WorldWideScience

Sample records for acetaminophen

  1. How to Safely Give Acetaminophen

    ... All About Food Allergies How to Safely Give Acetaminophen KidsHealth > For Parents > How to Safely Give Acetaminophen ... without getting a doctor's OK first. What Is Acetaminophen Also Called? Acetaminophen is the generic name of ...

  2. Acetaminophen, Butalbital, and Caffeine

    The combination of acetaminophen, Butalbital, Caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 hours ... explain any part you do not understand. Take acetaminophen, Butalbital, Caffeine exactly as directed. Do not take ...

  3. Acetaminophen dosing for children

    Taking acetaminophen (Tylenol) can help children with colds and fever feel better. As with all drugs, it is important to give children the correct dose. Acetaminophen is safe when taken as directed. But taking ...

  4. Treatment of acetaminophen poisoning.

    Sellers, E M; Freedman, F.

    1981-01-01

    Acetaminophen is an analgesic that is frequently used in Canada, and the occurrence of overdoses with this drug seems to be increasing. The most serious complication of acetaminophen overdose is hepatic failure. Because of pathophysiologic effects of acetaminophen poisoning and the mechanisms of its toxic effects are now better understood, a rational approach to treatment is possible. Several precursors of glutathione, acetylcysteine in particular, are effective in preventing liver damage if ...

  5. Acetaminophen and Codeine

    The combination of acetaminophen and codeine comes as a tablet, capsule, and liquid to take by mouth. It usually is taken every 6 ... explain any part you do not understand. Take acetaminophen and codeine exactly as directed.Codeine can be ...

  6. Don't Double Up on Acetaminophen

    ... for advice. FDA has an online list of brand names of products containing acetaminophen . back to top ... t Mix For More Information Acetaminophen Information Acetaminophen Awareness Coalition’s Know Your Dose Campaign Using Acetaminophen and ...

  7. Acetaminophen and Codeine

    Acetaminophen and codeine may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: dizziness lightheadedness drowsiness upset stomach vomiting constipation stomach pain rash difficulty urinating If you experience either of ...

  8. Acetaminophen for Chronic Pain

    Ennis, Zandra Nymand; Dideriksen, Dorthe; Vaegter, Henrik Bjarke;

    2016-01-01

    conducted according to PRISMA guidelines. All studies were conducted in patients with hip- or knee osteoarthritis and six out of seven studies had observation periods of less than three months. All included studies showed no or little efficacy with dubious clinical relevance. In conclusion, there is little......Acetaminophen (paracetamol) is the most commonly used analgesic worldwide and recommended as first-line treatment in all pain conditions by WHO. We performed a systematic literature review to evaluate the efficacy of acetaminophen when used for chronic pain conditions. Applying three broad search...... evidence to support the efficacy of acetaminophen treatment in patients with chronic pain conditions. Assessment of continuous efficacy in the many patients using acetaminophen worldwide is recommended. This article is protected by copyright. All rights reserved....

  9. Acetaminophen and codeine overdose

    ... Comprehensive Study Guide. 7th ed. New York, NY: McGraw-Hill; 2011:chap 180. Ferri FF. Acetaminophen poisoning. ... Comprehensive Study Guide. 7th ed. New York, NY: McGraw-Hill; 2011:chap 184. Kellerman RD. Physical and ...

  10. Acetaminophen: old drug, new warnings.

    Schilling, Amy; Corey, Rebecca; Leonard, Mandy; Eghtesad, Bijan

    2010-01-01

    The US Food and Drug Administration (FDA), concerned about the incidence of acute liver failure due to acetaminophen (Tylenol) overdose, has mandated new labeling on acetaminophen packaging. It is also considering (but has not enacted) reducing the maximum daily dose from 4 g (possibly to 3,250 mg), banning acetaminophen-narcotic combination products, and changing the current maximum single dose of 1 g to prescription status, making 650 mg the highest recommended nonprescription dose. We review the epidemiology, toxicology, and management of acetaminophen overdose and steps the FDA and physicians can take to prevent it. PMID:20048026

  11. Acetaminophen toxicosis in a Dalmatian

    MacNaughton, Sarah M.

    2003-01-01

    An 11-year-old, spayed female Dalmatian was presented with suspected acetaminophen toxicosis. The dog was severely depressed. Methemoglobinemia, facial edema, and hemoglobinuria responded to treatment with intravenous fluids, N-acetylcysteine, ascorbic acid, and sodium bicarbonate. There was no clinical evidence of hepatic damage typical of acetaminophen toxicity in the dog.

  12. Paracetamol (acetaminophen) poisoning

    Buckley, Nick; Eddleston, Michael

    2007-01-01

    Paracetamol (acetaminophen) is a common means of self-poisoning in Europe and North America, often taken as an impulsive act of self-harm in young people. Mortality from paracetamol overdose is now about 0.4%, although without treatment, severe liver damage occurs in at least half of people with blood paracetamol levels above the UK standard treatment line.In adults, ingestion of less than 125 mg/kg is unlikely to lead to hepatotoxicity; even higher doses may be tolerated by children witho...

  13. Interventions for paracetamol (acetaminophen) overdoses

    Brok, J; Buckley, N; Gluud, C

    2002-01-01

    Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation.......Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation....

  14. Know Concentration Before Giving Acetaminophen to Infants

    ... For Consumers Consumer Updates Know Concentration Before Giving Acetaminophen to Infants Share Tweet Linkedin Pin it More ... Consumer Updates RSS Feed Download PDF (221 K) Acetaminophen Safety (Podcast) On this page Overdosing Has Been ...

  15. Acetaminophen induced nephrotoxicity in an adolescent girl

    Belde; Mehmet; Demet; Alper; Salih

    2011-01-01

    Acetaminophen induced nephrotoxicity is not a frequent consequence of acetaminophen overdose. The pathophysiology has been attributed to oxidative stress. Here, we report a 16-year-old female patient who developed non-oliguric acute renal failure without hepatotoxicity following ingestion of 14 tablets of 500 mg acetaminophen and recovered spontaneously in a week. (Turk Arch Ped 2011; 46: 343-5)

  16. Multiple-dose acetaminophen pharmacokinetics.

    Sahajwalla, C G; Ayres, J W

    1991-09-01

    Four different treatments of acetaminophen (Tylenol) were administered in multiple doses to eight healthy volunteers. Each treatment (325, 650, 825, and 1000 mg) was administered five times at 6-h intervals. Saliva acetaminophen concentration versus time profiles were determined. Noncompartmental pharmacokinetic parameters were calculated and compared to determine whether acetaminophen exhibited linear or dose-dependent pharmacokinetics. For doses less than or equal to 18 mg/kg, area under the curve (AUC), half-life (t1/2), mean residence time (MRT), and ratio of AUC to dose for the first dose were compared with the last dose. No statistically significant differences were observed in dose-corrected AUC for the first or last dose among subjects or treatments. Half-lives and MRT were not significantly different among treatments for the first or the last dose. Statistically significant differences in t1/2 and MRT were noted (p less than 0.05) among subjects for the last dose. A plot of AUC versus dose for the first and the last doses exhibited a linear relationship. Dose-corrected saliva concentration versus time curves for the treatments were superimposable. Thus, acetaminophen exhibits linear pharmacokinetics for doses of 18 mg/kg or less. Plots of AUC versus dose for one subject who received doses higher than 18 mg/kg were curved, suggesting nonlinear behavior of acetaminophen in this subject. PMID:1800709

  17. Intravenous paracetamol (acetaminophen).

    Duggan, Sean T; Scott, Lesley J

    2009-01-01

    Intravenous paracetamol (rINN)/intravenous acetaminophen (USAN) is an analgesic and antipyretic agent, recommended worldwide as a first-line agent for the treatment of pain and fever in adults and children. In double-blind clinical trials, single or multiple doses of intravenous paracetamol 1 g generally provided significantly better analgesic efficacy than placebo treatment (as determined by primary efficacy endpoints) in adult patients who had undergone dental, orthopaedic or gynaecological surgery. Furthermore, where evaluated, intravenous paracetamol 1 g generally showed similar analgesic efficacy to a bioequivalent dose of propacetamol, and a reduced need for opioid rescue medication. In paediatric surgical patients, recommended doses of intravenous paracetamol 15 mg/kg were not significantly different from propacetamol 30 mg/kg for the treatment of pain, and showed equivocal analgesic efficacy compared with intramuscular pethidine 1 mg/kg in several randomized, active comparator-controlled studies. In a randomized, noninferiority study in paediatric patients with an infection-induced fever, intravenous paracetamol 15 mg/kg treatment was shown to be no less effective than propacetamol 30 mg/kg in terms of antipyretic efficacy. Intravenous paracetamol was well tolerated in clinical trials, having a tolerability profile similar to placebo. Additionally, adverse reactions emerging from the use of the intravenous formulation of paracetamol are extremely rare (<1/10 000). [table: see text]. PMID:19192939

  18. Acetaminophen injection: a review of clinical information.

    Jones, Virginia M

    2011-01-01

    Acetaminophen injection is an antipyretic and analgesic agent recently marketed in the United States as Ofirmev. Five published trials directly compare acetaminophen injection to drugs available in the United States. For management of pain in adults, acetaminophen injection was at least as effective as morphine injection in renal colic, oral ibuprofen after cesarean delivery, and oral acetaminophen after coronary artery bypass surgery. In children (3 to 16 years old), single-dose acetaminophen injection was similar to meperidine intramuscular (i.m.) for pain after tonsillectomy; readiness for discharge from the recovery room was shorter with acetaminophen injection (median 15 minutes) compared with meperidine i.m. (median 25 minutes), P = .005. In children (2 to 5 years old) postoperative adenotonsillectomy or adenoidectomy, the time to rescue analgesia was superior with high-dose acetaminophen rectal suppository (median 10 hours) compared with acetaminophen injection (median 7 hours), P = .01. One published trial demonstrated acetaminophen injection is noninferior to propacetamol injection for fever related to infection in pediatric patients. Dosing adjustments are not required when switching between oral and injectable acetaminophen formulations in adult and adolescent patients. Acetaminophen injection represents another agent for multimodal pain management. PMID:21936636

  19. Decreased expression of acetaminophen-metabolizing enzymes and glutathione in asthmatic children after acetaminophen exposure

    Stephenson, Susan T.; Hadley, Graham; Brown, Lou Ann; Fitzpatrick, Anne M.

    2011-01-01

    Children with moderate-to-severe asthma have decreased expression of acetaminophen metabolizing genes and glutathione that may account for the previously-reported risk of acetaminophen in this vulnerable population.

  20. Acetaminophen: Beyond Pain and Fever-Relieving

    MiaozongWu

    2011-01-01

    Acetaminophen, also known as APAP or paracetamol, is one of the most widely used analgesics (pain reliever) and antipyretics (fever reducer). According to the U.S. Food and Drug Administration (FDA), currently there are 235 approved prescription and over-the-counter drug products containing acetaminophen as an active ingredient. When used as directed, acetaminophen is very safe and effective; however when taken in excess or ingested with alcohol hepatotoxicity and irreversible liver damage ca...

  1. Compound list: acetaminophen [Open TG-GATEs

    Full Text Available acetaminophen APAP 00001 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/acetamin...ophen.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/acetamin...cedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/acetaminophen.Rat.in_vivo.Liver.Repeat.zip ftp...://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/acetaminophen.Rat.in_vivo.Kidn...ey.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/acetaminophen.Rat.in_vivo.Kidney.Repeat.zip ...

  2. 21 CFR 862.3030 - Acetaminophen test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acetaminophen test system. 862.3030 Section 862....3030 Acetaminophen test system. (a) Identification. An acetaminophen test system is a device intended to measure acetaminophen, an analgestic and fever reducing drug, in serum. Measurements obtained...

  3. Acetaminophen in children: An old drug with new warnings

    Goldman, Ran D.

    2013-01-01

    Question I frequently suggest to parents to use acetaminophen to treat their children’s fever and pain. Recently, I had a child in my office who presented with a target-lesion skin rash a day after receiving acetaminophen. The rash resolved after 3 days and after stopping administration of acetaminophen. Does acetaminophen carry a risk of adverse events such as this?

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure ...

  5. Potentiation of cadmium nephrotoxicity by acetaminophen

    Bernard, A.M.; Russis, R. de; Ouled Amor, A.; Lauwerys, R.R.

    1988-10-01

    The possible interactions between acetaminophen and cadmium (Cd) on the kidney were investigated in female Sprague-Dawley rats. Acetaminophen was administered in the food at an average dose of 900 mg/kg and Cd in drinking water at the concentration of 200 ppm. The treatment with acetaminophen and Cd lasted 2 and 10 months, respectively. No interaction between Cd and acetaminophen was observed during the period of their concomitant administration: the increase in albuminuria caused by Cd and acetaminophen was additive, while the tubular impairment caused by acetaminophen (increased ..beta../sub 2/-microglobulinuria and decreased kidney concentrating ability) was not exacerbated by Cd. None of these treatments affected the glomerular filtration rate. Four months after the end of acetaminophen treatment, the renal changes had almost completely disappeared in the rats which had received the analgesic alone. Those continously exposed to Cd had developed slight tubular damage, as evidenced by an increased urinary excretion of ..beta../sub 2/-microglobulin and ..beta..-N-acetylglucosaminidase. By contrast, rats pretreated with acetaminophen for 2 months and exposed to Cd showed a marked increase in urinary excretion of albumin and ..beta../sub 2/-microglobulin, suggesting an interaction between both treatments. At the end of the study, only the interaction with ..beta../sub 2/-microglobulin excretion was still evident; that with the urinary excretion of ..beta..-N-acetylglucosaminidase and albumin having been masked by the chronic progessive nephrosis affecting most animals at that stage. As acetaminophen had no effect on the renal accumulation of Cd, it may be concluded that pretreatment with this analygesic at a dose causing slight tubular dysfunction renders rat kidney more sensitive to the nephrotoxic action of Cd. This observation may be of clinical relevance for population groups occupationally or environmentally exposed to Cd.

  6. The Social Side Effects of Acetaminophen

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical

  7. Synthesis of acetaminophen-d4

    A synthetic procedure for the analgesic acetaminophen-d4 (4'-hydroxyacetanilide - 2',3,5',6'-d4) is described. The preparation was achieved in two steps from nitrobenzene-d5 in an overall yield of 40%. (author)

  8. Acetaminophen prevents hyperalgesia in central pain cascade

    Crawley, Brianna; Saito, Osamu; Malkmus, Shelle; Fitzsimmons, Bethany; Hua, Xiao-Ying; Yaksh, Tony L.

    2008-01-01

    Acetaminophen is an analgesic and antipyretic drug believed to exert its effect through interruption of nociceptive processing. In order to determine whether this effect is due to peripheral or central activity, we studied the efficacy of systemic (oral) and intrathecal (IT) application of acetaminophen in preventing the development of hyperalgesia induced through the direct activation of pro-algogenic spinal receptors. Spinal administration of substance P (SP, 30 nmol, IT) in rats produced a...

  9. Acetaminophen hepatotoxicity: NO to the rescue

    Wallace, John L

    2004-01-01

    Severe liver injury as a result of overdose or chronic use of acetaminophen (paracetamol) remains a significant clinical problem, accounting for as much as 40% of cases of acute liver failure. The mechanisms underlying the liver injury caused by acetaminophen have become much better understood in recent years. In this issue, Fiorucci et al. report that delivery of nitric oxide (NO) in small amounts to the liver, via a novel derivative of the bile acid ursodeoxycholic acid, results in signific...

  10. Acetaminophen: beyond pain and fever-relieving

    MiaozongWu

    2011-11-01

    Full Text Available Acetaminophen, also known as APAP or paracetamol, is one of the most widely used analgesics (pain reliever and antipyretics (fever reducer. According to the U.S. Food and Drug Administration (FDA, currently there are 235 approved prescription and over-the-counter drug products containing acetaminophen as an active ingredient. When used as directed, acetaminophen is very safe and effective; however when taken in excess or ingested with alcohol hepatotoxicity and irreversible liver damage can arise. In addition to well known use pain relief and fever reduction, recent laboratory and pre-clinical studies have demonstrated that acetaminophen may also have beneficial effects on blood glucose levels, skeletal muscle function, and potential use as cardioprotective and neuroprotective agents. Extensive laboratory and pre-clinical studies have revealed that these off label applications may be derived from the ability of acetaminophen to function as an antioxidant. Herein, we will highlight these novel applications of acetaminophen, and attempt, where possible, to highlight how these findings may lead to new directions of inquiry and clinical relevance of other disorders.

  11. Parents: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    ... the-Counter Pain Relievers and Fever Reducers Parents: Acetaminophen in pain relief medicines can cause liver damage ... More sharing options Linkedin Pin it Email Print Acetaminophen (a∙SEET∙a∙MIN∙o∙fen) is an ...

  12. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    ... the-Counter Pain Relievers and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage ... More sharing options Linkedin Pin it Email Print Acetaminophen (a∙SEET∙a∙MIN∙o∙fen) is an ...

  13. Acetaminophen Won't Help Arthritis Pain, Study Finds

    ... nlm.nih.gov/medlineplus/news/fullstory_157822.html Acetaminophen Won't Help Arthritis Pain, Study Finds Prescription ... 18, 2016 THURSDAY, March 17, 2016 (HealthDay News) -- Acetaminophen -- commonly known as Tylenol in the United States -- ...

  14. Acetaminophen

    ... cough and colds that contain nasal decongestants, antihistamines, cough suppressants, and expectorants should not be used in children younger than 2 years of age. Use of these medications in young children can ... of age, combination cough and cold products should be used carefully and ...

  15. Acetaminophen

    Meda Cap® ... as a tablet, chewable tablet, capsule, suspension or solution (liquid), extended-release (long-acting) tablet, and orally ... the manufacturer to measure each dose of the solution or suspension. Do not switch dosing devices between ...

  16. Pharmacological screening of glycine amino acid prodrug of acetaminophen

    Arun Parashar

    2015-01-01

    Objective: To develop an amino acid prodrug of acetaminophen with comparable therapeutic profile and less hepatotoxicity than acetaminophen. Materials and Methods: Acetaminophen prodrug was synthesized by esterification between the carboxyl group of amino acid glycine and hydroxyl group of acetaminophen. Analgesic, antipyretic, ulcer healing, and hepatotoxic activities were performed on Wistar rats in this study. Results: Prodrug showed a 44% inhibition in writhings as compared to 53....

  17. Acetaminophen-induced nephrotoxicity: Pathophysiology, clinical manifestations, and management

    Mazer, Maryann; Perrone, Jeanmarie

    2008-01-01

    Acetaminophen-induced liver necrosis has been studied extensively, but the extrahepatic manifestations of acetaminophen toxicity are currently not described well in the literature. Renal insufficiency occurs in approximately 1–2% of patients with acetaminophen overdose. The pathophysiology of renal toxicity in acetaminophen poisoning has been attributed to cytochrome P-450 mixed function oxidase isoenzymes present in the kidney, although other mechanisms have been elucidated, including the ro...

  18. In Vitro Antibacterial Activity of Ibuprofen and Acetaminophen

    AL-Janabi, Ali Abdul Hussein S.

    2010-01-01

    Background: Ibuprofen and acetaminophen are common chemical agents that have anti-inflammatory, antipyretic, and analgesic activity. Aims: To detect any potential antibacterial effects of ibuprofen and acetaminophen on pathogenic bacteria. Materials and methods: Ibuprofen and acetaminophen were tested for antibacterial activity against seven isolates of bacteria including gram positive bacteria (Staphylococci aureus and Bacillus subtilis) and gram negative bacteria (E. coli, Enterobacter a...

  19. Safety of rapid intravenous of infusion acetaminophen.

    Needleman, Steven M

    2013-07-01

    Intravenous acetaminophen, Ofirmev®, is approved for management of mild to moderate pain, management of moderate to severe pain with adjunctive opioids, and reduction of fever. The product is supplied as a 100 mL glass vial. As stated in the prescribing information, it is recommended to be infused over 15 minutes. This recommendation is related to the formulation propacetamol, the prodrug to acetaminophen, approved in Europe, which caused pain on infusion, and data from the clinical development of acetaminophen. The objective of this retrospective chart review study was to show the lack of side effects of rapidly infusing intravenous acetaminophen. Charts of American Society of Anesthesiology (ASA) Class I-III ambulatory surgical patients who received only acetaminophen in the preoperative setting were reviewed for any infusion-related side effects. Using standard binomial proportion analyses and employing SAS/JMP software, all vital signs were analyzed for statistically significant changes between pre- and postinfusion values. One hundred charts were reviewed. Only one patient had pain on infusion, which lasted 10 seconds. No reported side effects or erythema was seen at the injection site. No infusions had to be slowed or discontinued. The median infusion time was 3:41 minutes. Of the vital signs monitored, only the systolic (P < 0.0001) and diastolic (P < 0.0099) blood pressures had statistically significant changes from pre- to postinfusion; however, they were of no clinical relevance. Acetaminophen can be administered as a rapid infusion with no significant infusion-related side effects or complications. PMID:23814378

  20. [Acetaminophen (paracetamol) causing renal failure: report on 3 pediatric cases].

    Le Vaillant, J; Pellerin, L; Brouard, J; Eckart, P

    2013-06-01

    Renal failure secondary to acetaminophen poisoning is rare and occurs in approximately 1-2 % of patients with acetaminophen overdose. The pathophysiology is still being debated, and renal acetaminophen toxicity consists of acute tubular necrosis, without complication if treated promptly. Renal involvement can sometimes occur without prior liver disease, and early renal manifestations usually occur between the 2nd and 7th day after the acute acetaminophen poisoning. While therapy is exclusively symptomatic, sometimes serious metabolic complications can be observed. The monitoring of renal function should therefore be considered as an integral part of the management of children with acute, severe acetaminophen intoxication. We report 3 cases of adolescents who presented with acute renal failure as a result of voluntary drug intoxication with acetaminophen. One of these 3 girls developed severe renal injury without elevated hepatic transaminases. None of the 3 girls' renal function required hemodialysis, but one of the 3 patients had metabolic complications after her acetaminophen poisoning. PMID:23628119

  1. Tramadol and acetaminophen tablets for dental pain.

    Medve, R. A.; Wang, J.; Karim, R

    2001-01-01

    The purpose of this work was to compare the efficacy and time to analgesia of a new tramadol/acetaminophen combination tablet to those of tramadol or acetaminophen (APAP) alone. A meta-analysis was performed of 3 separate single-dose, double-blind, parallel-group trials in patients with moderate or severe pain following extraction of 2 or more third molars. Patients in each study were evenly randomized to a single dose of tramadol/APAP (75 mg/650 mg), tramadol 75 mg, APAP 650 mg, ibuprofen 40...

  2. Acetaminophen Modulation of Hydrocodone Reward in Rats

    Nazarian, Arbi; Are, Deepthi; Tenayuca, John M.

    2011-01-01

    Abuse of prescription opioid analgesics in non-medical context has been on the rise over the past decade. The most commonly abused analgesic in this drug class consists of a combined formulation of hydrocodone and acetaminophen. The present study was aimed to determine the rewarding effects of hydrocodone, acetaminophen, and their combination using the conditioned place preference (CPP) paradigm. Using a 6-day CPP paradigm, rats were paired with hydrocodone (0.5, 1.0 or 5.0 mg/kg) or acetamin...

  3. Study of an anaphylactoid reaction to acetaminophen.

    Liao, Chien-Ming; Chen, Wu-Charng; Lin, Ching-Yuang

    2002-01-01

    Generalized itching, urticaria and anaphylactic shock developed in a 9-year-old girl on two separate occasions after she ingested acetaminophen. She was admitted to our hospital for observation during oral challenge. Total eosinophil counts, total serum IgE, IgA, IgG, IgM, C3, and C4, specific IgE antibodies to six common allergens, and skin prick tests to purified acetaminophen and acetylsalicylic acid (aspirin) were unremarkable. No reaction occurred on open challenge with acetylsalicylic acid and mefenamic acid. However, urticaria and itching sensation occurred 45 min after ingesting 50 mg of purified acetaminophen. Dizziness, shivering, tachycardia and fainting also developed later. These symptoms resolved after treatment with a diphenhydramine injection and intravenous infusion of normal saline. There was a marked increase in the blood histamine level after challenge. In vitro histamine release before oral challenge was also abnormally as high as 50%. In summary, she had an immediate allergic reaction to acetaminophen but was tolerant to acetylsalicylic acid. PMID:12148965

  4. Acetaminophen-induced cellulitis-like fixed drug eruption

    Neila Fathallah

    2011-01-01

    Full Text Available Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption induced by acetaminophen was considered especially with a reported history of a previous milder reaction occurring in the same site. Acetaminophen was withdrawn and the rash improved significantly. According to the Naranjo probability scale, the eruption experienced by the patient was probably due to acetaminophen. Clinicians should be aware of the ability of acetaminophen to induce fixed drug eruption that may clinically take several aspects and may be misdiagnosed.

  5. Caffeine Accelerates Absorption and Enhances the Analgesic Effect of Acetaminophen

    Renner, Bertold; Clarke, Geoff; Grattan, Tim; Beisel, Angelika; Mueller, Christian; Werner, Ulrike; Kobal, Gerd; Brune, Kay

    2013-01-01

    The aim of this study was to determine the analgesic effect of acetaminophen compared to a combination of both caffeine and acetaminophen or caffeine alone using tonic and phasic pain stimulation. Twenty-four subjects were treated orally with 1000 mg acetaminophen, 130 mg caffeine, and a combination of both in a 4-way crossover, double-blind, placebo-controlled study. Pharmacokinetics and analgesic effects were assessed by means of an experimental pain model based on pain-related cortical pot...

  6. Acetaminophen overdose associated with double serum concentration peaks

    Papazoglu, Cristian; Jonathan R. Ang; Mandel, Michael; Basak, Prasanta; Jesmajian, Stephen

    2015-01-01

    Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-y...

  7. Exacerbation of Acetaminophen Hepatotoxicity by the Anthelmentic Drug Fenbendazole

    Carol R. Gardner; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8–12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administra...

  8. Rhabdomyolysis after Intentional Acetaminophen and Carbon Monoxide Poisoning

    Iago Rodríguez–Lago; Delia D’Avola; Mercedes Iñarrairaegui; José Ignacio Herrero; Bruno Sangro; Jorge Quiroga

    2012-01-01

    Acetaminophen is one of the most frequent causes of acute liverfailure. Rhabdomyolysis is a rare adverse reaction reported withthis drug. Carbon monoxide (CO) can also lead to muscle injury butonly after severe intoxication. We present a case of rhabdomyolysisassociated to Acetaminophen over dosage and mild carbon monoxideexposure. A 38-year-old man was admitted because of acute hepaticinjury due to voluntary acetaminophen overdose. He also reporteda mild carbon monoxide exposure. He showed a...

  9. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    Judge Bryan S

    2011-03-01

    Full Text Available Abstract Background Acetaminophen-cysteine adducts (APAP-CYS are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from non-acetaminophen hepatotoxins have not been well characterized. The objective of this study is to describe APAP-CYS concentrations in these clinical settings as well as to further characterize the concentrations observed following acetaminophen overdose. Methods Samples were collected during three clinical trials in which subjects received 4 g/day of acetaminophen and during an observational study of acetaminophen overdose patients. Trial 1 consisted of non-drinkers who received APAP for 10 days, Trial 2 consisted of moderate drinkers dosed for 10 days and Trial 3 included subjects who chronically abuse alcohol dosed for 5 days. Patients in the observational study were categorized by type of acetaminophen exposure (single or repeated. Serum APAP-CYS was measured using high pressure liquid chromatography with electrochemical detection. Results Trial 1 included 144 samples from 24 subjects; Trial 2 included 182 samples from 91 subjects and Trial 3 included 200 samples from 40 subjects. In addition, we collected samples from 19 subjects with acute acetaminophen ingestion, 7 subjects with repeated acetaminophen exposure and 4 subjects who ingested another hepatotoxin. The mean (SD peak APAP-CYS concentrations for the Trials were: Trial 1- 0.4 (0.20 nmol/ml, Trial 2- 0.1 (0.09 nmol/ml and Trial 3- 0.3 (0.12 nmol/ml. APAP-CYS concentrations varied substantially among the patients with acetaminophen toxicity (0.10 to 27.3 nmol/ml. No subject had detectable APAP

  10. [A Case of Acetaminophen Poisoning Associated with Tramcet Overdose].

    Urabe, Shigehiko; Terao, Yoshiaki; Tuji, Tikako; Egashira, Takashi; Goto, Shino; Fukusaki, Makoto

    2016-06-01

    Tramcet is a mixture of tramadol and acetaminophen. Acetaminophen poisoning may be caused by excessive intake of Tramcet. A 17-year-old female took excessive quantity of Tramcet before noon. She reported it herself in the emergency room. Her main complaint was nausea and dizziness. Acetaminophen may cause liver damage with dose-dependent manner. Because there was a possibility of acetaminophen poisoning, we started oral acetylcysteine. She was discharged from hospital 5 days later without side effects of acetylecysteine and liver damage. PMID:27483669

  11. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    Judge Bryan S; James Laura P; Green Jody L; Heard Kennon J; Zolot Liza; Rhyee Sean; Dart Richard C

    2011-01-01

    Abstract Background Acetaminophen-cysteine adducts (APAP-CYS) are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from ...

  12. Acetaminophen overdose associated with double serum concentration peaks

    Cristian Papazoglu

    2015-12-01

    Full Text Available Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy.

  13. N-acetylcysteine overdose after acetaminophen poisoning.

    Mahmoudi, Ghafar Ali; Astaraki, Peyman; Mohtashami, Azita Zafar; Ahadi, Maryam

    2015-01-01

    N-acetylcysteine (NAC) is used widely and effectively in oral and intravenous forms as a specific antidote for acetaminophen poisoning. Here we report a rare case of iatrogenic NAC overdose following an error in preparation of the solution, and describe its clinical symptoms. Laboratory results and are presented and examined. A 23-year-old alert female patient weighing 65 kg presented to the emergency ward with weakness, lethargy, extreme fatigue, nausea, and dizziness. She had normal arterial blood gas and vital signs. An excessive dosage of NAC over a short period of time can lead to hemolysis, thrombocytopenia, and acute renal failure in patients with normal glucose-6-phosphate dehydrogenase, and finally to death. Considering the similarity between some of the clinical symptoms of acetaminophen overdose and NAC overdose, it is vitally important for the administration phases and checking of the patient's symptoms to be carried out attentively and cautiously. PMID:25767408

  14. Comparative study of flurbiprofen, zomepirac sodium, acetaminophen plus codeine, and acetaminophen for the relief of postsurgical dental pain.

    Sunshine, A; Marrero, I; Olson, N; McCormick, N; Laska, E M

    1986-03-24

    The relative analgesic efficacy and safety of single oral doses of 50 and 100 mg of flurbiprofen (Ansaid, Upjohn) were compared with 100 mg of zomepirac sodium, 650 mg of acetaminophen plus 60 mg of codeine, 650 mg of acetaminophen alone, and placebo in a randomized, double-blind, parallel-group study. A total of 182 patients entered the study with moderate pain from a third molar extraction and were evaluated for six hours. For many efficacy variables, all active treatments were significantly (p less than or equal to 0.05) more effective than placebo. The two doses of flurbiprofen gave approximately similar results, suggesting a plateau effect above 50 mg. With the exception of relief at one hour, there were no significant differences between zomepirac and either dose of flurbiprofen. However, the mean response with zomepirac was greater than with either 50 or 100 mg of flurbiprofen during the first four hours and lower during the last two hours. The analgesic effects of acetaminophen alone were not significantly different from acetaminophen in combination with codeine. At the first hour, acetaminophen plus codeine led to significantly better pain relief than did 100 mg of flurbiprofen. After the first hour, flurbiprofen resulted in greater mean scores than acetaminophen alone or acetaminophen plus codeine, and these differences were significant at the fifth and sixth hours. Five patients had adverse reactions while receiving acetaminophen, acetaminophen plus codeine, or placebo. There were no adverse effects with flurbiprofen or zomepirac. PMID:3515924

  15. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning

    Shah, Anoop D; Wood, David M; Dargan, Paul I

    2011-01-01

    Paracetamol (acetaminophen) is one of the most commonly taken drugs in overdose in many areas of the world, and the most common cause of acute liver failure in both the UK and USA. Paracetamol poisoning can result in lactic acidosis in two different scenarios. First, early in the course of poisoning and before the onset of hepatotoxicity in patients with massive ingestion; a lactic acidosis is usually associated with coma. Experimental evidence from studies in whole animals, perfused liver sl...

  16. N-acetylcysteine overdose after acetaminophen poisoning

    Mahmoudi GA; Astaraki P; Mohtashami AZ; Ahadi M

    2015-01-01

    Ghafar Ali Mahmoudi,1 Peyman Astaraki,1 Azita Zafar Mohtashami,1 Maryam Ahadi2 1Faculty of Medicine, Department of Internal Medicine, Lorestan University of Medical Sciences, 2Legal Medicine Research Center of Lorestan, Khorramabad, Iran Abstract: N-acetylcysteine (NAC) is used widely and effectively in oral and intravenous forms as a specific antidote for acetaminophen poisoning. Here we report a rare case of iatrogenic NAC overdose following an error in preparation of the solution, and des...

  17. N-acetylcysteine overdose after acetaminophen poisoning

    Mahmoudi GA

    2015-02-01

    Full Text Available Ghafar Ali Mahmoudi,1 Peyman Astaraki,1 Azita Zafar Mohtashami,1 Maryam Ahadi2 1Faculty of Medicine, Department of Internal Medicine, Lorestan University of Medical Sciences, 2Legal Medicine Research Center of Lorestan, Khorramabad, Iran Abstract: N-acetylcysteine (NAC is used widely and effectively in oral and intravenous forms as a specific antidote for acetaminophen poisoning. Here we report a rare case of iatrogenic NAC overdose following an error in preparation of the solution, and describe its clinical symptoms. Laboratory results and are presented and examined. A 23-year-old alert female patient weighing 65 kg presented to the emergency ward with weakness, lethargy, extreme fatigue, nausea, and dizziness. She had normal arterial blood gas and vital signs. An excessive dosage of NAC over a short period of time can lead to hemolysis, thrombocytopenia, and acute renal failure in patients with normal glucose-6-phosphate dehydrogenase, and finally to death. Considering the similarity between some of the clinical symptoms of acetaminophen overdose and NAC overdose, it is vitally important for the administration phases and checking of the patient's symptoms to be carried out attentively and cautiously. Keywords: N-acetylcysteine, overdose, acetaminophen poisoning, medication error

  18. Acetaminophen developmental pharmacokinetics in premature neonates and infants

    Anderson, Brian J; van Lingen, Richard A; Hansen, Tom G;

    2002-01-01

    The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens.......The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens....

  19. Pain management in emergency department: intravenous morphine vs. intravenous acetaminophen

    Morteza Talebi Doluee

    2015-01-01

    Full Text Available Pain is the most common complaint in emergency department and there are several methods for its control. Among them, pharmaceutical methods are the most effective. Although intravenous morphine has been the most common choice for several years, it has some adverse effects. There are many researches about intravenous acetaminophen as an analgesic agent and it appears that it has good analgesic effects for various types of pain. We searched some electronic resources for clinical trials comparing analgesic effects of intravenous acetaminophen vs. intravenous morphine for acute pain treatment in emergency setting.In two clinical trials, the analgesic effect of intravenous acetaminophen has been compared with intravenous morphine for renal colic. The results revealed no significant difference between analgesic effects of two medications. Another clinical trial revealed that intravenous acetaminophen has acceptable analgesic effects on the post-cesarean section pain when combined with other analgesic medications. One study revealed that administration of intravenous acetaminophen compared to placebo before hysterectomy decreased consumption of morphine via patient-controlled analgesia pump and decreased the side effects. Similarly, another study revealed that the infusion of intravenous acetaminophen vs. placebo after orthopedic surgery decreased the consumption of morphine after the surgery. A clinical trial revealed intravenous acetaminophen provided a level of analgesia comparable to intravenous morphine in isolated limb trauma, while causing less side effects than morphine.It appears that intravenous acetaminophen has good analgesic effects for visceral, traumatic and postoperative pains compare with intravenous morphine.

  20. Interventions for paracetamol (acetaminophen) overdoses. Protocol for a Cochrane Review

    Brok, J; Buckley, N; Gluud, C

    2001-01-01

    Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning.......Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning....

  1. Electronic Spectra of the Jet-Cooled Acetaminophen

    Lee, Seung Jun; Min, Ahreum; Kim, Yusic; Choi, Myong Yong; Chang, Jinyoung; Lee, Sang Hak; Kim, Seong Keun

    2010-06-01

    Resonant two-photon ionization (R2PI), laser induced fluorescence (LIF) and UV-UV double resonance spectra of the jet-cooled acetaminophen, widely used as a pain reliever and fever reducer, were obtained in the gas phase. Conformational characterizations for acetaminophen will be presented with an aid of spectroscopic techniques and DFT B3LYP calculations.

  2. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of acetaminophen nephrotoxicity by acetaminophen-cysteine

    Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Recent studies suggest a contributory role for glutathione (GSH)-derived conjugates of APAP in the development of nephrotoxicity. Inhibitors of either γ-glutamyl transpeptidase (γ-GT) or the probenecid-sensitive organic anion transporter ameliorate APAP-induced nephrotoxicity but not hepatotoxicity in mice and inhibition of γ-GT similarly protected rats from APAP nephrotoxicity. Protection against APAP nephrotoxicity by disruption of these GSH conjugate transport and metabolism pathways suggests that GSH conjugates are involved. APAP-induced renal injury may involve the acetaminophen-glutathione (APAP-GSH) conjugate or a metabolite derived from APAP-GSH. Acetaminophen-cysteine (APAP-CYS) is a likely candidate for involvement in APAP nephrotoxicity because it is both a product of the γ-GT pathway and a probable substrate for the organic anion transporter. The present experiments demonstrated that APAP-CYS treatment alone depleted renal but not hepatic glutathione (GSH) in a dose-responsive manner. This depletion of renal GSH may predispose the kidney to APAP nephrotoxicity by diminishing GSH-mediated detoxification mechanisms. Indeed, pretreatment of male CD-1 mice with APAP-CYS before challenge with a threshold toxic dose of APAP resulted in significant enhancement of APAP-induced nephrotoxicity. This was evidenced by histopathology and plasma blood urea nitrogen (BUN) levels at 24 h after APAP challenge. APAP alone was minimally nephrotoxic and APAP-CYS alone produced no detectable injury. By contrast, APAP-CYS pretreatment did not alter the liver injury induced by APAP challenge. These data are consistent with there being a selective, contributory role for APAP-GSH-derived metabolites in APAP-induced renal injury that may involve renal-selective GSH depletion

  3. Nalbuphine, acetaminophen, and their combination in postoperative pain.

    Forbes, J A; Kolodny, A L; Chachich, B M; Beaver, W T

    1984-06-01

    In a double-blind study with the use of subjective reports of patients as indices of analgesia, we compared the analgesic effect of oral nalbuphine and acetaminophen and determined the contribution of each to the efficacy of their combination. In this parallel 2 X 2 factorial study, 129 inpatients after surgery were randomly assigned to treatment with a single oral dose of nalbuphine hydrochloride (30 mg), acetaminophen (650 mg), the combination of nalbuphine (30 mg) and acetaminophen (650 mg), or placebo. In the factorial analysis, both the nalbuphine and acetaminophen effects were significant for virtually every measure of total and peak analgesia, whereas the interaction contrast was not significant for any measure of analgesic effect. This indicates that the analgesic effect of the combination represents the additive effect of its constituents and is consistent with the results of studies of combinations of codeine and other opioids with aspirin or acetaminophen. There were few adverse effects other than sedation, which occurred twice as frequently in patients treated with nalbuphine as in those receiving acetaminophen or placebo. Our data suggest that this combination should prove at least as effective as any currently marketed narcotic-containing combination. Since nalbuphine has less dependence liability than narcotics and exhibits a ceiling on respiratory depression, its combination with acetaminophen should also be safer than comparable narcotic combinations. PMID:6734037

  4. Acetaminophen-induced acute liver injury in HCV transgenic mice

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  5. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  6. Potential role of caveolin-1 in acetaminophen-induced hepatotoxicity

    Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1-/-) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1-/- mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1-/- mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1-/- mice. Although expression of tumor necrosis factor-α, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1-/- mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.

  7. Ketoprofen, acetaminophen plus oxycodone, and acetaminophen in the relief of postoperative pain.

    Sunshine, A; Olson, N Z; Zighelboim, I; De Castro, A

    1993-11-01

    Ketoprofen (Orudis) is a nonsteroidal anti-inflammatory drug that is currently approved in the United States for the management of mild to moderate pain. The objective of this trial was to determine the effectiveness of orally administered ketoprofen in the management of severe postoperative pain. This randomized, double-blind parallel study compared the efficacy and safety of single doses of 100 mg or 50 mg ketoprofen, the combination of 650 mg acetaminophen plus 10 mg oxycodone hydrochloride, 650 mg acetaminophen, or placebo in 240 patients with severe postoperative pain after cesarean section. Analgesia for the first dose was assessed over an 8-hour period. Multiple doses of 100 mg or 50 mg ketoprofen and the combination at half the dose (325 mg acetaminophen plus 5 mg oxycodone) were also assessed for up to 7 days. The 100 and 50 mg doses of ketoprofen and the combination were statistically superior to acetaminophen and placebo for many analgesic measures. A dose response was observed between the two doses of ketoprofen, with the 100 mg dose providing significantly greater analgesia over the lower dose. Ketoprofen, 100 mg, was at least as effective as the combination and its effects lasted longer, with the exception of hour 1 when the combination was superior. Remedication time for the group receiving 100 mg ketoprofen was significantly longer than for the other treatment groups. Significantly more patients who took repeated doses of the combination (84%) than those who took either dose of ketoprofen (70%) had adverse effects. Ketoprofen at both dose levels was shown to be effective, long-lasting, and well tolerated, and it should be considered as a viable option for the management of moderate to severe postoperative pain. PMID:8222498

  8. Possible fatal acetaminophen intoxication with atypical clinical presentation.

    De-Giorgio, Fabio; Lodise, Maria; Chiarotti, Marcello; d'Aloja, Ernesto; Carbone, Arnaldo; Valerio, Luca

    2013-09-01

    Acetaminophen or paracetamol, a commonly used over-the-counter analgesic, is known to elicit severe adverse reactions when taken in overdose, chronically at therapeutic dosage or, sporadically, following single assumptions of a therapeutic dose. Damage patterns including liver damage and, rarely, acute tubular necrosis or a fixed drug exanthema. We present a case of fatal acetaminophen toxicity with postmortem blood concentration 78 μg/mL and unusual clinical features, including a visually striking and massive epidermolysis and rhabdomyolysis, disseminated intravascular coagulation and myocardial ischemia. This case is compared with the most similar previous reports in terms of organ damage, clinical presentation, and cause of death. We conclude that a number of severe patterns of adverse effects to acetaminophen are emerging that were previously greatly underestimated, thus questioning the adequacy of the clinical spectrum traditionally associated with acetaminophen intoxication and leading to the need to review this spectrum and the associated diagnostic criteria. PMID:23822653

  9. Reversal of acetaminophen toxicity in isolated hamster hepatocytes by dithiothreitol

    The toxicity of acetaminophen in freshly isolated hamster hepatocytes was investigated. Cells exposed to 2.5 mM acetaminophen for 90 min, followed by washing to completely remove unbound acetaminophen, and resuspension in fresh buffer, showed a dramatic decrease in viability over the ensuing 4.5 hr by which time only 4% of the cells could still exclude trypan blue. During the initial 90-min incubation, there was a substantial depletion of glutathione, to 19% of control values, covalent binding of [14C]acetaminophen to cellular proteins, and evidence of morphological changes consistent with some disturbance of the plasma membrane. During subsequent incubation of these cells, covalent binding did not change nor did lipid peroxidation, despite the decrease in viability that occurred. Subsequent incubation of cells exposed to acetaminophen for 90 min in buffer containing 1.5 mM dithiothreitol (DTT), a disulfide-reducing agent, largely prevented the decrease in cell viability and reversed the morphological changes that occurred during the first 90-min incubation. However, there was no change in lipid peroxidation, glutathione content, or covalent binding. It is concluded that acetaminophen interacted with some critical target in the cell, and that this left unchecked, led eventually to the death of the cell. DTT prevented and reversed this effect. The toxicity of acetaminophen, and its reversal by DTT, appear independent of either covalent binding of acetaminophen or lipid peroxidation. In addition, the effect of DTT was independent of the concentration of glutathione, most probably acting by directly reducing oxidized SH-groups in critical enzymes, possibly membrane-bound ATP-dependent Ca2+ translocases

  10. Acetaminophen-induced cellulitis-like fixed drug eruption

    Neila Fathallah; Chaker Ben Salem; Raoudha Slim; Lobna Boussofara; Najet Ghariani; Kamel Bouraoui

    2011-01-01

    Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption ...

  11. Toxic epidermal necrolysis induced by acetaminophen: a case report

    M. C. Gupta; Niti Mittal; Nishikant Sharma

    2013-01-01

    Acetaminophen is a very commonly used analgesic and antipyretic drug across various age groups. Although mild to moderate cutaneous reactions have been reported quite frequently, serious reactions like Stevens –Johnson syndrome and Toxic epidermal necrolysis (TEN) are very rare. We report the case of a 10 year old child who had TEN after ingestion of tablet acetaminophen. This case report highlights the need to be critically aware of this rare and serious adverse effect of this commonly ...

  12. Childhood suicide attempts with acetaminophen in Denmark

    Hedeland, Rikke; Jørgensen, Marianne H; Teilmann, Grete;

    2013-01-01

    Aims: To explore: (1) The relationship between children admitted to our paediatric department as a result of suicide attempts with acetaminophen and their parents and friends. (2) The extent to which the children had attempted to speak to their parents about their problems before their suicide...... attempts. (3) The frequency of self-mutilation among children with suicidal behaviour. (4) The purposes and reasons for childhood suicide attempts. Methods: A retrospective case-control study based on medical records and in-hospital child psychiatric assessments at the Paediatric Department, Hillerød....... There was a significant association between a dissociated parental relationship and 'the feeling of not being heard' (p = 0.004), the discovery of the suicide attempt (p = 0.008), the reasons for the suicide attempt (p = 0.006), academic school problems (p = 0.03), and the child's relationships with...

  13. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model

    Ben-Shachar Rotem

    2012-12-01

    Full Text Available Abstract Background Acetaminophen (N-acetyl-para-aminophenol is the most widely used over-the-counter or prescription painkiller in the world. Acetaminophen is metabolized in the liver where a toxic byproduct is produced that can be removed by conjugation with glutathione. Acetaminophen overdoses, either accidental or intentional, are the leading cause of acute liver failure in the United States, accounting for 56,000 emergency room visits per year. The standard treatment for overdose is N-acetyl-cysteine (NAC, which is given to stimulate the production of glutathione. Methods We have created a mathematical model for acetaminophen transport and metabolism including the following compartments: gut, plasma, liver, tissue, urine. In the liver compartment the metabolism of acetaminophen includes sulfation, glucoronidation, conjugation with glutathione, production of the toxic metabolite, and liver damage, taking biochemical parameters from the literature whenever possible. This model is then connected to a previously constructed model of glutathione metabolism. Results We show that our model accurately reproduces published clinical and experimental data on the dose-dependent time course of acetaminophen in the plasma, the accumulation of acetaminophen and its metabolites in the urine, and the depletion of glutathione caused by conjugation with the toxic product. We use the model to study the extent of liver damage caused by overdoses or by chronic use of therapeutic doses, and the effects of polymorphisms in glucoronidation enzymes. We use the model to study the depletion of glutathione and the effect of the size and timing of N-acetyl-cysteine doses given as an antidote. Our model accurately predicts patient death or recovery depending on size of APAP overdose and time of treatment. Conclusions The mathematical model provides a new tool for studying the effects of various doses of acetaminophen on the liver metabolism of acetaminophen and

  14. Methodological considerations in the evaluation of analgesic combinations: Acetaminophen (paracetamol) and hydrocodone in postpartum pain

    Beaver, William T.; McMillan, Diane

    1980-01-01

    1 In a double-blind study, 108 postpartum patients received single oral doses of either placebo, acetaminophen (paracetamol) 1000 mg, hydrocodone 10 mg, the combination of acetaminophen plus hydrocodone, or codeine 60 mg.

  15. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats

    Attalla Farag El-Kott, PhD; Mashael Mohammed Bin-Meferij, PhD

    2015-01-01

    Background: Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. Objective: To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Methods: Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. Results: The treatment with Arctium lappa extract reduc...

  16. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen.

    Dahlin, D C; Miwa, G T; Lu, A Y; Nelson, S. D.

    1984-01-01

    N-acetyl-p-benzoquinone imine (NAPQI) has been proposed as the toxic metabolite of acetaminophen for the past 10 years, although it has never been detected as an enzymatic oxidation product of acetaminophen. We report (i) direct detection of NAPQI formed as an oxidation product of acetaminophen by cytochrome P-450 and cumene hydroperoxide and (ii) indirect evidence that is compelling for NAPQI formation from acetaminophen by cytochrome P-450, NADPH, and NADPH-cytochrome P-450 reductase. Evide...

  17. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    Miettinen, Teemu P.; Björklund, Mikael

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In hu...

  18. Effect of excipients on acetaminophen metabolism and its implications for prevention of liver injury

    Ganetsky, Michael; Böhlke, Mark; Pereira, Luis; Williams, David; LeDuc, Barbara; Guatam, Shiva

    2013-01-01

    Acetaminophen poisoning is the most frequent cause of acute hepatic failure in the US. Toxicity requires reductive metabolism of acetaminophen, primarily via CYP2E1. Liquid acetaminophen preparations contain propylene glycol, a common excipient that has been shown to reduce hepatocellular injury in vitro and in rodents. Children are less susceptible to acetaminophen toxicity for unclear reasons. We conducted a pharmacokinetic single-blinded crossover study of 15 healthy adult volunteers compa...

  19. Confusion: acetaminophen dosing changes based on NO evidence in adults.

    Krenzelok, Edward P; Royal, Mike A

    2012-06-01

    Acetaminophen (paracetamol) plays a vital role in American health care, with in excess of 25 billion doses being used annually as a nonprescription medication. Over 200 million acetaminophen-containing prescriptions, usually in combination with an opioid, are dispensed annually. While acetaminophen is recognized as a safe and effective analgesic and antipyretic, it is also associated with significant morbidity and mortality (hepatotoxicity) if doses in excess of the therapeutic amount are ingested inappropriately. The maximum daily therapeutic dose of 3900-4000 mg was established in separate actions in 1977 and 1988, respectively, via the Food and Drug Administration (FDA) monograph process for nonprescription medications. The FDA has conducted multiple advisory committee meetings to evaluate acetaminophen and its safety profile, and has suggested (but not mandated) a reduction in the maximum daily dosage from 3900-4000 mg to 3000-3250 mg. In 2011, McNeil, the producer of the Tylenol® brand of acetaminophen, voluntarily reduced the maximum daily dose of its 500 mg tablet product to 3000 mg/day, and it has pledged to change the labeling of its 325 mg/tablet product to reflect a maximum of 3250 mg/day. Generic manufacturers have not changed their dosing regimens and they have remained consistent with the established monograph dose. Therefore, confusion will be inevitable as both consumers and health care professionals try to determine the proper therapeutic dose of acetaminophen. Which is the correct dose of acetaminophen: 3000 mg if 500 mg tablets are used, 3250 mg with 325 mg tablets, or 3900 mg when 650 mg arthritis-strength products are used? PMID:22530736

  20. MODULATION OF ACETAMINOPHEN-INDUCED HEPATOTOXICITY BY THE XENOBIOTIC RECEPTOR CAR

    We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR-...

  1. Testing of Candidate Icons to Identify Acetaminophen-Containing Medicines

    Saul Shiffman

    2016-01-01

    Full Text Available Adding icons on labels of acetaminophen-containing medicines could help users identify the active ingredient and avoid concomitant use of multiple medicines containing acetaminophen. We evaluated five icons for communication effectiveness. Adults (n = 300 were randomized to view a prescription container label or over-the-counter labels with either one or two icons. Participants saw two icon candidates, and reported their interpretation; experts judged whether these reflected critical confusions that might cause harm. Participants rated how effectively each icon communicated key messages. Icons based on abbreviations of “acetaminophen” (“Ac”, “Ace”, “Acm” were rated less confusing and more effective in communicating the active ingredient than icons based on “APAP” or an abstract symbol. Icons did not result in critical confusion when seen on a readable medicine label. Icon implementation on prescription labels was more effective at communicating the warning against concomitant use than implementation on over-the-counter (OTC labels. Adding an icon to a second location on OTC labels did not consistently enhance this communication, but reduced rated effectiveness of acetaminophen ingredient communication among participants with limited health literacy. The abbreviation-based icons seem most suitable for labeling acetaminophen-containing medications to enable users to identify acetaminophen-containing products.

  2. Tramadol and acetaminophen tablets for dental pain.

    Medve, R. A.; Wang, J.; Karim, R.

    2001-01-01

    The purpose of this work was to compare the efficacy and time to analgesia of a new tramadol/acetaminophen combination tablet to those of tramadol or acetaminophen (APAP) alone. A meta-analysis was performed of 3 separate single-dose, double-blind, parallel-group trials in patients with moderate or severe pain following extraction of 2 or more third molars. Patients in each study were evenly randomized to a single dose of tramadol/APAP (75 mg/650 mg), tramadol 75 mg, APAP 650 mg, ibuprofen 400 mg, or placebo. Active control with ibuprofen was used to determine model sensitivity. Pain relief (scale, 0-4) and pain intensity (scale, 0-3) were reported at 30 minutes after the dose and then hourly for 8 hours. Total pain relief over 8 hours (TOTPAR8) and the sum of pain intensity differences (SPID8) were calculated from the hourly scores. Time to onset of pain relief was determined by the double-stopwatch technique, and patients were advised to wait at least 2 hours before taking supplemental analgesia. Patients assessed overall efficacy (scale, 1-5) upon completion. In all, 1197 patients (age range, 16-46 years) were evaluable for efficacy; treatment groups in each study were similar at baseline. Pain relief was superior to placebo (P < or = .0001) for all treatments. Pain relief provided by tramadol/ APAP was superior to that of tramadol or APAP alone, as shown by mean TOT-PAR8 (12.1 vs 6.7 and 8.6, respectively, P < or = .0001) and SPID8 (4.7 vs 0.9 and 2.7, respectively, P < or = .0001). Estimated onset of pain relief was 17 minutes (95% CI, 15-20 minutes) for tramadol/APAP compared with 51 minutes (95% CI, 40-70 minutes) for tramadol, 18 minutes (95% CI, 16-21 minutes) for APAP, and 34 minutes (95% CI, 28-44 minutes) for ibuprofen. Median time to supplemental analgesia and mean overall assessment of efficacy were greater (P < .05) for the tramadol/APAP group (302 minutes and 3.0, respectively) than for the tramadol (122 minutes and 2.0) or APAP (183 minutes and 2

  3. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update.

