 5000 ppM. The addition of 1000 to 5000 ppM of a non-ionic detergent in the flush solution should improve penetration of the crevice. Use of preflush lancing to remove sludge on the tubesheet will also help by reducing acid consumption. The requirements for materials to be used in on-line treatment are more stringent because of possible interaction with other components in the secondry system. Boric acid is the only substance that has operational experience. A series of tests are proposed to investigate the behavior of acetic acid and boric acid on tubesheet sludge, on tubesheet/support plate material, and on alloy 600/tubesheet couples. Similarly, areas of uncertainty of on-line treatment with boric acid are its effect on tubesheet/support plate materials and on the rest of the secondary system. 23 refs

  1. Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES)

    ElMekawy, Ahmed; Srikanth, Sandipam; Vanbroekhoven, Karolien; De Wever, Heleen; Pant, Deepak

    2014-09-01

    Biovalorization of dark fermentation effluent (DFE) in a microbial fuel cell (MFC) was studied using the biocatalyst enriched from farm manure. The MFC performance was evaluated in terms of power density, substrate degradation, energy conversion efficiency and shifts in system redox state with operation time and organic loading rate (OLR). Higher power density of 165 mW m-2 (12.5 W m-3) was observed at OLR I, which dropped to 86 mW m-2 at OLR II and 39 mW m-2 at OLR III. The substrate degradation was also higher at OLR I (72%) and diminished with increasing the OLR. The pH showed rapid drop and fluctuations initially when shifted to DFE but adapted over time. Higher coulombic efficiency was observed (48% at OLR I) contributing to a total energy conversion of 11%, which is higher compared to the available literature. However, the MFC performance declined at higher OLR with respect to all the performance indicators. DFE consisted of residual sugars from first stage process along with the volatile fatty acids (VFAs) and alcohols, which contributed for the generation of organic acids with their simultaneous consumption and led to VFA increment in spite of COD removal. Cyclic voltammograms along with the derived electro-kinetics supported the observed shifts.

  2. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  3. Lactic acid bacteria fermentations in oat-based suspensions

    Mårtensson, Olof

    2002-01-01

    This thesis deals with the fermentation characteristics of lactic acid bacteria (LAB) in oat-based suspensions, with formulation work of fermented products based on oat and with nutritional studies of these products. Changes in structure in terms of viscosity and ropiness were studied when exopolysaccharide (EPS)-producing LAB strains, namely, Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772, Lactobacillus brevis G-77 and Pediococcus damnosus 2.6 were grown in these oat-based suspensions...

  4. Lactic acid bacteria: the bugs of the new millennium

    Konings, W N; Kok, J; Kuipers, O P; Poolman, B.

    2000-01-01

    Lactic acid bacteria (LABs) are widely used in the manufacturing of fermented food and are among the best-studied microorganisms. Detailed knowledge of a number of physiological traits has opened new potential applications for these organisms in the food industry, while other traits might be beneficial for human health. Important new developments have been made in the research of LABs in the areas of multidrug resistance, bacteriocins and quorum sensing, osmoregulation, proteolysis, autolysin...

  5. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives

    Rokop, Z. P.; Horton, M. A.; Newton, I. L. G.

    2015-01-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of ...

  6. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    Wu, Jing-Jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence ...

  7. Research of Sichuan Paocai and Lactic Acid Bacteria

    Chen Gong; Yu Wen-Hua; Zhang Qi-sheng; Song Ping; Zhang Bei-Bei; Liu Zhu; You Jing-gang; Li Heng

    2014-01-01

    Sichuan Paocai with long history is a typical representative of Chinese pickles, which has been inherited for thousands years. Its strong vitality was largely due to its unique microbial fermentation style. In this study, molecular microbial technology and traditional microbial technology were employed to study the distributions and changes of the microorganisms during the fermentation. The results showed that the lactic acid bacteria such as Leuconostoc mesenteroides, Lactobacillus plantarum...

  8. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  9. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  10. SCREENING OF BACTERIA FOR LACTIC ACID PRODUCTION FROM WHEY WATER

    Vethakanraj Helen Shiphrah

    2013-01-01

    Full Text Available Lactobacilli have the property of converting lactose and other sugars to lactic acid through fermentation. So whey water, the greenish translucent liquid rich in lactose, vitamins, proteins and mineral salts, obtained as a by-product after the precipitation of cheese can be used as a substrate for Lactobacilli for lactic acid production which otherwise is a serious environmental pollutant when disposed without pre-treatment. 16 isolates of Lactic acid producing bacteria isolated from various biological sources were inoculated in whey water (1% inoculum and kept at 37°C in the shaker at a speed of 150 revolutions per minute for 36 h. Lactic acid production was estimated after 36 h and the strains 4a, 12a and 15b showed lactic acid production of which 12a produced the highest concentration. The amount of Lactic acid produced by 12a was 0.62 g L-1 under unadjusted condition which is comparable to previously reported strains in enriched medium. So the lactic acid production by strain 12a was further investigated to find the effect of pH and temperature on the production efficiency. Lactic acid production was also checked in Luria-Bertani broth and whey water was found to be the medium of choice for prolonged lactic acid production.

  11. Sol-gel process for preparation of YBa2Cu4O8 from acidic acetates/ammonia/ascorbic acid systems

    YBa2Cu4Ox sols were prepared by addition of ammonia to acidic acetate solutions of Y3+, Ba2+, and Cu2+. Ascorbic acid was added to part of the sol. The resultant sols were gelled to a shard or a coating by evaporation at 60 C. Addition of ethanol to the sols facilitated formation of gel coatings, fabricated by a dipping technique, on Ag or glass or substrates. At 100 C, gels formed in the presence of ascorbic acid were perfectly amorphous, in contrast to crystalline acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings

  12. Synthesis of novel carbon/silica composites based strong acid catalyst and its catalytic activities for acetalization

    Yueqing Lu; Xuezheng Liang; Chenze Qi

    2012-06-01

    Novel solid acid based on carbon/silica composites are synthesized through one-pot hydrothermal carbonization of hydroxyethylsulfonic acid, sucrose and tetraethyl orthosilicate (TEOS). The novel solid acid owned the acidity of 2.0 mmol/g, much higher than that of the traditional solid acids such as Nafion and Amberlyst-15 (0.8 mmol/g). The catalytic activities of the solid acid are investigated through acetalization. The results showed that the novel solid acid was very efficient for the reactions. The high acidity and catalytic activities made the novel carbon/silica composites based solid acid hold great potential for the green chemical processes.

  13. Intracellular pH of acid-tolerant ruminal bacteria.

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells.

  14. Probiotication of tomato juice by lactic acid bacteria.

    Yoon, Kyung Young; Woodams, Edward E; Hang, Yong D

    2004-12-01

    This study was undertaken to determine the suitability of tomato juice as a raw material for production of probiotic juice by four lactic acid bacteria (Latobacillus acidophilus LA39, Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Tomato juice was inoculated with a 24-h-old culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were measured. The lactic acid cultures reduced the pH to 4.1 or below and increased the acidity to 0.65% or higher, and the viable cell counts (CFU) reached nearly 1.0 to 9.0 x 10(9)/ml after 72 h fermentation. The viable cell counts of the four lactic acid bacteria in the fermented tomato juice ranged from 10(6) to 10(8) CFU/ml after 4 weeks of cold storage at 4 degrees C. Probiotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products. PMID:15650688

  15. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  16. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  17. STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A BIDENTATE POLYMER BOUND CIS-DICARBONYLRHODIUM COMPLEX AS CATALYST

    WANG Xiaojun; LIU Zhongyang; PAN Pinglai; YUAN Guoqing

    1996-01-01

    Copolymer of 2-vinylpyridine and vinylacetate coordinated with dicarbonylrhodium used as a catalyst for carbonylation of methanol to acetic acid and anhydride has been studied. The structural characteristics of the copolymer ligand and complex, and the influences of the reaction conditions on the carbonylation catalyzed by this polymer complex have been investigated. In comparison with small molecule catalyst of Rh complex, the bidentate copolymer coordinated complex has better thermal stability. The reaction mechanism of the carbonylation reaction is also illustrated.

  18. Phase equilibrium modelling for mixtures with acetic acid using an association equation of state

    Muro Sunè, Nuria; Kontogeorgis, Georgios; von Solms, Nicolas;

    2008-01-01

    over extended temperature and pressure ranges. From the scientific point of view, modeling of such equilibria is challenging because of the complex association and solvation phenomena present. In this work, a previously developed association equation of state (cubic-plus-association, CPA) is applied to...... a wide variety of mixtures containing acetic acid, including gas solubilities, cross-associating systems (with water and alcohols), and polar chemicals like acetone and esters. Vapor-liquid and liquid-liquid equilibria are considered for both binary and ternary mixtures. With the exception of a...

  19. Effect of acetic acid on electrochemical deposition of carbon-nitride thin film

    2009-01-01

    Electrochemical deposition method was employed to prepare CNx thin film from methanol-urea solution,and it was shown that adding a little acetic acid in the solution significantly affected the deposition process.After optimizing the experiment conditions,we obtained polycrystalline grains with sizes of about 3―7μm on the faces of single crystal silicon.X-ray diffraction spectrua indicate that the grains are mainly composed of cubic phase mixed with a small amount of β and α phases.

  20. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    Chacko, Melby; Nayak, Jagannath

    2015-06-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant.

  1. Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films

    Giglioti, M.; Trivinho-Strixino, F.; Matsushima, J.T.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos SP 13565-905 (Brazil)

    2004-05-15

    Thiophene-3-acetic acid has been polymerized in chloroform by a chemical method using FeCl{sub 3} as oxidant. The films were prepared casting the solubilized polymer on ITO electrodes and studied using cyclic voltammetry, chronoamperometry and spectroelectrochemistry. During the potential sweep, an electrochromic process is observed in which the film color changes from red to black. High electrochromic efficiency was observed for more than 600 cycles, although it decreases to 73% of the initial value. Until 264 cycles, the electrochromic efficiency at 750nm is stable and the value is 242cm{sup 2}C{sup -1}.

  2. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper;

    2014-01-01

    deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α......-tocopherol acetate) in higher levels in the intestine of GF mice compared to MC mice, suggesting that NCFM either metabolizes the compound orindirectly affects the absorption by changing the metabolome in the intestine. The use of NCFM to increase the uptake of vitamin E supplements in humans and animals is a highly...

