WorldWideScience

Sample records for acero inoxidable 316l

  1. “ESTUDIO DEL COMPORTAMIENTO DE LOS ACEROS INOXIDABLES AUSTENITICOS 316 Y 316L, EN LA ZONA AFECTADA TERMICAMENTE, UNIDO POR SOLDADURA MIG, CON APLICACION DE INTERACCION ELECTROMAGNETICA DE BAJA INTENSIDAD”

    Estrella García, Salvador

    2012-01-01

    En el presente capítulo, se presenta un contenido breve acerca del tema a estudiar, es decir, de la influencia de la interacción de dos campos magnéticos de baja intensidad durante el proceso de soldadura MIG, en los aceros inoxidables austeníticos 316 y 316L, así como también los principales problemas que presentan dichos aceros inoxidables y de una manera simplificada el resumen de los objetivos planteados y la forma en que se desarrollarán. Los aceros inoxidables, son ino...

  2. Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Puchi-Cabrera, E. S.

    2007-06-01

    Full Text Available An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit and the O2 content in the Ar/O2 gas mixture, of the gas-metal arc welding process (GMAW, on the fatigue life under uniaxial conditions of welded joints of 316L stainless steel. It has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. Firstly, through the modification of the radius of curvature at the joint between the welding toe and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O2 content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures.

    Se ha llevado a cabo una investigación con la finalidad de determinar el efecto, tanto del modo de transferencia metálica (arco pulsado o cortocircuito como del contenido de O2 en la mezcla de gases protectores Ar/O2, del proceso de soldadura a tope mediante arco metálico con protección gaseosa (GMAW, sobre la vida a la fatiga en condiciones uniaxiales de juntas soldadas del acero inoxidable AISI 316L. Dicho trabajo ha permitido concluir que la composición de la mezcla de gases protectores del proceso GMAW pudiera tener una influencia importante en la vida a la fatiga de las juntas soldadas de dicho material, a través de dos formas distintas: primero, mediante la modificación del radio de curvatura entre la raíz del cordón de soldadura y el metal base y, en segundo lugar, a través del mayor grado de oxidación de los elementos de aleación. En cuanto al modo de transferencia metálica, se determinó que las juntas soldadas mediante arco pulsado

  3. Aplicación y caracterización físico-química de varios tratamientos superficiales realizados al acero inoxidable 316L para aplicaciones biomédicas

    Mañá, M.; Valentí, J.; Mestre Vinardell, Aleix; Gil Mur, Francisco Javier

    2008-01-01

    La biocompatibilidad de los metales utilizados en implantología está íntimamente relacionada con las características superficiales de los implantes tanto desde un punto de vista químico como topográfico. El objetivo de este trabajo es aplicar varios tratamientos superficiales al acero inoxidable 316 L y caracterizar, posteriormente, la superficie físico-químicamente. La superficie pulida de varios discos de acero 316 L fue tratada mediante los procesos de: granallado, variando el tamaño y la...

  4. Aplicación y caracterización físico-química de varios tratamientos superficiales realizados al acero inoxidable 316 L para aplicacions biomédicas

    Mañá, M.; Valentí, J.; Mestre Vinardell, Aleix; Gil Mur, Francisco Javier

    2008-01-01

    La biocompatibilidad de los metales utilizados en implantología está íntimamente relacionada con las características superficiales de los implantes tanto desde un punto de vista químico como topográfico. El objetivo de este trabajo es aplicar varios tratamientos superficiales al acero inoxidable 316 L y caracterizar, posteriormente, la superficie físico-químicamente. La superficie pulida de varios discos de acero 316 L fue tratada mediante los procesos de: granallado, variando el tamaño y l...

  5. Decapado del acero inoxidable AISI 316L utilizando una mezcla ecológica de H2O2-H2SO4-HF

    Gómez, P. P.

    2005-12-01

    Full Text Available This study reports the pickling of austenitic AISI 316L stainless steel (SS using a mixture of hydrogen peroxide (H2O2, sulphuric acid (H2SO4 and hydrofluoric acid (HF at pH 2.0. The stability of H2O2 was also studied using different concentrations of ferric ion from 0 to 40 g/l and temperature from 25 to 60 °C. The pickling rate at 50 °C in the presence and absence of 40 g/l ferric ion was 2.6 and 0.2 mg/dm2 day (mdd, respectively. p-Toluene sulphonic acid was used as stabilizer of H2O2.En la presente investigación se estudia el decapado del acero inoxidable AISI 316L utilizando una mezcla de agua oxigenada (H2O2 y los ácidos sulfúrico (H2SO4 y fluorhídrico (HF a pH 2,0. La estabilidad de la mezcla H2O2-H2SO4-HF se ha ensayado variando el contenido de iones férrico de O a 40 g/l y la temperatura de 25 a 60 °C. La velocidad de decapado a 50 °C ha sido de 2,6 y 0,2 mg/dm2 día (mdd, en ausencia y presencia de 40 g/l de iones férrico, respectivamente. Se ha utilizado el ácido p-toluen sulfónico como estabilizante del H2O2.

  6. Análisis experimental del desgaste entre UHMWPE y acero inoxidable 316l empleados en la manufactura de prótesis coxofemorales

    Ricardo Gustavo Rodríguez Cañizo

    2010-10-01

    Full Text Available Título en inglés: Experimental wear analysis of UHMWPE and stainless 316l used in the manufacturing of coxofemoral prosthesis. Resumen La causa más común de falla en prótesis coxofemorales es el aflojamiento entre los componentes que conforman el sistema, de manera específica la copa acetabular y la cabeza femoral. En esta investigación se presenta un análisis tribológico del desgaste en los componentes mencionados, ya que cuando las superficies en contacto se desgastan, la funcionalidad mecánica del sistema se compromete, debido al cambio de geometría de los mismos, dando como resultado un juego mecánico entre la copa y la cabeza. Los materiales considerados en este estudio son el polietileno de ultra elevado peso molecular (UHMWPE, por sus siglas en inglés para la copa acetabular, y acero inoxidable 316L para la cabeza femoral. Esta combinación de materiales representa hoy en día la recomendación más usual por parte de los cirujanos para pacientes de la tercera edad. La tasa anual de desgaste se determinó de manera experimental y se cuantificó la cantidad de material desprendido durante el contacto. Se establecieron las condiciones de carga de forma analítica, considerando las que actúan sobre la cabeza femoral a lo largo del área de desgaste durante la marcha humana. Posteriormente, se realizó el análisis experimental de desgaste utilizando una máquina tribológica de configuración perno-sobre-disco (pin-on-disk, diseñada de manera específica para este estudio. Las pruebas para determinar la pérdida volumétrica de los componentes se realizaron bajo tres condiciones de operación: en seco, lubricada con agua destilada y lubricada con suero bovino. El marco experimental considerado consistió en pernos de UHMWPE sobre discos de acero inoxidable 316L simulando el desgaste equivalente a diez años de uso de la prótesis. Finalmente, de los resultados obtenidos se puede establecer que el desgaste y la cantidad de part

  7. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    María Elena Márquez Fernández; Pablo Jesús Abad Mejía; Claudia Patricia García García; Andrés Pareja López

    2007-01-01

    El acero inoxidable AISI 316L es el biomaterial mas utilizado para la fabricación de implantes temporales, pero presenta limitaciones para implantes permanentes debido a la liberación de iones metálicos hacia los tejidos circundantes, produciendo especies reactivas de oxígeno (ERO) y daño en ADN, factores que aumentan el riesgo de aparición de tumores locales y fallas mecánicas del implante. Una estrategia utilizada para disminuir la liberación de iones es la modificación superficial de los i...

  8. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    María Elena Márquez Fernández

    2007-03-01

    Full Text Available El acero inoxidable AISI 316L es el biomaterial mas utilizado para la fabricación de implantes temporales, pero presenta limitaciones para implantes permanentes debido a la liberación de iones metálicos hacia los tejidos circundantes, produciendo especies reactivas de oxígeno (ERO y daño en ADN, factores que aumentan el riesgo de aparición de tumores locales y fallas mecánicas del implante. Una estrategia utilizada para disminuir la liberación de iones es la modificación superficial de los implantes metálicos por medio de recubrimientos inorgánicos, cerámicos o vítreos, aplicados por el método sol-gel, el cual presenta una serie de ventajas comparativas con otras técnicas de deposición, como buena adherencia, aplicación sencilla, mínimos problemas de secado, bajas temperaturas de densificación y posibilidad de agregar partículas y/o grupos orgánicos que mejoran la adherencia celular al implante aumentando su biocompatibilidad. En el presente trabajo se evaluaron los efectos citotóxico por medio de la técnica MTT, y genotóxico por electroforesis en gel de células individuales (Ensayo Cometa, sobre células de la línea celular CHO, de los productos liberados en medio MEM por el acero inoxidable 316L sin recubrir, recubierto con una monocapa de vidrio de sílice (MC, o con doble capa que contiene partículas bioactivas de hidroxiapatita (HA, vidrio (V o vitrocerámico (VC, después de un periodo de 30 días. Los resultados muestran que a los 30 días de envejecimiento en medio MEM no se encuentra ningún efecto citotóxico, pero se encontró efecto genotóxico en las probetas de A y MC que no representa un peligro inminente a sistemas celulares. The stainless steel AISI 316L is the must used biomaterial for the making of temporal prosthesis, but it presents severe limitations for permanent implants due to the generation and migration of metallic ions to the surrounding peripheral tissues, which produces oxygen reactive

  9. Sinterabilidad y propiedades del acero pulvimetalúrgico HCx diluido con aceros inoxidables

    Gordo, E.

    2005-12-01

    Full Text Available HCx is a powder metallurgy steel developed to combine the corrosion resistance of stainless steel with the wear resistance of tool steels. Therefore, HCx appears to be a suitable material for wear applications in aggressive environments, as valve seat inserts in automotive engines. In this work dilution of HCx with two stainless steels, one ferritic (430 and another austenitic (316L, in percentages up to 15 % in mass, has been studied to improve process conditions, especially compressibility. The sinterability of diluted materials was studied through vacuum sintering at temperatures from 1.200 °C to 1.260 °C. Finally, properties of sintered materials were determined. The results are discussed in relation to the microstructure evolution.

    El acero pulvimetalúrgico HCx ha sido desarrollado para combinar la resistencia a corrosión de los aceros inoxidables con la resistencia al desgaste de los aceros de herramientas. Aparece así como un material adecuado para componentes sometidos a desgaste en un ambiente agresivo, como los asientos de válvulas en motores de automóviles. En este trabajo se estudia la dilución del HCx con dos aceros inoxidables, uno ferrítico (430 y otro austenítico (316L, en porcentajes hasta 15 % en masa, para mejorar las condiciones de procesado, especialmente la compresibilidad. La sinterabilidad de los materiales diluidos se ha estudiado mediante sinterización en vacío, a temperaturas entre 1.200 °C y 1.260 °C, y se han determinado las propiedades de los materiales sinterizados. Los resultados se discuten en relación a la evolución microestructural.

  10. Soldabilidad de un acero de blindaje con electrodos de acero inoxidable austenitico

    GIRALDO BARRADA, JORGE ENRIQUE

    2005-01-01

    Se evaluaron las propiedades mecánicas y la microestructura de las soldaduras obtenidas con diferentes electrodos para unir platinas de un acero, templado y revenido, de alta dureza y baja aleación producido bajo la especificación MIL A46100, el cual es usado en la fabricación de estructuras blindadas. Se determinó el efecto que tiene el material de aporte (aceros inoxidables austeníticos, E307 y E308Mo, y dúplex, E312 y Eutectic 680),aplicado con proceso de soldadura al arco con electr...

  11. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    Marcelo Senatore

    2007-03-01

    Full Text Available Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústrias química e petroquímica, de papel e celulose, siderúrgicas, alimentícias e de geração de energia. O presente trabalho estabelece um comparativo entre as propriedades físicas, mecânicas e de resistência à corrosão dos aços inoxidáveis duplex e os tradicionais aços inoxidáveis austeníticos AISI 304L e 316L, largamente utilizados na indústria brasileira. Resultados de ensaios laboratoriais e dados relevantes de experiências práticas desses materiais também são apresentados.Ferritic-austenitic duplex stainless steels are part of a class of material having a two-phase microestructure, comprised of a ferritic matrix and austenitic islands, with the volumetric fractions approximately the same in these phases. This class of material is characterized by the presentation of an interesting combination of high mechanical properties and corrosion resistance and is therefore considered quite versatile. The duplex stainless steels are often used in the chemical, petrochemical, pulp & paper and food industries, as well as in steel foundaries and energy power plants. This paper shows a comparison between the physical, mechanical and corrosion resistance properties of duplex stainless steels and the traditional austenitic stainless steels 304L and 316L, largely used in the Brazilian industry. Results of laboratory tests and relevant data on practical experiments on these materials are also presented.

  12. Influencia de la adición de cobre y de bronce sobre las propiedades de los aceros inoxidables austeníticos sinterizados

    Velasco, F.

    1997-04-01

    Full Text Available The effect that, on AISI 316L and 304L stainless steels alloyed with copper and bronze in different percentages up to a maximun of 20 % wt, produce both the alloying content and the sintering temperature over physical and mechanical properties and over the microstructure of sintered stainless steels are studied. Alloying with copper and bronze improves the density of sintered steels at the two sintering temperatures used. Copper and bronze promote liquid phase sintering (transitory or permanent, that activates sintering process. Tensile strength of stainless steel is highly improved for higher alloying contents. Moreover, tensile strength presents greater values alloying with bronze than with copper.

    Partiendo de los aceros inoxidables AISI 316L y 304L a los que se añadió cobre y bronce en diferentes porcentajes hasta el 20 % en peso, se estudia el efecto que la cantidad de aleante y la temperatura de sinterización tienen sobre las propiedades físicas y mecánicas y sobre la microestructura de los aceros inoxidables sinterizados. La aleación con cobre y con bronce aumenta la densidad de los aceros sinterizados para las dos temperaturas de sinterización utilizadas. El cobre y el bronce provocan la aparición de fase líquida (transitoria o permanente que activa el proceso de sinterización. La resistencia a la tracción del acero inoxidable experimenta un fuerte incremento para los contenidos más elevados de aleante. Además, la resistencia a la tracción alcanza mayores valores para la aleación con bronce que con cobre.

  13. Estudio del fenómeno de Strain Ageing en el acero inoxidable metaestable 301 LN

    Hevin, Lucas

    2014-01-01

    Un acero inoxidable metaestable es una aleación que presenta el efecto TRIP: Transformation Induced Plasticity. El acero estudiado, EN 1.4318/AISI 301 LN, tiene una estructura austenítica que puede transformarse en martensita por deformación. Tiene una buena resistencia a corrosión, buena conformabilidad, y una combinación de límite elástico y de deformación máxima muy superior a otros aceros. Con dicha transformación martensítica se puede aumentar el límite elástico y la resistencia a tracci...

  14. Análisis de soldabilidad de aceros inoxidables con aceros de medio y bajo carbono por SMAW

    José Luddey Marulanda Arevalo

    2013-12-01

    Full Text Available Se presenta un estudio de la soldabilidad de aceros inoxidables austeníticos AISI 304 y AISI 316 con aceros de bajo y medio carbono AISI 1020 – AISI 1045, empleando como materiales de aporte los electrodos EutecTrode® 52 NG, 54 NG y 57 NG, mediante el proceso de arco eléctrico con electrodo revestido (SMAW. Para analizar la soldabilidad de estos electrodos cuando se realiza la unión de aceros inoxidables con aceros al carbono, se practicaron pruebas metalográficas y ensayos mecánicos de dureza, doblez y tracción, con el fin de observar el comportamiento tanto de la zona afectada térmicamente como del cordón de soldadura, a partir del cambio en las propiedades mecánicas y metalúrgicas en las diferentes regiones de las uniones soldadas. Durante el proceso de soldadura se siguió una especificación del procedimiento de soldadura (WPS, para que los resultados fueran repetibles, minimizando los problemas de agrietamiento en caliente, agrietamiento en frío, formación de fase sigma y precipitación de carburos.

  15. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Carlos Eduardo Pinedo

    2013-06-01

    Full Text Available In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462 stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon supersaturation and expansion of the FCC lattice. For the duplex stainless steel AISI F51, the austenitic grains transformed to carbon expanded austenite (γC, the ferritic grains transformed to carbon expanded ferrite (αC and M23C6 type carbides precipitated in the nitrided case. Hardness of the carburized case of the F51 duplex steel reached 1600 HV due to the combined effects of austenite and ferrite lattice expansion with a fine and dispersed precipitation of M23C6 carbides.O aço inoxidável austenítico AISI 316L e o aço inoxidável duplex AISI F51 (EN 1.4462 foram cementados sob plasma-DC na temperatura de 480ºC, utilizando-se CH4 como gás de arraste. A cementação sob plasma à baixa temperatura conduziu a uma elevada supersaturação do reticulado cristalino em carbono com a formação de austenita expandida(γC, sem a precipitação de carbonetos. A dureza do aço 316L, após a cementação, atingiu um valor máximo de 1000 HV, devido à supersaturação de ∼ 13 at% de carbono e à expansão do reticulado cristalino CFC. Para o aço inoxidável duplex AISI F51, os grãos de austenita se transformaram em austenita expandida pelo carbono e os grãos de ferrita se transformaram para ferrita expandida com a precipitação de carbonetos do tipo M23C6, na camada cementada. A dureza da camada cementada, no aço F51, atingiu 1600HV, devido ao efeito combinado da expansão dos reticulados cristalinos da austenita e da ferrita com a precipitação fina e

  16. ESTUDIO DE LA SOLDABILIDAD Y CORROSIÓN DEL ACERO INOXIDABLE AISI 904L CON LOS AGENTES UTILIZADOS EN LA LIXIVIACIÓN DEL COBRE

    Ramón Cortés P; Jaime Villanueva A; Ernesto Ponce L; Manuel Rojas M; Eduardo Rojas Z

    2004-01-01

    La alta agresividad de las soluciones utilizadas en el proceso de lixiviación del cobre y los cuidados especiales que se debe tener para evitar la formación de fases sensibles a estos agentes en la soldadura de aceros inoxidables, ha exigido el desarrollo de nuevos aceros inoxidables que sean más resistentes a la corrosión, manteniendo las propiedades de resistencia a la tracción, al impacto y ductilidad. Es el caso de acero inoxidable AISI 904L, un acero super austenítico de última generació...

