WorldWideScience

Sample records for acetic acid bacteria

  1. Adaptation and tolerance of bacteria against acetic acid.

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  2. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  3. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine. PMID:18237809

  4. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  5. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  6. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  7. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  8. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    Albert Mas; María Jesús Torija; María del Carmen García-Parrilla; Ana María Troncoso

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a ...

  9. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  10. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH ...

  11. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  12. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  13. Application of molecular techniques for identification and ennumeration of acetic acid bacteria

    González Benito, Angel

    2005-01-01

    Application of molecular techniques for identification and enumeration of acetic acid bacteria:Los principales objetivos de la tesis son el desarrollo de técnicas de biología molecular rápidas y fiables para caracterizar bacterias acéticas.Las bacterias acéticas son las principales responsables del picado de los vinos y de la producción de vinagre. Sin embargo, existe un desconocimiento importante sobre su comportamiento y evolución. Las técnicas de enumeración y de identificación basadas en ...

  14. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts

    B. Chouaia; Gaiarsa, S.; Crotti, E.; Comandatore, F.; Degli Esposti, M.; I. RICCI; Alma, A.; Favia, G.; Bandi, C.; D. Daffonchio

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait...

  15. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a...

  16. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  17. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  18. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  19. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  20. Biofilm-associated indole acetic acid producing bacteria and their impact in the proliferation of biofilm mats in solar salterns

    Kerkar, S.; Raiker, L.; Tiwari, A.; Mayilraj, S.; Dastager, S.

    viz. Nerul and Curca to find a possible reason for the rapid proliferation of these solar biofilms. Out of the 125 bacteria isolated from these biofilms, 16 produced indole-3-acetic acid (IAA). Rapid in-situ assay with Salkowski reagent and HPLC...

  1. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai; Thidarat Paemsom; Chittra Pobsuwan; Khanitta Somtrakoon; Hung Lee

    2016-01-01

    The use of indole-3-acetic acid (IAA)-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae) and Chromolaena odorata (Asteraceae). The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, t...

  2. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria.

    Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka

    2015-08-01

    Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment. PMID:25846935

  3. Preservation of Steamed Fish (Rastrelliger Sp With Combine Method Using Sodium Acetate, Lactic Acid Bacteria Culture and Vacuum Packaging

    Betty Sri Laksmi Jenie, . Nuratifa, . Suliantari

    2001-04-01

    Full Text Available This study was carried out to improve the safety and shelf life of cooked kembung fish (Rastrelliger sp, a traditional food called pindang fish. Fresh eviscerated fish was fisrt soaked in 2% NaCl solution for 15 minutes, drained, washed with tap water and drained again. Sodium chloride at 12% concentration (w/w was distributed on the whole surface of the fish. Fish was then laid on a wooden basket inside a clay pot, steamed for 30 minutes, and then cooled. Combine method applied to the steamed fish (pindang was soaking in a mixed culture of Lactobacillus plantarum kik and Lactococcus lactis subsp. cremoris in the ratio of 2 : 1 (v/v containing 4% Na-acetate for 2 hrs and after draining, the product was vacuum packed. The result showed that the combine method using mixed culture of lactic acid bacteria containing 4% Na-acetate could reduce the growth of Staphylococcus aureus by 3-6 log units, decrease the TMA (Trimethylamine content and maintain the organoleptic properties (texture, appearance and odor of pindang fish during 6 days storage at room temperature. Control treatment without 4% Na-acetate could only keep the pindang fish for 4 days. Vacuum and nonvacuum packaging did not show any significant difference.

  4. Antibiofilm Properties of Acetic Acid

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram...

  5. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  6. Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa

    Aswathy, Agnes Joseph; Jasim, B.; Jyothis, Mathew; Radhakrishnan, E. K.

    2012-01-01

    Curcuma longa is well known for its use as spice and medicine. The remarkable feature of the plant is the presence of rhizome, which provides an interesting habitat for association by various groups of bacteria. Some of these associated endophytic bacteria can have growth-promoting effects. In the current study, two species of endophytic Paenibacillus has been identified from the rhizome as indole 3 acetic acid producers. These isolates can thus have potential growth-regulating effect in rhiz...

  7. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.

    Rozenberga, Linda; Skute, Marite; Belkova, Lubova; Sable, Inese; Vikele, Laura; Semjonovs, Pavels; Saka, Madara; Ruklisha, Maija; Paegle, Longina

    2016-06-25

    Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than BC (0.3GPa). BC displayed high water retention values (86-95%) and a degree of polymerisation up to 2540. Nanofibers obtained were 80-120nm wide and 600-1200nm long with up to 15% higher crystallinity than the original BC. It was concluded that BC is an excellent source for easily obtainable, highly crystalline and strong nanofibers. PMID:27083790

  8. Production of acetic acid from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author)

  9. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  10. ACETIC ACID AND A BUFFER

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  11. Genome Sequences of the High-Acetic Acid-Resistant Bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (Reference Strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (Isolated from Vinegar) ▿

    Andrés-Barrao, Cristina; Falquet, Laurent; Sandra P Calderon-Copete; Descombes, Patrick; Ortega Pérez, Ruben; Barja, François

    2011-01-01

    Bacteria of the genus Gluconacetobacter are usually involved in the industrial production of vinegars with high acetic acid concentrations. We describe here the genome sequence of three Gluconacetobacter europaeus strains, a very common bacterial species from industrial fermentors, as well as of a Gluconacetobacter oboediens strain.

  12. Design and performance testing of a DNA extraction assay for sensitive and reliable quantification of acetic acid bacteria directly in red wine using real time PCR

    Cédric eLONGIN

    2016-06-01

    Full Text Available Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence there is a real need for a rapid, specific, sensitive and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR. Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP at 1% (v/v during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 mL to 10 mL. Thus the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage.

  13. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  14. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques.

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-04-01

    Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm. PMID:25475315

  15. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  16. Direct Oxidation of Ethene to Acetic Acid

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  17. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  18. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  19. 醋酸菌中CRISPR位点的比较基因组学与进化分析%Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria

    夏凯; 梁新乐; 李余动

    2015-01-01

    CRISPR (Clustered regularly interspaced short palindromic repeats)是近几年发现的一种广泛存在于细菌和古菌中,能够应对外源DNA干扰(噬菌体、病毒、质粒等),并提供免疫机制的重复序列结构。CRISPR系统通常由同向重复序列、前导序列、间隔序列和CRISPR相关蛋白组成。本研究以醋酸发酵中常见3个属醋杆菌属(Acetobacter)、葡糖醋杆菌属(Gluconacetobacter)和葡糖杆菌属(Gluconobacter)的48个菌株为研究对象,通过其基因组上CRISPR相关基因序列的生物信息学分析,探索CRISPR位点在醋酸菌中的多态性及其进化模式。结果表明48株醋酸菌中有32株存在CRISPR结构,大部分CRISPR-Cas结构属于type I-E和type I-C类型。除了葡糖杆菌属外,葡糖醋杆菌属和醋杆菌属中的部分菌株含有 II 类的 CRISPR-Cas 系统结构(CRISPR-Cas9)。来自不同属菌株的CRISPR结构中重复序列具有较强的保守性,而且部分菌株CRISPR结构中的前导序列具有保守的motif (与基因的转录调控有关)及启动子序列。进化树分析表明cas1适合用于醋酸菌株的分类,而不同菌株间 cas1基因的进化与重复序列的保守性相关,预示它们可能受相似的功能选择压力。此外,间隔序列的数量与噬菌体数量及插入序列(Insertion sequence, IS)数量有正相关的趋势,说明醋酸菌在进化过程中可能正不断受新的外源DNA入侵。醋酸菌中CRISPR结构位点的分析,为进一步研究不同醋酸菌株对醋酸胁迫耐受性差异及其基因组稳定性的分子机制奠定了基础。%The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immun-ity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic ac-id bacteria (AAB) play an

  20. The effect of lactic acid bacteria on cocoa bean fermentation.

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  1. Bacteria contributing to behaviour of radiocarbon in sodium acetate

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2-14C] sodium acetate, and the autoradiograms showed that all the colonies were positive for 14C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 deg. C. Phylogenetic analysis based on 16S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 deg. C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of 14C to for the safety assessment of geological disposal of transuranic waste. (authors)

  2. Lactic Acid Bacteria

    ToddKlaenhammer

    2013-04-01

    Full Text Available Lactic acid bacteria (LAB are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract. In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of surface dependent proteins (SDPs to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the gastrointestinal tract. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy associated and health promoting LAB.

  3. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  4. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82, 163.03 and 228.24 g NH3-N/L). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels compared to the hydrogenotrophic methanogens tested. Additionally...