  3. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    Hanning, Christopher William

    The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scale...... at the beginning with the construction of a suitable test reactor, then followed by the synthesis and testing of all the catalysts reported. A variety of nitrogen based ionic liquids were initially tested, giving good results and stability in the system. Later a number of phosphonium based salts were...

  4. Contribution of Indole-3-Acetic Acid Production to the Epiphytic Fitness of Erwinia herbicola

    Brandl, M. T.; Lindow, S E

    1998-01-01

    Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented with l-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, wh...

  5. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid.

    Normanly, J; Cohen, J D; Fink, G. R.

    1993-01-01

    We used tryptophan auxotrophs of the dicot Arabidopsis thaliana (wall cress) to determine whether tryptophan has the capacity to serve as a precursor to the auxin, indole-3-acetic acid (IAA). Quantitative gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) revealed that the trp2-1 mutant, which is defective in the conversion of indole to tryptophan, accumulated amide- and ester-linked IAA at levels 38-fold and 19-fold, respectively, above those of the wild type. Tryptopha...

  6. Liquid phase equilibria of (water + phosphoric acid + 1-butanol or butyl acetate) ternary systems at T = 308.2 K

    (Liquid + liquid) equilibria and tie lines for the ternary systems of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) were measured at T = 308.2 K. The experimental ternary (liquid + liquid) equilibrium data were correlated with the UNIQUAC model. The reliability of the experimental tie lines was confirmed using Othmer-Tobias correlation. The average root-mean-square deviation (RMSD) values of (water + phosphoric acid + 1-butanol) and (water + phosphoric acid + butyl acetate) systems were 2.17% and 2.16%, respectively. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents. The results show that butyl acetate may be considered as a reliable organic solvent for the extraction of phosphoric acid from aqueous solutions

  7. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. PMID:19204894

  8. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. PMID:27071053

  9. Kinetics Studies on Esterification Reaction of Acetic acid with Iso-amyl Alcohol over Ion Exchange Resin as Catalysts

    Bhaskar D. Kulkarni

    2014-01-01

    Full Text Available The low molecular weight organic esters have pleasing smell and are found in applications in the food industry for synthetic essence and perfume. Esterification reactions are ubiquitous reactions especially in pharmaceutical, perfumery and polymer industries, wherein; both heterogeneous and homogeneous catalysts have been extensively used. Iso-amyl acetate (or Iso-pentyl acetate is often called as banana oil, since it has the recognizable odor of this fruit. Iso-amyl acetate is synthesized by esterification of acetic acid with iso-amyl alcohol. (Eq.1. Since the equilibrium does not help the formation of the ester, it must be shifted to the right, in favor of the product, by using a surplus of one of the starting materials. Iso-amyl acetate is a kind of flavor reagent with fruit taste. The use of H2SO4 often originates the problems such as corrosion for equipments and pollution for environment.

  10. CHARACTERIZATION OF LACTIC ACID BACTERIA ISOLATED FROM SUMBAWA MARE MILK

    Nengah Sujaya

    2008-06-01

    Full Text Available A study was carried out to isolate and characterize lactic acid bacteria (LAB from the Sumbawa mares milk The Isolation of LAB was conducted in Man Rogosa Sharpe (MRS agar. The isolates were characterized by standard methods, such as Gram staining, cell morphology study and fermentation activities. The ability of the isolates to inhibit some pathogenic bacteria was studied by dual culture assay. Isolates showing the widest spectrum of inhibiting pathogenic bacteria were further identified using API 50 CHL. The results showed that Sumbawa mare milk was dominated by lactobacilli and weisella/leuconostoc. As many as 26 out 36 isolates belong to homofermentative lactobacilli and another 10 isolates belong to both heterofermentative lactobacilli and weissella or leuconostoc. Twenty four isolates inhibited the growth of Escherichia coli 25922, Shigela flexneri, Salmonella typhimurium, and Staphylococcus aureus 29213. Two promising isolates with the widest spectrum of inhibiting pathogenic bacteria, Lactobacillus sp. SKG34 and Lactobacillus sp. SKG49, were identified respectively as Lactobacillus rhamnosus SKG34 and Lactobacillus ramnosus SKG49. These two isolates were specific strains of the sumbawa mare milk and are very potential to be developed as probiotic for human.

  11. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens). PMID

  12. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. PMID:20801635

  13. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions

    2009-01-01

    In separation processes,hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules,resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

  14. μ-(Acetic acid-di-μ-chlorido-bis[triphenyltellurium(IV] monohydrate

    Feng Hu

    2013-07-01

    Full Text Available The asymmetric unit of the title compound, C38H34Cl2O2Te2·H2O, contains two independent TeIV cations, each coordinated by three phenyl ligands, two Cl− anions and one acetic acid molecule in a distorted octahedral C3Cl2O geometry; the longer Te...Cl distances ranging from 3.2007 (11 to 3.4407 (11 Å and the longer Te...O distances of 3.067 (3 and 3.113 (3 Å indicate the weak bridge coordination. The Cl− anion and acetic acid molecule bridge the two independent TeIV cations, forming the dimeric complex molecule, in which the Te...Te separation is 3.7314 (4 Å. In the crystal, the water molecules of crystallization link the TeIV complex molecules into chains running along the b-axis direction via O—H...O and O—H...Cl hydrogen bonds.

  15. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    Sun, Miao

    2013-01-16

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H 4SiW12O40, H3PW12O 40, H4SiMo12O40, and H 3PMo12O40 activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane. © 2012 American Chemical Society.

  16. Toward targeted 'oxidation therapy' of cancer: peroxidase-catalysed cytotoxicity of indole-3-acetic acids

    Purpose: The study aimed to identify suitable prodrugs that could be used to test the hypothesis that peroxidase activity in cells, either endogenous or enhanced by immunological targeting, can activate prodrugs to cytotoxins. We hypothesized that prototype prodrugs based on derivatives of indole-3-acetic acid (IAA), when activated by peroxidase enzymes (e.g., from horseradish, HRP) should produce peroxyl radicals, with deleterious biological consequences. Methods and Materials: V79 hamster cells were incubated with IAA or derivatives ± HRP and cytotoxicity assessed by a clonogenic assay. To assess the toxicity of stable oxidation products, prodrugs were also oxidized by HRP without cells, and the products then added to cells. Results: The combination of prodrug and enzyme resulted in cytotoxicity, but neither indole nor enzyme in isolation was toxic under the conditions used. Although lipid peroxidation was stimulated in liposomes by the prodrug/enzyme treatment, it could not be measured in mammalian cells. Adding oxidized prodrugs to cells resulted in cytotoxicity. Conclusions: Although the hypothesis that prodrugs of this type could enhance oxidative stress via lipid peroxidation was not established, the results nonetheless demonstrated oxidatively-activated cytotoxicity via indole acetic acid prodrugs, and suggested these as a new type of substrate for antibody-directed enzyme-prodrug therapy (ADEPT). The hypothesized free-radical fragmentation intermediates were demonstrated, but lipid peroxidation associated with peroxyl radical formation was unlikely to be the major route to cytotoxicity

  17. Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose.

    Nordqvist, David; Idermark, Johan; Hedenqvist, Mikael S; Gällstedt, Mikael; Ankerfors, Mikael; Lindström, Tom

    2007-08-01

    This report presents a new route to enhance the wet properties of chitosan-acetic-acid-salt films using microfibrillated cellulose (MFC). The enhancement makes it easier to form chitosan-acetic-acid-salt films into various shapes at room temperature in the wet state. Chitosan with MFC was compared with the well-known buffer treatment. It was observed that films containing 5 wt % MFC were visually identical to the buffered/unbuffered films without MFC. Field-emission scanning electron microscopy indicated that MFC formed a network with uniformly distributed fibrils and fibril bundles in the chitosan matrix. The addition of MFC reduced the risk of creases and deformation in the wet state because of a greater wet stiffness. The wet films containing MFC were also extensible. Although the stiffness, strength and extensibility were highest for the buffered films, the wet strength of the MFC-containing unbuffered films was sufficient for wet forming operations. The effects of MFC on the mechanical properties of the dry chitosan films were small or absent. It was concluded that the addition of MFC is an acceptable alternative to buffering for shaping chitosan films/products in the wet state. The advantages are that the "extra" processing step associated with buffering is unnecessary and that the film matrix remains more water-soluble. PMID:17645308

  18. Agreement Between Visual Inspection with Acetic Acid and Papanicolaous Smear as Screening Methods for Cervical Cancer

    Objective: To determine degree of agreement between visual inspection with acetic acid (VIA) and Papanicolaous (Pap) smear as screening methods for cervical cancer. Study Design: A cross-sectional study. Place and Duration of Study: Department of Obstetrics and Gynaecology, Sir Ganga Ram Hospital, Lahore, from July to December 2012. Methodology: Two hundred and fifty women in reproductive age group presenting with various gynaecological complaints were included in the study. A Papanicolaous smear was taken and visual inspection with 5% acetic acid was done. VIA was reported as positive or negative according to acetowhite changes and cytology result was graded as CIN 1, 2, 3 and squamous carcinoma. Those women who showed positive result with either VIA or Pap smear or both were further subjected to colposcopic directed biopsy which was taken as gold standard. Results were computed using Statistical Package for Social Sciences (SPSS) version 16 and statistical test used was kappa. Results: Out of 250 women, VIA was positive in 55 (22%) patients and Pap smear was abnormal in 27 (10.8%). Histological diagnosis of CIN/cancer was made in 36 out of a total 62 patients who underwent biopsy. Conclusion: There was a fair agreement between VIA and Pap smear, with VIA detecting more abnormalities than cytology. In the absence of Pap smear availability, VIA may be a reasonable cervical cancer screening method, especially in low resource settings. (author)

  19. Sulphydryl groups and iodo-[3H]acetic acid labeling in proteolipids from Torpedo electroplax

    Several fractions of proteolipids from Torpedo electroplax were separated by DEAE-cellulose chromatography in organic solvents, and the sulphydryl groups were determined by a spectrophotometric method. On the same fractions the covalent labeling with iodo-[3H]acetic acid to sulphydryl groups was studied. In total proteolipids there were 30.3 nmol/mg protein of sulphydryl groups of which 20.6 nmoles were in the form of disulfide bonds and 10.9 nmol as free--SH groups. The highest content of sulphydryl groups (36.7 nmol/mg protein) was found in fraction II; while fraction I, that binds the cholinergic ligands, has a lower content (23.7 nmol/mg protein). The 42 Kdaltons polypeptide, which is the major band in Fraction II, has the strongest labeling with iodo-[3H]acetic acid, while the 39 Kdaltons cholinergic polypeptide shows a lower labeling. The importance of proteolipids as channel-forming macromolecules is discussed in connection with the possible significance of the 42 Kdaltons polypeptide