  17. Comportamiento frente a corrosión bajo tensión en ambiente marino de armaduras de acero inoxidable dúplex

    Fernández Robles, José Jaime

    2015-01-01

    La utilización de barras corrugadas de acero inoxidable en estructuras de hormigón armado, se está mostrando como una alternativa con gran futuro en estructuras expuestas a ambientes muy agresivos o que requieran vidas en servicio muy elevadas. Estos aceros inoxidables cuentan con similares propiedades mecánicas que los aceros al carbono pero un comportamiento muy mejorado frente a la corrosión, especialmente frente a cloruros. Dentro de los aceros inoxidables, los del tipo dúplex tienen ...

  18. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    Marcelo Senatore; Leandro Finzetto; Eduardo Perea

    2007-01-01

    Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústri...

  19. Tecnología para la obtención de polvos microporosos de acero inoxidable

    Martínez, M.; Suwardjo, W.; Aragón, B.; García, L.; Formoso, A.; Cortés, A.

    2001-01-01

    En el trabajo se trata el desarrollo de la tecnología de obtención de polvos microporosos de acero inoxidable mediante atomización y recocido de descarburación. La esencia del proceso consiste en recarburar el metal en estado líquido y, posteriormente, descarburar el polvo en estado sólido mediante recocido en hidrógeno o amoniaco disociado. Con esta tecnología se logra la formación de una microporosidad interna en la partícula, que aligera el material y mejora los procesos de conformación, y...

  20. Decapado de un acero inoxidable austenítico mediante mezclas ecológicas basadas en H2O2 - H2SO4 - iones F-

    Narváez, L.

    2013-04-01

    Full Text Available This study reports the pickling of 316L stainless steel using mixtures of hydrogen peroxide (H2O2, sulphuric acid (H2SO4 and fluoride ions as hydrofluoric acid (HF, sodium fluoride (NaF and potassium fluoride (KF. The decomposition of H2O2 in the mixtures was assessed at different temperatures 25 °C to 60 °C, with ferric ion contents from 0 to 40 g/l. According to the results obtained, were established the optimal condition pickling at 20 g/l of ferric ions, 25 °C and p-toluensulphonic acid as stabilizer of H2O2. The HF pickling mixture was the only capable to remove totally the oxide layer from the 316L stainless steel after 300 s. The fluoride salts pickling mixtures only remove partially the oxide layer (20 to 40 % aprox. after 300 s. When the pickling time was increased until 1200 s, the removal percentages were around to 80 %.En este estudio se presenta el decapado del acero inoxidable austenítico 316L utilizando mezclas de peróxido de hidrógeno (H2O2/ácido sulfúrico (H2SO4/iones fluoruro; los iones fluoruro provienen del ácido fluorhídrico (HF, fluoruro de sodio (NaF y fluoruro de potasio (KF. La estabilidad del H2O2 fue valorada modificando las concentraciones del ión férrico de 0 a 40 g/l y las temperaturas de 25 °C a 60 °C en las mezclas decapantes. Se establecieron las condiciones óptimas de decapado utilizando 20 g/l de iones férrico a 25 °C empleando el ácido p-toluensulfónico como estabilizante del H2O2. La mezcla que contenía HF fue la única capaz de eliminar completamente los óxidos superficiales del acero a tiempos de 300 s. Las mezclas a base de sales fluoradas eliminaron parcialmente los óxidos (20 y 40 % aprox. en 300 s. Al incrementar el tiempo de decapado hasta 1200 s se obtuvieron porcentajes de eliminación alrededor de un 80 %.

  1. Análisis económico de la utilización de armaduras de acero inoxidable en estructuras de hormigón

    Medina Sanchez, Eduardo; Cobo Escamilla, Alfonso; Martínez Bastidas, David

    2012-01-01

    La utilización de armaduras de acero inoxidable, de los tipos austeníticos y dúplex, con el objetivo de prolongar la vida útil de las estructuras de hormigón, es una alternativa que está recibiendo cada vez más consideración. Los aceros inoxidables son aleaciones fundamentalmente de cromo y níquel, con muy alta resistencia a la corrosión, especialmente frente a cloruros. El elevado coste del níquel y sus grandes fluctuaciones en el mercado, han favorecido la aparición de nuevos aceros inoxida...

  2. Efectos gammágenos del cobre en los aceros inoxidables 18Cr8Ni

    Botella, J.

    1997-10-01

    Full Text Available From a series of 22 typical 18Cr8Ni stainless steel 40 kg ingots, with copper variable concentrations from 0.6 to 3.0 weight %, δ-ferrite is measured with a ferrite-meter device, calculating a nickel equivalent of 0.27 for copper. Some differences between the 8-ferrite and that on calculated by DeLong -excluding the copper γ-gene action- have been found because of different solidification and cooling regimes in ingot and weld cases.

    A partir de una serie de 22 lingotes de 40 kg de aceros inoxidables típicos 18Cr8Ni, con concentraciones variables de cobre entre 0,6 y 3,0 % en masa, se mide la ferrita δ mediante un medidor de ferrita y se deduce para el cobre un equivalente en níquel de 0,27, a la vez que se establecen ciertas diferencias entre los contenidos de ferrita δ medida y la deducida según DeLong -excluida la acción gammágena del cobre- por el hecho de solidificar en lingotes en vez de la típica solidificación de soldaduras.

  3. Metalografía en color de los aceros inoxidables mediante la técnica de ataque coloreado

    Fosca, C.

    1996-08-01

    Full Text Available The color metallography by tint etching allows the identification and quantification by optical microscopy of phases and constituents present in the microstructure of a great number alloys. The principle of this technique consists of the build up of an interference film on the alloy surface as consequence of electrochemical reactions between the metallic surface and the tint etching reagent. The application of the tint etching to the metallographic analysis of stainless steels enable the identification and quantification, by image analysis, of secondary phases, as ferrite in the austenitic stainless steels, or secondary austenite and sigma phase in the duplex stainless steels.

    La metalografía en color mediante la técnica de ataque coloreado permite la identificación y cuantificación, por el contraste de color, de diversas fases y constituyentes presentes en la microestructura de un gran número de aleaciones. La técnica consiste en depositar una película de interferencia en la superficie del material como consecuencia de reacciones electroquímicas entre el metal y el reactivo de ataque coloreado. La aplicación de la técnica de ataque coloreado en los aceros inoxidables permite la identificación y cuantificación, mediante análisis de imagen, de fases secundarias como la ferrita en los aceros inoxidables austeníticos o la austenita secundaria y la fase sigma en los aceros inoxidables dúplex.

  4. Desarrollo de un modelo predictivo de la degradación de lacas colaminadas sobre aceros inoxidables

    Peña de la Mora, Eduardo

    2007-01-01

    En ese trabajo anterior se desarrollaron dos modelos acelerados de prueba que predicen la degradación de lacas con base de dos componentes de poliuretano aplicados sobre acero inoxidable 304 del tipo austenítico. Sin embargo, dichos modelos son de tipo particular. Es decir, específicos para las características particulares de las lacas estudiadas. En síntesis, no se cuenta ni con un procedimiento de prueba general, ni con un modelo general de pruebas aceleradas que permita predecir el envejec...

  5. Recubrimientos por sol-gel sobre sustratos de acero inoxidable, revisión del estado del arte

    EMIGDIO MENDOZA; CLAUDIA GARCÍA

    2008-01-01

    En este trabajo se presenta una recopilación bibliográfica de los recubrimientos inorgánicos, híbridos, con partículas dispersas, depositados sobre aleaciones de acero inoxidable por medio de la técnica sol-gel. A partir de estos recubrimientos es posible la modificación de las propiedades superficiales de estas aleaciones metálicas, en busca de mejorar su resistencia química, además del grado de biocompatibilidad cuando están expuestas a ambientes fisiológicos.

  6. Recubrimientos por sol-gel sobre sustratos de acero inoxidable, revisión del estado del arte

    EMIGDIO MENDOZA

    2007-01-01

    Full Text Available En este trabajo se presenta una recopilación bibliográfica de los recubrimientos inorgánicos, híbridos, con partículas dispersas, depositados sobre aleaciones de acero inoxidable por medio de la técnica sol-gel. A partir de estos recubrimientos es posible la modificación de las propiedades superficiales de estas aleaciones metálicas, en busca de mejorar su resistencia química, además del grado de biocompatibilidad cuando están expuestas a ambientes fisiológicos

  7. Comportamiento Tribológico de Aceros Inoxidables para Cubertería Tribologic Behavior of Stainless Steels for Cutlery

    José D.B de Mello

    2006-01-01

    Full Text Available Se estudió el comportamiento tribológico de los aceros inoxidables utilizados en cubertería. Se sometieron aceros martensíticos y ferríticos con diferentes contenidos de carbono y cromo a ensayos con micro-abrasión y desgaste por deslizamiento alternado. A pesar de que la composición química haya afectado considerablemente la micro estructura y dureza de las aleaciones, el comportamiento en la abrasión y en el coeficiente de fricción no fueron afectados por estos factores. La velocidad de desgaste por deslizamiento crece con el potencial de contacto, sugiriendo que el desgaste por deslizamiento de estos aceros se asocia con la formación de una capa protectora de óxidos.A study was made of the tribologic behavior of stainless steel used in cutlery. Abrasive and sliding wear tests were carried out on martensitic and ferritic stainless steels which had different contents of carbon and chromium. Although the chemical composition and heat treatment considerably modified the microstructure and hardness of the steels, these treatments had no significant effect on abrasion resistance and the friction coefficient. The sliding wear rate grows with the contact potential, suggesting that sliding wear in these steels is associated with the formation of protective oxide coatings

  8. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  9. Tratamiento térmico del acero inoxidable ferrítico AISI 430L sinterizado en atmósfera de N2-H2

    Ruiz-Prieto, J. M.

    2005-12-01

    Full Text Available In this Work the influence of sintering AISI 430L stainless steel in N2-H2 atmosphere on its properties and microstructure have been studied. The presence of nitrogen in the sintering atmosphere leads to complex nitrides formation the AISI 430L sintered steel microstructure. A subsequent heat treatment was applied to modify this microstructure in order to improve the mechanical properties and corrosion resistance of these ferritic stainless steels.Los aceros inoxidables ferríticos, son aceros que contienen esencialmente cromo (12-30 % junto con níquel y molibdeno en cantidades que, en general, no sobrepasan el 1 % y, en ocasiones, se les adicionan otros elementos como son el aluminio, silicio, titanio o niobio. En el presente trabajo de investigación se ha evaluado la influencia del nitrógeno presente en la atmósfera de sinterización sobre la microestructura y propiedades del acero inoxidable ferrítico AISI 430L. Además, se ha realizado un tratamiento térmico posterior de hipertemple y maduración con el objeto de incrementar las propiedades mecánicas y a corrosión de este acero inoxidable, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización.

  10. Propiedades mecánicas de las uniones por láser de aceros inoxidables dúplex

    Amigó, V.

    2005-04-01

    Full Text Available The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour of duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection.

    Las uniones soldadas de aceros inoxidables siempre presentan problemas por las modificaciones microestructurales que suceden en la zona afectada por el calor. Particularmente, los aceros inoxidables dúplex presentan cambios microestructurales muy importantes al solidificar el cordón y formar estructuras, fundamentalmente ferríticas, con formación de austenita en borde de grano. Estas modificaciones microestructurales, junto a las que suceden en la ZAC, son las que justifican las propiedades mecánicas de la unión y fundamentalmente las de plasticidad. Y todo ello en función de las condiciones de procesado. En este trabajo se presenta la influencia de la velocidad de soldeo en las propiedades a tracción de uniones soldadas por láser de chapas de acero inoxidables dúplex. La microestructura de los cordones obtenidos y de la zona afectada por el calor se ha evaluado mediante microscopía óptica y electrónica de barrido, y se han obtenido diferentes perfiles de microdureza que

  11. Efecto de la biopelícula en la corrosión de aceros inoxidables

    Bethencourt, M.

    2010-02-01

    Full Text Available In this work, the influence of the biofilms in the corrosion process of different alloys of stainless steel was studied in two sampling points in a wastewater treatment plant during 4 years. The physicochemical microenvironment within the biofilms was characterized through O2, H2S and pH microelectrodes. Corrosion rates were quantified from the number, diameter and depth of pits. The results show a remarkable development of the biofilm and a significantly greater number of pits in the grit removal channel than in the sludge recirculation channel. Based on the characteristics of the water phase and microelectrode measurements, our results suggest that biofilms induced corrosion throughout 3 mechanisms: creation of differential aeration cells, areas with different pH and areas having high sulphide production which may react with metal ions.

    En este trabajo se ha estudiado la influencia de las biopelículas en los procesos de corrosión de diferentes aleaciones de acero inoxidable, situadas durante 4 años en dos puntos de una estación depuradora de aguas residuales. Se caracterizó el microambiente físico-químico en el interior de las biopelículas mediante microelectrodos de O2, H2S y pH, y se cuantificaron las tasas de corrosión a partir del número, diámetro y profundidad de picadura. Los resultados obtenidos muestran un desarrollo más notable de las biopelículas y un número de picaduras significativamente mayor en el canal de salida de desbastes que en el canal de recirculación de fangos. Con base en las características del agua sobrenadante y en las medidas realizadas con microelectrodos, se sugiere que la biopelícula induce la corrosión a través de tres posibles mecanismos: creación de celdas de aireación diferencial, zonas con diferente pH y zonas con elevada producción de sulfuro capaz de reaccionar con iones metálicos.

  12. Evaluación del grado de sensibilización en el acero inoxidable AISI

    González, O.

    2003-12-01

    Full Text Available Austenitic stainless steel, when heat-treated at 550-850 °C, became susceptible to intergranular corrosion in acids. This phenomenon, know as sensitization, it is result from the precipitation of chrome carbides in the grain boundary, making these areas less resistant to corrosion. Two different electrochemical reactivation tests are compared with a destructive test and related to the classification of its respective microstructures. It was established a quantitative methodology to evaluate the degree of sensitization in AISI 304 and also to compare the correspondence of the results with the data of the automatic and portable EPR device for non-destructive field measurement of the degree of sensitization. The used electrochemical techniques were the EPR (Electrochemical Potentiokinetic Reactivation or single loop test and the PRP (Pasivation Reactivation Potentiokinetic or double loop test. The destructive test used was boiling, 120 h ferric sulfate-50 % sulfuric acid, according to the standard practices ASTM A-262 practices B. The classifications of each structures were according to the standard practices ASTM A-262 practices B.

    El acero inoxidable austenítico, cuando se calienta en un rango de temperatura entre 550 y 850 °C es susceptible a corrosión intergranular en ácidos. Este fenómeno, conocido como sensibilización, es resultado de la precipitación de carburos de cromo en el límite de grano, haciendo esas áreas menos resistentes a la corrosión. Se comparan dos pruebas diferentes de reactivación electroquímica con una prueba destructiva, relacionándolas con su respectiva microestructura. Se estableció una metodología cuantitativa para evaluar el grado de sensibilización del acero AISI 304 y se comparó con los datos generados de una herramienta no destructiva de campo, automática y portátil, para medir el grado de sensibilización. Las técnicas electroquímicas usadas fueron: la EPR (Reactivación electroqu

  13. Efecto de la predeformación en la vida a fatiga de un acero inoxidable austenítico metaestable

    Durán Avilés, Ana María

    2009-01-01

    Los aceros de tipo 301LN son aceros inoxidables austeníticos metaestables de baja aleación que pueden transformar a martensita por deformación. Esta transformación tiene lugar por mecanismos cristalográficos, al producirse un movimiento colectivo de átomos por cizalladura. El desplazamiento de los átomos es inferior a las distancias interatómicas, de manera que aunque los mecanismos de difusión no intervienen se observa un cambio de volumen. La cantidad de austenita transfor...

  14. Funcionalización electroquímica y tribológica de películas de quitosano en fosfato tricálcico depositados en acero 316L

    Alexis Mina Escobar

    2013-12-01

    Full Text Available Se depositaron recubrimientos de fosfato tricálcico-β/quitosano sobre sustratos de acero 316L vía electrodeposición, a una temperatura de 60 °C, aplicando una corriente de 260 mA. Con el fin de estudiar el efecto del contenido de quitosano en la velocidad de corrosión y la respuesta tribológica de los aceros recubiertos, se utilizaron seis concentraciones de quitosano en la mezcla acuosa. Los enlaces químicos presentes en las capas fueron estudiados mediante Espectroscopia de Infrarrojo con Transformada de Fourier (FTIR; la cristalinidad de los depósitos fue examinada mediante difracción de rayos-X (DRX; la resistencia a la corrosión del TCP-β/quitosano depositado sobre los aceros se estudió mediante Espectroscopia de Impedancia Electroquímica (EIS y curvas anódicas Tafel, encontrándose una disminución del 54% en la velocidad de corrosión para la relación 50-50, con respecto a 100% TCP. La respuesta tribológica se analizó mediante pin-on-disc, evidenciando una reducción del 73% en el coeficiente de fricción con mayor concentración de quitosano.

  15. Influencia de la temperatura en las propiedades a tracción de un acero inoxidable superdúplex

    Gironès, A.