    Yoon, Eric; Babar, Arooj; Choudhary, Moaz; Kutner, Matthew; Pyrsopoulos, Nikolaos

    2016-06-28

    Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades, and involves the cornerstone metabolic pathways which take place in the microsomes within hepatocytes. APAP hepatotoxicity remains a global issue; in the United States, in particular, it accounts for more than 50% of overdose-related acute liver failure and approximately 20% of the liver transplant cases. The pathophysiology, disease course and management of acute liver failure secondary to APAP toxicity remain to be precisely elucidated, and adverse patient outcomes with increased morbidity and mortality continue to occur. Although APAP hepatotoxicity follows a predictable timeline of hepatic failure, its clinical presentation might vary. N-acetylcysteine (NAC) therapy is considered as the mainstay therapy, but liver transplantation might represent a life-saving procedure for selected patients. Future research focus in this field may benefit from shifting towards obtaining antidotal knowledge at the molecular level, with focus on the underlying molecular signaling pathways. PMID:27350943

  4. Toxic epidermal necrolysis induced by acetaminophen: a case report

    M. C. Gupta

    2013-12-01

    Full Text Available Acetaminophen is a very commonly used analgesic and antipyretic drug across various age groups. Although mild to moderate cutaneous reactions have been reported quite frequently, serious reactions like Stevens –Johnson syndrome and Toxic epidermal necrolysis (TEN are very rare. We report the case of a 10 year old child who had TEN after ingestion of tablet acetaminophen. This case report highlights the need to be critically aware of this rare and serious adverse effect of this commonly used over the counter drug. [Int J Basic Clin Pharmacol 2013; 2(6.000: 831-832

  5. The analgesic efficacy of flurbiprofen compared to acetaminophen with codeine.

    Cooper, S A; Kupperman, A

    1991-01-01

    In a single-dose, parallel group, randomized block treatment allocation study, the relative analgesic efficacy of flurbiprofen, a nonsteroidal antiinflammatory drug, was compared to acetaminophen 650 mg with codeine 60 mg, zomepirac sodium 100 mg, and placebo. A total of 226 post-surgical dental patients (146 females and 80 males) participated in the study. Flurbiprofen in 50 mg and 100 mg dosages demonstrated effective analgesic activity with the 100 mg dosage being at least as effective as the acetaminophen/codeine combination. The results of this study support previous work on flurbiprofen. PMID:1930699

  6. Augmentation of acetaminophen analgesia by the antihistamine phenyltoloxamine.

    Sunshine, A; Zighelboim, I; De Castro, A; Sorrentino, J V; Smith, D S; Bartizek, R D; Olson, N Z

    1989-07-01

    A double-blind, placebo-controlled, parallel-group study was performed to compare the analgesic activity of the combination of 650 mg acetaminophen plus 60 mg phenyltoloxamine citrate with that of 650 mg acetaminophen alone. Two hundred female inpatients who had severe pain associated with a recent episiotomy procedure were randomly assigned to receive a single dose of one of the two active treatments or a placebo. Analgesia was assessed over a 6-hour period. Treatments were compared on the basis of standard subjective scales for pain intensity and relief, a number of derived variables based on these data and two global measures. For essentially all measures, the two active treatments were significantly superior to the placebo control. The combination was significantly superior to acetaminophen alone for all analgesic measures including SPID, TOTAL, and global ratings. The results of this study demonstrate that 60 mg phenyltoloxamine produces significant augmentation of the analgesic activity of 650 mg acetaminophen in postepisiotomy pain. PMID:2569485

  7. Gastric emptying in rats with acetaminophen-induced hepatitis

    Hessel G.

    1998-01-01

    Full Text Available The objective of this work was to study the gastric emptying (GE of liquids in fasted and sucrose-fed rats with toxic hepatitis induced by acetaminophen. The GE of three test meals (saline, glucose and mayonnaise was evaluated in Wistar rats. For each meal, the animals were divided into two groups (N = 24 each. Group I was fed a sucrose diet throughout the experiment (66 h while group II was fasted. Forty-two hours after the start of the experiment, each group was divided into two subgroups (N = 12 each. Subgroup A received a placebo and subgroup B was given acetaminophen (1 g/kg. Twenty-four hours later, the GE of the three test meals was assessed and blood samples were collected to measure the serum levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST and acetaminophen. In group IB, the mean AST and ALT values were 515 and 263 IU/l, respectively, while for group IIB they were 4014 and 2472 IU/l, respectively. The mean serum acetaminophen levels were higher in group IIB (120 µg/ml than in group IB (87 µg/ml. The gastric retention values were significantly higher in group IIB than in group IIA for all three test meals: saline, 51 vs 35%; glucose, 52 vs 38% and mayonnaise, 51 vs 29% (median values. The correlation between gastric retention and AST levels was significant (P<0.05 for group IIB for the three test meals: r = 0.73, 0.67 and 0.68 for saline, glucose and mayonnaise, respectively. We conclude that GE is altered in rats with hepatic lesions induced by acetaminophen, and that these alterations may be related to the liver cell necrosis caused by the drug.

  8. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (Ks) of 0.44 s−1 and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190 μmol L−1 of acetaminophen [r2 = 0.9979, r = 0.9989 (n = 10)] with a detection limit of 0.04 μmol L−1. The method was successfully applied to the analysis of acetaminophen in some drugs. - Highlights: • Modified carbon paste electrode with Co(II)-zeolite A improved the voltammetric current in determination of acetaminophen. • Modified electrode is applicable for acetaminophen in real samples. • The proposed method has good reproducibility and repeatability

  9. [Acetaminophen-induced hypothermia, an AIDS related side-effect? About 4 cases].

    Denes, Eric; Amaniou, Monique; Rogez, Jean-Philippe; Weinbreck, Pierre; Merle, Louis

    2002-10-01

    Hypothermia is an uncommon side effect of acetaminophen. We report 4 cases of HIV-infected patients who developed hypothermia after intravenous injection of propacetamol (the parenteral formulation of acetaminophen). The mechanism of this hypothermia is unknown. AIDS-induced changes in the metabolism of acetaminophen, could be an explanation. AIDS-associated opportunistic diseases may account for part of the mechanism. These hypothermias occur within 6 hours after the injection, are well tolerated and regress spontaneously. PMID:12486392

  10. Comparing the Efficacy of Intravenous Acetaminophen and Intravenous Meperidine in Pain Relief After Outpatient Urological Surgery

    Kolahdouzan, Khosro; Eydi, Mahmood; Mohammadipour Anvari, Hassan; Golzari, Samad EJ; Abri, Reyhaneh; GHOJAZADEH, Morteza; Ojaghihaghighi, Seyed Hossein

    2014-01-01

    Background: Pain relief after surgery is an essential component of postoperative care. Objectives: The purpose of this study was to compare the efficacy of intravenous acetaminophen and intravenous meperidine in pain relief after outpatient urological surgery. Patients and Methods: In a prospective, randomized, double-blind clinical trial, 100 outpatients of urological surgery were studied in two groups of acetaminophen (A) and meperidine (M). Patients in group A received 1g of acetaminophen ...

  11. Pharmacist and Physician Interpretation of Abbreviations for Acetaminophen Intended for Use in a Consumer Icon

    Saul Shiffman; Helene Cotton; Christina Jessurun; Sembower, Mark A.; Steve Pype; Jerry Phillips

    2015-01-01

    Concomitant use of multiple acetaminophen medications is associated with overdose. To help patients identify acetaminophen medications and thus avoid concomitant use, an icon with an abbreviation for “acetaminophen” has been proposed for all acetaminophen medications. This study assessed pharmacists’ and physicians’ use and interpretation of abbreviations for “acetaminophen”, to identify abbreviations with other meanings that might cause confusion. Physicians (n = 150) reported use and interp...

  12. Protective effects from Houttuynia cordata aqueous extract against acetaminophen-induced liver injury

    Chen, Wei-Ting; Yang, Chieh-ling; Yin, Mei-chin

    2014-01-01

    Background Protective effects of Houttuynia cordata aqueous extract (HCAE) against acetaminophen-induced hepatotoxicity in Balb/cA mice were examined. Methods HCAE, at 1 or 2 g/L, was added into the drinking water for 4 weeks. Acute liver injury was induced by acetaminophen treatment intraperitoneally (350 mg/kg body weight). Results Acetaminophen treatment significantly depleted hepatic glutathione (GSH) content, increased hepatic malonyldialdehyde (MDA), reactive oxygen species (ROS) and ox...

  13. IV Acetaminophen: Assessment of Medication Utilization Evaluation Data in Peri-operative Pain Management

    Mark A. Malesker; Anne L Bruckner; Hilleman, Daniel E; Brian Loggie

    2015-01-01

    IV acetaminophen has become an accepted component of a multimodal analgesic strategy in perioperative patients. It is currently a branded drug (Ofirmev®) in the United States. The purchase price of the drug is greater than oral and rectal acetaminophen, intravenous ketorolac, and parenteral opioids. As a result, a large number of medication utilization evaluations (MUEs) have been conducted to evaluate the appropriateness of IV acetaminophen use. Many of these MUEs have failed to demonstrate ...

  14. Sleep Disruption and Proprioceptive Delirium due to Acetaminophen in a Pediatric Patient

    Carla Carnovale; Marco Pozzi; Andrea Angelo Nisic; Elisa Scrofani; Valentina Perrone; Stefania Antoniazzi; Emilio Clementi; Sonia Radice

    2013-01-01

    We present the case of a 7-year-old boy, who received acetaminophen for the treatment of hyperpyrexia, due to an infection of the superior airways. 13 mg/kg (260 mg) of acetaminophen was administered orally before bedtime, and together with the expected antipyretic effect, the boy experienced sleep disruption and proprioceptive delirium. The symptoms disappeared within one hour. In the following six months, acetaminophen was administered again twice, and the reaction reappeared with similar f...

  15. Relationship between serum acetaminophen concentration and N-acetylcysteine-induced adverse drug reactions.

    Zyoud, Sa'ed H; Awang, Rahmat; Sulaiman, Syed Azhar Syed; Khan, Halilol Rahman Mohamed; Sawalha, Ansam F; Sweileh, Waleed M; Al-Jabi, Samah W

    2010-09-01

    Intravenous N-acetylcysteine is usually regarded as a safe antidote. However, during the infusion of the loading dose, different types of adverse drug reactions (ADR) may occur. The objective of this study was to investigate the relation between the incidence of different types of ADR and serum acetaminophen concentration in patients presenting to the hospital with acetaminophen overdose. This is a retrospective study of patients admitted to the hospital for acute acetaminophen overdose over a period of 5 years (1 January 2004 to 31 December 2008). Parametric and non-parametric tests were used to test differences between groups depending on the normality of the data. SPSS 15 was used for data analysis. Of 305 patients with acetaminophen overdose, 146 (47.9%) were treated with intravenous N-acetylcysteine and 139 (45.6%) were included in this study. Different types of ADR were observed in 94 (67.6%) patients. Low serum acetaminophen concentrations were significantly associated with cutaneous anaphylactoid reactions but not other types of ADR. Low serum acetaminophen concentration was significantly associated with flushing (p acetaminophen concentrations between patients with and without the following ADR: gastrointestinal reactions (p = 0.77), respiratory reactions (p = 0.96), central nervous reactions (p = 0.82) and cardiovascular reactions (p = 0.37). In conclusion, low serum acetaminophen concentrations were associated with higher cutaneous anaphylactoid reactions. Such high serum acetaminophen concentrations may be protective against N-acetylcysteine-induced cutaneous ADR. PMID:20374238

  16. The effect of acetaminophen administration on its disposition and body stores of sulphate.

    Hendrix-Treacy, S; Wallace, S M; Hindmarsh, K W; Wyant, G M; Danilkewich, A

    1986-01-01

    This investigation was designed to investigate the effects of ingestion of multiple therapeutic doses of acetaminophen on the disposition of the drug and on the cosubstrate, sulfate. Nine healthy volunteers and nine outpatients receiving acetaminophen for chronic pain were involved in the study. Volunteers were given a single 650 mg oral dose of acetaminophen. One week later they were given 650 mg of acetaminophen every six hours for five doses. Patients were maintained on their normal treatment and dosage schedules (600 mg every 3 to 8 h) for the study. In healthy volunteers the half-life of acetaminophen after single and multiple dosing was not significantly different. However, the fraction of acetaminophen recovered in the urine as the sulfate conjugate was less and the glucuronide conjugate greater after multiple dosing than after a single of the drug. There was no difference in the percentage recovered as the parent compound between single and multiple dosing. Serum sulfate levels fluctuated over the 6-h period following administration of single and multiple doses of acetaminophen to volunteers. The mean serum sulfate concentration was less after administration of five sequential 650 mg doses of acetaminophen than after a single dose. The renal clearance of inorganic sulfate showed a corresponding decrease. Unexpectedly, patients on chronic acetaminophen therapy exhibited elevated serum sulfate levels (levels higher than the maximum sulfate concentration seen in volunteers). PMID:3732362

  17. Interaction of white and pink grapefruit juice with acetaminophen (paracetamol) in vivo in mice.

    Dasgupta, Amitava; Reyes, Meredith A; Risin, Semyon A; Actor, Jeffrey K

    2008-12-01

    Grapefruit juice increases bioavailability of a number of drugs because of inhibition of the P-glycoprotein pump and inhibition of intestinal cytochrome P450 3A4 enzyme. However, interaction between acetaminophen (also known as paracetamol in many parts of the world) and grapefruit juice has never been reported. The interaction of grapefruit juice with acetaminophen was examined in an in vivo mouse model. BALB/c mice were fed 200 microL of white grapefruit juice or pink grapefruit juice by oral gavage (three mice in each group) followed by oral delivery of 10, 50, or 100 mg/kg acetaminophen 1 hour later. Blood was withdrawn from the retro-orbital venous plexus at 1 hour and 2 hours after feeding with acetaminophen. The concentrations of acetaminophen in sera of mice were determined by fluorescence polarization immunoassay. White grapefruit juice increased concentrations of acetaminophen in mice both 1 hour and 2 hours after feeding compared to controls. In contrast, pink grapefruit juice increased acetaminophen concentrations 2 hours after feeding compared to controls. Because acetaminophen is almost completely absorbed these effects seems to be related to increased elimination half-life of acetaminophen because of interaction with grapefruit juice. PMID:19053875

  18. IV Acetaminophen: Assessment of Medication Utilization Evaluation Data in Peri-operative Pain Management

    Mark A Malesker

    2015-04-01

    Full Text Available IV acetaminophen has become an accepted component of a multimodal analgesic strategy in perioperative patients. It is currently a branded drug (Ofirmev® in the United States. The purchase price of the drug is greater than oral and rectal acetaminophen, intravenous ketorolac, and parenteral opioids. As a result, a large number of medication utilization evaluations (MUEs have been conducted to evaluate the appropriateness of IV acetaminophen use. Many of these MUEs have failed to demonstrate the expected benefits observed with the use of IV acetaminophen in randomized, controlled trials. This review summarizes the major methodological flaws seen in many of these MUEs. The most common flaws of the available MUEs were inclusion of inadequate numbers of patients, failure to adequately define the timing and duration of IV acetaminophen use, and failure to adequately match characteristics of patients receiving IV acetaminophen with control patients. An appropriately designed MUE for IV acetaminophen should take into consideration the identified methodological flaws described in this review. A template for a comprehensive MUE of IV acetaminophen is provided in the review. This template can be modified to meet institution specific criteria applied to the use of IV acetaminophen.

  19. Co-administration of N-Acetylcysteine and Acetaminophen Efficiently Blocks Acetaminophen Toxicity.

    Owumi, Solomon E; Andrus, James P; Herzenberg, Leonard A; Herzenberg, Leonore A

    2015-08-01

    Preclinical Research Although acetaminophen (APAP) is an effective analgesic and anti-pyretic, APAP overdose is the most frequent cause of serious, often lethal, drug-induced hepatotoxicity. Administration of N-acetyl cysteine (NAC) within 8 hours of APAP overdose effectively mitigates APAP-induced hepatotoxicity. Thus, preventing APAP toxicity before it occurs by formulating APAP with NAC is logical and, as we show here in a mouse model, is effective in preventing APAP toxicity. Thus, toxic oral APAP doses sufficient to cause severe widespread liver damage do not cause significant damage when administered concurrently with equal amounts of NAC, that is, in the NAC-APAP treated animals, hepatic transaminases increase only marginally and liver architecture remains fully intact. Thus, we conclude that concomitant oral dosing with APAP and NAC can provide a convenient and effective way of preventing toxicity associated with large dosage of APAP. From a public health perspective, these findings support the concept that a co-formulation of APAP plus NAC is a viable over-the-counter (OTC) alternative to the current practice of providing APAP OTC and treating APAP toxicity if/when it occurs. In essence, our findings indicate that replacing the current OTC APAP with a safe and functional APAP/NAC formulation could prevent the accidental and intentional APAP toxicity that occurs today. PMID:26250417

  20. Pre-emptive analgesia with paracetamol (acetaminophen) in postoperative pain

    To evaluate efficacy and safety of preoperative paracetamol for postoperative pain relief. The study population consisted of 40 adult female patients scheduled for tubectomy as an elective surgery who were in ASA class I. Patients were allocated randomly to receive 325mg of acetaminophen orally half an hour before surgery. Pain was assessed by verbal rating scale in three situations (resting, moving and coughing). Data was collection done using the questionnaire and data analysis done using descriptive statistical methods. The patients who received oral paracetamol experienced moderate and mild pain in 50% of the cases when they were in resting position. Feeling mild and moderate pain with movement was in 40% and 60% respectively. While coughing, 100% of the cases felt only moderate pain and none experienced severe pain. Administration of a single dose of acetaminophen in preoperative period is effective for acute postoperative pain relief. (author)

  1. FORMULATION AND EVALUATION OF FAST DISSOLVING TABLETS OF ACETAMINOPHEN

    Abhay Kumar Mourya et al.

    2012-02-01

    Full Text Available The present research work has been carried out for an optimized formulation of co-processed directly compressible vehicles in the preparation of the Acetaminophen mouth fast dissolving tablets (MFDTs. Acetaminophen was chosen due to its poor compression properties. Di-calcium Phosphate(DCP was incorporated in the neutralized aqueous starch dispersion to prepare co-processed excipient. Co-processed direct compressible DCP and Starch used as co-processed excipient were taken in good formulation ratio such as (25:75 and Cross Povidone used as superdisintegrant. The effects of other superdisintegrants were studied in the best formulation F5. Formulation F5 was found to be optimum compressibility characteristics hardness 3.62±0.40 to 4.68±0.31 kg/cm2 with fast disintegration (10 sec compare to other formulations.

  2. Toxic epidermal necrolysis caused by acetaminophen featuring almost 100% skin detachment: Acetaminophen is associated with a risk of severe cutaneous adverse reactions.

    Watanabe, Hideaki; Kamiyama, Taisuke; Sasaki, Shun; Kobayashi, Kae; Fukuda, Kenichiro; Miyake, Yasufumi; Aruga, Tohru; Sueki, Hirohiko

    2016-03-01

    Toxic epidermal necrolysis (TEN) is an adverse reaction that can be induced by various drugs; the associated mortality rate is 20-25%. A previous report showed a weak association between TEN and acetaminophen. Recently, the US Food and Drug Administration declared that acetaminophen is associated with a risk of serious skin reactions, including TEN. Here, we describe the case of a 43-year-old Japanese woman with TEN caused by acetaminophen. She had poorly controlled ulcerative colitis and was treated with high doses of prednisolone, infliximab, acetaminophen and lansoprazole. Nine days after administrating acetaminophen, targetoid erythematous and bullous lesions appeared on the patient's trunk, palms and the soles of her feet. The skin lesions expanded rapidly; within 3 weeks, skin detachment was detected across nearly 100% of the patient's body. However, no mucosal involvement of the eyes, oral cavity or genitalia was found. We performed lymphocyte transformation tests using various drugs; however, a high stimulation index was obtained only with acetaminophen. The patient recovered following treatment with plasmapheresis, i.v. immunoglobulin therapy, topical medication and supportive therapy. Acetaminophen is included in many prescription and over-the-counter products; thus, clinicians should monitor their patients for severe drug reactions, including TEN. PMID:26362011

  3. Role of nicotinamide (vitamin B3) in acetaminophen-induced changes in rat liver: Nicotinamide effect in acetaminophen-damged liver.

    Mahmoud, Yomna I; Mahmoud, Asmaa A

    2016-06-01

    Acetaminophen is a widely used analgesic and antipyretic agent, which is safe at therapeutic doses. However, overdoses of acetaminophen induce severe oxidative stress, which leads to acute liver failure. Nicotinamide has proven effective in ameliorating many pathological conditions that occur due to oxidative stress. This study verifies the prophylactic and therapeutic effects of nicotinamide against the hepatic pathophysiological and ultrastructural alterations induced by acetaminophen. Wistar rats intoxicated with an acute overdose of acetaminophen (5g/kg b.wt) were given a single dose of nicotinamide (500mg/kg b.wt) either before or after intoxication. Acetaminophen caused significant elevation in the liver functions and lipid peroxidation marker, and decline in the activities of the hepatic antioxidant enzymes. This oxidative injury was associated with hepatic centrilobular necrosis, hemorrage, vacuolar degeneration, lipid accumulation and mitochondrial alterations. Treating intoxicated rats with nicotinamide (500mg/kg) significantly ameliorated acetaminophen-induced biochemical changes and pathological injuries. However, administering the same dose of nicotinamide to healthy animals or prior to acetaminophen-intoxication induced hepatotoxicity. Caution should be taken when administering high doses of NAM because of its possible hepatotoxicity. Considering the wide use of nicotinamide, there is an important need for monitoring nicotinamide tolerance, safety and efficacy in healthy and diseased subjects. PMID:27211843

  4. Post hemorrhoidectomy pain control: rectal Diclofenac versus Acetaminophen

    Rahimi M

    2009-03-01

    Full Text Available "nBackground: Anal surgeries are prevalent, but they didn't perform as outpatient surgeries because of concerns about postoperative pain. The aim of the present study was to compare the effects of rectal acetaminophen and diclofenac on postoperative analgesia after anal surgeries in adult patients. "nMethods: In a randomized, double-blinded, placebo-controlled study 60 ASA class I or II scheduled for haemorrhoidectomy, anal fissure or fistula repair, were randomized (with block randomization method to receive either a single dose of 650 mg rectal acetaminophen (n=20, 100 mg rectal diclofenac (n=20 or placebo suppositories (n=20 after the operation. The severity of pain, time to first request of analgesic agent after administration of suppositories and complications were compared between three groups. Pain scores were evaluated in patients by Visual Analogue Scale (VAS in 0 (after complete consciousness in recovery, 2, 4, 12 and 24 hours after surgery. The period between administration of the suppositories and the patients' first request to receive analgesic was compared between groups. "nResults: Pain scores were lower significantly in rectal diclofenac than the other groups. The period between administration of the suppositories and the patients' first request to receive analgesic in diclofenac group was 219±73 minutes, was significantly longer compared with placebo (153±47 minutes and acetaminophen (178±64 minutes groups. No complications were reported. "nConclusions: Diclofenac suppository is more effective than acetaminophen suppository in post hemorrhoidectomy pain management.

  5. Post hemorrhoidectomy pain control: rectal Diclofenac versus Acetaminophen

    Rahimi M; Makarem J; Maktobi M

    2009-01-01

    "nBackground: Anal surgeries are prevalent, but they didn't perform as outpatient surgeries because of concerns about postoperative pain. The aim of the present study was to compare the effects of rectal acetaminophen and diclofenac on postoperative analgesia after anal surgeries in adult patients. "nMethods: In a randomized, double-blinded, placebo-controlled study 60 ASA class I or II scheduled for haemorrhoidectomy, anal fissure or fistula repair, were randomized (with block...

  6. Acute interstitial nephritis with acetaminophen and alcohol intoxication

    Alexopoulou Iakovina; Fruchter Lauren L; Lau Keith K

    2011-01-01

    Abstract Drug-induced acute interstitial nephritis (AIN) represents a growing cause of renal failure in current medical practice. While antimicrobials and non-steroidal anti-inflammatory drugs are typically associated with drug-induced AIN, few reports have been made on the involvement of other analgesics. We report our experience in managing a 17-year-old female with AIN and subsequent renal injury following an acetaminophen overdose in conjunction with acute alcohol intoxication. It is well...

  7. Efficacy of Intravenous Acetaminophen after Coronary Artery Bypass Graft Surgery

    Leick AM; Ratliff PD; Shely RN; Lester WC; Short MR

    2015-01-01

    In recent years, a multimodal approach to post-operative pain control consisting of opioid and non-opioid agents administered simultaneously has been used to provide synergistic effects and reduce opioid-related adverse effects. This is a retrospective, cohort study involving coronary artery bypass graft surgery patients who received scheduled intravenous IV acetaminophen 1gm every 6 hours for 4 doses starting at surgery end time with opioids administered as needed versus opioids as monother...

  8. Patterns of Acetaminophen Use Exceeding 4 Grams Daily in a Hospitalized Population at a Tertiary Care Center

    Civan, Jesse M.; Navarro, Victor; Herrine, Steven K.; Riggio, Jeffrey M.; Adams, Paul; Rossi, Simona

    2014-01-01

    Unintentional acetaminophen-induced hepatotoxicity has been increasingly recognized as a significant problem, prompting increased scrutiny and restrictions from the US Food and Drug Administration on products combining acetaminophen with narcotics. Patterns of acetaminophen use have not previously been reported in the hospitalized patient population, which may be especially vulnerable to liver injury. We aimed to quantify the frequency at which acetaminophen dosing exceeded the recommended ma...

  9. The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS⃞

    Court, Michael H; Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J; Lee, William M.

    2013-01-01

    Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of th...

  10. Acute interstitial nephritis with acetaminophen and alcohol intoxication

    Alexopoulou Iakovina

    2011-04-01

    Full Text Available Abstract Drug-induced acute interstitial nephritis (AIN represents a growing cause of renal failure in current medical practice. While antimicrobials and non-steroidal anti-inflammatory drugs are typically associated with drug-induced AIN, few reports have been made on the involvement of other analgesics. We report our experience in managing a 17-year-old female with AIN and subsequent renal injury following an acetaminophen overdose in conjunction with acute alcohol intoxication. It is well established that acetaminophen metabolism, particularly at high doses, produces reactive metabolites that may induce renal and hepatic toxicity. It is also plausible however, that such reactive species could instead alter renal peptide immunogenicity, thereby inducing AIN. In the following report, we review a possible mechanism for the acetaminophen-induced AIN observed in our patient and also discuss the potential involvement of acute alcohol ingestion in disease onset. The objective of our report is to increase awareness of healthcare professionals to the potential involvement of these commonly used agents in AIN pathogenesis.

  11. Formulation and characterization of acetaminophen nanoparticles in orally disintegrating films.

    Al-Nemrawi, Nusaiba K; Dave, Rutesh H

    2016-01-01

    The purpose of this study was to prepare orally disintegrating films containing nanoparticles loaded with acetaminophen. Nanoparticles were prepared by the emulsion-solvent evaporation method where acetone phase containing acetaminophen and poly(lactide-co-glycolide acid) (PLGA) was added to water phase containing hydroxypropyl methyl cellulose, poly ethylene glycol, polyvinyl alcohol (PVA) and aspartame in a rate of 1.5 drop s(-1) and agitated at 1200 rpm. The size, polydispersity index (PI) and drug entrapment (DE) were measured. The emulsions were cast to form films, which were evaluated physico-mechanically. The effect of different degrees of hydrolization of PVA and polymerization of PLGA and the effect of different ratios of PVA to PLGA was studied. Films with acceptable physico-mechanical properties were further studied. The size and PI of the nanoparticles was dependent on PVA hydrolization, PLGA polymerization and the ratio of PVA to PLGA. All films disintegrated in less than one minute, but acetaminophen was not free in the dissolution media even after six days. These results may indicate that although the nanoparticles released from the films immediately when impressed in solution the drug is sustained in the nanoparticles for longer time, which is to be clarified in future work. PMID:25013958

  12. Validity of a two-point acetaminophen pharmacokinetic study.

    Scavone, J M; Greenblatt, D J; Blyden, G T; Luna, B G; Harmatz, J S

    1990-01-01

    The pharmacokinetics of a single 650-mg intravenous dose of acetaminophen were determined in 82 volunteers using multiple (13 or more) plasma acetaminophen concentrations measured by high pressure liquid chromatography during 24 h after dosage. Kinetic values from the complete study were compared with kinetic estimates based on only two data points: (a) the 2- and 6-h points only; and (b) the 3 and 6-h points only. For elimination half-life, values from the complete study (mean 2.42 h) were highly correlated (r = 0.87 and 0.84) with methods a and b (means 2.41 and 2.43 h), with regression slopes of 1.00 and 0.99, respectively. For clearance, the complete study values (mean 312 ml/min) were highly correlated (r = 0.97 and 0.97) with method a and b values, but both two-point methods significantly overestimated clearance (means 350 and 355 ml/min) by an average of 13 and 14%, respectively. Results for volume of distribution were similar to those for clearance. Although acetaminophen elimination half-life can be estimated with reasonable precision using a two-point blood-sampling procedure, clearance and volume of distribution values using the two-point method overestimate the actual values. PMID:2305419

  13. Acetaminophen-Induced Acute Pancreatitis. A Case Report

    Hisato Igarashi

    2009-09-01

    Full Text Available Context Drug-induced acute pancreatitis is rare but should not be overlooked in a patient who presents with idiopathic acute pancreatitis. More than 100 drugs have been implicated in causing the disease: acetaminophen has been associated with acute pancreatitis in cases where there has been an overdose of drugs; however, the frequency is rare. Case report We report the case of a 35-year-old woman who presented with acute pancreatitis and severe metabolic acidosis after overdosing on a drug containing acetaminophen. She improved dramatically after intensive care; however, she showed recurrent episodes after re-overdosing on the same drug. With her self re-challenge test, she was diagnosed as having acetaminophen-induced pancreatitis and metabolic acidosis. A review of the relevant literature is also presented. Conclusions Drug-induced acute pancreatitis is often challenging for clinicians and a detailed mechanism is unknown. It is very important to rule out drug-induced pancreatitis when treating pancreatitis with an unknown etiology.

  14. Photodegradation of acetaminophen in TiO2 suspended solution

    This study investigated the photocatalytic degradation of acetaminophen (APAP) in TiO2 suspended solution under a 250 W metal halide lamp. The influence of some parameters on the degradation of acetaminophen was studied and described in details, such as initial APAP concentration, initial pH value and TiO2 dosage. After 100 min irradiation, about 95% of APAP is decomposed in the 1.0 g L-1 TiO2 aqueous solution with an initial concentration of 100 μmol L-1. The effect of adsorption at three different pH values has also been analyzed and it has been conducted that pH 3.5, at which APAP was readily adsorbed also degraded at a faster rate. Reaction rate at pH 6.9 and pH 9.5 was 2.84 and 2.96 μM min-1, respectively. Direct hole (h+) oxidation and ipso-substitution was found to be the main initial step for APAP degradation. Main reaction intermediates and products were identified by GC/MS analysis. The mechanism of acetaminophen photocatalytic degradation in TiO2 suspended solution was studied not only experimentally but also theoretically by calculating the frontier electron density of APAP. The results obtained indicated that TiO2 photocatalytic degradation is a highly effective way to remove APAP from wastewater and drinking water without any generation of more toxic products

  15. Acute interstitial nephritis with acetaminophen and alcohol intoxication.

    Fruchter, Lauren L; Alexopoulou, Iakovina; Lau, Keith K

    2011-01-01

    Drug-induced acute interstitial nephritis (AIN) represents a growing cause of renal failure in current medical practice. While antimicrobials and non-steroidal anti-inflammatory drugs are typically associated with drug-induced AIN, few reports have been made on the involvement of other analgesics. We report our experience in managing a 17-year-old female with AIN and subsequent renal injury following an acetaminophen overdose in conjunction with acute alcohol intoxication. It is well established that acetaminophen metabolism, particularly at high doses, produces reactive metabolites that may induce renal and hepatic toxicity. It is also plausible however, that such reactive species could instead alter renal peptide immunogenicity, thereby inducing AIN. In the following report, we review a possible mechanism for the acetaminophen-induced AIN observed in our patient and also discuss the potential involvement of acute alcohol ingestion in disease onset. The objective of our report is to increase awareness of healthcare professionals to the potential involvement of these commonly used agents in AIN pathogenesis. PMID:21496243

  16. Efficacy of Intravenous Acetaminophen after Coronary Artery Bypass Graft Surgery

    Leick AM

    2015-12-01

    Full Text Available In recent years, a multimodal approach to post-operative pain control consisting of opioid and non-opioid agents administered simultaneously has been used to provide synergistic effects and reduce opioid-related adverse effects. This is a retrospective, cohort study involving coronary artery bypass graft surgery patients who received scheduled intravenous IV acetaminophen 1gm every 6 hours for 4 doses starting at surgery end time with opioids administered as needed versus opioids as monotherapy for postoperative pain control. The primary endpoint assessed was total morphine equivalents administered post-operatively in each group with a secondary focus on degree of pain control, total length of stay, ICU length of stay, and time to first bowel movement. The study concludes that the addition of IV acetaminophen to opioids for postoperative pain relief did not produce an opioid sparing effect and paradoxically led to an increase in opioid use. Clinical outcomes including pain control, total length of stay, and ICU length of stay were unaffected by the addition of IV acetaminophen.

  17. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae.

    Reuter, Isabel; Knaup, Sabine; Romanos, Marcel; Lesch, Klaus-Peter; Drepper, Carsten; Lillesaar, Christina

    2016-08-01

    First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans. PMID:27116683

  18. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the γ-glutamyl cycle

    Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Our recent investigations have focused on the possible involvement of glutathione-derived APAP metabolites in APAP nephrotoxicity and have demonstrated that administration of acetaminophen-cysteine (APAP-CYS) potentiated APAP-induced renal injury with no effects on APAP-induced liver injury. Additionally, APAP-CYS treatment alone resulted in a dose-responsive renal GSH depletion. This APAP-CYS-induced renal GSH depletion could interfere with intrarenal detoxification of APAP or its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and may be the mechanism responsible for the potentiation of APAP nephrotoxicity. Renal-specific GSH depletion has been demonstrated in mice and rats following administration of amino acid γ-glutamyl acceptor substrates for γ-glutamyl transpeptidase (γ-GT). The present study sought to determine if APAP-CYS-induced renal glutathione depletion is the result of disruption of the γ-glutamyl cycle through interaction with γ-GT. The results confirmed that APAP-CYS-induced renal GSH depletion was antagonized by the γ-glutamyl transpeptidase (γ-GT) inhibitor acivicin. In vitro analysis demonstrated that APAP-CYS is a γ-glutamyl acceptor for both murine and bovine renal γ-GT. Analysis of urine from mice pretreated with acivicin and then treated with APAP, APAP-CYS, or acetaminophen-glutathione identified a γ-glutamyl-cysteinyl-acetaminophen metabolite. These findings are consistent with the hypothesis that APAP-CYS contributes to APAP nephrotoxicity by depletion of renal GSH stores through interaction with the γ-glutamyl cycle

  19. Fetal growth and adverse birth outcomes in women receiving prescriptions for acetaminophen during pregnancy

    Thulstrup, Ane Marie; Sørensen, Henrik Toft; Nielsen, Gunnar Lauge;

    1999-01-01

    We studied the association between acetaminophen exposure during pregnancy and the prevalence of congenital abnormalities and fetal growth. Our study included 123 women who had received a prescription of acetaminophen during pregnancy and/or 30 days before conception and 13,329 controls who did n...

  20. Postoperative pain relief with pentazocine and acetaminophen: comparison with other analgesic combinations and placebo.

    Petti, A

    1985-01-01

    A single-blind, parallel-group study was carried out to evaluate the efficacy and safety of an analgesic combining 650 mg of acetaminophen and 25 mg of pentazocine in 129 patients with moderate postoperative pain. Comparisons were made with a combination containing acetaminophen (300 mg) and codeine (30 mg), a combination containing acetaminophen (650 mg) and propoxyphene napsylate (100 mg), and a placebo. A nurse observer queried patients at regular intervals over a six-hour period concerning the intensity of pain and the degree of pain relief. The scores obtained were used in the calculation of standard measures of analgesic efficacy. Acetaminophen/pentazocine proved to be significantly superior to placebo and equivalent to the other active analgesic combinations. No side effects were reported with acetaminophen/pentazocine, acetaminophen/propoxyphene napsylate, or placebo. One mild side effect was questionably associated with acetaminophen/codeine. This study demonstrates that the combination of acetaminophen and pentazocine is as safe and effective in controlling postoperative pain of moderate severity as other commonly used analgesics. PMID:2870808

  1. Bromfenac sodium, acetaminophen/oxycodone, ibuprofen, and placebo for relief of postoperative pain.

    Johnson, G H; Van Wagoner, J D; Brown, J; Cooper, S A

    1997-01-01

    The objective of this double-masked, parallel-group, multicenter, inpatient study was to compare bromfenac with an acetaminophen/oxycodone combination and ibuprofen in patients who had pain due to abdominal gynecologic surgery. In the 8-hour, single-dose phase, 238 patients received single oral doses of bromfenac (50 or 100 mg), acetaminophen 650 mg/oxycodone 10 mg, ibuprofen 400 mg, or placebo. In the multiple-dose phase, 204 patients received bromfenac, acetaminophen/oxycodone, or ibuprofen for up to 5 days. In the single-dose phase, both bromfenac doses produced peak analgesic responses equivalent to acetaminophen/oxycodone, but the responses to bromfenac were longer lasting. Bromfenac produced significantly better overall (8-hour) analgesic summed scores than acetaminophen/oxycodone. Ibuprofen was less efficacious than the other analgesics. The remedication rate was lower in both bromfenac groups than in the other treatment groups. The acetaminophen/oxycodone group reported more somnolence and vomiting. Single doses of bromfenac provided analgesia at least equivalent to that of the acetaminophen/oxycodone combination, with a longer duration of action. Both doses of bromfenac and acetaminophen/oxycodone were superior to ibuprofen in this study. PMID:9220215

  2. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis.

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-12-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported. PMID:26067475

  3. 76 FR 2691 - Prescription Drug Products Containing Acetaminophen; Actions To Reduce Liver Injury From...

    2011-01-14

    ... acetaminophen drugs (final rule, 74 FR 19385, April 29, 2009; and technical amendment, 74 FR 61512, November 25...., nonsteroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, and naproxen), at recommended doses... caused by the effects of a toxic metabolite of acetaminophen, N-acetyl-p-benzoquinone imine (NAPQI)...

  4. Acetaminophen hepatotoxicity and HIF-1α induction in acetaminophen toxicity in mice occurs without hypoxia

    HIF-1α is a nuclear factor important in the transcription of genes controlling angiogenesis including vascular endothelial growth factor (VEGF). Both hypoxia and oxidative stress are known mechanisms for the induction of HIF-1α. Oxidative stress and mitochondrial permeability transition (MPT) are mechanistically important in acetaminophen (APAP) toxicity in the mouse. MPT may occur as a result of oxidative stress and leads to a large increase in oxidative stress. We previously reported the induction of HIF-1α in mice with APAP toxicity and have shown that VEGF is important in hepatocyte regeneration following APAP toxicity. The following study was performed to examine the relative contribution of hypoxia versus oxidative stress to the induction of HIF-1α in APAP toxicity in the mouse. Time course studies using the hypoxia marker pimonidazole showed no staining for pimonidazole at 1 or 2 h in B6C3F1 mice treated with APAP. Staining for pimonidazole was present in the midzonal to periportal regions at 4, 8, 24 and 48 h and no staining was observed in centrilobular hepatocytes, the sites of the toxicity. Subsequent studies with the MPT inhibitor cyclosporine A showed that cyclosporine A (CYC; 10 mg/kg) reduced HIF-1α induction in APAP treated mice at 1 and 4 h and did not inhibit the metabolism of APAP (depletion of hepatic non-protein sulfhydryls and hepatic protein adduct levels). The data suggest that HIF-1α induction in the early stages of APAP toxicity is secondary to oxidative stress via a mechanism involving MPT. In addition, APAP toxicity is not mediated by a hypoxia mechanism.

  5. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques outperformed

  6. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    Jetten, Marlon J.A.; Gaj, Stan [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Ruiz-Aracama, Ainhoa [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Kok, Theo M. de [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Delft, Joost H.M. van, E-mail: j.vandelft@maastrichtuniversity.nl [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Lommen, Arjen [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Someren, Eugene P. van [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Jennen, Danyel G.J.; Claessen, Sandra M. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Peijnenburg, Ad A.C.M. [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Stierum, Rob H. [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Kleinjans, Jos C.S. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands)

    2012-03-15

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques

  7. Analgesic effect of acetaminophen, phenyltoloxamine and their combination in postoperative oral surgery pain.

    Forbes, J A; Barkaszi, B A; Ragland, R N; Hankle, J J

    1984-01-01

    In this factorial study, 148 outpatients with pain after oral surgery were randomly assigned, on a double-blind basis, a single oral dose of acetaminophen 650 mg, phenyltoloxamine 60 mg, a combination of acetaminophen 650 mg with phenyltoloxamine 60 mg, or placebo. Using a self-rating record, subjects rated their pain and its relief hourly for 6 hours after medication. Measures of total and peak analgesia were derived from these subjective reports. The acetaminophen effect was significant for every measure of total and peak analgesia. The phenyltoloxamine effect was not significant for any measure of analgesia. Although efficacy was lower for the acetaminophen-phenyltoloxamine combination than for acetaminophen alone, for every variable, the contrast for interaction was not statistically significant. The results of this study differ from those of previous studies in patients with headache and musculoskeletal pain. All adverse effects were transitory and consistent with the known pharmacologic profiles of the study medications or the backup analgesic. PMID:6483639

  8. Association of prenatal exposure to acetaminophen and coffee with childhood asthma

    Liu, Xiaoqin; Liew, Zeyan; Olsen, Jørn;

    2016-01-01

    PurposeSome studies have suggested that maternal acetaminophen use during pregnancy is associated with asthma in the offspring, and coffee consumption may modify the toxicity of acetaminophen. We aim to examine whether pregnancy maternal acetaminophen use increases the risk for offspring asthma......, and whether such a potential association could be modified by maternal coffee consumption. MethodsWe included 63 652 live-born singletons enrolled in the Danish National Birth Cohort. Maternal acetaminophen use and coffee consumption during pregnancy were assessed prospectively via the enrolment questionnaire...... and three computer-assisted telephone interviews. Asthma cases were identified by using the Danish National Patient Register and the Danish National Prescription Registry. We estimated the hazard ratios (HRs) for asthma according to prenatal acetaminophen and coffee exposure using Cox proportional hazards...

  9. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    van den Driesche, Sander; Macdonald, Joni; Anderson, Richard A; Johnston, Zoe C; Chetty, Tarini; Smith, Lee B; McKinnell, Chris; Dean, Afshan; Homer, Natalie Z; Jorgensen, Anne; Camacho-Moll, Maria E; Sharpe, Richard M; Mitchell, Rod T

    2015-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons......, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45......% reduction; P = 0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; P = 0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the...

  10. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type.

    Kane, Alice E; Mitchell, Sarah J; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G; de Cabo, Rafael; Hilmer, Sarah N

    2016-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  11. Spathodea campanulata Extract Attenuates Acetaminophen-Induced Hepatic Injury in Mice

    Phyllis Elsie Dadzeasah

    2013-10-01

    Full Text Available Spathodea campanulata, well known for its traditional medicinal uses was investigated for hepatoprotective activity against acetaminophen-induced hepatic damage in mice. Six groups of mice were pre-treated with 100, 300 and 625 mg/kg of the aqueous extract of Spathodea campanulata stem bark, N-acetyl cysteine (300 mg/kg; p.o or distilled water for 5 days before they were intoxicated with a single dose of acetaminophen (600 mg/kg; p.o. Alanine aminotransferase, Aspartate aminotransferase and total protein levels were measured in serum, glutathione peroxidase, superoxide dismutase and total cytochrome P450 levels were measured in liver homogenate and liver histology was also observed on liver sections. Total liver cytochrome P450 levels in Spathodea campanulata extract, distilled water, ketoconazole or phenobarbital-treated animals were also measured. Significant hepatoprotection was obtained against liver damage induced by acetaminophen as evident from decreased serum levels of Aspartate transaminase, Alanine transaminase and increased levels of total protein in the combined acetaminophen and extract treated groups and the acetaminophen and N-acetylcysteine-treated groups compared to the acetaminophen only controls. The decrease in serum antioxidant enzymes; glutathione peroxidase and superoxide dismutase levels caused by acetaminophen was significantly reversed by the extract. The results correlated well with the histopathology of liver from treated and control animals. The extract also caused considerable inhibition of total CYP450, the enzymes involved in the activation of acetaminophen. The present results indicate that Spathodea campanulata protects the liver against acetaminophen-induced hepatotoxicity by enhancing antioxidant protection capacity and interfering with the bio-activation of acetaminophen.

  12. Selective inhibition of acetaminophen oxidation and toxicity by cimetidine and other histamine H2-receptor antagonists in vivo and in vitro in the rat and in man.

    Mitchell, M C; Schenker, S.; Speeg, K V

    1984-01-01

    Acetaminophen-induced hepatotoxicity results from hepatic enzymatic oxidation of acetaminophen to a toxic, electrophilic intermediate. Acetaminophen is ordinarily eliminated after conjugation with glucuronic acid and sulfate to nontoxic derivatives. Cimetidine has been shown to inhibit the hepatic oxidation of a number of drugs and to protect rats from acetaminophen-induced hepatic necrosis. The aim of this study was to define the mechanism by which cimetidine reduced acetaminophen-induced he...

  13. Implications of Sensorineural Hearing Loss With Hydrocodone/Acetaminophen Abuse.

    Novac, Andrei; Iosif, Anamaria M; Groysman, Regina; Bota, Robert G

    2015-01-01

    Sensorineural hearing loss is an infrequently recognized side effect of pain medication abuse. Chronic pain patients treated with opiates develop different degrees of tolerance to pain medications. In many cases, the tolerance becomes the gateway to a variety of cycles of overuse and unmasking of significant psychiatric morbidity and mortality. An individualized approach utilizing combined treatment modalities (including nonopiate pharmaceuticals) is expected to become the norm. Patients can now be provided with multidisciplinary care that addresses an individual's psychiatric, social, and medical needs, which requires close cooperation between physicians of varying specialties. This report describes a patient who experienced hearing loss from hydrocodone/acetaminophen abuse. PMID:26835162

  14. Activation of LXR Increases Acetaminophen Clearance and Prevents Its Toxicity

    Saini, Simrat P. S.; Zhang, Bin; Niu, Yongdong; Jiang, Mengxi; Gao, Jie; Zhai, Yonggong; Lee, Jung Hoon; Uppal, Hirdesh; Tian, Hui; Tortorici, Michael A.; Poloyac, Samuel M.; Qin, Wenxin; Venkataramanan, Raman; Xie, Wen

    2011-01-01

    Overdose of acetaminophen (APAP), the active ingredient of Tylenol, is the leading cause of drug-induced acute liver failure in the US. As such, it is necessary to develop novel strategies to prevent or manage APAP toxicity. In this report, we revealed a novel function of the liver X receptor (LXR) in preventing APAP-induced hepatotoxicity. Activation of LXR in transgenic mice or by an LXR agonist conferred resistance to the hepatotoxicity of APAP, whereas the effect of LXR agonist on APAP to...

  15. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Ikeda, Kenji; Fukukita, Suguru; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2015-06-01

    A new method for selective crystallization of the metastable phase (form II) of acetaminophen is described. To obtain form II, we prepared a highly supersaturated solution (σI = 3.7) and then applied ultrasonic irradiation at different frequencies. Without ultrasonic irradiation, spontaneous crystallization did not occur within one month in the highly supersaturated condition (σI = 3.7). When ultrasonic irradiation at 28 kHz was applied, form II preferentially crystallized. Therefore, we conclude that ultrasonic irradiation can be an effective technique for selectively crystallizing the metastable phase.

  16. Associations between acetaminophen use during pregnancy and ADHD symptoms measured at ages 7 and 11 years.

    John M D Thompson

    Full Text Available OBJECTIVE: Our aim was to replicate and extend the recently found association between acetaminophen use during pregnancy and ADHD symptoms in school-age children. METHODS: Participants were members of the Auckland Birthweight Collaborative Study, a longitudinal study of 871 infants of European descent sampled disproportionately for small for gestational age. Drug use during pregnancy (acetaminophen, aspirin, antacids, and antibiotics were analysed in relation to behavioural difficulties and ADHD symptoms measured by parent report at age 7 and both parent- and child-report at 11 years of age. The analyses included multiple covariates including birthweight, socioeconomic status and antenatal maternal perceived stress. RESULTS: Acetaminophen was used by 49.8% of the study mothers during pregnancy. We found significantly higher total difficulty scores (Strengths and Difficulty Questionnaire parent report at age 7 and child report at age 11 if acetaminophen was used during pregnancy, but there were no significant differences associated with any of the other drugs. Children of mothers who used acetaminophen during pregnancy were also at increased risk of ADHD at 7 and 11 years of age (Conners' Parent Rating Scale-Revised. CONCLUSIONS: These findings strengthen the contention that acetaminophen exposure in pregnancy increases the risk of ADHD-like behaviours. Our study also supports earlier claims that findings are specific to acetaminophen.

  17. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2α and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  18. Acetaminophen-induced microvascular injury in the rat liver: protection with misoprostol.

    Lim, S P; Andrews, F J; O'Brien, P E

    1995-12-01

    Studies into the mechanism of acetaminophen (APAP)-induced hepatotoxicity have focused mainly at the hepatocellular level. This study aimed to investigate the effect of acetaminophen on the hepatic microvasculature using a vascular casting technique. Acetaminophen was administered at a dose of 650 mg/kg body weight (intraperitoneally) to fasted male Long Evans rats. Microvascular casting was performed at various points after drug administration. Liver casts from control rats showed good patency with normal hepatic microvasculature. Thirty-six hours after overdose with acetaminophen, liver casts showed rounded centrilobular cavities of various sizes, representing regions in which cast-filled sinusoids were absent with relatively normal microvasculature within periportal regions. Evidence of microvascular injury occurred as early as 5 hours after acetaminophen overdose. This injury consisted of changes to centrilobular sinusoids including areas of incomplete filling and dilated centrilobular sinusoids. Misoprostol (a prostaglandin E1 analog) treatment (6 x 25 micrograms/kg) given before and after acetaminophen administration markedly reduced the extent of microvascular injury with only small focal unfilled areas in the casts and a generally intact microvasculature. In conclusion, this study shows that overdosage with APAP resulted in an extensive, characteristic pattern of hepatic microvascular injury in the centrilobular region. The results also suggest that microvascular injury is an early event in the pathogenesis of acetaminophen hepatotoxicity. Misoprostol was found to protect against injury occurring at the microvascular level. PMID:7489988

  19. The effect of acetaminophen nanoparticles on liver toxicity in a rat model

    Esmaeil Biazar

    2010-03-01

    Full Text Available Esmaeil Biazar1, S Mahdi Rezayat2, Naser Montazeri1, Khalil Pourshamsian1, Reza Zeinali3, Azadeh Asefnejad3, Mehdi Rahimi3, Mohammadmajid Zadehzare3, Mehran Mahmoudi3, Rohollah Mazinani3, Mehdi Ziaei31Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Department of Pharmacology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; 3Biomedical Engineering, Islamic Azad University, Research and Science Branch, Tehran, IranAbstract: Acetaminophen, a pain-reliever, is one of the most widely used medications in the world. Acetaminophen with normal dosage is considered a nontoxic drug for therapeutic applications, but when taken at overdose levels it produces liver damage in human and various animal species. By a high energy mechanically activated method, we produced acetaminophen in a nanometer crystalline size (24 nm. Forty-eight hours after injection of crystalline particles with normal and reduced size of our drug, the effect of liver toxicity was compared by determination of liver transferase enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase (ALT. These enzymes were examined by routine colorimetric methods using commercial kits and pathologic investigations. Statistical analysis and pathological figures indicated that ALT delivery and toxicity in reduced size acetaminophen was significantly reduced when compared with normal size acetaminophen. Pathology figures exhibited reduced necrosis effects, especially the confluent necrosis, in the central part of the lobule in the reduced size acetaminophen samples when compared with the normal samples.Keywords: acetaminophen, size reduction, pathological and enzymatic investigations, toxicity

  20. [Intoxication or false-positive acetaminophen result of toxicological determinations? Two case reports].

    Winnicka, Renata; Kołaciński, Zbigniew; Brzeznicki, Sławomir; Wesołowski, Wiktor; Kucharska, Małgorzata; Krakowiak, Anna

    2013-01-01

    The aim of this study was to show the diagnostic procedure used in the two cases with false-positive serum acetaminophen results in suspected acetaminophen poisoning. The determination of serum acetaminophen were carried out using a UV/VIS spectrophotometer (Specord 40 Analytik Jena), coupled with an analytic computer station WinASPECT. The employed method of determination was based on the acetaminophen reaction with sodium nitrite, which yields yellow colour of solution in the presence of sodium hydrate. The intensity of the yellow colour depends on the concentration of acetaminophen in serum. The relationship between absorbance and concentration was linear at concentrations in the range 50-600 microg/mL, with relative standard deviation of +/- 2.1% and detection limit of 30 microg/mL. To confirm or reject the doubtful results of colorimetric assays, the serums of patients were measured with high performance liquid chromatography with mass spectrometry detection and gas chromatography with mass spectrometry detection. The analysis of presented cases leads to a conclusion that acetaminophen results should be confirmed either by scanning urine for p-aminophenol presence (which is a routine procedure in our laboratory) or by using a different method of measuring acetaminophen serum levels. PMID:24466725

  1. Pharmacist and Physician Interpretation of Abbreviations for Acetaminophen Intended for Use in a Consumer Icon

    Saul Shiffman

    2015-10-01

    Full Text Available Concomitant use of multiple acetaminophen medications is associated with overdose. To help patients identify acetaminophen medications and thus avoid concomitant use, an icon with an abbreviation for “acetaminophen” has been proposed for all acetaminophen medications. This study assessed pharmacists’ and physicians’ use and interpretation of abbreviations for “acetaminophen”, to identify abbreviations with other meanings that might cause confusion. Physicians (n = 150 reported use and interpretation of candidate abbreviations Ac and Acm. Pharmacists (n = 150 interpretations of prescription orders using the candidate abbreviations APAP, Ac, Ace and Acm in typed, handwritten or spoken form, were judged for critical confusions likely to cause patient harm. Critical confusion was rare, except for omission by pharmacists of the acetaminophen dose for Hydrocodone/APAP prescriptions (10%. Ac was in common use to indicate “before meals”, and was interpreted as such, but some physicians (8% said they use Ac to indicate anticoagulant drugs. Most pharmacists (54% interpreted Ace as acetaminophen, and none interpreted it as referring to ACE-inhibitors. Acm was rarely used in prescriptions, had no common interfering meanings, and was often (63% interpreted as acetaminophen, especially when prescribed in combination with an opiate (85%. The data validated concerns about abbreviations in prescribing: all abbreviations resulted in some misinterpretations. However, Acm was rarely misinterpreted, was readily associated with “acetaminophen”, and seemed appropriate for use in a graphic icon to help consumers/patients identify acetaminophen medications.