  6. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  7. Biosynthesis of myristic acid in luminescent bacteria

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [14C] acetate in a nutrient-depleted medium accumulated substantial tree [14C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [14C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  8. Effects of Lactic Acid Bacteria Inoculated Fermentation on Pickled Cucumbers

    Xiaoyi Ji; Yuan Wu; Xingzhu Wu; Yonghua Lin; Weiwei Xu; Hui Ruan; Guoqing He

    2013-01-01

    The aim of this study was to determine the effects of Lactic Acid Bacteria (LAB) fermentation on the texture and organic acid of pickled cucumbers. Texture and sensory evaluation as well as a microscopic observation were performed to study the textural differences among fresh cucumber, Spontaneous fermentation (SF) cucumber and LAB Inoculating Fermentation (LABIF) cucumber. Accumulation of seven organic acids i.e., oxalic, tartaric, malic, lactic, acetic, citric and succinic acid during cucum...

  9. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  10. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  11. Engineering robust lactic acid bacteria

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  12. Isobaric Vapor-Liquid Equilibrium of Binary Systems: p-Xylene + (Acetic Acid, Methyl Acetate and n-Propyl Acetate)and Methyl Acetate + n-Propyl Acetate in an Acetic Acid Dehydration Process

    HUANG Xiuhui; ZHONG Weimin; PENG Changjun; QIAN Feng

    2013-01-01

    The vapor-liquid equilibrium data of four binary systems(acetic acid + p-xylene,methyl acetate + n-propyl acetate,n-propyl acetate + p-xylene and methyl acetate + p-xylene)are measured at 101.33 kPa with Ellis equilibrium still,and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems.The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate + p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points.The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase,and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate + n-propyl acetate system,for which the latter gives more accurate correlations.

  13. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

    Moura, A. Vilela; Schuller, Dorit Elisabeth; Faia, A. Mendes; Silva, Rui D.; Chaves, S R; Sousa, Maria João; Côrte-Real, Manuela

    2011-01-01

    Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a byproduct of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this minireview, we present an o...

  14. Photodissociation spectroscopy of the Mg+-acetic acid complex

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p+, MgOH+, Mg(H2O)+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies

  15. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  16. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  17. Adsorption of acetic acid on different carbons

    K. Ouattara

    2012-10-01

    Full Text Available This study presents a double environmental aspect, on one hand, decline of the cost of the waste water treatment thanks to a cheap adsorbing, on the other hand, the valuation of coconut shells.The acetic acid was used as adsorbent because the knowledge of the size of its molecule (21 Å2 allows characterizing studied carbons.The model of Langmuir describes well the isotherms of adsorption on the various types of studied carbons. It stands out in this study that the capacity of adsorption of inactivated carbon grain (CNAG COCO doubles practically if this one is reduced in powder. Besides, the inactivated carbon powder (CNAP COCO and the activated carbon grain (CAG COCO have the same capacity of adsorption. So, the specific surfaces of the CNAP COCO and CAG COCO are identical: SL = 77 m2/g while that of the CNAG is only 32 m2/g. The use of inactivated carbon powder can be thus recommended to treat waste water opposite the inactivated grain carbon which isn’t of real interest.

  18. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  19. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  20. Solubilities of Isophthalic Acid in Acetic Acid + Water Solvent Mixtures

    CHENG Youwei; HUO Lei; LI Xi

    2013-01-01

    The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel.The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 =0 to 1.A new method to measure the solubility was developed,which solved the problem of sampling at high temperature.The experimental results indicated that within the temperature range studied,the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing temperature.The experimental solubilities were correlated by the Buchowski equation,and the calculate results showed good agreement with the experimental solubilities.Furthermore,the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility,which may be attributed to the intermolecular association between the solute and the solvent mixture.The maximum solubility effect was well modeled by the modified Wilson equation.

  1. Electron transport chains of lactic acid bacteria

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  2. Biogas Production through the Syntrophic Acetate-Oxidising Pathway. Characterisation and Detection of Syntrophic Acetate- Oxidising Bacteria

    Westerholm, Maria [Faculty of Natural Resources and Agricultural Sciences, Dept. of Microbiology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2012-11-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-step reaction, consisting of acetate oxidation to hydrogen and carbon dioxide by syntrophic acetate-oxidising bacteria (SAOB), followed by conversion of these products to methane by hydrogenotrophic methanogens. Ammonia and acetate concentration, hydraulic retention time, temperature and methanogenic population structure are operational parameters considered to influence the acetate conversion pathway. This thesis sought to increase understanding of SAO by examining syntrophic acetate oxidisers in pure culture, co-culture and methanogenic reactors. Two novel species of SAOB, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans, were isolated and their phenotypic and phylogenetic traits were characterised. Quantitative molecular approaches were developed and applied to determine structural dynamics in the methane-producing population in a mesophilic biogas reactor during an ammonia-induced shift from aceticlastic to syntrophic acetate degradation. The abundance of SAOB increased, with a simultaneous decrease in aceticlastic methanogens. The majority of known SAOB are considered acetogens, and gradually increased ammonia concentration was shown to cause distinct shifts in the putative acetogenic population structure in mesophilic biogas reactors. However, the acetogenic bacterial abundance remained relatively stable. Bioaugmentation of syntrophic acetate-oxidising cultures did not improve process performance or support establishment of SAO as the dominant acetate

  3. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  4. Protection of historical lead against acetic acid vapour

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  5. Uranyl complexes of n-alkanediaminotetra-acetic acids

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 deg in 0.10M and 1.00M KNO3. The influence of the length of the alkane chain of the ligands on the complexes formed is discussed. (author)

  6. Biosynthetic origin of acetic acid using SNIF-NMR

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2H and 1H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid. (author)

  7. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  8. Acetic acid as an intervention strategy to decontaminate beef carcasses in mexican commercial slaughterhouse

    Laura Reyes Carranza

    2013-09-01

    Full Text Available Beef can be contaminated during the slaughter process, thus other methods, besides the traditional water washing, must be adopted to preserve meat safety. The objective of this study was to evaluate the effect of 2% acetic acid interventions on the reduction of indicator bacteria on beef carcasses at a commercial slaughterhouse in Mexico. Reduction was measured by the count of mesophilic aerobic bacteria (TPC, total coliform (TC, and fecal coliform (FC (log CFU/ cm². Among the different interventions tested, treatments combining acetic acid solution sprayed following carcass water washing had greater microbial reduction level. Acetic acid solution sprayed at low pressure and longer time (10-30 psi/ 60 s reached higher TPC, TC, and FC reductions than that obtained under high pressure/ shorter time (1,700 psi/ 15 s; P<0.05. Exposure time significantly affected microbial reduction on carcasses. Acetic acid solution sprayed after carcass washing can be successfully used to control sources of indicator bacteria on beef carcasses under commercial conditions.

  9. Acetic acid assisted cobalt methanesulfonate catalysed chemoselective diacetylation of aldehydes

    Min Wang; Zhi Guo Song; Hong Gong; Heng Jiang

    2008-01-01

    Cobalt methanesulfonate in combination with acetic acid catalysed the chemoselective diacetylation of aldehyde with acetic anhydride at room temperature under solvent free conditions. After reaction, cobalt methanesulfonate can be easily recovered and mused many times. The reaction was mild and efficient with good to high yields.

  10. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells

    VALENTINA A. KRATASYUK

    2012-11-01

    Full Text Available Reshetilov AN, Kitova AE, Arkhipova AV, Kratasyuk VA, Rai MK. 2012. Determination of ethanol in acetic acid containing samples by a biosensor based on immobilized Gluconobacter cells. Nusantara Bioscience 4: 97-100. A biosensor based on Gluconobacter oxydans VKM B-1280 bacteria was used for detection of ethanol in the presence of acetic acid. It was assumed that this assay could be useful for controlling acetic acid production from ethanol and determining the final stage of the fermentation process. Measurements were made using a Clark electrode-based amperometric biosensor. The effect of pH of the medium on the sensor signal and the analytical parameters of the sensor (detection range, sensitivity were investigated. The residual content of ethanol in acetic acid samples was analyzed. The results of the study are important for monitoring the acetic acid production process, as they represent a method of tracking its stages

  11. Ototoxicity of acetic acid on the guinea pig cochlea

    Yamano, Takafumi; Higuchi, Hitomi; Nakagawa, Takashi; Morizono, Tetsuo

    2015-01-01

    Background To evaluate the ototoxicity of acetic acid solutions. Methods Compound action potentials (CAPs) of the eighth nerve were measured in guinea pigs before and after the application of acetic acid in the middle ear cavity. The pH values of the acetic acid solutions were pH 3.0, 4.0, and 5.0, and the application times were 30 min, 24 h, and 1 week. Results Acetic acid solution (pH 3.0, N = 3) for 30 min caused no significant elevation in CAP threshold at 4 kHz, but a significant elevati...

  12. Genetics of Lactic Acid Bacteria

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  13. A NOVEL COPOLYMER-BOUND CIS- DICARBONYLRHODIUM COMPLEX FOR THE CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE

    YUAN Guoqing; CHEN Yuying; CHEN Rongyao

    1989-01-01

    A series of porous microspheres of linear and ethylene diacrylate (M ') cross-linked copolymers of 2 - vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol - acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.