    2001-04-01

    Full Text Available Tensile tests, at temperatures ranging between 275 and 475 °C were performed in a superduplex stainless steel EN 1.4410. The dependence of yield stress and ultimate tensile strength on temperature indicates the existence of dynamic strain aging (DSA. In order to evaluate the influence of strain rate on this phenomenon, tests were conducted at two different strain rates, both at 325 °C, temperature at which DSA is maximum for this material. The results show that the flow stress has an inverse strain rate sensitivity which confirms the existence of DSA in the steel under study.

    Un acero inoxidable superduplex tipo EN 1.4410 se ensayó a tracción en el rango de temperaturas de 275 a 475 °C. La evolución, en función de la temperatura, de los valores de límite elástico y resistencia máxima indica la existencia de un fenómeno de envejecimiento por deformación (Dynamic Strain Aging, DSA. Para evaluar la influencia de la velocidad de deformación sobre dicho comportamiento se realizaron ensayos de tracción a dos velocidades diferentes, ambos a la temperatura de 325 °C, para la cual se había registrado la máxima manifestación de DSA. Dichos ensayos reflejaron una sensibilidad inversa a la velocidad de deformación lo que confirma la presencia de DSA en el acero bifásico estudiado.

  16. “IDENTIFICACIÓN DE LA CORROSIÓN EN LOS ALAMBRES DE NIQUEL TITANIO Y ACERO INOXIDABLE Y LA PRESENCIA DE BACTERIAS ASOCIADAS EN UNA MUESTRA DE ARCOS UTILIZADOS EN PACIENTES DE LA CLÍNICA DE ORTODONCIA”.

    Vargas Morales, Karla Odette

    2012-01-01

    El propósito de este trabajo de investigación fue identificar la presencia de corrosión en alambres de Níquel Titanio y Acero Inoxidable, así como presencia de bacterias asociadas en los mismos colocados en boca durante 4 meses en pacientes de la clínica de ortodoncia de la Universidad Michoacana de San Nicolás Hidalgo. En el tamaño de la muestra del presente estudio se utilizaron diez arcos: cinco de níquel titanio termoactivados y cinco de acero inoxidable. Los siguientes ...

  17. Tratamiento térmico del acero inoxidable ferrítico AISI 430L sinterizado en atmósfera de N2-H2

    Ruiz-Prieto, J. M.; G. Cambronero, L. E.; Iglesias, F. J; Corpas, F.; Ruiz-Román, J. M.

    2005-01-01

    In this Work the influence of sintering AISI 430L stainless steel in N2-H2 atmosphere on its properties and microstructure have been studied. The presence of nitrogen in the sintering atmosphere leads to complex nitrides formation the AISI 430L sintered steel microstructure. A subsequent heat treatment was applied to modify this microstructure in order to improve the mechanical properties and corrosion resistance of these ferritic stainless steels.Los aceros inoxidables ferríticos, son aceros...

  18. Influencia de la composición y el conformado en el comportamiento frente a la corrosión de los corrugados de acero inoxidable

    Álvarez Arboleda, Sandra Milena

    2014-01-01

    En la presente Tesis Doctoral se evalúa el comportamiento frente a la corrosión de barras corrugadas de aceros inoxidables (que pueden ser utilizadas como refuerzo en las partes más expuestas de las estructuras de hormigón) y se analizan en profundidad diversos factores que pueden influir en su durabilidad. El estudio de la influencia de la composición química de las barras ha demostrado el gran interés de los nuevos grados 2001 y el 2304 (dúplex de baja aleación), que ofrecen excelentes resu...

  19. Comportamiento frente a la corrosión de nuevos tipos de armaduras de acero inoxidable para estructuras de hormigón armado

    Blanco Rodríguez, Gema

    2009-01-01

    En la presente Tesis Doctoral se ha realizado un profundo estudio sobre el comportamiento frente a la corrosión de nuevos tipos de armaduras de acero inoxidable para su empleo en estructuras de hormigón armado. Las estructuras de hormigón armado suelen presentar graves problemas de corrosión en medios con cloruros o cuando el hormigón se carbonata. Las alternativas tradicionales para aumentar su durabilidad (protección catódica, galvanizados, resinas epoxi, adición de inhibidores, etc.) han d...

  20. Estudio comparativo de la cavidad de acceso radicular en conductos curvos con limas de níquel-titanio y taladros de acero inoxidable

    Oncins Rodríguez, J.; Pumarola Suñé, José; Canalda Sahli, Carlos

    2005-01-01

    El propósito de este estudio fue comparar la cantidad de dentina radicular removida y evaluar el mantenimiento de la forma del conducto tras la instrumentación de los dos tercios coronarios radiculares, utilizando instrumentos de acero inoxidable (taladros de Gates Glidden) y de níqueltitanio (limas GT Flare y limas Orifice Shaper). Un total de 42 dientes humanos extraídos con conductos radiculares curvos fueron divididos en tres grupos. Los conductos se instrumentaron mecánicamente usando ta...

  1. Estudio del efecto de la irradiación en aceros inoxidables 316 (Study of irradiation effect on the stainless steels type 316)

    Yagüe Martín-Lunas, César

    2011-01-01

    Los cambios en la microestructura inducidas por la radiación neutrónica contribuyen de manera importante en el comportamiento de los componentes internos bajo operación de los reactores nucleares. La radiación neutrónica induce defectos en la microestructura en forma de bucles de dislocación y también la redistribución de átomos de soluto e impurezas. En la serie 300, los aceros inoxidables austeníticos, materiales estructurales comunes usados en los componentes del núcleo de los reactores de...

  2. Influencia de la microestructura en el comportamiento a fatiga de aceros inoxidables austeníticos con alto contenido en molibdeno

    Oñoro, J.

    2006-02-01

    Full Text Available Austenitic stainless steels with molybdenum present high mechanical properties and corrosion resistance to aggressive environments. These steels have been used to tank and vessel components for high corrosive liquids as phosphoric, nitric and sulphuric acids. These materials with low carbon and nitrogen addition have been proposed candidates as structural materials for the international thermonuclear experimental reactor (ITER in-vessel components. Molybdenum addition in austenitic stainless steel improves mechanical and corrosion properties, but with it can produce the presence of nitrogen microstructure modifications by presence or precipitation of second phases. This paper summarises the fatigue and corrosion fatigue behaviour of two 317LN stainless steels with different microstructure. Fully austenitic steel microstructure show better fatigue, corrosion fatigue resistance and better ductility than austenitic steel with delta ferrite microstructure, mainly at low stresses.

    Los aceros inoxidables austeníticos con elevados contenidos en molibdeno presentan alta resistencia mecánica y resistencia a los medios corrosivos. Se utilizan en la construcción de depósitos y recipientes para el almacenamiento y transporte de líquidos altamente corrosivos, tales como ácido fosfórico, nítrico o sulfúrico. Estos materiales con bajo carbono y adiciones de nitrógeno han sido propuestos como candidatos para materiales estructurales en la fabricación de la vasija del reactor experimental termonuclear internacional (ITER. La adición de molibdeno mejora las propiedades frente a la corrosión de los aceros inoxidables austeníticos. Sin embargo, este aumento del contenido en molibdeno, junto con la presencia de nitrógeno, puede producir modificaciones microestructurales, por la aparición de fases precipitadas o segundas fases. En este trabajo, se analiza el comportamiento la fatiga y corrosión-fatiga de dos aceros inoxidables austen

  3. Caracterización y propiedades mecánicas a alta temperatura de un acero inoxidable dúplex

    Jiménez, J. A.

    1998-05-01

    Full Text Available The microstructure and mechanical behavior at high temperature of a thermomechanical processed duplex stainless steel have been studied. Recrystalization of the material takes place during heating to test temperature, and a microstructure consisting of islands of austenitic grains of about 10-15 μm in size included in a more or less continuous matrix of ferrite is observed. Tensile tests at temperatures above 1,000°C and at low strain rates show a stress exponent of about 2 and elongations to failure up to 290 %. These values suggest that deformation is controlled by a grain boundary sliding mechanism, which causes a decrease in the size of the islands during deformation. Finally, an activation energy for plastic deformation of 167 kJ/mol was observed that was related to the activation energy for grain boundary diffusion of iron.

    Se ha estudiado la microestructura y el comportamiento mecánico a alta temperatura de un acero inoxidable dúplex procesado termomecánicamente. Durante el calentamiento a la temperatura de ensayo, el material recristaliza y se obtiene una microestructura de granos austeníticos de tamaños comprendidos entre 10 y 15 μm agrupados en islas incluidas en una matriz más o menos continua de ferrita. Ensayos de tracción a temperaturas superiores a 1.000°C y bajas velocidades de deformación muestran un exponente de la tensión igual a 2 y alargamientos a rotura de hasta 290 %. Estos valores permiten asociar el mecanismo de deformación al deslizamiento de fronteras de grano, el cual determina la desaparición progresiva de las islas de granos austeníticos durante la deformación. Finalmente, se encontró un valor de 167 kJ/mol para la energía de activación de la deformación plástica, la cual se relacionó con la energía de autodifusión del hierro a lo largo de las fronteras de grano.

  4. Análisis del Comportamiento Mecánico de Recargues de Inoxidable Sobre Acero de Baja Aleación en Reactores de Proceso Analysis of Mechanical Behavior of Cladding of Stainless Steel over Low Alloyed Steel in Process Reactors

    Moratilla, B.Y.; J.I. Linares; Portolés, A.

    2005-01-01

    Se realiza un estudio simple de tensiones considerando dos materiales, acero inoxidable y acero de baja aleación. El estudio es motivado porque en la industria petroquímica es práctica habitual, para reducir costes de materiales, utilizar recargues de inoxidable sobre una pared de acero de baja aleación para la construcción de la pared de reactores. Se determina el coeficiente de dilatación térmica y su evolución a lo largo del espesor de la zona afectada térmicamente, usando una probeta extr...

  5. Recubrimientos de aluminio-silicio realizados por deposición química de vapor en lecho fluidizado sobre el acero inoxidable AISI 316

    José Luddey Marulanda Arevalo; Francisco Javier Pérez Trujillo; Aduljay Remolina Millán

    2013-01-01

    Los recubrimientos de aluminio-silicio fueron depositados sobre el acero inoxidable AISI 316 mediante deposición química de vapor en lecho fluidizado (CVD-FBR), en el rango de temperaturas de 540 a 560 ºC, utilizando un lecho formado por 2,5 g de silicio y 7,5 g de aluminio en polvo, y 90 g de lecho inerte (Alúmina), el cual se hizo fluidizar con Ar. Como gases activadores se usó una mezcla de HCl/H2, en relaciones de 1/10 a 1/16. Además, se varió el tiempo de deposición de los recubrimientos...

  6. Influencia de los tratamientos térmicos en la deformación en frío de los aceros inoxidables dúplex

    Fargas, G.

    2004-06-01

    Full Text Available The purpose of this paper is to study the compression behavior of a duplex stainless steel after several annealing conditions, in order to simulate the response during cold rolling in the industrial process. For each studied condition, stress-strain curves present serrations in the flow zone due to austenite and ferrite twinning and the austenite phase transformation to martensite. At the same time, it is shown that sigma phase increases the strength and diminish the cold deformation capacity of the steel.

    Se realizó un estudio del comportamiento a compresión de un acero inoxidable dúplex sometido a distintos tratamientos térmicos de recocido, con el fin de simular su respuesta durante la laminación en frío que tiene lugar en el proceso industrial. Para todas las condiciones estudiadas, las curvas esfuerzo-deformación presentan inestabilidades en la zona plástica, provocadas por el maclado de ambas fases y la transformación de la austenita a martensita. Al mismo tiempo, puede observarse cómo la presencia de fase sigma endurece el acero y limita su capacidad de deformación.

  7. Estudio de la influencia microbiológica en la corrosión de latones (UNS C68700, UNS C443 y acero inoxidable AISI 316;

    Ohanian, Mauricio

    2014-06-01

    Full Text Available Microorganisms may play an important role in the corrosion process and generate conditions which affect the rate and/or the mechanism of deterioration. They become visible by the formation of biofilms: clusters of microorganisms and extracellular polymers. These biofilms affect not only the durability of the material, but also reduce the heat transfer. The present work studied the growth of aerobic and anaerobic heterotrophic microorganisms and sulfate reducing bacteria on aluminum brass (UNS C68700, admiralty brass (UNS C443 and stainless steel AISI 316 in exposure experiments held in the Bay of Montevideo (Uruguay. The influence of the biofilm growth on the corrosion behavior was studied by electrochemical techniques: polarization curves and Electrochemical Impedance Spectroscopy (EIS. The selection of the most suitable material for the exposure conditions is discussed and hypotheses of the corrosion mechanism are presented. Although stainless steel AISI 316 presented the lowest corrosion rate it showed localized deterioration.Los microorganismos influyen de manera significativa en el proceso corrosivo y generan condiciones que afectan la velocidad y/o el mecanismo de deterioro. Su presencia se manifiesta por la formación de bio-películas: conglomerados de bacterias y polímeros extracelulares. Dichas bio-películas afectan la durabilidad del material, la velocidad de flujo y la transferencia de calor. En el presente trabajo se evalúa el crecimiento de microorganismos heterótrofos aerobios, heterótrofos anaerobios y bacterias sulfato-reductoras sobre latón aluminio (UNS C68700, latón almirantazgo (UNS C443 y acero inoxidable AISI 316. Asimismo, se estudia la influencia del crecimiento de la bio-película sobre el comportamiento corrosivo mediante técnicas electroquímicas: curvas de polarización y espectroscopia de impedancia electroquímica. Las exposiciones se realizan en la Bahía de Montevideo, estuario del Río de la Plata

  8. Corrosión de aceros inoxidables martensíticos 13CrNiMo de bajo contenido de carbono en las industrias de gas y petróleo

    Méndez, Claudia Marcela

    2013-01-01

    Los aceros inoxidables 13CrNiMo con bajo contenido de carbono, surgen como alternativa para el reemplazo de materiales más caros en el uso como sistemas de transporte de fluidos de las industrias de gas y petróleo, con concentraciones importantes de cloruros, pCO2, pH2S y temperatura elevadas. El bajo contenido en carbono permite salvar algunos problemas vinculados a la operación de soldadura. Con el fin de obtener una alta tenacidad, se realizan tratamientos térmicos de precalentamiento y de...

  9. Evaluación de la resistencia a la corrosión de recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas

    Cubillos González, Gloria Ivonne

    2013-01-01

    Se hicieron crecer películas de oxinitruro de zirconio ZrOxNy sobre tres sustratos diferentes: acero inoxidable, Si (100) y vidrio, empleando tres técnicas distintas: spray pirólisis-nitruración (UPS-N), sputtering con radiofrecuencia (RF) y sputtering DC con magnetrón desbalanceado. Para cada una de ellas se optimizó las condiciones de depósito y se estudió la influencia de las mismas en las características estructurales y morfológicas del recubrimiento. Adicionalmente, se realizó la evaluac...

  10. Identificación y cuantificación de fases en acero inoxidable ASTM A743 grado CA6NM mediante la técnica de difracción de rayos x

    Rojas Marín, Jessika Viviana

    2009-01-01

    La técnica de difracción de rayos X a altas temperaturas fue aplicada al estudio de las transformaciones de fase en el acero inoxidable martensítico ASTM A743 grado CA6NM, material ampliamente usado en la fabricación de componentes hidráulicos por las excelentes propiedades mecánicas que ofrece. Mediante la técnica de difracción de rayos X y en el intervalo de temperaturas entre 25-860°C se estudió la dilatación térmica del acero durante el calentamiento, se identificaron las temperaturas de ...

  11. Estudio de corrosión galvánica en pares latón/acero inoxidable y latón/fundición de hierro

    Ohanian, M.

    2011-08-01

    Full Text Available Corrosion attack in heat exchanger systems is a topic of main interest for the maintenance in each industrial plant. These are multigalvanic systems with particular geometric and fluidodynamic complexity. Corrosive damages include zinc selective dealeation in copper alloys. In order to explain zinc dealeation attack, this paper deals with laboratory scale testing, characterization and interactions between two copper and zinc alloys (Yellow brass –UNS C268– and Admiralty brass –UNS C443– compared to AISI 316 stainless steel and cast iron. The tests were performed at 20 °C in 1.5 % NaCl and 1.5 % Na2SO4 solutions, pH 8 and each material was characterized by potentiodynamic sweeps. The couples are analyzed by studying transient galvanic currents. We conclude about the cause of the analyzed pathology, brass protection potential ranges and its coupling compatibility with other metals.

    El ataque por corrosión en los sistemas intercambiadores de calor constituye un problema para el mantenimiento de cualquier planta industrial. Se trata de sistemas multigalvánicos con particular complejidad geométrica y fluidodinámica. Las patologías corrosivas incluyen el fenómeno de dealeación selectiva de cinc en las aleaciones de cobre. A fin de explicar un caso particular de ataque por decinficación (deterioro en placa de intercambiador de calor de tubos de inoxidable, el presente trabajo aborda en ensayos a escala de laboratorio, la caracterización e interacciones entre dos aleaciones de cobre y cinc, (Yellow brass –UNS C268– y Admiralty brass –UNS C443–, respecto a acero inoxidable AISI 316 y fundición gris de hierro. Los ensayos se realizan a 20 °C en disoluciones de NaCl 1,5 % y Na2SO4 1,5 % y pH 8. Se caracterizan electroquímicamente las aleaciones y materiales involucrados mediante barridos potenciodinámicos. Los pares galvánicos formados se analizan mediante el

  12. Influencia del tamaño del grano en las propiedades mecánicas de los aceros inoxidables austeníticos

    Martínez, M. A.

    2005-12-01

    Full Text Available The goal of this work is to study the influence of the grain size on mechanical properties of austenitic stainless steels. The study covers both, stable stainless steels and metastable steels. A relevant topic is to identify the differences in the behaviour of both types of steels. First of all, several steel taps are taken into account and by this way the average of results are derived. A sorted collection of them show its behaviour. Several rules are identified, like straight relationship between the number of grain size (ASTM and the 0.2 % proof stress and the tensile strength and inverse relationship with the elongation. Specific studies analyzing the relevance of nickel are performed. Finally main conclusions and valuations are presented and some statistic results of mechanics properties and steel taps are performed in order to get better prediction of their behaviour.