  2. Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring.

    Andrade, Chittaranjan

    2016-02-01

    Acetaminophen (paracetamol) is available over the counter in most countries and is widely considered to be safe for use during pregnancy; studies report gestational exposures to acetaminophen that lie in the 46%-65% range. Acetaminophen influences inflammatory and immunologic mechanisms and may predispose to oxidative stress; these and other effects are hypothesized to have the potential to compromise neurodevelopment in the fetal and infant brain. Two ecological studies suggested that population-level trends in the use of acetaminophen were associated with trends in the incidence/prevalence of autism; one of these studies specifically examined acetaminophen use during pregnancy. One large prospective observational cohort study found that gestational exposure to acetaminophen (especially when the duration of exposure was 28 days or more) was associated with motor milestone delay, gross and fine motor impairments, communication impairment, impairments in internalizing and externalizing behaviors, and hyperactivity, all at age 3 years; however, social and emotional developmental behaviors were mostly unaffected. A very recent large cohort study with a 12.7-year follow-up found that gestational exposure to acetaminophen was associated with an increased risk of autism spectrum disorder, but only when a hyperkinetic disorder was also present. In the light of existing data associating acetaminophen use during pregnancy and subsequent risk of attention-deficit/hyperactivity disorder, this new finding suggests that the predisposition, if any, is toward the hyperkinetic syndrome rather than to autism. In summary, the empirical data are very limited, but whatever empirical data exist do not support the suggestion that the use of acetaminophen during pregnancy increases the risk of autism in the offspring. PMID:26930528

  3. Plasma concentrations after high-dose (45 mg.kg-1) rectal acetaminophen in children.

    Montgomery, C J; McCormack, J P; Reichert, C C; Marsland, C P

    1995-11-01

    Although the recommended dose of rectal acetaminophen (25-30 mg.kg-1) is twice that for oral administration (10-15 mg.kg-1), the literature justifies the use of a higher dose when acetaminophen is administered via the rectal route. We measured venous plasma acetaminophen concentrations resulting from 45 mg.kg-1 of rectal acetaminophen in ten ASA 1, 15 kg paediatric patients undergoing minor surgery with a standardized anaesthetic. After induction of anaesthesia, a single 650 mg suppository (Abenol, SmithKline Beecham Pharma Inc.) was administered rectally. Plasma was sampled at t = 0, 15, 30, 45, 60, 90, 120, 180, 240 min in the first five patients and at t = 0, 30, 60, 90, 120, 180, 240, 300, 420 min in the subsequent five. Acetaminophen plasma concentrations were determined using a TDxFLx fluorescence polarization immunoassay (Abbott Laboratories, Toronto, Ontario). The maximum plasma concentration was 88 +/- 39 mumol.L-1 (13 +/- 6 micrograms.ml-1) and the time of peak plasma concentration was 198 +/- 70 min (mean +/- SD). At 420 min, the mean plasma concentration was 46 +/- 18 mumol.L-1 (7.0 +/- 0.9 micrograms.ml-1). No plasma concentrations associated with toxicity (> 800 mumol.L-1) were identified. A 45 mg.kg-1 rectal dose of acetaminophen resulted in peak plasma concentrations comparable with those resulting from 10-15 mg.kg-1 of oral acetaminophen at three hours after suppository insertion. It is concluded that the delayed and erratic absorption of acetaminophen after rectal administration leads to unpredictable plasma concentrations. Rectal acetaminophen will not be consistently effective for providing rapid onset of analgesia in children. PMID:8590508

  4. Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis Associated with Acetaminophen Use during Viral Infections

    Ban, Ga-Young; Ahn, Seun-Joo; Yoo, Hye-Soo; Park, Hae-Sim

    2016-01-01

    An association between drug treatment for viral infections and severe cutaneous adverse reactions has been noted. We investigated six patients diagnosed with Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) after being prescribed acetaminophen for suspected viral illnesses. Multiplex analysis was performed to measure cytokine levels in sera before and after treatment. IL-2Rα levels significantly decreased during the convalescence phase. Although acetaminophen is relatively safe, the drug can trigger SJS/TEN in patients with suspected viral infections. T-cells and monocytes may be key components of the link between viral infection and acetaminophen-induced SJS/TEN. PMID:27574505

  5. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Associated with Acetaminophen Use during Viral Infections.

    Ban, Ga-Young; Ahn, Seun-Joo; Yoo, Hye-Soo; Park, Hae-Sim; Ye, Young-Min

    2016-08-01

    An association between drug treatment for viral infections and severe cutaneous adverse reactions has been noted. We investigated six patients diagnosed with Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) after being prescribed acetaminophen for suspected viral illnesses. Multiplex analysis was performed to measure cytokine levels in sera before and after treatment. IL-2Rα levels significantly decreased during the convalescence phase. Although acetaminophen is relatively safe, the drug can trigger SJS/TEN in patients with suspected viral infections. T-cells and monocytes may be key components of the link between viral infection and acetaminophen-induced SJS/TEN. PMID:27574505

  6. Protective effects of (-)-epigallocatechin-3-gallate against acetaminophen-induced liver injury in rats)

    Yao, Hsien-Tsung; Yang, Yu-Chi; Chang, Chen-Hui; Yang, Hui-Ting; Yin, Mei-chin

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin with various biological activities found in tea. In this study, the effects of EGCG on the metabolism and toxicity of acetaminophen in rat liver were investigated. Male Sprague-Dawley rats were fed a controlled diet without or with EGCG (0.54 %, w/w) for 1 week and were then intraperitoneally injected with acetaminophen (1 g/kg body weight) and killed after 12 h. Concentrations of acetaminophen and its conjugates in plasma an...

  7. Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury

    Wancket, Lyn M.; Meng, Xiaomei; Rogers, Lynette K.; Liu, Yusen

    2012-01-01

    c-Jun N-terminal kinase (JNK) activation promotes hepatocyte death during acetaminophen overdose, a common cause of drug-induced liver failure. While mitogen-activated protein kinase (MAPK) phosphatase (Mkp)-1 is a critical negative regulator of JNK MAPK, little is known about the role of Mkp-1 during hepatotoxicity. In this study, we evaluated the role of Mkp-1 during acute acetaminophen toxicity. Mkp-1+/+ and Mkp-1−/− mice were dosed ip with vehicle or acetaminophen at 300 mg/kg (for mechan...

  8. The analgesic efficacy of intra-articular acetaminophen in an experimental model of carrageenan-induced arthritis

    Arun, Oguzhan; Canbay, Ozgur; Celebi, Nalan; Sahin, Altan; Konan, Ali; Atilla, Pergin; Aypar, Ulku

    2013-01-01

    BACKGROUND: Acetaminophen is one of the most common drugs used for the treatment of pain and fever. OBJECTIVES: To examine the effects of intra-articular (IA) acetaminophen on carrageenan-induced arthritic pain-related behaviour and spinal c-Fos expression in rats. METHODS: The present study was performed using 20 Sprague Dawley rats. Forty microlitres of IA 0.9% NaCl was injected in the control group, and 40 μL of IA carrageenan was injected in the carrageenan group. One hour after carrageenan injection, 400 μg of IA acetaminophen was injected in the IA acetaminophen group, and 400 μg of intraperitoneal (IP) acet-aminophen was injected in the IP acetaminophen group. One day before injection, and 4 h and 8 h after injection, diameters of both knee joints, motility of the rat, paw loading and joint mobility were assessed. After the rats were euthanized, L3 and L4 spinal segments were excised for c-Fos assessment. RESULTS: IA acetaminophen decreased both the severity and distribution of c-Fos expression. IP acetaminophen decreased only the distribution of c-Fos expression. IA acetaminophen decreased knee diameter at 8 h. IA and IP acetaminophen increased rat motility and paw loading scores. Joint mobility scores of IP acetaminophen were similar to saline at 8 h. CONCLUSIONS: Results of the present study indicate an analgesic and/or possible anti-inflammatory effect of IA acetaminophen and provide further evidence on the efficacy of systemic acetaminophen injection in reducing arthritic pain. PMID:24093120

  9. Croton zehntneri Essential oil prevents acetaminophen-induced acute hepatotoxicity in mice

    Maria Goretti R. Queiroz

    2008-10-01

    Full Text Available Hepatoprotective activity of Croton zehntneri Pax & Hoffman (Euphorbiaceae leaf essential oil (EOCz was evaluated against single dose of acetaminophen-induced (500 mg/kg, p.o. acute hepatotoxicity in mice. EOCz significantly protected the hepatotoxicity as evident from the activities of serum glutamate pyruvate transaminase (GPT, serum glutamate oxaloacetate transaminase (GOT activities, that were significantly (p<0.01 elevated in the acetaminophen alone treated animals. Histopathological examinations of liver tissue corroborated well with the biochemical changes. Hepatic steatosis, hydropic degeneration and necrosis were observed in the acetaminophen treated group, while these were completely absent in the standard and EOCz treated groups. In conclusion, these data suggest that the Croton zehntneri essential oil can prevent hepatic injuries from acetaminophen-induced hepatotoxicity in mice.

  10. Effects of prednisone, aspirin, and acetaminophen on an in vivo biologic response to interferon in humans.

    Witter, F R; Woods, A S; Griffin, M D; Smith, C R; Nadler, P; Lietman, P S

    1988-08-01

    In healthy volunteers receiving a single intramuscular dose of 18 X 10(6) U interferon alone or after 24 hours of an 8-day course of prednisone (40 mg/day), aspirin (650 mg every 4 hours), or acetaminophen (650 mg every 4 hours), the magnitude of the biologic response to interferon was quantified by measuring the time course of the induction of 2'-5'-oligoadenylate synthetase and resistance to vesicular stomatitis virus infection in human peripheral blood mononuclear cells. Prednisone decreased the AUC of 2'-5'-oligoadenylate synthetase activity (p less than 0.05), whereas administration of aspirin or acetaminophen did not affect this biologic response. No measurable effect was seen during administration of prednisone, aspirin, or acetaminophen on the duration or intensity of vesicular stomatitis virus yield reduction. The side effects seen with interferon administration at the dose tested were not altered in a clinically meaningful manner by prednisone, aspirin, or acetaminophen. PMID:2456175

  11. Sleep Disruption and Proprioceptive Delirium due to Acetaminophen in a Pediatric Patient

    Carla Carnovale

    2013-01-01

    Full Text Available We present the case of a 7-year-old boy, who received acetaminophen for the treatment of hyperpyrexia, due to an infection of the superior airways. 13 mg/kg (260 mg of acetaminophen was administered orally before bedtime, and together with the expected antipyretic effect, the boy experienced sleep disruption and proprioceptive delirium. The symptoms disappeared within one hour. In the following six months, acetaminophen was administered again twice, and the reaction reappeared with similar features. Potential alternative explanations were excluded, and analysis with the Naranjo algorithm indicated a “probable” relationship between acetaminophen and this adverse reaction. We discuss the potential mechanisms involved, comprising imbalances in prostaglandin levels, alterations of dopamine, and cannabinoid and serotonin signalings.

  12. Sleep Disruption and Proprioceptive Delirium due to Acetaminophen in a Pediatric Patient

    Carnovale, Carla; Pozzi, Marco; Nisic, Andrea Angelo; Scrofani, Elisa; Perrone, Valentina; Antoniazzi, Stefania; Radice, Sonia

    2013-01-01

    We present the case of a 7-year-old boy, who received acetaminophen for the treatment of hyperpyrexia, due to an infection of the superior airways. 13 mg/kg (260 mg) of acetaminophen was administered orally before bedtime, and together with the expected antipyretic effect, the boy experienced sleep disruption and proprioceptive delirium. The symptoms disappeared within one hour. In the following six months, acetaminophen was administered again twice, and the reaction reappeared with similar features. Potential alternative explanations were excluded, and analysis with the Naranjo algorithm indicated a “probable” relationship between acetaminophen and this adverse reaction. We discuss the potential mechanisms involved, comprising imbalances in prostaglandin levels, alterations of dopamine, and cannabinoid and serotonin signalings. PMID:23573447

  13. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats

    Zinc is an essential nutrient that is required in humans and animals for many physiological functions, including antioxidant functions. The evidence to date indicates that zinc is an important element that links antioxidant system and tissue damage. Acetaminophen (AP), a widely used analgesic and antipyretic, produces hepatocyte and renal tubular necrosis in human and animals following overdose. In human, AP is one of the most common causes of acute liver failure as a result of accidental or deliberate overdose. Moreover, the initial event in AP toxicity is a toxic metabolic injury with the release of free radicals and subsequent cellular death by necrosis and apoptosis. This study was designed to evaluate the potential protective role of zinc aspartate in case of acetaminophen induced hepato-renal toxicity in rats. A total number of 32 adult male albino rats were divided into 4 equal groups: group I (control group), group II (zinc aspartate treated group), group III (acetaminophen treated group; by a single oral dose of 750 mg/kg body weight) and group IV acetaminophen plus zinc treated group; (zinc aspartate was intraperitoneally given one hour after acetaminophen administration in a dose of 30 mg/kg body weight). Serum levels of: alanine aminotransferase, aspartate aminotransferase, direct bilirubin, blood urea nitrogen, creatinine, uric acid, xanthine oxidase (XO), glutathione (GSH), malonaldehyde (MDA) and nitric oxide (NO) were assessed in all groups. The results of this study showed that treatment with acetaminophen alone (group III) produced a significant increase in serum levels of the liver enzymes and direct bilirubin. Moreover, in the same group there was a significant increase in the blood urea nitrogen and serum creatinine compared to the control group. In addition, there was a significant increase in XO and MDA and a significant decrease in GSH and NO level. Injection of rats with zinc aspartate after acetaminophen treatment could produce a

  14. Maternal use of acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk of cryptorchidism

    Jensen, Morten Søndergaard; Rebordosa, Cristina; Thulstrup, Ane Marie;

    2010-01-01

    Cyclooxygenase (COX) inhibitors-acetaminophen, ibuprofen and acetylsalicylic acid-have endocrine-disruptive properties in the rainbow trout. In humans, aspirin blocks the androgen response to human chorionic gonadotropin (hCG), and, because hCG-stimulated androgen production in utero is crucial for...... normal testicular descent, exposure to COX inhibitors at vulnerable times during gestation may impair testicular descent. We examined whether prenatal exposure to acetaminophen, ibuprofen, and acetylsalicylic acid was associated with increased occurrence of cryptorchidism....

  15. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain

    Tetsunaga, Tomoko; Tetsunaga,Tomonori; Tanaka, Masato; Nishida, Keiichiro; Takei, Yoshitaka; Ozaki,Toshifumi

    2016-01-01

    Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP) remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years) treated with tramadol-acetaminophen (n=36) and celecoxib (n=37) was performed. All p...

  16. Effect of acetaminophen and fluvastatin on post-dose symptoms following infusion of zoledronic acid

    Silverman, S. L.; Kriegman, A.; Goncalves, J.; Kianifard, F; Carlson, T.; Leary, E.

    2010-01-01

    Summary A randomized, double-blind, placebo-controlled study assessed the efficacy of acetaminophen or fluvastatin in preventing post-dose symptoms (increases in body temperature or use of rescue medication) following a single infusion of the intravenous (IV) bisphosphonate zoledronic acid (ZOL). Acetaminophen, but not fluvastatin, significantly reduced the incidence and severity of post-dose symptoms. Introduction Transient symptoms including myalgia and pyrexia have been reported post-infus...

  17. Probenecid impairment of acetaminophen and lorazepam clearance: direct inhibition of ether glucuronide formation.

    Abernethy, D R; Greenblatt, D J; Ameer, B; Shader, R I

    1985-08-01

    Eleven subjects received acetaminophen (650 mg i.v.) on two occasions in random sequence, with and without concurrent administration of probenecid (500 mg) every 6 hr. Nine subjects similarly received lorazepam (2 mg. i.v.) with and without concurrent probenecid. Acetaminophen half-life was prolonged during probenecid treatment (mean +/- S.E., 4.30 +/- 0.23 vs. 2.51 +/- 0.16 hr; P less than .001) due to markedly decreased clearance (178 +/- 13 vs. 329 +/- 24 ml/min; P less than .001) with no change in volume of distribution (65 +/- 4 vs. 69 +/- 3 l; NS). Urinary excretion of acetaminophen glucuronide during 24 hr was decreased (84 +/- 9 vs. 260 +/- 21 mg of acetaminophen as glucuronide; P less than .001) and acetaminophen sulfate excretion was increased (323 +/- 25 vs. 217 +/- 17 mg of acetaminophen as sulfate; P less than .005) during concurrent probenecid treatment. However, the sum of the two conjugated metabolites was not significantly different (407 +/- 28 vs. 476 +/- 20 mg of acetaminophen as glucuronide plus sulfate excreted per 24 hr; NS). Lorazepam half-life was also prolonged during probenecid treatment (33.0 +/- 3.9 vs. 14.3 +/- 1.08 hr; P less than .001) due to decreased clearance (44.7 +/- 5.4 vs. 80.3 +/- 13.2 ml/min; P less than .001) with no change in volume of distribution (111 +/- 5 vs. 111 +/- 7 l; NS). Formation of the ether glucuronides of acetaminophen and lorazepam is impaired markedly by therapeutic doses of probenecid. Sulfate conjugation is not affected.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4020675

  18. Nootropic activity of acetaminophen against colchicine induced cognitive impairment in rats

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan A.; Thiyagarajan, Manisenthilkumar K.; Aiyalu, Rajasekaran; Sreedhar, Remya; Nakamura,Takashi; Watanabe, Kenichi

    2012-01-01

    Alzheimer’s disease is a devastating neurodegenerative disorder, the most common among the dementing illnesses. Acetaminophen has gaining importance in neurodegenerative diseases by attenuating the dopaminergic neurodegeneration in Caenorhabditis elegans model, decreasing the chemokines and the cytokines and increasing the anti apoptotic protein such as Bcl-2 in neuronal cell culture. The low concentration acetaminophen improved the facilitation to find the hidden platform in Morris Water Maz...

  19. A pilot study comparing ketoprofen and acetaminophen with hydrocodone for the relief of postoperative periodontal discomfort.

    Reed, K L; Smith, J. R.; Lie, T.; Adams, D F

    1997-01-01

    The aim of this study was to compare ketoprofen to acetaminophen with hydrocodone (A/H) in a postoperative periodontal pain model. A double-blind protocol was used. Thirty minutes prior to each procedure, subjects were given orally either 100 mg ketoprofen or a placebo tablet. Four hours later, the subjects took either 50 mg ketoprofen (ketoprofen group) or 1000 mg acetaminophen with 10 mg hydrocodone (placebo group). Subjects reported levels of overall discomfort and pain using visual analog...

  20. Protective Effect of Acacia nilotica (L.) against Acetaminophen-Induced Hepatocellular Damage in Wistar Rats

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The potential biological functions of A. nilotica have long been described in traditional system of medicine. However, the protective effect of A. nilotica on acetaminophen-induced hepatotoxicity is still unknown. The present study attempted to investigate the protective effect of A. nilotica against acetaminophen-induced hepatic damage in Wistar rats. The biochemical liver functional tests Alanine transaminase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP), total bilirubin, ...

  1. Alterations in the Rat Serum Proteome During Liver Injury from Acetaminophen Exposure

    Merrick, B. Alex; Bruno, Maribel E.; Madenspacher, Jennifer H.; Wetmore, Barbara A.; Foley, Julie; Pieper, Rembert; Zhao, Ming; Makusky, Anthony J.; McGrath, Andrew M.; ZHOU, JEFF X.; Taylor, John; Tomer, Kenneth B.

    2006-01-01

    Changes in the serum proteome were identified during early, fulminant and recovery phases of liver injury from acetaminophen in the rat. Male F344 rats received a single, non-injury dose or a high, injury-producing dose of acetaminophen for evaluation at 6 hr to 120 hr. Two-dimensional gel electrophoresis of immunodepleted serum separated about 800 stained proteins per sample from which differentially expressed proteins were identified by mass spectrometry. Serum ALT/AST levels and histopatho...

  2. Associations between Acetaminophen Use during Pregnancy and ADHD Symptoms Measured at Ages 7 and 11 Years

    John M. D. Thompson; Waldie, Karen E; Wall, Clare R.; Murphy, Rinky; Mitchell, Edwin A; ,

    2014-01-01

    Objective Our aim was to replicate and extend the recently found association between acetaminophen use during pregnancy and ADHD symptoms in school-age children. Methods Participants were members of the Auckland Birthweight Collaborative Study, a longitudinal study of 871 infants of European descent sampled disproportionately for small for gestational age. Drug use during pregnancy (acetaminophen, aspirin, antacids, and antibiotics) were analysed in relation to behavioural difficulties and AD...

  3. Undifferentiated altered mental status: a late presentation of toxic acetaminophen ingestion.

    Robey, Thomas E; Melnick, Edward R

    2012-01-01

    Altered mental status is a common undifferentiated presentation in the emergency department. We describe a case of acetaminophen-induced acute liver failure that was diagnosed and treated prior to obtaining definitive historical or laboratory information about the etiology. The physical exam finding of scleral icterus in this case was a key element to rapid identification and treatment of this life-threatening condition. A discussion of appropriate N-acetylcysteine treatment for acute liver failure and acetaminophen intoxication is included. PMID:23326702

  4. Effect of Methylsulfonylmethane Pretreatment on Aceta-minophen Induced Hepatotoxicity in Rats

    Shahab Bohlooli; Sadollah Mohammadi; Keyvan Amirshahrokhi; Hafez Mirzanejad-asl; Mohammad Yosefi; Amir Mohammadi-Nei; Mir Mehdi Chinifroush

    2013-01-01

    Objective(s): Methylsulfonylmethane (MSM) is a sulfur-containing compound found in a wide range of human foods including fruits, vegetables, grains and beverages. In this study the effect of MSM pretreatment on acetaminophen induced liver damage was investigated. Materials and Methods: Male Sprague Dawley rats were pretreated with 100 mg/kg MSM for one week. On day seven rats were received acetaminophen (850 mg/kg, intraperitoneal). Twenty-four hours later, blood samples were taken to determi...

  5. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. PMID:26950900

  6. High-performance liquid chromatographic assay for acetaminophen and phenacetin in the presence of their metabolites in biological fluids

    The authors propose a method in which tracer amounts of a radiolabeled compound are used as the internal standard for the same unlabeled compound in high-performance liquid chromatography. The approach is valuable when a response from the internal standard becomes undesirable due to the presence of interference by the metabolites. The authors tested their approach with phenacetin and its metabolites, 2-hydroxyphenacetin, N-hydroxyphenacetin, phenetidine, acetaminophen sulfate conjugate and acetaminophen glucuronide conjugate in biological fluids with the use of [14C] phenacetin and [3H] acetaminophen as the internal standards, and were able to quantitate both phenacetin and acetaminophen simultaneously. They also tested the alternative approach in which the unlabeled drug was used as internal standard for tracer amounts of the same radiolabeled compound, with phenacetin and acetaminophen as the internal standards for tracer amounts of [14C] phenacetin and [3H] acetaminophen. Again, they were able to quantiate the two tracer radiolabeled compounds simultaneously. (Auth.)

  7. Comparison of oral nalbuphine, acetaminophen, and their combination in postoperative pain.

    Jain, A K; Ryan, J R; McMahon, F G; Smith, G

    1986-03-01

    This double-blind, randomized, parallel, placebo-controlled study evaluated the analgesic effects of single oral doses of 30 mg nalbuphine, 650 mg acetaminophen, and the contribution of each to the efficacy of their combination in 128 hospitalized patients with postoperative pain. Subjective reports of patients evaluated each hour for 6 hours were used as indices of analgesic response. Both nalbuphine and acetaminophen were significantly superior to placebo for most measures of total and peak analgesia. The interaction contrast between nalbuphine and acetaminophen was not significant for any analgesic measurements, indicating an additive effect of the components. The combination was the most effective treatment, followed by nalbuphine, acetaminophen, and placebo. Effects of the combination were significantly different from those of acetaminophen at 4, 5, and 6 hours and from those of placebo at 1 to 6 hours. There was no significant difference in the frequency or intensity of side effects among the groups. The combination of nalbuphine and acetaminophen appears to be a therapeutically useful combination. PMID:3512149

  8. Treatment of mild to moderate pain of acute soft tissue injury: diflunisal vs acetaminophen with codeine.

    Muncie, H L; King, D E; DeForge, B

    1986-08-01

    Acute soft tissue injuries create pain and limitation of function. Treatment requires analgesia and time for full recovery. Acetaminophen with codeine (650 mg plus 60 mg, respectively, every 4 to 6 hours) is used frequently as the analgesic of choice. Diflunisal (1,000 mg initially then 500 mg twice a day) vs acetaminophen with codeine was prospectively studied in the treatment of acute mild to moderate pain from soft tissue injuries. Thirty-five patients with acute strains, sprains, or low back pain were randomized to treatment (17 acetaminophen with codeine vs 18 diflunisal). Both groups were similar in the amount of pain and type of injury at initiation of therapy. Patient pain rating went from 3.3 +/- 0.6 to 1.6 +/- 1.5 for acetaminophen with codeine and from 3.3 +/- 0.6 to 1.3 +/- 1.1 for diflunisal. However, 65 percent of acetaminophen with codeine patients experienced side effects, with 35 percent of these patients stopping the medication because of intolerable side effects. In the diflunisal group, 28 percent of the patients experienced side effects and 5 percent had to stop the medication early. Diflunisal was found to be an effective analgesic in mild to moderate pain of acute soft tissue injuries, and caused fewer and more tolerable side effects than did acetaminophen with codeine. PMID:2942630

  9. Circadian rhythm of serum sulfate levels in man and acetaminophen pharmacokinetics.

    Hoffman, D A; Wallace, S M; Verbeeck, R K

    1990-01-01

    The circadian variation of serum inorganic sulfate levels was studied in healthy volunteers. The effect of subchronic acetaminophen administration (650 mg q.i.d. for 4 days) on serum inorganic sulfate levels was investigated and the possible role of fluctuating serum inorganic sulfate levels on the pharmacokinetics of acetaminophen was evaluated. During a 24 h cycle, serum inorganic sulfate levels were lowest in the morning (11.00 h) and typically increased in the afternoon to reach a maximum in the early evening (19.00 h). Average 24 h serum concentrations were 360 microM and the difference between minimum and maximum levels was on average 25.8%. Subchronic administration of acetaminophen (650 mg q.i.d. for 4 days) significantly reduced serum inorganic sulfate levels to a 24 h average of 253 microM. The circadian rhythm, however, was not affected and the difference between minimum (12.00 h) and maximum (18.50 h) serum concentrations was 31.3%. Subchronic acetaminophen administration lead to a significant decrease in the renal excretion (-51%) and renal clearance (-33%) of inorganic sulfate. No significant differences were found in the disposition kinetics of acetaminophen and its glucuronide and sulfate conjugates during two consecutive dosing intervals (08.00-14.00 h, 14.00-20.00 h) on Day 4 of the acetaminophen regimen. PMID:2253663

  10. Maternal use of acetaminophen during pregnancy and risk of autism spectrum disorders in childhood

    Liew, Zeyan; Ritz, Beate; Virk, Jasveer; Olsen, Jørn

    2015-01-01

    Acetaminophen (paracetamol) is the most commonly used pain and fever medication during pregnancy. Previously, a positive ecological correlation between acetaminophen use and autism spectrum disorders (ASD) has been reported but evidence from larger studies based on prospective data is lacking. We...... associated with ASD with hyperkinetic symptoms only, suggesting acetaminophen exposure early in fetal life may specifically impact this hyperactive behavioral phenotype. Autism Res 2015. © 2015 International Society for Autism Research, Wiley Periodicals, Inc....... hyperkinetic symptoms (HR = 1.51 95% CI 1.19-1.92), but not with other ASD cases (HR = 1.06 95% CI 0.92-1.24). Longer duration of use (i.e., use for >20 weeks in gestation) increased the risk of ASD or infantile autism with hyperkinetic symptoms almost twofold. Maternal use of acetaminophen in pregnancy was......Acetaminophen (paracetamol) is the most commonly used pain and fever medication during pregnancy. Previously, a positive ecological correlation between acetaminophen use and autism spectrum disorders (ASD) has been reported but evidence from larger studies based on prospective data is lacking. We...

  11. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k2) of (2.2 ± 0.4) x 109 M-1 sec-1. In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 106 M-1 sec-1 at pH7 and 2.7 x 108 M-1 sec-1 at pH 11.3 were obtained. The reaction of O2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  12. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza, E-mail: arnezamzadeh@iaush.ac.ir

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (K{sub s}) of 0.44 s{sup −1} and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190 μmol L{sup −1} of acetaminophen [r{sup 2} = 0.9979, r = 0.9989 (n = 10)] with a detection limit of 0.04 μmol L{sup −1}. The method was successfully applied to the analysis of acetaminophen in some drugs. - Highlights: • Modified carbon paste electrode with Co(II)-zeolite A improved the voltammetric current in determination of acetaminophen. • Modified electrode is applicable for acetaminophen in real samples. • The proposed method has good reproducibility and repeatability.

  13. A randomized, placebo-controlled trial to determine the course of aminotransferase elevation during prolonged acetaminophen administration

    Heard, Kennon; Green, Jody L; Anderson, Victoria; Bucher-Bartelson, Becki; Dart, Richard C.

    2014-01-01

    Background Acetaminophen administration for more than 4 days causes aminotransferase elevation in some subjects. The objective of this randomized, placebo-controlled trial is to describe the course of alanine aminotransferase (ALT) elevation in subjects administered 4 g/day of acetaminophen for at least 16 days. Methods A randomized, placebo controlled trial of acetaminophen (4 g/day) vs placebo. Subjects were healthy volunteers with normal liver enzymes. The primary outcome was the course of...

  14. Direct Protection Against Acetaminophen Hepatotoxicity by Propylthiouracil: IN VIVO AND IN VITRO STUDIES IN RATS AND MICE

    Yamada, Tadataka; Ludwig, Shelly; Kuhlenkamp, John; Kaplowitz, Neil

    1981-01-01

    Hepatotoxicity caused by acetaminophen can be prevented by enzyme-catalyzed conjugation of its reactive metabolite with glutathione (GSH). Since we have shown in previous studies that 6-N-propyl-2-thiouracil (PTU) can substitute for GSH as a substrate for the GSH S-transferases, we examined the possibility that PTU might also protect against acetaminophen hepatotoxicity by direct chemical interaction with the reactive metabolite of acetaminophen. In an in vitro system consisting of [3H]acetam...

  15. Age-Related Pseudocapillarization of the Liver Sinusoidal Endothelium Impairs the Hepatic Clearance of Acetaminophen in Rats

    Mitchell, Sarah J.; Huizer-Pajkos, Aniko; Cogger, Victoria C; McLachlan, Andrew J.; Le Couteur, David G; Jones, Brett; de Cabo, Rafael; Hilmer, Sarah N.

    2011-01-01

    We investigated the effect of age-related pseudocapillarization of the liver sinusoidal endothelium on the hepatic disposition of acetaminophen. The multiple indicator dilution technique assessed the hepatic disposition of tracer 14C-acetaminophen and reference markers in isolated perfused livers of young (n = 11) and old (n = 12) rats. Electron microscopy confirmed defenestration of the sinusoidal endothelium in old rats compared with young rats. Acetaminophen recovery following a single pas...

  16. Acetaminophen metabolism, cytotoxicity, and genotoxicity in rat primary hepatocyte cultures

    Acetaminophen (APAP) metabolism, cytotoxicity, and genotoxicity were measured in primary cultures of rat hepatocytes. Although 3 mM APAP caused a slight increase in cellular release of lactate dehydrogenase into the culture medium, cellular glutathione concentration (an index of APAP metabolism) was reduced by 50%. APAP at 7 mM was significantly more toxic to these hepatocytes and had a similar but more marked effect on glutathione concentrations. In spite of its cytotoxicity, neither dose of APAP stimulated DNA repair synthesis when monitored by the rate of incorporation of [3H]thymidine into DNA following exposure to APAP. Thus, although APAP has been shown to be both hepato- and nephrotoxic in several in vivo and in vitro systems, the reactive toxic metabolite of APAP is not genotoxic in rat primary hepatocyte cultures

  17. Potentiation in the intact rat of the hepatotoxicity of acetaminophen by 1,3-bis(2-chloroethyl)-1-nitrosourea.

    Nakae, D; Oakes, J W; Farber, J L

    1988-12-01

    Studies of the killing of cultured hepatocytes by acetaminophen indicate that the cells are injured by an oxidative stress that accompanies the metabolism of the toxin (J. L. Farber et al. (1988) Arch. Biochem. Biophys. 267, 640-650). The present report documents that the essential features of the killing of cultured hepatocytes by acetaminophen are reproduced in the intact animal. Male rats had no evidence of liver necrosis 24 h after administration of up to 1000 mg/kg of acetaminophen. Induction of mixed function oxidase activity by 3-methylcholanthrene increased the hepatotoxicity of acetaminophen. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) potentiated the hepatotoxicity of acetaminophen in male rats induced with 3-methylcholanthrene. Whereas the pretreatment with BCNU reduced the GSH content by 40%, a comparable depletion of GSH by diethylmaleate did not potentiate the toxicity of acetaminophen. The antioxidant diphenylphenylenediamine (25 mg/kg) and the ferric iron chelator deferoxamine (1000 mg/kg) prevented the liver necrosis produced by 500 mg/kg acetaminophen in rats pretreated with BCNU. Neither protective agent prevented the fall in GSH produced by acetaminophen. It is concluded the conditions of the irreversible injury of cultured hepatocytes by acetaminophen previously reported are not necessarily different from those that obtain in the intact rat with this toxin. PMID:3214175

  18. Preparation and electrochemical application of a new biosensor based on plant tissue/polypyrrole for determination of acetaminophen

    Gholamhossein Rounaghi; Roya Mohammadzadeh Kakhki

    2012-10-01

    Banana tissue containing polyphenol oxidase was incorporated into polypyrrole matrix to make a biosensor for the analysis of acetaminophen (ACT). The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this biosensor for the determination of acetaminophen are excellent catalytic activity, good detection limit and high exchange current density. The electrochemical and structural properties of the electrode were assessed using cyclic voltammetry, differential voltammetry, chronoamperometric techniques. The analytical properties (sensitivity, p) of this biosensor increased with plant tissue loading. Also this new biosensor was successfully applied for determination of acetaminophen in biologic samples.

  19. Immune mechanisms in acetaminophen-induced acute liver failure.

    Krenkel, Oliver; Mossanen, Jana C; Tacke, Frank

    2014-12-01

    An overdose of acetaminophen (N-acetyl-p-aminophenol, APAP), also termed paracetamol, can cause severe liver damage, ultimately leading to acute liver failure (ALF) with the need of liver transplantation. APAP is rapidly taken up from the intestine and metabolized in hepatocytes. A small fraction of the metabolized APAP forms cytotoxic mitochondrial protein adducts, leading to hepatocyte necrosis. The course of disease is not only critically influenced by dose of APAP and the initial hepatocyte damage, but also by the inflammatory response following acetaminophen-induced liver injury (AILI). As revealed by mouse models of AILI and corresponding translational studies in ALF patients, necrotic hepatocytes release danger-associated-molecular patterns (DAMPs), which are recognized by resident hepatic macrophages, Kupffer cell (KC), and neutrophils, leading to the activation of these cells. Activated hepatic macrophages release various proinflammatory cytokines, such as TNF-α or IL-1β, as well as chemokines (e.g., CCL2) thereby further enhancing inflammation and increasing the influx of immune cells, like bone-marrow derived monocytes and neutrophils. Monocytes are mainly recruited via their receptor CCR2 and aggravate inflammation. Infiltrating monocytes, however, can mature into monocyte-derived macrophages (MoMF), which are, in cooperation with neutrophils, also involved in the resolution of inflammation. Besides macrophages and neutrophils, distinct lymphocyte populations, especially γδ T cells, are also linked to the inflammatory response following an APAP overdose. Natural killer (NK), natural killer T (NKT) and T cells possibly further perpetuate inflammation in AILI. Understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression is essential to identify novel therapeutic targets for human disease. PMID:25568858

  20. Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films

    AI-Nemrawi, Nusaiba K.

    The purpose of this study is to prepare acetaminophen loaded nanoparticles to be cast directly, while still in the emulsion form, into Orally Disintegrating Films (ODF). By casting the nanoparticles in the films, we expected to keep the particles in a stable form where the nanoparticles would be away from each other to prevent their aggregation. Once the films are applied on the buccal mucosa, they are supposed to dissolve within seconds, releasing the nanoparticles. Then the nanoparticles could be directly absorbed through the mucosa to the blood stream and deliver acetaminophen there. The oral cavity mucosa is one of the most attractive sites for systemic drug delivery due to its high permeability and blood supply. Furthermore, it is robust and shows short recovery times after stress or damage, and the drug bypasses first pass effect and avoids presystemic elimination in the GI tract. Nanoencapsulation increases drug efficacy, specificity, tolerability and therapeutic index. These Nanocapsules have several advantages in the protection of premature degradation and interaction with the biological environment, enhancement of absorption into a selected tissue, bioavailability, retention time and improvement of intracellular penetration. The most important characteristics of nanoparticles are their size, encapsulation efficiency (EE), zeta potential (surface charge), and the drug release profiles. Unfortunately, nanoparticles tend to precipitate or aggregate into larger particles within a short time after preparation or during storage. Some solutions for this problem were mentioned in literature including lyophilization and spray drying. These methods are usually expensive and give partial solutions that might have secondary problems; such as low re-dispersion efficacy of the lyophilized NPs. Furthermore, most of the formulations of NPs are invasive or topical. Few formulas are available to be given orally. Fast disintegrating films (ODFs) are rapidly gaining interest

  1. TRPV1 in brain is involved in acetaminophen-induced antinociception.

    Christophe Mallet

    Full Text Available BACKGROUND: Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404 by fatty acid amide hydrolase (FAAH in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1 in vitro. Pharmacological activation of TRPV(1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1 in the brain contributes to the analgesic effect of acetaminophen. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV(1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E(2 (PGE(2 and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV(1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV(1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. CONCLUSIONS: This study shows that TRPV(1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1 in the brain.

  2. Comparison of Acetaminophen with or without Codeine to Ibuprofen on the Postoperative Pain of Pediatric Tonsillectomy

    2011-04-01

    Full Text Available Introduction: Management of pain in children is often inadequate and numerous clinical practice guidelines and policy statements have been published on the subject of pediatric pain. Tonsillectomy is among the most frequent otorhinolaryngologic surgeries, especially in the pediatric age group and after tonsillectomy the patients usually suffer from mild to severe pain for three postoperative days which may limit activity level and intake, leading to dehydration and a prolonged hospital stay. In this study acetaminophen, acetaminophen codeine and ibuprofen have been compared in a single study. Materials and Methods: A randomized, prospective, double-blind study was conducted at the Tabriz pediatric hospital. Patients were selected randomly from the hospitalized patients undergoing tonsillectomy suffering from recurrent tonsillitis or adenotonsillar hypertrophy and assigned to one of three groups (acetaminophen (ACT-acetaminophen codeine (ACT/C-ibuprofen (IBU according to a predetermined randomization code. All the operations were taken place under same conditions by the same surgeon. Objective pain score used for pain assessment and adverse drug reactions were collected on checklists and analyzed using SPSS software. Results: Chi square test results revealed a significant difference between ACT ACT/C IBU groups. Neither acetaminophen nor Ibuprofen at the doses given was able to provide sufficient analgesia. The rate of bleeding in all groups did not show any significant difference according to Pearson-chi-square test (P=0.22. The incidence of anorexia in ACT, ACT/C and IBU groups was 15.7, 7.8 and 25.8 percent, respectively, which showed a significant difference by chi-square test (P=0.045. Conclusion: According to our study it can be concluded that acetaminophen codeine posses more analgesic effect than acetaminophen and ibuprofen in post tonsillectomy pain management in pediatric patients.

  3. Effect of antipyrine coadministration on the kinetics of acetaminophen and lidocaine.

    Blyden, G T; Greenblatt, D J; LeDuc, B W; Scavone, J M

    1988-01-01

    Pharmacokinetic interactions between antipyrine and acetaminophen were evaluated in 7 healthy volunteers. On 3 occasions subjects received: 1, antipyrine 1.0 g intravenously (i.v.); 2, acetaminophen 650 mg i.v.; 3, antipyrine 1.0 g and acetaminophen 650 mg i.v. simultaneously. Between Trials 1 and 3, antipyrine elimination t1/2 (17.2 vs 17.4 h), clearance (0.44 vs 0.43 ml.min-1.kg-1) and 24-h recovery of antipyrine and metabolites (313 vs 293 mg) did not differ significantly. Between Trials 2 and 3, acetaminophen VZ was reduced (1.14 vs 1.00 l.kg-1), t1/2 prolonged (2.7 vs 3.3 h), clearance reduced (4.8 vs 3.6 ml.min-1.kg-1), and fractional urinary recovery of acetaminophen glucuronide reduced. Eight additional subjects received 50 mg of lidocaine hydrochloride i.v. in the control state, and on a second occasion immediately after antipyrine 1.0 g given i.v. The two trials did not differ significantly in lidocaine VZ (2.6 vs 2.7 l.kg-1), t1/2 (2.0 vs 2.4 h) or clearance (15.0 vs 13.5 ml.min-1.kg-1). Although acetaminophen does not alter antipyrine kinetics, acute administration of antipyrine appears to impair acetaminophen clearance, possibly via inhibition of glucuronide formation. However, antipyrine has no significant effect on the kinetics of a single i.v. dose of lidocaine. PMID:3197750

  4. Supra-additive effects of tramadol and acetaminophen in a human pain model.

    Filitz, Jörg; Ihmsen, Harald; Günther, Werner; Tröster, Andreas; Schwilden, Helmut; Schüttler, Jürgen; Koppert, Wolfgang

    2008-06-01

    The combination of analgesic drugs with different pharmacological properties may show better efficacy with less side effects. Aim of this study was to examine the analgesic and antihyperalgesic properties of the weak opioid tramadol and the non-opioid acetaminophen, alone as well as in combination, in an experimental pain model in humans. After approval of the local Ethics Committee, 17 healthy volunteers were enrolled in this double-blind and placebo-controlled study in a cross-over design. Transcutaneous electrical stimulation at high current densities (29.6+/-16.2 mA) induced spontaneous acute pain (NRS=6 of 10) and distinct areas of hyperalgesia for painful mechanical stimuli (pinprick-hyperalgesia). Pain intensities as well as the extent of the areas of hyperalgesia were assessed before, during and 150 min after a 15 min lasting intravenous infusion of acetaminophen (650 mg), tramadol (75 mg), a combination of both (325 mg acetaminophen and 37.5mg tramadol), or saline 0.9%. Tramadol led to a maximum pain reduction of 11.7+/-4.2% with negligible antihyperalgesic properties. In contrast, acetaminophen led to a similar pain reduction (9.8+/-4.4%), but a sustained antihyperalgesic effect (34.5+/-14.0% reduction of hyperalgesic area). The combination of both analgesics at half doses led to a supra-additive pain reduction of 15.2+/-5.7% and an enhanced antihyperalgesic effect (41.1+/-14.3% reduction of hyperalgesic areas) as compared to single administration of acetaminophen. Our study provides first results on interactions of tramadol and acetaminophen on experimental pain and hyperalgesia in humans. Pharmacodynamic modeling combined with the isobolographic technique showed supra-additive effects of the combination of acetaminophen and tramadol concerning both, analgesia and antihyperalgesia. The results might act as a rationale for combining both analgesics. PMID:17709207

  5. Effect of acetaminophen on the leukocyte-labeling efficiency of indium oxine In 111

    Augustine, S.C.; Schmelter, R.F.; Nelson, K.L.; Petersen, R.J.; Qualfe, M.A.

    1983-11-01

    The effect of acetaminophen on the labeling efficiency of leukocytes with indium oxine In 111 was studied. A blood sample was obtained from eight healthy men before and after they received acetaminophen 650 mg every four hours for 24 hours. After dividing the plasma from each sample into three portions, leukocytes were separated and labeled with indium oxine In 111. In an in vitro study, 200 ml of blood was obtained from one of the men, and the plasma was separated into four portions. Acetaminophen in 95% ethanol was added to three of the plasma fractions to produce acetaminophen concentrations of 4, 20, and 100 micrograms/ml; ethanol was added to the fourth fraction as a control. Each plasma fraction was then subdivided into three aliquots, and leukocytes were labeled as in the in vivo study. Mean leukocyte labeling efficiencies in both studies were calculated from the ratios of leukocyte radioactivity to initial radioactivity in the samples, expressed as percentages. Leukocyte labeling efficiencies before acetaminophen administration ranged from 79 to 85%; after administration, labeling efficiencies ranged from 70 to 87%. No significant differences in mean labeling efficiency before and after acetaminophen administration were noted in any of the subjects. Leukocyte labeling efficiencies in all in vitro plasma fractions were reduced, ranging from 54 to 63%, but no significant differences in labeling efficiency between any of the plasma fractions were found. Using the labeling procedures in this study, exposure of leukocytes from healthy men to acetaminophen in vivo or in vitro does not affect labeling efficiency with indium oxine In 111.

  6. Prediction of color changes in acetaminophen solution using the time-temperature superposition principle.

    Mochizuki, Koji; Takayama, Kozo

    2016-07-01

    A prediction method for color changes based on the time-temperature superposition principle (TTSP) was developed for acetaminophen solution. Color changes of acetaminophen solution are caused by the degradation of acetaminophen, such as hydrolysis and oxidation. In principle, the TTSP can be applied to only thermal aging. Therefore, the impact of oxidation on the color changes of acetaminophen solution was verified. The results of our experiment suggested that the oxidation products enhanced the color changes in acetaminophen solution. Next, the color changes of acetaminophen solution samples of the same head space volume after accelerated aging at various temperatures were investigated using the Commission Internationale de l'Eclairage (CIE) LAB color space (a*, b*, L* and ΔE*ab), following which the TTSP was adopted to kinetic analysis of the color changes. The apparent activation energies using the time-temperature shift factor of a*, b*, L* and ΔE*ab were calculated as 72.4, 69.2, 72.3 and 70.9 (kJ/mol), respectively, which are similar to the values for acetaminophen hydrolysis reported in the literature. The predicted values of a*, b*, L* and ΔE*ab at 40 °C were obtained by calculation using Arrhenius plots. A comparison between the experimental and predicted values for each color parameter revealed sufficiently high R(2) values (>0.98), suggesting the high reliability of the prediction. The kinetic analysis using TTSP was successfully applied to predicting the color changes under the controlled oxygen amount at any temperature and for any length of time. PMID:26559666

  7. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    Highlights: ► The electro-Fenton reactor using a double cathode electrochemical cell was applied. ► The initial Fe2+ concentration was the most significant parameter for the acetaminophen degradation. ► Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box–Behnken design was used to determine the effects of initial Fe2+ and H2O2 concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe2+ concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  8. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    Luna, Mark Daniel G. de [Department of Chemical Engineering, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Veciana, Mersabel L. [Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Su, Chia-Chi [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Lu, Ming-Chun, E-mail: mmclu@mail.chan.edu.tw [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer The electro-Fenton reactor using a double cathode electrochemical cell was applied. Black-Right-Pointing-Pointer The initial Fe{sup 2+} concentration was the most significant parameter for the acetaminophen degradation. Black-Right-Pointing-Pointer Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe{sup 2+} and H{sub 2}O{sub 2} concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe{sup 2+} concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  9. Effect of acetaminophen on the leukocyte-labeling efficiency of indium oxine In 111

    The effect of acetaminophen on the labeling efficiency of leukocytes with indium oxine In 111 was studied. A blood sample was obtained from eight healthy men before and after they received acetaminophen 650 mg every four hours for 24 hours. After dividing the plasma from each sample into three portions, leukocytes were separated and labeled with indium oxine In 111. In an in vitro study, 200 ml of blood was obtained from one of the men, and the plasma was separated into four portions. Acetaminophen in 95% ethanol was added to three of the plasma fractions to produce acetaminophen concentrations of 4, 20, and 100 micrograms/ml; ethanol was added to the fourth fraction as a control. Each plasma fraction was then subdivided into three aliquots, and leukocytes were labeled as in the in vivo study. Mean leukocyte labeling efficiencies in both studies were calculated from the ratios of leukocyte radioactivity to initial radioactivity in the samples, expressed as percentages. Leukocyte labeling efficiencies before acetaminophen administration ranged from 79 to 85%; after administration, labeling efficiencies ranged from 70 to 87%. No significant differences in mean labeling efficiency before and after acetaminophen administration were noted in any of the subjects. Leukocyte labeling efficiencies in all in vitro plasma fractions were reduced, ranging from 54 to 63%, but no significant differences in labeling efficiency between any of the plasma fractions were found. Using the labeling procedures in this study, exposure of leukocytes from healthy men to acetaminophen in vivo or in vitro does not affect labeling efficiency with indium oxine In 111

  10. Comparison of Intravenous Metoclopramide and Acetaminophen in Primary Headaches: a Randomized Controlled Trial

    Gholamreza Faridaalaee

    2015-05-01

    Full Text Available Introduction: Headache is the most common neurologic symptom among referees to the emergency department (ED, while the best treatment has not yet been found. Therefore, in the present study pain relief effects of metoclopramide and acetaminophen were compared in patients suffered acute primary headache. Methods: This study was a double-blind randomized clinical trial performed in Imam Khomeini Hospital, Urmia, Iran, through July to October 2014.  All adult patients, with acute primary (migraine, tension type and cluster headache referred to the ED were included in this study. Pain Severity was measured with 10 centimeters numeric rating scales. The patients were randomized in to two groups of intravenous (IV metoclopramide (10 milligrams and acetaminophen (1 gram. Pain score, success rate, and complication of drugs were compared within administration time and 15, 30, 60, as well as 120 minutes after medication. Results: 100 patients were equally categorized in to two groups (mean age of 32 ± 13.2 years; 51.2% male. Initial pain score in metoclopramide and acetaminophen groups were 9.1 and 9.4, respectively (p=0.46. IV metoclopramide did not have any analgesic effect at 15 minutes, but had good effect at 30 minutes. While, the analgesic effect of acetaminophen initiated after 15 minutes. After 2 hours, both drugs had good treatment effect on primary headaches (p<0.001. Conclusion: The present study demonstrated that efficacy of metoclopramide for pain relief in primary headaches is lower than acetaminophen.  In this regard, success rate of acetaminophen was 42.0% versus 0% for metoclopramide within 15 minutes. The efficacy of acetaminophen continued until 60 minutes.

  11. Acetaminophen induces a caspase-dependent and Bcl-XL sensitive apoptosis in human hepatoma cells and lymphocytes.

    Boulares, A Hamid; Zoltoski, Anna J; Stoica, Bogdan A; Cuvillier, Olivier; Smulson, Mark E

    2002-01-01

    Acetaminophen is a widely used analgesic and antipyretic drug that exhibits toxicity at high doses to the liver and kidneys. This toxicity has been attributed to cytochrome P-450-generated metabolites which covalently modify target proteins. Recently, acetaminophen, in its unmetabolized form, has been shown to affect a variety of cells and tissues, for instance, testicular and lymphoid tissues and lymphocyte cell lines. The effects on cell viability of acetaminophen at a concentration comparable to that achieved in plasma during acetaminophen toxicity have now been examined with a hepatoma cell line SK-Hep1, primary human peripheral blood lymphocytes and human Jurkat T cells. Acetaminophen reduced cell viability in a time-dependent manner. Staining of cells with annexin-V also revealed that acetaminophen induced, after 8 hr of treatment, a loss of the asymmetry of membrane phospholipids, which is an early event associated with apoptosis. Acetaminophen triggered the release of cytochrome c from mitochondria into the cytosol, activation of caspase-3, 8, and 9, cleavage of poly(ADP-ribose) polymerase, and degradation of lamin B1 and DNA. Whereas cleavage of DNA into internucleosomal fragments was apparent in acetaminophen treated SK-Hep1 and primary lymphocytes, DNA was only degraded to 50-kb fragments in treated Jurkat cells. Overexpression of the antiapoptotic protein Bcl-XL prevented these various apoptotic events induced by acetaminophen in Jurkat cells. Caspase-8 activation was a postmictochondrial event and occurred in a Fas-independent manner. These results demonstrate that acetaminophen induces caspases-dependent apoptosis with mitochondria as a primary target. These results also reiterate the potential role of apoptosis in acetaminophen hepatic and extrahepatic toxicity. PMID:12005112

  12. Metabolite kinetics: formation of acetaminophen from deuterated and nondeuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation

    The role of hepatic intrinsic clearance for metabolite formation from various precursors on subsequent metabolite elimination was was investigated in the once-through perfused rat liver preparation. Two pairs of acetaminophen precursors: [14C] phenacetin-d5 and [3H] phenacetin-do, [14C] acetanilide and [3H] phenacetin were delivered by constant flow (10 ml/min/liver) either by normal or retrograde perfusion to the rat liver preparations. The extents of acetaminophen sulfation were compared within the same preparation. The data showed that the higher the hepatocellular activity (intrinsic clearance) for acetaminophen formation, the greater the extent of subsequent acetaminophen sulfation. The findings were explained on the basis of blood transit time and metabolite duration time. Because of blood having only a finite transit time in liver, the longer the drug requires for metabolite formation, the less time will remain for metabolite sulfation and the less will be the degree of subsequent sulfation. Conversely, when the drug forms the primary metabolite rapidly, a longer time will remain for the metabolite to be sulfated in liver to result in a greater degree of metabolite sulfation. Finally, the effects of hepatic intrinsic clearances for metabolite formation and zonal distribution of enzyme systems for metabolite formation and elimination in liver are discussed

  13. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs

    KuKanich, Butch

    2010-01-01

    The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine-6-glucuronide after IV codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine-6-glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs.