  14. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  15. 分泌吲哚乙酸的蒌蒿内生耐镉细菌的筛选与鉴定%Screening and Identification of Indole Acetic Acid-Producing Cadmium-Resistant Endophytic Bacteria fromArtemisia Selengensis

    周小梅; 赵运林; 胥正钢; 董萌; 库文珍

    2014-01-01

    To isolate indole acetic acid (IAA)-producing cadmium-resistant endophytic bacteria fromArtemisia selengensis is to help build an effective combined remediation system of plant and microorganism. Using IAA-producing and cadmium-tolerance as the screening indexes, isolated IAA-producing cadmium-resistant endophytic bacteria from the root, stem and leafofArtemisia selengensis by the grinding method, and determinated the tolerance of lead, copper, antimony and the effect of the strains on growth ofAremisia selengensis. Strains were identified based on morphological, physiological and biochemical properties as well as 16S rDNA sequence analysis. The results showed that, two cadmium-resistant endophytic bacteria which both have strong abilities to secrete IAA, named as J2 and Y5, were isolated fromArtemisia selengensis. The cadmium tolerance mass concentration of strains J2 and Y5 were up to 90 mg·L-1. The IAA production of strains J2 and Y5 respectively were 23.108 mg·L-1, 15.192 mg·L-1. Strain J2 could significantly increase the plant height, the longest root length, the average root length, the fresh weight and the dry weight of Artemisia selengensis; strain Y5 could significantly improve the plant height, the fresh weight and the dry weight ofArtemisia selengensis. The lead tolerance mass concentration of strains J2 and Y5 were up to 1200 mg·L-1, while the copper tolerance mass concentration of strains J2 and Y5 respectively were 120 mg·L-1 and 160 mg·L-1, the antimony tolerancemass concentration of strains J2 and Y5 respectively were 50 mg·L-1 and 150 mg·L-1. The colony of strain J2 was yellow, suborbicular and sticky on LB tablet. The colony of strain Y5 was white, suborbicular and moist on LB tablet. Strains J2 and Y5 respectively obtained one about 1500 bp band by amplifying 16S rDNA sequences, and by comparing strains J2 and Y5 showed the closest similarity of 16S rDNA sequences to Pantoea agglomerans STY29(HQ220151) andPseudomonas fluorescens V7c10(KC

  16. Comparative analysis of acetic and citric acid on internal milieu of broiler chickens

    Marcela Capcarova

    2014-02-01

    Full Text Available Normal 0 21 false false false CS JA X-NONE The aim of the present study was to analyse the effect of two organic acids (acetic and citric acid inclusion on serum parameters and the level of antioxidant status of broiler chickens. Some organic acidifiers reduce the growth of many intestinal bacteria, reduce intestinal colonisation and reduce infectious processes, decrease inflammatory processes at the intestinal mucosa, increase villus height and function of secretion, digestion and absorption of nutrients. Broiler chickens hybrid Ross 308 (n=180 were divided into 3 groups: one control (C and two experimental groups (E1, E2. Experimental animals received acetic and citric acid per os in water in single dose 0.25% for 42 days. After 42 days of feeding blood samples were collected (n=10 in each group. Significant decrease of serum triglycerides in citric acid group when compared with the control group was recorded. Acetic acid administration resulted in increased sodium level. Significant increase of albumin content in both experimental groups and increase of bilirubin content in citric group was recorded. Acids administration had no significant effect on other serum and antioxidant parameters. Acetic and citric acid had no harmful influenced on internal milieu of broiler chickens. The research on the field of organic acid will be worthy of further investigation.

  17. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  18. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol−1 energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol−1) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol−1). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm−1, where the first OH stretching overtone vibrations of 1ccc and 2pcc

  19. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    It is well known that over 0.8 kg kg−1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg−1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L−1 and 0.52 mol L−1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L−1 to 3.33 mol L−1. It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L−1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg-1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  20. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  1. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  2. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  3. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  4. Crystal structure of febuxostat–acetic acid (1/1

    Min Wu

    2015-05-01

    Full Text Available The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-isobutyloxyphenyl-4-methylthiazole-5-carboxylic acid–acetic acid (1/1], C16H16N2O3S·CH3COOH, contains a febuxostat molecule and an acetic acid molecule. In the febuxostat molecule, the thiazole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2°]. In the crystal, the febuxostat and acetic acid molecules are linked by O—H...O, O—H...N hydrogen bonds and weak C—H...O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction. π–π stacking is observed between nearly parallel thiazole and benzene rings of adjacent molecules; the centroid-to-centroid distances are 3.8064 (17 and 3.9296 (17 Å.

  5. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid...... chromatography and conventional mass spectrometry (MS) methods, including MS-mass spectroscopy, UV spectroscopy, and high-performance liquid chromatography-MS. The identified products indicate a novel metabolic pathway in which IAA is metabolized via dioxindole-3-acetic acid, dioxindole, isatin, and 2......-aminophenyl glyoxylic acid (isatinic acid) to anthranilic acid, which is further metabolized. Degradation of 4-Cl-IAA apparently stops at the 4-Cl-dioxindole step in contrast to 5-Cl-IAA which is metabolized to 5-Cl-anthranilic acid. Udgivelsesdato: 1995-Oct...

  6. Catalytic Esterification of Methyl Alcohol with Acetic Acid

    2001-01-01

    Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ.mo1-1 for the formation of methyl acetate. The methyl acetate production was carried out aa batch and continuous in a packed bed restive distillation column with high purity methyl acetate produced.

  7. Lactic Acid Bacteria in the Gut

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  8. Comparative genomics of the lactic acid bacteria

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  9. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  10. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-Hefian

    2009-01-01

    The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1) having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC) were then obtained from the plots of contact angle or conductivity versus concentration.

  11. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    Shiao, Y -S Jerry; Remijan, Anthony J; Snyder, Lewis E; Friedel, Douglas N

    2010-01-01

    Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\\times 10^{16}$ cm$^{-2}$ and the...

  12. Acid stress adaptation protects saccharomyces cerevisiae from acetic acid-induced programme cell death

    Giannattasio, Sergio; Guaragnella, Nicoletta; Côrte-Real, Manuela; Passarella, Salvatore; Marra, Ersilia

    2005-01-01

    In this work evidence is presented that acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-mediated programmed cell death. Exponential-phase yeast cells, non-adapted or adapted to acid stress by 30 min incubation in rich medium set at pH 3.0 with HCl, have been exposed to increasing concentrations of acetic acid and time course changes of cell viability have been assessed. Adapted cells, in contrast to non-adapted cells, when exposed to 80 mM acetic acid for 200 min ...

  13. Quorum sensing mechanism in lactic acid bacteria

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  14. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  15. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  16. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  17. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  18. High resolution acetic acid survey and water vapor radiometer

    Shiao, Yu-Shao

    2008-08-01

    Planets, comets, stars, galaxies and the interstellar medium (ISM) emit complex but distinct molecular spectra. These spectra reveal the chemical composition and physical conditions in the objects. For example, many biologically important molecules, such as acetic acid, formic acid, vinyl cyanide and ethyl cyanide, have been detected in hot molecular cores in the ISM. A diversity of molecules creates complicated and yet interesting astrochemistry in hot cores. However, the formation mechanisms of large molecules are still unclear. Hence large molecule observations are essential to understand hot core chemistry. Among these molecules, acetic acid is one of the most important large species in hot cores. It is a possible precursor of glycine, the simplest amino acid. It only has been detected in high-mass hot cores without oxygen/nitrogen chemical differentiation, which is key to hot core chemical models. Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA), we have conducted an acetic acid survey in hot cores. In our survey, we have discovered a new acetic acid hot core, G19.61-0.23, which also shows no chemical differentiation. Therefore, we suggest that both large oxygen and nitrogen- bearing species play important roles in acetic acid formation. Ground-based interferometric observations are severely affected by atmospheric conditions. Phase correction is a technique to obtain high quality data and achieve great scientific goals. For our acetic acid survey, a better phase correction technique can not only detect weaker transitions of large molecules, but also increase the map resolution of hot cores. Water vapor radiometers (WVRs) are designed to improve the technique by observing tropospheric water vapor along the lines of sight of interferometers. We have numerically demonstrated the importance of phase correction for interferometric observations and examined the water vapor phase correction technique. Furthermore, we have built two WVR

  19. [Conversion of acetic acid to methane by thermophiles

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  20. Genetics of proteinases of lactic acid bacteria

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  1. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  2. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures

    Michal Magala

    2013-09-01

    Full Text Available Background. Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefi ts like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Material and methods. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability. Results. Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Conclusion. Variations in tarhana recipe (salt absence, increased proportion of yoghurt led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid. Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that

  3. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  4. Protection of historical lead against acetic acid vapour

    Pecenová Z.

    2016-03-01

    Full Text Available Historical lead artefacts (small figurines, appliques, bull (metal seal can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous corrosion products are formed and fall off the surface. These corrosion products do not have any protection ability. The lead could be protected against acid environment by layer of “metal soup” which is formed on surface after immersion in solution of salt of carboxylic acid for 24 hours. The solutions of acids (with vary long of carbon chain and their salts are examined. Longer carbon chain provides better efficiency convers layer. The disadvantages are low solubility of carboxylic acids in water and bad abrasion resistance of formed layer.