    En el presente trabajo se lleva a cabo un análisis de la influencia del tamaño del grano de aceros inoxidables austeníticos sobre algunas propiedades mecánicas de interés en estos materiales. Se han estudiado tanto aceros estables como metaestables para valorar las diferencias de comportamiento, considerando varias coladas de cada material para promediar los resultados y obtener un comportamiento más robusto de los estimadores. Se ha procedido a una preparación y adecuación de las probetas, previa a su ensayo en laboratorio. Se han observado los comportamientos habituales de modo que, a mayor número de tamaño de grano según norma ASTM, mayor límite elástico y resistencia a la tracción y menor alargamiento; llevándose a cabo estudios de detalle de valores de las tendencias de crecimiento, comportamiento comparado de estables y metaestables y valorándose cuidadosamente la influencia del níquel presente en el material. Finalmente se presentan las principales conclusiones y valoraciones, y un estudio estadístico de las propiedades mecánicas y de las

  13. Separación selectiva de hierro y cromo de las lejías agotadas del decapado de acero inoxidable

    Gálvez, J. L.

    2005-12-01

    Full Text Available Stainless steel spent pickling baths are very complex solutions of metals and acids (HNO3 and HF and are a very important environmental concern. Several processes have been developed for acid recovery (free and bounded acid with techniques like acid retardation, solvent extraction, evaporation and dialysis diffusion. In these processes, metallic content is precipitated and treated for its disposal. We have developed a process that permits the separation of metals by means of a selective precipitation, induced by adding free fluoride. Iron (Fe and chromium (Cr precipitate as pentafluorides and nitrogennickel (Ni remains in solution. After this stage, complex fluorides can be hydrolized with alkali to give iron and chromium hydroxides, releasing fluoride in solution

    Los baños ácidos agotados del decapado de acero inoxidable son disoluciones muy complejas debido al alto contenido de metales y ácidos (HNO3 y HF, por lo que constituyen un grave problema medioambiental. Existen tratamientos comerciales para la recuperación del ácido (libre o complejado que se basan en técnicas de retardo ácido, extracción con disolventes, evaporación o membranas. En estos procesos el contenido metálico es precipitado y tratado como un residuo. El grupo de investigación formado por los autores del presente trabajo ha desarrollado un procedimiento que permite el aprovechamiento de dichos metales mediante su recuperación selectiva con una técnica de precipitación modificada inducida por fluoruro libre. Se consigue la precipitación de hierro (Fe y cromo (Cr como pentafluoruros (pH 3-4,5 dejando el níquel en disolución. Posteriormente, los fluoruros complejos son hidrolizados con álcali dando lugar a hidróxidos de hierro y cromo, mientras que el fluoruro es redisuelto.

  14. Influencia del material de aporte en la resistencia a corrosión por picadura en uniones soldadas de un acero inoxidable dúplex 2205

    Múnez, C. J.

    2007-08-01

    Full Text Available In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi. The microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relation a/g. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties.

    En este trabajo se ha estudiado la resistencia a la corrosión localizada por picadura, de soldaduras realizadas sobre un acero inoxidable dúplex 2205. Se hicieron uniones mediante el proceso GMAW, utilizando como material de aporte un hilo dúplex ER 2209 y dos austeníticos ER 316LSi y ER 308LSi. Metalúrgicamente, se observa como para el hilo ER 2209 las microestructuras que se obtienen son similares a la del dúplex 2205, mientras que en las uniones con hilo austenítico, pueden verse microestructuras muy diferentes en las que la relación de fases a/g disminuye. Al evaluar la resistencia a la corrosión por picadura, mediante la Temperatura Crítica de Picadura (TCP, se comprobó como el desequilibrio entre las fases, generado por el aporte, provoca la variación en la resistencia a la corrosión localizada por picadura. También, se estudió la variación en las propiedades mecánicas del material mediante ensayos de dureza.

  15. Estrutura e propriedades do aço inoxidável austenítico AISI 316L Grau ASTM F138 nitretado sob plasma à baixa temperatura Structure and properties of an austenitic stainless steel AISI 316L grade ASTM F138 after low temperature plasma nitriding

    André Paulo Tschiptschin

    2010-03-01

    Full Text Available Os aços inoxidáveis austeníticos possuem restrições para a nitretação nas temperaturas convencionais, próximas de 550ºC, devido à precipitação intensa de nitretos de cromo na zona de difusão. Essa precipitação eleva a dureza, mas deteriora as propriedades de corrosão. O uso do processo de nitretação sob plasma permite introduzir nitrogênio em temperaturas inferiores a 450ºC, levando à formação de uma fina camada de austenita expandida pelo nitrogênio (gN. Essa fase possui uma estrutura cristalina mais bem representada pelo reticulado triclínico, com elevada concentração de nitrogênio em solução sólida supersaturada, a qual promove um estado de tensões residuais de compressão capaz de elevar a dureza do substrato de 4 GPa para valores próximos de 14 GPa. O Módulo de Elasticidade mantém-se próximo de 200 GPa após a nitretação.Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550°C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chromium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450°C, forming pre-dominantly expanded austenite (gN, with a crystalline structure best represented by a special triclinic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.

  16. Estudio de la influencia de la microestructura sobre la deformabilidad en caliente de un acero inoxidable dúplex

    Iza-Mendia, A.

    1998-05-01

    Full Text Available The complexity of the hot deformation behaviour of the ferrite and austenite in a duplex structure is increased as compared with that of single phase ferritic or austenitic steels. Important factors are: the spatial phase distribution with respect to the direction of the imposed deformation, the codeformation of both phases having considerably different mechanical properties, and the nature of the interface between austenite and ferrite. In the present study, the influence of these factors on the crack formation during the hot deformation is analyzed.

    El comportamiento frente al conformado en caliente de la ferrita y de la austenita, en una estructura dúplex, es muy diferente al que presentan ambas fases por separado en los aceros monofásicos austeníticos o ferríticos. A ello contribuyen, entre otros, la distribución espacial de las fases con respecto a la deformación impuesta, la codeformación de dos fases, con propiedades mecánicas muy diferentes, y la naturaleza de la intercara. En el presente trabajo se analiza la influencia de estos factores en la formación de daño bajo condiciones de deformación en caliente.

  17. Efecto del silicio como posible elemento reactivo en la protección frente a la oxidación a elevada temperatura del acero inoxidable AISI 304

    Otero, E.

    1998-05-01

    Full Text Available The influence of silicon incorporated into the alloy by means of ion implantation of 1 x 1015 ions/cm2 at 150 keV on the protective scale development based upon Cr1,3Fe0,7O3 and manganese-enriched spinels, Mn1,5Cr1,5O4 after oxidation of an austenitic AISI 304 stainless steel at 1,173 K and atmospheric pressure of air for 144 h has been studied. The presence of small quantities of silicon at the outermost layers of the alloy promotes transport of chromium during the early stages of oxidation. Further, ion implantation seems to play a beneficial role against decarburization of the alloy.

    Se estudia la influencia de silicio incorporado a la aleación mediante implantación iónica de 1 x 1015 iones/cm2 a 150 keV en el crecimiento de la capa protectora de oxidación basada en Cr1,3Fe0,7O3 y en espinelas enriquecidas en manganeso, Mn1,5Cr1,5O4, tras someter a un acero inoxidable austenítico AISI 304 a oxidación a 1.173 K y presión atmosférica de aire durante 144 h. La presencia de pequeñas cantidades de silicio en las capas más externas del material promueve el transporte de cromo durante los primeros estadios de la oxidación. Además, la implantación iónica parece ejercer un efecto beneficioso contra la descarburación de la aleación.

  18. Ensayos de rozamiento plano sobre aceros inoxidables austeníticos con diferente acabado superficial. Determinación de las condiciones de adhesión en el rozamiento

    Coello, J.

    2008-12-01

    Full Text Available The main purpose of this work is to evaluate the tribological behaviour of austenic stainless steels AISI 304 with bright annealed surface finishing (BA (ASTM a 240; AISI 304 DDQ and AISI 316 with bright surface finishing (B. The assays have been carried out in flat faced dies system with mineral oil of 200 cts viscosity, S2Mo grease and in dry conditions.. The relationship between friction coefficient and pressure and velocity has been established for the mineral oil as lubricant. In these conditions, a strong adhesive tendency has been found in boundary lubrication regime. The results obtained here, show us that S2Mo grease leads to lowest values for the friction coefficient. A minor adhesive behaviour tendency for AISI 316 steel, harder than 304 grades, has been found. A relevant plowing phenomena has been observed for the more critical friction conditions tried out. A surface hardener is produced as a consequence of that.

    El objetivo de este trabajo es determinar el comportamiento tribológico de los aceros inoxidables austeníticos 304 con acabado brillante BA (ASTM A 240, 304 DDQ y 316 con acabado mate 2B, en sistemas de contacto plano, con el fin de simular el rozamiento en la zona del flanco en los procesos de embutición de acero inoxidable. Para ello, se ha estudiado la influencia del acabado superficial del acero, la velocidad de deslizamiento y la presión normal sobre el coeficiente de rozamiento, utilizando un ensayo de fricción con matrices planas. Los ensayos se han realizado con aceite mineral de 200 cst, grasa de bisulfuro de molibdeno y en seco. En presencia de aceite, se ha establecido una correlación de m con la velocidad de deslizamiento y la presión de contacto con comportamiento fuertemente adhesivo en las condiciones de lubricación límite consideradas. Los resultados obtenidos muestran que la grasa de bisulfuro de molibdeno disminuye en un 50 % los valores del coeficiente de rozamiento

  19. Formación de fase sigma en uniones soldadas de acero inoxidable súper dúplex fundido

    Garin, J. L.

    2011-08-01

    Full Text Available This paper decribes the microstructural characteristics of weldments of cast super duplex stainless steel (J93404, being subjected to annealing processes to induce formation of sigma-phase at high temperatures. The influence of heating time at 1073 K, 1123 K and 1173 K upon precipitation of sigma in the heat affected zone, base metal and fusion zone of the weldments was analyzed. The experimental results revealed the formation of this intermetallic compound throughout decomposition of the ferritic phase into austenite and sigma. At earlier stages of the transformation the phase rapidly nucleates and growth along the ferrite-austenite grain boundaries, and then massively advances towards the bulk of the ferritic zone with greater effectiveness as temperature increases. The formation of sigma-phase in all weldments resembles the Johnson-Mehl-Avrami’s mechanism stated for nucleation and growth.

    El presente trabajo describe las características microestructurales de uniones soldadas de acero súper dúplex fundido (J93404, al ser sometidas a procesos de recocido para inducir la formación de fase sigma a altas temperaturas. Se analizó la influencia del tiempo de calentamiento a 1.073 K, 1.123 K y 1.173 K sobre la precipitación de fase sigma en la zona afectada térmicamente, metal base y zona de fusión de los conjuntos soldados. Los resultados experimentales evidenciaron la formación de este compuesto intermetálico por descomposición de la fase ferrítica en austenita y sigma. Al comienzo de la transformación la fase nuclea y crece rápidamente en los bordes de grano austenita-ferrita, extendiéndose luego masivamente hacia el seno de la zona ferrítica, con mayor efectividad en términos del aumento de la temperatura de proceso. La formación de sigma en todas las uniones soldadas obedece a un mecanismo de nucleación y crecimiento del tipo Jonson-Mehl-Avrami.

  20. Soldabilidad del acero inoxidable austenitico

    Pedro Pablo Torres-Medina

    2002-01-01

    Full Text Available This work involves welding stainless steel AISI 321H applying technical specifications according to welding standards, know the properties and phenomena that occur in the base metal and select the appropriate input material to ensure good quality of the process.

  1. Efecto de la modificación superficial de alambres delgados de acero inoxidable AISI 302 mediante plasma electrolítico sobre sus propiedades mecánicas

    Gallegos, A.

    2012-12-01

    Full Text Available In this work different tests using electrolytic plasma (EP on thin wires of stainless steel AISI 302 in an inert solution were performed. Tensile tests were carried out in order to measure changes in the mechanical strength of the samples; moreover, both the morphological and microstructural changes also were evaluated. It was found that after 10 s of the application of EP, the samples surface was uniformly covered by nodules-like and craters similar to those found in the melting and cooling periods of EP. The results show a significant surface grain refinement, leading to crystalline arrangements with sizes less than 200 nm and also an increase in the samples tensile strength of at least 57 % respect to steel base.

    En este trabajo se realizaron ensayos de aplicación de plasma electrolítico (PE sobre alambres delgados de acero inoxidable AISI 302 en una solución inerte. Las probetas se sometieron a ensayos de tracción, con el fin de medir cambios en su resistencia mecánica; adicionalmente fueron evaluadas en sus cambios morfológicos y microestructurales. Se encontró que después de 10 s de aplicación de PE, la superficie de las probetas estaba uniformemente cubierta por nódulos y cráteres propios del ciclo de fusión y enfriamiento del PE; se evidenció un significativo afinamiento del grano superficial, llegando a ordenamientos cristalinos de tamaño menor a 200 nm y también se observó que la capa superficial afectada presentó un incremento de la resistencia a la tracción de al menos un 57 % respecto al acero base.

  2. Evaluación del comportamiento estructural y de resistencia a la corrosión de armaduras de acero inoxidable austenítico AISI 304 y dúplex AISI 2304 embebidas en morteros de cemento Pórtland

    Medina, E.

    2012-12-01

    Full Text Available The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304 and duplex EN 1.4362 (AISI 2304 have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR, of reinforcements embedded in ordinary Portland cement (OPC mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure.

    Se ha evaluado el comportamiento mecánico y estructural de dos aceros inoxidables corrugados, el austenítico EN 1.4301 (AISI 304 y el dúplex EN 1.4362 (AISI 2304, y se han comparado con el tradicional acero al carbono B500SD. El estudio se ha realizado en tres niveles: a nivel de barra, de sección y de pieza. Las diferentes características mecánicas de los aceros inoxidables condicionan el comportamiento a nivel de sección y de pieza estructural. El estudio del comportamiento frente a la corrosión de los dos aceros inoxidables se ha realizado mediante mediciones electroquímicas monitorizando el potencial de corrosión y la resistencia de polarización de armaduras embebidas en probetas de mortero contaminado con diferentes concentraciones de cloruros durante un tiempo de exposición de un año. Ambos aceros inoxidables permanecen en estado pasivo en las probetas para todos los contenidos de cloruros.

  3. Transformaciones de inequilibrio producidas por ciclos anisotérmicos en aceros inoxidables martensíticos tipo 13Cr y 14CrMoV

    Álvarez Moreno, Luisa Fernanda

    1991-01-01

    Diversas investigaciones en el campo de las transformaciones de inequilibrio en estado sólido han intentado buscar explicación a ciertos comportamientos atípicos observados en el desarrollo de la transformación martensítica de aceros aleados con elementos carburíqenos, tales como el cromo, molibdeno, vanadio y wolframio. En estos aceros aleados, la transformación anisotérmica de la austenita en rnartensita no se realiza de forma continua durante el enfriamiento en un intervalo determinado de ...

  4. Caracterización mecánica de recubrimientos de aluminio por CVD-FBR sobre aceros inoxidables y resistencia a la oxidación en vapor de agua

    Diego Pérez-Muñoz

    2015-09-01

    Full Text Available Los recubrimientos de aluminio depositados sobre el acero inoxidable austenítico AISI 317 por Deposición Química de Vapor en Lecho Fluidizado (CVD-FBR presentan a altas temperaturas una reducción de la velocidad de corrosión de más de 80 veces. Se realizó la caracterización mecánica de los recubrimientos por medio de microdureza, nanoindentación, para conocer cómo se vieron afectas las propiedades mecánicas (en especial la dureza y el módulo de Young del recubrimiento y del sustrato luego de ser sometidos a la oxidación a alta temperatura. También se hicieron análisis por medio de Microscopia Electrónica de Barrido (MEB, para observar los cambios microestructurales, y de Microscopia de Fuerza Atómica (MFA, para observar cómo varía la topografía y el gradiente de rugosidad en función de la distancia recorrida por la punta del cantiléver durante los barridos.

  5. Soldadura TIG de los aceros inoxidables dúplex del tipo 22-05 (Uranus 45N y Avesta. Estudio de la microestructura y de las propiedades mecánicas

    Gómez de Salazar, J. M.

    1998-05-01

    Full Text Available TIG welding of two different duplex stainless steels is carried out. Arc-discharge on base-material plates by means of the TIG technique without filler metal and varying the energetic conditions (E.N.A. has been performed, A comparative study concerning the microstructural evolution as well as mechanical properties is carried out, The relation between hardness profiles, the microstructural variations and the ferrita δ concentration is established. Further, the above mentioned properties are related to the E.N.A. for each welded joint.

    Se estudia la soldadura TIG de dos aceros inoxidables dúplex. Para ello, se ha descargado un arco sobre las chapas de material base mediante la técnica TIG, sin aportación de material y variando las E.N.A. Se realiza un estudio comparativo de la evolución microestructural, así como de las propiedades mecánicas. Se establece la relación entre los perfiles de dureza obtenidos y la variación microestructural y de la concentración de ferrita δ, así como estas propiedades con el E.N.A, de cada cordón.

  6. Estudio de la susceptibilidad de un acero inoxidable dúplex del tipo 22Cr5NiMoN al dañado por hidrógeno en condiciones estáticas (HIC) y bajo carga (SSC)

    Gutiérrez de Saiz-Solabarría, S.; San Juan, J. M.; Valea, A.

    1998-01-01

    The behavior to hydrogen damage caused by corrosion in a H2S medium is studied in a molded ferrite- austenite (52-48 %) duplex stainless steel 22Cr5NiMoN type (UNS-J9.22.05) under both, static (damaging mechanism called Hydrogen Induced Cracking (HIC)) and sustained load (damaging mechanism called Sulfide Stress Cracking (SSC)), conditions.