  14. Satkara (Citrus macroptera) Fruit Protects against Acetaminophen-Induced Hepatorenal Toxicity in Rats

    Paul, Sudip; Islam, Md. Aminul; Tanvir, E. M.; Ahmed, Romana; Das, Sagarika; Rumpa, Nur-E-Noushin; Hossen, Md. Sakib; Parvez, Mashud; Gan, Siew Hua; Khalil, Md. Ibrahim

    2016-01-01

    Although Citrus macroptera (Rutaceae), an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM) against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups) were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg) was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS) compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation. PMID:27034701

  15. Satkara (Citrus macroptera) Fruit Protects against Acetaminophen-Induced Hepatorenal Toxicity in Rats.

    Paul, Sudip; Islam, Md Aminul; Tanvir, E M; Ahmed, Romana; Das, Sagarika; Rumpa, Nur-E-Noushin; Hossen, Md Sakib; Parvez, Mashud; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-01-01

    Although Citrus macroptera (Rutaceae), an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM) against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups) were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg) was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS) compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation. PMID:27034701

  16. Preventive and curative effects of Acalypha indica on acetaminophen-induced hepatotoxicity

    M Mathew

    2011-01-01

    Full Text Available Effect of ethanol extract of the leaves of Acalypha indica (Euphorbiaceae was investigated against acetaminophen-induced hepatic damage. Acetaminophen (paracetamol at the rate of 1 g/kg produced liver damage in rats as manifested by the significant (P<0.001 rise in serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, compared to respective control values. Treatment of rats with acetaminophen led to a marked increase in lipid peroxidation as measured by malondialdehyde (MDA. This was associated with a significant reduction in superoxide dismutase (SOD and glutathione (GSH contents. Pretreatment of animals with the plant extract (100 mg/kg orally once daily for 5 days prevented (P<0.01 the acetaminophen-induced rise in serum transaminases (AST and ALT and ALP. Post treatment with five successive doses of the extract (100 mg/kg restricted the hepatic damage induced by the above said Paracetamol (P<0.001. Histological changes around the hepatic central vein were recovered by administration of the drug. Thus, it is evident that these biochemical and histological alterations resulting from acetaminophen administration were inhibited by pre and post treatment with A. indica leaf extract. One notable study of the study was the spontaneous recovery of liver damage within a week after stopping paracetamol. These results indicate that the crude ethanol extract of A. indica exhibits hepatoprotective action through antioxidant effect and validates the traditional use of the plant in hepatic dysfunction.

  17. Rapid onset of Stevens-Johnson syndrome and toxic epidermal necrolysis after ingestion of acetaminophen.

    Kim, Eun-Jin; Lim, Hyun; Park, So Young; Kim, Sujeong; Yoon, Sun-Young; Bae, Yun-Jeong; Kwon, Hyouk-Soo; Cho, You Sook; Moon, Hee-Bom; Kim, Tae-Bum

    2014-01-01

    Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare, but life-threatening, severe cutaneous adverse reactions most frequently caused by exposure to drugs. Several reports have associated the use of acetaminophen with the risk of SJS or TEN. A typical interval from the beginning of drug therapy to the onset of an adverse reaction is 1-3 weeks. A 43-year-old woman and a 60-year-old man developed skin lesions within 3 days after administration of acetaminophen for a 3-day period. Rapid identification of the symptoms of SJS and TEN caused by ingestion of acetaminophen enabled prompt withdrawal of the culprit drug. After administration of intravenous immunoglobulin G, both patients recovered fully and were discharged. These two cases of rapidly developed SJS/TEN after ingestion of acetaminophen highlight the possibility that these complications can develop within only a few days following ingestion of over-the-counter medications such as acetaminophen. PMID:24527413

  18. Protective Effect of Acacia nilotica (L. against Acetaminophen-Induced Hepatocellular Damage in Wistar Rats

    Narayanan Kannan

    2013-01-01

    Full Text Available The potential biological functions of A. nilotica have long been described in traditional system of medicine. However, the protective effect of A. nilotica on acetaminophen-induced hepatotoxicity is still unknown. The present study attempted to investigate the protective effect of A. nilotica against acetaminophen-induced hepatic damage in Wistar rats. The biochemical liver functional tests Alanine transaminase (ALT, Aspartate transaminase (AST, Alkaline phosphatase (ALP, total bilirubin, total protein, oxidative stress test (Lipid peroxidation, antioxidant parameter glutathione (GSH, and histopathological changes were examined. Our results show that the pretreatment with A. nilotica (250 mg/kg·bw orally revealed attenuation of serum activities of ALT, AST, ALP, liver weight, and total bilirubin levels that were enhanced by administration of acetaminophen. Further, pretreatment with extract elevated the total protein and GSH level and decreased the level of LPO. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by acetaminophen. The present study undoubtedly provides a proof that hepatoprotective action of A. nilotica extract may rely on its effect on reducing the oxidative stress in acetaminophen-induced hepatic damage in rat model.

  19. Acetaminophen fails to inhibit ethanol-induced subjective effects in human volunteers.

    Pickworth, W B; Klein, S A; George, F R; Henningfield, J E

    1992-01-01

    In animals, ethanol causes some of its CNS effects by releasing prostaglandins (PG); this is demonstrated by reports that prostaglandin synthetase inhibitors (PGSIs) diminish ethanol-induced effects. However, use of animals in these studies has precluded testing for subjective effects. We studied the interaction of ethanol and acetaminophen, a PGSI, in a double-blind crossover experiment. Six adult males were given no drug or acetaminophen (0, 325, 650, 1300 or 1950 mg) 75 min before ethanol (total dose = 0.625 g/kg; five divided doses). Physiologic, subjective and performance measures were collected. Compared to the no drug condition, ethanol significantly increased ratings of drug "liking," "drunk," "sluggish" and "drug strength" and decreased ratings of "sober." Ethanol increased heart rate and acetaminophen did not diminish or enhance this effect. The failure to antagonize ethanol-induced subjective and physiologic effects by acetaminophen in humans may be due to species differences or inadequate dosage of the PGSI. It is also possible that subjective and certain physiologic effects of ethanol in humans are not mediated by prostaglandin-dependent neural processes. Nevertheless, the finding that at greater than typical analgesic doses, acetaminophen failed to prevent subjective effects of ethanol is of clinical significance. PMID:1539069

  20. Evaluation of ketorolac, aspirin, and an acetaminophen-codeine combination in postoperative oral surgery pain.

    Forbes, J A; Butterworth, G A; Burchfield, W H; Beaver, W T

    1990-01-01

    One-hundred twenty-eight outpatients with postoperative pain after the surgical removal of impacted third molars were randomly assigned, on a double-blind basis, to receive oral doses of ketorolac tromethamine 10 mg, aspirin 650 mg, a combination of acetaminophen 600 mg plus codeine 60 mg, or placebo. Using a self-rating record, subjects rated their pain and its relief hourly for 6 hours after medicating. All active medications were significantly superior to placebo. The acetaminophen-codeine combination was significantly superior to aspirin for peak analgesia. Ketorolac was significantly superior to aspirin for every measure of total and peak analgesia, and significantly superior to acetaminophen-codeine for measures of total effect. The analgesic effect of ketorolac was significant by hour 1 and persisted for 6 hours. Repeat-dose data also suggested that ketorolac 10 mg was superior to aspirin 650 mg and acetaminophen-codeine on the day of surgery. Differences among the active medications were trivial for the postoperative days 1-6 analyses. The frequency of adverse effects was over 4 times greater for acetaminophen-codeine than for ketorolac or aspirin. PMID:2082317

  1. Piperine, an active ingredient of black pepper attenuates acetaminophen-induced hepatotoxicity in mice

    Evan Prince Sabina; Annie Deborah Harris Souriyan; Deborah Jackline; Mahaboob Khan Rasool

    2010-01-01

    Objective: To explore the hepatoprotective and antioxidant effects of piperine against acetaminophen-induced hepatotoxicity in mice. Methods: In mice, hepatotoxicity was induced by a single dose of acetaminophen (900 mg/kg b.w. i.p.). Piperine (25 mg/kg b.w. i.p.) and standard drug silymarin (25 mg/kg b.w. i.p.) were given to mice, 30 min after the single injection of acetaminophen. After 4 h, the mice were decapitated. Activities of liver marker enzymes [(aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP)] and inflammatory mediator tumour necrosis factor-alpha (TNF-α) were estimated in serum, while lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase and glutathione) were determined in liver homogenate of control and experimental mice. Results: Acetaminophen induction (900 mg/kg b.w. i.p.) significantly increased the levels of liver marker enzymes, TNF-α, and lipid peroxidation, and caused the depletion of antioxidant status. Piperine and silymarin treatment to acetaminophen challenged mice resulted in decreased liver marker enzymes activity, TNF-α and lipid peroxidation levels with increase in antioxidant status. Conclusions: The results clearly demonstrate that piperine shows promising hepatoprotective effect as comparable to standard drug silymarin.

  2. Satkara (Citrus macroptera Fruit Protects against Acetaminophen-Induced Hepatorenal Toxicity in Rats

    Sudip Paul

    2016-01-01

    Full Text Available Although Citrus macroptera (Rutaceae, an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation.

  3. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    The binding of acetaminophen to bovine serum albumin (BSA) was studied by the quenching fluorescence method and the proton nuclear magnetic resonance technique ( 1H NMR). For fluorescence measurements 1-anilino-9-naphthalene sulfonate (ANS) hydrophobic probe was used to verify subdomain IIIA as acetaminophen's likely binding site. Three binding sites of acetaminophen in subdomain IIA of bovine serum albumin were found. Quenching constants calculated by the Stern-Volmer modified method were used to estimate the influence of myristic acid (MYR) on the drug binding to the albumin. The influence of [fatty acid]/[albumin] molar ratios on the affinity of the protein towards acetaminophen was described. Changes of chemical shifts and relaxation times of the drug indicated that the presence of MYR inhibits interaction in the AA-albumin complex. It is suggested that the elevated level of fatty acids does not significantly influence the pharmacokinetics of acetaminophen.

  4. Role of tumor necrosis factor receptor 1 (p55) in hepatocyte proliferation during acetaminophen-induced toxicity in mice

    Hepatocyte proliferation represents an important part of tissue repair. In these studies, TNF receptor 1 (TNFR1) knockout mice were used to analyze the role of TNF-α in hepatocyte proliferation during acetaminophen-induced hepatotoxicity. Treatment of wild-type (WT) mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis. This was associated with proliferation of hepatocytes surrounding the damaged areas, which was evident at 24 h. The cell cycle regulatory proteins, cyclin D1 and cyclin A, were also up regulated in hepatocytes. In contrast, in TNFR1-/- mice, which exhibit exaggerated acetaminophen hepatotoxicity, hepatocyte proliferation, and expression of cyclin D1 and cyclin A, as well as the cyclin dependent kinases, Cdk4 and Cdk2, were reduced. The cyclin-dependent kinase inhibitor p21 was also induced in the liver following acetaminophen administration. This was greater in TNFR1-/- mice compared to WT mice. To investigate mechanisms mediating the reduced hepatic proliferative response of TNFR1-/- mice, we analyzed phosphatidyl inositol-3-kinase (PI-3K) signaling. In both WT and TNFR1-/- mice, acetaminophen caused a rapid increase in total PI-3K within 3 h. Acetaminophen also increased phosphorylated PI-3K, but this was delayed 6-12 h in TNFR1-/- mice. Expression of Akt, a downstream target of PI-3K, was increased in both WT and TNFR1-/- mice in response to acetaminophen. However, the increase was greater in WT mice. Acetaminophen-induced expression of phosphorylated STAT3, a key regulator of cytokine-induced hepatocyte proliferation, was also delayed in TNFR1-/- mice relative to WT. These data suggest that TNF-α signaling through TNFR1 is important in regulating hepatocyte proliferation following acetaminophen-induced tissue injury. Delayed cytokine signaling may account for reduced hepatocyte proliferation and contribute to exaggerated acetaminophen-induced hepatotoxicity in TNFR1-/- mice

  5. The immunological and histopathological changes of Tramadol, Tramadol/Acetaminophen and Acetaminophen in male Albino rats "Comparative study"

    Hanan Mostafa Rabei

    2011-10-01

    Full Text Available Tramadol is a synthetic opioid analgesic. It is commonly prescribed for moderate to severe pain, becoming abused more popular among teens in most countries. Paracetamol as anti-inflammatory drugs (acetaminophen (APAP is widely used as an analgesic and antipyretic agent. Meanwhile, tramadol/acetaminophen (tramacet is effective in acute or chronic moderate-to-moderately severe pain. In comparative study, the current investigation threw the light on the effect of over doses of tramadol and/or APAP on the immune function and hepatocytes in adult male Sprague-Dawley rats. Material and methods: Treated rats received oral doses of each drug for 15 consecutive days and after last treatment, they kept three days later for withdrawal studies. The rats were divided into four treatment groups, in the first group, rats received saline and used as control. The second, third and fourth groups treated with tramadol (45 mg/kg, tramadol/APAP (45/450 mg/kg, APAP (450 mg/kg respectively, once a-day at the first week and ending with 90, 90/900, 900 mg/kg at the second week. Rats were sacrificed at the end of the first, second weeks and three days of last treatment. Results: Daily doses of tramadol and /or APAP exposure in rats decreased the cellularity of spleen. Moreover, phagocytic and killing of S. aureus by PMN and macrophage cells caused a highly significant decrease in treated groups. IFN- was reduced in a statistically different treated group of rats. Serum IL-10 was unaffected by any of the treatment regimens but increased only in tramadol/APAP treated rats. Spleen histology exhibited mild pathological alteration with different injures between treated groups. Splenic white pulp accompanied by ill deformed which reflected the reduction of white pulp zones, thickened vasculature in the splenic net work, fibrous trabeculae become prominent feature, where splenic red pulp occupied large areas of the splenic network with predominant edema and megakaryocytes. On

  6. Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy

    Baulies, Anna; Ribas, Vicent; Núñez, Susana; Torres, Sandra; Alarcón-Vila, Cristina; Martínez, Laura; Suda, Jo; Ybanez, Maria D.; Kaplowitz, Neil; García-Ruiz, Carmen; Fernández-Checa, Jose C.

    2015-01-01

    The role of lysosomes in acetaminophen (APAP) hepatotoxicity is poorly understood. Here, we investigated the impact of genetic and drug-induced lysosomal cholesterol (LC) accumulation in APAP hepatotoxicity. Acid sphingomyelinase (ASMase)−/− mice exhibit LC accumulation and higher mortality after APAP overdose compared to ASMase+/+ littermates. ASMase−/− hepatocytes display lower threshold for APAP-induced cell death and defective fusion of mitochondria-containing autophagosomes with lysosomes, which decreased mitochondrial quality control. LC accumulation in ASMase+/+ hepatocytes caused by U18666A reproduces the susceptibility of ASMase−/− hepatocytes to APAP and the impairment in the formation of mitochondria-containing autolysosomes. LC extraction by 25-hydroxycholesterol increased APAP-mediated mitophagy and protected ASMase−/− mice and hepatocytes against APAP hepatotoxicity, effects that were reversed by chloroquine to disrupt autophagy. The regulation of LC by U18666A or 25-hydroxycholesterol did not affect total cellular sphingomyelin content or its lysosomal distribution. Of relevance, amitriptyline-induced ASMase inhibition in human hepatocytes caused LC accumulation, impaired mitophagy and increased susceptibility to APAP. Similar results were observed upon glucocerebrosidase inhibition by conduritol β-epoxide, a cellular model of Gaucher disease. These findings indicate that LC accumulation determines susceptibility to APAP hepatotoxicity by modulating mitophagy, and imply that genetic or drug-mediated ASMase disruption sensitizes to APAP-induced liver injury. PMID:26657973

  7. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice.

    Barman, P K; Mukherjee, R; Prusty, B K; Suklabaidya, S; Senapati, S; Ravindran, B

    2016-01-01

    Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose. PMID:27171266

  8. Increased hepatotoxicity of acetaminophen in Hsp70i knockout mice

    The effect of the inducible forms of 70 kDa heat shock protein (Hsp70i) on acetaminophen (APAP) hepatotoxicity was assessed in an Hsp70i knockout mouse model. Absence of the Hsp70i protein in liver was verified by monitoring Hsp levels in knockout and control mice after heat stress (41.5 oC water bath immersion for 30 min). Hsp70i knockout mice were more susceptible to APAP-induced hepatotoxicity than controls, as indicated by elevated serum alanine aminotransferase activities 24 and 48 h after the APAP dose. Increased APAP hepatotoxicity in knockout mice was verified by morphological evaluation of liver sections. The difference in toxic response to APAP between knockout and control strain mice could not be attributed to differences in APAP bioactivation, assessed by measurement of CYP2E1 and glutathione S-transferase activities, hepatic nonprotein sulfhydryl content, or covalent binding of reactive APAP metabolites to proteins. Pretreatment with transient hyperthermia to produce a general upregulation of Hsps resulted in decreased APAP hepatotoxicity in both the knockout and control strains. Among thermally-pretreated mice, hepatotoxicity of APAP was greater in the knockouts compared with the control strain. These observations suggest that increased Hsp70i expression in response to APAP acts to limit the extent of tissue injury. Results further suggest that other factors related to heat stress can also contribute to protection against APAP toxicity

  9. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis

    Cecilia Cristea

    2013-04-01

    Full Text Available The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at −0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs and glassy carbon electrodes (GCEs as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configuration and on the dimensions of the carbon nanotubes. The best limit of detection obtained for acetaminophen was 1.36 ± 0.013 μM and the linear range 9.99–79.01 μM for the HRP-SWCNT/PEI in GCE configuration. The biosensors were successfully applied for the detection of acetaminophen in several drug formulations.

  10. Freshly isolated hepatocyte transplantation in acetaminophen-induced hepatotoxicity model in rats

    Daniela Rodrigues

    2012-12-01

    Full Text Available CONTEXT: Hepatocyte transplantation is an attractive therapeutic modality for liver disease as an alternative for orthotopic liver transplantation. OBJECTIVE: The aim of the current study was to investigate the feasibility of freshly isolated rat hepatocyte transplantation in acetaminophen-induced hepatotoxicity model. METHODS: Hepatocytes were isolated from male Wistar rats and transplanted 24 hours after acetaminophen administration in female recipients. Female rats received either 1x10(7 hepatocytes or phosphate buffered saline through the portal vein or into the spleen and were sacrificed after 48 hours. RESULTS: Alanine aminotransferase levels measured within the experiment did not differ between groups at any time point. Molecular analysis and histology showed presence of hepatocytes in liver of transplanted animals injected either through portal vein or spleen. CONCLUSION: These data demonstrate the feasibility and efficacy of hepatocyte transplantation in the liver or spleen in a mild acetaminophen-induced hepatotoxicity model.

  11. The determination of acetaminophen using a carbon nanotube:graphite-based electrode

    The oxidation of acetaminophen was studied at a glassy carbon electrode modified with multi-walled carbon nanotubes and a graphite paste. Cyclic voltamety, differential pulse voltammetry and square wave voltammetry at various pH values, scan rates, and the effect of the ratio of nanotubes to graphite were investigated in order to optimize the parameters for the determination of acetaminophen. Square wave voltammetry is the most appropriate technique in giving a characteristic peak at 0. 52 V at pH 5. The porous nanostructure of the electrode improves the surface area which results in an increase in the peak current. The voltammetric response is linear in the range between 75 and 2000 ng. mL-1, with standard deviations between 0. 25 and 7. 8%, and a limit of detection of 25 ng. mL-1. The method has been successfully applied to the analysis of acetaminophen in tablets and biological fluids. (author)

  12. Ethyl pyruvate for the treatment of acetaminophen intoxication: alternative to N-acetylcysteine?

    Wagner, Florian; Asfar, Pierre; Georgieff, Michael; Radermacher, Peter; Wagner, Katja

    2012-01-01

    N-acetylcysteine is the classical antidote for acetaminophen overdose-induced hepatotoxicity, but its efficacy is limited by the need for early and only temporary treatment. Therefore, Yang and colleagues tested the hypothesis of whether ethyl pyruvate--another anti-inflammatory and antioxidant compound, which they had previously shown to protect against liver injury of various other etiologies--may allow circumventing these limitations. While ethyl pyruvate improved liver regeneration when administered early and during a limited period only, the opposite response was present both after delayed as well as prolonged treatment. The authors concluded that prolonged anti-inflammatory treatment is detrimental after acetaminophen intoxication-induced liver damage. On the one hand, this research paper confirms the need for biomarkers to monitor organ recovery after acetaminophen. On the other hand, this paper adds to the ongoing discussion on the usefulness of ethyl pyruvate as a resuscitation fluid in the critically ill. PMID:22348679

  13. Comparative study of ibuprofen lysine and acetaminophen in patients with postoperative dental pain.

    Mehlisch, D R; Jasper, R D; Brown, P; Korn, S H; McCarroll, K; Murakami, A A

    1995-01-01

    This single-dose, double-blind, parallel-group, single-site study compared ibuprofen lysine 400 mg with acetaminophen 1000 mg and placebo in 240 patients with moderate-to-severe postoperative dental pain. The relative onset of analgesic response, overall analgesic efficacy, duration of effect, and safety were assessed over a 6-hour postdose period. Analgesic efficacy was assessed by patient self-rating of pain intensity, pain relief, time to meaningful pain relief, need for additional analgesic medication, and patient global evaluation. Both ibuprofen lysine 400 mg and acetaminophen 1000 mg were significantly (P < or = 0.05) more effective than placebo. Ibuprofen lysine had a significantly (P < or = 0.05) faster onset of action with greater peak and overall analgesic effect than did effect than did acetaminophen. All treatments were generally well tolerated. PMID:8595637

  14. Double-blind parallel comparison of ketoprofen (Orudis), acetaminophen plus codeine, and placebo in postoperative pain.

    Turek, M D; Baird, W M

    1988-12-01

    One hundred sixty-one patients with postoperative pain were treated at a single center in a double-blind, randomized, parallel study designed to compare the efficacy and safety of single oral doses of ketoprofen (50 and 150 mg), an acetaminophen (650 mg) plus codeine (60 mg) combination, and placebo. From 1 through 4 hours after administration of the study drugs, the mean summed pain intensity difference (SPID) and time-weighted total pain relief (TOPAR) scores for the three active treatments generally were significantly (P less than 0.05) higher than those for placebo but not significantly different from each other. At the 6-hour evaluation, the ketoprofen groups, but not the acetaminophen-codeine group, had higher (P less than 0.05) mean SPID and TOPAR scores than the placebo group, as a result of a shorter duration of pain relief in the acetaminophen-codeine group. The 6-hour TOPAR scores were significantly (P less than 0.05) higher for both ketoprofen groups than for the acetaminophen-codeine group; the ketoprofen 150 mg group also had significantly (P less than 0.05) higher mean 6-hour SPID and global subjective assessment scores. As a result of a higher frequency of somnolence, there was a significantly (P less than 0.05) greater incidence of central nervous system adverse drug reactions among patients treated with acetaminophen plus codeine than among those treated with 150 mg of ketoprofen. These results indicate that the analgesic efficacy of both 50 and 150 mg doses of ketoprofen equals that of acetaminophen 650 mg plus codeine 60 mg and the duration of the analgesic effect of ketoprofen is significantly longer. PMID:3072354

  15. Fulminate Hepatic Failure in a 5 Year Old Female after Inappropriate Acetaminophen Treatment

    Kasmi, Irena; Sallabanda, Sashenka; Kasmi, Gentian

    2015-01-01

    BACKGROUND: Acetaminophen is a drug widely used in children because of its safety and efficacy. Although the risk of its toxicity is lower in children such reactions occur in pediatric patients from intentional overdoses and less frequently attributable to unintended inappropriate dosing. The aim of reporting this case is to attract the attention to the risk of the acetaminophen toxicity when administered in high doses. CASE PRESENTATION: We report here a 5 year old girl who developed fulminate liver failure with renal impairment and acute pancreatitis, as a result of acetaminophen toxicity caused from unintentional repeated supratherapeutic ingestion, with a total administered dose of 4800 mg in three consecutive days, 1600 mg/day, approximately 90 mg/kg/day. The blood level of acetaminophen after 10 hours of the last administered dose was 32 mg/l. The patient presented with high fever, jaundice, lethargic, agitating with abdominal pain accompanied by encephalopathy. The liver function test revealed with high level of alanine aminotransferase 5794 UI/l and aspartate aminotransferase 6000 UI/l. Early initiation of oral N-acetylcysteine (NAC) after biochemical evidence of liver toxicity was beneficial with rapid improvement of liver enzymes, hepatic function and encephalopathy. During the course of the illness the child developed acute pancreatitis with hyperamylasemia 255 UI/L and hyperlypasemia 514 UI/L. Patient totally recovered within 29 days. CONCLUSION: Healthcare providers should considered probable acetaminophen toxicity in any child who has received the drug and presented with liver failure. When there is a high index of suspicion of acetaminophen toxicity NAC should be initiated and continued until there are no signs of hepatic dysfunction.

  16. Rapid onset of Stevens-Johnson syndrome and toxic epidermal necrolysis after ingestion of acetaminophen

    Kim, Eun-Jin; Lim, Hyun; Park, So Young; Kim, Sujeong; Yoon, Sun-Young; Bae, Yun-Jeong; Kwon, Hyouk-Soo; Cho, You Sook; Moon, Hee-Bom; Kim, Tae-Bum

    2014-01-01

    Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare, but life-threatening, severe cutaneous adverse reactions most frequently caused by exposure to drugs. Several reports have associated the use of acetaminophen with the risk of SJS or TEN. A typical interval from the beginning of drug therapy to the onset of an adverse reaction is 1-3 weeks. A 43-year-old woman and a 60-year-old man developed skin lesions within 3 days after administration of acetaminophen for a 3-da...

  17. Spathodea campanulata Extract Attenuates Acetaminophen-Induced Hepatic Injury in Mice

    Phyllis Elsie Dadzeasah; Charles Ansah

    2013-01-01

    Spathodea campanulata, well known for its traditional medicinal uses was investigated for hepatoprotective activity against acetaminophen-induced hepatic damage in mice. Six groups of mice were pre-treated with 100, 300 and 625 mg/kg of the aqueous extract of Spathodea campanulata stem bark, N-acetyl cysteine (300 mg/kg; p.o) or distilled water for 5 days before they were intoxicated with a single dose of acetaminophen (600 mg/kg; p.o). Alanine aminotransferase, Aspartate aminotransferase an...

  18. Fluorescence excitation spectrum and solvent-assisted conformational isomerization (SACI) of jet-cooled acetaminophen

    Sohn, Woon Yong; Kang, Jeong Seok; Lee, So Young; Kang, Hyuk

    2013-08-01

    Fluorescence excitation spectrum of jet-cooled acetaminophen was obtained. When AAP was expanded with a buffer gas containing 0.3-1.1% of water, absorption peaks of the less stable trans conformer was significantly reduced by solvent-assisted conformational isomerization (SACI), which is confirmed by a separately measured UV-UV hole burning spectroscopy. It is also confirmed by quantum mechanical calculation and RRKM calculation that it is energetically and kinetically possible to induce SACI in AAP with water. The SACI mechanism suggests a possible pathway that acetaminophen can adopt an active conformation in vivo, which is need for molecular recognition and drug activity.

  19. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs+/− or Cth+/−) and homozygous (Cth−/−) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth−/− mice at 150 mg/kg dose, and also in Cbs+/− or Cth+/− mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth−/− mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth−/− mice with lower Km values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth−/− mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs+/−, Cth+/−, and especially Cth−/− mice were susceptible to APAP hepatic injury.

  20. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya; Okada, Norihiko; Yoshida, Saori; Yamamoto, Junya; Ohkubo, Rika [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan); Abiko, Yumi [Environmental Biology Laboratory, School of Medicine, University of Tsukuba, Ibaraki 305-8575 (Japan); Yamada, Hidenori [Jobu Hospital for Respiratory Diseases, Maebashi 371-0048 (Japan); Akahoshi, Noriyuki [Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543 (Japan); Kasahara, Tadashi [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan); Kumagai, Yoshito [Environmental Biology Laboratory, School of Medicine, University of Tsukuba, Ibaraki 305-8575 (Japan); Ishii, Isao, E-mail: isao-ishii@umin.ac.jp [Department of Biochemistry, Keio University School of Pharmaceutical Sciences, Tokyo 105-8512 (Japan)

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs{sup +/−} or Cth{sup +/−}) and homozygous (Cth{sup −/−}) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth{sup −/−} mice at 150 mg/kg dose, and also in Cbs{sup +/−} or Cth{sup +/−} mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth{sup −/−} mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth{sup −/−} mice with lower K{sub m} values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth{sup −/−} mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs{sup +/−}, Cth{sup +/−}, and

  1. Discrepancies between N-Acetyl Cysteine Prescription based on Patient’s History and Plasma Acetaminophen Level

    Fakhreddin Taghaddosi-Nejad

    2012-11-01

    Full Text Available Background: Fatalities from acetaminophen poisoning are common, but they are preventable by timely treatment with N-acetyl cysteine (NAC. In many medical centers, NAC is prescribed in keeping with the ingested dose of the drug as revealed through medical history. It seems to significantly differ from the real indications of NAC administration based on plasma level of acetaminophen. Overtreatment increases adverse drug reactions and it is time- consuming and costly. Methods: Acetaminophen plasma level was checked by HPLC method in 170 admitted patients who had history of acute ingestion of more than 7.5 g acetaminophen within 4 to 24 hours prior to hospital admission. Indications for NAC prescription according to patient’s history and adaptation from acetaminophen plasma level in Romack-Mathew nomogram were matched. Data were analyzed by SPSS software version 16.0. Results: Mean age of the patients was 21.8±6.05 years. In 75.8% of the patients, poisoning had occurred after suicidal attempts. Acetaminophen plasma level was between less than 2 and 265 μg/ml (18.7±28.88, mean± SD. Only in 18 (10.6% cases, overtreatment had been performed. Multiple logistic regression analysis showed that the number of suicidal attempts, number of ingested pills, and time of referral had positive relationships with acetaminophen plasma level. Conclusion: If NAC is prescribed only based on patient's medical history, overtreatment may take place.

  2. Acetaminophen Induced Hepatotoxicity in Wistar Rats—A Proteomic Approach

    Soundharrajan Ilavenil

    2016-01-01

    Full Text Available Understanding the mechanism of chemical toxicity, which is essential for cross-species and dose extrapolations, is a major challenge for toxicologists. Standard mechanistic studies in animals for examining the toxic and pathological changes associated with the chemical exposure have often been limited to the single end point or pathways. Toxicoproteomics represents a potential aid to the toxicologist to understand the multiple pathways involved in the mechanism of toxicity and also determine the biomarkers that are possible to predictive the toxicological response. We performed an acute toxicity study in Wistar rats with the prototype liver toxin; the acetaminophen (APAP effects on protein profiles in the liver and its correlation with the plasma biochemical markers for liver injury were analyzed. Three separate groups—control, nontoxic (150 mg/kg and toxic dose (1500 mg/kg of APAP—were studied. The proteins extracted from the liver were separated by 2-DE and analyzed by MALDI-TOF. The differential proteins in the gels were analyzed by BIORAD’s PDQuest software and identified by feeding the peptide mass fingerprint data to various public domain programs like Mascot and MS-Fit. The identified proteins in toxicity-induced rats were classified based on their putative protein functions, which are oxidative stress (31%, immunity (14%, neurological related (12% and transporter proteins (2%, whereas in non-toxic dose-induced rats they were  oxidative stress (9%, immunity (6%, neurological (14% and transporter proteins (9%. It is evident that the percentages of oxidative stress and immunity-related proteins were up-regulated in toxicity-induced rats as compared with nontoxic and control rats. Some of the liver drug metabolizing and detoxifying enzymes were depleted under toxic conditions compared with non-toxic rats. Several other proteins were identified as a first step in developing an in-house rodent liver toxicoproteomics database.

  3. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-α, interleukin-1β and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose

  4. Mechanism of protection by metallothionein against acetaminophen hepatotoxicity

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the US. Metallothionein (MT) expression attenuates APAP-induced liver injury. However, the mechanism of this protection remains incompletely understood. To address this issue, C57BL/6 mice were treated with 100 μmol/kg ZnCl2 for 3 days to induce MT. Twenty-four hours after the last dose of zinc, the animals received 300 mg/kg APAP. Liver injury (plasma ALT activities, area of necrosis), DNA fragmentation, peroxynitrite formation (nitrotyrosine staining), MT expression, hepatic glutathione (GSH), and glutathione disulfide (GSSG) levels were determined after 6 h. APAP alone caused severe liver injury with oxidant stress (increased GSSG levels), peroxynitrite formation, and DNA fragmentation, all of which were attenuated by zinc-induced MT expression. In contrast, MT knockout mice were not protected by zinc. Hydrogen peroxide-induced cell injury in primary hepatocytes was dependent only on the intracellular GSH levels but not on MT expression. Thus, the protective effect of MT in vivo was not due to the direct scavenging of reactive oxygen species. Zinc treatment had no effect on the early GSH depletion kinetics after APAP administration, which is an indicator of the metabolic activation of APAP to its reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). However, MT was able to effectively trap NAPQI by covalent binding. We conclude that MT scavenges some of the excess NAPQI after GSH depletion and prevents covalent binding to cellular proteins, which is the trigger for the propagation of the cell injury mechanisms through mitochondrial dysfunction and nuclear DNA damage.

  5. Nilotinib interferes with the signalling pathways implicated in acetaminophen hepatotoxicity.

    Shaker, Mohamed E

    2014-03-01

    Nilotinib, a second-generation tyrosine kinase inhibitor, has been recently approved for the treatment for chronic myeloid leukaemia. The objective of this study was to explore the potential effects of clinically relevant doses of nilotinib against acetaminophen (APAP)-induced hepatotoxicity in mice. To simulate the clinical application in human beings, nilotinib (25 and 50 mg/kg) was administered to mice 2 hr after APAP intoxication (500 mg/kg). The results indicated that nilotinib (25 mg/kg) (i) abolished APAP-induced liver injury and necro-inflammation, (ii) increased hepatic-reduced glutathione (GSH) and its related enzymes synthesis, (iii) suppressed hepatic oxidative/nitrosative stress cascades, (iv) decreased neutrophil accumulation in the liver, and (v) prevented the over-expression of B-cell lymphoma-2 (bcl-2), cyclin-D1 and stem cell factor receptor (c-Kit) proteins in the liver. Although nilotinib (50 mg/kg) acted through the same mechanisms, there was severe depletion in hepatic GSH content by nilotinib itself at that dose level, rather than the potent stimulation observed by using a dose of 25 mg/kg. Consequently, the mortality rate after 18 hr was 100% for nilotinib (50 mg/kg) + APAP (750 mg/kg) versus 60% for APAP (750 mg/kg) and 40% for nilotinib (25 mg/kg) + APAP (750 mg/kg) in the survival analysis experiment. In conclusion, nilotinib can counteract the hepatotoxicity produced by a non-lethal dose of APAP. However, there is a risk of aggravating the mortality for a lethal dose of APAP when nilotinib is co-administered at doses relatively high, or near to the clinical range because of hepatic GSH depletion and c-kit inhibition. PMID:24119297

  6. Inhibition of prostacyclin and thromboxane biosynthesis in healthy volunteers by single and multiple doses of acetaminophen and indomethacin.

    Schwartz, Jules I; Musser, Bret J; Tanaka, Wesley K; Taggart, William V; Mehta, Anish; Gottesdiener, Keith M; Greenberg, Howard E

    2015-09-01

    This double-blind, randomized crossover study assessed the effect of acetaminophen (1000 mg every 8 hours) versus indomethacin (50 mg every 8 hours) versus placebo on cyclooxygenase enzymes (COX-1 and COX-2). Urinary excretion of 2,3-dinor-6-keto-PGF1α, (prostacyclin metabolite, PGI-M; COX-2 inhibition) and 11-dehydro thromboxane B2 (thromboxane metabolite, Tx-M; COX-1 inhibition) were measured after 1 dose and 5 days of dosing. Peak inhibition of urinary metabolite excretion across 8 hours following dosing was the primary end point. Mean PGI-M excretion was 33.7%, 55.9%, and 64.6% on day 1 and 49.4%, 65.1%, and 80.3% on day 5 (placebo, acetaminophen, and indomethacin, respectively). Acetaminophen and indomethacin inhibited PGI-M excretion following single and multiple doses (P = .004 vs placebo). PGI-M excretion inhibition after 1 dose was similar for indomethacin and acetaminophen, but significantly greater with indomethacin after multiple doses (P = .006). Mean Tx-M excretion was 16.2%, 45.2%, and 86.6% on day 1 and 46.2%, 58.4%, and 92.6% on day 5 (placebo, acetaminophen, and indomethacin, respectively). Tx-M excretion inhibition following 1 dose was reduced by acetaminophen (P ≤ .003). Indomethacin reduced Tx-M excretion significantly more than acetaminophen and placebo after single and multiple doses (P ≤ .001). Acetaminophen and indomethacin inhibited COX-1 and COX-2 following a single dose, but acetaminophen was a less potent COX-1 inhibitor than indomethacin. PMID:27137142

  7. Pooled post hoc analysis of population pharmacokinetics of oxycodone and acetaminophen following a single oral dose of biphasic immediate-release/extended-release oxycodone/acetaminophen tablets

    Franke RM; Morton T; Devarakonda K

    2015-01-01

    Ryan M Franke, Terri Morton, Krishna Devarakonda Department of Clinical Pharmacology, Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA Abstract: This analysis evaluated the single-dose population pharmacokinetics (PK) of biphasic immediate-release (IR)/extended-release (ER) oxycodone (OC)/acetaminophen (APAP) 7.5/325 mg tablets administered under fasted conditions and the effects of a meal on their single-dose population PK. Data were pooled from four randomized, single-dose crosso...

  8. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    Fatemeh Sadeghi; Mansour Torab; Mostafa Khattab; Alireza Homayouni; Hadi Afrasiabi Garekani

    2013-01-01

      Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen.   Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried pa...

  9. An Experiment in Physical Chemistry: Polymorphism and Phase Stability in Acetaminophen (Paracetamol)

    Myrick, Michael L.; Baranowski, Megan; Profeta, Luisa T. M.

    2010-01-01

    Differential scanning calorimetry analyses of two easily prepared polymorphs of acetaminophen (also known as paracetamol) are recorded. The density of the forms can be found in the literature. Rules for heats of transition, heats of fusion, and density, as well as methods for determining the solid-solid transition temperature between the forms,…

  10. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  11. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain

    Tomoko Tetsunaga

    2016-01-01

    Full Text Available Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years treated with tramadol-acetaminophen (n=36 and celecoxib (n=37 was performed. All patients were assessed using the self-reported questionnaires. A mediation model was constructed using a bootstrapping method to evaluate the mediating effects of pain relief after treatment. Results. A total of 35 (55.6% patients met the criteria for apathy. A four-week treatment regimen in the tramadol group conferred significant improvements in the Apathy scale and numerical rating scale but not in the Rolland-Morris Disability Questionnaire, Pain Disability Assessment Scale, or Pain Catastrophizing Scale. The depression component of the Hospital Anxiety and Depression Scale was lower in the tramadol group than in the celecoxib group. The mediation analysis found that the impact of tramadol-acetaminophen on the change in apathy was not mediated by the pain relief. Conclusions. Tramadol-acetaminophen was effective at reducing chronic LBP and conferred a prophylactic motivational effect in patients with chronic LBP.

  12. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Nishida, Keiichiro; Takei, Yoshitaka; Ozaki, Toshifumi

    2016-01-01

    Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP) remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years) treated with tramadol-acetaminophen (n = 36) and celecoxib (n = 37) was performed. All patients were assessed using the self-reported questionnaires. A mediation model was constructed using a bootstrapping method to evaluate the mediating effects of pain relief after treatment. Results. A total of 35 (55.6%) patients met the criteria for apathy. A four-week treatment regimen in the tramadol group conferred significant improvements in the Apathy scale and numerical rating scale but not in the Rolland-Morris Disability Questionnaire, Pain Disability Assessment Scale, or Pain Catastrophizing Scale. The depression component of the Hospital Anxiety and Depression Scale was lower in the tramadol group than in the celecoxib group. The mediation analysis found that the impact of tramadol-acetaminophen on the change in apathy was not mediated by the pain relief. Conclusions. Tramadol-acetaminophen was effective at reducing chronic LBP and conferred a prophylactic motivational effect in patients with chronic LBP.

  13. Croton zehntneri Essential oil prevents acetaminophen-induced acute hepatotoxicity in mice

    Maria Goretti R. Queiroz; José Henrique L. Cardoso; Adriana R. Tomé; Roberto C. P. Lima Jr.; Jamile M. Ferreira; Daniel F. Sousa; Felipe C. Lima; Campos, Adriana R.

    2008-01-01

    Hepatoprotective activity of Croton zehntneri Pax & Hoffman (Euphorbiaceae) leaf essential oil (EOCz) was evaluated against single dose of acetaminophen-induced (500 mg/kg, p.o.) acute hepatotoxicity in mice. EOCz significantly protected the hepatotoxicity as evident from the activities of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT) activities, that were significantly (p

  14. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial : a multicentre, randomised, placebo-controlled, phase III trial

    den Hertog, Heleen M.; van der Worp, H. Bart; van Gemert, H. Maarten A.; Algra, Ate; Kappelle, L. Jaap; Van Gijn, Jan; Koudstaal, Peter J.; Dippel, Diederik W. J.

    2009-01-01

    Background High body temperature in the first 12-24 h after stroke onset is associated with poor functional outcome. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial aimed to assess whether early treatment with paracetamol improves functional outcome in patients with acute stroke by reducing b

  15. Correction: PAIS: paracetamol (acetaminophen in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN74418480

    Kappelle L Jaap

    2008-11-01

    Full Text Available Abstract Background The Paracetamol (Acetaminophen In Stroke (PAIS study is a phase III multicenter, double blind, randomized, placebo-controlled clinical trial of high-dose acetaminophen in patients with acute stroke. The trial compares treatment with a daily dose of 6 g acetaminophen, started within 12 hours after the onset of symptoms, with matched placebo. The purpose of this study is to assess whether treatment with acetaminophen for 3 days will result in improved functional outcome through a modest reduction in body temperature and prevention of fever. The previously planned statistical analysis based on a dichotomization of the scores on the modified Rankin Scale (mRS may not make the most efficient use of the available baseline information. Therefore, the planned primary analysis of the PAIS study has been changed from fixed dichotomization of the mRS to a sliding dichotomy analysis. Methods Instead of taking a single definition of good outcome for all patients, the definition is tailored to each individual patient's baseline prognosis on entry into the trial. Conclusion The protocol change was initiated because of both advances in statistical approaches and to increase the efficiency of the trial by improving statistical power. Trial Registration Current Controlled Trials [ISCRTN74418480

  16. Effect of pretreatment with acetaminophen-propoxyphene for oral surgery pain.

    Liashek, P; Desjardins, P J; Triplett, R G

    1987-02-01

    To determine the effect of pretreatment and multiple doses on postsurgical pain, a study of the relative analgesic efficacy of placebo, acetaminophen 650 mg, and propoxyphene napsylate 100 mg alone and in combination was conducted. Forty-five patients undergoing surgical removal of impacted third molar teeth under local anesthesia were randomly allocated to the four treatment regimens under double-blind conditions. The first oral dose was administered one hour preoperatively and the second dose when the pain became moderate or severe, following the dissipation of the local anesthesia. Pain intensity and pain relief were assessed using standard verbal descriptor scales at 30 minutes and hourly for four hours after the postoperative dose. Measures of total effect, peak effect and duration of their effect were derived from these descriptors. Acetaminophen was no better than placebo. For peak and total effects, propoxyphene alone and the propoxyphene-acetaminophen combination were substantially superior to both placebo and acetaminophen alone. Duration of analgesia was also significantly longer with both propoxyphene-containing treatments. No side effects were reported. The results suggest that pretreatment with a narcotic agonist markedly improves postoperative analgesia. PMID:3468226

  17. Hepatoprotective potential of three sargassum species from Karachi coast against carbon tetrachloride and acetaminophen intoxication

    Khan Hira

    2016-01-01

    Full Text Available Objective: To assess the hepatoprotective effect of ethanol extracts of Sargassum variegatum (S. variegatum, Sargassum tenerrimum (S. tenerrimum and Sargassum binderi occurring at Karachi coast against carbon tetrachloride (CCl4 and acetaminophen intoxication in rats. Methods: Sargassum species were collected at low tide from Buleji beach at Karachi coast. Effect of ethanol extracts of Sargassum spp., on lipid parameter, serum glucose and kidney function was examined. Liver damage in rats was induced by CCl4 or acetaminophen. Rats were administered with ethanol extracts of S. tenerrimum, S. variegatum and Sargassum binderi at 200 mg/kg body weight daily for 14 days separately. Hepatotoxicity was determined in terms of cardiac and liver enzymes and other biochemical parameters. Results: S. variegatum showed highest activity by reducing the elevated level of hepatic enzymes, bilirubin, serum glucose, triglyceride with restoration of cholesterol. Urea and creatinine concentrations were also significantly (P < 0.05 reduced as compared to acetaminophen intoxicated rats. S. tenerrimum and S. variegatum showed moderate activity against CCl4 hepatic toxicity. Conclusions: The protective role of S. variegatum against acetaminophen liver damage and its positive impact on disturbed lipid, glucose metabolism, kidney dysfunction and S. tenerrimum against CCl4 liver toxicity suggest that Sargassum species offer a non-chemical means for the treatment of toxicity mediated liver damage.

  18. Effect of acetaminophen on fetal acid-base balance in chorioamnionitis.

    Kirshon, B; Moise, K J; Wasserstrum, N

    1989-12-01

    The effect of antipyretic treatment with acetaminophen on fetal status was examined in eight laboring women febrile with chorioamnionitis. After a fetal heart rate tracing and scalp blood gas level were obtained near maximum maternal fever, a 650-mg acetaminophen suppository was administered. If the temperature remained greater than 101 degrees F, the dose was repeated in one to two hours. The fetal heart rate tracing was analyzed again after the mother's fever was reduced by acetaminophen. All patients delivered within four hours of the first dose. Umbilical artery blood gases were obtained at delivery. Significant improvements in the bicarbonate concentration and base deficit were noted at the time of delivery as compared to the scalp gas at the height of the maternal fever. The fetal heart rate tracings at the height of the maternal fever, characterized by tachycardia, poor variability and late decelerations, changed to a normal heart rate pattern without decelerations when the mother's fever was reduced. Hence, in the laboring gravida with chorioamnionitis, reducing maternal fever with acetaminophen improves fetal status and thereby may reduce the probability of cesarean section for fetal distress. PMID:2621737

  19. Differential effect of cigarette smoking on antipyrine oxidation versus acetaminophen conjugation.

    Scavone, J M; Greenblatt, D J; LeDuc, B W; Blyden, G T; Luna, B G; Harmatz, J S

    1990-01-01

    The effect of cigarette smoking on drug oxidation and conjugation was studied using antipyrine and acetaminophen as marker compounds. For the antipyrine study, healthy cigarette smokers (n = 30) and nonsmoking controls (n = 53) received a single 1.0-gram intravenous dose of antipyrine. For the acetaminophen study, 14 smokers and 15 nonsmokers received a 650-mg intravenous dose of acetaminophen. The clearance of antipyrine was significantly increased (0.93 vs. 0.60 ml/min/kg, p less than 0.0001) and elimination half-life was correspondingly reduced (8.9 vs. 13.0 h, p less than 0.0001) in smokers compared to nonsmoking controls. Total recovery of antipyrine and metabolites excreted in urine did not differ between groups, but there was a significantly increased fractional clearance of antipyrine via formation of 4-hydroxyantipyrine and 3-hydroxymethyl metabolites in smokers. Fractional clearance via formation of norantipyrine did not differ significantly between groups. Comparison of acetaminophen kinetics between smokers and nonsmokers indicated no significant differences in elimination half-life, clearance or volume of distribution. Thus, cigarette smoking is more likely to induce drug oxidation rather than drug conjugation. However, not all oxidative pathways are equally influenced; induction effects of smoking are highly substrate selective and pathway specific. PMID:2345775

  20. Efficacy and safety of tramadol/acetaminophen in the treatment of breakthrough pain in cancer patients

    We evaluated the analgesic efficacy and safety of tramadol 37.5 mg/acetaminophen 325 mg combination tablet, for the treatment of breakthrough pain in cancer patients. This study was conducted at Changhua Christian Hospital, Changhua, Taiwan from January 2006 to February 2007. The single-center and open-label study enrolled 59 opioid-treated cancer patients with at least moderate breakthrough pain (visual analog scale [VAS] score >/=40mm on a 100-mm scale). The efficacy measures included VAS scores and adverse effect assessment 10, 30, and 60 minutes after the administration of tramadol/acetaminophen. Visual analog scale score at time of pain relief was reported. The mean VAS score when the breakthrough pain episode began (0 minute) was 77.8. Analysis showed significant better mean pain VAS scores at 10, 30, and 60 minutes after the administration of tramadol/acetaminophen (p Tramadol/acetaminophen might be efficacious and safe in the treatment of breakthrough pain in cancer (Author).

  1. Cats Have Nine Lives, but Only One Liver: The Effects of Acetaminophen

    Dewprashad, Brahmadeo

    2009-01-01

    This case recounts the story of a student who gave her cat half of a Tylenol tablet not knowing its potential harmful effects. The cat survives, but the incident motivates the student to learn more about the reaction mechanism underlying the liver toxicity of acetaminophen. The case outlines three possible reaction schemes that would explain the…

  2. Propoxyphene and acetaminophen mixture (Darvocet)--related radiation-induced pneumonitis

    In a patient undergoing radiation therapy for recurrent, metastatic breast cancer, a mixture of propoxyphene and acetaminophen (Darvocet) was given for intercurrent viral infection. Discontinuation of therapy with this medication coincided with appearance of pneumonitis, reminiscent of the steroid withdrawal--related radiation pneumonitis

  3. Effect of corn silk extract on acetaminophen induced renal damage in mice

    To evaluate the protective role of Corn Silk extract on Acetaminophen induced nephrotoxicity in albino mice. Study Design: Laboratory based randomized controlled trials. Place and Duration of Study: The study was carried out in experimental research laboratory University of Health Sciences and Anatomy department, Lahore. The study duration was one year from February 2012 to February 2013. Material and Methods: Twenty seven male albino mice, 6-8 weeks old weighing 30 + 5 gm, were used; these animals were randomly divided into three groups having nine mice in each group. Group A served as control and was given 16.6ml/kg normal saline intraperitoneally on first day of experiment and was sacrificed on 10th day of the experiment. Group B was treated with acetaminophen 600 mg/kg dissolved in 16.6 ml of normal saline intraperitoneally on 1st day of experiment and was sacrificed after 48 hours. Group C was given acetaminophen at a dose of 600 mg/kg intraperitoneally on first day of experiment and then corn silk extract was given by oral route at a dose of 400 mg/kg for next 8 days. The animals were sacrificed on 10th day of the experiment, the kidneys were removed; 3mm three tissue pieces were fixed in 10% formaline; processed and stained with H and E for histological study. Results: It was observed on microscopic examination that Corn silk extract reduced deleterious effects of acetaminophen on tubules of kidney as evidenced by reduction of tubular vacuolation and necrosis, absence of protein casts, vascular congestion and inflammation. Conclusion: It is concluded from current results that corn silk extract protects acetaminophen induced nephrotoxicity. (author)

  4. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    Tao, Hong; Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zhang, Qian [Graduate Institute of Environmental Engineering, National Taiwan University, 10617, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-01-01

    Highlights: • TiO{sub 2} and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO{sub 2} and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L{sup −1}. Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts.

  5. Acetaminophen structure-toxicity studies: In vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide

    High doses of 3-hydroxyacetanilide (3HAA), a structural isomer of acetaminophen, do not produce hepatocellular necrosis in normal male hamsters or in those sensitized to acetaminophen-induced liver damage by pretreatment with a combination of 3-methylcholanthrene, borneol, and diethyl maleate. Although 3HAA was not hepatotoxic, the administration of acetyl-labeled [3H or 14C]3HAA (400 mg/kg, ip) produced levels of covalently bound radiolabel that were similar to those observed after an equimolar, hepatotoxic dose of [G-3H]acetaminophen. The covalent nature of 3HAA binding was demonstrated by retention of the binding after repetitive organic solvent extraction following protease digestion. Hepatic and renal covalent binding after 3HAA was approximately linear with both dose and time. In addition, 3HAA produced only a modest depletion of hepatic glutathione, suggesting the lack of a glutathione threshold. 3-Methylcholanthrene pretreatment increased and pretreatment with cobalt chloride and piperonyl butoxide decreased the hepatic covalent binding of 3HAA, indicating the involvement of cytochrome P450 in the formation of the 3HAA reactive metabolite. The administration of multiple doses or a single dose of [ring-3H]3HAA to hamsters pretreated with a combination of 3-methylcholanthrene, borneol, and diethyl maleate produced hepatic levels of 3HAA covalent binding that were in excess of those observed after a single, hepatotoxic acetaminophen dose. These data suggest that the nature and/or the intracellular processing of the reactive metabolites of acetaminophen and 3HAA are different. These data also demonstrate that absolute levels of covalently bound xenobiotic metabolites cannot be utilized as absolute predictors of cytotoxic potential

  6. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    Highlights: • TiO2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L−1. Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  7. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    Pyka, Alina; Budzisz, Marika; Dołowy, Małgorzata

    2013-01-01

    Adsorption thin layer chromatography (NP-TLC) with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1), P2 (Product no. 2), and P3 (Product no. 3). Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. The presented method was validated by specificity, range, linearity, accuracy, precision, detection limit, quantitative limit, and robustness. The TLC-densitometric method was also compared with a pharmacopeial UV-spectrophotometric method for the assay of acetaminophen, and the results confirmed statistically that the NP-TLC-densitometric method can be used as a substitute method. It could be said that the validated NP-TLC-densitometric method is suitable for the routine analysis of acetaminophen in quantity control laboratories. PMID:24063006

  8. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    Alina Pyka

    2013-01-01

    Full Text Available Adsorption thin layer chromatography (NP-TLC with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1, P2 (Product no. 2, and P3 (Product no. 3. Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. The presented method was validated by specificity, range, linearity, accuracy, precision, detection limit, quantitative limit, and robustness. The TLC-densitometric method was also compared with a pharmacopeial UV-spectrophotometric method for the assay of acetaminophen, and the results confirmed statistically that the NP-TLC-densitometric method can be used as a substitute method. It could be said that the validated NP-TLC-densitometric method is suitable for the routine analysis of acetaminophen in quantity control laboratories.