  5. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  6. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth an...

  7. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-hefian

    2009-11-01

    Full Text Available The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1 having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC were then obtained from the plots of contact angle or conductivity versus concentration.

  8. Microwave Irradiation Promoted Synthesis of Aryloxy Acetic Acids

    LIN Min; ZHOU Jin-mei; XIA Hai-ping; YANG Rui-feng; LIN Chen

    2004-01-01

    Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%-97.4%) were obtained when the molar ratio of the reactants was n(ArOH) : n(NaOH): n(ClCH2CO2H) =1: 2.5: 1.2 with microwave irradiation power of 640 W for 65-85 s.

  9. Kinetics of xylose dehydration into furfural in acetic acid

    Zhou Chen; Weijiang Zhang; Jiao Xu; Pingli Li

    2015-01-01

    In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematical y. The reaction order of both furfural and xylose dehydration was determined and the reaction activation energy was obtalned by nonlinear regression. The effect of acetic acid concentration was also investi-gated. Reaction rate constants were galned. Reaction rate constant of xylose dehydration is k1 ¼ 4:189 . 1010 ½A.0:1676 exp −108:6.1000RT . ., reaction rate constant of furfural degradation is k2 ¼ 1:271 . 104½A.0:1375 exp−63:413.1000RT . and reaction rate constant of condensation reaction is k3 ¼ 3:4051 . 1010½A.0:1676 exp−104:99.1000RT .. Based on this, the kinetics equation of xylose dehydration into furfural in acetic acid was set up according to theory of Dunlop and Furfural generating rate equation is dd½F.t ¼ k1½X.0e−k1t−k2½F.−k3½X.0e−k1t½F.. © 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  10. Comparative genomics of the lactic acid bacteria

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  11. Amino Acid Decarboxylase Activity of Some Lactic Acid Bacteria

    Pelin ERTÜRKMEN; Turhan, İlkay; Öner, Zübeyde

    2015-01-01

    Microorganisms which have decarboxylase activity can form biogenic amine by enzymatic decarboxylation of amino acids in foods. Histamine poisoning results from consumption of foods typically certain types of fish and cheeses that contain unusually high levels of histamine. Therefore, decarboxylase activity is an important problem at the selection of lactic acid bacteria as a starter culture in fermented products. In this study, decarboxylase activities of 161 lactic acid bacteria (LAB) strain...

  12. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  13. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    Lindinger Michael I

    2007-12-01

    Full Text Available Abstract Aim Sodium acetate (NaAcetate has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial; or 2 a hay/grain meal alone (Control trial. Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse.

  14. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed;

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...... fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main...

  15. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. PMID:25865525

  16. Detection of CIN by naked eye visualization after application of acetic acid.

    Londhe M; George S; Seshadri L

    1997-01-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test p...

  17. Hydrogen production by photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} strain on acetate in continuous panel photobioreactors

    Deo Androga, Dominic; Ozgur, Ebru; Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Guenduez, Ufuk [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    Photobiological hydrogen production from organic acids occurs in the presence of light and under anaerobic conditions. Stable and optimized operation of the photobioreactors is the most challenging task in the photofermentation process. The aim of this study was to achieve a stable and high hydrogen production on acetate, using the photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} (uptake hydrogenase deleted strain) in continuous panel photobioreactors. An indoor experiment with continuous illumination (1500-2500 lux, corresponding to 101-169 W/m{sup 2}) and controlled temperature was carried out in a 8 L panel photobioreactor. A modified form of basal culture media containing 40 mM of acetate and 2 mM of glutamate with a feeding rate of 0.8 L/day was used. Stable hydrogen productivity of 0.7 mmol H{sub 2}/l{sub c}.h was obtained, however, biomass decreased during the continuous operation. Further indoor experiments with a biomass recycle and different feed compositions were carried out to optimise the feed composition for a stable biomass and hydrogen production. The highest hydrogen productivity of 0.8 mmol H{sub 2}/l{sub c}.h and yield of 88% was obtained in the 40 mM/ 4 mM acetate/glutamate continuously fed photobioreactor for a period of 21 days. (orig.)

  18. KINETIC STUDY OF CARBONYLATION OF METHANOL TO ACETIC ACID AND ACETIC ANHYDRIDE OVER A NOVEL COPOLYMER- BOUND CIS- DICARBONYLRHODIUM COMPLEX

    CHEN Yuying; YUAN Guoqing; CHEN Rongyao

    1989-01-01

    The kinetic study of carbonylation of methanol-acetic acid mixture to acetic acid and acetic anhydride over a cis-dicarbonylrhodium complex (MVM' Rh)coordinated with the ethylene diacrylate (M')crosslinked copolymer of methyl acrylate (M) and 2 - vinylpyridine (V) shows that the rate of reaction is zero order with respect to both reactants methanol and carbon monoxide, but first order in the concentrations of promoter methyl iodide and rhodium in the complex . Polar solvents can accelerate the reaction .Activation parameters were calculated from the experimental results, being comparable to that of the homogeneous system . A mechanism similar to that of soluble rhodium catalyst was proposed .

  19. Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst

    Mallaiah Mekala; Venkat Reddy Goli

    2015-01-01

    In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L−1 to 0.3268 mol·L−1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot. The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.

  20. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  1. EFFECT OF GOSSYPOL ACETIC ACID ON CHROMOSOME ABERRATIONS AND ANEUPLOIDIES IN OOCYTES AND ZYGOTES OF MICE

    WANGRen-Li; ZHANGZhong-Shu

    1989-01-01

    It was reported that gossypol acetic acid could effectively inhibit th~ implantation in ratA. This finding indicated that gossypol acet/c acid might also be used as a female contraceptive. The Present study further investigated the genetic effect of gossypol acetic

  2. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  3. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Martin Král

    2011-05-01

    Full Text Available Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drinking water and probiotics mixed with feed mixture. Body weight, FCR and GIT pH were recorded. The performance showed no statistically significant increase in body weight (P>0.05 in the weeks 1, 2, 3 and 4 of age. The body weight of broiler chickens was significant increase (P0.05 in weeks 5, and 6 of age. In different segments of the GIT was not statistically significant (P>0.05 difference of pH between the control and experimental groups.

  4. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  5. Environmental Risk Limits for Ethylene Diamine Tetra Acetic acid (EDTA)

    Kalf DF; Hoop MAGT van den; Rila JP; Posthuma C; Traas TP; SEC

    2003-01-01

    In this report maximum permissible concentration (MPC) and negligible concentration (NC) in water are derived for Ethylene Diamine Tetra Acetic acid (EDTA; CAS No. 64-02-8, EINECS No. 200-573-9), based on the EU risk assessment report for this compound. The Maximum Permissible Concentration (MPC) for the water compartment is 2.2 mg/l, and the Negligible Concentration (NC) is 0.022 mg/l. Calculation of MPCs for sediment or soil is not possible due to complex speciation of EDTA.

  6. Study of fatty acid-bacteria interactions

    Complete text of publication follows. During our work we investigated fatty acid-bacteria interactions. The antibacterial property of fatty acids was reported by several authors. Despite of them there is not reassuring explanation about the mechanism of the antibacterial activity of these compounds. An effect can considerably change in case of different structured fatty acids. Our earlier studies conduct that small changes in the structures can modify changes in their behavior towards bacteria. The stearic acid does not cause any antibacterial effects during the first few hours of the investigation, may even help the bacterial growth. However, linolic acid (C18:2) shows a strong antibacterial effect during the first hours. After 24 hours this effect wears out and the bacteria have adapted to the stress. We studied the antibacterial activity using direct bioautography. This method has the advantage to allow examining lipophilic compounds. The linoleic acid decomposes in time under different physiological conditions creating numerous oxidized molecules. This may be the reason of its antimicrobial effect. For studying this phenomenon we used infrared and mass spectroscopic methods. We applied infrared spectroscopy for indicating any changes in the spectra of the fatty acids after the interaction of fatty acids with bacteria. So we are able to deduct on what could happen during these process. We paid great attention towards the changes of double bonds, on methylation and demethylation processes. Using mass spectroscopy we searched for oxidized products that may play important role in this process. These studies are only part of our more widespreading investigations, dealing with the antimicrobial properties of fatty acids.

  7. Acid resistance in enteric bacteria.

    Gorden, J; Small, P L

    1993-01-01

    Shigella species require a uniquely small inoculum for causing dysentery. One explanation for the low infective dose is that Shigella species are better able to survive the acidic conditions encountered in the stomach than are other enteric pathogens. We have tested Shigella species, Escherichia coli, and Salmonella species for the ability to survive at pH 2.5 for at least 2 h. Most isolates of Shigella and E. coli survived this treatment, whereas none of the Salmonella isolates were able to ...

  8. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri

    Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S F; FABER, F; Driehuis, F

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and ...