  20. Formation of lateral homogeneous stain etched porous silicon with acetic acid at oxidant insufficiency

    Full text : The influence of acetic acid on the process of stain etched porous silicon formation on the restricted surface area in etching solution HF/HNO3/CH3COOH at oxidant insufficiency have been investigated. It is shown, that with increasing of acetic acid concentration the incubation time increases, the rate of reaction falls, the evolution of bubbles decreases and the lateral homogeneity of stain etched porous silicon improves. It is found, that the process of stain etched porous silicon formation is accompanied with the evolution of two types of bubbles, which differ in their sizes, surface distribution and ability to stick to surface. The optimal concentration of etching solution, in which reaction occurs without bubbles evolution, is determined and very homogeneous, uniformly coloured specular porous silicon layers are obtained. In spite of the fact that the etching was performed on the restricted area of wafers surface the influence of boundaries did not occur and the pore formation process has a very good repeatability and reproducibility. It is shown that in this etchant composition the porous silicon formation does not depend on of etching solution. It is also shown, that the method of final treatment of the wafers surface before etching without changing the pore formation rate essentially affects the incubation time. The investigations of photoluminescence emission and excitation spectra showed that in spite of independence of photoluminescence maximum position, optical bandgap of porous silicon decreases with increasing etching time

  1. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

  2. PREPARATION AND CHARACTERIZATION OF ACETIC ACID LIGNIN-BASED EPOXY BLENDS

    Fangeng Chen

    2012-05-01

    Full Text Available Lignin-based epoxy resin (LER was prepared from phenolated lignin (PL and epichlorohydrin (ECH in the presence of sodium hydroxide. The eucalyptus acetic acid lignin (AAL was first reacted with phenol in the presence of sulfuric acid to obtain PL. Then, PL was reacted with ECH in aqueous sodium hydroxide to obtain LER. LER was mixed with diglycidyl ether of bisphenol A (E-44 and then cured with triethylenetetramine (TETA. The initial thermal degradation temperature (Td of the cured epoxy blends decreased with the increase in LER content. The residue ratio at 500 °C of the cured epoxy blends (R500, however, increased with the LER content. The maximum adhesive shear strength of the cured epoxy blends was obtained at 20 wt% of LER. The water absorption of epoxy blends increased with increasing the content of LER. SEM photos showed that increasing the content of LER increased inhomogeneity and porosity of epoxy blends.

  3. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  4. Photodissociation of organic molecules in star-forming regions II: Acetic acid

    Pilling, S; Boechat-Roberty, H M

    2006-01-01

    Fragments from organic molecule dissociation (such as reactive ions and radicals) can form interstellar complex molecules like amino acids. The goal of this work is to experimentally study photoionization and photodissociation processes of acetic acid (CH$_3$COOH), a glycine (NH$_2$CH$_2$COOH) precursor molecule, by soft X-ray photons. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator (TGM) beamline (100 - 310 eV). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, that only 4-6% of CH$_3$COOH survive the strong ionization field. CH$_3$CO$^+$, COOH$^+$ and CH$_3^+$ ions are the mai...

  5. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  6. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Baljinder Kaur; Debkumar Chakraborty; Balvir Kumar

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel...

  7. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  8. Current taxonomy of phages infecting lactic acid bacteria

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  9. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering. PMID:23649268

  10. The effect of homogenization pressure and stages on the amounts of Lactic and Acetic acids of probiotic yoghurt

    R Massoud

    2014-12-01

    Full Text Available Nowadays the use of probiotic products especially yogurt, due to having wonderful and health properties, has become popular in the world. In this study, the effect of homogenization pressure (100, 150 and 200 bars and stage (single and two on the amount of lactic and acetic acids was investigated. Yoghurts were manufactured from low-fat milk treated using high pressure homogenization at 100,150 and 200 bar and at 60°C. The amount of lactic and acetic acids was determined after the days 1, 7, 14 and 21 of storage at 4ºC. The experiments were set up using a completely randomized design. With the increase of pressure and stage of homogenization, the amount of both acids was increased (p<0.01. The greatest amount of lactic and acetic acids during the storage period was observed in the sample homogenized at a pressure of 200 bars and two stages.

  11. Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts.

    Kim, Dong Young; Um, Byung Hwan; Oh, Kyeong Keun

    2015-07-01

    Xylose, mannose, and galactose (xmg) recovery from empty fruit bunches using acetic acid-assisted hydrothermal (AAH) fractionation method was investigated. Acetic acid has been demonstrated to be effective in xmg recovery in comparison with the liquid hot-water (LHW) fractionation. The maximum xmg recovery yield (50.7 %) from the empty fruit bunch (EFB) was obtained using AAH fractionation at optimum conditions (6.9 wt.% acetic acid at 170 °C and for 18 min); whereas, only 16.2 % of xmg recovery was obtained from the LHW fractionation at the same reaction conditions (170 °C and 18 min). Releasing out the glucose from EFB was kept at low level (<1.0 %) through all tested conditions and consequently negligible 5-HMF and formic acid were analyzed in the hydrolyzate. The production of furfural was also resulted with extremely low level (1.0 g/L). PMID:25962829

  12. Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria

    Müller, Bettina; Sun, Li; Westerholm, Maria; Schnürer, Anna

    2016-01-01

    Background Syntrophic acetate oxidation (SAO) is the predominant pathway for methane production in high ammonia anaerobic digestion processes. The bacteria (SAOB) occupying this niche and the metabolic pathway are poorly understood. Phylogenetic diversity and strict cultivation requirements hinder comprehensive research and discovery of novel SAOB. Most SAOB characterised to date are affiliated to the physiological group of acetogens. Formyltetrahydrofolate synthetase is a key enzyme of both ...

  13. High efficient acetalization of carbonyl compounds with diols catalyzed by novel carbon-based solid strong acid catalyst

    2007-01-01

    The novel carbon-based acid catalyst has been applied to catalyzing the acetalization and ketalization. The results showed that the catalyst was very efficient with the average yield over 93%. The novel heterogeneous catalyst has the advantages of high activity, wide applicability even to 7-membered ring acetals, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the green process greatly.

  14. The Preparation and Application of Environmentally Benign Titanium Pillared Clay Catalyst for Esterification of Ethanol and Acetic Acid

    Peter, Okoye Ifedi; Chidi, Obi; Iheanacho, Maduakolam Arinze

    2012-01-01

    Aims: The study is aimed to develop an indigenous heterogeneous based catalyst and evaluate kinetic mechanism for the synthesis of ethyl acetate by esterification of acetic acid and ethanol. Study Design: Batch reactor system. Place and Duration of Study: Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, Rivers State. Nigeria. The study was carried out between February to August, 2011. Methodology: A sample of the natural clay was collected from the...

  15. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage. PMID:26319723

  16. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  17. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  18. Treatment of sugi (Cryptomeria japonica D.) sapwood with aqueous solution of acetic acid

    LUBao-wang; DUGuang-hua; MATSUITakanao; MATSUSHITAYoh-ichi

    2003-01-01

    Sugi sapwood samples were processed with aqueous solution of acetic acid in order to find the response of the weight of sugi sapwood and the treatment of aqueous solution of acetic acid. The result showed that loss of weight for the treated sugisapwood was about equal to yield of extracts from sugi sapwood, and increased with the increment of the concentration of aqueous solution of acetic acid. Fourier transform infrared spectroscopy spectra changes of the treated sugi wood and extracts from sugi sapwood were analyzed by FT-IR spectroscopic technique. Increasing tendency of absorption intensities of the stretching vibration at 3 400 cm-1 of hydroxyl group (OH) and C=C in lignin stretching vibration at 1510 cm-1 of benzene ring inlignin were observed from FT-IR of the treated sugi sapwood. From FT-IR spectra of extracts from sugi sapwood by aqueoussolution of acetic acid, the dissolution of lignin was observed during the treatment with 30% acetic acid solution aqueous.

  19. Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

    Hu, Jiamiao; Kyrou, Ioannis; Tan, Bee K; Dimitriadis, Georgios K; Ramanjaneya, Manjunath; Tripathi, Gyanendra; Patel, Vanlata; James, Sean; Kawan, Mohamed; Chen, Jing; Randeva, Harpal S

    2016-05-01

    Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43. PMID:26990063

  20. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. PMID:27235647

  1. Occurrence and role of lactic acid bacteria in seafood products.

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  2. Phytase-active lactic acid bacteria from sourdoughs

    Nuobariene, Lina; Cizeikiene, Dalia; Gradzeviciute, Egle;

    2015-01-01

    Whole-grain foods play an important role in human diet as they are relatively rich in minerals, however, the absorption of those minerals in human gut can be very low due to high content of the mineral binding phytate. Therefore, the object of this study was to identify phytase-active lactic acid...... bacteria (LAB) which could be used as a starter to increase mineral bioavailability in whole-meal bread. Hence, LAB isolates were isolated from Lithuanian sourdoughs, tested for phytase activity, and phytase active isolates were identified. Studies of phytase activity of the isolates were carried out at...

  3. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l-1 of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y (μg l-1) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods

  4. Sol-gel process for preparing YBa2Cu4O8 precursors from Y, Ba, and Cu acidic acetates/ammonia/ascorbic acid systems

    Sols were prepared by addition of ammonia to acidic acetate solutions of Y3+, Ba2+, and Cu2+. Ascorbic acid was added to a part of the sol. The resultant sols were gelled to a shard, a film, or microspheres by evaporation at 60 C or by extraction of water from drops of emulsion suspended in 2-ethylhexanol-1. Addition of ethanol to the sols facilitated the formation of gel films, fabricated by a dipping technique, on glass or silver substrates. At 100 C, gels that were formed in the presence of ascorbic acid were perfectly amorphous, in contrast to the crystalline acetate gels. Conversion of the amorphous ascorbate gels to final products was easier than for the acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings

  5. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants. PMID:25768220

  6. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  7. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. PMID:22944490

  8. Diversity of lactic acid bacteria of the bioethanol process

    Azevedo Vasco

    2010-11-01

    Full Text Available Abstract Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.