  9. Effect of Momordica charantia (bitter melon on serum glucose level and various protein parameters in acetaminophen intoxicated rabbits

    Kanwal Zahra

    2012-02-01

    Full Text Available Aim: Liver function tests, including total plasma proteins, albumin, bilirubin and glucose were analyzed to find out the hepatocurative and hepatoprotective effects of Momordica charantia. Method: The study was divided into two categories. In first category, the livers of rabbits were intoxicated with acetaminophen, and then Momordica fruit extract was given to observe its hepatocurative effects. Results: The results indicated significant changes in concentrations of the parameters in acetaminophen-challenged rabbits. In the second category, treatment was started by giving Momordica fruit extract dose orally for 10 days and 15 days to two groups of rabbits, respectively. Then, livers of rabbits were damaged with acetaminophen and hepatoprotective effects of Momordica were observed. Conclusion: The results showed that the animals treated with Momordica fruit extract experienced less liver damage due to acetaminophen intoxication, indicating that Momordica has hepatoprotective properties. [J Intercult Ethnopharmacol 2012; 1(1.000: 7-12

  10. Impact of intravenous acetaminophen therapy on the necessity of cervical spine imaging in patients with cervical spine trauma

    Koorosh Ahmadi; Amir Masoud Hashemian; Elham Pishbin; Mahdi Sharif-Alhoseini; Vafa Rahimi-Movaghar

    2014-01-01

    Objective:We evaluated a new hypothesis of acetaminophen therapy to reduce the necessity of imaging in patients with probable traumatic cervical spine injury.Methods:Patients with acute blunt trauma to the neck and just posterior midline cervical tenderness received acetaminophen (15 mg/kg) intravenously after cervical spine immobilization.Then,all the patients underwent plain radiography and computerized tomography of the cervical spine.The outcome measure was the presence of traumatic cervical spine injury.Sixty minutes after acetaminophen infusion,posterior midline cervical tendemess was reassessed.Results:Of 1 309 patients,41 had traumatic cervical spine injuries based on imaging.Sixty minutes after infusion,posterior midline cervical tenderness was eliminated in 1 041 patients,none of whom had abnormal imaging.Conclusion:Patients with cervical spine trauma do not need imaging if posterior midline cervical tendemess is eliminated after acetaminophen infusion.This analgesia could be considered as a diagnostic and therapeutic intervention.

  11. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults

    Carroll, Chad C; Dickinson, Jared M; Lemoine, Jennifer K;

    2011-01-01

    Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance...... training. Thirty-six individuals were randomly assigned to a Placebo (67±2y), Acetaminophen (64±1y; 4000mg(.)d(-1)), or Ibuprofen (64±1y; 1200mg(.)d(-1)) group in a double-blind manner and completed 12-weeks of knee extensor resistance-training. Before and after training in vivo patellar tendon properties...... this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the Acetaminophen group (3%, p0.05) with training in the Placebo group. These responses were generally uninfluenced by ibuprofen consumption. In the Acetaminophen group, tendon deformation and strain...

  12. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK−/− mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK−/− mice. Whereas F4/80+ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK−/− mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK−/− mice treated with acetaminophen. These data

  13. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  14. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    Alina Pyka; Marika Budzisz; Małgorzata Dołowy

    2013-01-01

    Adsorption thin layer chromatography (NP-TLC) with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1), P2 (Product no. 2), and P3 (Product no. 3). Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. T...

  15. High-resolution solid-state carbon-13 nuclear magnetic resonance study of acetaminophen: a common analgesic drug

    Jagannathan, NR

    1987-01-01

    Solid-state 13C-NMR spectra of acetaminophen were obtained by using proton enhancement combined with high-power decoupling and magic angle spinning. The contact time was detd. to obtain a max. signal to noise ratio. The chem. shifts obsd. were assigned to different carbons based on both conventional and nonquaternary suppression NMR spectra. In addn. there were no differences in the solid-state NMR spectra of Crocin and Tylenol tablets (com. brands of acetaminophen), except for the differe...

  16. A randomized placebo-controlled trial of acetaminophen for prevention of post-vaccination fever in infants.

    Lisa A Jackson

    Full Text Available BACKGROUND: Fever is common following infant vaccinations. Two randomized controlled trials demonstrated the efficacy of acetaminophen prophylaxis in preventing fever after whole cell pertussis vaccination, but acetaminophen prophylaxis has not been evaluated for prevention of fever following contemporary vaccines recommended for infants in the United States. METHODS: Children six weeks through nine months of age were randomized 1:1 to receive up to five doses of acetaminophen (10-15 mg per kg or placebo following routine vaccinations. The primary outcome was a rectal temperature ≥38°C within 32 hours following the vaccinations. Secondary outcomes included medical utilization, infant fussiness, and parents' time lost from work. Parents could request unblinding of the treatment assignment if the child developed fever or symptoms that would warrant supplementary acetaminophen treatment for children who had been receiving placebo. RESULTS: A temperature ≥38°C was recorded for 14% (25/176 of children randomized to acetaminophen compared with 22% (37/176 of those randomized to placebo but that difference was not statistically significant (relative risk [RR], 0.63; 95% CI, 0.40-1.01. Children randomized to acetaminophen were less likely to be reported as being much more fussy than usual (10% vs 24% (RR, 0.42; 95% CI, 0.25-0.70 or to have the treatment assignment unblinded (3% vs 9% (RR, 0.31; 95% CI, 0.11-0.83 than those randomized to placebo. In age-stratified analyses, among children ≥24 weeks of age, there was a significantly lower risk of temperature ≥38°C in the acetaminophen group (13% vs. 25%; p = 0.03. CONCLUSION: The results of this relatively small trial suggest that acetaminophen may reduce the risk of post-vaccination fever and fussiness. TRIAL REGISTRATION: Clinicaltrials.gov NCT00325819.

  17. Role of Protective Effect of L-Carnitine against Acute Acetaminophen Induced Hepatic Toxicity in Adult Albino Rats

    Zeinab M. Gebaly* and Gamal M. Aboul Hassan

    2012-10-01

    Full Text Available Background: Acetaminophen, a widely used analgesic and antipyretic is known to cause hepatic injury in humans and experimental animals when administered in high doses. It was reported that toxic effects of acetaminophen are due to oxidative reactions that take place during its metabolism. L-carnitine is a cofactor in the transfer of long-chain fatty acid allowing to the beta-oxidation of fatty acid in the mitochondria. It is a known antioxidant with protective effects against lipid peroxidation. This study aimed to investigate the possible beneficial effect of L-carnitine as an antioxidant agent against acetaminophen induced hepatic toxicity in rats. Material and Methods: Four rat groups (N=7 in each group. Group I is the control, group II received 500 mg/kg/ body weight of L-carnitine for 7 days by oral route, group III received 640/kg/ bw of acetaminophen by oral route, group IV acute acetaminophen group pretreated with L-carnitine for 7 days by gastric tube gavage tube. The liver of all rats were removed for investigation using light and electro microscopic studies. Results: Acetaminophen caused massive centrilobular necrosis and massive degenerative changes. The electron-microscopic study showed few mitochondria, increased fat droplets and scanty smooth endoplasmic reticulum (SER, rough endoplasmic reticulum (RER.These changes were reduced by L-carnitine pretreatment. Conclusion: those results suggest that acetaminophen results damage in the liver as an acute effect and L-carnitine ameliorated the adverse effects of acetaminophen via its antioxidant role

  18. Role of Protective Effect of L-Carnitine against Acute Acetaminophen Induced Hepatic Toxicity in Adult Albino Rats

    Zeinab M. Gebaly* and Gamal M. Aboul Hassan

    2012-01-01

    Background: Acetaminophen, a widely used analgesic and antipyretic is known to cause hepatic injury in humans and experimental animals when administered in high doses. It was reported that toxic effects of acetaminophen are due to oxidative reactions that take place during its metabolism. L-carnitine is a cofactor in the transfer of long-chain fatty acid allowing to the beta-oxidation of fatty acid in the mitochondria. It is a known antioxidant with protective effects against lipid peroxidati...

  19. Cross-reactivity to Acetaminophen and Celecoxib According to the Type of Nonsteroidal Anti-inflammatory Drug Hypersensitivity

    Kim, Yoon-Jeong; Lim, Kyung-Hwan; Kim, Mi-Young; Jo, Eun-Jung; Lee, Suh-Young; Lee, Seung-Eun; Yang, Min-Suk; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon; Min, Kyung-Up; Kim, Sae-Hoon

    2013-01-01

    Purpose Identification of tolerable alternative analgesics is crucial for management in nonsteroidal anti-inflammatory drug (NSAID)-sensitive patients. We investigated cross-reactivity of acetaminophen and celecoxib according to the type of aspirin/NSAID hypersensitivity and aimed to determine the risk factors for cross-intolerance. Methods We retrospectively reviewed the medical records of patients intolerant to aspirin and NSAIDs who had undergone an acetaminophen and/or celecoxib oral prov...

  20. Effects of Acetaminophen on Oxidant and Irritant Respiratory Tract Responses to Environmental Tobacco Smoke in Female Mice

    Smith, Gregory J.; Cichocki, Joseph A.; Doughty, Bennett J.; Manautou, Jose E.; Jordt, Sven-Eric; Morris, John B.

    2015-01-01

    Background: Although it is known that acetaminophen causes oxidative injury in the liver, it is not known whether it causes oxidative stress in the respiratory tract. If so, this widely used analgesic may potentiate the adverse effects of oxidant air pollutants. Objectives: The goal of this study was to determine if acetaminophen induces respiratory tract oxidative stress and/or potentiates the oxidative stress and irritant responses to an inhaled oxidant: environmental tobacco smoke (ETS). M...

  1. Mechanism of Action of N-Acetylcysteine in the Protection Against the Hepatotoxicity of Acetaminophen in Rats In Vivo

    Lauterburg, Bernhard H.; Corcoran, George B.; Mitchell, Jerry R.

    1983-01-01

    N-Acetylcysteine is the drug of choice for the treatment of an acetaminophen overdose. It is thought to provide cysteine for glutathione synthesis and possibly to form an adduct directly with the toxic metabolite of acetaminophen, N-acetyl-p-benzoquinoneimine. However, these hypothese have not been tested in vivo, and other mechanisms of action such as reduction of the quinoneimine might be responsible for the clinical efficacy of N-acetylcysteine. After the administration to rats of acetamin...

  2. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  3. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    McGill, Mitchell R.; Lebofsky, Margitta [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Norris, Hye-Ryun K.; Slawson, Matthew H. [Center for Human Toxicology, University of Utah, Salt Lake City, UT (United States); Bajt, Mary Lynn; Xie, Yuchao; Williams, C. David [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Wilkins, Diana G.; Rollins, Douglas E. [Center for Human Toxicology, University of Utah, Salt Lake City, UT (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-06-15

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  4. Use of acetaminophen (paracetamol) during pregnancy and the risk of attention-deficit/hyperactivity disorder in the offspring.

    Andrade, Chittaranjan

    2016-03-01

    Prenatal exposure to acetaminophen may result in compromised neurodevelopment through inflammatory and immunologic mechanisms, through predisposition to oxidative stress, and through endocrine, endogenous cannabinoid, and other mechanisms. Several small and large prospective studies have found an association between gestational acetaminophen exposure and attention-deficit/hyperactivity disorder (ADHD)-like behaviors, use of ADHD medication, and ADHD diagnoses in offspring during childhood; the only negative study was a small investigation that examined only one aspect of attention as an outcome. Creditably, most of the studies adjusted analyses for many (but not all) confounds associated with ADHD risk. Importantly, one pivotal study also adjusted for pain, infection, inflammation, and fever to reduce confounding by indication; this study found a dose-dependent risk. In the light of the finding of a single study that infection and fever during pregnancy by themselves do not raise the ADHD risk, it appears possible that the use of acetaminophen during pregnancy is itself responsible for the increased risk of ADHD. This suggests that acetaminophen may not be as safe in pregnancy as is widely believed. However, since fever during pregnancy may itself be associated with adverse gestational outcomes, given the present level of uncertainty about the ADHD risk with acetaminophen, it is suggested that, until more data are available, the use of acetaminophen in pregnancy should not be denied in situations in which the need for the drug is clear. PMID:27046315

  5. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    Fatemeh Sadeghi

    2013-10-01

    Full Text Available   Objective(s: This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen.   Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water of acetaminophen (5% w/v in the presence of small amounts of polyninylpyrrolidone K30 (PVP (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape to spherical microparticle. Differential scanning calorimetery (DSC and x-ray powder diffraction (XRPD studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties.

  6. Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1 Potential role of inflammatory mediators

    Transgenic mice with a targeted disruption of the tumor necrosis factor receptor 1 (TNFR1) gene were used to analyze the role of TNF-α in pro- and anti-inflammatory mediator production and liver injury induced by acetaminophen. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis. This was correlated with expression of inducible nitric oxide synthase (NOS II) and nitrotyrosine staining of the liver. Expression of macrophage chemotactic protein-1 (MCP-1), KC/gro, interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP-9), and connective tissue growth factor (CTGF), inflammatory mediators known to participate in tissue repair, as well as the anti-inflammatory cytokine, interleukin-10 (IL-10), also increased in the liver following acetaminophen administration. TNFR1-/- mice were found to be significantly more sensitive to the hepatotoxic effects of acetaminophen than wild-type mice. This was correlated with more rapid and prolonged induction of NOS II in the liver and changes in the pattern of nitrotyrosine staining. Acetaminophen-induced expression of MCP-1, IL-1β, CTGF, and MMP-9 mRNA was also delayed or reduced in TNFR1-/- mice relative to wild-type mice. In contrast, increases in IL-10 were more rapid and more pronounced. These data demonstrate that signaling through TNFR1 is important in inflammatory mediator production and toxicity induced by acetaminophen

  7. Warfarin and acetaminophen interaction: a summary of the evidence and biologic plausibility.

    Lopes, Renato D; Horowitz, John D; Garcia, David A; Crowther, Mark A; Hylek, Elaine M

    2011-12-01

    Ms TS is a 66-year-old woman who receives warfarin for prevention of systemic embolization in the setting of hypertension, diabetes, and atrial fibrillation. She had a transient ischemic attack about 4 years ago when she was receiving aspirin. Her INR control was excellent; however, over the past few months it has become erratic, and her average dose required to maintain an INR of 2.0 to 3.0 appears to have decreased. She has had back pain over this same period and has been taking acetaminophen at doses at large as 650 mg four times daily, with her dose varying based on her symptoms. You recall a potential interaction and wonder if (1) her acetaminophen use is contributing to her loss of INR control, and (2) does this interaction place her at increased risk of warfarin-related complications? PMID:21911832

  8. Role of neutrophils in hepatotoxicity induced by oral acetaminophen administration in rats.

    Smith, G S; Nadig, D E; Kokoska, E R; Solomon, H; Tiniakos, D G; Miller, T A

    1998-12-01

    Acetaminophen (APAP) is a common analgesic and antipyretic compound which, when administered in high doses, has been associated with significant morbidity and mortality, secondary to hepatic toxicity. To date, the mechanism(s) whereby APAP induces liver injury remains to be delineated. This study investigated the potential role of neutrophils as contributors to liver injury in rats administered sublethal doses of APAP. Oral APAP administration (650 mg/kg) was associated with increases in serum alanine transaminase (ALT) levels indicating biochemical evidence of significant liver damage. Furthermore, histological analyses verified significant hepatocellular necrosis as well as enhanced myeloperoxidase staining in these liver specimens. However, if animals were pretreated with antineutrophil sera prior to APAP administration, neutrophil counts remained depressed, ALT levels were significantly decreased, and the degree of liver injury was attenuated on a histological level. Taken together these data suggest that neutrophils mediate, at least in part, the hepatotoxic effects of oral acetaminophen administration in rats. PMID:9878321

  9. In vivo N-acetyl cysteine reduce hepatocyte death by induced acetaminophen

    Lin, Chih-Ju; Li, Feng-Chieh; Wang, Sheng-Shun; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2011-07-01

    Acetaminophen (APAP) is the famous drug in global, and taking overdose Acetaminophen will intake hepatic cell injure. Desptie substantial progress in our understanding of the mechanism of hepatocellular injury during the last 40 years, many aspects of the pathophysiology are still unknown or controversial.1 In this study, mice are injected APAP overdose to damage hepatocyte. APAP deplete glutathione and ATP of cell, N-Acetyl Cysteine (NAC) plays an important role to protect hepatocytes be injury. N-Acetyl Cysteine provides mitochondrial to produce glutathione to release drug effect hepatocyte. By 6-carboxyfluorescein diacetate (6-CFDA) metabolism in vivo, glutathione keep depleting to observe the hepatocyte morphology in time. Without NAC, cell necrosis increase to plasma membrane damage to release 6-CFDA, that's rupture. After 6-CFDA injection, fluorescence will be retained in hepatocyte. For cell retain with NAC and without NAC are almost the same. With NAC, the number of cell rupture decreases about 75%.

  10. Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water.

    Lin, Chin Jung; Yang, Wen-Ta; Chou, Chen-Yi; Liou, Sofia Ya Hsuan

    2016-06-01

    Hollow core-shell mesoporous TiO2 microspheres were synthesized by a template-free solvothermal route for efficient photocatalytic degradation of acetaminophen. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Barrett-Joyner-Halenda data revealed a micrometer-sized mesoporous anatase TiO2 hollow sphere with large surface area and efficient light harvesting. For the photocatalytic degradation of acetaminophen in 60 min, the conversion fraction of the drug increased from 88% over commercial Degussa P25 TiO2 to 94% over hollow spheres with about 25% increase in the initial reaction rate. Even after 10 repeated runs, the recycled hollow spheres showed good photodegradation activity. The intermediates generated in the photocatalytic reactions were eventually converted into molecules that are easier to handle. The simple fabrication route would facilitate the development of photocatalysts for the decomposition of environmental contaminants. PMID:27003371

  11. Dielectric relaxation processes in solid and supercooled liquid solutions of acetaminophen and nifedipine

    Dielectric spectroscopy was used to study supercooled liquid and glassy mixtures of acetaminophen and nifedipine. The glass transition temperature Tg was found to vary continuously as a function of the acetaminophen concentration x, indicating complete miscibility of these drugs. The steepness index m characterizing the α-relaxation as well as the dispersion width of this process were almost independent of x. A weak Johari-Goldstein β-relaxation was identified by its typical decoupling from the α-process. A well-resolved low-temperature γ-relaxation was found and ascribed to a side group motion, predominantly of the nifedipine molecule. The energy barriers hindering this motion exhibit a wide distribution, with a mean value of typically about 3500 K

  12. Dielectric relaxation processes in solid and supercooled liquid solutions of acetaminophen and nifedipine

    El Goresy, Tarek; Böhmer, Roland

    2007-05-01

    Dielectric spectroscopy was used to study supercooled liquid and glassy mixtures of acetaminophen and nifedipine. The glass transition temperature Tg was found to vary continuously as a function of the acetaminophen concentration x, indicating complete miscibility of these drugs. The steepness index m characterizing the α-relaxation as well as the dispersion width of this process were almost independent of x. A weak Johari Goldstein β-relaxation was identified by its typical decoupling from the α-process. A well-resolved low-temperature γ-relaxation was found and ascribed to a side group motion, predominantly of the nifedipine molecule. The energy barriers hindering this motion exhibit a wide distribution, with a mean value of typically about 3500 K.

  13. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults

    Trappe, Todd A.; Carroll, Chad C.; Dickinson, Jared M.; LeMoine, Jennifer K.; Haus, Jacob M.; Sullivan, Bridget E.; Lee, Jonah D.; Jemiolo, Bozena; Weinheimer, Eileen M.; Hollon, Chris J.

    2010-01-01

    Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibitin...

  14. Activation of the Farnesoid X Receptor Provides Protection against Acetaminophen-Induced Hepatic Toxicity

    Lee, Florence Ying; de Aguiar Vallim, Thomas Quad; Chong, Hansook Kim; Zhang, Yanqiao; Liu, Yaping; Jones, Stacey A.; Osborne, Timothy F.; Edwards, Peter A.

    2010-01-01

    The nuclear receptor, farnesoid X receptor (FXR, NR1H4), is known to regulate cholesterol, bile acid, lipoprotein, and glucose metabolism. In the current study, we provide evidence to support a role for FXR in hepatoprotection from acetaminophen (APAP)-induced toxicity. Pharmacological activation of FXR induces the expression of several genes involved in phase II and phase III xenobiotic metabolism in wild-type, but not Fxr−/− mice. We used chromatin immunoprecipitation-based genome-wide resp...

  15. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis

    Cecilia Cristea; Robert Sandulescu; Anca Florea; Mihaela Tertis

    2013-01-01

    The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at −0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs) and glassy carbon electrodes (GCEs) as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configur...

  16. Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Yang Runkuan; Zhang Shutian; Kajander Henri; Zhu Shengtao; Koskinen Marja-Leena; Tenhunen Jyrki

    2011-01-01

    Abstract Background Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an a...

  17. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi

    Henderson, Colin J.; Wolf, C. Roland; Kitteringham, Neil; Powell, Helen; Otto, Diana; Park, B. Kevin

    2000-01-01

    Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in ...

  18. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  19. Simultaneous Spectrophotometric Determination of Four Components including Acetaminophen by Taget Factor Analysis

    2007-01-01

    UV Spectrophotometric Target Factor Analysis (TFA) was used for the simultaneous determination of four components (acetaminophen, guuaifenesin, caffeine, Chlorphenamine maleate) in cough syrup. The computer program of TFA is based on VC++ language. The difficulty of overlapping of absorption spectra of four compounds was overcome by this procedure. The experimental results show that the average recovery of each component is all in the range from 98.9% to 106.8% and each component obtains satisfactory results without any pre-separation.

  20. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91phox−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear to

  1. Paracetamol/Acetaminophen (Single Administration) for Perineal Pain in the Early Postpartum Period

    Chou, D; Abalos, E.; Gyte, G M; Gulmezoglu, A. M.

    2010-01-01

    BACKGROUND: Perineal pain is a common but poorly studied adverse outcome following childbirth. Pain may result from perineal trauma due to bruising, spontaneous tears, surgical incisions (episiotomies), or in association with operative births (ventouse or forceps assisted births). OBJECTIVES: To determine the efficacy of a single administration of paracetamol (acetaminophen) systemic drugs used in the relief of acute postpartum perineal pain SEARCH STRATEGY: We searched the Cochrane Pregnancy...

  2. Serum acute phase reactants hallmark healthy individuals at risk for acetaminophen-induced liver injury

    Borlak, Jürgen; Chatterji, Bijon; Londhe, Kishor B; Watkins, Paul B

    2013-01-01

    Background Acetaminophen (APAP) is a commonly used analgesic. However, its use is associated with drug-induced liver injury (DILI). It is a prominent cause of acute liver failure, with APAP hepatotoxicity far exceeding other causes of acute liver failure in the United States. In order to improve its safe use this study aimed to identify individuals at risk for DILI prior to drug treatment by searching for non-genetic serum markers in healthy subjects susceptible to APAP-induced liver injury (...

  3. Protective Effect of Sundarban Honey against Acetaminophen-Induced Acute Hepatonephrotoxicity in Rats

    Afroz, Rizwana; E. M. Tanvir; Hossain, Md. Fuad; Gan, Siew Hua; Parvez, Mashud; Aminul Islam, Md.; Khalil, Md Ibrahim

    2014-01-01

    Honey, a supersaturated natural product of honey bees, contains complex compounds with antioxidant properties and therefore has a wide a range of applications in both traditional and modern medicine. In the present study, the protective effects of Sundarban honey from Bangladesh against acetaminophen- (APAP-) induced hepatotoxicity and nephrotoxicity in experimental rats were investigated. Adult male Wistar rats were pretreated with honey (5 g/kg) for 4 weeks, followed by the induction of hep...

  4. Hepatoprotective activity of Centaurium erythraea on acetaminophen-induced hepatotoxicity in rats.

    Mroueh, Mohamad; Saab, Yolande; Rizkallah, Raed

    2004-05-01

    The methanol extract of the leaves of Centaurium erythraea L. (Gentianaceae) was evaluated for hepatoprotective activity against acetaminophen-induced liver toxicity in rats. An oral dose of 300 mg/kg/day for 6 days or a single dose of 900 mg/kg for 1 day exhibited a significant protective effect by lowering serum glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT) and lactate dehydrogenase (LDH). The activity of the extract was supported by histopathological examination of liver sections. PMID:15174008

  5. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Antoine, Daniel James; Williams, Dominic P.; Kipar, Anja; Laverty, Hugh; Park, B. Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-depende...

  6. Comparing the Duration of the Analgesic Effects of Intravenous and Rectal Acetaminophen Following Tonsillectomy in Children

    Haddadi, Soudabeh; Marzban, Shideh; Karami, Mohammad Seddigh; Heidarzadeh, Abtin; Parvizi, Arman; Naderi Nabi, Bahram

    2014-01-01

    Background: Postoperative pain control (especially, after adenotonsillectomy) has a very important effect on recovery time, hospitalization duration, hemodynamic disorders, bleeding, nausea, vomiting and medical costs. Objectives: The aim of this study was to investigate and compare the effects of intravenous and rectal acetaminophen on controlling post-adenotonsillectomy pain in children, and duration of their analgesic effects. Patients and Methods: In this randomized double-blinded clinica...

  7. Liposome-encapsulated superoxide dismutase prevents liver necrosis induced by acetaminophen.

    Nakae, D.; Yamamoto, K; Yoshiji, H; Kinugasa, T.; Maruyama, H; Farber, J. L.; Konishi, Y

    1990-01-01

    Liposome-encapsulated human recombinant superoxide dismutase (LSOD) protected male rats that were pretreated with 3-methylcholanthrene from the liver necrosis produced by acetaminophen. By contrast, SOD-free liposomes, free SOD, or heat-denatured LSOD had no protective effect. Liposome-encapsulated SOD did not simply delay the onset of liver necrosis. A second dose of LSOD at 12 hours prevented the necrosis of the liver as assessed 24 hours after treatment with 500 mg/kg body weight of acetam...

  8. Protective Effect of Chlormethiazole, a Sedative, against Acetaminophen-Induced Liver Injury in Mice

    Lee, Han Chu; Jung, Sung Ae; Jung, Hye Kyung; Yi, Sun Young; Kim, Doe Young; Moon, Il Hwan; Park, Sung Su

    1999-01-01

    Objectives The hepatotoxicity of acetaminophen is not a result of the parent compound but is mediated by its reactive metabolite N-acetyl-p-benzoquinone imine. Cytochrome P4502E1 (CYP2E1) is the principal enzyme of this biotransformation, which accounts for approximately 52% of the bioactivation in human microsomes. Recently, chlormethiazole, a sedative drug, is reported to be an efficient inhibitor of CYP2E1 activity in human beings. In this study we wished to evaluate whether chlormethiazol...

  9. Hepatoprotective potential of three sargassum species from Karachi coast against carbon tetrachloride and acetaminophen intoxication

    Khan Hira; Viqar Sultana; Jehan Ara; Syed Ehteshamul-Haque; Mohammad Athar

    2016-01-01

    Objective: To assess the hepatoprotective effect of ethanol extracts of Sargassum variegatum (S. variegatum), Sargassum tenerrimum (S. tenerrimum) and Sargassum binderi occurring at Karachi coast against carbon tetrachloride (CCl4) and acetaminophen intoxication in rats. Methods: Sargassum species were collected at low tide from Buleji beach at Karachi coast. Effect of ethanol extracts of Sargassum spp., on lipid parameter, serum glucose and kidney function was examined. Liver ...

  10. Role of Galectin-3 in Acetaminophen-Induced Hepatotoxicity and Inflammatory Mediator Production

    Dragomir, Ana-Cristina; Sun, Richard; Mishin, Vladimir; Hall, LeRoy B.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Im...

  11. Ethyl pyruvate for the treatment of acetaminophen intoxication: alternative to N-acetylcysteine?

    Wagner, Florian; Asfar, Pierre; Georgieff, Michael; Radermacher, Peter; Wagner, Katja

    2012-01-01

    N-acetylcysteine is the classical antidote for acetaminophen overdose-induced hepatotoxicity, but its efficacy is limited by the need for early and only temporary treatment. Therefore, Yang and colleagues tested the hypothesis of whether ethyl pyruvate - another anti-inflammatory and antioxidant compound, which they had previously shown to protect against liver injury of various other etiologies - may allow circumventing these limitations. While ethyl pyruvate improved liver regeneration when...

  12. Risk of Acute Kidney Injury and Long-Term Outcome in Patients With Acetaminophen Intoxication

    Chen, Yu-Guang; Lin, Cheng-Li; Dai, Ming-Shen; Chang, Ping-Ying; Chen, Jia-hong; Huang, Tzu-Chuan; WU, YI-YING; Kao, Chia-Hung

    2015-01-01

    Abstract Acetaminophen (APAP) intoxication is a common cause of hepatic toxicity and life-threatening hepatic failure. However, few studies have investigated the possible association between APAP intoxication and acute kidney injury (AKI). We constructed a retrospective cohort study to clarify the relationship between APAP intoxication and the risk of AKI. We identified patients with APAP intoxication and selected a comparison cohort that was 1:4 frequency matched according to age, sex, and y...

  13. Protective Properties of 2-Acetylcyclopentanone in a Mouse Model of Acetaminophen Hepatotoxicity

    Zhang, Lihai; Gavin, Terrence; Geohagen, Brian C.; Liu, Qiang; Downey, Katherine J.; LoPachin, Richard M.

    2013-01-01

    Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with ...

  14. Undifferentiated Altered Mental Status: A Late Presentation of Toxic Acetaminophen Ingestion

    Robey, Thomas E.; Melnick, Edward R.

    2012-01-01

    Altered mental status is a common undifferentiated presentation in the emergency department. We describe a case of acetaminophen-induced acute liver failure that was diagnosed and treated prior to obtaining definitive historical or laboratory information about the etiology. The physical exam finding of scleral icterus in this case was a key element to rapid identification and treatment of this life-threatening condition. A discussion of appropriate N-acetylcysteine treatment for acute liver f...

  15. Zirconyl acetaminophen phosphate: A nanoscaled analgetic with very high drug load.

    Heck, Joachim G; Feldmann, Claus

    2016-11-01

    Drug release belongs to the most challenging aspects of nanoparticles addressing molecular biology and medicine. Besides targeted delivery, obvious challenges are related to high drug load and continuous slow drug release. Based on our recently developed concept of inorganic-organic hybrid nanoparticles (IOH-NP), we here present [ZrO](2+)[AAP](2-) IOH-NPs containing the analgetic phosphate prodrug acetaminophen phosphate for drug release. [ZrO](2+)[AAP](2-) combines an uncomplex synthesis in water with a high prodrug load of 68wt.%. [ZrO](2+)[AAP](2-) nanoparticles exhibit a diameter of 37(11)nm and can be readily obtained as colloidally highly stable suspension in water. The chemical composition is studied in detail based on infrared spectroscopy, energy-dispersive X-ray analysis, thermogravimetry and elemental analysis. Moreover, the release of acetaminophen from [ZrO](2+)[AAP](2-) is studied by means of model experiments indicating the carbon content of the nanoparticles and, in alternative, the fluorescence of labeled nanoparticles. Both data show a continuous release of 80wt.% of the analgetic acetaminophen on a time scale up to 48h. PMID:27451036

  16. Ibuprofen versus Acetaminophen in Controlling Postoperative Impacted Third Molar Tooth Extraction Pain

    Objectives: To compare the efficacy of ibuprofen and acetaminophen in reducing postoperative third molar extraction pain in patients reporting to Armed Forces Institute of Dentistry. Study design: Randomized controlled trial. Place and duration of study: The study was carried out on patients who presented for surgical removal of impacted teeth at Armed Forces Institute of Dentistry Rawalpindi (AFID) from February 2008 to March 2--9 at the Department of Oral Surgery, Armed Forces Institute of Dentistry Rawalpindi. Patients and methods: One hundred and forty patients requiring surgical removal of mandibular impacted teeth were equally divided into two groups. Surgical extraction of third molar tooth was performed under local anesthesia. Patients in group A were given ibuprofen and in group B were given acetaminophen at 6 hourly intervals. First dose was given 3 hours postoperatively. Each patient rated pain on a visual analog scale at baseline and then at 12, 24, 48 and 72 hours postoperatively. Results: There was statistically significant difference (p=0.025) during first 12 hours with ibuprofen group showing better efficacy but afterwards there was no significant difference in the efficacy of both drugs. Conclusions: Ibuprofen is more effective in controlling severe third molar extraction pain as compared to acetaminophen but has similar efficacy in controlling moderate pain. (author)

  17. Utilization of Cellulose from Luffa cylindrica Fiber as Binder in Acetaminophen Tablets

    John Carlo O. Macuja

    2015-01-01

    Full Text Available Cellulose is an important pharmaceutical excipient. This study aimed to produce cellulose from the fiber of Luffa cylindrica as an effective binder in the formulation of acetaminophen tablets. This study was divided into three phases, namely, (I preparation of cellulose from Luffa cylindrica, (II determination of the powder properties of the LC-cellulose, and (III production and evaluation of acetaminophen of the tablets produced using LC-cellulose as binder. The percentage yield of LC-cellulose was 61%. The values of the powder properties of LC-cellulose produced show fair and passable flow properties and are within the specifications of a powdered pharmaceutical excipient. The mean tablet hardness and disintegration time of the LC-cellulose tablets have a significant difference in the mean tablet hardness and disintegration time of the tablets without binder; thus the cellulose produced improved the suitability of acetaminophen in the dry compression process. However, the tablet properties of the tablets produced using LC-cellulose as binder do not conform to the specifications of the US pharmacopeia; thus the study of additional methods and excipients is recommended.

  18. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L-1. Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts.

  19. Late extensive intravenous administration of N-acetylcysteine can reverse hepatic failure in acetaminophen overdose.

    Mehrpour, Omid; Shadnia, Shahin; Sanaei-Zadeh, Hossein

    2011-01-01

    Acetaminophen is a commonly used analgesic and has been shown to be a main cause of drug-induced liver failure. N-acetylcysteine (NAC) should be employed as the antidote in case of acetaminophen poisoning within the first 8-10 hours. Oral administration of NAC is universally recommended and due to the adverse effects, the intravenous administration of the agent is reserved for patients with oral intolerance and severe complications. We here report an 18-year-old man with severe liver failure due to a huge ingestion of acetaminophen, who was taken into the Loghman Hakim Hospital Poison Center 72 hours after attempted suicide. Regarding the poor prognostic clues as his level of consciousness and impaired liver functions, an extensive intravenous regimen of NAC was started. The patient survived the condition with an additional intravenous administration of NAC past the first 72 hours of treatment. We discuss that even in late phases of intoxication; high-dose intravenous NAC can serve a substantial improvement. PMID:20332167

  20. Antioxidant and Hepatoprotective Properties of Tofu (Curdle Soymilk against Acetaminophen-Induced Liver Damage in Rats

    Ndatsu Yakubu

    2013-01-01

    Full Text Available The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT, alkaline phosphatase (ALP, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly (P<0.05 reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress.

  1. Some physicochemical properties of acetaminophen pediatric suspensions formulated with okra gums obtained from different extraction processes as suspending agent

    Ikoni Ogaji

    2011-01-01

    Full Text Available The purpose of this work was to evaluate the effect of the extraction process and the potential of okra gum as a suspending agent in pharmaceutical oral formulations containing acetaminophen as a model drug. Clarified mucilage of dried okra was either extracted directly with ethanol 96% (F1 or was first treated with base (F2, acid (F3 or heating in the presence of salt (F4 before extraction with ethanol 96%. The samples were used at 0.5% w/v as suspending agents in acetaminophen acetaminophen suspension to deliver 125 mg/5 mL acetaminophen. A binary mixture of F2 and F4 (1:1 was also used. Similar suspensions of acetaminophen containing either hydroxymethylpropylcellulose (HPMC or tragacanth gum (TRAGA were produced. Some physicochemical properties of the formulations were evaluated. The rheological properties of acetaminophen-containing treated okra gums (F2-F5 were generally similar. Changes in viscosity with storage were slower in the F2-F5 formulations as compared with F1. Particle size and particle size distribution were different for all formulations, and hysteresis was a function of time and the suspending agent used. The re-dispersion time of the formulations with treated okra gums was generally shorter than that observed with the untreated okra gum. The use of a binary mixture of F2 and F4 resulted in different physicochemical properties from those of either F2 or F4. The physicochemical properties of the formulations were comparable to those with HPMC and TRAGA. It can thus be concluded that treating okra gum with acid, base or salt impacted better physicochemical properties on an acetaminophen pediatric suspension when they were used as suspending agents.

  2. High resolution proton nuclear magnetic resonance approach to the study of hepatocyte and drug metabolism. Application to acetaminophen

    1H spin echo NMR spectra of intact hepatocytes, isolated from rat liver, showed resonances for glucose, mobile fatty acids, and +N(CH3)3 groups including choline headgroups of phosphoglycerides. Spectra from extracts of the same cells contained many more well resolved resonances due to low Mr metabolites. These included signals for free amino acids, ketone bodies, glucose, lactate, and acetate. 1H NMR spectra from suspensions of intact hepatocytes incubated with acetaminophen showed no resonances for drug metabolites, although changes in sugar resonances were observed. However, spectra of extracts from acetaminophen-treated hepatocytes contained resonances for both acetaminophen itself and its major metabolites, the glucuronide and sulfate conjugates. Results on the extent of acetaminophen metabolism as measured by 1H NMR compared well with previously reported chromatographic studies. The rate of metabolism of acetaminophen by hepatocytes was much slower in 2H2O buffer compared to H2O buffer and selective deuteration of several metabolites including the ketone bodies, glucose, and acetaminophen glucuronide was observed. The deuteration of glucose C2H appeared to be due to futile cycling of the glycolytic pathway to at least fructose 6-phosphate, and incorporation of deuterium by the enzyme phosphoglucoisomerase. This work demonstrates that 1H NMR studies of intact hepatocytes and cell extracts together can provide considerable insight into the metabolism of acetaminophen in vitro. Little pretreatment of samples is required, results can be obtained rapidly, and both normal and drug metabolites can be observed simultaneously. Similar studies should be applicable to a wide range of other drugs

  3. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase.

    Gardner, Carol R; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D; Laskin, Debra L

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK⁻/⁻ mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK⁻/⁻ mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK⁻/⁻ mice. Whereas F4/80⁺ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK⁻/⁻ mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK⁻/⁻ mice treated with acetaminophen. These data

  4. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  5. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  6. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus. PMID:21975853

  7. Over-the-Counter Relief From Pains and Pleasures Alike: Acetaminophen Blunts Evaluation Sensitivity to Both Negative and Positive Stimuli.

    Durso, Geoffrey R O; Luttrell, Andrew; Way, Baldwin M

    2015-06-01

    Acetaminophen, an effective and popular over-the-counter pain reliever (e.g., the active ingredient in Tylenol), has recently been shown to blunt individuals' reactivity to a range of negative stimuli in addition to physical pain. Because accumulating research has shown that individuals' reactivity to both negative and positive stimuli can be influenced by a single factor (an idea known as differential susceptibility), we conducted two experiments testing whether acetaminophen blunted individuals' evaluations of and emotional reactions to both negative and positive images from the International Affective Picture System. Participants who took acetaminophen evaluated unpleasant stimuli less negatively and pleasant stimuli less positively, compared with participants who took a placebo. Participants in the acetaminophen condition also rated both negative and positive stimuli as less emotionally arousing than did participants in the placebo condition (Studies 1 and 2), whereas nonevaluative ratings (extent of color saturation in each image; Study 2) were not affected by drug condition. These findings suggest that acetaminophen has a general blunting effect on individuals' evaluative and emotional processing, irrespective of negative or positive valence. PMID:25862546

  8. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode

    Complexation of Cu ions in a terthiophene carboxylic acid (TTCA) polymer film resulted an enhanced anodic current for acetaminophen oxidation when compared to polymer coated and bare glassy carbon electrodes in human blood and buffer media. Scanning electron microscopy (SEM) and ESCA experiments indicate the involvement of copper in the electrocatalytic oxidation of acetaminophen. No interference was observed from other biologically important and phenolic compounds used with this modified electrode. Especially, the non-interference from N-acetylcysteine, an antidote for the treatment of acetaminophen poisoning, reveals the proposed method's superiority in medicinal applications. In addition, the present modified electrode avoids surface fouling at higher concentrations of acetaminophen. The calibration range obtained with CV was based between 2.0x10-5 and 5.0x10-3 M [r2=0.997 (n=5, R.S.D.=2.5%); DL=5.0x10-6 M (S/N=3)]. The analytical utility of the modified electrode was achieved by analyzing the content of acetaminophen in different drugs without pretreatment using CV and amperometric techniques

  9. Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system

    Razmi, Habib, E-mail: h.razmi@azaruniv.ed [Electrochemistry Research Laboratory, Faculty of Sciences, Azarbaijan University of Tarbiat Moallem, P.O. Box 53714-161, Tabriz (Iran, Islamic Republic of); Habibi, Esmaeil [Electrochemistry Research Laboratory, Faculty of Sciences, Azarbaijan University of Tarbiat Moallem, P.O. Box 53714-161, Tabriz (Iran, Islamic Republic of)

    2010-12-01

    This paper reports the use of a carbon ceramic electrode as a highly-porous substrate for the electrochemical formation of cobalt oxide nanoparticles. The electrocatalyst was characterized by energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry techniques, and it was used in a homemade flow injection analysis (FIA) system for acetaminophen determination using 0.1 M KOH as the carrier solution. The rate constant (k{sub s}) and charge transfer coefficient ({alpha}) were calculated for the electron exchange reaction of the modified film. The kinetic parameters and the mechanism of acetaminophen electrooxidation at the electrode surface were studied by cyclic voltammetry and chronoamperometry. The effects of working potential and flow rate on the performance of the FIA system were studied. Under optimized conditions, the electrode response due to the electrocatalytic oxidation of acetaminophen at 450 mV (vs. SCE) is proportional to the concentration of acetaminophen over a 5-35 {mu}M range with an associated detection limit (S/N = 3) of 0.37 {mu}M and a sensitivity of 0.0296 {mu}A/{mu}M. The relative standard deviation (RSD) was 1.6% for eight replicate measurements. The modified electrode was used to determine the acetaminophen content in tablet samples.

  10. Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system

    This paper reports the use of a carbon ceramic electrode as a highly-porous substrate for the electrochemical formation of cobalt oxide nanoparticles. The electrocatalyst was characterized by energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry techniques, and it was used in a homemade flow injection analysis (FIA) system for acetaminophen determination using 0.1 M KOH as the carrier solution. The rate constant (ks) and charge transfer coefficient (α) were calculated for the electron exchange reaction of the modified film. The kinetic parameters and the mechanism of acetaminophen electrooxidation at the electrode surface were studied by cyclic voltammetry and chronoamperometry. The effects of working potential and flow rate on the performance of the FIA system were studied. Under optimized conditions, the electrode response due to the electrocatalytic oxidation of acetaminophen at 450 mV (vs. SCE) is proportional to the concentration of acetaminophen over a 5-35 μM range with an associated detection limit (S/N = 3) of 0.37 μM and a sensitivity of 0.0296 μA/μM. The relative standard deviation (RSD) was 1.6% for eight replicate measurements. The modified electrode was used to determine the acetaminophen content in tablet samples.

  11. Evaluation of the Hepatoprotective Effects of Lantadene A, a Pentacyclic Triterpenoid of Lantana Plants against Acetaminophen-induced Liver Damage

    Sreenivasan Sasidharan

    2012-11-01

    Full Text Available The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.

  12. Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer overflow components.

    Jung, Chanil; Oh, Jeill; Yoon, Yeomin

    2015-07-01

    The combined coagulation and adsorption of targeted acetaminophen and naproxen using activated biochar and aluminum sulfate were studied under various synthetic "combined sewer overflow" (CSO) conditions. The biochar demonstrated better adsorption performance for both acetaminophen and naproxen (removal, 94.1 and 97.7%, respectively) than that of commercially available powdered activated carbon (removal, 81.6 and 94.1%, respectively) due to superior carbonaceous structure and surface properties examined by nuclear magnetic resonance analysis. The adsorption of naproxen was more favorable, occupying active adsorption sites on the adsorbents by naproxen due to its higher adsorption affinity compared to acetaminophen. Three classified CSO components (i.e., representing hydrophobic organics, hydrophilic organics, and inorganics) played different roles in the adsorption of both adsorbates, resulted in inhibition by humic acid complexation or metal ligands and negative electrostatic repulsion under adsorption and coagulation combined system. Adsorption alone with biochar was determined to be the most effective adsorptive condition for the removal of both acetaminophen and naproxen under various CSO conditions, while both coagulation alone and combined adsorption and coagulation failed to remove the acetaminophen and naproxen adequately due to an increase in ionic strength in the presence of spiked aluminum species derived from the coagulant. PMID:25680690

  13. Gastric emptying in rats following administration of a range of different fats measured as acetaminophen concentration in plasma

    Porsgaard, Trine; Straarup, Ellen Marie; Høy, Carl-Erik

    2003-01-01

    Aim: To investigate the gastric emptying upon administration of ten different fats in order to determine whether major differences in fatty acid profiles resulted in differences in gastric emptying. Methods: Gastric emptying was measured as the appearance of acetaminophen in plasma which represents...... an indirect measure of gastric emptying. Emulsified fats with added acetaminophen were fed by gavage to rats, and the plasma concentration of acetaminophen was followed for 3 h by repeated blood sampling from the carotid artery. The fats administered included rapeseed, corn, and fish oils, lard, and cocoa...... in gastric emptying between the groups fed the different fats, except for the emptying of tridecanoin (tri-10:0) that was statistically significantly slower than that of randomized oil, cocoa butter, and rapeseed oil (p emptying of tri-10:0 could be caused by a lower caloric intake...

  14. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults

    Carroll, C C; Dickinson, J M; LeMoine, J K;

    2011-01-01

    Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance...... group, and this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the acetaminophen group (3%, P <0.05), primarily due to increases in the mid (7%, P <0.05) and distal (8%, P <0.05) tendon regions. Correspondingly, tendon signal intensity increased with....... These responses were generally uninfluenced by ibuprofen consumption. In the acetaminophen group, tendon deformation and strain increased 20% (P <0.05) and stiffness (-17%, P <0.05) and modulus (-20%, P <0.05) decreased with training. These data suggest that 3 mo of knee extensor resistance training in...

  15. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations ≥ 75 μg/ml and ≥ 750 μg/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 μg/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [14C]-leucine incorporation. At the level present in a modulating concentration (50 μg/ml) of the extract, ginkgolide A (0.55 μg/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A

  16. Effect of over-the-counter dosages of naproxen sodium and acetaminophen on plasma lithium concentrations in normal volunteers.

    Levin, G M; Grum, C; Eisele, G

    1998-06-01

    Prescription doses of nonsteroidal antiinflammatory agents have been shown to decrease clearance and increase plasma concentrations of lithium. This study was designed to evaluate whether over-the-counter (OTC) doses of naproxen sodium or acetaminophen have the same potential to affect lithium concentration. This was a prospective, crossover, 3-phase study conducted at the Clinical Pharmacology Studies Unit of the Albany Medical Center Hospital during July and August of 1995. The 3-phase study comprised the following: phase 1, lithium carbonate (300 mg every 12 hours) alone for 7 days; phase 2, lithium and either naproxen sodium (220 mg every 8 hours) or acetaminophen (650 mg every 6 hours) for 5 days; and phase 3, a 2-day washout period followed by a crossover to lithium with the alternate drug (acetaminophen or naproxen sodium) for 5 days. Twelve healthy male volunteers were recruited, nine of whom completed the study and were included in the statistical analysis. Mean (+/-SD) plasma lithium concentrations for subjects in treatment group 1 (lithium in phase 1, lithium and naproxen sodium in phase 2, lithium and acetaminophen in phase 3) were 0.38 (+/-0.11), 0.40 (+/-0.07), and 0.36 (+/-0.11) mEq/L, respectively. Mean plasma lithium concentrations for subjects in treatment group 2 (lithium in phase 1, lithium and acetaminophen in phase 2, lithium and naproxen sodium in phase 3) were 0.43 (+/-0.05), 0.48 (+/-0.10), and 0.48 (+/-0.05) mEq/L, respectively. One-way repeated-measures analysis of variance and paired t-test showed no statistically significant differences (p>0.05) in plasma lithium concentrations during any phase of the study. The results of this study demonstrated that OTC doses of naproxen sodium and acetaminophen did not increase plasma lithium concentrations in these volunteers when taken for short periods of time. PMID:9617983

  17. [Good use and knowledge of paracetamol (acetaminophen) among self-medicated patients: Prospective study in community pharmacies].

    Severin, Anne-Elise; Petitpain, Nadine; Scala-Bertola, Julien; Latarche, Clotilde; Yelehe-Okouma, Melissa; Di Patrizio, Paolo; Gillet, Pierre

    2016-06-01

    Acetaminophen (paracetamol), the highest over-the-counter (OTC) selling drug in France, is also the first cause of acute hepatic failure. We aimed to assess the good use and the knowledge of acetaminophen in a setting of urban self-medicated patients. We conducted a prospective observational study in randomly selected community pharmacies of Metz (France) agglomeration. Patients coming to buy OTC acetaminophen for themselves or their family had to answer to an anonymous autoquestionnaire. Responses were individually and concomitantly analyzed through 3 scores: good use, knowledge and overdosage. Twenty-four community pharmacies participated and 302 patients were interviewed by mean of a dedicated questionnaire. Most of patients (84.4%) could be considered as "good users" and independent factors of good use were (i) a good knowledge of acetaminophen (OR=5.3; P<0.0001) and more surprisingly; (ii) the fact of having no children (parentality: OR=0.1; P=0.006). Responses corresponding to involuntary overdosage were mostly due to a too short interval between drug intakes (3hours). Only 30.8% of patients were aware of liver toxicity of acetaminophen and only 40.7% knew the risk of the association with alcohol. Both good use and knowledge were significantly higher in patients looking for information from their pharmacist, physician and package leaflet. Patients should definitely be better informed about acetaminophen to warrant a better safety of its consumption. Pharmacists and physicians have to remind patients the risk factors of unintentional overdose and liver toxicity. Package leaflets have also to be more informative. PMID:27235652

  18. Comparison of the effects of preemptive acetaminophen, ibuprofen, and meloxicam on pain after separator placement: a randomized clinical trial

    Zarif Najafi, Hooman; Oshagh, Morteza; Salehi, Parisa; Babanouri, Neda; Torkan, Sepideh

    2015-01-01

    Background This study aims to evaluate and compare the effect of pre-procedural administration of acetaminophen, ibuprofen, and meloxicam in reducing pain after separator placement. Methods Three hundred twenty-one patients who needed orthodontic treatment and aged above 15 were randomly assigned to one of the three study groups: group A: 650 mg acetaminophen, group B: 400 mg ibuprofen, and group C: 7.5 mg meloxicam. All subjects received a single dose of medication 1 h prior to separator pla...

  19. The Analgesic Efficacy of Intra-Articular Acetaminophen in an Experimental Model of Carrageenan-Induced Arthritis

    Arun, Oguzhan; Canbay, Ozgur; Celebi, Nalan; Sahin, Altan; Konan, Ali; Atilla, Pergin; Aypar, Ulku

    2013-01-01

    BACKGROUND: Acetaminophen is one of the most common drugs used for the treatment of pain and fever.OBJECTIVES: To examine the effects of intra-articular (IA) acetaminophen on carrageenan-induced arthritic pain-related behaviour and spinal c-Fos expression in rats.METHODS: The present study was performed using 20 Sprague Dawley rats. Forty microlitres of IA 0.9% NaCl was injected in the control group, and 40 μL of IA carrageenan was injected in the carrageenan group. One hour after carrageenan...

  20. Synthesis of singly 2H-, 3H-, and 14C- and doubly labeled acetaminophen, phenacetin, and p-acetanisidine

    Several efficient procedures for the synthesis of deuterium, tritium, and 14C-labeled acetaminophen, phenacetin, and p-acetanisidine are described. p-Aminophenol was acylated by the appropriate acetic anhydride under mild conditions yielding labeled acetaminophen. With O-alkylation using NaCH2SOCH3 and appropriate labeled and unlabeled alkyl halides, labeled phenacetin and p-acetanisidine were also obtained. Phenacetin labeled both with 14C on the acyl group and deuterium on the ethoxy group was synthesized in high yield by acylation of p-phenetidine-d5. The last compound was obtained by acid hydrolysis of phenacetin-d5 synthesized previously. (author)

  1. Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification.

    Cao, Fei; Zhang, Mengtao; Yuan, Shoujun; Feng, Jingwei; Wang, Qiquan; Wang, Wei; Hu, Zhenhu

    2016-06-01

    As a high-consumption drug in the world, acetaminophen (AAP) has been widely detected in natural waters and wastewaters. Its reactivity and the transformation products formed during chlorination may greatly threaten the safety of drinking water. The reaction kinetics of AAP during chlorination was investigated in this study. The results showed that the reaction kinetics could be well described with a kinetics model of -d[AAP]/dt = k app[AAP]t (0.63)[Cl2]t (1.37). The values of apparent rate constant (k app) were dependent on reaction temperature, ammonium, and pH. With the increase in reaction temperature from 5.0 ± 1.0 to 40.0 ± 1.0 °C, the removal efficiency of AAP increased from 60 to 100 %. When ammonium was present in the solution at 2.0 mg/L, the transformation of AAP was inhibited due to the rapid formation of chloramines. The maximum of k app was 0.58 × 10(2) M(-1) · min(-1) at pH 9.0, and the minimum was 0.27 M(-1) · min(-1) at pH 11.0. A low mineralization of AAP (about 7.2 %) with chlorination was observed through TOC analysis, implying the formation of plenty of transformation products during chlorination. The main transformation products, hydroquinone and two kinds of chlorinated compounds, monochlorinated acetaminophen and dichlorinated acetaminophen, were detected in gas chromatography-mass spectrometry analysis. PMID:26983813

  2. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention.

    Miaozong Wu

    Full Text Available BACKGROUND: Aged skeletal muscle is characterized by an increased incidence of metabolic and functional disorders, which if allowed to proceed unchecked can lead to increased morbidity and mortality. The mechanism(s underlying the development of these disorders in aging skeletal muscle are not well understood. Protein kinase B (Akt/PKB is an important regulator of cellular metabolism and survival, but it is unclear if aged muscle exhibits alterations in Akt function. Here we report a novel dysfunction of Akt in aging muscle, which may relate to S-nitrosylation and can be prevented by acetaminophen intervention. PRINCIPAL FINDINGS: Compared to 6- and 27-month rats, the phosphorylation of Akt (Ser473 and Thr308 was higher in soleus muscles of very aged rats (33-months. Paradoxically, these increases in Akt phosphorylation were associated with diminished mammalian target of rapamycin (mTOR phosphorylation, along with decreased levels of insulin receptor beta (IR-beta, phosphoinositide 3-kinase (PI3K, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and phosphorylation of phosphoinositide-dependent kinase-1 (PDK1 (Ser241. In vitro Akt kinase measurements and ex vivo muscle incubation experiments demonstrated age-related impairments of Akt kinase activity, which were associated with increases in Akt S-nitrosylation and inducible nitric oxide synthase (iNOS. Impairments in Akt function occurred parallel to increases in myocyte apoptosis and decreases in myocyte size and the expression of myosin and actin. These age-related disorders were attenuated by treating aged (27-month animals with acetaminophen (30 mg/kg body weight/day for 6-months. CONCLUSIONS: These data demonstrate that Akt dysfunction and increased S-nitrosylation of Akt may contribute to age-associated disorders in skeletal muscle and that acetaminophen may be efficacious for the treatment of age-related muscle dysfunction.