    Se estudia el comportamiento de un mismo acero moldeado inoxidable dúplex austeno-ferrítico (48-52 %) del tipo 2...

  7. Desarrollo de un modelo matemático de diferencias finitas para el análisis del campo de temperaturas en la soldadura por arco de chapas finas de acero inoxidable

    Miguel, V.

    2010-12-01

    Full Text Available This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAWprocess. A computer program has been developed and implemented by Visual Basic for Applications (VBA in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead.

    En este trabajo se desarrolla un método de diferencias finitas para calcular el campo de temperaturas en la zona afectada por el calor en la soldadura de dos chapas de acero inoxidable AISI 304, soldadas mediante el procedimiento GTAW. Se ha desarrollado un programa informático implementado en libros de cálculo MS-Excel con Visual Basic para Aplicaciones (VBA. Los experimentos modelizados a través de la aplicación numérica predicen el comportamiento térmico de un procedimiento de soldadura. Para la validación del modelo matemático se ha desarrollado un

  8. “MEDICION DE PARAMETROS GENERADORES DE ESFUERZOS RESIDUALES DURANTE EL PROCESO DE SOLDADURA DE ACERO INOXIDABLE AUSTENITICO AISI 304L”.

    García López, Christian Jesus

    2012-01-01

    En la actualidad los procesos de soldadura por arco eléctrico se han convertido en la técnica por excelencia para la unión del acero y sus aleaciones. Se puede mencionar que la importancia de la soldadura, es tal, que sin ella no serían posibles muchos de los productos y servicios que cotidianamente son consumidos o requeridos por las sociedades contemporáneas actuales. Cada vez con mayor longitud y diámetro se instalan líneas de tubería para la distribución y conducción de tod...

  9. Susceptibilidad a la Fractura Inducida por Hidrógeno de Soldadura de Placa Clad de Acero Inoxidable 12% Cr Hydrogen Induced Cracking Susceptibility of 12% Cr Stainless Steel Clad Plate Weld

    Víctor M Sánchez

    2006-01-01

    Full Text Available En este trabajo se evalúa la susceptibilidad a la fractura inducida por hidrógeno (FIH en cordones aplicados sobre placa clad 1¼ Cr-½Mo + Acero Inoxidable ferrítico/martensítico 12% Cr. Para ello se ha desarrollado un sistema basado en la prueba del implante propuesta por Granjon, con el proceso de soldadura GMAW y diferentes niveles de hidrógeno en el gas de protección. Se presentan resultados de análisis fractográfico con microscopía electrónica de barrido, metalografía, perfil de dureza y correlación a través de modelos de regresión del esfuerzo critico de fractura versus hidrógeno difusible, carbono equivalente, y tiempo de enfriamiento. Los resultados del modelado son satisfactorios al compararlos con los resultados experimentales.The aim of the work was to evaluate the hydrogen induced cracking (HIC susceptibility of weld beads applied on 1¼ Cr-½Mo + ferritic/martensitic stainless steel 12% Cr clad plate. For this, a system was developed based on the implant test proposed by Granjon, with the GMAW welding process and different hydrogen levels in the shielding gas. The results of this research included SEM fractographic analysis, metallography, hardness profile and correlation through a mathematical regression model of the critical fracture stress versus diffusible hydrogen, carbon equivalent, and cooling time. The results of the modeling are found to be satisfactory when compared with experimental data.

  10. Análisis de los transitorios de ruido electroquímico para aceros inoxidables 316 Y – DUPLEX 2205 en NaCl Y FeCl

    Almeraya-Calderón, F.

    2012-04-01

    Full Text Available This work shows the results obtained from electrochemical noise measurements for different materials exhibiting pitting corrosion. The transients presented in the potential and current time, correlates with the scanning electron microscopy (SEM surface analysis. Electrochemical measurements were made at different exposure times to obtain the correlation. The materials used were stainless steel austenitic 316 and duplex 2205, immersed in ferric chloride (FeCl3 and sodium chloride (NaCl electrolytes. SEM analysis shows that the transients observed in the time series, really correspond to the activity of pit nucleation developed over the surface of the electrodes.

    En este trabajo se muestran los resultados obtenidos de las mediciones de ruido electroquímico para diferentes materiales que exhiben corrosión por picaduras. Los transitorios presentados en las series de tiempo en corriente y en potencial, se correlacionan con el análisis superficial de microscopía electrónica de barrido (MEB. Las mediciones electroquímicas fueron realizadas a diferentes tiempos de exposición, para obtener una correlación. Los materiales usados fueron los aceros inoxidables 316 y dúplex 2205, inmersos en cloruro férrico (FeCl3 y cloruro de sodio (NaCl como electrolitos. Los análisis por MEB, muestran que los transitorios observados en las series de tiempo, corresponden realmente con la actividad de la nucleación de picaduras desarrollada sobre la superficie de los electrodos.

  11. Estudio de corrosión bajo tensión en los aceros inoxidables 17-4PH y 17-7PH en presencia de NaCl y NaOH (20 % a 90 °C

    Gaona-Tiburcio, Citlalli

    2000-04-01

    Full Text Available One of the problems that affects to the electric industry is the not programmed stoppages in the power plants, due to the failure of any main component: boiler, turbine and generator. In the turbine, the combined action of a corrosive agent (humid polluted vapor and a mechanical effort generally will result in Stress Corrosion Cracking (SCC. In this work the SCC susceptibility of the precipitation hardening stainless steels 17-4PH and 17- 7PH, thoroughly used in steam turbine blades of power stations is analyzed. The specimens were tested in the presence of NaCl and NaOH (20 % to 90 °C and different pH. The CERT test (Constant Extension Rate Test was used, at 10-6 s-1 supplementing it with electrochemical noise; the aim was to identify the conditions of maximum susceptibility and the performance of the studied materials. The fractographic analysis revealed ductile and brittle fracture. Intergranular crackings, characteristic of the anodic dissolution mechanism of the material was observed. Nevertheless, the main mechanism responsible the failure was hydrogen embrittlement.

    Uno de los problemas que afecta a la industria eléctrica es el de los paros no programados en las plantas generadoras de electricidad, debidos al fallo de algún componente principal: caldera, turbina y generador. En la turbina, la acción combinada de un agente corrosivo (vapor húmedo contaminado y un esfuerzo mecánico, generalmente provocará corrosión bajo tensión (CBT. En este trabajo se analiza la susceptibilidad a la CBT de los aceros inoxidables, endurecibles por precipitación, 17-4PH y 17-7PH, ampliamente usados en alabes de turbina de vapor de centrales termoeléctricas. Las muestras se ensayaron en presencia de NaCl y NaOH (20 % a 90 °C, y distintos valores de pH. Se empleó el ensayo CERT (Constant Extensión Rate Test, a velocidades de 10-6 s-1, complementándolo con ruido electroquímico, buscando

  12. Efecto de los ciclos térmicos sobre la ZAT de una soldadura multipasos de un acero inoxidable superdúplex SAF 2507 Effect of thermal cycles on the HAZ of a stainless steel multipass weld of superduplex SAF 2507

    D. Villalobos

    2010-09-01

    Full Text Available Los ciclos térmicos de una soldadura multipasos que experimenta un acero inoxidable superdúplex SAF 2507, pueden promover la precipitación de fases secundarias reduciendo significativamente las propiedades mecánicas y la resistencia a la corrosión. Debido a su aplicación en la industria petroquímica, el estudio de las aleaciones superdúplex es de suma importancia para predecir su comportamiento en servicio cuando están involucrados procesos de soldadura por arco eléctrico. En este trabajo, se estudia el cambio microestructural de la zona afectada térmicamente correspondiente al primer cordón depositado de una unión multipasos de acero inoxidable superdúplex SAF 2507 mediante el proceso GTAW y bajo tres temperaturas de interpasos. Los resultados muestran que la temperatura de interpasos tiene una influencia sobre la precipitación de fase sigma en la zona afectada térmicamente del primer cordón depositado.Thermal cycles experienced by a superduplex stainless steel SAF 2507 when is welded, can promote the precipitation of secondary phases which decrease the mechanical properties as well as the corrosion resistance. Due to the application of the duplex alloys in the petrochemical industry, the study of these alloys has become very important in order to predict its service behavior. The aim of this work is to study the microstructural changes in the superduplex stainless steel weld joint after applying the GTAW process under three interpass temperatures after the deposition of every single pass. The results showed that slow cooling rates promoted by the deposition of the subsecuent passes and the higher interpass temperature, promote the precipitation of sigma phase in the HAZ while rapid cooling rates promoted by the lower interpass temperature do not promote the sigma phase precipitation.

  13. Caracterización mediante la técnica EBSD de la deformación de chapa de acero inoxidable AISI 304 DDQ bajo tensiones multiaxiales típicas de la embutición

    Coello, J.

    2009-10-01

    Full Text Available The main aim of this work is to evaluate AISI 304 DDQ stainless steel behaviour under deep drawing deformation condition, that is, pure shear deformation in which material suffers a typical deformation under tension-biaxial compression stresses system. The microestructural evolution has been investigated by optical microscopy and by EBSD technique. The success of the EBSD analysis has been established for the deformation conditions experimented here. It has been determined the rolling direction and the equivalent strain influence on the crystallographic orientation maps, misorientation diagrams and poles figures. The results let the authors say the low angle misorientations corresponding to 0, 45 and 90° rolling directions have an inverse correlation with the material anisotropy. Initial prestraining has been considered also and the analysis of this aspects lead to establish that the increment of the intragranular misorientations with the strain depends on the initial state of the steel; this increment is observed to be minor for samples with initial prestraining. High angle misorientation analysis (>15° indicates that the grain boundaries character distributions depends on the deformation.

    El objetivo de este trabajo es evaluar el comportamiento del acero inoxidable AISI 304 DDQ durante un proceso de deformación típico del conformado de chapa por embutición, tracción-compresión biaxial (T-CC, determinando la evolución microestructural mediante microscopía óptica y EBSD. Se ha establecido la validez del análisis efectuado por EBSD para las condiciones de deformación consideradas en este trabajo. Se ha analizado la influencia de la dirección de laminación y de la deformación equivalente sobre los mapas de orientación cristalina, diagramas de desorientación y figuras de polos inversa, determinando que las desorientaciones de ángulo bajo obtenidas en muestras deformadas a 0°, 45°, y 90° respecto a la dirección de

  14. Ion nitriding in 316=L stainless steel

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  15. Evaluación del comportamiento mecánico, estructural y frente a la corrosión, de una nueva armadura de acero inoxidable dúplex bajo en níquel

    Medina Sanchez, Eduardo

    2012-01-01

    La durabilidad de las estructuras de hormigón armado no es ilimitada, en especial en determinados ambientes. El ingreso de agentes agresivos en el hormigón, fundamentalmente dióxido de carbono e iones cloruros, rebasando el espesor del recubrimiento y alcanzando las armaduras, reducen el alto pH del hormigón hasta alcanzar un umbral crítico, por debajo del cual, el acero queda despasivado. Posteriormente, si existe el suficiente aporte de humedad y oxígeno, el acero se corroe, lo que supone d...

  16. Estudio de la susceptibilidad de un acero inoxidable dúplex del tipo 22Cr5NiMoN al dañado por hidrógeno en condiciones estáticas (HIC y bajo carga (SSC

    Gutiérrez de Saiz-Solabarría, S.

    1998-05-01

    Full Text Available The behavior to hydrogen damage caused by corrosion in a H2S medium is studied in a molded ferrite- austenite (52-48 % duplex stainless steel 22Cr5NiMoN type (UNS-J9.22.05 under both, static (damaging mechanism called Hydrogen Induced Cracking (HIC and sustained load (damaging mechanism called Sulfide Stress Cracking (SSC, conditions.

    Se estudia el comportamiento de un mismo acero moldeado inoxidable dúplex austeno-ferrítico (48-52 % del tipo 22Cr5NiMoN (UNS-J9.22.05 frente al dañado por hidrógeno generado por corrosión en medio H2S, tanto en condiciones estáticas, mecanismo de dañado conocido como HIC (Hydrogen Induced Cracking, como bajo carga de tracción, mecanismo de dañado conocido como SSC (Sulfide Stress Cracking.

  17. Study of Ce-modified antibacterial 316L stainless steel

    Yuan Junping

    2012-11-01

    Full Text Available 316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin-film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.

  18. Caracterizaci\\'on de austenita expandida generada por cementaci\\'on i\\'onica de aceros inoxidables. Estudio de la estabilidad frente a la irradiaci\\'on con haces de iones ligeros energ\\'eticos

    Molleja, Javier García

    2014-01-01

    This thesis was focused on the surface modification with plasma discharge. Austenitic AISI 316L stainless steel sample was carburised under different experimental conditions and mechanical properties have been studied (thickness, lattice parameter, elemental composition, hardness, wear resistance and corrosion resistance). After that, steel substrates have been nitrided or carburised in order to analyse their stability under ion bombardment using a plasma focus device. Helium and deuterium were the gases used in 0, 1, 5, and 10 discharges. Optical and X-ray characterisations were used. Finally, using magnetron sputtering nitrided/carburised samples were coated with an AlN thin film in order to study their stability under long treatments at high temperatures.

  19. Characterization of gold and nickel coating on AISI 304 stainless steel for use in the fabrication of current collector plates for fuel cells; Caracterizacion de recubrimientos de oro y niquel realizados sobre acero inoxidable AISI 304 para su empleo en la fabricacion de placas colectoras de corriente para celdas de combustible

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Aguilar Gama, M. Tulio [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Olvera, J. Carlos; Orozco, German [CIDETEQ, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Among the different components that compose fuel cell technology (MEA, bipolar plates, seals, etc.) current collector plates play an important role in the good performance of fuel cells, since they collect all of the current generated and distribute it to the external circuit. Therefore, the most important properties that the current collector plates should have are excellent conductivity and good resistance to the corrosive conditions present in the fuel cell. This document presents results obtained during the nickel and gold electrodeposition process on AISI 304 stainless steel and the morphology and thickness of each coating, their adhesion, hardness and conductivity values. Finally, results obtained during some of the electrochemical tests performed on the coatings are shown. [Spanish] De los diferentes componentes que integran la tecnologia de celdas de combustible (MEA's, placas bipolares, sellos, etc.), las placas colectoras de corriente tienen un importante rol en el buen desempeno de la celdas de combustibles, ya que en estas placas se colecta toda la corriente generada y se distribuye al circuito externo. Debido a esto, las propiedades mas importantes que deben tener las placas colectaras de corriente son: excelente conductividad y buena resistencia a las condiciones corrosivas presentes en la celda de combustible. En este documento se presentan los resultados obtenidos en el proceso de electrodeposicion de niquel y oro sobre acero inoxidable AISI 304, asi como la morfologia y el espesor de cada recubrimiento, sus valores de adherencia, dureza y conductividad. Finalmente se muestran tambien los resultados obtenidos de algunas pruebas electroquimicas a los que fueron sometidos los recubrimientos.

  20. Ionic implantation by plasma in titanium and stainless steels used in prosthesis and medical instruments; Implantacion ionica por plasma en titanio y aceros inoxidables usados en protesis e instrumental medico

    Munoz C, A. E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    A study of a process known as plasma immersion ion implantation (PIII) of nitrogen at low voltages (< 4 kV) into three kind of samples: 1) austenitic stainless AISI 316-L steel plates, 2) ferritic stainless AISI 434 steel-based dentistry drills and 3) commercially pure titanium (CPTi) disks. On the case of CPTi the study was conducted in nitrogen- oxygen calibrated mixtures: 90% N-10% O, 80% N-20% O, 70% N-30% O and in 99.5% pure oxygen and 99.9% pure nitrogen. The PIII process was carried out by using a direct current plasma source controlled both in voltage and current, a negative voltage pulse modulator, a stainless AISI 304 steel vacuum chamber and a rod of the same material, horizontally located in the upper region of the chamber, which plays the role of anode in the plasma discharge. The purpose of the nitriding is forming a relatively thick layer on the surface of the steel specimens in order to enhance their both microhardness and general corrosion performances, desirable in medical applications. This layer contains interstitial nitrogen atoms ({approx}24% at.) which gives place to a deformed lattice (expanded phase) of the steel. Vickers microhardness and potentiodynamic tests (the latter in agreement to the norm ASTM G-61-89) confirm an increase of microhardness up to three times and a decrease of general corrosion rate in one order of magnitude. The nitriding of de dentistry drills is aimed at inhibiting the pitting corrosion produced by the asepsis process which results in pit nucleations, their propagation and consequent fractures when being under cyclic stress (fatigue). Scanning electron microscope micrographs reveal the risks involved in surpassing the critical treatment simple temperature of 450 C as the PIII process itself induces pitting. On its part, cyclic (ASTM G-61) potentiodynamic tests indicate an excellent pitting corrosion resistance of the samples treated under 450 C. In turn, the treatment of CPTi was meant to develop oxidized and

  1. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Kruszewski, Kristen M; Nistico, Laura; Mark J Longwell; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S.

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with lo...

  2. Estudio de la susceptibilidad de un acero inoxidable austenítico estabilizado con niobio al dañado por tensocorrosión en medio H2S (SSC y corrosión intergranular (IGC en otros medios agresivos

    Gutiérrez de Saiz-Solabarría, S.

    1998-05-01

    Full Text Available Behavior to hydrogen damage caused by stress corrosion in a H2S medium (SSC and to intergranular corrosion (IGC in different mediums, such as oxalic acid (C2H2O4-2H20, iron sulphate-50 % sulfuric acid [Fe2(SO43-50 % H2SO4], nitric acid (HNO3, copper sulphate-16 % sulfuric acid (CuSO4-5H2O-16 % H2SO4 and cooper sulphate-50 % sulfuric acid (CuSO4-5H2O-50 % H2SO4, is studied in an AISI 347 austenitic stainless steel stabilized with 0.61 mass % Nb and hot rolled to a seamless pipe with 273.1 mm in diameter and 18.2 mm in thickness.