  9. Production of probiotic cabbage juice by lactic acid bacteria.

    Yoon, Kyung Young; Woodams, Edward E; Hang, Yong D

    2006-08-01

    Research was undertaken to determine the suitability of cabbage as a raw material for production of probiotic cabbage juice by lactic acid bacteria (Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Cabbage juice was inoculated with a 24-h-old lactic culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were monitored. L. casei, L. delbrueckii, and L. plantarum grew well on cabbage juice and reached nearly 10x10(8) CFU/mL after 48 h of fermentation at 30 degrees C. L. casei, however, produced a smaller amount of titratable acidity expressed as lactic acid than L. delbrueckii or L. plantarum. After 4 weeks of cold storage at 4 degrees C, the viable cell counts of L. plantarum and L. delbrueckii were still 4.1x10(7) and 4.5x10(5) mL(-1), respectively. L. casei did not survive the low pH and high acidity conditions in fermented cabbage juice and lost cell viability completely after 2 weeks of cold storage at 4 degrees C. Fermented cabbage juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers. PMID:16125381

  10. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    Noda, Fumio; HAYASHI, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  11. Spectrophotometric determination of beryllium with sulfochlorophenol S in organo-aqueous acetic-acid media

    The possibility has been shown of photometric determination of beryllium with sulphochlorophenol S using an acetic acid-propanol mixture (1:1), containing 0.5-1.5 vol% of water, as the reaction medium. Under such conditions, the reaction between beryllium and sulphochlorophenol S is sensitive and selective with respect to some easily hydrolized elements (Sn, Bi, Sb, Hg) as well as to Ga, In, Tl, Zn in the presence of HCl. The following excess amounts do not interfere with the determination of 0.45 μg Be: Hg-1.2x104, Sb-6.2x103, In-2.5x103, Tl-2.0x103, Zn-1.4x103, Ga-1.2x103. The reaction between beryllium and sulphochlorophenol S is selective with respect to a number of complexing agents. Beryllium can be determined in the presence of 150000-200000 times its weight amounts of tartaric, citric and boric acids, 5000-sulphosalycilic acid, 6000-oxalic acid, 6000-dimethyl glyoxime, 150-8-hydroxyquinoline

  12. Effects of Pfaffia glomerata (Spreng pedersen aqueous extract on healing acetic acid-induced ulcers

    Cristina Setim Freitas

    2008-08-01

    Full Text Available The present study was carried out to evaluate the acute toxicity and the effect of the aqueous extract of the roots from Pfaffia glomerata (Spreng Pedersen (Amaranthaceae (AEP on the prevention of acetic acid-induced ulcer and on the healing process of previously induced ulcers. The acute toxicity was evaluated in Swiss mice after oral administration of a single dose and the chronic gastric ulcer was induced with local application of acetic acid. The results showed that the LD50 of the extract was 684.6 mg.kg-1 for the intraperitoneal administration and higher than 10 mg.kg-1by the oral route. The administration of the AEP did not prevent ulcers formation. However, the AEP increased of the healing process of previously induced ulcers. The results suggest that AEP chronically administered promote an increase of tissue healing, after the damage induced by acetic acid and the extract seemed to be destituted of toxic effects in the mice by the oral route.Pfaffia glomerata (Spreng Pedersen (Amaranthaceae, uma planta conhecida popularmente como "Ginseng Brasileiro" e "paratudo", é utilizada para tratar distúrbios gástricos e como cicatrizante. Em estudos anteriores, foi demonstrado que o extrato aquoso bruto da P. glomerata (AEP protegeu a mucosa gástrica contra úlceras induzidas por etanol e estresse e reduziu a secreção ácida gástrica basal e estimulada em ratos com ligadura de piloro. Além disso, a secreção gástrica de animais tratados com AEP apresentou níveis de nitrato e nitrito aumentados. O objetivo deste estudo foi avaliar se o AEP previne o desenvolvimento de úlceras induzidas por ácido acético e o efeito desse extrato no processo de cicatrização em úlceras previamente formadas. A administração do AEP em diferentes doses produziu efeitos tóxicos baixos e não preveniu a formação de úlceras, porém aumentou o processo de cicatrização em úlceras já existentes, como evidenciado no estudo histopatológico. Em

  13. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  14. Probiotic properties of endemic strains of lactic acid bacteria

    Flora N. Tkhruni

    2013-01-01

    Full Text Available Strains of lactic acid bacteria (LAB isolated from various samples of matsun, yogurt and salted cheese from natural farms of Armenia were studied. They have high antimicrobial and probiotic activities, growth rate and differ by their resistance to enzymes. Supernatants of LAB retain bactericidal activity at рН 3.0-8.0 and inhibit growth of various microflora. The application of different methods of identification and LAB genotyping (API 50 CH, 16S rRNA sequencing, GS-PCR, RAPD PCR showed that isolated LAB evidenced a 99.9% similarity with L. rhamnosus, L. plantarum and L. pentosus species and coccoid forms of Streptococcus and Enterococcus species. It can be concluded, that some strains of lactic acid bacteria, isolated from dairy products from natural farms of Armenia, can be properly used for biopreservation of some foodstuffs. On the basis of experimental data, the LAB can be used as basis for obtaining the new products of functional nutrition.

  15. Naturally occurring lactic Acid bacteria isolated from tomato pomace silage.

    Wu, Jing-Jing; Du, Rui-Ping; Gao, Min; Sui, Yao-Qiang; Xiu, Lei; Wang, Xiao

    2014-05-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  16. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  17. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    Brandl, M. T.; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within py...

  18. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  19. A contribution to the distinction of biogenic vinegar and vinegar made from synthetic acetic acid by determining the specific 14C-radioactivity

    The method of Simon et al. for the separation of the acetic acid from vinegar prior to the determination of the specific 14C-radioactivity has been modified. The precipitation as calcium acetate and the preparation of free acetic acid by addition of diphosphoric acid has been replaced by an extraction procedure with diisopropylether which is faster and cheaper. On the Austrian market glacial acetic acid (Merck, p.A.) having the natural specific 14C-radioactivity was found. The natural specific 14C-radioactivity is therefore necessary but not sufficient to prove the biogenic origin of vinegar. (orig.)

  20. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats

    Kumar, Venkatashivam Shiva; Rajmane, Anuchandra Ramchandra; Adil, Mohammad; Kandhare, Amit Dattatraya; Ghosh, Pinaki; Bodhankar, Subhash Laxman

    2013-01-01

    The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulat...

  1. Short-chain fatty acids produced by intestinal bacteria.

    Topping, D L

    1996-03-01

    The colon is the major site of bacterial colonisation in the human gut and the resident species are predominantly anaerobes. They include potential pathogens but the greater proportion appear to be organisms which salvage energy through the metabolism of undigested carbohydrates and gut secretions. The major products of carbohydrate metabolism are the short chain fatty acids (SCFA), acetate, propionate and butyrate. In addition to general effects (such as lowering of pH) individual acids exert specific effects. All of the major SCFA appear to promote the flow of blood through the colonic vasculature while propionate enhances muscular activity and epithelial cell proliferation. Butyrate appears to promote a normal cell phenotype as well as being a major fuel for colonocytes. Important substrates for bacterial fermentation include non-starch polysaccharides (major components of dietary fibre) but it seems that starch which has escaped digestion in the small intestine (resistant starch) is the major contributor. Oligosaccharides are utilised by probiotic organisms and in the diet, act as prebiotics in promoting their numbers in faeces. High amylose starch is a form of RS and it appears to act as a prebiotic also. Although there is evidence that probiotics such as Bifidobacteria metabolise oligosaccharides and other carbohydrates, there appears to be little evidence to support a change in faecal SCFA excretion. It seems that any health benefits of probiotics are exerted through means other than SCFA. PMID:24394459

  2. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  3. 2-[(1R*,4R*-1,4-Dihydroxycyclohexyl]acetic acid

    Mohammad Arfan

    2011-04-01

    Full Text Available The title compound, C8H14O4, is an isolation product of the aerial parts of Senecio desfontanei. The acetic acid group is oriented at a dihedral angle of 48.03 (9° with respect to the basal plane of the cyclohexane-1,4-diol chair. An intramolecular O—H...O hydrogen bond generates an S(6 ring with an envelope conformation. In the crystal, molecules are linked by O—H...O hydrogen bonds, resulting in R33(20 ring motifs and C(2 O—H...O—H...O—H... chains. Overall, a three-dimensional polymeric network arises. A C—H...O contact is also present.

  4. Pharmacological Study on Antitumor Activity of 5-Fluorouracil-1-Acetic Acid and Its Rare Earth Complexes

    2000-01-01

    The antitumor activity of 5-fluorouracil-1-acetic acid(HFAA) and its lanthanide complexes(La(FAA)3, Eu(FAA)3) were studied. The results show that HFAA, La(FAA)3 and Eu(FAA)3 with the concentrations of 1.0×10-5~1.0×10-2 μg·ml-1 inhibit the colony formation of leukemia cells(L1210) and the growth of transplanted tumor sarcoma 180(S180), hepatic carcinoma(HEPA) and ehrlich ascites tumor(EC) as well. The maximum inhibitory rate of Eu(FAA)3 for S180 is 38.4%, that HFAA and La(FAA)3 for EC are 22.4% and 43.4%, respectively. The life prolongation rate of Eu(FAA)3 for HEPA bearing mice is as long as 284%.

  5. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    Evelyn Rabelo Andrade

    2011-01-01

    Full Text Available The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA, Epidermal Growth Factor (EGF, and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.

  6. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-01

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis. PMID:11042207

  7. Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids.

    Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z

    2000-01-01

    A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan. PMID:16232696

  8. Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phen­oxy­acetic acid, (4-fluoro­phen­oxy)acetic acid and (4-chloro-2-methyl­phen­oxy)acetic acid

    Graham Smith

    2014-01-01

    The structures of the ammonium salts of phen­oxy­acetic acid, NH4 +·C8H6O3 −, (I), (4-fluoro­phen­oxy)acetic acid, NH4 +·C8H5FO3 −, (II), and the herbicidally active (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA), NH4 +·C9H8ClO3 −·0.5H2O, (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N—H⋯O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I) and (II) are isomo...