  3. Photodegradation of acetaminophen in TiO{sub 2} suspended solution

    Zhang Xu [School of Resources and Environmental Science, Hubei Key Laboratory of Biomass-Resources, Wuhan University, Wuhan 430079 (China); Wu Feng [School of Resources and Environmental Science, Hubei Key Laboratory of Biomass-Resources, Wuhan University, Wuhan 430079 (China)], E-mail: fengwu@whu.edu.cn; Wu Xuwei; Chen Pengyu; Deng Nansheng [School of Resources and Environmental Science, Hubei Key Laboratory of Biomass-Resources, Wuhan University, Wuhan 430079 (China)

    2008-09-15

    This study investigated the photocatalytic degradation of acetaminophen (APAP) in TiO{sub 2} suspended solution under a 250 W metal halide lamp. The influence of some parameters on the degradation of acetaminophen was studied and described in details, such as initial APAP concentration, initial pH value and TiO{sub 2} dosage. After 100 min irradiation, about 95% of APAP is decomposed in the 1.0 g L{sup -1} TiO{sub 2} aqueous solution with an initial concentration of 100 {mu}mol L{sup -1}. The effect of adsorption at three different pH values has also been analyzed and it has been conducted that pH 3.5, at which APAP was readily adsorbed also degraded at a faster rate. Reaction rate at pH 6.9 and pH 9.5 was 2.84 and 2.96 {mu}M min{sup -1}, respectively. Direct hole (h{sup +}) oxidation and ipso-substitution was found to be the main initial step for APAP degradation. Main reaction intermediates and products were identified by GC/MS analysis. The mechanism of acetaminophen photocatalytic degradation in TiO{sub 2} suspended solution was studied not only experimentally but also theoretically by calculating the frontier electron density of APAP. The results obtained indicated that TiO{sub 2} photocatalytic degradation is a highly effective way to remove APAP from wastewater and drinking water without any generation of more toxic products.

  4. CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes

    CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced liver injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury

  5. Bactrian ("double hump") acetaminophen pharmacokinetics: a case series and review of the literature.

    Hendrickson, Robert G; McKeown, Nathanael J; West, Patrick L; Burke, Christopher R

    2010-09-01

    After acute ingestion, acetaminophen (APAP) is generally absorbed within 4 h and the APAP concentration ([APAP]) slowly decreases with a predictable half-life. Alterations in these pharmacokinetic principles have been rarely reported. We report here three cases of an unusual double hump, or Bactrian, pattern of [APAP]. We review the literature to describe the case characteristics of these rare cases. A 38-year-old woman ingested 2 g hydrocodone/65 g acetaminophen. Her [APAP] peaked at 289 mcg/mL (8 h), decreased to 167 mcg/mL (31 h), then increased to 240 mcg/mL (39 h). She developed liver injury (peak AST 1603 IU/L; INR1.6). A 25-year-old man ingested 2 g diphenhydramine/26 g APAP. His [APAP] peaked at 211 mcg/mL (15 h), decreased to 185 mcg/mL (20 h), and increased again to 313 mcg/mL (37 h). He developed liver injury (peak AST 1153; INR 2.1). A 16-year-old boy ingested 5 g diphenhydramine and 100 g APAP. His [APAP] peaked at 470 mcg/mL (25 h), decreased to 313 mcg/mL (36 h), then increased to 354 mcg/mL (42 h). He developed liver injury (peak AST 8,686 IU/L; peak INR 5.9). We report three cases of Bactrian ("double hump") pharmacokinetics after massive APAP overdoses. Cases with double hump pharmacokinetics may be associated with large ingestions (26-100 g APAP) and are often coingested with antimuscarinics or opioids. Several factors may contribute to these altered kinetics including the insolubility of acetaminophen, APAP-induced delays in gastric emptying, opioid or antimuscarinic effects, or enterohepatic circulation. Patients with double hump APAP concentrations may be at risk for liver injury, with AST elevations and peaks occurring later than what is typical for acute APAP overdoses. PMID:20446076

  6. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity

    Yang Runkuan; Zhang Shutian; Cotoia Antonella; Oksala Niku; Zhu Shengtao; Tenhunen Jyrki

    2012-01-01

    Abstract Background Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Necrotic tissue releases high mobility group B1 (HMGB1), and HMGB1 contributes to liver injury. Even though blockade of HMGB1 does not protect against APAP-induced acute liver injury (ALI) at 9 h time point, the later time points are not studied and the role of HMGB1 in APAP overdose is unknown, it is possible that neutralization of HMGB1 might improve hepatocyte regeneration. This study aims to test whethe...

  7. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode

    Ciprian Radovan; Codruţa Cofan

    2008-01-01

    Cyclic voltammetry (CV) and chronoamperometry (CA) have been used to sense and determine simultaneously L-ascorbic acid (AA) and acetaminophen (AC) at a boron-doped diamond electrode (BDDE) in a Britton-Robinson buffer solution. The calibration plots of anodic current peak versus concentration obtained from CV and CA data for both investigated compounds in single and di-component solutions over the concentration range 0.01 mM – 0.1 mM proved to be linear, with very good correlation param...

  8. The Simultaneous Determination of Five Components Including Acetaminophen by Ridge Regression Spectrophotometry

    2001-01-01

    Ridge regression spectrophotometry (LHG) is used for the simultaneous determination of five components (acetaminophen, p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin) in cough syrup. The computer program of LHG is based on VB language.The difficulties in overlapping of absorption spectrums of five compounds are overcome by this procedure. The experimental results show that the average recovery of each component is in the range from 97.9% to 103.3% and each component obtains satisfactory results without any pre-separation.

  9. Serum acetaminophen assay using activated charcoal adsorption and gas chromatography without derivatization.

    Jeevanandam, M; Novic, B; Savich, R; Wagman, E

    1980-01-01

    A quantitative assay of acetaminophen in serum has been developed. The drug, together with an internal standard 2-acetamidophenol, is adsorbed on activated charcoal and then extracted into a mixture of ethyl acetate and isopropanol. This extract is then analyzed, without any derivatization, by gas chromatography. The isothermal analysis yielded a good, highly reproducible separation. The drug peak was symmetrical and without any tailing. The peak height response ratio was found to be linear with concentrations ranging from 25-500 ng/L. No interference was observed with the various drugs or metabolites which are commonly encountered in human serum. PMID:7421146

  10. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1α and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1α and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1α or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: → These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. → Factors released from acetaminophen-injured hepatocytes induce macrophage ROS

  11. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats

    Folarin, Rachael O.; Omirinde, Jamiu O.; Bejide, Ronald; Isola, Tajudeen O.; Usende, Levi I.; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for...

  12. Protective effects of 2,4-dihydroxybenzophenone against acetaminophen-induced hepatotoxicity in mice

    Yue-Ying He; Bao-Xu Zhang; Feng-Lan Jia

    2011-01-01

    AIM: To examine the effects of 2,4-dihydroxybenzophenone (BP-1), a benzophenone derivative used as an ultraviolet light absorbent, on acetaminophen (APAP)-induced hepatotoxicity in C57BL/6J mice. METHODS: Mice were administered orally with BP-1 at doses of 200, 400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP (350 mg/kg body weight) was given subcutaneously. Twenty four hours after APAP intoxication, the serum enzyme including serum alaine ami...

  13. The analgesic efficacy of etoricoxib compared with oxycodone/acetaminophen in an acute postoperative pain model: a randomized, double-blind clinical trial.

    Chang, David J; Desjardins, Paul J; King, Thomas R; Erb, Tara; Geba, Gregory P

    2004-09-01

    Our objective in this study was to compare the analgesic effects of etoricoxib and oxycodone/acetaminophen in a postoperative dental pain model. Patients experiencing moderate to severe pain after extraction of two or more third molars were randomized to single doses of etoricoxib 120 mg (n = 100), oxycodone/acetaminophen 10/650 mg (n = 100), or placebo (n = 25). The primary end-point was total pain relief over 6 h. Other end-points included patient global assessment of response to therapy; onset, peak, and duration of effect; and rescue opioid analgesic use. Active treatments were statistically significantly superior to placebo for all efficacy measures. Total pain relief over 6 h for etoricoxib was significantly more than for oxycodone/acetaminophen (P acetaminophen by 5 min. The peak effect was similar for both drugs. Compared with oxycodone/acetaminophen patients, etoricoxib patients experienced a longer analgesic duration, had a smaller percentage requiring rescue opioids during 6 and 24 h, and required less rescue analgesia during 6 and 24 h. Oxycodone/acetaminophen treatment resulted in more frequent adverse events (AEs), drug-related AEs, nausea, and vomiting compared with etoricoxib treatment. In conclusion, etoricoxib 120 mg provided superior overall efficacy compared with oxycodone/acetaminophen 10/650 mg and was associated with significantly fewer AEs. PMID:15333415

  14. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug

  15. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4), was incorporated into TiO2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO2/[BMIM]BF4/GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF4. The obtained nano‐TiO2/[BMIM]BF4/GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO2/[BMIM]BF4/GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO2/[BMIM]BF4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 M. The estimated detection limit was 1.0 × 10−8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO2/[BMIM]BF4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  16. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  17. Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen

    A carbon-paste electrode modified with a novel molybdenum (VI) complex and carbon nanotubes have been applied to the electrocatalytic oxidation of dopamine (DA) which reduced the overpotential by about 125 mV with obviously increase the current response. Due to its strong electrocatalytic activity towards DA, the modified carbon-paste electrode can resolve the overlapped voltammetric waves of DA and acetaminophen (AC) into two well-defined voltammetric peaks with peak-to-peak separation in potentials of about 230 mV. This property allows to selective determination of DA in the presence of AC. The transfer coefficient (a) for the electrocatalytic oxidation of DA and diffusion coefficient of this substance under the experimental conditions were also investigated. In phosphate buffer solution of pH 7.0, the oxidation current increased linearly with two concentration intervals of DA, one is 0.1 to 40.0 μM and, the other is 40.0 to 800.0 μM. The detection limit (3σ) obtained by DPV was 76.0 nM. The proposed method was successfully applied to the determination of DA, and AC in some commercial pharmaceutical samples. - Highlights: ► A carbon paste electrode modified with a molybdenum (VI) complex and CNTs have been fabricated. ► The electrode reduced the overpotential for electrocatalytic oxidation of dopamine by about 125 mV. ► The electrode resolved overlapped voltammetric waves of dopamine and acetaminophen.

  18. Hepatoprotective and anti-oxidant activities of Glossogyne tenuifolia against acetaminophen-induced hepatotoxicity in mice.

    Tien, Yu-Hsiu; Chen, Bing-Huei; Wang Hsu, Guoo-Shyng; Lin, Wan-Teng; Huang, Jui-Hua; Lu, Yi-Fa

    2014-01-01

    The present study investigated the anti-oxidative and hepatoprotective effects of Glossogyne tenuifolia (GT) Cassini, against acetaminophen-induced acute liver injury in BALB/c mice. The extracts of GT by various solvents (hot water, 50% ethanol and 95% ethanol) were compared for their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, total phenolic content, and total anti-oxidant capacity. The results showed that hot water (HW) extracts of GT contained high levels of phenolics and exerted an excellent anti-oxidative capacity; thus, these were used in the animal experiment. The male BALB/c mice were randomly divided into control group, acetaminophen (APAP) group, positive control group and two GT groups at low (GT-L) and high (GT-H) dosages. The results showed that mice treated with GT had significantly decreased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). GT-H increased glutathione levels and the ratios of reduced glutathione and oxidized glutathione (GSH/GSSG) in the liver, and inhibited serum and lipid peroxidation. This experiment was the first to determine phenolic compounds, chlorogenic acid and luteolin-7-glucoside in HW extract of GT. In conclusion, HW extract of GT may have potential anti-oxidant capacity and show hepatoprotective capacities in APAP-induced liver damaged mice. PMID:25384447

  19. Application of toxicogenomics in hepatic systems toxicology for risk assessment: Acetaminophen as a case study

    Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.

  20. Strong opioids for noncancer pain due to musculoskeletal diseases: Not more effective than acetaminophen or NSAIDs.

    Berthelot, Jean-Marie; Darrieutort-Lafitte, Christelle; Le Goff, Benoit; Maugars, Yves

    2015-12-01

    The classification of morphine as a step III analgesic, based on pharmacological data, creates a strong bias toward a belief in the efficacy of this drug. However, double-blind emergency-room trials showed similar levels of pain relief with intravenous acetaminophen as with intravenous morphine in patients with renal colic, low back pain or acute limb pain. In patients with chronic noncancer low back pain, morphine and other strong opioids in dosages of up to 100mg/day were only slightly more effective than their placebos, no more effective than acetaminophen, and somewhat less effective than nonsteroidal anti-inflammatory drugs (NSAIDs). In patients with osteoarthritis, strong opioids were not more effective than NSAIDs and, in some studies, than placebos. The only randomized controlled trial in patients with sciatica found no difference with the placebo. Chronic use of strong opioids can induce hyperalgesia in some patients. Hyperpathia with increased sensitivity to cold leading the patient to request higher dosages should suggest opioid-induced hyperalgesia. Pain specialists in the US have issued a petition asking that strong opioids be used in dosages no higher than 100mg/day of morphine-equivalent, in an effort to decrease the high rate of mortality due to the misuse and abuse of strong opioids (10,000 deaths/year in the US). Healthcare providers often overestimate the efficacy of step III analgesics, despite pain score decreases of only 0.8 to 1.2 points. PMID:26453108

  1. Hyperlactatemia in patients with non-acetaminophen-related acute liver failure

    Pilar Taurá; Graciela Martinez-Palli; Julia Martinez-Ocon; Joan Beltran; Gerard Sanchez-Etayo; Jaume Balust; Teresa Anglada; Antoni Mas; Juan-Carlos Garcia-Valdecasas

    2006-01-01

    AIM: To characterize hyperlactatemia in patients with non-acetaminophen acute liver failure (ALF) in an attempt to clarify the mechanisms implicated and the role as a prognosis factor.METHODS: In the setting of liver transplantation, 63 consecutive patients with non-acetaminophen acute liver failure were studied in relation to tissue oxygenation,hemodynamic and metabolic parameters. Before and after transplantation, the number of infected patients and outcome were registered.RESULTS: Acute ALF showed higher levels of lactate than subacute ALF (5.4±1 mmol/L versus 2.2 ± 0.6 mmol/L, P=0.01). Oxygenation parameters were within the normal range. Lactate levels showed good correlation with respiratory quotient (r= 0.759, P< 0.005), mean glucose administration (r=0.664, P=0.01) and encephalopathy (r=0.698, P= 0.02), but not with splanchnic arteriovenous difference in PCO2, pH and the presence of infection (P=0.1). Portal vein lactate was higher (P< 0.05) than arterial and mixed venous lactate,suggesting its production of hyperlactatemia in the intestine and spleen. The presence of infection was an independent predictor of survival. CONCLUSION: Hyperlactatemia is not a prognosis factor due to byproduct of the overall acceleration in glycolysis.

  2. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Michael L. AVERY, John D. EISEMANN, Kandy L. KEACHER,Peter J. SAVARIE

    2011-10-01

    Full Text Available Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools, including toxicants. In Florida, using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis, we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species. Of the animals that received acetaminophen, none died except at the highest test dose, 240 mg per lizard, which is not practical for field use. Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard, equivalent to about 0.5% in bait which is lower than currently used in commercial baits for commensal rodent control. We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5: 625–629, 2011].

  3. Evaluation of the antipyretic effect of ketorolac, acetaminophen, and placebo in endotoxin-induced fever.

    Vargas, R; Maneatis, T; Bynum, L; Peterson, C; McMahon, F G

    1994-08-01

    The authors studied the antipyretic effect of three intramuscular doses of ketorolac (15, 30, and 60 mg), acetaminophen 650 mg PO, and placebo in healthy male volunteers using an endotoxin-induced fever model. In this double-blind, double-dummy, parallel study, subjects were assigned randomly with equal probability to one of the above treatment groups. Thirty minutes after study medication administration, a 20 unit per kilogram dose of reference standard endotoxin (RSE) was administered intravenously, and temperature was determined every 15 minutes for an 8-hour period. Compared with placebo, all active treatment groups demonstrated a statistically significant reduction in both adjusted area under the temperature-by-time curve (AAUC) and the maximum increase over baseline temperature (dTmax). Furthermore, the 30 mg intramuscular dose of ketorolac demonstrated approximately the same antipyretic activity as the 650 mg oral dose of acetaminophen, and there was a statistically significant dose response across the three ketorolac doses studied (P < .0001). The majority of side effects reported during this study were symptoms associated with fever, including chills, headache, myalgia, and dizziness, all of which are effects of RSE. The frequency of side effects tended to be less in the treatment groups with the greatest antipyretic activity. PMID:7962674

  4. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC, polyvinyl pyrrolidone (PVP, tragacanth, and magnesium aluminum silicate (Veegum were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F, redispersibility (n, and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions.

  5. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Michael L. AVERY; John D. EISEMANN; Kandy L. KEACHER; Peter J. SAVARIE

    2011-01-01

    Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools,including toxicants.In Florida,using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis,we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species.Of the animals that received acetaminophen,none died except at the highest test dose,240 mg per lizard,which is not practical for field use.Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard,equivalent to about 0.5% in bait which is lower than currently used in commercial baits for eommensal rodent control.We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5):625-629,2011].

  6. Radiosensitization of acetaminophen on human glioma cell lines and its mechanism

    Objective: To investigate the radiosensitivity enhancement and underlying mechanism of acetaminophen, non-selective cyclooxygenase (COX)-2 inhibitor, on human glioma cell lines expressing differential COX-2 levels. Methods: The SHG-44 cells were irradiated with a dose of 10 Gy using 6 MV X-rays generated by linear accelerator. The progeny of the cells were cultured and named SHG-4410Gy. COX-2 mRNA and protein expression of SHG-44 and SHG-4410Gy were detected by RT-PCR and immunocytochemisty staining. Clongenic assay was used for radiation survival experiment. Results: The declined radiosensitivity was detected in the SHG-4410Gy. RT-PCR showed that the expression of COX-2 mRNA in SHG-4410Gy significantly higher than that in SHG-44 cells (P0) or 1.11(Dq) in SHG-44 cells and 1.12(D0) or 3.01 (Dq) in SHG-4410Gy. Conclusions: SHG-4410Gy cells are more radio-resistant, and one of the fundamental mechanisms might be the upregulation of COX-2 expression in protein and mRNA levels. Acetaminophen could enhance the radisensitivity of glioma cells, especially the surviving progeny from the irradiated SHG-44 cells. (authors)

  7. Controlled production of the elusive metastable form II of acetaminophen (paracetamol): a fully scalable templating approach in a cooling environment.

    Agnew, Lauren R; Cruickshank, Dyanne L; McGlone, Thomas; Wilson, Chick C

    2016-05-31

    A scalable, transferable, cooling crystallisation route to the elusive, metastable, form II of the API acetaminophen (paracetamol) has been developed using a multicomponent "templating" approach, delivering 100% polymorphic phase pure form II at scales up to 120 g. Favourable solubility and stability properties are found for the form II samples. PMID:26926388

  8. Identification and Quantitative Analysis of Acetaminophen, Acetylsalicylic Acid, and Caffeine in Commercial Analgesic Tablets by LC-MS

    Fenk, Christopher J.; Hickman, Nicole M.; Fincke, Melissa A.; Motry, Douglas H.; Lavine, Barry

    2010-01-01

    An undergraduate LC-MS experiment is described for the identification and quantitative determination of acetaminophen, acetylsalicylic acid, and caffeine in commercial analgesic tablets. This inquiry-based experimental procedure requires minimal sample preparation and provides good analytical results. Students are provided sufficient background…

  9. Protective Properties of Flavonoid Extract of Coagulated Tofu (Curdled Soy Milk Against Acetaminophen-Induced Liver Injury in Rats

    Ndatsu Yakubu

    2016-01-01

    Full Text Available The total flavonoid contents of the various coagulated tofu and the hepatoprotective potential of all tofu flavonoid extracts were investigated. Tofu was prepared from locally sourced coagulants (steep water, alum, lemon, and lemon peel ash extract. Total flavonoid contents of all coagulated tofu were investigated as established in vitro flavonoid assay. The hepatoprotective activities of tofu flavonoid extracts against acetaminophen-induced hepatic cell toxicity in rats was also investigated in this study. The activity was analyzed by assessing the levels of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP and lactate dehydrogenase (LDH. The concentrations of the serum sugar, total protein, albumin, and cholesterol as well as prothrombin time (PT of experimental rats with histopathological analysis were also conducted. The range of the total flavonoid contents of tofu was 4.3-6.4 mg/g. Tofu flavonoid extracts significantly reduced the activities of serum AST, ALT, ALP, and LDH; total cholesterol, and sugar levels, but total protein and albumin concentrations increased compared to acetaminophen-intoxicated rats. Also, the prothrombin time prolongation of serum in acetaminophen intoxicated rats was reduced. Histology of the liver tissue demonstrated that tofu flavonoid extracts inhibited the acetaminophen-induced hepatic cell necrosis, decreased inflammatory cell infiltration and accelerated hepatocellular regeneration. Therefore, all tofus exhibited high total flavonoid contents, and the tofu supplement in human diets is highly recommended as it can be used as a functional food to prevent liver injuries.

  10. Ultra Low-Dose Naloxone and Tramadol/Acetaminophen in Elderly Patients Undergoing Joint Replacement Surgery: A Pilot Study

    Ngozi N Imasogie

    2009-01-01

    Full Text Available OBJECTIVE: A pilot study was conducted to assess whether both the rationale and feasibility exist for future randomized clinical trials to evaluate the combined use of naloxone infusion and tramadol/acetaminophen as opioid-sparing drugs in elderly patients undergoing lower extremity joint replacement surgery.

  11. Modulation of alpha-interferon's antiviral and clinical effects by aspirin, acetaminophen, and prednisone in healthy volunteers.

    Hendrix, C W; Petty, B G; Woods, A; Kuwahara, S K; Witter, F R; Soo, W; Griffin, D E; Lietman, P S

    1995-10-01

    The magnitude and duration of the antiviral and clinical effect of alpha-interferon was measured in healthy volunteers. A single 3 million unit intramuscular dose of interferon was given either alone (controls) or after 72 h of concomitant medications. These medications included either aspirin (650 mg every 4 h), acetaminophen (650 mg every 4 h), or prednisone (40 mg per day). Peripheral blood mononuclear cells were assayed for resistance to vesicular stomatitis virus infection and induction of 2'-5'-oligoadenylate synthetase activity as evidence of interferon's antiviral effect. Co-administration of acetaminophen increased both antiviral parameters by more than 70% (P acetaminophen, aspirin, and prednisone reduced the clinical symptoms by 47% compared to controls (P = 0.03) after interferon dosing, although individual drug comparisons failed to reach statistical significance. Independent of treatment group, the changes in antiviral markers after interferon dosing correlated closely with each other (r = 0.72, P 0.05). Acetaminophen enhances the antiviral effects of a single intramuscular dose of alpha-interferon, considering the parameters measured in these healthy volunteers. PMID:8585766

  12. Acetaminophen (Paracetamol) Use, Measles-Mumps-Rubella Vaccination, and Autistic Disorder: The Results of a Parent Survey

    Schultz, Stephen T.; Klonoff-Cohen, Hillary S.; Wingard, Deborah L.; Akshoomoff, Natacha A.; Macera, Caroline A.; Ji, Ming

    2008-01-01

    The present study was performed to determine whether acetaminophen (paracetamol) use after the measles-mumps-rubella vaccination could be associated with autistic disorder. This case-control study used the results of an online parental survey conducted from 16 July 2005 to 30 January 2006, consisting of 83 children with autistic disorder and 80…

  13. Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples

    Robim M. Rodrigues

    2016-06-01

    Full Text Available This data set is composed of transcriptomics analyses of (i liver samples from patients suffering from acetaminophen-induced acute liver failure (ALF and (ii hepatic cell systems exposed to acetaminophen and their respective controls. The in vitro systems include widely employed cell lines i.e. HepaRG and HepG2 cells as well as a novel stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC. Data from primary human hepatocytes was also added to the data set “Open TG-GATEs: a large-scale toxicogenomics database” (Igarashi et al., 2015 [1]. Changes in gene expression due to acetaminophen intoxication as well as comparative information between human in vivo and in vitro samples are provided. The microarray data have been deposited in NCBI׳s Gene Expression Omnibus and are accessible through GEO Series accession number GEO: GSE74000. The provided data is used to evaluate the predictive capacity of each hepatic in vitro system and can be directly compared with large-scale publically available toxicogenomics databases. Further interpretation and discussion of these data feature in the corresponding research article “Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems” (Rodrigues et al., 2016 [2].

  14. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Howie Forbes

    2010-03-01

    Full Text Available Abstract Background The development of effective therapies for acute liver failure (ALF is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein. Control pigs (n = 4 survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8 +/- 5.9 vs 59 +/- 2.0 mmHg, increased cardiac output (7.26 +/- 1.86 vs 3.30 +/- 0.40 l/min and decreased systemic vascular resistance (8.48 +/- 2.75 vs 16.2 +/- 1.76 mPa/s/m3. Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636 +/- 95 vs 301 +/- 26.9 mPa/s/m3 observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23 +/- 0.05 vs 7.45 +/- 0.02 and prothrombin time (36 +/- 2 vs 8.9 +/- 0.3 seconds compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5 +/- 210 vs 42 +/- 8.14 coincided with a marked reduction in serum albumin (11.5 +/- 1.71 vs 25 +/- 1 g/dL in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2 +/- 36.5 vs 131.6 +/- 9.33 μmol/l. Liver histology revealed evidence of severe centrilobular necrosis

  15. Prophylactic Use of Oral Acetaminophen or IV Dexamethasone and Combination of them on Prevention Emergence Agitation in Pediatric after Adenotonsillectomy

    Parvin Sajedi

    2014-01-01

    Full Text Available Background: The present study was aimed to evaluate the efficacy of acetaminophen plus dexamethasone on post-operative emergence agitation in pediatric adenotonsillectomy. Methods: A total of 128 patients were randomized and assigned among four groups as: Intravenous (IV dexamethasone, oral acetaminophen, IV dexamethasone plus oral acetaminophen, placebo. Group 1 received 0.2 mg/kg dexamethasone plus 0.25 mg/kg strawberry syrup 2 h before surgery. Group 2 received 20 mg/kg oral acetaminophen (0.25 ml/kg with 0.05 ml/kg IV normal saline. Group 3 received 20 mg/kg acetaminophen and 0.2 mg/kg dexamethasone intravenously. Group 4 received 0.25 ml/kg strawberry syrup and 0.05 ml/kg normal saline. Agitation was measured according to Richmond agitation sedation score in the post anesthetic care unit (PACU after admission, 10, 20 and 30 min after extubation. Pain score was measured with FACE scale. Nurse satisfaction was measured with verbal analog scale. If agitation scale was 3 ≥ or pain scale was 4 ≥ meperidine was prescribed. If symptoms did not control wit in 15 min midazolam was prescribed. Patients were discharged from PACU according Modified Alderet Score. Data were analyzed with ANOVA, Chi-square, and Kruskal-Wallis among four groups. P < 0.05 was considered statistically significant. Results: A total of 140 patients were recruited in the study, which 12 of them were excluded. Thus, 128 patients were randomized and assigned among four groups. The four treatment groups were generally matched at baseline data. Median of pain score in 0, 10, 20 and 30 min after extubation were different between each study group with the control group (<0.001, 0.003 respectively. Also median of agitation score in 0, 10, 20 and 30 min after extubation were different between each study group with the control group (<0.001. Incidence of pain and incidence of agitation after extubation were not statistically identical among groups (P < 0.001 and P = 0

  16. A comparative study on Benzydamine HCL 0.5% and Acetaminophen Codeine in pain reduction following periodontal surgery

    Khoshkhoonejad AA.

    2004-07-01

    Full Text Available Statement of Problem: Systemic analgesics are frequently prescribed for pain reduction following periodontal surgery. This type of treatment, however, brings about some disadvantages due to its late effect and inherent side effects. Benzydamine hydrochloride mouth wash is a non steroidal anti-inflammatory drug with local anaesthetic properties. Side effects of benzydamine are minor such as tissue numbness, burning and stinging. It brings relief to pain and inflammation rapidly. Purpose: The goal of this study was to compare benzydamine HCL 0.15% and Acetaminophen codeine as analgesics following periodontal surgery. Materials and Methods: This clinical study was performed on 18 patients referred to periodontics Department, Faculty of Dentistry, Tehran University of Medical Sciences. All patients were affected with chronic mild or moderate periodontitis and required surgery at least at two oral sites with similar lesions. Each patient received benzdamine HCL after first surgery and Acetaminophen codein following second operation. Pain reduction was evaluated by Visual Analog Scale (VAS. Data were analyzed with Wilcoxon-Signed and Mann-Whitney non-parametric tests. Results: Analgesic effect of Acetaminophene codeine was significantly more than that of benzydamine HCL following Reriodontal surgery (P=0.008. No significant difference was found between analgesic effects of Acetaminophene codeine and benzydamine HCL in patients with chronic mild periodontitis (P=0.9, and in cases that osteoplasty (P=0-31 or no osseous surgery (P=0.18 were performed. Conclusion: In cases with mild post-operative pain following periodontal surgery, Benzydamine HCL and be prescribed as an analgesic. However, in other cases this mouth wash should be prescribed along with Acetaminophene codein to reduce systemic drugs consumption.

  17. Pooled post hoc analysis of population pharmacokinetics of oxycodone and acetaminophen following a single oral dose of biphasic immediate-release/extended-release oxycodone/acetaminophen tablets

    Franke RM

    2015-08-01

    Full Text Available Ryan M Franke, Terri Morton, Krishna Devarakonda Department of Clinical Pharmacology, Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA Abstract: This analysis evaluated the single-dose population pharmacokinetics (PK of biphasic immediate-release (IR/extended-release (ER oxycodone (OC/acetaminophen (APAP 7.5/325 mg tablets administered under fasted conditions and the effects of a meal on their single-dose population PK. Data were pooled from four randomized, single-dose crossover trials enrolling healthy adult (18–55 years old participants (three trials and nondependent recreational users of prescription opioids (one trial with a body weight of ≥59 kg. Participants received IR/ER OC/APAP 7.5/325 mg tablets in single doses of 7.5/325 mg (one tablet, 15/650 mg (two tablets, or 30/1,300 mg (four tablets under fasted or fed conditions. Six variables were examined: sex, race, age, weight, height, and body mass index. Single-dose population PK was analyzed using first-order conditional estimation methods. A total of 151 participants were included in the analysis under fasted conditions, and 31 participants were included in the fed analysis. Under fasted conditions, a 10% change in body weight was accompanied by ~7.5% change in total body clearance (CL/F and volume of distribution (V/F of OC and APAP. Black participants had 17.3% lower CL/F and a 16.9% lower V/F of OC compared with white participants. Under fed conditions, the absorption rate constant of OC and APAP decreased significantly, although there was no effect on CL/F and V/F. Considering that the recommended dose for IR/ER OC/APAP 7.5/325 mg tablets is two tablets every 12 hours, adjustments of <50% are not clinically relevant. Dose adjustment may be necessary for large deviations from average body weight, but the small PK effects associated with race and consumption of a meal are not clinically relevant. Keywords: acetaminophen, acute pain, biphasic, extended release, fixed

  18. Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.

    Selvaraj Kunjiappan

    2015-04-01

    Conclusion: Azolla microphylla phytochemically synthesized GNaP protects liver against oxidative damage and tissue damaging enzyme activities and could be used as an effective protector against acetaminophen-induced hepatic damage in fresh water common carp fish.

  19. Effects of Nigella sativa (Black Seed on Serum Levels of Urea and Uric Acid in Acetaminophen Induced Hepatotoxicity of Commercial Layer Chickens

    Taseer Ahmed Khan

    2013-12-01

    Full Text Available Acetaminophen is an analgesic and antipyretic agent administered in high doses causes kidney and liver necrosis both in humans and in animals. Nigella sativa (Black seed has been reported to have hepatoprotective and nephroprotective properties. Present investigation is performed to find out the effects of aqueous solution of Nigella sativa and its oil extract on serum urea and uric acid levels of layer chicks after oral administration of a single dose of 300 mg acetaminophen/kg body weight. Observations indicated that oral administration of acetaminophen to layer chicks caused significant (p<0.05 decrease in mean serum urea while non-significant decrease in mean serum uric acid concentration. The results of this study indicated that Nigella sativa has positive effects on urea and uric acid concentrations during the administration of acetaminophen overdose. However, Nigella sativa oil extract is more effective than its aqueous solution.

  20. Effects of Nigella sativa (Black Seed) on Serum Levels of Urea and Uric Acid in Acetaminophen Induced Hepatotoxicity of Commercial Layer Chickens

    Taseer Ahmed Khan; Muhammad Noman Khan; Ruqaiya Hasan; Habib Fatima; Einas Kousar

    2013-01-01

    Acetaminophen is an analgesic and antipyretic agent administered in high doses causes kidney and liver necrosis both in humans and in animals. Nigella sativa (Black seed) has been reported to have hepatoprotective and nephroprotective properties. Present investigation is performed to find out the effects of aqueous solution of Nigella sativa and its oil extract on serum urea and uric acid levels of layer chicks after oral administration of a single dose of 300 mg acetaminophen/kg ...

  1. Effectiveness of diclofenac versus acetaminophen in primary care patients with knee osteoarthritis: [NTR1485], DIPA-Trial: design of a randomized clinical trial

    Bohnen Arthur M; Koes Bart W; Luijsterburg Pim AJ; Verkleij Saskia PJ; Bierma-Zeinstra Sita MA

    2010-01-01

    Abstract Background Osteoarthritis is the most frequent chronic joint disease which causes pain and disability of especially hip and knee. According to international guidelines and the Dutch general practitioners guidelines for non-traumatic knee symptoms, acetaminophen should be the pain medication of first choice for osteoarthritis. However, of all prescribed pain medication in general practice, 90% consists of non-steroidal anti-inflammatory drugs compared to 10% of acetaminophen. Because ...

  2. DEVELOPMENT OF A KINETIC REACTION RATE LIMITED STUDY ON DEGRADATION OF IMPURITY PROFILE FOR THE ESTIMATION OF ACETAMINOPHEN IN ACIDIC AQUEOUS SOLUTION FOR PHARMACEUTICAL DOSAGE FORM BY HIGH PERFORMANCES LIQUID CHROMATOGRAPHY.

    Dilip Kumar Bevara*; Nageswara Rao Anipindi

    2013-01-01

    A reaction-limited model for impurity profile is developed for the acetaminophen which consists of degradation impurity as 4- Amino phenol including ten other potential impurities. As many ways of the synthetic routes for acetaminophen it has been identified the impurities are of eleven. Out of which many degrading impurities, 4-Amino phenol is one of the major degradant. And remaining Organic Impurities that may appear in acetaminophen preparations are process-related impurities. Impurity ev...

  3. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice

    Roko Martinić

    2014-08-01

    Full Text Available Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for several different animal disease models. In this group plasma alanine aminotransferase and aspartate aminotransferase enzyme activities, as well as liver necrosis score were significantly reduced in comparison to control animals treated with physiological saline (p > 0.01. The specificity of the peptide hepatoprotection was investigated from the standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide.

  4. Simultaneous Determination of Five Components Including Acetaminophen by Reversed-phase High Performance Liquid Chromatography

    ZHANG Li-qing; WU Xiao-hua; LU Ying; WANG Xia

    2004-01-01

    High performance liquid chromatography with a C18 reverse-phase column was used to separatethe five components in cough syrup, including acetaminophen, p-aminophenol, caffeine, chlorphenamine maleateand guaifenesin. The mobile phase consists of 15wi% acetonitrile, 0.004mol/L sodium heptyl sulfonate,0.03 mole/L potassium di- hydrogen phosphate and triethylamine ( volume ratio 13: 40: 44: 3), the pH of which isadjusted to 3.0 by phosphoric acid. The contents of the five components are analyzed on an ultraviolet spectropho-tometer at 254nm, with a flow rate of 0.4mL/min. The results show that the calibration curves are linear in acertain range. The average recovery of five components is between 96.31% and 102.3% .

  5. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity.

    Ghanem, Carolina I; Pérez, María J; Manautou, José E; Mottino, Aldo D

    2016-07-01

    Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain. PMID:26921661

  6. General approach for electrochemical detection of persistent pharmaceutical micropollutants: Application to acetaminophen.

    Shi, S; Reisberg, S; Anquetin, G; Noël, V; Pham, M C; Piro, B

    2015-10-15

    We propose in this work a general and versatile methodology for electrochemical monitoring of persistent pharmaceutical micropollutants. The system presented is based on an electroactive and electropolymerized hapten (mimetic molecule of the pollutant to be detected) and a specific antibody that competitively binds either the hapten or the pollutant. The current delivered by the device depends on this competitive equilibrium and therefore on the pollutant's concentration. The determination of the pharmaceutical product operates within minutes, using square wave voltammetry without labeling or addition of a reactant in solution; the competitive hapten/antibody transduction produces a "signal-on" (a current increase). Applied to acetaminophen, this electrochemical immunosensor presents a very low detection limit of ca. 10 pM, (S/N=3) and a very high selectivity towards structural analogs (aspirin, BPA, and piperazine) even in a mixture. PMID:25982729

  7. Comparison of the Analgesic Effect of Intravenous Acetaminophen and Morphine Sulfate in Rib Fracture; a Randomized Clinical Trial

    Mehrdad Esmailian

    2015-07-01

    Full Text Available Introduction: Rib fracture is one of the common causes of trauma disabilities in many events and the outcome of these patients are very extensive from temporary pain management to long-term significant disability. Control and management of the pain in such patients is one of the most important challenges in emergency departments. Thus, the aim of the present study was assessing the efficacy of IV acetaminophen in pain control of patients with rib fracture. Methods: In this double-blind study, 54 patients over 18 years of age, referred to two educational hospitals with rib fracture, were entered. Patients were randomly categorized in two groups of morphine sulfate (0.1 milligram per kilogram of body weight and IV acetaminophen (1gram, as single-dose infused in 100 cc normal saline. The pain severity was measured by Numeric Rating Scale on arrival and 30 minutes after drug administration. At least three scores reduction was reported as therapeutic success. Results: The mean and standard deviation of patients’ age was 41.2 ± 14.1 years. There is no difference in gender (p=0.24 and age frequency (p=0.77 between groups. 30 minutes after drug administration the mean of pain severity were 5.5 ± 2.3 and 4.9 ± 1.7 in morphine and acetaminophen groups, respectively (p=0.23. Success rate in morphine and acetaminophen groups were 58.6% (95% Cl: 39.6-77.7 and 80% (95% Cl: 63.2-96.7, respectively, (p=0.09. Only 3 (5.6% patients had dizziness (p=0.44 and other effects were not seen in any of patients. Conclusion: The findings of the present study shows that intravenous acetaminophen and morphine have the same therapeutic value in relieving the pain of rib fracture. The success rate after 30 minutes drug administration were 80% and 58.6% in acetaminophen and morphine groups, respectively. Presentation of side effects was similar in both groups.

  8. Effect of acetaminophen administration to rats chronically exposed to depleted uranium

    The extensive use of depleted uranium (DU) in both civilian and military applications results in the increase of the number of human beings exposed to this compound. We previously found that DU chronic exposure induces the expression of CYP enzymes involved in the metabolism of xenobiotics (drugs). In order to evaluate the consequences of these changes on the metabolism of a drug, rats chronically exposed to DU (40 mg/l) were treated by acetaminophen (APAP, 400 mg/kg) at the end of the 9-month contamination. Acetaminophen is considered as a safe drug within the therapeutic range but in the case of overdose or in sensitive animals, hepatotoxicity and nephrotoxicity could occur. In the present work, plasma concentration of APAP was higher in the DU group compared to the non-contaminated group. In addition, administration of APAP to the DU-exposed rats increased plasma ALT (p < 0.01) and AST (p < 0.05) more rapidly than in the control group. Nevertheless, no histological alteration of the liver was observed but renal injury characterized by incomplete proximal tubular cell necrosis was higher for the DU-exposed rats. Moreover, in the kidney, CYP2E1 gene expression, an important CYP responsible for APAP bioactivation and toxicity, is increased (p < 0.01) in the DU-exposed group compared to the control group. In the liver, CYP's activities were decreased between control and DU-exposed rats. These results could explain the worse elimination of APAP in the plasma and confirm our hypothesis of a modification of the drug metabolism following a DU chronic contamination

  9. Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles

    Esmaeil Biazar1

    2009-12-01

    Full Text Available Esmaeil Biazar1, Ali Beitollahi2, S Mehdi Rezayat3, Tahmineh Forati4, Azadeh Asefnejad4, Mehdi Rahimi4, Reza Zeinali4, Mahmoud Ardeshir4, Farhad Hatamjafari1, Ali Sahebalzamani4, Majid Heidari41Chemistry Department, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Material Department, Iran University of Science and Technology, Tehran, Iran; 3Department of Pharmacology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran; 4Biomedicall Department, Islamic Azad University, Science and Research Branch, Tehran, IranAbstract: The decrease in particle size may offer new properties to drugs. In this study, we investigated the size reduction influence of the acetaminophen (C8H9O2N particles by mechanical activation using a dry ball mill. The activated samples with the average size of 1 µm were then investigated in different time periods with the infrared (IR, inductively coupled plasma (ICP, atomic force microscopy (AFM, and X-ray diffraction (XRD methods. The results of the IR and XRD images showed no change in the drug structure after the mechanical activation of all samples. With the peak height at full width at half maximum from XRD and the Scherrer equation, the size of the activated crystallite samples illustrated that the AFM images were in sound agreement with the Scherrer equation. According to the peaks of the AFM images, the average size of the particles in 30 hours of activation was 24 nm with a normal particle distribution. The ICP analysis demonstrated the presence of tungsten carbide particle impurities after activation from the powder sample impacting with the ball and jar. The greatest reduction in size was after milling for 30 hours.Keywords: acetaminophen, mechanical activation, structure investigation, nanoparticles, ball mill

  10. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice.

    Yi Ding

    Full Text Available Acetaminophen (APAP overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg received 400 mg/kg acetaminophen intraperitoneally (i.p. and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT and aspartate transaminase (AST levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure.

  11. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes

    Im, Jong-Kwon; Heo, Jiyong; Boateng, Linkel K. [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Her, Namguk [Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon, 135-1, Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Flora, Joseph R.V. [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Yoon, Jaekyung [Korea Institute of Energy Research, New and Renewable Energy Research Division, 71-2 Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Zoh, Kyung-Duk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Yeomin, E-mail: yoony@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-06-15

    Highlights: • Sonodegradation of acetaminophen and naproxen was performed. • Degradation was enhanced with the dispersion of SWNTs under US irradiation. • Synergistic effect on the degradation PhACs was observed in US/SWNT process. • Significant removal of dissolved organic carbon was achieved. -- Abstract: Ultrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.5% for AAP; 90.3% for NPX) and 1000 kHz (39.2% for AAP; 74.8% for NPX) at a SWNT concentration of 45 mg L{sup −1} under US/SWNT process, compared with 28 kHz (5.2% for AAP; 10.6% for NPX) and 1000 kHz (29.1% for AAP; 46.2% for NPX) under US process. Degradation was associated with the dispersion of SWNTs; small particles acted as nuclei during US reactions, enhancing the H{sub 2}O{sub 2} production yield. NPX removal was greater than AAP removal under all US-induced reaction and SWNT adsorption conditions, which is governed by the chemical properties of PhACs. Based on the results, the optimal treatment performance was observed at 28 kHz with 45 mg L{sup −1} SWNTs (US/SWNT) within 10 min.

  12. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity

  13. Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen

    Beitollahi, Hadi, E-mail: h.beitollahi@yahoo.com [Environment Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133 (Iran, Islamic Republic of)

    2012-02-01

    A carbon-paste electrode modified with a novel molybdenum (VI) complex and carbon nanotubes have been applied to the electrocatalytic oxidation of dopamine (DA) which reduced the overpotential by about 125 mV with obviously increase the current response. Due to its strong electrocatalytic activity towards DA, the modified carbon-paste electrode can resolve the overlapped voltammetric waves of DA and acetaminophen (AC) into two well-defined voltammetric peaks with peak-to-peak separation in potentials of about 230 mV. This property allows to selective determination of DA in the presence of AC. The transfer coefficient (a) for the electrocatalytic oxidation of DA and diffusion coefficient of this substance under the experimental conditions were also investigated. In phosphate buffer solution of pH 7.0, the oxidation current increased linearly with two concentration intervals of DA, one is 0.1 to 40.0 {mu}M and, the other is 40.0 to 800.0 {mu}M. The detection limit (3{sigma}) obtained by DPV was 76.0 nM. The proposed method was successfully applied to the determination of DA, and AC in some commercial pharmaceutical samples. - Highlights: Black-Right-Pointing-Pointer A carbon paste electrode modified with a molybdenum (VI) complex and CNTs have been fabricated. Black-Right-Pointing-Pointer The electrode reduced the overpotential for electrocatalytic oxidation of dopamine by about 125 mV. Black-Right-Pointing-Pointer The electrode resolved overlapped voltammetric waves of dopamine and acetaminophen.

  14. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes

    Highlights: • Sonodegradation of acetaminophen and naproxen was performed. • Degradation was enhanced with the dispersion of SWNTs under US irradiation. • Synergistic effect on the degradation PhACs was observed in US/SWNT process. • Significant removal of dissolved organic carbon was achieved. -- Abstract: Ultrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.5% for AAP; 90.3% for NPX) and 1000 kHz (39.2% for AAP; 74.8% for NPX) at a SWNT concentration of 45 mg L−1 under US/SWNT process, compared with 28 kHz (5.2% for AAP; 10.6% for NPX) and 1000 kHz (29.1% for AAP; 46.2% for NPX) under US process. Degradation was associated with the dispersion of SWNTs; small particles acted as nuclei during US reactions, enhancing the H2O2 production yield. NPX removal was greater than AAP removal under all US-induced reaction and SWNT adsorption conditions, which is governed by the chemical properties of PhACs. Based on the results, the optimal treatment performance was observed at 28 kHz with 45 mg L−1 SWNTs (US/SWNT) within 10 min

  15. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice

    Chen, Yuning; Deng, Yue; Zhi, Feng; Qian, Ke

    2016-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg) received 400 mg/kg acetaminophen intraperitoneally (i.p.) and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure. PMID:27144271

  16. Evaluation of Cellular Toxicity for Cisplatin, Arsenic And Acetaminophen in the Cancer and Normal Cell Line

    S Saeedi Saravi

    2007-12-01

    Full Text Available Introduction: Cell culture is a process in which the cells ware isolated from original tissue, dispersed in liquid media and then placed in culture plate where the cells adhere together and propagate. Today, this method is used for assessment of cell toxicity, its mechanisms and effect of different compounds on intracellular components. Methods: Clonogenic assay was used for assessment of cell toxicity and amount of cell death after a specific time during which cells were exposed to different compounds. Thus, IC50 in caner cell lines (HePG2, SKOV3 and A549 and normal cell (LLCPK1, CHO and HGF1 was assessed after exposure to cisplatin, acetaminophen and arsenic. Results: Results showed that acetaminophen has maximum resistance and minimum sensitivity in CHO line with IC50=16.7±1.06 HePG2 with IC50=18.6±1.29. On the other hand, cisplatin showed minimum resistance and maximum sensitivity in HePG2 with IC50 = 0.87±0.07 and HGF1 with IC50 = 1.6±0.21 and lastly, arsenic showed minimum resistance and maximum sensitivity in A549 with IC50 = 4.59±0.29 and LLCPK1 with IC50= 1±0.37. Discussion: According to the evaluated IC50, there were differences between results of sensitivity of cell lines exposed to the three drugs (P<0.05. Entirely, resistance in cancer cell lines was lower than normal cells. The results showed the importance of cell defensive mechanisms encountering different substances like glutathione.

  17. Unique mechanism of facile polymorphic conversion of acetaminophen in aqueous medium.

    Gao, Yi; Olsen, Kenneth W

    2014-09-01

    Rapid polymorphic conversion of acetaminophen (APAP) in solution, from metastable orthorhombic Form II to the stable monoclinic Form I, is well-known. The mechanism is believed to be solution-mediated phase transformation (SMPT), but with little experimental evidence. The present study was undertaken to understand this phenomenon from both thermodynamic and kinetic perspectives. Reliable apparent solubility of Form II was measured, for the first time, in 0.15 M aqueous NaCl solution at 37 °C. The solubility ratio of Form II over Form I, 1.27 ± 0.04, is quite low, which translates to a relatively low thermodynamic driving force for the conversion. Further solution crystallization experiments at supersaturation levels equal to or much greater than Form II solubility did not result in any crystallization in 10 days. Therefore, fast conversion is not possible through SMPT. To explore alternative mechanisms, molecular dynamics (MD) simulations were conducted to investigate the molecular level dissolution behavior and the solid state differences between the two polymorphs. The MD simulations reveal very different behavior. Form II exhibits a much higher rate of H-bond breakage, leading to the accumulation of a large number of disordered APAP molecules on the crystal surface. This thick disordered molecular layer provides a high local acetaminophen concentration which could be responsible for the fast crystallization of Form I. This was further supported by the observations made, using polarized light microscopy and powder X-ray diffractometry, when monitoring Form II crystals coming into contact with NaCl solution. We thus concluded that the hydrated surface layer is the "catalyst" for the facile phase conversion. This new mechanism, termed as SurFPT (surface-facilitated phase transformation), is much more effective in promoting polymorphic transformation than the well-known SMPT. PMID:25111742

  18. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  19. Acetaminophen and diphenhydramine as premedication for platelet transfusions: a prospective randomized double-blind placebo-controlled trial.

    Wang, Stephen E; Lara, Primo N; Lee-Ow, Angie; Reed, Jeanne; Wang, Lori R; Palmer, Patti; Tuscano, Joseph M; Richman, Carol M; Beckett, Laurel; Wun, Ted

    2002-07-01

    Non-hemolytic transfusion reactions (NHTR) occur in up to 30% of patients receiving platelet transfusions. Premedication with acetaminophen and diphenhydramine is a common strategy to prevent NHTR, but its efficacy has not been studied. In this prospective trial, transfusions in patients receiving pre-storage leukocyte-reduced single-donor apheresis platelets (SDP) were randomized to premedication with either acetaminophen 650 mg PO and diphenhydramine 25 mg IV, or placebo. Fifty-one patients received 98 transfusions. Thirteen patients had 15 NHTR: 15.4% (8/52) in the treatment arm and 15.2% (7/46) in the placebo arm. Premedication prior to transfusion of pre-storage leukocyte reduced SDP does not significantly lower the incidence of NHTR as compared to placebo. PMID:12111764

  20. Pathogenic Role of NKT and NK Cells in Acetaminophen-Induced Liver Injury is Dependent on the Presence of DMSO

    Masson, Mary Jane; Carpenter, Leah D.; Graf, Mary L.; Pohl, Lance R.

    2008-01-01

    Dimethyl sulfoxide (DMSO) is commonly used in biological studies to dissolve drugs and enzyme inhibitors with low solubility. While DMSO is generally thought of as being relatively inert, it can induce biological effects that are often overlooked. An example highlighting this potential problem is found in the recent report demonstrating a pathogenic role for NKT and NK cells in acetaminophen-induced liver injury (AILI) in C57Bl/6 mice in which DMSO was used to facilitate APAP dissolution. We ...

  1. Is montelukast as effective as N-acetylcysteine in hepatic injury due to acetaminophen intoxication in rats?

    İçer, Mustafa; Zengin, Yilmaz; Gunduz, Ercan; Dursun, Recep; Durgun, Hasan Mansur; Turkcu, Gul; Yuksel, Hatice; Üstündağ, Mehmet; Guloglu, Cahfer

    2016-01-01

    This study aims to investigate the acute protective effect of montelukast sodium in hepatic injury secondary to acetaminophen (APAP) intoxication. This study used 60 rats. The rats were grouped into 6 groups. The control group was administered oral distilled water 10 ml/kg, the APAP group oral APAP 1 g/kg, the montelukast sodium (MK) group oral MK 30 mg/kg, the acetaminophen+N-acetylcysteine (APAP+NAC) group oral APAP 1 g/kg, followed by a single dose of intraperitoneal NAC 1.5 g/kg three hours later, the acetaminophen+montelukast sodium (APAP+MK) group oral APAP 1 g/kg, followed by oral MK 30 mg/kg 3 h later, the acetaminophen+N-acetylcysteine+montelukast sodium (APAP+NAC+MK) group oral APAP 1 g/kg, followed by a single intraperitoneal NAC 1.5 g/kg plus oral MK 30 mg/kg 3 h later. Blood and liver tissue samples were taken 24h after drug administration. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin were studied from the blood samples. Liver tissue samples were used for histopathological examination. Compared with the control group, serum AST and ALT activities were higher in the APAP and APAP+NAC groups. APAP+NAC, APAP+MK, and APAP+NAC+MK groups had reduced serum ALT and AST activities than the group administered APAP alone. APAP+MK and APAP+NAC+MK groups had a lower serum ALP activity than the control group. Histopathologically, there was a difference between the group administered APAP alone and the APAP+MK and APAP+NAC+MK groups. MK is as protective as NAC in liver tissue in APAP intoxication in rats. PMID:26462568

  2. Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70

    Nishida, Tadashi; Ohata, Shuzo; Kusumoto, Chiaki; Mochida, Shinsuke; Nakada, Junya; Inagaki, Yoshimi; Ohta, Yoshiji; Matsura, Tatsuya

    2009-01-01

    Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate o...

  3. Protective Properties of Flavonoid Extract of Coagulated Tofu (Curdled Soy Milk) Against Acetaminophen-Induced Liver Injury in Rats

    Ndatsu Yakubu; Umaru Alhassan Mohammed

    2016-01-01

    The total flavonoid contents of the various coagulated tofu and the hepatoprotective potential of all tofu flavonoid extracts were investigated. Tofu was prepared from locally sourced coagulants (steep water, alum, lemon, and lemon peel ash extract). Total flavonoid contents of all coagulated tofu were investigated as established in vitro flavonoid assay. The hepatoprotective activities of tofu flavonoid extracts against acetaminophen-induced hepatic cell toxicity in rats was also investigate...