    Se estudia el comportamiento de un acero inoxidable austenítico del tipo AISI 347 estabilizado con un 0,61 % en masa de Nb, laminado en caliente para producir una tubería sin soldadura de 273,1 mm de diámetro y 18,2 mm de espesor, frente al dañado por hidrógeno generado por tensocorrosión en medio H2S (SSC y frente a la corrosión intergranular (IGC en diferentes medios agresivos tales como ácido oxálico (C2H2O4∙2H2O, sulfato de hierro-50% ácido sulfúrico [Fe2 (SO43-50 % H2SO4], ácido nítrico (HNO3, sulfato de cobre-16% ácido sulfúrico (CuSO4-5H2O-16 % H2SO4 y sulfato de cobre-50 % ácido sulfúrico (CuSO4-5H2O-50 % H2SO4, respectivamente.

  3. Influencia de los elementos residuales cobre, estaño, fósforo y arsénico en el agrietamiento de la superficie del acero inoxidable 18-8 durante la compresión a altas temperaturas

    Botella, J.

    1998-05-01

    Full Text Available The effect of certain different concentrations of Cu, Sn, P and As on the surface cracking of 18-8 austenitic stainless steel hot compressed specimens has been studied, at 1,123 and 1,273 K, in an oxidizing atmosphere (air. A procedure for determining surface cracking has been established, and the cracking factor obtained in this way is correlated with the chemical composition of the materials at both temperatures. The cracking factors obtained at 1,273 K have been compared with the reduction of area drops obtained by hot tension tests at the same temperature.

    Esta investigación aborda el estudio del efecto de concentraciones variables de cobre, estaño, fósforo y arsénico en el agrietamiento de la superficie de un acero 18-8, sometido a ensayos de compresión, a 1.123 y 1.273 K, en atmósfera oxidante (aire. Se desarrolla un procedimiento de cuantificación del grado de agrietamiento y se relaciona cada índice de agrietamiento así obtenido, a las distintas temperaturas, con la composición química" de los materiales. Los índices de agrietamiento correspondientes a los materiales comprimidos a 1.273 K se comparan con los valores de pérdida de reducción de área obtenidos mediante ensayos de tracción a la misma temperatura.

  4. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  5. Linear friction welding of AISI 316L stainless steel

    Research highlights: → Linear friction welding is a feasible process for joining AISI316L. → Most welds had tensile strengths superior to the parent material. → Welding parameters had a significant impact on weld microstructure. → Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {1 1 1} type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  6. Study of hydroxyapatite behaviour during sintering of 316L steel

    A. Szewczyk-Nykiel; M. Nykiel

    2010-01-01

    316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite wereinvestigated. Hydroxyapatite (HAp – Ca10(PO4)6(OH)2) is well known biomaterial. HAp reveals excellent chemical and biological affinitywith bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In pres...

  7. Emission of deuterium from SS 316L after plasma bombardment

    The understanding of the recycling (particle re-emission) behaviour of hydrogen isotopes from the first wall structures to the plasma of a fusion reactor is a crucial issue in plasma-wall interaction research, because the plasma performance will strongly depend on the time-scale and magnitude of this phenomenon. Deuterium recycling measurements from AISI 316L austenitic stainless steel surfaces have been performed in an experimental facility capable of reproducing particle flux densities and ion energies similar to those of ITER. The recycling flux has been evaluated. It is strongly dependent upon the impinging particle flux while target temperature and particle energy do not play a significant role. From these measurements a recombination coefficient for the system deuterium-AISI 316L has been calculated. The values are quite low, hence indicating that the AISI 316L sample target used was covered by an oxide layer that inhibits recombination. Moreover, the chemical composition of the recycling flux is pure molecular deuterium. ((orig.))

  8. Study of hydroxyapatite behaviour during sintering of 316L steel

    A. Szewczyk-Nykiel

    2010-07-01

    Full Text Available 316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite wereinvestigated. Hydroxyapatite (HAp – Ca10(PO46(OH2 is well known biomaterial. HAp reveals excellent chemical and biological affinitywith bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In presented research natural originhydroxyapatite and 316L austenitic stainless steel were used. In this work, metal-ceramics composites were fabricated by the powdermetallurgy technology (involving pressing and sintering process. Sintering was carried out at 1250oC in hydrogen atmosphere. Thedensity, porosity and hardness were investigated. Metallographic microscope and SEM were carried out in order to investigate themicrostructure. The horizontal NETZSCH DIL 402E dilatometer was used to evaluate the dimensional changes and phenomena occurringduring sintering. The research displayed that physical properties of sintered 316L-HAp composites decrease with increase ofhydroxyapatite content. Microstructure of investigated composites consists of austenitic and probably inclusions of hydroxyapatite andheterogeneous eutectic occurring on the grain boundaries. It was shown that amount of hydroxyapatite in the powder mixtures influencethe dimensional changes occurring during sintering.

  9. Recubrimiento de Stellite 6 sobre acero inoxidable realizado con láser de CO2 para válvulas de escape de motores diesel

    Cadenas, M.

    2002-12-01

    Full Text Available To reduce the recovery or the replacement costs of diesel engine exhaust valves, they are manufactured with an economic base material, and a coating which is deposited on the seat valve in order to reach high hardness and good impact, corrosion and high temperature wear resistance (>550 °C and without lubrication. In this work, appropriate laser cladding parameters have been determined to obtain Stellite 6 coatings over AISI 304 steel (as plane test specimens and SAE EV8 steel (as valves substrates. One and two superimposed tracks were deposited on the seat valves, and modifying the laser power as a function of the rotated angle at the beginning and the end of the circular tracks, pores and cracks have been minimized and the thickness of the track were made uniform. Hardness, dilution and final microstructure of the different coatings have been analysed. A 10 % dilution and 550 HV in the tracks over plane test specimens was observed, while valves with one track showed 25 % and 430 HV respectively. With two superimposed tracks the hardness was up to 470 HV in the upper track.

    Para abaratar el coste de recuperación o sustitución de válvulas de escape en motores diesel, estas se fabrican con un material base económico, recubriéndose el asiento de la válvula con otro material al que se exigirá elevada dureza y buena resistencia al impacto, a la corrosión y al desgaste erosivo en caliente (>550 °C y sin lubricación. Partiendo de esta idea, en el presente trabajo se han determinado los parámetros adecuados para realizar, mediante la técnica de plaqueado láser, un recubrimiento con Stellite 6, sobre sustratos de acero AISI 304 (probetas planas y SAE EV8 (válvulas reales. Sobre las válvulas, se depositaron uno y dos cordones superpuestos, se minimizó la presencia de poros y grietas, modificando el grado de solape inicial y final de los cordones circulares y la potencia en función del ángulo girado. Así, se

  10. Hydrogen embrittlement of 316L type stainless steel

    Hydrogen embrittlement tests on type 316L stainless steel are performed including cathodic charging during slow strain rate tests. Brittle multiple cracking is observed and relationships between crack growth rate and diffusion are analysed. The influence of hydrogen on the morphology of ductile fracture is found after fractographic examination. Two aspects of ductile failure are observed in accordance with the hydrogen content of the sample; a reduced density of microvoids for higher hydrogen contents and brittle secondary cracking in addition to ductile fracture surfaces for lower hydrogen contents. (orig.)

  11. Surface modification of investment cast-316L implants: microstructure effects.

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. PMID:25579929

  12. Corrosion of 316L stainless steels MAVL wastes containers

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  13. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  14. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    Asgari, M. [Norwegian University of Science and Technology, Trondheim (Norway); Barnoush, A., E-mail: a.barnoush@matsci.uni-sb.de [Saarland University, Saarbruecken (Germany); Johnsen, R. [Norwegian University of Science and Technology, Trondheim (Norway); Hoel, R. [MOTecH Plasma Company, Oslo (Norway)

    2011-11-25

    Highlights: {yields} The low temperature pulsed plasma nitrided layer of 316 SS was studied. {yields} The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). {yields} Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). {yields} High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. {yields} The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or {gamma}-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  15. In pile AISI 316L. Low cycle fatigue. Final report

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  16. Evaluación del springback mediante ensayos de doblado bajo tensión en condiciones de multiaxialidad típicas de los procesos de embutición profunda. Aplicación a chapa de acero inoxidable AISI 304 DDQ

    Miguel, V.

    2013-06-01

    Full Text Available In this paper, a methodology has been developed for evaluating the springback of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement.En este trabajo se presenta una metodología para evaluar la recuperación elástica o springback de chapa de acero inoxidable AISI 304 DDQ basada en la realización de ensayos bajo tensión. A diferencia de los estudios existentes en la literatura, los ensayos realizados son efectuados en condiciones multiaxiales típicas de los procesos de embutición de chapa. Esto afecta fundamentalmente a las tensiones involucradas en el proceso así como al estado de endurecimiento que experimenta el material. La evaluación del springback se ha efectuado en dos áreas diferentes. En la zona de doblado se ha evaluado a partir del factor de recuperación definido como la razón entre el radio de doblado y el radio con el que queda finalmente el material. La zona de doblado y desdoblado se ha evaluado en base a la inversa del radio

  17. The behavior of diffusion and permeation of tritium through 316L stainless steel

    Results on diffusivity, solubility coefficient and permeability of tritium through palladium-plated 316 L stainless steel are described. An empirical formula for the diffusivity, the solubility coefficient and the permeability of tritium through palladium-plated 316 L stainless steel at various temperatures is presented. The influence of tritium pressure on the permeability, and the isotope effect of diffusivity of hydrogen and tritium in 316 L stainless steel is discussed. (orig.)

  18. A Study on Stainless Steel 316L Annealed Ultrasonic Consolidation and Linear Welding Density Estimation

    Gonzalez, Raelvim

    2010-01-01

    Ultrasonic Consolidation of stainless steel structures is being investigated for potential applications. This study investigates the suitability of Stainless Steel 316L annealed (SS316L annealed) as a building material for Ultrasonic Consolidation (UC), including research on Linear Welding Density (LWD) estimation on micrographs of samples. Experiment results are presented that include the effect of UC process parameters on SS316L annealed UC, optimum levels of these parameters, and bond qual...

  19. Perfluorocarbon thin films and polymer brushes on stainless steel 316L for control of interfacial properties

    Kruszewski, Kristen M; Gawalt, Ellen S.

    2011-01-01

    Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) poly...

  20. Literature study - Sigma phase in 316L and 304L

    A literature survey of the existence, formation and kinetics of the sigma phase has been made. It was early realised that the precipitation of the sigma phase and that of 23-carbide were intimately coupled, why both are treated. The mechanical properties of both 304L and 316L are highly affected by the presence of sigma phase. The dominating features are: Yield strength is reduced, due to reduced solution hardening, Deformation hardening increases, Ultimate tensile stress increases, due to the presence of a hard phase, Impact strength is generally decreased. This is however dependant on the microstructure and processing. There are conditions where the impact strength can increase due to crack deflection, Ductility is significantly reduced. An additional conclusion is that the Huey test is too a blunt and conservative instrument to identify sensitization, caused by sigma phase. In a material that contains ferrite in some form, before aging, 23-carbide will precipitate in all welded 304L and 316L steels according to the literature. It is also clear that the first carbide to form is very fine and is precipitated before the sigma phase. This has the consequence that welded and annealed weldments will show some sensitization from 23-carbide. It is also clear that the amount of 23-carbide reduces as the amount of sigma phase increases. The time to the start of the dissolution, which could decrease the level of sensitization, depends on temperature. This could for instance explain why there are examples of sensitized 30L steel that showed excellent corrosion resistance. Direct corrosion of the sigma phase is highly pH-dependant. The sμμma phase has little resistance against oxidizing acids. It is thus important to understand the coupling between the sensitization caused by the 23-carbide and the change in ductility caused by the 23-carbide with sigma phase present. This is in turn primarily depending on the carbon content and the ferrite content after welding

  1. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS. PMID:23475060

  2. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  3. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L

  4. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  5. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  6. Susceptibility of 316L stainless steel to crevice corrosion in submersible solenoid valve

    Cai, B.P.; Liu, Y.H.; Tian, X.J.; Li, H.; Ji, R.J.; Wang, F.; Zhang, Y.Z. [School of Mechanical and Electronic Engineering, China University of Petroleum, Dongying, Shandong, 257061 (China)

    2011-08-15

    The susceptibility of 316L stainless steel to crevice corrosion was investigated by using immersion test and electrochemical test. Three kinds of crevices including 316L-to-polytetrafluoroethylene (PTFE) crevice, 316L-to-fluoroelastomeric (FKM) crevice and 316L-to-316L crevice were tested in artificial seawater at 50 C. The results indicate that 316L stainless steel specimen is the most susceptible to crevice corrosion when it is coupled to 316L stainless steel crevice former, while it is the least susceptible when it is coupled to FKM crevice former. It suggests that during submersible solenoid valve design, the crevice of metal-to-metal should be moderately large so that crevice corrosion can not initiate and propagate, and FKM O-ring rather than PTFE O-ring should be selected as obturating ring. The corroded surface morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Three regions including passive region, active region and variable region can be observed on crevice corrosion sites. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications

    Niobium oxide was prepared using sol-gel process and coated on 316L stainless steel (SS) substrate via dip-coating technique. The surface characterization results after a thermal treatment revealed that the coated surface was porous, uniform and well crystalline on the substrate. The corrosion resistance and bioactivity of the porous niobium oxide coated 316L SS in simulated body fluid (SBF) solution was evaluated. The in vitro test revealed a layer of carbonate-containing apatite formation over the coated porous surface. The results indicated that the porous niobium oxide coated 316L SS exhibited a high corrosion resistance and an enhanced biocompatibility in SBF solution.

  8. Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel

    This paper concerns a fractographic examination of hydrogen embrittlement of a stable AISI 316L type austenitic stainless steel. The objective is a better understanding of the possible role of hydrogen in stress corrosion cracking processes. (author)

  9. Surface hardening of stainless steel 316L with RF-plasma nitrocarburizing device

    Surface hardening on stainless steel 316L with RF-plasma nitrocarburizing device made by BATAN have been investigated. Some samples was nitrocarburized at 400°C for 2-6 hours. The results show that the hardness of the untreated sample of SS 316L was 230,7 Kgf/mm2 . The hardness increased up to 299,4 Kgf/mm2 for nitrocarburizing at 400°C for 6 hours. Furthermore, the maximum depth of carbon and nitrogen atoms diffused in SS 316L was 73,1 micrometer. Microstructure observation shows that the sample that was nitrocarburized at 400°C for 6 hours produced a very clear image indicating N and C atoms layers in SS 316L. The un-treated sample and the sample that was nitrocarburized at 400°C (t = 6 hours) have the same matrixes, i.e. δ-ferrite and pearlite. (author)

  10. Microstructure of 316L austenite stainless steel after charging with deuterium and tritium

    The microstructure of 316L austenite stainless steel after charging with deuterium and tritium for 6 years at room temperature is studied. The results indicate that the morphology of fracture surface after blasting is ductile rupture with dimple, stress produced by blasting of high pressure leads to the martensite transformation. The deuterium and tritium improve the ε martensite transformation of austenite and reduce the fault energy, which reduce the hydrogen-resistant properties of 316L stainless steel

  11. Improvement in the Corrosion Resistance of Austenitic Stainless Steel 316L by Ion Implantation

    Cai, Xun; Feng, Kai

    In the present work, austenitic stainless steel 316L (SS316L) samples were implanted with Ni and Ni-Cr. A nickel-rich layer about 100 nm in thickness and a Ni-Cr enriched layer about 60 nm thick are formed on the surface of SS316L. The effects of ion implantation on the corrosion performance of SS316L are investigated in a 0.5 M H2SO4 with 2 ppm HF solution at 80°C by open circuit potential (OCP), potentiodynamic and potentiostatic tests. The samples after the potentiostatic test are analyzed by XPS. The results indicate that the composition of the passive film change from a mixture of Fe oxides and Cr oxide to a Cr oxide dominated passive film after the potentiostatic test. The solutions after the potentiostatic test are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results reveal that Fe is selectively dissolved in all cases and a proper Ni and Ni-Cr implant fluence can greatly improve the corrosion resistance of SS316L in the simulated polymer electrolyte membrane fuel cells (PEMFCS) environment. They are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni and Ni-Cr implantation reduce markedly the dissolution rate. After the potentiostatic test the interfacial contact resistance (ICR) values are also measured. Ni and Ni-Cr are enriched in the passive film formed in the simulated PEMFC cathode environment after ion implantation thereby providing better conductivity than that formed in the anode one. A significant improvement of ICR is achieved for the SS316L implanted with Ni and Ni-Cr as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by Ni and Ni-Cr implantation. The ICR values for implanted specimens increase with increasing dose.