  9. IN VITRO CHARACTERIZATION OF PROBIOTIC PROPERTIES OF LACTIC ACID BACTERIA FROM BULGARIAN RYE SOURDOUGHS

    Dobreva-Yosifova, G.; Yocheva, L.; Mehmed, A.; Danova, S.; Antonova-Nikolova, S.

    2009-01-01

    Lactic acid bacteria play a key role in human health. These friendly bacteria as a part of the microflora of the gastrointestinal tract (GIT) have a beneficial influence on microbial balance. The probiotic cultures stimulate the growth of beneficial microorganisms, crowd out potentially harmful bacteria and reinforce the body's natural defense mechanisms. Recent data improve the positive effects of probiotics and stimulate research for discovering of new lactic acid bacteria strains with prob...

  10. Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts

    Liyuan; Cheng; Hong; Liu; Yuming; Cui; Nianhua; Xue; Weiping; Ding

    2014-01-01

    Considering energy shortage, large molecules in corn cob and easy separation of solid catalysts, nano oxides are used to transform corn cob into useful chemicals. Because of the microcrystals, nano oxides offer enough accessible sites for cellulose, hemicellulose and monosaccharide from corn cob hydrolysis and oxidant. Chemical conversion of corn cob to organic acids is investigated over nano ceria, alumina, titania and zirconia under various atmospheres. Liquid products are mainly formic and acetic acids. A small amount of other compounds, such as D-xylose,D-glucose, arabinose and xylitol are also detected simultaneously. The yield of organic acids reaches 25%–29% over the nano oxide of ceria,zirconia and alumina with 3 h reaction time under 453 K and 1.2 MPa O2. The unique and fast conversion of corn cob is directly approached over the nano oxides. The results are comparative to those of biofermentation and offer an alternative method in chemically catalytic conversion of corn cob to useful chemicals in a one-pot chemical process.

  11. Protection of live bacteria from bile acid toxicity using bile acid adsorbing resins.

    Edwards, Alexander D; Slater, Nigel K H

    2009-06-12

    We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics. PMID:19490986

  12. Autophagy and cathepsin L are involved in the antinociceptive effect of DMBC in a mouse acetic acid-writhing model

    Wei-wei GU; Gui-zhen AO; Yong-ming ZHU; Shi-chang SUN; Qiang ZHOU; Jia-hong FAN; Katunuma NOBUHIKO

    2013-01-01

    Aim:2-(3',5'-Dimethoxybenzylidene) cyclopentanone (DMBC) is a novel synthetic compound with antinociceptive activities.The aim of this study was to investigate the roles of the autophagic-lysosomal pathway in the antinociceptive effect of DMBC in a mouse acetic acid-writhing model.Methods:Mouse acetic acid-writhing test and hotplate test were used to assess the antinociceptive effects of DMBC,3-MA (autophagy inhibitor) and Clik148 (cathepsin L inhibitor).The drugs were administered peripherally (ip) or centrally (icv).Results:Peripheral administration of 3-MA (7.5-30 mg/kg) or Clik148 (10-80 mg/kg) produced potent antinociceptive effect in acetic acid-writhing test.Central administration of 3-MA or Clik148 (12.5-50 nmol/L) produced comparable antinociceptive effect in acetic acid-writhing test.Peripheral administration of DMBC (25-50 mg/kg) produced potent antinociceptive effects in both acetic acidwrithing and hotplate tests.Furthermore,the antinociceptive effect produced by peripheral administration of DMBC (50 mg/kg) in acetic acid-writhing test was antagonized by low doses of 3-MA (3.75 mg/kg) or Clik148 (20 mg/kg) peripherally administered,but was not affected by 3-MA or Clik148 (25 nmol/L) centrally administered.Conclusion:Activation of central autophagy and cathepsin L is involved in nociception in mice,whereas peripheral autophagy and cathepsin L contributes,at least in part,to the antinociceptive effect of DMBC in mice.

  13. Preparation of l-butyl-3-methylimidazolium dodecatungstophosphate and its. catalytic performance for esterification of ethanol and acetic acid

    Jiehua SHI; Gao PAN

    2009-01-01

    l-Butyl-3-methylimidazolium dodecatungstophosphate catalyst ([bmim]3PW12040) with high water tolerance was prepared from l-butyl-3-methylimidazolium bromide ([bmim]Br) and phosphotungstic acid (H3PW12O40). The catalyst was characterized by means of Fourier transform infrared spectroscopy, thermogravi-metry-differential scanning calorimetry, n-BuNH2 poten-tiometric titration, elemental analysis and so on. Its catalytic activity for esterification of ethanol and acetic acid to ethyl acetate was measured. The results show that there were three crystal-water molecules in the [bmim]3PW12040 catalyst, and it preserved the primary Keggin structure and acid strength of H3PW12O40. The acid amount of [bmim]3PW12O40 catalyst was less than that of H3PW12O40. The [bmim]3PW12O40 catalyst exhibited higher catalytic activity and reusability in the esterification of ethanol and acetic acid to ethyl acetate.

  14. Evaluation of the tolerance of acetic acid and 2-furaldehyde on the growth of Pichia stipitis and its respiratory deficient.

    Ortiz-Muñiz, B; Rasgado-Mellado, J; Solis-Pacheco, J; Nolasco-Hipólito, C; Domínguez-González, J M; Aguilar-Uscanga, M G

    2014-10-01

    The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g(-1) biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g(-1 )h(-1)). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L(-1)) and the RHO2-3RD strain was able to tolerate up to 1.5 g L(-1) 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others. PMID:24700134

  15. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl ...

  16. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri

    Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F.

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lac

  17. THE STUDY OF HENNA LEAVES EXTRACT AS GREEN CORROSION INHIBITOR FOR MILD STEEL IN ACETIC ACID.

    H. G. Chaudhari

    2016-05-01

    Full Text Available The inhibitive action of henna leaves extract on mild steel in acetic acid solution have been investigated by weight-loss, A C impedence and potentiodynamic polarization measurements. The study indicates that as acid concentration increases corrosion rate increases. The corrosion inhibition efficiency increases with increase in concentration of extract. The result obtained revealed that henna leaves extract act as efficient inhibitor. The adsorption of the henna leaves extract obeyed Langmuir adsorption isotherm. The calculated thermodynamic parameters indicated that the adsorption was a spontaneous, exothermic process accompanied by an increase in entropy. Cathodic and anodic polarization curves show that henna leaves extract is a mixed-type inhibitor. Normal 0 false false false EN-IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}   ABSTRACT:    The inhibitive action of henna leaves extract on mild steel in acetic acid solution have been investigated by weight-loss, A C impedence and potentiodynamic polarization measurements. The study indicates that as acid concentration increases corrosion rate increases. The corrosion inhibition efficiency increases with increase in concentration of extract. The result obtained revealed that henna leaves extract act as efficient inhibitor. The adsorption of the henna leaves

  18. Determination of critical conditions for the esterification of acetic acid with ethanol in the presence of carbon dioxide

    G. M. Platt

    2006-09-01

    Full Text Available In this work, we present the calculation of critical coordinates for the esterification of acetic acid with ethanol in compressed carbon dioxide. Determination of the critical pressure for this system is useful, since the conversion of this reaction increases with pressure in the two-phase region, reaching a maximum at the critical point. We used a calculation framework based on a coordinate transformation for molar fractions, producing a new compositional domain. For a system with five components (acetic acid + ethanol + ethyl acetate + water + carbon dioxide and one equilibrium reaction, the compositional domain is entirely described by three independent transformed coordinates. The results obtained were compared with experimental observations presented in the literature. The results illustrate the capability of the framework used to determine critical coordinates for reactive systems, and thus its usefulness as a tool for pressure tuning for this esterification reaction in compressed carbon dioxide.

  19. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  20. PROBIOTIC POTENTIALS AMONG LACTIC ACID BACTERIA ISOLATED FROM CURD

    Shruthy VV

    2011-02-01

    Full Text Available Curd is a commonly used fermented milk product in India since time immemorial. The scientific use of curd as a source of probiotic (good bacteria for health has not been much examined. The yougurt (curd containing probiotics is in Indian market and highly acclaimed. Therefore the status of curd as a source of probiotics is in question and requires scientific examination of its content, so the study was carried out. Probiotic potentials of two bacterial isolates from 20 different curd samples were identified as Lactobacillus spp. by the determination of morphological, cultural, physiological and biochemical characteristics, were investigated. The antibacterial potential against diarrhoegenic bacterial pathogens was also examined. The reference strain used was Lactobacillus acidophilus, MTCC 447. The percentage survivability of the strains at pH 3.5, was found to be satisfactory (>90%. Bile salt resistance (0.3% sodium thioglycollate was found to be between 80.41% and 83.2%. The pH decrease of the strains with time showed slow acidification activity. The lactic acid production of the strains ranges from 1.83 ± 0.12 to 3.93 ± 0.07 g. The strains were β-galactosidase producer and were resistant to principal antibiotics tested. But the absence of plasmids showed that they are intrinsically resistant or chromosome encoded. Strains showed maximum inhibition zone against V. cholerae O139 (13.67 ± 0.57 to 15.33 ± 0.57 mm in comparison to other diarrhoeagenic bacteria. Only 10% of the examined curd samples had probiotic bacteria. Isolated strains of Lactobacillus spp. showed satisfactory probiotic potentials in comparison with reference strains and with antibacterial activity against diarrhoeagenic pathogens and thus maybe useful in the management of diarrhoea and also in functional food industry.

  1. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  2. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria.

    Jensen, Hanne; Drømtorp, Signe Marie; Axelsson, Lars; Grimmer, Stine

    2015-03-01

    Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study. PMID:25331988

  3. STUDY ON PROBIOTIC POTENTIAL AND LABORATORY SCALE PRODUCTION OF LACTIC ACID BACTERIA

    Ambule A.H.; Timande S.P; Soni S.B

    2012-01-01

    Lactic acid bacteria were isolated from dairy food. They were identified on the basis of theirmorphological, cultural and biochemical characterastics.The cell free supernatant of lactic acid bacteria were ableto inhibit the growth ofE.coli,Klebsiella aerogens,Salmonella spp. , S.aureus, P.mirabilies and Ps .aeruginosa.The probiotic properties of isolate of lactic acid bacteria (LAB-VI) were investigated. The LAB-VI wassusceptible to antibiotics like ampicillin, gentamycin, ciprofloxacin, oflo...

  4. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    Ishihara, K; Miyakawa, H; Hasegawa, A.; Takazoe, I; Kawai, Y.