  4. Comparison of the Analgesic Effect of Intravenous Acetaminophen and Morphine Sulfate in Rib Fracture; a Randomized Clinical Trial

    Mehrdad Esmailian; Roshanak Moshiri; Majid Zamani

    2015-01-01

    Introduction: Rib fracture is one of the common causes of trauma disabilities in many events and the outcome of these patients are very extensive from temporary pain management to long-term significant disability. Control and management of the pain in such patients is one of the most important challenges in emergency departments. Thus, the aim of the present study was assessing the efficacy of IV acetaminophen in pain control of patients with rib fracture. Methods: In this double-blind study,...

  5. Effect of Oral Administration of Acetaminophen and Topical Application of EMLA on Pain during Transrectal Ultrasound-Guided Prostate Biopsy

    Kim, Seol; Yoon, Byung Il; Kim, Su Jin; Cho, Hyuk Jin; Kim, Hyo Sin; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Kim, Sae Woong

    2011-01-01

    Purpose Transrectal ultrasound-guided prostate biopsy is the procedure of choice for diagnosing prostate cancer. We compared with pain-relieving effect of acetaminophen, a known drug for enhancing the pain-relieving effect of tramadol, and eutectic mixture of local anesthetics (EMLA), a local anesthetic agent, with that of the conventional periprostatic nerve block method. Materials and Methods This was a prospective, randomized, single-blinded study. A total of 430 patients were randomly ass...

  6. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

    Yi, Ruo-Kun; SONG, JIA-LE; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-01-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphata...

  7. Secretory phospholipase A2-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2

    We have previously reported that among the other death proteins, hepatic secretory phospholipase A2 (sPLA2) is a leading mediator of progression of liver injury initiated by CCl4 in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA2 released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting higher susceptibility of COX-2 KO mice to sPLA2-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound 14C-APAP in the livers of KO mice. Hepatic sPLA2 activity and plasma TNF-α were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE2 and lower compensatory liver regeneration and repair (3H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA2-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA2 in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.

  8. Cannabinoid receptor-mediated antinociception with acetaminophen drug combinations in rats with neuropathic spinal cord injury pain

    Hama, Aldric T; Sagen, Jacqueline

    2009-01-01

    Pre-clinical evidence demonstrates that neuropathic spinal cord injury (SCI) pain is maintained by a number of neurobiological mechanisms, suggesting that treatments directed at several pain-related targets may be more advantageous compared to a treatment focused on a single target. The current study evaluated the efficacy of the non-opiate analgesic acetaminophen, which has several putative analgesic mechanisms, combined with analgesic drugs used to treat neuropathic pain in a rat model of b...

  9. Regulation of Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication by Stem Cell-Derived Tyrosine Kinase

    Carol R. Gardner; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increas...

  10. Protective effect of naringenin against acetaminophen-induced acute liver injury in metallothionein (MT)-null mice.

    Lv, Yingjian; Zhang, Baoxu; Xing, Guozhen; Wang, Fuqiang; Hu, Zhewen

    2013-02-01

    Naringenin is a natural flavonoid aglycone of naringin that has been reported to have a wide range of pharmacological properties, such as antioxidant activity and free radical scavenging capacity. This study was designed to examine the hepatoprotective effect of naringenin against acetaminophen (250 mg kg(-1), sc) in metallothionein (MT)-null mice. 42 SPF MT-knockout mice were used. Naringenin (200, 400, and 800 mg kg(-1), ig) was administered for 4 days before exposure to acetaminophen (250 mg kg(-1), sc). Liver injury was measured by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as liver malondialdehyde (MDA). The glutathione-to-oxidized glutathione ratio (GSH/GSSG) was also assessed. The evidence of liver injury induced by acetaminophen included not only a significant increase in the levels of serum ALT, AST, LDH and liver MDA, and also a significant decrease in GSH/GSSG. Pretreatment of mice with naringenin at 400 and 800 mg kg(-1) reversed the altered parameters. Such reversal effects were dose-dependent: ALT decreased 78.62% and 98.03%, AST decreased 88.35% and 92.64%, LDH decreased 76.54% and 81.63%, MDA decreased 48.59% and 66.27% at a dose of 400 and 800 mg kg(-1) respectively; GSH/GSSG increased 22.57% and 16.93% at a dose of 400 and 800 mg kg(-1) respectively. Histopathological observation findings were also consistent with these effects. Together, this study suggests that naringenin can potentially reverse the hepatotoxic damage of acetaminophen intoxication in MT-null mice. PMID:23142768

  11. Role of Galectin-3 in Classical and Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication1

    Dragomir, Ana-Cristina Docan; Sun, Richard; Choi, Hyejeong; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Inflammatory macrophages have been implicated in hepatotoxicity induced by the analgesic, acetaminophen (APAP). In these studies we characterized the phenotype of macrophages accumulating in the liver following APAP intoxication and evaluated the role of galectin-3 (Gal-3) in macrophage activation. Administration of APAP (300 mg/kg, i.p.) to wild type mice resulted in the appearance of two distinct subpopulations of CD11b+ cells in the liver, which expressed high or low levels of the monocyte...

  12. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice

    Swelm, R.P.L. van; Laarakkers, J.M.M.; Kuur, E.C. van der; Morava, E.; Wevers, R A; Augustijn, K.D.; Touw, D.J.; Sandel, M.H.; Masereeuw, R.; Russel, F. G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP). Mice were given a single intraperitoneal dose of APAP (0-350 mg/kg bw) followed by 24 h urine collection. Doses of >/=275 mg/kg bw APAP resulted in hepatic centrilobular...

  13. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP). Mice were given a single intraperitoneal dose of APAP (0–350 mg/kg bw) followed by 24 h urine collection. Doses of ≥275 mg/kg bw APAP resulted in hepatic centrilobular necr...

  14. Pooled post hoc analysis of population pharmacokinetics of oxycodone and acetaminophen following a single oral dose of biphasic immediate-release/extended-release oxycodone/acetaminophen tablets.

    Franke, Ryan M; Morton, Terri; Devarakonda, Krishna

    2015-01-01

    This analysis evaluated the single-dose population pharmacokinetics (PK) of biphasic immediate-release (IR)/extended-release (ER) oxycodone (OC)/acetaminophen (APAP) 7.5/325 mg tablets administered under fasted conditions and the effects of a meal on their single-dose population PK. Data were pooled from four randomized, single-dose crossover trials enrolling healthy adult (18-55 years old) participants (three trials) and nondependent recreational users of prescription opioids (one trial) with a body weight of ≥59 kg. Participants received IR/ER OC/APAP 7.5/325 mg tablets in single doses of 7.5/325 mg (one tablet), 15/650 mg (two tablets), or 30/1,300 mg (four tablets) under fasted or fed conditions. Six variables were examined: sex, race, age, weight, height, and body mass index. Single-dose population PK was analyzed using first-order conditional estimation methods. A total of 151 participants were included in the analysis under fasted conditions, and 31 participants were included in the fed analysis. Under fasted conditions, a 10% change in body weight was accompanied by ~7.5% change in total body clearance (CL/F) and volume of distribution (V/F) of OC and APAP. Black participants had 17.3% lower CL/F and a 16.9% lower V/F of OC compared with white participants. Under fed conditions, the absorption rate constant of OC and APAP decreased significantly, although there was no effect on CL/F and V/F. Considering that the recommended dose for IR/ER OC/APAP 7.5/325 mg tablets is two tablets every 12 hours, adjustments of <50% are not clinically relevant. Dose adjustment may be necessary for large deviations from average body weight, but the small PK effects associated with race and consumption of a meal are not clinically relevant. PMID:26316698

  15. Acetaminophen Versus Liquefied Ibuprofen for Control of Pain During Separation in Orthodontic Patients: A Randomized Triple Blinded Clinical Trial.

    Hosseinzadeh Nik, Tahereh; Shahsavari, Negin; Ghadirian, Hannaneh; Ostad, Seyed Nasser

    2016-07-01

    The aim of this randomized clinical study was to investigate the effectiveness of acetaminophen 650 mg or liquefied ibuprofen 400 mg in pain control of orthodontic patients during separation with an elastic separator. A total of 101 patients with specific inclusion criteria were divided randomly into three groups (acetaminophen, liquefied ibuprofen, and placebo). They were instructed to take their drugs one hour before separator placement and every six hours afterward (five doses in total). They recorded their discomfort on visual analog scales immediately after separator placement, 2 hours later, 6 hours later, at bedtime, and 24 hours after separator placement. Repeated measure analysis of variance (ANOVA) was used to compare the mean pain scores between the three groups. Data were collected from 89 patients. The pain increased with time in all groups. Pain scores were statistically lower in the analgesic groups compared with the placebo group (P.valueacetaminophen and liquefied ibuprofen) (P.value=1). Acetaminophen and liquefied ibuprofen have similar potential in pain reduction during separation. PMID:27424011

  16. Effect of venous dexamethasone, oral caffeine and acetaminophen on relative frequency and intensity of postdural puncture headache after spinal anesthesia

    Masoudifar, Mehrdad; Aghadavoudi, Omid; Adib, Sajjad

    2016-01-01

    Background: Postdural puncture headache (PDPH) is a relatively common complication after regional anesthesia, especially in younger people, bothersome to patients and needs prophylaxis to prevent this complication. This study was conducted aiming to determine the preventive effect of dexamethasone plus caffeine and acetaminophen on relative frequency and intensity of PDPH after spinal anesthesia. Materials and Methods: In a clinical trial study, 90 candidates for the lower extremities orthopedic elective operation were divided into two groups of 45 individuals each. Intervention group received the compound of 500 mg acetaminophen +65 mg oral caffeine +8 mg venous dexamethasone an hour before spinal blocking, and the control group received placebo tablets + a dexamethasone equivalent volume of venous normal saline. The level of postoperative headache at the time of entrance to recovery and discharge, 6, 12, 24, 48, and 72 h postoperatively were measured based on Visual Analog Scale criterion in the two groups and then compared with each other. Results: During the study, 24 patients in the control group and 17 patients in the intervention group were afflicted with headache; however, with no significant difference (P = 0.14). Total frequency of headache incidence was 35 times in the control group and 27 times in the intervention group (P = 0.32). Conclusions: Though the taking of acetaminophen + caffeine + dexamethasone is associated with a decrease in headache intensity and duration and decrease in PDPH incidence, compared with placebo, however, no essentially and statistically significant effect was produced. PMID:27169097

  17. Naproxen 500 mg bid versus acetaminophen 1000 mg qid: effect on swelling and other acute postoperative events after bilateral third molar surgery.

    Bjørnsson, G A; Haanaes, H R; Skoglund, L A

    2003-08-01

    A controlled, randomized, double-blind crossover study, in which the patients acted as their own controls, was carried out to test the efficacy of naproxen 500 mg x 2 versus acetaminophen 1000 mg x 4 for 3 days on the postoperative course following third molar surgery. Acetaminophen reduced the mean swelling on the 3rd postoperative day by 22.4% (p = 0.023) compared to that after naproxen. On the 6th postoperative day, there was 20.9% less mean swelling with naproxen (p = 0.44), although the total swelling measurements were much less than those measured on the 3rd postoperative day. Summed pain intensity (SUMPI3.5-11) on the day of surgery revealed no statistically significant difference between the acetaminophen or naproxen regimen with the exception of 0.5 hours (p = 0.002) and 1 hour (p = 0.009) after first medication when acetaminophen gave less pain than naproxen. Since the drug regimens were different, summed PI for the first acetaminophen dose interval (SUMPI3.5-6) and the first naproxen dose interval (SUMPI3.5-9) was calculated. There was a tendency toward a statistically significant difference in favor of acetaminophen for SUMPI3.5-6 (p = 0.055) but no statistically significant difference (p = 0.41) between the treatments with respect to SUMPI3.5-9. Naproxen was statistically superior (p surgery. A 3-day acetaminophen regimen reduces acute postoperative swelling better than naproxen on the 3rd postoperative day after third molar surgery but not on the 6th postoperative day when the total swelling is less. PMID:12953342

  18. Intravenous acetaminophen is superior to ketamine for postoperative pain after abdominal hysterectomy: results of a prospective, randomized, double-blind, multicenter clinical trial

    Faiz HR

    2014-01-01

    Full Text Available Hamid Reza Faiz,1 Poupak Rahimzadeh,1 Ognjen Visnjevac,2 Behzad Behzadi,1 Mohammad Reza Ghodraty,1 Nader D Nader2 1Iran University of Medical Sciences, Tehran, Iran; 2VA Western NY Healthcare System, University at Buffalo, Buffalo, NY, USA Background: In recent years, intravenously (IV administered acetaminophen has become one of the most common perioperative analgesics. Despite its now-routine use, IV acetaminophen's analgesic comparative efficacy has never been compared with that of ketamine, a decades-old analgesic familiar to obstetricians, gynecologists, and anesthesiologists alike. This double-blind clinical trial aimed to evaluate the analgesic effects of ketamine and IV acetaminophen on postoperative pain after abdominal hysterectomy. Methods: Eighty women aged 25–70 years old and meeting inclusion and exclusion criteria were randomly allocated into two groups of 40 to receive either IV acetaminophen or ketamine intraoperatively. Postoperatively, each patient had patient-controlled analgesia. Pain and sedation (Ramsay Sedation Scale were documented based on the visual analog scale in the recovery room and at 4 hours, 6 hours, 12 hours, and 24 hours after the surgery. Hemodynamic changes, adverse medication effects, and the need for breakthrough meperidine were also recorded for both groups. Data were analyzed by repeated-measures analysis of variance. Results: Visual analog scale scores were significantly lower in the IV acetaminophen group at each time point (P<0.05, and this group required significantly fewer doses of breakthrough analgesics compared with the ketamine group (P=0.039. The two groups had no significant differences in terms of adverse effects. Conclusion: Compared with ketamine, IV acetaminophen significantly improved postoperative pain after abdominal hysterectomy. Keywords: intravenous acetaminophen, abdominal hysterectomy, ketamine, analgesia, postoperative pain

  19. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure.

    Kortsalioudaki, Christine; Taylor, Rachel M; Cheeseman, Paul; Bansal, Sanjay; Mieli-Vergani, Giorgina; Dhawan, Anil

    2008-01-01

    Acute liver failure (ALF) carries a high mortality in children. N-acetylcysteine (NAC), an antioxidant agent that replenishes mitochondrial and cytosolic glutathione stores, has been used in the treatment of late acetaminophen-induced ALF and non-acetaminophen-induced ALF. In our unit, NAC was introduced as additional treatment for non-acetaminophen-induced ALF in 1995. The aim of this study was to evaluate the safety and efficacy of NAC in children with ALF not caused by acetaminophen poisoning. A retrospective review of medical records of 170 children presenting with nonacetaminophen-induced ALF between 1989 and 2004 was undertaken. ALF was defined as either international normalized ratio of prothrombin time (INR) > 2 and abnormal liver function or INR >1.5 with encephalopathy and abnormal liver function. Children were divided into the following groups: Group 1 (1989-1994), standard care (n = 59; 34 [58%] male; median age 2.03 yr, range 0.003-15.8 yr); and Group 2 (1995-2004), standard care and NAC administration (n = 111; 57 [51%] male; median age 3.51 yr, range 0.005-17.4 yr). NAC was administered as a continuous infusion (100 mg/kg/24 hours) until INR dizziness and peripheral edema in 1. One child had an allergic reaction (bronchospasm) and NAC was stopped. A total of 41 (71%) children in Group 1 vs. 85 (77%) in Group 2 required admission to intensive care, P = not significant (ns). The length of intensive care stay was 6 (range, 1-58) days in Group 1 vs. 5 (range, 1-68) days in Group 2, P = ns and length of hospital stay was 25 (range, 1-264) days vs. 19 (range, 1-201) days, P = 0.05. The 10-yr actuarial survival was 50% in Group 1 compared to 75% in Group 2, P = 0.009. Survival with native liver occurred in 13 (22%) in Group 1 vs. 48 (43%) in Group 2, P = 0.005; 15 (25%) in Group 1 died without transplant vs. 21 (19%) in Group 2, P = ns; and LT was performed in 32 (54%) vs. 42 (38%), P = ns. Death after transplantation occurred in 15 (39%) in Group 1 vs. 8

  20. Electrochemical fabrication of TiO{sub 2} nanoparticles/[BMIM]BF{sub 4} ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Ma, Ming [Ningbo Entry-Exit Inspection and Quarantine Bureau of P. R. C., Ningbo 315012 (China); Li, Chunya, E-mail: lcychem@yahoo.com [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2012-12-01

    A water soluble ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF{sub 4}), was incorporated into TiO{sub 2} nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF{sub 4}. The obtained nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCEs were characterized scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p-acetaminophen at the nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCEs were thoroughly investigated. Compared to the redox reaction of p-acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p-acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano-TiO{sub 2}/[BMIM]BF{sub 4} hybrid film can improve the redox reactions of p-acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p-acetaminophen solutions with concentration in the range from 5.0 Multiplication-Sign 10{sup -8} to 5.0 Multiplication-Sign 10{sup -5} M. The estimated detection limit was 1.0 Multiplication-Sign 10{sup -8} M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: Black-Right-Pointing-Pointer Nano-TiO{sub 2}/[BMIM]BF{sub 4} hybrid film electrode was fabricated with electrodeposition. Black-Right-Pointing-Pointer Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. Black-Right-Pointing-Pointer The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. Black-Right-Pointing-Pointer p-acetaminophen in urine samples was successfully determined.

  1. In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen - induced hepatocyte damage in Cyprinus carpio L.

    Kunjiappan, Selvaraj; Bhattacharjee, Chiranjib; Chowdhury, Ranjana

    2015-06-01

    The present study aims to evaluate the hepatoprotective and antioxidant effects of gold nanoparticles (GNaP) biosynthesized through the mediation of Azolla microphylla and A. microphylla extract on acetaminophen-induced hepatocyte damage in common carp fish (Cyprinus carpio L.). The gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla extract powder (100, 200, 400 μg/ml) were added to the primary hepatocytes in different conditions: treatment I (before 12 mM acetaminophen), treatment II (after 12 mM acetaminophen), and treatment III (both before and after 12 mM acetaminophen), and incubated. Among these, control group treated with 12 mM acetaminophen produced significantly elevated levels (50-80%) of lactate dehydrogenase (LDH), catalase (CAT), glutamate oxalate transaminase (GOT), glutamate pyruvate transaminase (GPT), and malondialdehyde (MDA), and significantly decreased the levels (60-75%) of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Treatment with methanol extract of A. microphylla phytochemically biosynthesized gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla methanol extract powder (100, 200, 400 μg/ml) significantly improved the viability of cells in a culture medium. It also significantly reduced the levels of LDH, CAT, GOT, GPT, and MDA, and significantly increased the levels of SOD and GSH-Px. In conclusion, gold nanoparticles biosynthesized through A. microphylla demonstrated effective hepatoprotective and antioxidant effects than methanol extract of A. microphylla. PMID:25862331

  2. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  3. A reliable method of liquid chromatography for the quantification of acetaminophen and identification of its toxic metabolite N-acetyl-p-benzoquinoneimine for application in pediatric studies.

    Flores-Pérez, Carmen; Chávez-Pacheco, Juan Luis; Ramírez-Mendiola, Blanca; Alemón-Medina, Radamés; García-Álvarez, Raquel; Juárez-Olguín, Hugo; Flores-Pérez, Janett

    2011-07-01

    The aim of the present study was to develop a simple, selective and reliable method to quantify acetaminophen and its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI) for pediatric studies using 100 µL plasma samples, by reverse-phase HPLC and UV detection. The assay was performed using a C₁₈ column and an isocratic elution with water-methanol-formic acid (70:30:0.15; v/v/v) as mobile phase. Linearity of the method was assayed in the range of 1-30 µg/mL for acetaminophen and 10-200 µg/mL for NAPQI, with a correlation coefficient r = 0.999 for both compounds, and inter- and intra-day coefficients of variation of less than 13%. Several commonly co-administered drugs were analyzed for selectivity and no interference with the determinations was observed. The detection and quantification limits for acetaminophen and NAPQI were 0.1 and 1 µg/mL, and 0.1 and 10 µg/mL respectively. The present method can be used to monitor acetaminophen levels using 100 µL plasma samples, which may be helpful when very small samples need to be analyzed, as in pharmacokinetics determination or drug monitoring in plasma in children. This assay is also able to detect the NAPQI for drug monitoring in patients diagnosed with acetaminophen intoxication. PMID:20878659

  4. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    Xie, Yuchao; Ramachandran, Anup [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Breckenridge, David G.; Liles, John T. [Department of Biology, Gilead Sciences, Inc., Foster City, CA (United States); Lebofsky, Margitta [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  5. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  6. Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose.

    Ebrahimi, Amirali; Saffari, Morteza; Dehghani, Fariba; Langrish, Timothy

    2016-02-29

    A new formulation method for solid dosage forms with drug loadings from 0.65 ± 0.03% to 39 ± 1% (w/w) of acetaminophen (APAP) as a model drug has been presented. The proposed method involves the production of highly-porous lactose with a BET surface area of 20 ± 1 m(2)/g as an excipient using a templating method and the incorporation of drug into the porous structure by adsorption from a solution of the drug in ethanol. Drug deposition inside the carrier particles, rather than being physically distributed between them, eliminated the potential drug/carrier segregation, which resulted in excellent blend uniformities with relative standard deviations of less than 3.5% for all drug formulations. The results of DSC and XRD tests have shown deposition of nanocrystals of APAP inside the nanopores of lactose due the nanoconfinement phenomenon. FTIR spectroscopy has revealed no interaction between the adsorbed drug and the surface of lactose. The final loaded lactose particles had large BET surface areas and high porosities, which significantly increased the crushing strengths of the produced tablets. In vitro release studies in phosphate buffer (pH 5.8) have shown an acceptable delivery performance of 85% APAP release within 7 minutes for loaded powders filled in gelatin capsules. PMID:26768724

  7. Acetaminophen/paracetamol: A history of errors, failures and false decisions.

    Brune, K; Renner, B; Tiegs, G

    2015-08-01

    Acetaminophen/paracetamol is the most widely used drug of the world. At the same time, it is probably one of the most dangerous compounds in medical use, causing hundreds of deaths in all industrialized countries due to acute liver failure (ALF). Publications of the last 130 years found in the usual databases were analyzed. Personal contacts existed to renowned researchers having contributed to the medical use of paracetamol and its precursors as H.U. Zollinger, S. Moeschlin, U. Dubach, J. Axelrod and others. Further information is found in earlier reviews by Eichengrün, Rodnan and Benedek, Sneader, Brune; comp. references. The history of the discovery of paracetamol starts with an error (active against worms), continues with a false assumption (paracetamol is safer than phenacetin), describes the first side-effect 'epidemy' (phenacetin nephropathy, drug-induced interstitial nephritis) and ends with the discovery of second-generation problems due to the unavoidable production of a highly toxic metabolite of paracetamol N-acetyl-p-benzoquinone imine (NAPQI) that may cause not only ALF and kidney damage but also impaired development of the fetus and the newborn child. It appears timely to reassess the risk/benefit ratio of this compound. PMID:25429980

  8. Ascorbic acid prevents acetaminophen-induced hepatotoxicity in mice by ameliorating glutathione recovery and autophagy.

    Kurahashi, Toshihiro; Lee, Jaeyong; Nabeshima, Atsunori; Homma, Takujiro; Kang, Eun Sil; Saito, Yuka; Yamada, Sohsuke; Nakayama, Toshiyuki; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2016-08-15

    Aldehyde reductase (AKR1A) plays a role in the biosynthesis of ascorbic acid (AsA), and AKR1A-deficient mice produce about 10-15% of the AsA that is produced by wild-type mice. We found that acetaminophen (AAP) hepatotoxicity was aggravated in AKR1A-deficient mice. The pre-administration of AsA in the drinking water markedly ameliorated the AAP hepatotoxicity in the AKR1A-deficient mice. Treatment of the mice with AAP decreased both glutathione and AsA levels in the liver in the early phase after AAP administration, and an AsA deficiency delayed the recovery of the glutathione content in the healing phase. While in cysteine supply systems; a neutral amino acid transporter ASCT1, a cystine transporter xCT, enzymes for the transsulfuration pathway, and autophagy markers, were all elevated in the liver as the result of the AAP treatment, the AsA deficiency suppressed their induction. Thus, AsA appeared to exert a protective effect against AAP hepatotoxicity by ameliorating the supply of cysteine that is available for glutathione synthesis as a whole. Because some drugs produce reactive oxygen species, resulting in the consumption of glutathione during the metabolic process, the intake of sufficient amounts of AsA would be beneficial for protecting against the hepatic damage caused by such drugs. PMID:27288086

  9. Empirical Data Confirm Autism Symptoms Related to Aluminum and Acetaminophen Exposure

    Jingjing Liu

    2012-11-01

    Full Text Available Autism is a condition characterized by impaired cognitive and social skills, associated with compromised immune function. The incidence is alarmingly on the rise, and environmental factors are increasingly suspected to play a role. This paper investigates word frequency patterns in the U.S. CDC Vaccine Adverse Events Reporting System (VAERS database. Our results provide strong evidence supporting a link between autism and the aluminum in vaccines. A literature review showing toxicity of aluminum in human physiology offers further support. Mentions of autism in VAERS increased steadily at the end of the last century, during a period when mercury was being phased out, while aluminum adjuvant burden was being increased. Using standard log-likelihood ratio techniques, we identify several signs and symptoms that are significantly more prevalent in vaccine reports after 2000, including cellulitis, seizure, depression, fatigue, pain and death, which are also significantly associated with aluminum-containing vaccines. We propose that children with the autism diagnosis are especially vulnerable to toxic metals such as aluminum and mercury due to insufficient serum sulfate and glutathione. A strong correlation between autism and the MMR (Measles, Mumps, Rubella vaccine is also observed, which may be partially explained via an increased sensitivity to acetaminophen administered to control fever.

  10. Plasma microRNA profiles distinguish lethal injury in acetaminophen toxicity: A research study

    Jeanine Ward; Shashi Bala; Jan Petrasek; Gyongyi Szabo

    2012-01-01

    AIM:To investigate plasma microRNA (miRNA) profiles indicative of hepatotoxicity in the setting of lethal acetaminophen (APAP) toxicity in mice.METHODS:Using plasma from APAP poisoned mice,either lethally (500 mg/kg) or sublethally (150 mg/kg) dosed,we screened commercially available murine microRNA libraries (SABiosciences,Qiagen Sciences,MD) to evaluate for unique miRNA profiles between these two dosing parameters.RESULTS:We distinguished numerous,unique plasma miRNAs both up- and downregulated in lethally compared to sublethally dosed mice.Of note,many of the greatest up- and downregulated miRNAs,namely 574-5p,466g,466f-3p,375,29c,and 148a,have been shown to be associated with asthma in prior studies.Interestingly,a relationship between APAP and asthma has been previously well described in the literature,with an as yet unknown mechanism of pathology.There was a statistically significant increase in alanine aminotransferase levels in the lethal compared to sublethal APAP dosing groups at the 12 h time point (P <0.001).There was 90% mortality in the lethally compared to sublethally dosed mice at the 48 h time point (P =0.011).CONCLUSION:We identified unique plasma miRNAs both up- and downregulated in APAP poisoning which are correlated to asthma development.

  11. Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia magna.

    Du, Juan; Mei, Cheng-Fang; Ying, Guang-Guo; Xu, Mei-Ying

    2016-07-01

    Non-steroid anti-inflammatory drugs (NSAIDs) have been frequently detected in aquatic ecosystem and posed a huge risk to non-target organisms. The aim of this study was to evaluate the toxic effects of three typical NSAIDs, diclofenac (DFC), acetaminophen (APAP) and ibuprofen (IBP), toward the water flea Daphnia magna. All three NSAIDs showed remarkable time-dependent and concentration-dependent effects on D. magna, with DFC the highest and APAP the lowest toxic. Survival, growth and reproduction data of D. magna from all bioassays were used to determine the LC10 and LC50 (10 % lethal and median lethal concentrations) values of NSAIDs, as well as the EC10 and EC50 (10 % effect and median effect concentrations) values. Concentrations for the lethal and sublethal toxicity endpoints were mainly in the low ppm-range, of which reproduction was the most sensitive one, indicating that non-target organisms might be adversely affected by relevant ambient low-level concentrations of NSAIDs after long-time exposures. PMID:27098253

  12. Combined Effect of Ethanol and Acetaminophen on the Central Nervous System of Daphnia magna

    Brigid Bleaken

    2010-01-01

    Full Text Available The combined consumption of acetaminophen (APAP and ethanol (EtOH has been an issue with clinical implications. Previous findings regarding the simultaneous consumption of APAP and EtOH have reported harmful effects on the liver and stomach; however, little is known about the effects on the central nervous system (CNS. We hypothesized that EtOH and APAP will have a synergistic effect on the CNS of Daphnia magna (D. magna, causing a pronounced decrease in heart rate at a toxic dose of EtOH. To better understand the effects of the combined consumption of EtOH and APAP on the CNS, the heart rates of D. magna were measured under a dissection microscope after exposure to EtOH, APAP, or a combined EtOH-APAP solution. Interestingly, the average heart rates of D. magna exposed to the EtOH-APAP solution and D. magna exposed only to APAP were approximately the same. Although our results did not support our original hypothesis, the data demonstrated that APAP exerted a dominant effect over EtOH. APAP and EtOH are known to have inhibitory effects on the CNS. Therefore, these findings suggest that APAP and EtOH may compete against each other on similar pathways to be the substance that exerts an inhibitory effect in the CNS.

  13. Comparison of Prothrombin Time and Aspartate Aminotransferase in Predicting Hepatotoxicity After Acetaminophen Overdose.

    Levine, Michael; O'Connor, Ayrn D; Padilla-Jones, Angela; Gerkin, Richard D

    2016-03-01

    Despite decades of experience with acetaminophen (APAP) overdoses, it remains unclear whether elevated hepatic transaminases or coagulopathy develop first. Furthermore, comparison of the predictive value of these two variables in determining hepatic toxicity following APAP overdoses has been poorly elucidated. The primary objective of this study is to determine the test characteristics of the aspartate aminotransferase (AST) and the prothrombin time (PT) in patients with APAP toxicity. A retrospective chart review of APAP overdoses treated with IV N-acetylcysteine at a tertiary care referral center was performed. Of the 304 subjects included in the study, 246 with an initial AST less than 1000 were analyzed to determine predictors of hepatic injury, defined as an AST exceeding 1000 IU/L. The initial AST >50 was 79.5 % sensitive and 82.6 % specific for predicting hepatic injury. The corresponding negative and positive predictive values were 95.5 and 46.3 %, respectively. In contrast, an initial abnormal PT had a sensitivity of 82.1 % and a specificity of 63.6 %. The negative and positive predictive values for initial PT were 94.9 and 30.2 %, respectively. Although the two tests performed similarly for predicting a composite endpoint of death or liver transplant, neither was a useful predictor. Initial AST performed better than the initial PT for predicting hepatic injury in this series of patients with APAP overdose. PMID:26341088

  14. Mechanism for the primary transformation of acetaminophen in a soil/water system.

    Liang, Chuanzhou; Lan, Zhonghui; Zhang, Xu; Liu, Yingbao

    2016-07-01

    The transformation of acetaminophen (APAP) in a soil/water system was systematically investigated by a combination of kinetic studies and a quantitative analysis of the reaction intermediates. Biotransformation was the predominant pathway for the elimination of APAP, whereas hydrolysis or other chemical transformation, and adsorption processes made almost no contribution to the transformation under a dark incubation. Bacillus aryabhattai strain 1-Sj-5-2-5-M, Klebsiella pneumoniae strain S001, and Bacillus subtilis strain HJ5 were the main bacteria identified in the biotransformation of APAP. The soil-to-water ratio and soil preincubation were able to alter the transformation kinetic pattern. Light irradiation promoted the overall transformation kinetics through enhanced biotransformation and extra photosensitized chemical reactions. The transformation pathways were strongly dependent on the initial concentration of APAP. The main primary transformation products were APAP oligomers and p-aminophenol, with the initial addition of 26.5 and 530 μM APAP, respectively. APAP oligomers accounted for more than 95% of transformed APAP, indicating that almost no bound residues were generated through the transformation of APAP in the soil/water system. The potential environmental risks of APAP could increase following the transformation of APAP in the soil/water system because of the higher toxicity of the transformation intermediates. PMID:27107139

  15. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode

    Ciprian Radovan

    2008-06-01

    Full Text Available Cyclic voltammetry (CV and chronoamperometry (CA have been used to sense and determine simultaneously L-ascorbic acid (AA and acetaminophen (AC at a boron-doped diamond electrode (BDDE in a Britton-Robinson buffer solution. The calibration plots of anodic current peak versus concentration obtained from CV and CA data for both investigated compounds in single and di-component solutions over the concentration range 0.01 mM – 0.1 mM proved to be linear, with very good correlation parameters. Sensitivity values and RSD of 2-3% were obtained for various situations, involving both individual and simultaneous presence of AA and AC. The chronoamperometric technique associated with standard addition in sequential one step and/or two successive and continuous chronoamperograms at two characteristic potential levels represented a feasible option for the simultaneous determination of AA and AC in real sample systems such as pharmaceutical formulations. The average values indicated by the supplier were confirmed to a very close approximation from chronoamperomgrams by using several additions with the application of suitable current correction factors.

  16. Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique

    Manjunatha, Revanasiddappa [Chemistry Research Centre, S.S.M.R.V. Degree College, IV ' T' Block, Jayanagar, Bangalore 560041 (India); Nagaraju, Dodahalli Hanumantharayudu [Mechanical Engineering Department, National University of Singapore, 119615 (Singapore); Suresh, Gurukar Shivappa, E-mail: sureshssmrv@yahoo.co.in [Chemistry Research Centre, S.S.M.R.V. Degree College, IV ' T' Block, Jayanagar, Bangalore 560041 (India); Melo, Jose Savio; D' Souza, Stanislaus F. [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Venkatesha, Thimmappa Venkatarangaiah [Department of Chemistry, Kuvempu University, Jnanasahyadri, Shimoga 577451 (India)

    2011-07-30

    A selective electrochemical method is fabricated via layer-by-layer (LBL) method using both positively and negatively charged multi walled carbon nanotubes (MWCNTs) on poly (diallyldimetheylammonium chloride) (PDDA)/poly styrene sulfonate (PSS) modified graphite electrode, for the determination of acetaminophen (ACT) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA). The modified electrode was characterized by cyclic voltammetry (CV) electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Experimental conditions such as pH, accumulation potential and time, effect of potential sweep rates and interferents were studied. In CV well defined peaks for AA, ACT and DA are obtained at 24, 186 and 374 mV, respectively. The separations of peaks were 210, 188 and 398 mV between AA and DA, DA and ACT and AA and ACT, respectively. The diffusion coefficient was calculated by chronocoulometric. Chronoamperometric studies showed the linear relationship between oxidation peak current and concentration of ACT in the range 25-400 {mu}M (R = 0.9991). The detection limit was 5 x 10{sup -7} mol/L. The proposed method gave satisfactory results in the determination of ACT in pharmaceutical and human serum samples.

  17. The shark bile salt 5 beta-scymnol abates acetaminophen toxicity, but not covalent binding.

    Slitt, Angela Lucas; Naylor, Lee; Hoivik, J; Manautou, Jose E; Macrides, Theo; Cohen, Steven D

    2004-10-15

    Acetaminophen (APAP) toxicity involves both arylative and oxidative mechanisms. The shark bile salt, 5 beta-scymnol (5beta-S), has been demonstrated to act as an antioxidant and free radical scavenger in vitro. To determine if 5beta-S protects against either APAP-induced hepatic or renal toxicity, 3-4-month-old male Swiss Laca mice were given APAP (500 mg/kg), and 5beta-S (100 mg/kg) was given at 0 and 2 h after APAP. Plasma SDH at 12 h after APAP alone was 1630 U/l and BUN was 19 mg/dl versus 20 U/l and 10 mg/dl, respectively, in controls. Either simultaneous or 2 h delayed treatment with 5beta-S significantly decreased the APAP-induced SDH increase while only the simultaneous pretreatment prevented the BUN elevation. 5beta-S alone did not increase liver glutathione content. Western analysis of APAP covalent binding using anti-APAP antibodies indicated the 5beta-S did not alter protein arylation either qualitatively or quantitatively. These results suggest that 5beta-S treatment did not impair APAP activation and are consistent with 5beta-S protection that likely results from its antioxidant activity. PMID:15363587

  18. Acetaminophen Changes Intestinal Epithelial Cell Membrane Properties, Subsequently Affecting Absorption Processes

    Christine Schäfer

    2013-08-01

    Full Text Available Background/Aims: Acetaminophen (APAP effects on intestinal barrier properties are less investigated. APAP may lead to a changed bioavailability of a subsequently administered drug or diet in the body. We investigated the influence of APAP on enterocytic cell membrane properties that are able to modify the net intestinal absorption of administered substances across the Caco-2 barrier model. Methods: The effect of APAP on cytotoxicity was measured by LDH assay, TER value and cell capacitance label-free using impedance monitoring, membrane permeability by FITC-dextrans, and efflux transporter MDR1 activity by Rh123. APAP levels were determined by HPLC analysis. Cell membrane topography and microvilli were investigated using SEM and intestinal alkaline phosphatase (Alpi and tight junction protein 1 (TJP1 expression by western blot analysis. Results: APAP changed the apical cell surface, reduced the number of microvilli and protein expression of Alpi as a brush border marker and TJP1, increased the membrane integrity and concurrently decreased cell capacitance over time. In addition, APAP decreased the permeability to small molecules and increased the efflux transporter activity, MDR1. Conclusion: APAP alters the Caco-2 cell membrane properties by different mechanisms and reduces the permeability to administered substances. These findings may help to optimize therapeutic implications.

  19. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  20. Pain relief after arthroscopy: naproxen sodium compared to propoxyphene napsylate with acetaminophen.

    Drez, D; Ritter, M; Rosenberg, T D

    1987-04-01

    We compared naproxen sodium (550 mg) and propoxyphene napsylate with acetaminophen (PN/A, 100 mg with 650 mg) for pain relief after arthroscopy or arthroscopic meniscectomy. Fifty-two patients entered this multicenter, double-blind, randomized, parallel trial. In each drug group, pain intensity values dropped consistently throughout this six-hour study from mean baseline levels of approximately 55 on a scale of 0 to 100. Pain intensity values were lower at each hour in the naproxen sodium than in the PN/A group and significantly lower at hour 1 (P = .008). Pain intensity differences (PID, reflecting change from baseline) mirrored this trend: greater mean PIDs were seen in the naproxen sodium group at each hour, and this difference between drug groups was statistically significant at hour 1 (P = .017). One patient in the naproxen sodium group and seven patients using PN/A took a second dose within the six hours. Patients in each drug group reported five complaints. PMID:2882607

  1. Evaluation of nephroprotective, diuretic, and antioxidant activities of plectranthus amboinicus on acetaminophen-induced nephrotoxic rats.

    Palani, S; Raja, S; Naresh, R; Kumar, B Senthil

    2010-05-01

    Plectranthus amboinicus (PA), commonly known as country borage, is a folkoric medicinal plant. Juice from its leaves is commonly used for illnesses including liver and renal conditions in the Asian sub-continent. Acetaminophen (APAP), used as an analgesic, produces liver and kidney necrosis in mammals at high doses. The aim of this study was to investigate the nephroprotective, diuretic, and antioxidant activities of the ethanol extract of PA at two doses of 250 and 500 mg/kg bw on APAP-induced toxicity in rats. This study shows that APAP significantly increases the levels of serum urea (UR), hemoglobin (Hb), total leukocyte count, creatinine, raised body weight, and reduced levels of neutrophils, granulocytes, uric acid, and platelet concentration. Ethanol extract of PA rescued these phenotypes by increasing anti-oxidative responses as assessed by biochemistry and histopathology. In addition, the ethanol extract of PA at two doses showed a significant diuretic activity by increased levels of total urine output and urinary elerolytes such as sodium and potassium. In conclusion, these data suggest that the ethanol extract of PA possess nephroprotective and antioxidant effects against APAP-induced nephrotoxicity and strong diuretics effect in rats. PMID:20367443

  2. Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Yang Runkuan

    2011-11-01

    Full Text Available Abstract Background Acetaminophen (APAP overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0, the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose. Methods C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline. Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours. Results 72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration. Conclusion RLS improves liver recovery from APAP hepatotoxicity.

  3. Protective effects of 2,4-dihydroxybenzophenone against acetaminophen-induced hepatotoxicity in mice

    Yue-Ying He; Bao-Xu Zhang; Feng-Lan Jia

    2011-01-01

    AIM: To examine the effects of 2,4-dihydroxybenzophenone (BP-1), a benzophenone derivative used as an ultraviolet light absorbent, on acetaminophen (APAP)- induced hepatotoxicity in C57BL/6J mice. METHODS: Mice were administered orally with BP-1 at doses of 200, 400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP (350 mg/kg body weight) was given subcutaneously. Twenty four hours after APAP intoxication, the serum enzyme including serum alaine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) were measured and liver histopathologic changes were examined. RESULTS: BP-1 administration dramatically reduced serum ALT, AST and LDH levels. Liver histopathological examination showed that BP-1 administration antagonized APAP-induced liver pathological damage in a dose-dependent manner. Further tests showed that APAP-induced hepatic lipid peroxidation was reduced significantly by BP-1 pretreatment, and glutathione depletion was ameliorated obviously. CONCLUSION: BP-1 can effectively protect C57BL/6J mice from APAP-induced hepatotoxicity, and reduction of oxidative stress might be part of the protection mechanism.

  4. Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles.

    Biazar, Esmaeil; Beitollahi, Ali; Rezayat, S Mehdi; Forati, Tahmineh; Asefnejad, Azadeh; Rahimi, Mehdi; Zeinali, Reza; Ardeshir, Mahmoud; Hatamjafari, Farhad; Sahebalzamani, Ali; Heidari, Majid

    2009-01-01

    The decrease in particle size may offer new properties to drugs. In this study, we investigated the size reduction influence of the acetaminophen (C(8)H(9)O(2)N) particles by mechanical activation using a dry ball mill. The activated samples with the average size of 1 microm were then investigated in different time periods with the infrared (IR), inductively coupled plasma (ICP), atomic force microscopy (AFM), and X-ray diffraction (XRD) methods. The results of the IR and XRD images showed no change in the drug structure after the mechanical activation of all samples. With the peak height at full width at half maximum from XRD and the Scherrer equation, the size of the activated crystallite samples illustrated that the AFM images were in sound agreement with the Scherrer equation. According to the peaks of the AFM images, the average size of the particles in 30 hours of activation was 24 nm with a normal particle distribution. The ICP analysis demonstrated the presence of tungsten carbide particle impurities after activation from the powder sample impacting with the ball and jar. The greatest reduction in size was after milling for 30 hours. PMID:20054432

  5. Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy.

    Szostak, Roman; Mazurek, Sylwester

    2002-01-01

    A procedure for quantitative determination of acetylsalicylic acid and acetaminophen in pharmaceuticals by PLS (partial least squares) and PCR (principal component regression) treatment of FT (Fourier transform)-Raman spectroscopic data is proposed. The proposed method was tested on powdered samples. Three chemometric models were built: the first, for samples consisting of an active substance diluted by lactose, starch and talc; the second, in which a simple inorganic salt was applied as an internal standard and additions were not taken into account; and the third, in which a model was constructed for a commercial pharmaceutical, where all constituents of the tablet were known. By utilising selected spectral ranges and by changing the chemometric conditions it is possible to carry out fast and precise analysis of the active component content in medicines on the basis of the simplified chemometric models. The proposed method was tested on five commercial tablets. The results were compared with data obtained by intensity ratio and pharmacopoeial methods. To appraise the quality of the models, the relative standard error of predictions (RSEPs) were calculated for calibration and prediction data sets. These were 0.7-2.0% and 0.8-2.3%, respectively, for the different PLS models. Application of these models to the Raman spectra of commercial tablets containing acetylsalicylic acid gave RSEP values of 1.3-2.0% and a mean accuracy of 1.2-1.7% with a standard deviation of 0.6-1.2%. PMID:11827382

  6. A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen

    Porous gold nanosheets modified glassy carbon electrode (GCE) was facilely prepared by one-step electrodeposition, using N-methylimidazole as a growth-directing agent. The porous gold nanosheets modified GCE was characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction spectroscopy. The modified electrode displayed improved sensitivity for individual and simultaneous differential pulse voltammetric determination of dopamine (DA; at 180 mV) and acetaminophen (AC; at 450 mV vs. Ag/AgCl) even in the presence of ascorbic acid. The oxidation peak currents linearly increased with the concentrations of DA and AC in the ranges from 2.0 to 298.0 μM and 3.0 to 320.0 μM, respectively, and the detection limits are 0.28 μM for DA and 0.23 μM for AC. The relative standard deviations (n = 20) are 1.5 % for DA and 0.4 % for AC. (author)

  7. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  8. Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique

    A selective electrochemical method is fabricated via layer-by-layer (LBL) method using both positively and negatively charged multi walled carbon nanotubes (MWCNTs) on poly (diallyldimetheylammonium chloride) (PDDA)/poly styrene sulfonate (PSS) modified graphite electrode, for the determination of acetaminophen (ACT) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA). The modified electrode was characterized by cyclic voltammetry (CV) electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Experimental conditions such as pH, accumulation potential and time, effect of potential sweep rates and interferents were studied. In CV well defined peaks for AA, ACT and DA are obtained at 24, 186 and 374 mV, respectively. The separations of peaks were 210, 188 and 398 mV between AA and DA, DA and ACT and AA and ACT, respectively. The diffusion coefficient was calculated by chronocoulometric. Chronoamperometric studies showed the linear relationship between oxidation peak current and concentration of ACT in the range 25-400 μM (R = 0.9991). The detection limit was 5 x 10-7 mol/L. The proposed method gave satisfactory results in the determination of ACT in pharmaceutical and human serum samples.

  9. The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation.

    Zheng, Zhiyong; Sheng, Yuchen; Lu, Bing; Ji, Lili

    2015-08-01

    Chlorogenic acid (CGA) has been reported to prevent acetaminophen (AP)-induced hepatotoxicity when mice were pre-administered orally with CGA for consecutive 7days before AP intoxication in our previous study. This study investigated the therapeutic detoxification of CGA against AP-induced hepatotoxicity and the engaged mechanism. The mice were orally administered with CGA (10, 20, 40mg/kg) at 1h after given AP (400mg/kg), and another 3h later the mice were killed for the following experiments. Results of serum transaminases analysis and histological evaluation demonstrated the detoxification of CGA against AP-induced hepatotoxicity. CGA reduced AP-induced the increased myeloperoxidase (MPO) enzymatic activity and its expression. CGA reduced AP-induced the increased liver expression of toll-like receptor (TLR)-3/4 and MyD88, and the increased phosphorylation of inhibitor of kappa B (IκB) and p65 subunit of nuclear factor κB (NFκB). CGA reduced AP-induced the increased NFκBp65 expression in nucleus. In addition, CGA reduced AP-induced the increased serum levels and liver mRNA expression of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC). Taken together, our results demonstrate the therapeutic detoxification of CGA against AP-induced liver injury, and TLR3/4 and NFκB signaling pathway are involved in such process. PMID:26079055

  10. Comparative efficacy and tolerance of ibuprofen syrup and acetaminophen syrup in children with pyrexia associated with infectious diseases and treated with antibiotics.

    Autret, E; Breart, G; Jonville, A P; Courcier, S; Lassale, C; Goehrs, J M

    1994-01-01

    A double-blind, randomised, parallel group study has been done comparing the efficacy and tolerability of 7.5 mg/kg ibuprofen syrup (n = 77) and 10 mg.kg-1 acetaminophen syrup (n = 77) in 154 children (6 months to 5 years) with fever (> or = 38 degrees C) associated with infectious diseases and treated with antibiotic therapy. The area under the percentage reduction in temperature curve captured the net effect of each drug and provided the best estimate for comparison of efficacy during a defined period. Temperature evolution over time was not significantly different between the two groups. Nevertheless, the temperature reduction over the first 4 h of treatment (H0-H4) was significantly higher after ibuprofen (60%) than acetaminophen (45%). Both ibuprofen and acetaminophen were well tolerated. In conclusion, significant antipyretic activity, good tolerability and its availability as a syrup make ibuprofen an effective means of fever control in children. PMID:8070499

  11. The Effects of Diclofenac Suppository and Intravenous Acetaminophen and their Combination on the Severity of Postoperative Pain in Patients Undergoing Spinal Anaesthesia During Cesarean Section

    Niaki, Alireza Seyedi; Jafari, Seyed Yaghoub; Yousefi, Zahra; Aryaie, Mohammad

    2016-01-01

    Introduction The main tasks of postoperative care are postoperative pain and complications control which play an important role in accelerating the recovery of patient’s general condition. Aim This study was performed in order to compare the effects of diclofenac suppository, intravenous acetaminophen and their combination on the severity of postoperative pain in patients undergoing spinal anaesthesia for cesarean section in Sayyad Shirazi teaching Hospital, Gorgon, Iran. Materials and Methods This was a double-blind clinical trial on 90 patients undergoing cesarean section. The patients were randomly divided into three groups, group A: 100 mg diclofenac suppository, group B: 1000 mg intravenous acetaminophen, group C: 100 mg diclofenac suppository and 500 mg intravenous acetaminophen. The same spinal anaesthesia circumstances were applied for all the participants. At the end of surgery, pain severity was assessed according to VAS scale at different times. Data were then analysed by SPSS 18 statistical software. Results The mean age of participants was (28.27±6.07). There was significant difference between the mean pain scores of the three groups before the intervention (p=0.018), which was considered as co-variate. This difference was more notable between the combination of acetaminophen – diclofenac group and diclofenac alone. After the intervention, significant difference was observed in mean pain severity between acetaminophen group and the combination group and also between diclofenac and the combination group. During the study, the least mean pain severity was found in the combination group and the highest was observed in the diclofenac group. Conclusion Results of this study indicates a significant effect of concomitant use of intravenous acetaminophen and diclofenac suppository on pain severity reduction and reducing the need for repeated doses of narcotics and prolonging the postoperative analgesia.

  12. Comparison of Clinical Efficacy of Intravenous Acetaminophen with Intravenous Morphine in Acute Renal Colic: A Randomized, Double-Blind, Controlled Trial

    Kambiz Masoumi; Arash Forouzan; Ali Asgari Darian; Maryam Feli; Hassan Barzegari; Ali Khavanin

    2014-01-01

    The aim of this study was to compare the clinical efficacy of intravenous acetaminophen with intravenous morphine in acute renal colic pain management. In this double-blind controlled trial, patients aged 18–55 years, diagnosed with acute renal colic, who met the inclusion and exclusion criteria, were randomized into two groups. First, using the visual analogue scale (VAS), intensity of pain was assessed in both groups. Then, one gram of intravenous acetaminophen or 0.1 mg/kg morphine was inf...

  13. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone.

    Prill, Sebastian; Bavli, Danny; Levy, Gahl; Ezra, Elishai; Schmälzlin, Elmar; Jaeger, Magnus S; Schwarz, Michael; Duschl, Claus; Cohen, Merav; Nahmias, Yaakov

    2016-05-01

    Prediction of drug-induced toxicity is complicated by the failure of animal models to extrapolate human response, especially during assessment of repeated dose toxicity for cosmetic or chronic drug treatments. In this work, we present a 3D microreactor capable of maintaining metabolically active HepG2/C3A spheroids for over 28 days in vitro under stable oxygen gradients mimicking the in vivo microenvironment. Mitochondrial respiration was monitored using two-frequency phase modulation of phosphorescent microprobes embedded in the tissue. Phase modulation is focus independent and unaffected by cell death or migration. This sensitive measurement of oxygen dynamics revealed important information on the drug mechanism of action and transient subthreshold effects. Specifically, exposure to antiarrhythmic agent, amiodarone, showed that both respiration and the time to onset of mitochondrial damage were dose dependent showing a TC50 of 425 μm. Analysis showed significant induction of both phospholipidosis and microvesicular steatosis during long-term exposure. Importantly, exposure to widely used analgesic, acetaminophen, caused an immediate, reversible, dose-dependent loss of oxygen uptake followed by a slow, irreversible, dose-independent death, with a TC50 of 12.3 mM. Transient loss of mitochondrial respiration was also detected below the threshold of acetaminophen toxicity. The phenomenon was repeated in HeLa cells that lack CYP2E1 and 3A4, and was blocked by preincubation with ascorbate and TMPD. These results mark the importance of tracing toxicity effects over time, suggesting a NAPQI-independent targeting of mitochondrial complex III might be responsible for acetaminophen toxicity in extrahepatic tissues. PMID:26041127

  14. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A2, and cytosolic and secretory PLA2 activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E2 expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE2 expression and hepatocyte regeneration, likely through a mechanism involving PLA2. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A2 activity and prostaglandin E2 levels.

  15. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    Zheng, Meixia; Gao, Feng [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Cai, Xili [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Jiang, Shulian; Huang, Lizhang [Zhangzhou Product Quality Supervision and Inspection Institute, Zhangzhou 363000 (China); Gao, Fei [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2013-04-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k{sub s}), diffusion coefficient (D) and the surface adsorption amount (Γ{sup ⁎}) of ACOP on GR–CS/GCE were determined to be 0.25 s{sup −1}, 3.61 × 10{sup −5} cm{sup 2} s{sup −1} and 1.09 × 10{sup −9} mol cm{sup −2}, respectively. Additionally, a 2e{sup −}/2H{sup +} electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10{sup −6} to 1.0 × 10{sup −4} M with a low detection limit of 3.0 × 10{sup −7} M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied.