  12. Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility

    Highlights: • Electropolishing of 316L stainless steel increases its corrosion resistance. • New electropolishing electrolyte composition is suggested. • Larger thickness and chromium enrichment of the passive film is obtained. • Electropolishing improves the surface biocompatibility and hemocompatibility. - Abstract: A 316L stainless steel (316L-SS) surface was electrochemically polished (EP) in an electrolyte of a new chemical composition at different cell voltages, with the aim of improving its corrosion resistance and biocompatibility. X-ray photoelectron spectroscopy results revealed that the EP-formed oxide films were characterized by a significantly higher atomic Cr/Fe ratio and film thickness, in comparison to the naturally-grown passive oxide film formed on the untreated (control) 316L-SS surface. As a result of the increase in the oxide film thickness and relative Cr enrichment, the EP-treated 316L-SS surfaces offered a notable improvement in general corrosion resistance and pitting potential. In addition, the attachment of endothelial cells (ECs) and smooth muscle cells (SMCs) to the 316L-SS surfaces revealed a positive effect of electropolishing on the preferential attachment of ECs, thus indicating that the EP surfaces could be endothelialized faster than the control (unmodified) 316L-SS surface. Furthermore, the EP surfaces showed a much lower degree of thrombogenicity in experiments with the platelet-rich plasma. Therefore, the use of the electrochemical polishing technique in treating a 316L-SS surface, under the conditions presented in this paper, indicates a significant improvement in the surface’s performance as an implant material

  13. Functional properties of a spark plasma sintered ultrafine-grained 316L steel

    Highlights: • A ultrafine-grained 316L stainless steel was densified by SPS. • Forming process does not induce any internal strain gradients in sintered samples. • An enhancement of hardness up to twice the value of as cast 316L is obtained. • Fully dense samples display an enhanced passive corrosion state in chloride media. - Abstract: A micrometric austenitic stainless steel 316L powder was densified by spark plasma sintering. The process parameters were varied over wide ranges and the impact of such variations on sintered materials was studied through the characterization of their microstructures, densities, hardness and corrosion resistance. For comparison with the properties of traditionally cast 316L, all these investigations were also systematically carried out on as cast samples. The sintered stainless steel produced this way was highly densified, with grains of a micrometric size and the forming process did not induce any residual strain gradients as shown by transmission electronic microscopy analysis. The investigation of the corresponding mechanical properties reveals an enhancement of hardness up to twice the value measured on one sample of as cast 316L. This result is in good agreement with the Hall–Petch formalism. Additionally, in the matter of corrosion behavior, fully dense samples display an enhanced passive state in chloride media compared to as cast material. Spark plasma sintering appears to be an interesting alternative elaboration way of ultrafine 316L stainless steel giving materials with high stress resistance, without strain gradients through the volume, and promising functional properties concerning corrosion behavior

  14. New route to form micro-pores on 316L stainless steel surface

    Ma Xinxin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China)], E-mail: maxin@hit.edu.cn; Wang Yujiang; Tang Guangze [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Chen Qingfu [Jiangyin Fasten-PLT Materials Science Co., Ltd (Peier), 998 Changjiang Donglu, Jiangyin, 214434 (China)

    2008-11-15

    In order to seek an effective way for preventing restenosis after coronary stent implantation, a proposal of increasing the amount of loaded drug without changing the size of struts was given. Thereafter, a process of fabricating in-situ formed sub-micro-pores on 316L stainless steel (316L SS) was demonstrated. An aluminum thin film was deposited by magnetron sputtering on a 316L substrate. The aluminum film was then anodized in different acids (0.3 M oxalic and 10 vol.% sulfuric) by regulating direct current power supply. Through an appropriate chemical dissolution, the anodic alumina film was removed and the underlying porous 316L was obtained. The morphology of the porous 316L surface was examined by scanning electron microscope and the composition of the pores was investigated by energy dispersive X-ray analysis. The corrosion behavior of the porous 316L was evaluated by the polarization measurement. The results indicate that the shape and size of pores could be affected evidently by the acids used in anodization. The pores density is found to change with variation of the applied voltage in anodization. The corrosion current of the anodized specimens decrease and the corrosion voltage increase, compared with the untreated specimens.

  15. Metalurgia de uniones soldadas de aceros disímiles (astm a240-a537) y comportamiento mecánico ante cargas monotónica y cíclica Metallurgy of dissimilar steels welded unions (astm a240-a537) and mechanical behavior under monotonic and cyclic loads

    Andrés García; Rafael Salas; Leiry Centeno; Alberto Velázquez del Rosario

    2012-01-01

    En el presente estudio se caracterizaron las propiedades mecánicas en uniones soldadas de aceros disímiles: un acero estructural (ASTM A537/A537M:95) soldado a tope con un acero inoxidable austenítico 304L (ASTM A240/A240M:01) mediante proceso por arco eléctrico con protección inerte de gas argón (GMAW) y un acero inoxidable austenítico ER- 308L como material aporte (ANSI/AWS A5.9/A5.9M:2006). Las muestras se ensayaron en condición sin soldadura, con el objeto de caracterizar los materiales i...

  16. Improved CuCrZr / 316L Transition for Plasma Facing Components

    Plasma Facing Components used in all advanced nuclear fusion experiments and in particular for ITER consist of heat sinks made of the precipitation hardened CuCrZr alloy. This material has been selected due to the requirements regarding thermal and mechanical properties with and without the presence of neutrons. The divertor parts which are highly heat loaded are actively cooled and are assembled onto weld stainless steel pressure vessels of grade 316L. Therefore these plasma facing parts need a transition in the cooling pipes from CuCrZr to 316L which withstands the internal pressure, the fatigue loads and remains leak tight during operation. As direct fusion welding of CuCrZr with 316L is regarded as critical due to metallurgical issues, the current design uses a transition of Ni - sleeve which is welded onto the CuCrZr and 316L, respectively. However, there is still some concern for the mechanically constraint region of the inlet coolant that this intermediate adapter is the weakest point and could fail due to strongly localised plasticity. The aim of this project is to investigate alternative solutions for the transition of CuCrZr / 316L, to down-select the most promising candidate and finally qualify a new improved tubular transition system. Basic EB welding experiments have been carried out on CuCrZr / 316L tubular samples using different adapter and filler materials. The adapter materials, e.g. Inconel 625 and Monel K500, were chosen due to their high temperature strength and good weldability with respect to Cu - alloys and austenitic steels. In case of the investigated filler metals Ni and Ti the intention was to control the dilution and to produce a fine grained weld zone with no formation of detrimental phases. As a further option the use of an explosively welded CuCrZr/316L adapter was evaluated. The application of such an adapter would simplify the issue to the welding of CuCrZr / CuCrZr and 316L / 316L respectively. In the characterisation programme

  17. Effect of multiple film on the tritium permeation property in 316L stainless steel

    The films of TiN + TiC + TiN and TiN + TiC + SiO2 were deposited on the surface of 316L stainless steel by physical vapor deposition technology. The characteristics of films are tested by SEM technology, it shows that the films are compact, thermal shock-resistant, oxidation-resistant and have good compatibility with bulk. the SIMS and IR analysis results show that the tritium permeation barrier is formed when TiC and SiO2 films are annealed in hydrogen above 300 degree C. The tritium permeability in 316L with film is measured at various temperature, the results show that the tritium permeability in 316L with TiN + TiC + SiO2 film is 4-6 orders of magnitude lower, and that in 316L with TiN + TiC + TiN film is 4-5 orders of magnitude lower than that in 316L with Pd film at about 200-600 degree C. These films may be used as the surface coating of the first wall, tritium blanket and heat exchanger in fusion reactor

  18. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS

    Gray, G. T., III; Livescu, V.; Rigg, P. A.; Trujillo, C. P.; Cady, C. M.; Chen, S. R.; Carpenter, J. S.; Lienert, T. J.; Fensin, S.

    2015-09-01

    For additive manufacturing (AM), the certification and qualification paradigm needs to evolve as there exists no "ASTM-type" additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  19. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  20. Structure/property (constitutive and dynamic strength/damage characterization of additively manufactured 316L SS

    Gray III G.T.

    2015-01-01

    Full Text Available For additive manufacturing (AM, the certification and qualification paradigm needs to evolve as there exists no “ASTM-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  1. Corrosion fatigue of 316L stainless steel in hot LiOH solution

    The corrosion fatigue behavior of AlSl 316L (UNS S31603) stainless steel was tested in concentrated aqueous lithium hydroxide solutions at elevated temperature. Fatigue tests were conducted in a 10 g LiOH/100cc H2O solution at 95 C at controlled electrochemical potentials. Experimental conditions met requirements of the aqueous Li salt blanket option for the international and European nuclear fusion reactor programs of the International Thermonuclear Experimental Reactor (ITER) and Next European Torus (NET). Results indicated 316L stainless steel was susceptible to corrosion fatigue in a narrow potential range of approximately 100 mV (vs SCE). Tests at lower or higher potentials (e.g., -80 and 200 mV), however, did not show susceptibility to corrosion fatigue cracking. Results were compared with the stress corrosion cracking behavior of 316L in the same environment

  2. Metallurgical factors affecting the toughness of 316L SMA weldments at cryogenic temperatures

    The effects of delta ferrite content, ferrite morphology, carbon content, and sensitization on the fracture toughness and tensile properties of AWS/E316L and E316 shielded metal arc (SMA) weldments at 295, 76, and 40K are reported. The SMA test welds were evaluated, eight made with E316L and two with E316 electrodes. All of the weldments had excellent toughness at room temperature. At 760K, only the E316L weld with low ferrite had acceptable (to ASME Standards) toughness. Large decreases in toughness at 760K and 40K were related to increasing ferrite content. Decreases in Charpy impact energy at 760K were also related to coarsened ferrite morphology caused by reduced cooling rates, to increased carbon content and to the sensitization heat treatment. The tensile-yield strength increased with ferrite content, especially at 40K. Ferrite content generally effected the ultimate tensile strength or ductility only in a minor way

  3. Pitting Corrosion of 316L Stainless Steel under Low Stress below Yield Strength

    L(U) Shengjie; CHENG Xuequn; LI Xiaogang

    2012-01-01

    Pitting corrosion of 316L stainless steel (316L SS) under various stress was studied by potentiodynamic polarization,electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaCl solution.The results of polarization curves show that,with the increase of the stress,the pitting potentials and the passive current density markedly decrease firstly (180 MPa),and then increase greatly (200 MPa).The corresponding surface morphologies of the samples after the polarization test well correspond to the results.Mott-Schottky analysis proved the least Cl- adsorbed to the surface of passive film with more positive flat potential,indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaCl solution.

  4. Wear and Corrosion Study of Sputtered Zirconium thin films on SS316L for Windmill Application

    Arunkumar N

    2015-05-01

    Full Text Available The Aim of this study is to observe the Wear and Corrosion behavior of Zirconium coated 316L stainless steel. After polishing, SS316L was coated with Zirconium employing DC sputtering process (a technique of physical vapor deposition.Structure characterization techniques including Scanning Electron Microscope (SEM and X-Ray Diffraction (XRD were utilized to investigate the microstructure and crystallinity of the coating. Salt spray test was performed by spraying Sodium chloride in order to determine corrosion resistance behavior of the coated sample. Pin on disc wear test was performed by hardened and tempered EN31 steel pin in order to determine and compare the Wear resistance behavior of Coated and uncoated samples. The Objective is to recommend the zirconium coated Stainless steel SS316L can be a choice for Off-shore wind mills where the shafts undergo Wear and corrosion problems.

  5. Re-weldability tests of irradiated 316L(N) stainless steel using laser welding technique

    SS316L(N)-IG is the candidate material for the in-vessel and ex-vessel components of fusion reactors such as ITER (International Thermonuclear Experimental Reactor). This paper describes a study on re-weldability of un-irradiated and/or irradiated SS316L(N)-IG and the effect of helium generation on the mechanical properties of the weld joint. The laser welding process is used for re-welding of the water cooling branch pipeline repairs. It is clarified that re-welding of SS316L(N)-IG irradiated up to about 0.2 dpa (3.3 appm He) can be carried out without a serious deterioration of tensile properties due to helium accumulation. Therefore, repair of the ITER blanket cooling pipes can be performed by the laser welding process

  6. Processing and mechanical properties of porous 316L stainless steel for biomedical applications

    Montasser M.DEWIDAR; Khalil A.KHALIL; J. K. LIM

    2007-01-01

    Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.

  7. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  8. An integrated approach to the modelling of hydrogen assisted failure in 316L steel

    An integrated approach to the modelling of hydrogen assisted failure in 316L steel is presented. The approach includes experimental, fractographic, numerical and theoretical analysis of the phenomenon. The physical adequacy of the mechanical models of hydrogen embrittlement (notch extension model and notch cracking model) is discussed by comparing the virtual damage depth (theoretical) predicted by the models with the embrittled zone (microphysical) measured in the fractographic analysis by scanning electron microscopy. In addition, a numerical modelling of hydrogen diffusion is performed, concluding that bulk diffusion is not important in hydrogen embrittlement of 316L steel, so that hydrogen transport accelerated by the microdamage itself should be taken into account. (orig.)

  9. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  10. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  11. Processing and properties of sinters prepared from 316L steel nanopowders

    J. Paduch; R. Molenda; D. Kolesnikow; H. Krztoń

    2007-01-01

    Purpose: The results of the research work on processing the sinters obtained from nanocrystalline powders of 316L steel are presented.Design/methodology/approach: The 316L steel powder has been mechanically alloyed from a set of elementary powders with use of Fritsch Vario-Planetary Mill Pulverisette 4. The time of 12 hours of milling has been needed for producing the powder. The X-ray diffraction has been used for controlling of the mechanical alloying process. The Rietveld method has been u...

  12. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  13. Electrochemical behavior of SUS316L stainless steel after surface modification

    梁成浩; 郭亮; 陈婉; 刘敬肖

    2003-01-01

    The surface modification for SUS316L stainless steel was carried out by electroplating Rh, ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2. In Tyrodes stimulated body fluid, the surface modified samples were investigated with electrochemical techniques. The results indicate that the electrochemical stability and dissolution are improved significantly after surface modification. Moreover, as to ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2 film, the metals d orbit electron holes filled up by the oxygen electrons make against the adsorption of hydrogen. Thus the cathode process, which is controlled by the hydrogen reduction, is held back. X-ray diffraction analysis of SUS316L stainless steel after surface modification reveal that each method forms the uniform and compact film on SUS316L stainless steel. These films prevent the dissolving of elements and improve passivation property of the SUS316L stainless steel.

  14. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  15. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  16. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  17. Aceros aluminotérmicos. Nuevas aplicaciones

    Duart Blay, J. M.

    2004-02-01

    . Particular aplicación o interés presentan en la tecnología de los ferrocarriles para la obtención del carril continuo, prácticamente implantado en todo el mundo y en soldaduras cable de cobre-carril de acero empleadas en las señalizaciones para control de tráfico. En este trabajo se aportan las bases termodinámicas de la aluminotermia del hierro y su aplicación a la soldadura compleja de cruzamientos, juntas de dilatación y desvíos en FF.CC, que combinan aceros Hadfield, aceros inoxidables y aceros perlíticos de diferentes propiedades mecánicas. Las uniones deben ser compactas, resistentes y duras en los niveles que se citan en el trabajo, según requisitos exigidos por la circulación en líneas de alta velocidad (350 km/h., actualmente en construcción en España, pero que resultan generalizables a otro tipo de líneas menos exigentes y a ferrocarriles mineros.

  18. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    Bayram, Cem; Denkbas, Emir Baki [Nanotechnology and Nanomedicine Division, The Institute For Graduate Studies in Science and Engineering, Hacettepe University, 06800, Ankara (Turkey); Mizrak, Alpay Koray [Institute of Materials Science and Nanotechnology, Bilkent University, UNAM, 06800, Ankara (Turkey); Aktuerk, Selcuk [Department of Physics, Mugla University, 48000 Koetekli, Mugla (Turkey); Kursaklioglu, Hurkan; Iyisoy, Atila [Department of Cardiology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey); Ifran, Ahmet, E-mail: denkbas@hacettepe.edu.t [Department of Hematology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey)

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  19. Grain boundary character distribution in a hot rolled 316 L stainless steel; Distribuicao de tipos de contornos de grao em um aco inoxidavel 316L laminado a quente

    Lopes, L.C.R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Metalurgia; Thomson, C.B. [Wales Univ., Swansea (United Kingdom)

    1995-12-31

    The texture and the grain boundary character distribution of a 316 L stainless steel under hot rolled condition have been studied. Electron back-scatter diffraction technique associated to the scanning electron microscopy is used to determine the crystallographic orientation of grains individually. The material presented a random texture. However, the misorientation axis distribution represented by an inverse pole figure showed a non-random distribution with a high proportion <111> misorientation axis. The disorientation angle distribution indicates a proportion of about 60% of boundaries with 60 deg C misorientation angle. A 25% proportion of CSL interfaces of {Sigma} = 3 type was found 17 refs., 9 figs., 2 tabs.

  20. AISI 316L under electron radiolysis at high temperature and pressure in PWR modelling conditions

    temperature (HT), 280-320 deg. C, and high pressure (HP), 15.5 MPa. Very few data are available in the literature on the role of HTHP water radiolysis on the corrosion of metallic reactor components. The present approach use electron beam to control the production of radiolytic species at a AISI 316L/PWR solution interface in a high temperature and high pressure (HTHP) electrochemical cell working at the range [25 deg. C, 1 bar] - [300 deg. C, 90 bar]. The cell is designed to record the free corrosion potential of the AISI 316L/PWR solution interface mounted on line at the SIRIUS pelletron delivering the electron beam (LSI, Ecole Polytechnique, France). The PWR primary solutions are simulated by aqueous solutions prepared at room temperature by adding boric acid and lithium hydroxide to high purity water and, in some cases, purged with Ar/H2 flow. At the AISI 316L/PWR solution interfaces irradiated between 25 deg. C/ 1 bar and 300 deg. C/ 90 bar, electrons emerge at ∼0.6 MeV and the flux varies from ∼1010 to 1012 e-.cm-2.s-1. The results clearly show that the response of the free potential between the AISI316L/water interface and a pseudo-reference electrode, i.e. a platinum wire during the irradiation (from electron beam switch-on until cut-off) depends on many parameters: the energy of the electron beam, the temperature and pressure, the concentration of hydrogen in the solution, the ageing of the disc electrode, the growth conditions of the initial oxide passive layers, etc... These results can be compared with those which have obtained by using the proton beam (CEMHTI, CNRS Orleans, France). Surface characterization experiments (XPS, SEM, Raman spectroscopy, photoluminescence...) on the oxide layer of AISI316L which are formed under the irradiation could also bring new information about the irradiation influence on the AISI316L. (authors)

  1. Oxide Formation In Metal Injection Molding Of 316L Stainless Steel

    Jang Jin Man

    2015-06-01

    Full Text Available The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.