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria ...

  5. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  6. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  7. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-01

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route. PMID:20175969

  8. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-03-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs. PMID:26888650

  9. Formic and Acetic Acids in Degradation Products of Plant Volatiles Elicit Olfactory and Behavioral Responses from an Insect Vector.

    George, Justin; Robbins, Paul S; Alessandro, Rocco T; Stelinski, Lukasz L; Lapointe, Stephen L

    2016-05-01

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroantennography. Glass cartridges prepared with β-ocimene or citral produced no response initially but became stimulatory after several days. Both compounds degraded completely in air to a number of smaller molecules. Two peaks elicited large antennal responses and were identified as acetic and formic acids. Probing by D. citri of a wax substrate containing odorants was significantly increased by a blend of formic and acetic acids compared with either compound separately or blends containing β-ocimene and/or citral. Response surface modeling based on a 4-component mixture design and a 2-component mixture-amount design predicted an optimal probing response on wax substrate containing a blend of formic and acetic acids. Our study suggests that formic and acetic acids play a role in host selection by D. citri and perhaps by phytophagous insects in general even when parent compounds from which they are derived are not active. These results have implications for the investigation of arthropod olfaction and may lead to elaboration of attract-and-kill formulations to reduce nontarget effects of chemical control in agriculture. PMID:26857741

  10. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.

    2008-07-01

    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  11. Effect of Post-Harvest Acetic Acid and Plant Essential Oils on Shelf-Life Extension of Tomato Fruits

    In vitro effect of different concentrations of acetic acid on linear growth of Alternaria alternate was studied. The causal agent of tomato black rots in contact and fumigation showed that acetic acid inhibit A. alternata growth at 2 ml/L and on 0.8 ml/L in contact and fumigation, respectively. In vivo effect showed that acetic acid at 6 ml/L reduced severity of infection of tomato fruits from 53.5% to 4.8% after 3 weeks of storage in dipping method but at the strongest fumigation methods, acetic acid inhibit tomato fruits rot at 0.4 ml/L after 3 weeks of storage. In vitro effect of camphore (Eucalyptus globulus Labill), caraway (Carium carvum L.) and peppermint oil (Mentha piperita L.) at different concentrations were tested against Alternaria alternata, since caraway oil is the strongest oil effect on fungal growth followed by peppermint and camphore respectively. Similarly in in vivo caraway oil inhibit tomato fruits rots at 6 ml/L followed by peppermint that inhibited tomato rots at 8 ml / L but camphore reduced tomato rots at 8 ml/L from 40% to 8.1%. Accepted April 2013

  12. Rh(III)-Catalyzed Oxidative Coupling of Benzoic Acids with Geminal-Substituted Vinyl Acetates: Synthesis of 3-Substituted Isocoumarins.

    Zhang, Mingliang; Zhang, Hui-Jun; Han, Tiantian; Ruan, Wenqing; Wen, Ting-Bin

    2015-01-01

    The Rh(III)-catalyzed C-H activation initiated cyclization of benzoic acids with electron-rich geminal-substituted vinyl acetates was described. The reaction was employed to prepare a range of 3-aryl and 3-alkyl substituted isocoumarins selectively. PMID:25436434

  13. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    Saadullah G. Aziz

    2015-11-01

    Full Text Available The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I and imidazole-5-acetic (II acids was monitored using the traditional hybrid functional (B3LYP and the long-range corrected functionals (CAM-B3LYP and ωB97XD with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15. This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS, TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.

  14. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer. PMID:26955748

  15. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. PMID:27567719

  16. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  17. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of amino acids and acetate.

    Purdie, N G; Trout, D R; Poppi, D P; Cant, J P

    2008-01-01

    Rates of secretion of components into milk are a function of precursor concentrations and parameters that describe expression of the milk synthetic enzymes and their sensitivity to precursor concentrations. To establish the enzymatic sensitivities of milk fat yield and mammary acetate utilization to circulating acetate concentration, lactating cows were infused for 10 h with 0 or 40 g of acetate/h in an external iliac artery supplying one udder half. In addition, to investigate the possibility that energy supply influences the milk protein response to an elevated amino acid (AA) concentration, 2 different AA profiles were infused with and without acetate. Six cows, fed a total mixed ration of 21% crude protein ad libitum, were infused with AA at 0 g/h, 30 g/h in the profile of rumen microbes, or 30 g/h in the profile of milk proteins, in a 3 x 2 factorial arrangement with the 2 acetate treatments of 0 and 40 g/h, all in a 6 x 6 Latin square. Amino acid infusion caused a 60% increase, on average, in plasma concentration of AA entering the infused udder half. From the microbial AA profile, 49% of infused AA were taken up by the udder half, 42% of which occurred during the first pass. From the milk AA profile, 44% of infused AA were taken up by the udder half, 50% of which occurred during the first pass. There was an 8% increase in yield of milk protein with AA infusion, representing 7% capture, but no effect of the infused profile. Acetate infusion caused a decrease in the yields of milk protein and lactose when AA were infused, but not when AA were absent. Milk fat yields were not affected, although acetate concentrations in plasma entering the infused udder half increased by 123% and mammary uptakes increased by 128%. Mammary uptakes of long-chain fatty acids and beta-hydroxybutyrate were not affected by acetate infusion, whereas glucose uptakes tended to increase. It was suggested that excess acetate may have been sequestered in adipose tissue in the udder. Yields

  18. Root-uptake of {sup 14}C derived from acetic acid and {sup 14}C transfer to rice edible parts

    Ogiyama, Shinichi [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)], E-mail: ogiyama@nirs.go.jp; Suzuki, Hiroyuki [Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-5522 (Japan); Inubushi, Kazuyuki [Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi 271-8510 (Japan); Takeda, Hiroshi; Uchida, Shigeo [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)

    2010-02-15

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of {sup 14}C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The {sup 14}C radioactivity in the plant, mediums, and atmospheric carbon dioxide ({sup 14}CO{sub 2}) in the chamber were determined, and the distribution of {sup 14}C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had {sup 14}C radioactivity, but the upper root which did not have contact with the solution had none. There were also {sup 14}C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that {sup 14}CO{sub 2} gas was released from the culture solution in both types of cultures. Results indicated that the {sup 14}C-acetic acid absorbed by rice plant through its root would be very small. Most of the {sup 14}C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate {sup 14}C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of {sup 14}C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated {sup 14}C through the plant roots not because of uptake of {sup 14}C-acetic acid but because of uptake of {sup 14}C in gaseous forms such as {sup 14}CO{sub 2}.

  19. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14C radioactivity in the plant, mediums, and atmospheric carbon dioxide (14CO2) in the chamber were determined, and the distribution of 14C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14CO2 gas was released from the culture solution in both types of cultures. Results indicated that the 14C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14C through the plant roots not because of uptake of 14C-acetic acid but because of uptake of 14C in gaseous forms such as 14CO2.

  20. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects. PMID:26769837

  1. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  2. Synergistic action of famotidine and chlorpheniramine on acetic acid-induced chronic gastric ulcer in rats

    Zhen Qin; Chao Chen

    2005-01-01

    AIM: To assess the synergistic action of famotidine (FMD)and chlorpheniramine (CPA) on acetic acid-induced chronic gastric ulcer in rats.METHODS: Chronic gastric lesions were induced in male Sprague-Dawley (SD) rats by serosal application of the acetic acid. Forty SD rats were randomly divided into blank group (n = 8), control group (n = 8), FMD group (n= 8), CPA group (n = 8), and FMD+CPA group (n = 8).Each group was given intraperitoneally (i.p.) 0.5 mL/100g distilled water, 9 g/L NaCl saline, 4 mg/kg FMD, 10mg/kg CPA, 4 mg/kg FMD+10 mg/kg CPA, respectively,daily for 10 d. On d 10, ulcer area was determined by planimetry. The level of myeloperoxidase (MPO) in the liver homogenation was determined by biochemical methods and the plasma levels of 6-ketoprostaglandin F1 alpha (6-keto-PGF1a)and IL-8 were determined by radioimmunoassay.RESULTS: The synergistic effects of FMD+CPA group on the lesion, IL-8, 6-keto-PGF1a and MPO were confirmed.The effect of FMlD+CPA group was significantly different as compared to the control and FMD groups. The lesion (mm2) was reduced from 40.18±2.6 in control group to 6.83±2.97 in PMD+CPA group, P<0.01, and from 32.9±3.27 in FMD group to 6.83±2.97 in pMlD+CPA group,P<0.01. The plasma levels of IL-8 decreased from 0.69±0.11 ng/L in control group to 0.4±0.04 ng/L in PMD+CPA group, P<0.01, and from 0.51±0.08 ng/L in FMD group to 0.4±0.04 ng/L in PMD+CPA group, P<0.05. The level of 6-keto-PGF1a increased from 7.55±1.65 ng/L in control group to 16.62±0.97 ng/L in PMD+CPA group, P<0.01,and from 13.15±1.48 ng/L in FMD group to 16.62±0.97ng/L in PMD+CPA group, P<0.05. The levels of MPO in the liver homogenate decreased from 9.12±2.05 u/Lin control group to 4.33±0.95 u/L in PMD+CPA group,P<0.01, and from 8.3±1.29 u/L in FMD group to 4.33±0.95 u/L, P<0.01.CONCLUSION: The synergistic action of FMD and CPA on acetic acid-induced chronic gastric ulcer in rats decreases the incidence of ulcer and also enhances the

  3. Indole-3-acetic acid (IAA producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.

    Samira Tabatabaei

    2016-03-01

    Full Text Available The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about the roles played by Pseudomonas in durum wheat (Triticum turgidum L. var durum growth and development. An in vitro experiment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA -producing Pseudomonas isolatesand exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A significant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by different bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination attributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and α-amylase activity should be taken into account during the screening of IAA-producing Pseudomonas isolates for durum wheat growth promoting agents.

  4. Application of a constricted mesotube reactor with oscillatory flow to acetic fermentation

    Coelho, Eduardo João Louro; Teixeira, J. A.; Domingues, Lucília

    2016-01-01

    Acetic acid bacteria are strict aerobes, capable of oxidizing ethanol to acetic acid in the presence of oxygen. Considering that acetification is an exothermal process, with high need for oxygen supply, efficient mass transfer between the gaseous and aqueous phase and efficient heat transfer in the fermentation medium, pose as the main challenges when focusing process improvement. Throughout time, several setups have been tested and used for improving efficiency in acetic fermentations, rangi...