  16. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (ks), diffusion coefficient (D) and the surface adsorption amount (Γ⁎) of ACOP on GR–CS/GCE were determined to be 0.25 s−1, 3.61 × 10−5 cm2 s−1 and 1.09 × 10−9 mol cm−2, respectively. Additionally, a 2e−/2H+ electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10−6 to 1.0 × 10−4 M with a low detection limit of 3.0 × 10−7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  17. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Chaudhuri, Shubhra, E-mail: SCHAUDHURI@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); McCullough, Sandra S., E-mail: mcculloughsandras@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Hennings, Leah, E-mail: lhennings@uams.edu [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Brown, Aliza T., E-mail: brownalizat@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Li, Shun-Hwa [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Simpson, Pippa M., E-mail: psimpson@mcw.edu [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Hinson, Jack A., E-mail: hinsonjacka@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); James, Laura P., E-mail: jameslaurap@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States)

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  18. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT. PMID:26454079

  19. Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®, nimesulide, and acetaminophen

    Di Pierro F

    2013-03-01

    Full Text Available Francesco Di Pierro,1 Giuliana Rapacioli,2 Eleonora Adriana Di Maio,3 Giovanni Appendino,4 Federico Franceschi,5 Stefano Togni5 1Velleja Research, 2Associazione Italiana Omeopatia di Risonanza, 3Presidio Ospedaliero Riunito Ciriè-Lanzo, 4Università degli Studi del Piemonte Orientale, 5Indena SpA, Milan, Italy Abstract: In addition to its anti-inflammatory activity, Meriva®, a proprietary lecithin formulation of curcumin, has been anecdotally reported to decrease acute pain in patients with various chronic diseases. Given that curcumin can desensitize transient receptor potential A1, a nociceptor seemingly also mediating the analgesic effect of acetaminophen, as well as inhibiting and downregulating the expression of cyclo-oxygenase 2, the selective target of nimesulide, a nonsteroidal anti-inflammatory agent, we carried out a pilot comparative study of the acute pain-relieving properties of these three agents. At a dose of 2 g (corresponding to 400 mg of curcumin, Meriva showed clear analgesic activity, comparable with that of a standard dose (1 g of acetaminophen, but lower than that of a therapeutic (100 mg dose of nimesulide. The analgesic activity of lower (1.5 g doses of Meriva was less satisfactory, and the onset of activity was longer than that of nimesulide for both doses. On the other hand, gastric tolerability was significantly better than that of nimesulide and comparable with that of acetaminophen. Taken together, our results show that the preclinical analgesic properties of curcumin have clinical relevance, at least at a dose of 2 g as the Meriva formulation. While this dose is significantly higher than that used to relieve chronic inflammatory conditions (1–1.2 g/day, its pain-relieving activity could benefit from the general downregulation of the inflammatory response induced by curcumin, considering that the transient receptor potential channel-mediated mechanisms of analgesia are magnified by attenuation of inflammation. In

  20. Efficacy of Low Dose Combination Analgesics: Acetaminophen/Codeine, Aspirin/Butalbital/Caffeine/Codeine, and Placebo in Oral Surgery Pain

    Desjardins, Paul J.; Cooper, Stephen A.; Finizio, Tobin

    1986-01-01

    A double-blind, randomized, single-dose study was performed to compare the efficacy and safety of two commonly prescribed combination analgesic products to placebo. The combinations were acetaminophen 300 mg/codeine 30 mg†, and aspirin 325 mg/butalbital 50 mg/caffeine 40 mg/codeine 30 mg††. One hundred twenty-three (123) oral surgery outpatients took study medications when their pain became moderate to severe and recorded the levels of pain intensity, pain relief, anxiety and relaxation at 30...

  1. Some physicochemical properties of acetaminophen pediatric suspensions formulated with okra gums obtained from different extraction processes as suspending agent

    Ikoni Ogaji

    2011-01-01

    The purpose of this work was to evaluate the effect of the extraction process and the potential of okra gum as a suspending agent in pharmaceutical oral formulations containing acetaminophen as a model drug. Clarified mucilage of dried okra was either extracted directly with ethanol 96% (F1) or was first treated with base (F2), acid (F3) or heating in the presence of salt (F4) before extraction with ethanol 96%. The samples were used at 0.5% w/v as suspending agents in ac...

  2. Relaxation phenomena in supercooled liquid and glassy acetaminophen studied by dielectric, photon correlation and Brillouin light scattering spectroscopies

    Kwon, Hyun-Joung; Kim, Tae Hyun; Ko, Jae-Hyeon; Hwang, Yoon-Hwae

    2013-01-01

    Relaxation phenomena and acoustic properties of acetaminophen in the glassy and supercooled liquid phase were studied by dielectric, photon correlation and Brillouin spectroscopies. Dielectric and photon correlation studies revealed the structural relaxation process while a new relaxation process was found by dielectric measurement in a much lower frequency range. The acoustic anomalies clearly indicated a glass transition at 293 K and some remnant localized motions in the glassy phase that contributed to the acoustic damping. Partial crystallization in the supercooled liquid phase was signified at temperatures above 318 K by drastic changes in the Brillouin spectrum and decrease in the dielectric strength.

  3. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    Williams, C. David [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Koerner, Michael R., E-mail: mkoern2@illinois.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Lampe, Jed N. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Farhood, Anwar [Department of Pathology, Brackenridge Hospital, Austin, TX 78701 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2011-12-15

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase

  4. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: ► During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. ► Hepatic ATP levels are not the determining factor for caspase activity. ► Caspase-3 activity does not result in increased hepatocellular apoptotic cell death. ► Neutrophil recruitment during

  5. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity

    Yang Runkuan

    2012-05-01

    Full Text Available Abstract Background Acetaminophen (APAP overdose induces massive hepatocyte necrosis. Necrotic tissue releases high mobility group B1 (HMGB1, and HMGB1 contributes to liver injury. Even though blockade of HMGB1 does not protect against APAP-induced acute liver injury (ALI at 9 h time point, the later time points are not studied and the role of HMGB1 in APAP overdose is unknown, it is possible that neutralization of HMGB1 might improve hepatocyte regeneration. This study aims to test whether blockade of HMGB1 improves hepatocyte regeneration after APAP overdose. Methods Male C57BL/6 mice were treated with a single dose of APAP (350 mg/kg. 2 hrs after APAP administration, the APAP challenged mice were randomized to receive treatment with either anti-HMGB1 antibody (400 μg per dose or non-immune (sham IgG every 24 hours for a total of 2 doses. Results 24 hrs after APAP injection, anti-HMGB1 therapy instead of sham IgG therapy significantly improved hepatocyte regeneration microscopically; 48 hrs after APAP challenge, the sham IgG treated mice showed 14.6% hepatic necrosis; in contrast, blockade of HMGB1 significantly decreased serum transaminases (ALT and AST, markedly reduced the number of hepatic inflammatory cells infiltration and restored liver structure to nearly normal; this beneficial effect was associated with enhanced hepatic NF-κB DNA binding and increased the expression of cyclin D1, two important factors related to hepatocyte regeneration. Conclusion HMGB1 impairs hepatocyte regeneration after APAP overdose; Blockade of HMGB1 enhances liver recovery and may present a novel therapy to treat APAP overdose.

  6. Is There a Causal Relation between Maternal Acetaminophen Administration and ADHD?

    Antonio Saad

    Full Text Available Recent epidemiological studies reported an association between maternal intake of acetaminophen (APAP and attention deficit hyperactivity disorder (ADHD in their children. However, none of these studies demonstrated causality. Our objective was to determine whether exposure to APAP during pregnancy result in hyperkinetic dysfunctions in offspring, using a murine model.Pregnant CD1 mice (N = 8/group were allocated to receive by gavage either APAP (150 mg/kg/day, equivalent to the FDA-approved maximum human clinical dose, or 0.5% carboxymethylcellulose (control group, starting on embryonic day 7 until delivery. Maternal serum APAP and alanine transaminase (ALT concentrations were determined by ELISA and kinetic colorimetric assays, respectively. Open field locomotor activity (LMA in the 30-day old mouse offspring was quantified using Photobeam Activity System. Mouse offspring were then sacrificed, whole brains processed for magnetic resonance imaging (MRI; 11.7 Tesla magnet and for neuronal quantification using Nissl stain. The association between APAP exposure and LMA in mouse offspring was analyzed using a mixed effects Poisson regression model that accounted for mouse offspring weight, gender, random selection, and testing time and day. We corrected for multiple comparisons and considered P<0.008 as statistically significant.Maternal serum APAP concentration peaked 30 minutes after gavage, reaching the expected mean of 117 μg/ml. Serum ALT concentrations were not different between groups. There were no significant differences in vertical (rearing, horizontal, or total locomotor activity between the two rodent offspring groups at the P level fixed to adjust for multiple testing. In addition, no differences were found in volumes of 29 brain areas of interest on MRI or in neuronal quantifications between the two groups.This study refutes that hypothesis that prenatal exposure to APAP causes hyperkinetic dysfunction in mouse offspring. Due to lack

  7. Role of bile acids in liver injury and regeneration following acetaminophen overdose.

    Bhushan, Bharat; Borude, Prachi; Edwards, Genea; Walesky, Chad; Cleveland, Joshua; Li, Feng; Ma, Xiaochao; Apte, Udayan

    2013-11-01

    Bile acids play a critical role in liver injury and regeneration, but their role in acetaminophen (APAP)-induced liver injury is not known. We tested the effect of bile acid modulation on APAP hepatotoxicity using C57BL/6 mice, which were fed a normal diet, a 2% cholestyramine (CSA)-containing diet for bile acid depletion, or a 0.2% cholic acid (CA)-containing diet for 1 week before treatment with 400 mg/kg APAP. CSA-mediated bile acid depletion resulted in significantly higher liver injury and delayed regeneration after APAP treatment. In contrast, 0.2% CA supplementation in the diet resulted in a moderate delay in progression of liver injury and significantly higher liver regeneration after APAP treatment. Either CSA-mediated bile acid depletion or CA supplementation did not affect hepatic CYP2E1 levels or glutathione depletion after APAP treatment. CSA-fed mice exhibited significantly higher activation of c-Jun N-terminal protein kinases and a significant decrease in intestinal fibroblast growth factor 15 mRNA after APAP treatment. In contrast, mice fed a 0.2% CA diet had significantly lower c-Jun N-terminal protein kinase activation and 12-fold higher fibroblast growth factor 15 mRNA in the intestines. Liver regeneration after APAP treatment was significantly faster in CA diet-fed mice after APAP administration secondary to rapid cyclin D1 induction. Taken together, these data indicate that bile acids play a critical role in both initiation and recovery of APAP-induced liver injury. PMID:24007882

  8. Galangin Prevents Acute Hepatorenal Toxicity in Novel Propacetamol-Induced Acetaminophen-Overdosed Mice.

    Tsai, Ming-Shiun; Chien, Chia-Chih; Lin, Ting-Hui; Liu, Chia-Chi; Liu, Rosa Huang; Su, Hong-Lin; Chiu, Yung-Tsung; Wang, Sue-Hong

    2015-11-01

    Acetaminophen (APAP) overdose causes severe liver and kidney damage. APAP-induced liver injury (AILI) represents the most frequent cause of drug-induced liver failure. APAP is relatively insoluble and can only be taken orally; however, its prodrug, propacetamol, is water soluble and usually injected directly. In this study, we examined the time-dependent effects of AILI after propacetamol injection in mice. After analyses of alanine aminotransferase and aspartate aminotransferase activities and liver histopathology, we demonstrated that a novel AILI mouse model can be established by single propacetamol injection. Furthermore, we compared the protective and therapeutic effects of galangin with a known liver protective extract, silymarin, and the only clinical agent for treating APAP toxicity, N-acetylcysteine (NAC), at the same dose in the model mice. We observed that galangin and silymarin were more effective than NAC for protecting against AILI. However, only NAC greatly improved both the survival time and rate consequent to a lethal dose of propacetamol. To decipher the hepatic protective mechanism(s) of galangin, galangin pretreatment significantly decreased the hepatic oxidative stress, increased hepatic glutathione level, and decreased hepatic microsomal CYP2E1 levels induced by propacetamol injection. In addition, propacetamol injection also reproduced the probability of APAP-induced kidney injury (AIKI), appearing similar to a clinical APAP overdose. Only galangin pretreatment showed the protective effect of AIKI. Thus, we have established a novel mouse model for AILI and AIKI using a single propacetamol injection. We also demonstrated that galangin provides significant protection against AILI and AIKI in this mouse model. PMID:26501381

  9. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  10. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    Jack Hinson

    2013-08-01

    Full Text Available High doses of acetaminophen (APAP result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines.

  11. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes.

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G; Lehner, Andreas F; Scott, Michael A; Buchweitz, John P; James, Laura P; Ganey, Patricia E; Roth, Robert A

    2015-08-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. PMID:26065700

  12. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice.

    Aubert, Jacinthe; Begriche, Karima; Delannoy, Matthieu; Morel, Isabelle; Pajaud, Julie; Ribault, Catherine; Lepage, Sylvie; McGill, Mitchell R; Lucas-Clerc, Catherine; Turlin, Bruno; Robin, Marie-Anne; Jaeschke, Hartmut; Fromenty, Bernard

    2012-09-01

    Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders. PMID:22647274

  13. Inhibition of human platelet function in vitro and ex vivo by acetaminophen.

    Lages, B; Weiss, H J

    1989-03-15

    The effects of acetaminophen (APAP) in vitro, or ex vivo following APAP ingestion, on human platelet aggregation, 14C-5HT secretion, and thromboxane B2 (TxB2) formation were assessed. APAP added in vitro to citrated platelet-rich plasma (PRP) inhibited aggregation, secretion, and TxB2 formation induced by collagen, epinephrine, arachidonate, and the ionophore A23187, but had no effect on the responses induced by the endoperoxide analog U44069. Arachidonate-induced responses were inhibited by lower concentrations of APAP than were the responses to the other agonists. In PRP obtained 1 hour after ingestion of 650 mg or 1000 mg APAP, arachidonate-induced TxB2 formation was inhibited by 40-99% in five subjects tested, whereas inhibition of collagen- or epinephrine-induced TxB2 formation was less consistent. Aggregation and secretion responses were not altered by APAP ingestion in 4 of the 5 subjects, but were inhibited in the remaining subject, who had the highest plasma APAP levels. In contrast to aspirin and indomethacin, APAP-induced inhibition of collagen-stimulated TxB2 formation could be partially overcome with increasing collagen concentrations. No such partial correction occurred with epinephrine, however. In washed platelet suspensions labeled with 3H-arachidonate, both APAP and aspirin inhibited the formation of labeled PGD2 and PGE2, as well as TxB2. These results suggest that APAP acts in human platelets as a reversible inhibitor of cyclo-oxygenase, as found previously in other tissues, and that recent APAP ingestion can, on occasion, produce inhibition of platelet functional responses measured in vitro. PMID:2499947

  14. Crystallization of bifonazole and acetaminophen within the matrix of semicrystalline, PEO-PPO-PEO triblock copolymers.

    Chen, Zhen; Liu, Zhengsheng; Qian, Feng

    2015-02-01

    The morphology and microstructure of crystalline drug/polymer solid dispersions could influence their physical stability and dissolution performance. In this study, the drug crystallization mechanism within PEG, PPG, and poloxamer matrix was investigated, and the resultant microstructure of various solid dispersions of acetaminophen (ACM) and bifonazole (BFZ) in the aforementioned polymers was characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide/small-angle X-ray diffraction (WAXD/SAXS). With a stronger molecular interaction with the PEG segments, ACM decreased the crystallization onset temperature and crystallinity of PEG and poloxamers much more than BFZ. The stronger molecular interaction and better miscibility between ACM and PEG also induced a more defective lamellar structure in the ACM solid dispersions compared with that in the BFZ systems, as revealed by DSC and SAXS investigation. Observed under polarized optical microscopy, PEG, PPG, and poloxamer could all significantly improve the crystallization rate of ACM and BFZ, because of the largely reduced Tg of the solid dispersions by these low Tg polymers. Moreover, when the drug loading was below 60%, crystallization of BFZ in PEG or poloxamer occurred preferably along the radial direction of PEG spherulite, rather than the perpendicular direction, which was attributed to the geometric restriction of well-ordered polymer lamellar structure in the BFZ solid dispersions. Similar phenomena were not observed in the ACM solid dispersions regardless of the drug loading, presumably because ACM could diffuse freely across the perpendicular direction of the PEG spherulite, through the well-connected interlamellar or interfibrillar spaces produced by the defective PEG lamellar structure. The different drug-polymer interaction also caused a difference in the microstructure of polymer crystal, as well as a difference in drug distribution within the polymer matrix, which

  15. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury.

    Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin

    2016-06-01

    Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP upregulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepatoprotective agent. PMID:27161000

  16. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    Nélson R Carvalho

    Full Text Available The acute liver failure (ALF induced by acetaminophen (APAP is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe2 to the N-acetylcysteine (NAC during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg, (PhSe2 (15.6 mg/kg, NAC (1200 mg/kg, APAP+(PhSe2 or APAP+NAC, where the (PhSe2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe2. The effectiveness of (PhSe2 was similar at a lower dose than NAC. In summary, (PhSe2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.

  17. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity.

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  18. Role of NAD(P)H:quinone oxidoreductase 1 in clofibrate-mediated hepatoprotection from acetaminophen

    Mice pretreated with the peroxisome proliferator clofibrate (CFB) are resistant to acetaminophen (APAP) hepatotoxicity. Whereas the mechanism of protection is not entirely known, CFB decreases protein adducts formed by the reactive metabolite of APAP, N-acetyl-p-benzoquinone imine (NAPQI). NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme with antioxidant properties that is responsible for the reduction of cellular quinones. We hypothesized that CFB increases NQO1 activity, which in turn enhances the conversion of NAPQI back to the parent APAP. This could explain the decreases in APAP covalent binding and glutathione depletion produced by CFB without affecting APAP bioactivation to NAPQI. Administration of CFB (500 mg/kg, i.p.) to male CD-1 mice for 5 or 10 days increased NQO1 protein and activity levels. To evaluate the capacity of NQO1 to reduce NAPQI back to APAP, we utilized a microsomal activating system. Cytochrome P450 enzymes present in microsomes bioactivate APAP to NAPQI, which binds the electrophile trapping agent, N-acetyl cysteine (NAC). We analyzed the formation of APAP-NAC metabolite in the presence of human recombinant NQO1. Results indicate that NQO1 is capable of reducing NAPQI. The capacity of NQO1 to amelioriate APAP toxicity was then evaluated in primary hepatocytes. Primary hepatocytes isolated from mice dosed with CFB are resistant to APAP toxicity. These hepatocytes were also exposed to ES936, a high affinity, and irreversible inhibitor of NQO1 in the presence of APAP. Concentrations of ES936 that resulted in over 94% inhibition of NQO1 activity did not increase the susceptibility of hepatocytes from CFB treated mice to APAP. Whereas NQO1 is mechanistically capable of reducing NAPQI, CFB-mediated hepatoprotection does not appear to be dependent upon enhanced expression of NQO1

  19. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2

    The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals

  20. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24 h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.

  1. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  2. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes.

    Jetten, Marlon J A; Ruiz-Aracama, Ainhoa; Coonen, Maarten L J; Claessen, Sandra M; van Herwijnen, Marcel H M; Lommen, Arjen; van Delft, Joost H M; Peijnenburg, Ad A C M; Kleinjans, Jos C S

    2016-05-01

    Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP. PMID:26104854

  3. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  4. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    Ghorbani-Bidkorbeh, Fatemeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of)

    2010-03-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 muL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 muM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 muM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  5. Quercetin protects against acetaminophen-induced hepatorenal toxicity by reducing reactive oxygen and nitrogen species.

    El-Shafey, Mostafa M; Abd-Allah, Gamil M; Mohamadin, Ahmed M; Harisa, Gamaleldin I; Mariee, Amr D

    2015-03-01

    High or toxic doses of acetaminophen (APAP), a mild analgesic and antipyretic drug, can cause life-threatening hepatic and renal dysfunction. This study is designed to investigate the potential protective role of quercetin to attenuate the hepatorenal toxicity induced by a high single oral dose (3g/kg) of APAP in rats. Three main groups of Sprague-Dawley rats were used: quercetin, APAP and quercetin plus APAP-receiving animals. Corresponding control animals were also used. Interestingly, oral supplementation of quercetin (15mg/kg/day) prior to APAP intoxication dramatically reduced APAP-induced hepatorenal toxicity as evidenced by measuring serum lipid profile, total protein, urea, creatinine, ALT, AST, ALP, G-GT and liver tissue content of TC and TG. Quercetin treatment markedly prevented the generation of TBARS and PCC with substantial improvement in terms of GSH and activities of antioxidant enzymes in both liver and kidney homogenates. The relationship between quercetin and NO levels which is still a matter of debate, was also investigated. NO levels in serum, liver and kidney tissues were significantly inhibited in quercetin pre-treated animals. Furthermore, quercetin administration significantly inhibited the reduction of liver and kidney contents of ATP parcels associated with this hepatorenal toxicity. These results suggest that the protective role of quercetin in the prevention of APAP-induced hepatorenal toxicity in rats was associated with the decrease of oxidative and nitrosative stress in hepatic and renal tissues as well as its capacity to improve the mitochondrial energy production. However, clinical studies are warranted to investigate such an effect in human subjects. PMID:25547049

  6. Acute acetaminophen intoxication leads to hepatic iron loading by decreased hepcidin synthesis.

    van Swelm, Rachel P L; Laarakkers, Coby M M; Blous, Linda; Peters, Janny G P; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; Swinkels, Dorine W; Masereeuw, Rosalinde; Russel, Frans G M

    2012-09-01

    Acetaminophen (APAP), a major cause of acute liver injury in the Western world, is mediated by metabolism and oxidative stress. Recent studies have suggested a role for iron in potentiating APAP-induced liver injury although its regulatory mechanism is not completely understood. The current study was designed to unravel the iron-regulating pathways in mice after APAP-induced hepatotoxicity. Mice with severe injury showed a significant increase in liver iron concentration and oxidative stress. Concurrently, the plasma concentration of hepcidin, the key regulator in iron metabolism, and hepatic hepcidin antimicrobial peptide (Hamp) mRNA expression levels were significantly reduced. We showed that hepcidin transcription was inhibited via several hepcidin-regulating factors, including the bone morphogenetic protein/small mother against decapentaplegic (BMP/SMAD) pathway, CCAAT/enhancer-binding protein α (C/EBPα), and possibly also via erythropoietin (EPO). Downregulation of the BMP/SMAD signaling pathway was most likely caused by hypoxia-inducible factor 1α (HIF-1α), which was increased in mice with severe APAP-induced liver injury. HIF-1α stimulates cleaving of hemojuvelin, the cofactor of the BMP receptor, thereby blocking BMP-induced signaling. In addition, gene expression levels of C/ebpα were significantly reduced, and Epo mRNA expression levels were significantly increased after APAP intoxication. These factors are regulated through HIF-1α during oxidative stress and suggest that HIF-1α is a key modulator in reduced hepcidin transcription after APAP-induced hepatotoxicity. In conclusion, acute APAP-induced liver injury leads to activation of HIF-1α, which results in a downregulation in hepcidin expression through a BMP/SMAD signaling pathway and through C/EBPα inhibition. Eventually, this leads to hepatic iron loading associated with APAP cytotoxicity. PMID:22610607

  7. Risk of Acute Kidney Injury and Long-Term Outcome in Patients With Acetaminophen Intoxication

    Chen, Yu-Guang; Lin, Cheng-Li; Dai, Ming-Shen; Chang, Ping-Ying; Chen, Jia-Hong; Huang, Tzu-Chuan; Wu, Yi-Ying; Kao, Chia-Hung

    2015-01-01

    Abstract Acetaminophen (APAP) intoxication is a common cause of hepatic toxicity and life-threatening hepatic failure. However, few studies have investigated the possible association between APAP intoxication and acute kidney injury (AKI). We constructed a retrospective cohort study to clarify the relationship between APAP intoxication and the risk of AKI. We identified patients with APAP intoxication and selected a comparison cohort that was 1:4 frequency matched according to age, sex, and year of APAP intoxication diagnosis from the Taiwan National Health Insurance Research Database from 1998 to 2010. We analyzed the risks of AKI for patients with APAP intoxication by using Cox proportional hazards regression models. In this study, 2914 patients with APAP intoxication and 11,656 controls were included. The overall risks of developing AKI were 2.41-fold in the patients with APAP intoxication compared with the comparison cohort. After we excluded APAP intoxication patients with coexisting AKI and hepatic failure/hepatitis, the overall risks of developing AKI were still 2.22-fold in the patients with APAP intoxication. There were 2 patients who had end-stage renal disease (ESRD) following APAP intoxication-related AKI. Limitations include retrospective review, selection bias, and absence of data on detail medications used, laboratory investigations and dosage of APAP intoxication. Our long-term cohort study results showed that AKI is a possible adverse effect among patients with APAP intoxication, regardless of whether patients have presented with hepatic toxicity. However, additional studies are necessary to clarify whether such patients can progress to ESRD. PMID:26579812

  8. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication.

    Dragomir, Ana-Cristina Docan; Sun, Richard; Choi, Hyejeong; Laskin, Jeffrey D; Laskin, Debra L

    2012-12-15

    Inflammatory macrophages have been implicated in hepatotoxicity induced by the analgesic acetaminophen (APAP). In these studies, we characterized the phenotype of macrophages accumulating in the liver following APAP intoxication and evaluated the role of galectin-3 (Gal-3) in macrophage activation. Administration of APAP (300 mg/kg, i.p.) to wild-type mice resulted in the appearance of two distinct subpopulations of CD11b(+) cells in the liver, which expressed high or low levels of the monocyte/macrophage activation marker Ly6C. Whereas CD11b(+)/Ly6C(hi) macrophages exhibited a classically activated proinflammatory phenotype characterized by increased expression of TNF-α, inducible NO synthase, and CCR2, CD11b(+)/Ly6C(lo) macrophages were alternatively activated, expressing high levels of the anti-inflammatory cytokine IL-10. APAP intoxication was also associated with an accumulation of Gal-3(+) macrophages in the liver; the majority of these cells were Ly6C(hi). APAP-induced increases in CD11b(+)/Ly6C(hi) macrophages were significantly reduced in Gal-3(-/-) mice. This reduction was evident 72 h post APAP and was correlated with decreased expression of the classical macrophage activation markers, inducible NO synthase, IL-12, and TNF-α, as well as the proinflammatory chemokines CCL2 and CCL3, and chemokine receptors CCR1 and CCR2. Conversely, numbers of CD11b(+)/Ly6C(lo) macrophages increased in livers of APAP-treated Gal-3(-/-) mice; this was associated with increased expression of the alternative macrophage activation markers Ym1 and Fizz1, increased liver repair, and reduced hepatotoxicity. These data demonstrate that both classically and alternatively activated macrophages accumulate in the liver following APAP intoxication; moreover, Gal-3 plays a role in promoting a persistent proinflammatory macrophage phenotype. PMID:23175698

  9. Protective properties of 2-acetylcyclopentanone in a mouse model of acetaminophen hepatotoxicity.

    Zhang, Lihai; Gavin, Terrence; Geohagen, Brian C; Liu, Qiang; Downey, Katherine J; LoPachin, Richard M

    2013-08-01

    Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress. 2-ACP administered intraperitoneally 20 minutes before APAP completely prevented lethality over a 7-day observation period. This effect was dose-dependent (0.80-2.40 mmol/kg) and was correlated with normalization of measured parameters. Nearly complete protection was afforded when 2-ACP was administered 20 minutes post-APAP, but not 60 minutes after intoxication. Although intraperitoneal administration of N-acetylcysteine (NAC) was not effective over a broad dose range (2.40-7.20 mmol/kg), temporal studies indicated that intraperitoneal NAC was hepatoprotective when injected 60 minutes after APAP intoxication. Because of a loss of function in stomach acid, oral administration of 2-ACP was associated with modest APAP protection. In contrast, NAC administered orally provided dose-dependent (0.80-2.40 mmol/kg) protection against APAP hepatotoxicity. In chemico studies and quantum mechanical calculations indicated that 2-ACP acted as a surrogate nucleophilic target for the reactive electrophilic APAP metabolite N-acetyl-p-benzoquinone imine. Our findings suggest that 2-ACP or a derivative might be useful in treating acquired toxicities associated with electrophilic drugs and metabolites or environmental toxicants. PMID:23759509

  10. Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production.

    Dragomir, Ana-Cristina; Sun, Richard; Mishin, Vladimir; Hall, LeRoy B; Laskin, Jeffrey D; Laskin, Debra L

    2012-06-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1β. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication. PMID:22461450

  11. Application of interleukin-22 mediates protection in experimental acetaminophen-induced acute liver injury.

    Scheiermann, Patrick; Bachmann, Malte; Goren, Itamar; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko

    2013-04-01

    Acetaminophen (APAP, paracetamol)-induced hepatotoxicity, although treatable by timely application of N-acetylcysteine, can be fatal. Because it is among the common causes of acute liver failure in intensive care units and in light of its gradually increasing incidence, the need for novel therapeutic strategies aimed at severe intoxication is apparent. Recently, it has been shown that IL-22, a STAT3-activating cytokine, has the capability to mediate liver protection. Herein, the protective potential of IL-22 in murine APAP-induced hepatotoxicity was assessed. Intravenous administration of prophylactic IL-22 significantly reduced serum alanine aminotransferase levels and histopathologic damage in APAP-induced liver injury, a process that coincided with increased hepatocyte proliferation in vivo. Concomitant gene expression analysis revealed hepatic induction of genes prototypically up-regulated by the IL-22/STAT3 axis, among others suppressor of cytokine signaling-3, lipocalin-2, and α1-antichymotrypsin. Notably, in a translational setting of therapeutic treatment 2 hours after APAP, IL-22 supported protection in the context of suboptimal N-acetylcysteine dosing. IL-22 likewise connected to augmented hepatocyte proliferation in this experimental setting. As detected by analysis of inflammatory cytokine production, systemically applied IL-22 did not display acute immunomodulation/stimulation in otherwise untreated or endotoxemic mice. Those latter observations clearly confirm acute tolerability of systemically applied IL-22. Observations presented altogether suggest that therapeutic IL-22 administration is a conceivable tissue-protective regimen aimed at hard-to-treat patients with severe APAP-induced hepatotoxicity. PMID:23375450

  12. Effects of treatment with enalapril on hepatotoxicity induced by acetaminophen in mice.

    Betto, Mariel R B; Lazarotto, Lais F; Watanabe, Tatiane T N; Driemeier, David; Leite, Carlos E; Campos, Maria M

    2012-09-01

    There is a current need for new therapeutic options for acetaminophen (APAP)-induced hepatotoxicity. Herein, we assessed the effects of prophylactic and therapeutic treatment with the angiotensin-converting enzyme (ACE) inhibitor, enalapril, on APAP-caused hepatotoxicity. Male and female C57BL/6 J mice were used, and hepatotoxicity was induced by a single application of APAP (400 mg/kg, i.p.). Macroscopic and histological liver alterations, serum alanine transaminase (ALT) and aspartate transaminase (AST) activity, liver catalase activity (CAT), reduced glutathione concentrations (GSH), hepatic measurement of neutrophil migration (myeloperoxidase, MPO activity), and caspase-3 liver expression were evaluated. The prophylactic and the therapeutic treatments with enalapril were able to markedly reduce the macroscopic and histological liver alterations as well as the caspase-3 immunopositivity. Both schedules of treatment were also effective in reducing GSH concentrations as well as neutrophil migration. Conversely, only the pre-treatment (but not the post-administration) with enalapril significantly reversed APAP-induced CAT decrease. Furthermore, the pre- or the post-treatment with enalapril largely reduced ALT and AST serum activity in APAP-intoxicated mice. The hepatoprotective effects of enalapril were comparable to those obtained with the clinically used compound N-acetylcysteine (NAC) when given in a therapeutic regimen. Data obtained with the prophylactic protocol of treatment might indicate that individuals under treatment with ACE inhibitors are less susceptible to the toxic effects of APAP. Additionally, the therapeutic approach allows us to suggest that enalapril might represent an innovative tool for treating APAP intoxication. PMID:22752270

  13. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.

  14. Dissolution difference between acidic and neutral media of acetaminophen tablets containing a super disintegrant and a soluble excipient. II.

    Chen, C R; Cho, S L; Lin, C K; Lin, Y H; Chiang, S T; Wu, H L

    1998-03-01

    The disintegration and dissolution of acetaminophen tablets containing sucrose and Ac-Di-Sol/Primojel was significantly different between acidic and neutral media. The purpose of this study was to investigate the mechanism of this phenomenon and to propose a way of reducing the dissolution difference between the two media. Tablets of different combinations of active ingredient, sucrose, and Ac-Di-Sol/Primojel were prepared and their dissolution in various media was evaluated. The dissolution differences were found to be largely related to the hydrophobicity of the active ingredient and pH difference of the two media. This difference was even more evident under the condition where acetaminophen, sucrose, and Primojel were combined. The dissolution difference was therefore attributed to the depressed function of Primojel in the acidic medium, the stronger binding of sucrose, the hydrophobicity of the active ingredient and pH difference of the two media. Increasing the concentration of Primojel or incorporating the surfactant in the tablet can thus greatly decrease the dissolution difference between acidic and neutral media. PMID:9549889

  15. Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: detoxification mechanisms, oxidative defence system and peroxidative damage.

    Ramos, A S; Correia, A T; Antunes, S C; Gonçalves, F; Nunes, B

    2014-05-01

    The increasing presence of pharmaceutical drugs in nature is cause of concern due to the occurrence of oxidative stress in non-target species. Acetaminophen is widely used in human medicine as an analgesic and antipyretic drug, and it is one of the most sold non-prescription drugs. The present study aimed to assess the toxic effects of acetaminophen (APAP) in Oncorhynchus mykiss following acute and chronic exposures in realistic levels. In order to evaluate the APAP effects in the rainbow trout, gills and liver were analyzed with biochemical biomarkers, such as catalase (CAT), total and selenium-dependent glutathione peroxidase (GPx), glutathione reductase (GRed) and glutathione-S-transferases (GSTs) activity and also lipid peroxidation levels (TBARS). The results obtained in all tests indicate that a significant response of oxidative stress was established, along with the increase of APAP concentrations. The establishment of an oxidative stress scenario occurred with the involvement of all tested biomarkers, sustaining a generalized set of pro-oxidative effects elicited by APAP. Additionally, the occurrence of oxidative damage strongly suggests the impairment of the antioxidant defense mechanism of O. mykiss. It is important to note that the occurrence of oxidative deleterious effects and peroxidative damages occurred for concentrations similar to those already reported for several freshwater ecosystems. The importance of these assumptions is further discussed under the scope of ecological relevance of the assessment of effects caused by pharmaceuticals in non-target organisms. PMID:24816177

  16. Health literacy as controversy: an online community's discussion of the U.S. Food and Drug Administration acetaminophen recommendations.

    Mackert, Michael; Love, Brad; Donovan-Kicken, Erin; Uhle, Katharine A

    2011-12-01

    Adults in the United States increasingly use the Internet for health information, and online discussions can provide insights into public perceptions of health issues. The purpose of this project was to investigate public perceptions of issues related to health literacy, within the context of a conversation about recommendations to the U.S. Food and Drug Administration, driven by concerns about acetaminophen-related liver injuries due in part to health literacy issues. The discussion took place July 2-8, 2009, on a technology/science blog and included 625 comments. Participants debated the risks and benefits of acetaminophen, and most believed responsibility for taking medication safely falls on consumers. Some were implicitly aware of issues related to health literacy and its relationship to patient outcomes; most felt improved education is all that is needed, whereas others acknowledged that health information is confusing--particularly for the elderly and sick. Recommendations for future research into public perceptions of health literacy are discussed. PMID:21788648

  17. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    Prot, Jean-Matthieu [CNRS UMR 6600, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, BP20529, F-60205 (France); Bunescu, Andrei; Elena-Herrmann, Bénédicte [Université de Lyon, Centre de RMN à Très Hauts Champs, CNRS/ENS Lyon/UCB Lyon 1, 5 rue de la Doua, F-69100 Villeurbanne (France); Aninat, Caroline [Inserm, UMR991, Liver Metabolisms and Cancer, F-35033 Rennes (France); Université de Rennes 1, F-35043 Rennes (France); Snouber, Leila Choucha [CNRS UMR 6600, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, BP20529, F-60205 (France); Griscom, Laurent; Razan, Florence [CNRS-UMR 8029, SATIE, Ecole Normale Supérieure de Cachan-Bretagne, Campus de Ker Lann, Bruz (France); Bois, Frederic Y. [Institut National de l' Environnement Industriel et des Risques (INERIS), Unité Modèles pour l' Ecotoxicologie et la Toxicologie, Parc ALATA, BP2, F-60550 Verneuil en Halatte (France); Legallais, Cécile [CNRS UMR 6600, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, BP20529, F-60205 (France); and others

    2012-03-15

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.

  18. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode

    A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (Rct) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 μA/μM in the concentration ranges of 0.3 to 30.0 μM and 30.0 to 450.0 μM, respectively. The detection limit (3σ) of 0.09 μM NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples. Highlights: ► Electrochemical behavior of norepinephrine study using carbon ionic liquid electrode ► This sensor resolved the overlap response of norepinephrine and acetaminophen. ► This sensor is also used for the determination of above compounds in real samples.

  19. First Use of a New Device for Administration of Buspirone and Acetaminophen to Suppress Shivering During Therapeutic Hypothermia.

    Honasoge, Akilesh; Parker, Braden; Wesselhoff, Kelly; Lyons, Neal; Kulstad, Erik

    2016-03-01

    Therapeutic hypothermia or targeted temperature management has been used after cardiac arrest to improve neurological outcomes and mortality. However, a side effect of temperature modulation is a centrally mediated shivering response. The Columbia Anti-Shivering Protocol sets up a systematic method of intravenous (IV) and oral medication escalation to suppress this response and preserve the benefits of this therapy. We present the case of a 59-year-old male who began shivering after therapeutic hypothermia for cardiac arrest, leading to a persistent rise in core temperature despite adequate sedation. He was also found to have gastric contents similar to coffee grounds through nasogastric tube suction. The shivering was effectively suppressed and the rising core temperature plateaued using rectal acetaminophen and buspirone administered by means of a novel device, the Macy Catheter. Also, when used in conjunction with other protocol-driven medications, the patient was able to achieve a core temperature of 33°C. The Macy Catheter appears to be a useful approach to rectally administer buspirone and acetaminophen, using an easy-to-place, nonsterile atraumatic device that requires no radiographic confirmation of placement. PMID:26807775

  20. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. PMID:26712269

  1. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode

    Salmanpour, Sadegh [Department of Chemistry, Sari Branch, Islamic Azad University, Sari (Iran, Islamic Republic of); Tavana, Toktam [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Pahlavan, Ali [Department of Physics, Science and Research Branch, Islamic Azad University, Mazandaran (Iran, Islamic Republic of); Khalilzadeh, Mohammad A., E-mail: khalilzadeh73@yahoo.com [Department of Chemistry, Science and Research Branch, Islamic Azad University, Mazandaran (Iran, Islamic Republic of); Ensafi, Ali A. [Department of Chemistry, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Karimi-Maleh, Hassan, E-mail: h.karimi.maleh@gmail.com [Department of Chemistry, Science and Research Branch, Islamic Azad University, Mazandaran (Iran, Islamic Republic of); Beitollahi, Hadi [Environment Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Kowsari, Elaheh [Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran (Iran, Islamic Republic of); Zareyee, Daryoush [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2012-10-01

    A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (R{sub ct}) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 {mu}A/{mu}M in the concentration ranges of 0.3 to 30.0 {mu}M and 30.0 to 450.0 {mu}M, respectively. The detection limit (3{sigma}) of 0.09 {mu}M NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples. Highlights: Black-Right-Pointing-Pointer Electrochemical behavior of norepinephrine study using carbon ionic liquid electrode Black-Right-Pointing-Pointer This sensor resolved the overlap response of norepinephrine and acetaminophen. Black-Right-Pointing-Pointer This sensor is also used for the determination of above compounds in real samples.

  2. Combined administration of silymarin and vitamin C stalls acetaminophen-mediated hepatic oxidative insults in Wistar rats

    Saheed Sabiu

    2015-02-01

    Full Text Available Oxidative insult by free radicals has been implicated in drug-induced hepatic damage and this has resulted in frequent episodes of liver disorders. Therapeutic efficacy of antioxidants may provide a possible solution to this menace. This study was carried out to investigate the effect of combined administration of silymarin and vitamin C in rescuing acetaminophen-induced hepatotoxicity in rats. Hepatotoxic rats were orally administered with silymarin and vitamin C at 100 and 200 mg/kg body weight, respectively. At the end of the experiment, liver function indices, antioxidant parameters and histological analysis were evaluated. We observed that the significantly increased (p < 0.05 activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, as well as levels of thiobarbituric acid reactive substances and serum total bilirubin, were markedly reduced following co-administration of silymarin and vitamin C. The compounds also effectively reversed the reduced activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase and total protein concentration in the hepatotoxic rats. These findings are indicative of hepatoprotective and antioxidant attributes of the two compounds which are also supported by the histological analysis. The available evidences in this study suggest that the complementary effects of silymarin and vitamin C proved to be capable of ameliorating acetaminophen-mediated hepatic oxidative damage and the probable mechanism is via antioxidative action.

  3. Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection is Associated with Induction of Flavin-containing Monooxygenase-3 (FMO3) in Hepatocytes

    Acetaminophen (APAP) pretreatment with a low hepatotoxic dose in mice results in resistance to a second, higher dose of APAP (APAP autoprotection). Recent microarray work by our group showed a drastic induction of liver flavin containing monooxygenase-3 (Fmo3) mRNA expression in...

  4. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients

    Buchard, Anders; Eefsen, Martin; Semb, Synne;

    2012-01-01

    The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival in these...

  5. Effectiveness of diclofenac versus acetaminophen in primary care patients with knee osteoarthritis: [NTR1485], DIPA-Trial: Design of a randomized clinical trial

    S.P.J. Verkleij (Saskia ); P.A.J. Luijsterburg (Pim); B.W. Koes (Bart); A.M. Bohnen (Arthur); S.M. Bierma-Zeinstra (Sita)

    2010-01-01

    textabstractBackground. Osteoarthritis is the most frequent chronic joint disease which causes pain and disability of especially hip and knee. According to international guidelines and the Dutch general practitioners guidelines for non-traumatic knee symptoms, acetaminophen should be the pain medica

  6. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor.

    Moatti-Sirat, D; Velho, G; Reach, G

    1992-01-01

    The aim of this work was to assess, in vitro and in vivo, the interference of ascorbate and acetaminophen on glucose measurements by a needle-type glucose sensor detecting hydrogen peroxide generated during the enzymatic oxidation of glucose, and to ascertain whether the protection against interference by the membranes used in the construction of the electrode is feasible. The oxidation of ascorbate and acetaminophen on a platinum electrode set at a 650 mV potential yielded a current representing 75 +/- 5% and 25 +/- 6% of that generated by the oxidation of an equimolar concentration of hydrogen peroxide, respectively. The bias introduced by the presence of 100 mumol l-1 ascorbate on the reading of 5 mmol l-1 glucose by the complete sensor (electrode + membranes) would be minimal (approximately 0.4 mmol l-1). By contrast, the bias introduced by 200 mumol l-1 of acetaminophen (a plasma concentration easily reached in clinical practice) was about 7 mmol l-1. The sensor was implanted subcutaneously in anaesthetized rats (n = 3). Using the current generated in the presence of a plasma acetaminophen concentration of about 200 mumol l-1 for glucose monitoring would lead to a major underestimation (approx. 6 mmol l-1) of subcutaneous glucose concentrations. PMID:1632948

  7. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    Getachew, Yonas, E-mail: yonas.getachew@utsouthwestern.edu [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); Cusimano, Frank A. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); James, Laura P. [Department of Pediatrics, University of Arkansas, Little Rock, AR (United States); Thiele, Dwain L. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States)

    2014-10-15

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells.

  8. Effectiveness of diclofenac versus acetaminophen in primary care patients with knee osteoarthritis: [NTR1485], DIPA-Trial: design of a randomized clinical trial

    Bohnen Arthur M

    2010-01-01

    Full Text Available Abstract Background Osteoarthritis is the most frequent chronic joint disease which causes pain and disability of especially hip and knee. According to international guidelines and the Dutch general practitioners guidelines for non-traumatic knee symptoms, acetaminophen should be the pain medication of first choice for osteoarthritis. However, of all prescribed pain medication in general practice, 90% consists of non-steroidal anti-inflammatory drugs compared to 10% of acetaminophen. Because general practitioners may lack evidence showing a similar efficacy of acetaminophen and non-steroidal anti-inflammatory drugs, we present the design of a randomized open-label trial to investigate the efficacy of a non-steroidal anti-inflammatory drug (diclofenac compared with acetaminophen in new consulters with knee osteoarthritis in general practice. Methods/Design Patients aged 45 years or older consulting their general practitioner with non-traumatic knee pain, meeting the clinical American College of Rheumatology criteria, and with a pain severity score of 2 or higher (on a 0-10 scale, will be randomly allocated to either diclofenac (maximum daily dose of 150 mg or acetaminophen (maximum daily dose of 3000 mg for 2 weeks and, if required, an additional 1-2 weeks, with a total follow-up period of 12 weeks. The primary outcomes are knee pain measured with a daily diary, and pain and function measured with the Knee Injury and Osteoarthritis Outcome Score (KOOS at baseline, and at 3, 6, 9, and 12-weeks follow-up. Secondary outcomes are patients' perceived recovery, quality of life, medical, patient, and productivity costs, compliance to therapy, co-interventions, and adverse reactions. Discussion The successful completion of this trial would lead to a better understanding of which medication should be used in the treatment of primary care patients with mild knee osteoarthritis. Trial registration Dutch trial registry NTR1485.

  9. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells

  10. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  11. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children

    Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n = 10), 2) hospitalized children receiving therapeutic doses of APAP (n = 10) and 3) children hospitalized for APAP overdose (n = 8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R = 0.94; p < 0.01) followed by miR-375 (R = 0.70; p = 0.05). Conclusion: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity. - Highlights: • Serum miR-122 and miR-375 levels were increased in children with APAP overdose. • Urine levels of miR-375 and miR-940 were increased in the APAP overdose group. • Peak serum miR-122 levels were correlated with peak serum APAP protein adducts

  12. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  13. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children

    Yang, Xi, E-mail: Xi.Yang@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Salminen, William F., E-mail: Willie.Salminen@parexel.com [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Shi, Qiang, E-mail: Qiang.Shi@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Greenhaw, James, E-mail: James.Greenhaw@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Gill, Pritmohinder S., E-mail: PSGill@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Bhattacharyya, Sudeepa, E-mail: SBhattacharyya2@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Beger, Richard D., E-mail: Richard.Beger@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mendrick, Donna L., E-mail: Donna.Mendrick@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mattes, William B., E-mail: William.Mattes@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); and others

    2015-04-15

    Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n = 10), 2) hospitalized children receiving therapeutic doses of APAP (n = 10) and 3) children hospitalized for APAP overdose (n = 8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R = 0.94; p < 0.01) followed by miR-375 (R = 0.70; p = 0.05). Conclusion: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity. - Highlights: • Serum miR-122 and miR-375 levels were increased in children with APAP overdose. • Urine levels of miR-375 and miR-940 were increased in the APAP overdose group. • Peak serum miR-122 levels were correlated with peak serum APAP protein adducts.

  14. A double-blind placebo-controlled comparison of tramadol/acetaminophen and tramadol in patients with postoperative dental pain.

    Fricke, James R; Hewitt, David J; Jordan, Donna M; Fisher, Alan; Rosenthal, Norman R

    2004-06-01

    The objective of this study was to compare the analgesic efficacy of tramadol/acetaminophen (APAP) (total dose 75 mg/650 mg) and tramadol (total dose 100 mg) for the control of pain after oral surgery. A total of 456 patients with moderate-to-severe pain within 5 h after extraction of two or more third molars were randomized to receive two identical encapsulated tablets containing tramadol/APAP 37.5 mg/325 mg, tramadol 50 mg, or placebo. Tramadol/APAP was superior to tramadol (P dizziness, and vomiting; these events occurred more frequently in the tramadol group than in the tramadol/APAP group. This study established the superiority of tramadol/APAP 75 mg/650 mg over tramadol 100 mg in the treatment of acute pain following oral surgery. PMID:15157685

  15. Synthesis of the water-compatible p-acetaminophen resin and its adsorption performances for vanillin in aqueous solution

    Gu Qing Xiao; Li Ping Long; Jiao Liang Wang

    2012-01-01

    A novel p-acetaminophen resin (named as GQ- 1) was synthesized with chloromethylated polystyrene andp-acetaminophan.It can be used without any wetting process.The objective of this work was to study the adsorption performances for vanillin onto GQ-1 with two kinds of the hydrogen bond site of acetamino group and hydroxyl group.The results showed that the adsorption property of vanillin onto GQ-1 was superior to XAD-4,H103,NDA150,and NDA88.The adsorption capacity of vanillin onto GQ-1 is not greatly discrepant until the solution pH is higher than 5.31.The saturated adsorption quantity of vanillin was up to 141.32 mg/mL (wet resin)according to the dynamic adsorption and desorption experiments at 293 K.The resin could be regenerated by 7 BV ethanol.

  16. Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury

    Recent studies in mice suggest that stress-activated c-Jun N-terminal protein kinase 2 (JNK2) plays a pathologic role in acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure (ALF). In contrast, we present evidence that JNK2 can have a protective role against AILI. When male C57BL/6J wild type (WT) and JNK2-/- mice were treated with 300 mg APAP/kg, 90% of JNK2-/- mice died of ALF compared to 20% of WT mice within 48 h. The high susceptibility of JNK2-/- mice to AILI appears to be due in part to deficiencies in hepatocyte proliferation and repair. Therefore, our findings are consistent with JNK2 signaling playing a protective role in AILI and further suggest that the use of JNK inhibitors as a potential treatment for AILI, as has been recommended by other investigators, should be reconsidered

  17. Tramadol/acetaminophen combination as add-on therapy in the treatment of patients with ankylosing spondylitis.

    Chang, Jhi-Kai; Yu, Chen-Tung; Lee, Ming-Yung; Yeo, Kj; Chang, I-Chang; Tsou, Hsi-Kai; Wei, James Cheng-Chung

    2013-03-01

    This study aimed to determine the safety and efficacy of tramadol 37.5 mg/acetaminophen 325 mg combination tablets (Ultracet®) in patients with ankylosing spondylitis (AS). This was a 12-week, randomized, double-blind, placebo-controlled study. Sixty patients with active AS according to the Modified New York Criteria were enrolled. Active disease was defined by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) for more than 3 at randomization. Subjects were randomized equally into two groups: the treatment group received aceclofenac plus Ultracet® one tablet twice a day, and the control group received aceclofenac plus placebo for 12 weeks. The primary endpoint was a difference of Assessment in Ankylosing Spondylitis (ASAS20) response criteria between two groups at week 12. At week 12, ASAS20 was achieved by 53.3 % of the aceclofenac plus Ultracet group and 31 % of the aceclofenac alone group (p = 0.047). For the pain visual analogue scale at week 12, there was a reduction of 45.6 % in aceclofenac plus Ultracet group and 25.7 % in the aceclofenac alone group (p = 0.087). There was no statistically significant difference between two groups in BASDAI, Bath Ankylosing Spondylitis Functional Index, Bath Ankylosing Spondylitis Global Index, Physician Global Assessment, spinal mobility, ESR, hs-CRP, and Ankylosing Spondylitis Quality of Life Questionnaire. A slight increase in total adverse events was noted with dizziness (7.5 vs 1.5 %), vertigo (4.5 vs 1.5 %), and nausea/vomiting (6 vs 0 %) in the Ultracet arm compared to placebo. The tramadol 37.5 mg/acetaminophen 325 mg combination tablet (Ultracet®) might has additional effect to nonsteroidal anti-inflammatory drugs in the treatment of patients with ankylosing spondylitis. It showed marginal benefit in pain and disease activity. However, a slight increase in minor adverse events was noted. PMID:23192419

  18. Interrupted time-series analysis of regulations to reduce paracetamol (acetaminophen poisoning.

    Oliver W Morgan

    2007-04-01

    Full Text Available BACKGROUND: Paracetamol (acetaminophen poisoning is the leading cause of acute liver failure in Great Britain and the United States. Successful interventions to reduced harm from paracetamol poisoning are needed. To achieve this, the government of the United Kingdom introduced legislation in 1998 limiting the pack size of paracetamol sold in shops. Several studies have reported recent decreases in fatal poisonings involving paracetamol. We use interrupted time-series analysis to evaluate whether the recent fall in the number of paracetamol deaths is different to trends in fatal poisoning involving aspirin, paracetamol compounds, antidepressants, or nondrug poisoning suicide. METHODS AND FINDINGS: We calculated directly age-standardised mortality rates for paracetamol poisoning in England and Wales from 1993 to 2004. We used an ordinary least-squares regression model divided into pre- and postintervention segments at 1999. The model included a term for autocorrelation within the time series. We tested for changes in the level and slope between the pre- and postintervention segments. To assess whether observed changes in the time series were unique to paracetamol, we compared against poisoning deaths involving compound paracetamol (not covered by the regulations, aspirin, antidepressants, and nonpoisoning suicide deaths. We did this comparison by calculating a ratio of each comparison series with paracetamol and applying a segmented regression model to the ratios. No change in the ratio level or slope indicated no difference compared to the control series. There were about 2,200 deaths involving paracetamol. The age-standardised mortality rate rose from 8.1 per million in 1993 to 8.8 per million in 1997, subsequently falling to about 5.3 per million in 2004. After the regulations were introduced, deaths dropped by 2.69 per million (p = 0.003. Trends in the age-standardised mortality rate for paracetamol compounds, aspirin, and antidepressants were

  19. Au-Pd/reduced graphene oxide composite as a new sensing layer for electrochemical determination of ascorbic acid, acetaminophen and tyrosine.

    Tadayon, Fariba; Vahed, Saba; Bagheri, Hasan

    2016-11-01

    An Au-Pd/reduced graphene oxide composite was employed as a novel electrode material for the sensitive and simultaneous determination of ascorbic acid, acetaminophen and tyrosine. The electrochemical response characteristics of the modified electrode toward the analytes were investigated by differential pulse voltammetry and cyclic voltammetry. The responses of the electrochemical sensor for the target analytes were found to be improved significantly in comparison with those obtained using a conventional carbon paste electrode (CPE) and reduced graphene oxide/CPE. The experimental conditions for simultaneous determination of these species have been established. Ternary mixtures of analytes can be determined in the ranges of 0.03-9.50μM. Under optimal conditions, the limits of detection were 15.7, 7.6 and 11.1nM for ascorbic acid, acetaminophen, and tyrosine, respectively. The method was applied successfully to determine the analytes in urine, serum and pharmaceutical samples simultaneously. PMID:27524083

  20. Intravenous acetaminophen (paracetamol): comparable analgesic efficacy, but better local safety than its prodrug, propacetamol, for postoperative pain after third molar surgery.

    Moller, Philip Lange; Juhl, Gitte Irene; Payen-Champenois, Catherine; Skoglund, Lasse Ansgar

    2005-07-01

    We compared an acetaminophen (paracetamol) 1 g (n = 51) formulation for infusion with propacetamol 2 g (n = 51) and placebo (n = 50) in a randomized, controlled, double-blind, parallel group trial in patients with moderate-to-severe pain after third molar surgery. Treatment efficacy was assessed in house for 6 h after starting the 15-min infusion. Significant effects versus placebo (P propacetamol at 6 h). No significant differences were noted between active groups except at 1 h. Six-hour weighted sums of primary assessments showed significantly better efficacy than placebo (P propacetamol (49%). In conclusion, acetaminophen 1 g and propacetamol 2 g were superior to placebo regarding analgesic efficacy, with a more frequent incidence of local pain at the infusion site for propacetamol. PMID:15976212