  9. Discovering lactic acid bacteria by genomics

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in ferment

  10. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O2, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  11. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid

    Zhong; He; Xianqin; Wang

    2013-01-01

    The supported Pt catalysts(1 wt%)were prepared by the incipient impregnation method and analyzed using synchrotron-based X-ray diffraction,BET surface area,oxygen adsorption,CO pulse chemisorption,temperature-programmed desorption(TPD)of acetic acid,H2-TPD,NH3-TPD,O2-TPD,and H2-TPR.The reactivity of Pt-based catalysts was studied using a fixed bed reactor at 300 C and 4 MPa for hydrodeoxygenation of acetic acid,where Pt/TiO2 was very selective for ethane production.TPD experiments revealed that several conditions must be satisfied to achieve this high selectivity to ethane from acetic acid,such as Pt sites,moderate acidity,and medium metal-oxygen bond strength in the oxide support.This work provides insights in developing novel catalytic materials for hydrocarbon productions from various organics including bio-fuels.

  12. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  13. Ionic liquid mediated esterification of alcohol with acetic acid

    Beilei ZHOU; Yanxiong FANG; Hao GU; Saidan ZHANG; Baohua HUANG; Kun ZHANG

    2009-01-01

    Highly efficient esterification of alcohols with acetic acid by using a Bransted acidic ionic liquid, i.e., 1-methyl-2-pyrrolidonium hydrogen sulfate ([Hnmp]HSo4), as catalyst has been realized. The turnover numbers (TON) were able to reach up to 11000 and turnover frequency (TOF) was 846. The catalytic system is suitable for the esterification of long chain aliphatic alcohols, benzyl alcohol and cyclohexanol with good yields of esters. The procedure of separating the product and catalyst is simple, and the catalyst could be reused. [Hnmp]HSO4 had much weaker corrosiveness than H2SO4. The corrosive rate of H2SO4 was 400 times more than that of [Hnmp]HSO4 to stainless steel.

  14. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic and...

  15. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  16. Study on fluorescence spectra of molecular association of acetic acid-water

    Caiqin Han; Ying Liu; Yang Yang; Xiaowu Ni; Jian Lu; Xiaosen Luo

    2009-01-01

    Fluorescence spectra of acetic acid-water solution excited by ultraviolet (UV) light are studied, and the relationship between fluorescence spectra and molecular association of acetic acid is discussed. The results indicate that when the exciting light wavelength is longer than 246 nm, there are two fluorescence peaks located at 305 and 334 nm, respectively. By measuring the excitation spectra, the optimal wavelengths of the two fluorescence peaks are obtained, which are 258 and 284 nm, respectively. Fluorescence spectra of acetic acid-water solution change with concentrations, which is primarily attributed to changes of molecular association of acetic acid in aqueous solution. Through theoretical analysis, three variations of molecular association have been obtained in acetic acid-water solution, which are the hydrated monomers, the linear dimers, and the water separated dimers. This research can provide references to studies of molecular association of acetic acid-water, especially studies of hydrogen bonds.

  17. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. PMID:21316945

  18. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  19. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  20. Recovery of Ammonium Nitrate and Reusable Acetic Acid from Effluent Generated during HMX Production

    V. D. Raut; R. S. Khopade; M. V. Rajopadhye; V. L. Narasimhan

    2004-01-01

    Production of HMX on commercial scale is mainly carried out by modified Bachmann process, and acetic acid constitutes major portion of effluenttspent liquor produced during this process. The recovery of glacial acetic acid from this spent liquor is essential to make the process commercially viable besides making it eco-friendly by minimising the quantity of disposable effluent. The recovery of glacial acetic acid from spent liquor is not advisable by simple distillation since it contains, in ...

  1. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  2. Development of Acetic Acid Removal Technology for the UREX+Process

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  3. Development of Acetic Acid Removal Technology for the UREX+Process

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  4. [Removal of tattoos by CO2 laser and acetic acid].

    Di Quirico, R; Pallini, G; Di Domenicantonio, G; Astolfi, A; Bindi, F; Gianfelice, F

    1992-10-31

    The Authors pay attention to small tattoo removal by means of the utilization of the CO2 laser. Moreover, the Authors emphasize the drawback of double treatment which, usually, the patient suffers in tattoo removal by CO2 laser. Then, the pressure of the Authors is small sized tattoo removal in only one sitting achieving so an excellent esthetic result. Besides, the Authors, in this medical study, explains two methods for tattoo removal. In the study's results, the Authors describes the manner and the time of the two lesion recovery by the different manners of treatment. Finally, the Authors affirms the great consequence of the surgical CO2 laser, they don't fail, however, to affirm that the laser and acetic acid combination is an excellent procedure for small tattoo removal. PMID:1480288

  5. Freeze-drying of lactic acid bacteria.

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  6. Detection of CIN by naked eye visualization after application of acetic acid.

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries. PMID:9491668

  7. Inflammatory cells′ role in acetic acid-induced colitis

    Mohammad H Sanei

    2014-01-01

    Full Text Available Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD. Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1, ex vivo (group 3, and enema after immune suppression (group 5. Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H 2 O 2 , we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful.

  8. Food preservation using antifungal lactic acid bacteria

    Crowley, Sarah Catherine Mary

    2013-01-01

    Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spe...

  9. Recovery of Ammonium Nitrate and Reusable Acetic Acid from Effluent Generated during HMX Production

    V. D. Raut

    2004-04-01

    Full Text Available Production of HMX on commercial scale is mainly carried out by modified Bachmann process, and acetic acid constitutes major portion of effluenttspent liquor produced during this process. The recovery of glacial acetic acid from this spent liquor is essential to make the process commercially viable besides making it eco-friendly by minimising the quantity of disposable effluent. The recovery of glacial acetic acid from spent liquor is not advisable by simple distillation since it contains, in addition to acetic acid, a small fraction of nitric acid, traces of RDX, HMX, and undesired nitro compounds. The process normally involves neutralising the spent mother liquor with liquor ammonia and then distillating the ueutralised mother liquor under vacuum to recover dilute acetic acid (strength approx. 30 %. The dilute acetic acid, in turn, is concentrated to glacial acetic acid by counter current solvent extraction, followed by distillation. The process is very lengthy and the energy requirement is also veryhigh, rendering the process economically unviable. Hence, a novel method has been developed on bench-scale to obtain glacial acetic acid directly from the mother liquor after the second ageing process.

  10. Progress in Acetic Acid Industry%醋酸工业现状及发展

    李好管; 闫慧芳

    2001-01-01

    醋酸是用途最广泛的有机酸之一。分析了醋酸的生产和消费趋势;综述了醋酸工艺的进展;介绍了具有工业化前景或学术价值的醋酸合成新工艺的研究开发概况。对我国醋酸工业发展提出了建议。%Acetic acid is one of the organic acids which have many uses.This paper analyzed the production and consumption of acetic acid,summarized the progress of acetic acid technology,introduced the research and development of acetic acid new process.Some suggestions on China's acetic acid industry were also put forward.

  11. Cervical cancer risk factors and feasibility of visual inspection with acetic acid screening in Sudan

    Ibrahim, Ahmed; Rasch, Vibeke; Pukkala, Eero;

    2011-01-01

    To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan.......To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan....

  12. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage

    Elena Gonzalez-Fandos

    2014-09-01

    Full Text Available This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v or distilled water (control. Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0, L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05 inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  13. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately and...

  14. Fabrication of First Chinese Made Reactor for Oxosvnthesis of Acetic Acid in Xi'an

    2008-01-01

    @@ The first set of Chinese made reactor for oxo-synthesis of acetic acid has been fabricated by the Xi'an Nuclear Equipment Company,Ltd.This reactor has been transported to the site of equipment installation at the acetic acid production project owned by Shandong Yimeng Company,Ltd.,which has shattered the long-time precedent of relying upon imported equipment.

  15. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  16. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  17. Recovery of Dilute Acetic Acid by Catalytic Distillation Using NKC-9 as Catalyst

    ZHANG Zhigang; LI Xiaofeng; XU Shimin; LI Xingang

    2006-01-01

    The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 x 104 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optimal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15%-30% dilute acetic acid.

  18. Kinetics of reaction between acetic acid and Ag2+ in nitric acid medium

    The reaction kinetics between acetic acid and Ag2+ in nitric acid medium is studied by spectrophotometry. The effects of concentrations of acetic acid (HAc), H+, NO3- and temperature on the reaction are investigated. The rate equation has been determined to be -dc(Ag2+)/dt=kc(Ag2+)c(HAc)c-1(H+), where k = (610±15) (mol/L)-1·min-1 with an activation energy of about (48.8±3.5) kJ·mol-1 when the temperature is 25degC and the ionic strength is 4.0 mol/L. The reduction rate of Ag2+ increases with the increase of HAc concentration or temperature and the decrease of HNO3 concentration. However, the effect of NO3- concentrations on the reaction rate is negligible. (author)

  19. Bacteriocins produced by lactic acid bacteria: A review

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  20. Effect of ammonia on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82,163.03 and 228.24 g NH3-N/L)(Westerholm, et al., 2011; Satoshi, et al., 2000; Jacob, et al., 1997). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels...