  5. Cervical cancer risk factors and feasibility of visual inspection with acetic acid screening in Sudan

    Ibrahim A

    2011-04-01

    Full Text Available Ahmed Ibrahim1, Vibeke Rasch2, Eero Pukkala3, Arja R Aro11Unit for Health Promotion Research, University of Southern Denmark, Esbjerg, Denmark; 2Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark; 3Institute for Statistical and Epidemiological Cancer Research, Finnish Cancer Registry, Helsinki, FinlandObjectives: To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA screening method in a primary health center in Khartoum, Sudan.Methods: A cross-sectional prospective pilot study of 100 asymptomatic women living in Khartoum State in Sudan was carried out from December 2008 to January 2009. The study was performed at the screening center in Khartoum. Six nurses and two physicians were trained by a gynecologic oncologist. The patients underwent a complete gynecological examination and filled in a questionnaire on risk factors and feasibility and acceptability. They were screened for cervical cancer by application of 3%–5% VIA. Women with a positive test were referred for colposcopy and treatment.Results: Sixteen percent of screened women were tested positive. Statistically significant associations were observed between being positive with VIA test and the following variables: uterine cervix laceration (odds ratio [OR] 18.6; 95% confidence interval [CI]: 4.64–74.8, assisted vaginal delivery (OR 13.2; 95% CI: 2.95–54.9, parity (OR 5.78; 95% CI: 1.41–23.7, female genital mutilation (OR 4.78; 95% CI: 1.13–20.1, and episiotomy (OR 5.25; 95% CI: 1.15–23.8. All these associations remained statistically significant after adjusting for age, educational level, employment, and potential confounding factors such as smoking, number of sexual partners, and use of contraceptive method. Furthermore, the VIA screening method was found to be feasible and acceptable to participants.Conclusion: This pilot study showed that women who have uterine

  6. Probiotic lactic acid bacteria for applications in vegetarian food products

    Charernjiratrakul, W.

    2007-07-01

    Full Text Available Total of 225 isolates of lactic acid bacteria were isolated from 152 samples of various fermented foods. The strains were investigated for their probiotic properties based on stability in bile salt (0.30% and high acidity (pH 3, growth under both aerobic and anaerobic conditions, ability to grow without vitamin B12. According to the above criteria, 40 isolates were selected. Using an agar spot method, 16 isolates were able to inhibit Salmonella typhimurium, S. typhi, S. enteritidis, S. paratyphi and 4 strains of E. coli O157 : H7 as clear zone greater than 10 mm. Moreover, utilization of protein or fat or starch was also considered. Only 5 isolates were able to utilize protein and further selected for antibiotics sensitivity test. The selected isolates were susceptible to following antibiotics: ampicillin, chloramphenicol, erythromycin , kanamycin, tetracycline and vancomycin; however they were resistant to ceptazidime and norfloxacin. They all showed better growth in vegetarian medium (coconut juice medium than MRS medium both under static and shaking conditions. Five active isolates were identified as Lactobacillus plantarum LL13, LN18, LP11, LS35 and Pediococcus pentosaceus LT02 by API 50 CH system. All cultures grew well in carrot juice by reducing pH from 6.4 to below 4.0 after 24 h of fermentation at 35oC. The lactic cultures in fermented carrot juice lost their viability about 2 log cycles after 15 days of cold storage at 4oC.

  7. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  8. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  9. Design, preparation and characterization of novel poly-lactic-co-glycolic acid-hyaluronic acid implants containing triptorelin acetate

    Nersi Jafary Omid

    2014-01-01

    Full Text Available Hormones and their derivatives are widely used to treat different types of diseases such as prostate cancer which is treated by agonists of gonadotropin-releasing hormone. Triptoreline salts are the first therapeutics of this group launched into the market in the form of microparticles (microspheres. Implants, as one of attractive injectable dosage forms, have many advantages over multi-particulate systems. Some of these advantages are dose adjustability, drug absorption improvement, constant release profile, etc. In this research, a new composite of poly-lactic-co-glycolic acid and hyaluronic acid was designed and prepared in the form of implants containing triptorelin acetate for administration as an injection under the skin (subcutaneously in arm or thigh area. The manufactured implants characterized by Fourier transform infrared spectroscopy, thermas gravimetric analysis, X-ray diffraction and scanning electron microscopy to assess different aspects of structure and morphology. The drug release profile was assessed by high performance liquid chromatography. These characterizations confirmed that the newly designed drug delivery has a good stability during manufacturing process. The release pattern of the implant was also studied and revealed that the release of the model drug follows a zero-order and erosion mechanism. The compatibility between the components of the newly designed implants and the release profile of the delivery system make it a promising device for drug delivery.

  10. Effect of Gibberellic Acid, Kinetin and Indole 3-Acetic Acid on Seed Germination Performance of Dianthus caryophyllus (Carnation

    Rajib Roychowdhury

    2014-02-01

    Full Text Available The experiment was undertaken with an objective to investigate the effect of various concentrations of plant growth regulators, i.e., Gibberellic acid (GA3, Kinetin and Indole 3-acetic acid (IAA on seed germination of Dianthus caryophyllus. Dianthus seeds were soaked in different concentrations (0 ppm or control, 10 ppm, 20 ppm, 30 ppm and 40 ppm of each of GA3, Kinetin and IAA for 24 h at room temperature (25±2oC. Three replicates of each treatment with ten seeds per replicate were arranged for precise physiological analysis. Significant variation was found in all aspects after analysis of variance (ANOVA of each mean value. After two weeks of seed soaking, it was noted that germination percentages were significantly accelerated by lower concentrations (10 and 20 ppm of used hormones. Amongst the three potential growth regulators, 20 ppm was found most effective because it showed highest germination percentage for GA3 (87.46%, Kinetin (78.92% and IAA (75.35%. A great deal of information relating to seed germination practices shows that these plant growth regulators were efficient in overcoming dormancy leading to rapid seed germination. GA3 was selected as best hormone in this study, which showed highest seed germination (87.46%. These results could be useful in large scale cultivation of Dianthus caryophyllus plants to improve its floricultural impact worldwide.

  11. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  12. Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough.

    Ravyts, Frédéric; De Vuyst, Luc

    2011-09-01

    Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate. PMID:21645811

  13. Production of Bio-gasoline by Co-cracking of Acetic Acid in Bio-oil and Ethanol

    王树荣; 王誉蓉; 蔡勤杰; 郭祚刚

    2014-01-01

    Acetic acid was selected as the model compound representing the carboxylic acids present in bio-oil. This work focuses the co-cracking of acetic acid with ethanol for bio-gasoline production. The influences of reac-tion temperature and pressure on the conversion of reactants as well as the selectivity and composition of the crude gasoline phase were investigated. It was found that increasing reaction temperature benefited the conversion of re-actants and pressurized cracking produced a higher crude gasoline yield. At 400 °C and 1 MPa, the conversion of the reactants reached over 99%and the selectivity of the gasoline phase reached 42.79%(by mass). The gasoline phase shows outstanding quality, with a hydrocarbon content of 100%.

  14. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  15. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture

    The dolomite modified with acetic acid solution was proposed as a CO2 sorbent for calcination/carbonation cycles. The carbonation conversions for modified and original dolomites in a twin fixed-bed reactor system with increasing the numbers of cycles were investigated. The carbonation temperature in the range of 630 C-700 C is beneficial to the carbonation reaction of modified dolomite. The carbonation conversion for modified dolomite is significantly higher than that for original sorbent at the same reaction conditions with increasing numbers of reaction cycles. The modified dolomite exhibits a carbonation conversion of 0.6 after 20 cycles, while the unmodified sorbent shows a conversion of 0.26 at the same reaction conditions, which is calcined at 920 C and carbonated at 650 C. At the high calcination temperature over 920 C modified dolomite can maintain much higher conversion than unmodified sorbent. The mean grain size of CaO derived from modified dolomite is smaller than that from original sorbent with increasing numbers of reaction cycles. The calcined modified dolomite possesses greater surface area and pore volume than calcined original sorbent during the multiple cycles. The pore volume and pore area distributions for calcined modified dolomite are also superior to those for calcined unmodified sorbent during the looping cycle. The modified dolomite is proved as a new and promising type of regenerable CO2 sorbent for industrial applications. (author)

  16. Toxicity of long chain fatty acids towards acetate conversion by Methanosaeta concilii and Methanosarcina mazei.

    Silva, Sérgio A; Salvador, Andreia F; Cavaleiro, Ana J; Pereira, M Alcina; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-07-01

    Long-chain fatty acids (LCFA) can inhibit methane production by methanogenic archaea. The effect of oleate and palmitate on pure cultures of Methanosaeta concilii and Methanosarcina mazei was assessed by comparing methane production rates from acetate before and after LCFA addition. For both methanogens, a sharp decrease in methane production (> 50%) was observed at 0.5 mmol L(-1) oleate, and no methane was formed at concentrations higher than 2 mmol L(-1) oleate. Palmitate was less inhibitory than oleate, and M. concilii was more tolerant to palmitate than M. mazei, with 2 mmol L(-1) palmitate causing 11% and 64% methanogenic inhibition respectively. This study indicates that M. concilii and M. mazei tolerate LCFA concentrations similar to those previously described for hydrogenotrophic methanogens. In particular, the robustness of M. concilii might contribute to the observed prevalence of Methanosaeta species in anaerobic bioreactors used to treat LCFA-rich wastewater. PMID:27273786

  17. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF. PMID:27118046

  18. Acetic acid effects on methanogens in the second stage of a two-stage anaerobic system.

    Xiao, Keke; Guo, Chenghong; Zhou, Yan; Maspolim, Yogananda; Ng, Wun-Jern

    2016-02-01

    This study reports on biomass tolerance towards high concentrations of acetic acid (HAc) within the system. Biomass from the second stage of a two-stage anaerobic sludge digestion system was used for this study. Microbial community analysis by 454 pyrosequencing highlighted hydrogenotrophic Methanomicrobiales was the predominant archaeal population in the second stage (>99% of the total archaeal community). Second stage biomass degraded HAc up to 4200 mg HAc L(-1) without observable lag phase. However, at HAc-shock loading of 7400 mg HAc L(-1), it showed a one day lag phase associated with decreased biomass activity. After stepwise HAc-acclimation over 27 d, the biomass degraded HAc of up to 8200 mg HAc L(-1) without observable lag phase. The dominance of Methanomicrobiales had remained unchanged in proportion - while the total archaeal population increased during acclimation. This study showed stepwise acclimation could be an approach to accommodate HAc accumulation and hence higher concentrations resulting from an enhanced first stage. PMID:26498097

  19. Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution

    The degradability of fibrous wollastonite (CaSiO3) in an aqueous solution of acetic acid and leaching of Ca2+ ions were investigated in the temperature range from 22 to 50 oC. The Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) was used for the assessment of calcium and other selected cations in the leaching medium. The amount of calcium in the solvent can be significantly enhanced through leaching at higher temperature. Fibrous silica particles are the main by-product of the leaching process. The properties of by-product were examined by thermal analysis (simultaneous TG-DTA-EGA), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The formation of silica layer on the surface of fibrous wollastonite particles is an important factor in the leaching process. Particles were covered by the silica layer and wollastonite core size was continually decreasing during leaching. The shape of resulting silica particles shows no significant changes during this process. Specific surface of the formed fibrous silica particles strongly depends on the leaching temperature.