  1. IDENTIFICATION OF INDUSTRIALLY IMPORTANT LACTIC ACID BACTERIA IN FOODSTUFFS

    Prosekov, A.; Babich, O.; Bespomestnykh, K.

    2013-01-01

    Universal genus-specific primers for comparative analysis of two aligned 16S rRNA gene nucleotide sequences of lactic acid bacteria were constructed. The method to identify lactic acid bacteria and a comprehensive plan for their genus and species identification may be used to characterize isolated strains of the Lactobacillus genus bacteria and in quality control of foodstuffs enriched with Lactobacillus.

  2. Metabolism of Flavone-8-acetic Acid in Mice.

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  3. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  4. The Effects of Lactic Acid Bacteria and Lactic Acid Bacteria+Enzyme Mixture Silage Inoculants on Maize Silage Fermentation and Nutrient Digestibility in Lambs

    M. L. Ozduven

    2005-01-01

    Full Text Available This study was carried out to determine the effects of lactic acid bacteria and lact ic acidbacteria+enzyme mixture inoculants as silage additives, on the fermentation, aerobic stability, cell wallcontent, and nutrient digestibility in lambs of maize silages. Pioneer 1174 (Iowa, USA, and Maize -All(Alltech, UK were used as lactic acid bacteria and lactic acid bacteria+enzyme mixture inoculants. Plantmaterials were fermented for 60 days in bunker type silos. Aerobic stability test was applied to all silosopened in the end of fermentation period. Relating to silage fermentation analysis of pH, ammonia nitrogen,water soluble carbohydrate, organic acids (lactic, acetic and butyric acid were carried out andmicrobiological analyses had been done. Digestional value of crude nutritive matters of silages determinedwith classical digestive experiments. Both inoculants increased characteristics of fermentation but impairedaerobic stability of maize silages. Inoculants were not effect on the nutritient digestibility of silages. Lacticacid bacteria+enzyme mixture inoculant decreased neutral and acid detergent fiber content.

  5. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  6. Effect of acetic acid on rice seeds coated with rice husk ash

    2013-01-01

    Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência), five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed) and five concentrations of acetic acid (0, 3,...

  7. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  9. Probiotic Lactic Acid Bacteria and Skin Health.

    Jeong, Ji Hye; Lee, Chang Y; Chung, Dae Kyun

    2016-10-25

    Human skin is the first defense barrier against the external environment, especially microbial pathogens and physical stimulation. Many studies on skin health with Lactic acid bacteria (LAB) have been published for many years, including prevention of skin disease and improvement of skin conditions. LAB, a major group of gram-positive bacteria, are known to be beneficial to human health by acting as probiotics. Recent studies have shown that LAB and their extracts have beneficial effects on maintenance and improvement of skin health. Oral administration of Lactobacillus delbrueckii inhibits the development of atopic disease. In addition, LAB and LAB extracts are known to have beneficial effects on intestinal diseases, with Lactobacillus plantarum having been shown to attenuate IL-10 deficient colitis. In addition to intestinal health, L. plantarum also has beneficial effects on skin. pLTA, which is lipoteichoic acid isolated from L. plantarum, has anti-photoaging effects on human skin cells by regulating the expression matrix meralloprotionase-1 (MMP-1) expression. While several studies have proposed a relationship between diseases of the skin and small intestines, there are currently no published reviews of the effects of LAB for skin health through regulation of intestinal conditions and the immune system. In this review, we discuss recent findings on the effects of LAB on skin health and its potential applications in beauty foods. PMID:26287529

  10. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  11. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.

    2011-02-15

    Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions [coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)] over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the “fines” fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.

  12. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

    2011-02-21

    Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

  13. Effects of acetlysalicylic acid with indole-3-acetic acid on rooting and pigmentation in Amygdalus L.

    Yiğit, Emel; Beker Akbulut, Gülçin

    2014-01-01

    Vegetative propagation is a key step, playing an important role in the succesful production of elite clones. The use of plant hormanes can increase the rroting capacity of cuttings. In this experiment, we investigated whether exogenously applied acetylsalicylic acid (ASA) with indole-3-acetic acit (IAA) (50, 100 mg/L) through the rooting medium could increase effects on Amygdalus spp or not. In the experiment, one year old semihardwood shootcuttings were used. The highest callus formation was...

  14. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    M Robinson; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture.

  15. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.

    Narendranath, N V; Thomas, K C; Ingledew, W M

    2001-03-01

    Specific growth rates (mu) of two strains of Saccharomyces cerevisiae decreased exponentially (R2 > 0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30 degrees C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05-0.1% w/v and lactic acid at concentrations of 0.2-0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30 degrees C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P < or = 0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. PMID:11420658

  16. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk;

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... The dehydrogenation experiments were carried out in a flow through lab scale tubular reactor. Based on 71 data sets a power law kinetic expression has been derived for the description of the dehydrogenation of acetaldehyde to acetic acid. The apparent reaction order was 0.89 with respect to water and...

  17. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  18. 5.3. The kinetics of acetic acid decomposition of calcined borosilicate concentrate

    Present article is devoted to kinetics of acetic acid decomposition of calcined borosilicate concentrate. The experimental data of kinetics of boron oxide extraction from the calcined danburite concentrate at acetic acid decomposition was obtained at 30-90 deg C temperature ranges and 15-60 minutes process duration. It was defined that at temperature increasing the extraction rate of boron oxide from the calcined danburite concentrate significantly increases. The influence of extraction rate of boron oxide on process duration at acetic acid decomposition was studied.

  19. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites. PMID:26754813

  20. Electrochemical evaluation of the inhibitory effects of acetic acid on Saccharomyces cerevisiae

    Yuan Zhenhong; Zhao Jinsheng; Yan Yongjie; Yang Zhengyu

    2006-01-01

    A mediated electrochemical method was proposed for toxic evaluation of acetic acid on S. cerevisiae AS.380, and menadione/ferricyanide was chosen as the mediator system. The variance in electrochemical response in the absence and presence of increasing concentrations of acetic acid were used to indicate the inhibitory effects of weak acid on the yeast. The inhibitory effects of acetic acid on glucose consumption during menadione mediated reduction of ferricyanide were also measured for comparison purpose. The relative limiting current and the glucose consumption were reduced by 64.5 % and 61%, respectively, in the presence of 4g/L acetic acid at pH 4.0. The results showed that the electrochemical method can provide us with an appropriate and convenient tool for cytotoxic evaluation.

  1. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite

    Ferreira, P; Fonseca, I.; Ramos, A.; Vital, J; Castanheiro, Jose

    2009-01-01

    The esterification of glycerol with acetic acid was carried out over dodecamolybdophosphoric acid (PMo) encaged in the USY zeolite. The products of glycerol acetylation were monoacetin, diacetin and triacetin. A series of PMo encaged in the NaUSY zeolite with different PMo loading from 0.6 to 5.4 wt.% were prepared. It was observed that the catalytic activity increases with the amount of PMo immobilized in the NaUSY zeolite, being the PMo3_NaUSY (with 1.9 wt.%) the most active sample...

  2. Functional genomics of lactic acid bacteria: from food to health

    Douillard, F.P.; Vos, de, W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumen...

  3. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  4. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Octavian BASTON; Oana Emilia CONSTANTIN

    2012-01-01

    Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regardi...

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  6. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  7. Bioproduction of usnic acid from acetate by kaolinite immobilized cells of Cladonia substellata Vain.

    Eugenia C. Pereira

    2014-02-01

    Full Text Available Cells of the lichen Cladonia substellata, immobilized in kaolinite and supplied with acetate, produce at room temperature large amounts of usnic acid which can be recovered from the washing solution.

  8. Synthesis of 2-(Benzodioxol-2-yl)acetic Acids as PPARδ Agonists

    Jian Lei KANG; Zhi Bing ZHENG; Dan QIN; Li Li WANG; Song LI

    2006-01-01

    A new series of compounds, 2-(benzodioxol-2-yl)acetic acids, have been synthesized. Their structures were confirmed by MS and 1H-NMR. The preliminary pharmacological screening showed that these compounds exhibited potent human PPARδ agonist activities.

  9. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  10. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease

    Dryahina, Kseniya; Pospíšilová, Veronika; Sovová, Kristýna; Shestivska, Violetta; Kubišta, Jiří; Spesyvyi, Anatolii; Pehal, F.; Turzíková, J.; Votruba, J.; Španěl, Patrik

    2014-01-01

    Roč. 8, č. 3 (2014), 037109. ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : SIFT-MS * gastro-esophageal reflux * acetic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  11. Towards lactic acid bacteria-based biorefineries.

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  12. KINETIC OF ESTERIFICATION OF ETHYL ALCOHOL BY ACETIC ACID ON A CATALYTIC RESIN

    Erol İNCE

    2002-01-01

    Full Text Available The conversion kinetics of diluted acetic acid to ethyl acetate by ethanol esterification in a batch reactor in liquid phase with an acidic polymer catalyst (lewatit series was studied. The intrinsic rate constants have been correlated with the reaction temperature, concentration of catalyst, initial ratios of reactants and initial water concentrations. The kinetic analysis was restricted to the system at hand in which a liquid and vapor phase are at equilibrium.

  13. SINOPEC,BP TO LAUNCH ACETIC ACID JOINT VENTURE IN NANJING

    2005-01-01

    @@ Sinopec Corp and BP signed a 50%-50% joint venture contract on March 15 to build a world-class 500,000-ton acetic acid plant in Nanjing, the capital of East China's Jiangsu Province. The joint venture, which is expected to be on stream in the second half of 2007,will adopt BP's world leading CativaR technology to make this project become a acetic acid production base with great competitiveness.

  14. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid

    Youssef A. Attia

    2013-04-01

    Full Text Available In order to evaluate the effect of acetic acid on growing and laying performance of Japanese Quail (JQ, 180 15-day-old JQ were divided into 4 groups. During the growing (15-42 days of age and laying (43-84 days of age periods, the groups fed the same basal diets supplemented with 0, 1.5, 3 and 6% of acetic acid. Each diet was fed to five replicates of 9 JQ (3 males:6 females during the growing period. During the laying period, 128 birds were housed in 32 cages (4 birds per cage, 1 male and 3 females, 8 replicates per treatment. Birds were housed in wire cages (46L×43W×20H cm in an open room. Acetic acid supplementation at 3% in the diets significantly increased the growth and laying rate and the Haugh unit score. The liver percentage significantly decreased with acetic acid at 6%. Acetic acid at 3% significantly increased hemoglobin concentrations at 6 weeks of age and increased weight of day old chicks hatched. Acetic acid affected the immune system as manifested by an excess of cellular reactions in the intestine as well as lymphoid hyperplasia in the spleen tissue. Degenerative changes in the covering epithelium of the intestinal villi were noted at the 6% concentration of acetic acid. Hepatocyte vacuolation and fatty changes were also observed at this concentration of treatment. In conclusion, 3% acetic acid may be used as a feed supplement for JQ during the growing and laying period to improve the productive performance.

  15. KINETIC OF ESTERIFICATION OF ETHYL ALCOHOL BY ACETIC ACID ON A CATALYTIC RESIN

    Erol İNCE

    2002-01-01

    The conversion kinetics of diluted acetic acid to ethyl acetate by ethanol esterification in a batch reactor in liquid phase with an acidic polymer catalyst (lewatit series) was studied. The intrinsic rate constants have been correlated with the reaction temperature, concentration of catalyst, initial ratios of reactants and initial water concentrations. The kinetic analysis was restricted to the system at hand in which a liquid and vapor phase are at equilibrium.

  16. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... metabolites produced. Besides diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....... for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strains, and in addition, isolation and identification of various antifungal metabolites produced by...

  17. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum

    Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. The authors found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid

  18. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    Päivi Ylitervo

    2014-07-01

    Full Text Available The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1 and very high (100–200 g·L−1 yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.

  19. Stress Physiology of Lactic Acid Bacteria.

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  20. Production of acetic from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    Umar, J.M. [National Atomic Energy Agency, Jakarta (Indonesia). Center for Application of Isotopes and Radiation; Matsuhashi, Shinpei; Hashimoto, Shoji

    1996-03-01

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author).

  1. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870. ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  2. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria†

    Kaplan, Handan; Hutkins, Robert W.

    2000-01-01

    Lactic acid bacteria and bifidobacteria were screened of their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS.

  3. Functional genomics of lactic acid bacteria: from food to health

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria a

  4. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  5. Antibiotic resistance of lactic acid bacteria

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  6. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz;

    2015-01-01

    containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller...

  7. Formic and acetic acid: Valence threshold photoelectron and photoionisation total ion yield studies

    Highlights: ► High-resolution threshold photoelectron spectrum of formic acid. ► High-resolution total photo-ion yield spectrum of formic acid. ► High-resolution threshold photoelectron spectrum of acetic acid. ► High-resolution total photo-ion yield spectrum of acetic acid. -- Abstract: The carboxylic acids (formic and acetic) have been studied using threshold photoelectron (TPE) and total photoion yield (TPIY) spectroscopies; simultaneously obtained spectra of formic acid (HCOOH) were recorded over the entire valence ionisation region from 11–21 eV at a resolution of ∼12 meV. Higher resolution spectra (∼6 meV) were also obtained in the energy region of the lowest two cationic states. Analysis of the TPE spectrum in this energy range agreed very favorably with the best available conventional photoelectron (PE) spectrum of formic acid. Autoionising Rydberg structure was observed in the TPIY spectrum of formic acid and is attributed primarily to the presence of the npa′ ← 8a′ Rydberg series converging on to the 32A′ ionic state of formic acid. Preliminary results, at a resolution of ∼8 meV, were obtained for acetic acid (CH3COOH) over the onset of the ionisation energy region. The TPE spectrum was found to be very similar to the best published photoelectron spectrum, but no Rydberg structure was observed in the TPIY spectrum.

  8. Effect of acetic acid on rice seeds coated with rice husk ash

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  9. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims at...... describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...... bacterial stimulation. Methods: CD3-CD56+ NK cells were isolated from buffy coats by negative isolation using a lineage specific antibody cocktail and magnetic beads binding the labelling antibodies on non-NK cells. NK cells were incubated either with 10 microg/ml UV-inactivated lactic acid bacteria or 10...

  10. COMPARISON OF OCCURENCE LACTIC ACID BACTERIA IN CHOSEN YOGURTS

    Silvia Pinterová

    2010-11-01

    Full Text Available The yogurt is healthy food, which contains at least 100 million cultures per gram. Probiotic bacteria have been proven to reduce the effects of some gastrointestinal problems, probiotics can greatly reduce lactose intolerance, have also been proven to prevent colon cancers, there are also a natural immune system booster. In our research we detected numbers of lactid acid bacteria in yogurts in slovak market. There were classical yogurts, yogurts with probiotics, yogurts with fat and non fat. We numbered lactid acid bacteria from and after expiration, in agars MRS and Lee´s. In examined yogurts we detected from expiration from 78.107  to 169.107  and after expiration from 59.107 to 133.107 lactic acid bacteria in 1 ml of yogurt. In agreement with Food Codex of SR (2010 of rules all these yogurts satisfy number of lactid acid bacteria. doi:10.5219/31

  11. The impact of lactic acid bacteria on sourdough fermentation

    Savić Dragiša S.; Joković Nataša

    2005-01-01

    The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable...

  12. Large prebiotic molecules in space: photo-physics of acetic acid and its isomers

    Puletti, Fabrizio; Mulas, Giacomo; Cecchi-Pestellini, Cesare

    2009-01-01

    An increasing number of large molecules have been positively identified in space. Many of these molecules are of biological interest and thus provide insight into prebiotic organic chemistry in the protoplanetary nebula. Among these molecules, acetic acid is of particular importance due to its structural proximity to glycine, the simplest amino acid. We compute electronic and vibrational properties of acetic acid and its isomers, methyl formate and glycolaldehyde, using density functional theory. From computed photo-absorption cross-sections, we obtain the corresponding photo-absorption rates for solar radiation at 1 AU and find them in good agreement with previous estimates. We also discuss glycolaldehyde diffuse emission in Sgr B2(N), as opposite to emissions from methyl formate and acetic acid that appear to be concentrate in the compact region Sgr B2(N-LMH).

  13. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In2O3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  14. Selectivity of colour reactions between elements and organic reagents in organo-aqueous acetic acid media

    Reasons, responsible for selectivity of photometric reactions in organo-aqueous acetic acid media, have been studied taking aluminium, gallium, and indium reactions as examples. Solution-and paper electrophoresis as well as distribution chromatography were used to examine the state of the elements in various media, including those for most selective determination of aluminium in the presence of gallium and indium. A high selectivity is due to the formation of an electrically neutral species of aluminium. And chloride complexes of gallium and indium in organo-aqueous acetic acid media. Coloured ternary complexes of aluminium with organic reagents and phosphoric acid are formed in the presence of the latter

  15. Colour reactions of aluminium, titanium and other elements in organo-aqueous media containing acetic acid

    Colour reactions of titanium, aluminium, gallium, and indium in water-organic media, which also contain organic acids (acetic, formic, or their mixtures with acetone and propanol) are considered with the aim of using them in photometric methods for determining these elements. The reactants used were 2.7-bisazosubstituted components of chromotropic acid. It was established that the rate of development of colouring, the contrast and selectivity increase in water-organic media as compared with aqueous solutions. A favourable effect of acetic acid on the development of colour reactions is noted

  16. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  17. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  18. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.