  20. Process control, energy recovery and cost savings in acetic acid wastewater treatment.

    Vaiopoulou, E; Melidis, P; Aivasidis, A

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m(3) d) and high space time yield (30-35 kg COD/m(3) d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO(2) contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO(2) content during biogas combustion is minimized and usage of other acidifying agents is omitted. PMID:21168957

  1. Process control, energy recovery and cost savings in acetic acid wastewater treatment

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m3 d) and high space time yield (30-35 kg COD/m3 d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO2 contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO2 content during biogas combustion is minimized and usage of other acidifying agents is omitted.

  2. Process control, energy recovery and cost savings in acetic acid wastewater treatment

    Vaiopoulou, E., E-mail: vaiop@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Melidis, P., E-mail: pmelidis@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Aivasidis, A., E-mail: aavazid@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece)

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m{sup 3} d) and high space time yield (30-35 kg COD/m{sup 3} d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO{sub 2} contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO{sub 2} content during biogas combustion is minimized and usage of other acidifying agents is omitted.

  3. The effect of intracerebroventricular injection of histamine in visceral nociception induced by acetic acid in rats

    Zanboori Ali

    2010-01-01

    Full Text Available Objective : This study was designed to investigate the role of brain histamine and H1 and H2 receptors in mediating the central perception of visceral pain in rats. Materials and Methods : In conscious rats implanted with a lateral brain ventricle cannula, the effect of intracerebroventricular (i.c.v. injection of histamine (2.5, 10, and 40 μg, and chlorpheniramine and ranitidine at the same doses of 5, 20, and 80 μg were investigated on visceral pain. Visceral nociception induced by intraperitoneal (i.p. injection of acetic acid (1 mL, 1%, and the number of complete abdominal wall muscle contractions accompanied with stretching of hind limbs (writhes were counted for 1 h. Results : Histamine at doses of 10 and 40 μg and chlorpheniramine and ranitidine at the same doses of 20 and 80 μg, significantly decreased the numbers of writhes (P < 0.05. Pretreatment with chlorpheniramine and ranitidine at the same dose of 80 μg, significantly prevented histamine (40 μg-induced antinociception (P < 0.05. Conclusion : The results of this study suggest that brain histamine may be involved in modulation of visceral antinociception through both central H 1 and H 2 receptors.

  4. Dissociation of water and Acetic acid on PbS from first principles

    Satta, Alessandra; Ruggerone, Paolo; de Giudici, Giovanni

    2008-03-01

    The adsorption of complex molecules at mineral surfaces are crucial ingredients for understanding the mechanisms that rule the interaction between minerals and the biosphere and for predicting both the stability and the reactivity of minerals. The present work focuses mainly on the early stages of different adsorption reactions occurring at both the cleavage surface and a high-index vicinal surface of galena (PbS). We have studied the dissociation mechanism of water and acetic acid on the galena surfaces by means of ab initio calculations within the framework of the density functional theory in the generalized gradient approximation and of pseudopotential approach. The calculated adsorption energies of the molecules indicate the stepped surface as the most reactive, as expected. The free energy surface during the reaction process has been explored via metadynamics[1]. The optimized configurations of both reactants and products obtained, were then used to accurately calculate the dissociation energy via the Nudge Elastic Band method[2]. [1] A. Laio and M. Parrinello, PNAS 99, 12562 (2002). [2] G. Mills and H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994).

  5. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. PMID:25700632

  6. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Martín Fraga Cotelo; Karen Perelmuter Schein; Sheila Solange Giacaman Salvo; Pablo Miguel Zunino Abirad; Silvana Beatriz Carro Techera

    2013-01-01

    Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobac...

  7. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Karam, Nour-Eddine; Leghouchi, Essaid; Boudjerda, Jamel; Idoui, Tayeb

    2009-01-01

    A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB), staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The res...

  8. Isolation and characterization of lactic acid bacteria and yeasts from the Brazilian grape sourdough

    Krischina Singer Aplevicz; Jaciara Zarpellon Mazo; Eunice Cassanego Ilha; Andréia Zilio Dinon; Ernani Sebastião Sant´Anna

    2014-01-01

    Sourdough is a mixture of flour and water fermented by lactic acid bacteria and yeast, with a large use in bakery products. This study was developed with Brazilian grape (Niagara rosada) sourdough obtained from spontaneous fermentation. The aim of this work was to characterize genotypic and phenotypically lactic acid bacteria and yeasts isolated from sourdough. The phenotypic identification for bacteria and yeasts was performed by using the kit API50CHL and 20CAUX and the genotypic characteri...

  9. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  10. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati.

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  11. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases.

    Yang, Bo; Chen, Haiqin; Song, Yuanda; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2013-01-01

    The 67 kDa myosin-cross-reactive antigen (MCRA) is a member of the MCRA family of proteins present in a wide range of bacteria and was predicted to have fatty acid isomerase function. We have now characterised the catalytic activity of MCRAs from four LAB stains, including Lactobacillus rhamnosus LGG, L. plantarum ST-III, L. acidophilus NCFM and Bifidobacterium animalis subsp. lactis BB-12. MCRA genes from these strains were cloned and expressed in Escherichia coli, and the recombinant protein function was analysed with lipid profiles by GC-MS. The four MCRAs catalysed the conversion of linoleic acid and oleic acid to their respective 10-hydroxy derivatives, which suggests that MCRA proteins catalyse the first step in conjugated linoleic acid production. This is the first report of MCRA from L. rhamnosus with such catalytic function. PMID:22955678

  12. "Protective Effects of Some Azo Derivatives of 5-aminosalicylic Acid and Their Pegylated Prodrugs on Acetic Acid-induced Rat Colitis "

    Alireza Garjani; Soodabeh Davaran; Mohamadreza Rashidi; Nasrin Malek

    2004-01-01

    The protective and anti-inflammatory effects of azo and azo-linked polymeric prodrugs of 5-aminosalicylic acid (5-ASA) on acetic acid induced colitis in rats were investigated. Three azo prodrugs; 4,4 -dihydroxy-azobenzene-3-carboxilic acid (azo compound I), 4-hydroxy-azobenzene-3,4-dicarboxilic acid (azo compound II), 4,4-dihydroxy-3-formyl-azobenzene-3-carboxylic acid (azo compound III) and their polyethylene glycol (PEG 6000) derivatives were synthesized. Rats were pretreated orally (1 hou...

  13. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants. PMID:24705871

  14. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.

    Carvalheiro, Florbela; Moniz, Patrícia; Duarte, Luís C; Esteves, M Paula; Gírio, Francisco M

    2011-01-01

    Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol. PMID:20820868

  15. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde.

    Bell-Parikh, L C; Guengerich, F P

    1999-08-20

    The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic

  16. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  17. PREPARATION OF ASYMMETRIC POLYETHERKETONE FLAT AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION USING ACETIC ACID BASED COAGULANTS

    Ji-ping Yang; Philip J. Brown

    2008-01-01

    Membranes for gas separation have developed significantly in the last twenty years, however, there is still a need for high temperature and chemically resistant membranes that exhibit good selectivity and gas permeability. Our study examines the fundamental properties of polyetherketone (PEK, a thermally stable and chemically resistant polymer)membranes prepared using concentrated sulphuric acid (98% H2SO4) as the solvent. Non-solvents used in the work included acetic acid, ethanol, methanol, glycerol, and water. The concentration of the polymer solutions was chosen to be 20%. The membrane structures were examined using SEM, and the gas separation properties were measured using a lab-scale test rig.The results show that formation and control of membrane structures are complicated, and many preparation parameters affect membrane morphology and performance. Using appropriate conditions skinned sponge-like structured hollow fiber membranes could be made from PEK by using acetic acid as the internal coagulant. PEK hollow fibers spun from 20%PEK/H2SO4 solutions with 50% aqueous acetic acid as internal coagulant had selectivity for hydrogen/methane of around 40, implying a solution diffusion separation mechanism for gas separation without the need for fiber coating or after post-treatments.

  18. Activity of capryloyl collagenic acid against bacteria involved in acne.

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  19. Isolation and characterisation of lactic acid bacteria from donkey milk.

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk. PMID:27600975

  20. Antimicrobial susceptibility of lactic acid bacteria isolated from Sombor cheese

    Bulajić Snežana

    2011-01-01

    Full Text Available Extensive literature data pointed out that some lactic acid bacteria (LABs, the predominant microbiota in fermented dairy products, may serve as reservoirs of antibiotic resistance genes potentially transferable to human pathogens. Hence, there is a growing interest in the possible role of Las vectors of antibiotic resistance determinants. This paper reports the susceptibility patterns of a number of Lspecies (belonging to the genera Lactococcus, Lactobacillus, and Enterococcus isolated from different batches of autochthonous Sombor cheese, traditionally made without the addition of starter cultures, and currently proposed as a candidate for PDO/PGI designation. The experimental work was performed to select strains that do not contain antibiotic resistance genes among those with desirable technological characteristics such as rapid acidification, proteolysis, ability to metabolise citrate and form aromogenic compounds. In addition, the results of these screening procedures could also indicate the types and degrees of antimicrobial resistance already present among the Lcommunity of Sombor cheese, which according to their geographically restricted areas of production, specific manufacturing process and characteristic aroma and appearance, represent a distinct ecological niche.