    Yukphan, Pattaraporn; Potacharoen, Wanchern; Tanasupawat, Somboon; Tanticharoen, Morakot; Yamada, Yuzo

    2004-03-01

    Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60.2-60.5 mol% G+C, with a range of 0.3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q(10). On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08(T) (=BCC 12978(T)=TISTR 1524(T)=NBRC 100057(T)=NRIC 0535(T)), which had a DNA G+C content of 60.3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand. PMID:15023938

  19. Impact of acetic acid concentration of fermented liquid feed on growth performance of piglets

    Canibe, Nuria; Pedersen, Anni Øyan; Jensen, Bent Borg

    2010-01-01

    acid in FLF on feed intake of weaners. Three experimental FLF diets were prepared to contain varying levels of acetic acid (30, 60, and 120 mM). Twenty piglets per treatment, weaned at 4 weeks of age and housed individually, were fed the experimental diets during six weeks starting at weaning. Feed...

  20. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  1. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS and...... liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors was not...... covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used. As...

  2. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  3. The influence of stress conditions on the growth of selected lactic acid bacteria

    A study was undertaken to determine the effects of certain stress conditions on selected lactic acid bacteria. Where recontamination occurred, lactic acid bacteria was already the dominant bacterial group, with counts of higher than 106/g in vacuum-packaged 'shelf stable' meat products after 1 week storage at 25 and 37 degrees Celsius respectively. Some of the isolates were capable of growing at a pH of 3,9. The minimum pH for growth of a specific culture was dependant on the type of acid that was used to lower the pH. Lactic and acetic acid had the highest inhibitory action. Hydrochloric and citric acid showed similar inhibitory effects, while the effects when using ascorbic acid or gluconic acid for lowering the pH were also fairly similar. Increase in the activity of certain lactic acid bacteria was noticed where the ratio of undissociated to dissociated citric acid in the medium was increased. After exceeding a concentration of 0,048 moles/l undissosiated citric acid in the medium, the activity of the majority of cultures was progressively inhibited. This phenomenon was also found with acetic acid for certain cultures. Selected lactic acid bacteria were resistant to an water activity (a (sub w)) of 0,94 in MRS broth, where NaCl or glycerol was used as a humectant. The minimum a (sub w) for growth was dependent on the type of humectant used. Concentrations of sodium benzoate and potassium sorbate were necessary to inhibit the majority of strains. The % inhibition by sodium benzoate and methyl paraben did not significantly change with a lowering in the pH of the growth medium. Except in the case of lactic acid, the different acids used to lower the pH of the medium did not have a significant effect on the % inhibition by the chemical preservatives. For the cocci, gamma D10 values of between 0,82 and 1,29 kGy were recorded, whereas the lactobacilli were less resistant to gamma rays, with D10 values of between 0,21 and 0,54 kGy

  4. Quorum sensing mechanism in lactic acid bacteria

    Hatice Yılmaz - Yıldıran; Aynur Gül Karahan; Gülden Başyiğit - Kılıç

    2015-01-01

    For a long time, microorganisms were considered as just multiplying, finding nutrients and living by themselves organisms. But that belief changed 50 years ago along with the discovery of bacteria communication with each other and environment by microbiologists. The language used in the communication consists of signal molecules and these molecules are generally called 'auto inducer'. Bacteria are capable of measuring density of these molecules and by this way they are able to detect amoun...

  5. Factors involved in the anti-cancer activity of the investigational agents LM985 (flavone acetic acid ester) and LM975 (flavone acetic acid).

    Bibby, M. C.; Double, J A; Phillips, R. M.; Loadman, P.M.

    1987-01-01

    LM985 has been shown previously to hydrolyse to flavone acetic acid (LM975) in mouse plasma and to produce significant anti-tumour effects in transplantable mouse colon tumours (MAC). It has undergone Phase I clinical trials and dose limiting toxicity was acute reversible hypotension. Substantially higher doses of LM975 can be given clinically without dose limiting toxicity. We have investigated the activity of LM975 against a panel of MAC tumours and also the in vitro cytotoxicity of both LM...

  6. Interaction of neptunium with humic acid and anaerobic bacteria

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  7. Production of Value-added Products by Lactic Acid Bacteria

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  8. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  9. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  10. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  11. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  12. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites. PMID:21567472

  13. Inhibition of seafood-borne bacteria in cooked mackerel (Rastrelliger kanagurta) fish meat by lactic acid bacteria

    Kanappan, S.; G. Gopikrishna

    2008-01-01

    Antagonistic activity of lactic acid bacteria (LAB) namely Streptococcus faecalis, Pediococcus cerevisiae and Lactobacillus casei was tested against seafood-borne bacteria such as Staphylococcus aureus, Bacillus cereus, Escherichia coli, Clostridium perfringens and Listeria monocytogenes. Three lactic acid bacteria such as Streptococcus faecalis, Lactobacillus casei and Pediococcus cerevisiae were coated on cooked mackerel meat, individually and in combination against fish-borne bacteria. S. ...

  14. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine

    Rasrendra, C. B.; Girisuta, B.; van de Bovenkamp, H. H.; Winkelman, J. G. M.; Leijenhorst, E. J.; Venderbosch, R. H.; Windt, M.; Meier, D.; Heeres, H. J.

    2011-01-01

    The application of reactive extraction to isolate organic acids, particularly acetic acid, from the aqueous stream of phase splitted pyrolysis oil using a long chain aliphatic tertiary amine is reported. Acetic acid recovery was optimized by selecting the proper amine and diluent combination and adj

  15. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  16. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  17. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  18. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  19. Cell wall structure and function in lactic acid bacteria

    Kulakauskas, Saulius

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionall...

  20. Flow cytometric assessment of viability of lactic acid bacteria

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F. M.; Abee, T

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcu...

  1. Controlled overproduction of proteins by lactic acid bacteria

    Kuipers, Oscar P; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; de Vos, Willem M

    1997-01-01

    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable protein by lactic acid bacteria. Some systems benefit from the fact that the expression vectors, marker genes and inducing factors can be used directly in food applications since they are all derived ...

  2. Improving cyclodextrin complexation of a new antihepatitis drug with glacial acetic acid

    Johnson, Jennifer L. H.; He, Yan; Jain, Akash; Yalkowsky, Samuel H.

    2006-01-01

    The purpose of this study was to develop and evaluate a solid nonaqueous oral dosage form for a new hepatitis C drug, PG301029, which is insoluble and unstable in water. Hydroxypropyl-β-cyclodextrin (HPβCD) and PG301029 were dissolved in glacial acetic acid. The acetic acid was removed by rotoevaporation such that the drug exists primarily in the complexed form. The stability of formulated PG301029 was determined upon dry storage and after reconstitution in simulated intestinal fluid (SIF), s...

  3. THE EFFECTS OF ANIMAL AGE AND ACETIC ACID CONCENTRATION ON PIGSKIN GELATIN CHARACTERISTICS

    Y. Pranoto; A. Pertiwiningrum; Triatmojo, S.; M. Sompie

    2012-01-01

    This research was aimed to study the influence of animal age and concentration of the acetic acid solution on physical and chemical properties of pigskin gelatin. The experiment used Completely Randomized Design (CRD) with two factors. The first factor was animal age consisted of 3 levels (5, 7 and 9 months). The second factor was concentration of acetic acid solution consisted of 3 levels (2, 4 and 6 percents). The result showed that animal age had significant effect (P0.05) on the yields,...

  4. Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V.

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH re...

  5. Reaction Kinetics Between Acetic Acid and Ag2+

    2008-01-01

    <正>The application of the salt-free reagents in the spent fuel reprocessing process has been investigated so much in the last years. Preferable result was obtained in the application of acetohydroxamic acid in the

  6. The impact of lactic acid bacteria on sourdough fermentation

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  7. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  8. KRAFT MILL BIOREFINERY TO PRODUCE ACETIC ACID AND ETHANOL: TECHNICAL ECONOMIC ANALYSIS

    Haibo Mao

    2010-05-01

    Full Text Available The “near neutral hemicellulose extraction process” involves extraction of hemicellulose using green liquor prior to kraft pulping. Ancillary unit operations include hydrolysis of the extracted carbohydrates using sulfuric acid, removal of extracted lignin, liquid-liquid extraction of acetic acid, liming followed by separation of gypsum, fermentation of C5 and C6 sugars, and upgrading the acetic acid and ethanol products by distillation. The process described here is a variant of the “near neutral hemicellulose extraction process” that uses the minimal amount of green liquor to maximize sugar production while still maintaining the strength quality of the final kraft pulp. Production rates vary between 2.4 to 6.6 million gallons per year of acetic acid and 1.0 and 5.6 million gallons per year of ethanol, depending upon the pulp production rate. The discounted cash flow rate of return for the process is a strong function of plant size, and the capital investment depends on the complexity of the process. For a 1,000 ton per day pulp mill, the production cost for ethanol was estimated to vary between $1.63 and $2.07/gallon, and for acetic acid between $1.98 and $2.75 per gallon depending upon the capital equipment requirements for the new process. To make the process economically attractive, for smaller mill sizes the processing must be simplified to facilitate reductions in capital cost.

  9. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.