  2. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

    Equations are given which describe the permeation rate, diffusivity and solubility of hydrogen over the range 250-6000C at pressures up to 105 Pa for the 316L stainless and modified 1.4914 martensitic candidate steels proposed for the construction of the Next European Torus (NET). For heat-treated 316L steel, the permeation rates measured agreed well with previous work and did not vary significantly from specimen to specimen or from batch to batch. Measurements of the permeation rate of hydrogen and deuterium through the modified 1.4914 steel, believed to be the first made, show that the martensitic steel is significantly more permeable than the austenitic steel, by an order of magnitude at 2500C and a factor of five at 6000C. This difference could make it necessary to use permeation barriers on critical components made from the martensitic steel in order to reduce the tritium permeation rate to acceptable levels. (orig.)

  3. The effect of hydrogen/helium implantation on the microstructure of 316L stainless steel

    Type 316L stainless steel has been used for first wall material of NET (Next European TOKAMAK). The 316L stainless steel was implanted with helium and hydrogen to investigate the irradiation behavior in the temperature range 120-420 deg C. The strength of implanted material increased at 120, 220 deg C while elongation decreased. At 420 deg C, abrupt decrease in strength and elongation occured due to helium bubbles. Slip bands were well developed during tensile test like channel deformation. Dislocations were along the (111) planes and cell structure was also generated at higher temperature. With 500 appm hydrogen implantation, microstructure did not change much but contained small amount of dislocations and stacking faults. (Author)

  4. Effect of in site strain on passivated property of the 316L stainless steels.

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-04-01

    The effect of the strain of 316L stainless steel on its corrosion resistance in borate buffer solution was investigated by in site tensile test and the electrochemical impedance spectroscopy measurements. It was found that the corrosion resistance of the 316L stainless steel decreased with the increasing of in site strain. The lower corrosion resistance of the stainless steel during in site strain was mainly attributed to the higher doping concentration in passive film. Especially, with the increasing of in site strain, the concentrations of acceptor (i.e., cation vacancies) in the passive films significantly increased. More acceptor concentrations reduced the compactness of the passive film and its corrosion resistance. Moreover, two exponential relationships were found between in site strain and the charge transfer resistance of the passive film and between in site strain and total doping concentrations in passive film, respectively. PMID:26838820

  5. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  6. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates. PMID:22416578

  7. Evaluation of the austenitic alloys 304L, 316L, and alloy 825 under Tuff repository conditions

    Austenitic alloys 304L and 316L and stainless steel 825 were investigated as candidate materials for containers for waste disposal in the relatively benign conditions of the Yucca Mountain site. In this vault there will be very little water, and what there is will contain small amounts of chlorides, nitrates, sulphates and carbonates. The radiation fields will be 104 rad/h initially, but will decay to low levels by the end of the containment period. The initial temperature will be around 250 C, and it will remain above the boiling point of water for the containment period (approximately 300 years). There will be no lithostatic or hydrostatic pressure. Type 304L stainless steel is a base case material used in comparisons with other candidates. Type 316L stainless steel possesses enhanced resistance to sensitization and localized corrosion; alloy 825 is stabilized to have a much better resistance to sensitization and localized corrosion and performs better in chloride environments

  8. Experimental Study on Uniaxial and Multiaxial Strain Cyclic Characteristics and Ratcheting of 316L Stainless Steel

    2001-01-01

    An experimental study was carried out on the strain cycliccharacteristics and ratcheting of 316Lstainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tensioncompression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.

  9. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  10. Corrosion and low-cycle fatigue properties of AISI 316L in flowing Pb-17Li

    Corrosion and low-cycle fatigue (LCF) tests were performed on AISI 316L steel specimens in a flowing lithium lead environment. The LCF and corrosion tests were conducted simultaneously in the ''LIFUS 2'' forced convection loop, at a temperature of 723 K and a flow velocity of approximately 0.01 m/s. The LCF tests, which had a strain amplitude ranging from 0.008 to 0.016, were compared with reference tests performed in an inert argon atmosphere. The results show that liquid Pb-17Li has no detrimental effect on the LCF behaviour of 316L at the test temperature of 723 K. The corrosion tests extended from 650 to 1600 h with intermediate steps. Metallographic and SEM-EDAX analyses indicated the presence of an irregular porous ferritic layer. The results are discussed in terms of ferrite growth rate and the effect of corrosion phenomena on LCF behaviour. ((orig.))

  11. Corrosion resistance of the welded AISI 316L after various surface treatments

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  12. EVALUATION OF MECHANICAL PROPERTIES OF SS 316 L WELDMENTS USING TUNGSTEN INERT GAS WELDING

    S.V. ABINESH KUMAR

    2012-05-01

    Full Text Available This work aims at joining of similar grades of stainless steel by TIG welding with the various parameters like current, bevel angle and gas flow rate. The SS 316L is selected over other grades due to its lesser carbon content it is used in pressure vessels for corrosive liquids etc. The rod of SS 316L of 25 mm diameter and 75 mm lengthwas used as the base material for this experiment. The rod was machined in accordance to ASTM-A-370 standards for finding the echanical behaviour like Tensile strength, micro hardness and micro structure. Higher tensile strength achieved with a current of 110A, bevel angle of 600 and a gas flow rate of 0.7 LPM. Non-destructive tests like radiographic tests were performed to find the defects in the joints. The defect incurred was lack of penetration and it was observed in the sample D and sample G.

  13. Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steels

    Morshed Behbahani, K.; Pakshir, M.; Abbasi, Z.; Najafisayar, P.

    2015-01-01

    Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions: the first one associated with anodic dissolution of the passive layer, the second one contributed to the dissolution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance ( R ct) decreases. Moreover, the R ct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.

  14. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    T. Frączek; Olejnik, M.; Jasiñski, J.; Skuza, Z.

    2011-01-01

    The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application...

  15. Corrosion behaviour of AISI 316L steel in artificial body fluids

    W. Kajzer

    2008-12-01

    Full Text Available Purpose: The paper presents the comparison of corrosion resistance of AISI 316L stainless steel in various corrosive media such as artificial urine, Tyrode’s physiological solution and artificial plasma.Design/methodology/approach: The tests were carried out on samples of the following surfaces: grinded – average roughness Ra = 0.31 μm and electropolished and chemically passivated average roughness Ra = 0.10 μm. The corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests was applied. The tests were carried out in electrolyte simulating urine (pH = 6-6.4, Tyrode’s physiological solution (pH = 6.8-7.4 and plasma (pH = 7.2-7.6 at the temperature of 37±1°C.Findings: Surface condition of AISI 316L stainless steel determines its corrosion resistance. The highest values of breakdown potentials were recorded for all electropolished and chemically passivated samples in all simulated body fluids. The highest values of anodic current density were recorded for samples tested in artificial urine, the lowest values were recorded for samples tested in Tyrode’s physiological solution.Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the AISI 316L stainless steel.Practical implications: On the basis of the obtained results it can be stated that stainless steel meets the basic biocompatibility criteria and can be applied in reconstruction surgery, operative cardiology and urology.Originality/value: The paper presents the influence of various corrosive media simulating human body fluids on corrosion resistance of AISI 316L stainless steel.

  16. Investigation into the joining of MoSi{sub 2} to 316L stainless steel

    Vaidya, R.U.; Bartlett, A.H.; Conzone, S.D.; Butt, D.P.

    1996-10-01

    Partial transient liquid phase joining and low temperature brazing were applied in joining MoSi{sub 2} to 316L ss. Exploratory studies were carried out on various interlayer materials. Mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and substrate materials were investigated. Effect of thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. Preliminary findings are outlined.

  17. Niobium coatings on 316L stainless steel for improving corrosion resistance

    Niobium coatings were deposited onto 316L stainless steel substrates by ion-beam-assisted deposition. The coatings, deposited under 250 eV ion bombardment with [Ar+]/[Nb] ratios ranging from 0.68 to 0.8, were dense and showed no sign of pitting corrosion in a 3% NaCl solution. Also, based on the result of scratch tests, niobium coatings may act as sacrificial anodes and protect substrates. (orig.)

  18. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Jeon Byoungjun; Sohn Seong Ho; Lee Wonsik; Han Chulwoong; Kim Young Do; Choi Hanshin

    2015-01-01

    316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present st...

  19. Stability of austenitic 316L steel against martensite formation during cyclic straining

    Man, Jiří; Obrtlík, Karel; Petrenec, Martin; Beran, Přemysl; Smaga, M.; Weidner, A.; Dluhoš, J.; Kruml, Tomáš; Biermann, H.; Eifler, D.; Polák, Jaroslav

    2011-01-01

    Roč. 10, - (2011), s. 1279-1284. ISSN 1877-7058. [ICM11 -International Conference on The Mechanical Behavior of Materials /11./. Lake Como, 05.06.2011-09.06.2011] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z20410507 Keywords : low cycle fatigue * 316L austenitic stainless steel * deformation-induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Surface Relief Evolution in 316L Steel Fatigued at Depressed and Elevated Temperatures

    Man, Jiří; Petrenec, Martin; Klapetek, P.; Obrtlík, Karel; Polák, Jaroslav

    Ottawa : NRCan - CANMET, 2009, s. 1-10. ISBN N. [International Conference on Fracture /12./. Ottawa (CA), 12.07.2009-17.07.2009] R&D Projects: GA AV ČR 1QS200410502; GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : 316L steel * persistent slip marking (PSM) * atomic force microscopy (AFM) Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2014-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC...

  2. Weld process study for 316L stainless steel weld metal for liquid helium service

    This study was conducted to determine the effects of welding process choice on the cryogenic properties of 316L stainless steel welds. Six weldments were impact tested down to 77 K and tensile and fracture toughness tested down to 4 K. The best properties obtained were from a GTA weld, followed by GMA welds; SA welds had the poorest properties. This variation in properties was attributed to the cleanliness of the weld metal, which is dependent on the welding process and parameters selected

  3. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53. ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  4. Comportamiento termomecánico de aceros AISI 304

    El Wahabi, M.

    2001-04-01

    Full Text Available The hot deformation behaviour of three AISI 304 (H, L and HP austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free displayed the lower stress levels as its hardening rate was slower than in the other two steels.

    Se llevó a cabo un estudio del comportamiento termomecánico de tres aceros inoxidables austeníticos tipo AISI 304 (H, L y HP con diferentes contenido en carbono, mediante la determinación de los parámetros que describen las etapas de deformación en caliente. No se notó un fuerte efecto del carbono en dichos parámetros, excepto en los que describen los procesos de endurecimiento y de restauración dinámica que muestran una cierta dependencia con la composición química, especialmente a bajos valores del parámetro de Zener-Hollomon, donde el acero de alto carbono (304H endurece y restaura más rápido que el de bajo carbono (304L, alcanzándose valores de tensión de pico similares en ambos casos. El material de alta pureza (libre de intersticiales toma valores de tensión de pico más bajos que los otros aceros, endureciendo más lentamente y con una velocidad de restauración similar a la del 304H.

  5. Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer's solution

    Surgical grade stainless steel (316L SS) is one of the widely used implant material in orthopedic surgeries. But often the release of metal ions is evidenced from the implants and subsequently a second surgery is required to remove the implant material. One way to control this release of metal ions is to coat the implant material with a biocompatible material like hydroxyapatite. In this paper we have reported a successful coating of hydroxyapatite over borate passivated 316L SS by a dip coating method. The coatings were characterized by electrochemical techniques such as potentiodynamic polarization, electrochemical impedance and cyclic voltammetry (CV). Also X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies were performed to confirm the quality of the coatings. Results of accelerated leach out characteristics by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the evaluation of shear strength are also presented to support the corrosion resistant nature of the coatings. The enhanced bio-resistivity of the as-formed HAP coatings on passivated 316L SS is attributed to the protective passive layer formed by borate buffer solution at selected potentials.

  6. Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire.

    Shih, C C; Shih, C M; Chen, Y L; Su, Y Y; Shih, J S; Kwok, C F; Lin, S J

    2001-11-01

    The potential cytotoxicity on vascular smooth muscle cells of corrosion products from 316 L stainless steel, one of most popular biomaterials of intravascular stents, has not been highlighted. In this investigation, 316 L stainless steel wires were corroded in Dulbecco's modified eagle's medium with applied constant electrochemical breakdown voltage, and the supernatant and precipitates of corrosion products were prepared as culture media. The effects of different concentrations of corrosion products on the growth of rat aortic smooth muscle cells were conducted with the [3H]-thymidine uptake test and cell cycle sorter. Both the supernatant and precipitates of corrosion products were toxic to the primary culture of smooth muscle cells. The growth inhibition was correlated well with the increased nickel ions in the corrosion products when nickel concentration was above 11.7 ppm. The corrosion products also changed cell morphology and induced cell necrosis. The cell growth inhibition occurred at the G0/G1 to S transition phase. Similar to our recent study of nitinol stent wire, the present investigation also demonstrated the cytotoxicity of corrosion products of 316 L stainless steel stent wire on smooth muscle cells, which might affect the poststenting vascular response. PMID:11484182

  7. Laser cladding of nickel base alloy on SS316L for improved wear and corrosion behaviour

    Laser cladding by an Nd:YAG laser was employed to deposit Ni base alloy (Ni-Mo-Cr-Si) on stainless steel-316 L substrate. The resulting defect-free clad with minimum dilution of the substrate was characterized by optical microscopy, scanning electron microscopy, X-ray diffraction and Vickers microhardness test. Dry sliding wear of the cladding and the substrate was evaluated using a ball-on-plate reciprocating wear tester against different counter bodies (WC and 52100 Cr steel). The reciprocating sliding wear resistance of the coating was evaluated as a function of the normal load, keeping the sliding amplitude and sliding speed constant. Wear mechanisms were analyzed by observation of wear track morphology using SEM-EDS. The electrochemical corrosion behavior of clad layer was studied in reducing environment (HCl) to estimate the general corrosion resistance of the laser clad layer in comparison with the substrate SS-316L. The clad layer showed higher wear resistance under reducing condition than that of the substrate material stainless steel 316L. (author)

  8. ESTUDIO DE LA SINERGIA CORROSIÓN-EROSIÓN DE RECUBRIMIENTOS DUROS DE TiN Y CrN OBTENIDOS SOBRE ACERO AISI 1045

    HARVEY PAYÁN; WILLIAM APERADOR; ALEJANDRO VARGAS

    2008-01-01

    En este trabajo se presentan los resultados del estudio de los efectos sinergeticos de la corrosión-erosión en recubrimientos duros de TiN y CrN obtenidos sobre acero AISI 1045 por medio de la técnica de pulverización catódica con magnetrón y se hace una comparación con los resultados mostrados por un acero inoxidable comercial AISI 316 y el acero AISI 1045 sin recubrimiento. El proceso de deposición física de vapor (Physical Vapor Deposition), contribuye ampliamente a la aplicación de pelícu...

  9. Magnolias de acero (1989)

    Galache Montero, Aurora

    2009-01-01

    [ES] Magnolias de Acero (1989) acerca a los espectadores al lado humano de la enfermedad. Los pone en contacto con la capacidad de lucha de algunos enfermos por llevar una vida normal ante un proceso crónico ni las repercusiones negativas sobre su salud. La protagonista, que padece una diabetes, se esfuerza por vivir una vida sin limitaciones batallando constante con las barreras que su enfermedad le va poniendo constantemente, anteponiendo siempre su felicidad a las consecuencias fatales que...

  10. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Dundeková, S.; Nový, F.; Fintová, Stanislava

    2014-01-01

    Roč. 21, č. 4 (2014), s. 172-177. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L * Structural sensitization * Rotating bending fatigue test Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Anisotropy changes in hardness and indentation modulus induced by plasma nitriding of 316L polycrystalline stainless steel

    The changes in anisotropic hardness and indentation modulus induced by plasma nitriding at 400 oC of a 316L polycrystalline austenitic stainless steel are analyzed. The dependence of hardness and elastic modulus modifications on the crystallographic orientation is investigated through instrumented indentation and electron backscattering diffraction. Both hardness and indentation modulus exhibit an inverted anisotropy compared to the untreated 316L, likely associated with the presence of the N atoms in interstitial sites.

  12. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Uğur GÖKMEN; Türker, Mehmet; ÇİNİCİ, Hanifi

    2016-01-01

    In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm) were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG) based and can be dissolved in wate...

  13. Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering

    Tan, Chao; Wang, Guoyu; Ji, Lina; Tong, Yangang; Duan, Xuan-Ming

    2016-02-01

    316L-W (Tungsten) composite materials were fabricated by spark plasma sintering (SPS) of mechanically alloyed 316L-W powders for the development of functionally graded materials (FGMs). The effect of milling parameters on the morphology of the blended 316L/W powders and its subsequent effect on the transition between 316L and W particles during the SPS process were investigated. Samples were characterized by SEM, EDS and XRD analyses. The results so obtained show that with the increase of milling time, the mechanically activated W powder particles become thinner and smoother, with some broken fragments aggregated or inserted in the severely deformed 316L particles. A further SPS process under the conditions of 1050 °C × 45.5 MPa × 5 min leads to the densification of the powder compact and the formation of a distinguishable gray belt surrounding the retained W particles. Such a belt, which has a width of about 2-8 μm depending on different milling parameters and mainly contains Fe7W6, Fe3W3C and Fe2W phases, is bound to be a transitional region between the retained W particles and the 316L matrix. This favorable behavior with regards to the formation of a transitional belt, is accompanied by a substantial increase in the hardness values of the composite.

  14. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel

    Highlights: • FSP can be used to produce bulk ultrafine grained structures in AISI 316L SS. • The main mechanism for grain structure refinement of FSP 316L SS is DDRX. • However, some evidences of CDRX and SRX were also observed. • The material flow was found to be near simple shear deformation (A/A‾ and C). • FSP samples have an enhanced hardness and strength compared with the base metal. - Abstract: Friction stir processing was used to refine the grain structure in 2 mm thick AISI 316L stainless steel sheets, with a pinless tool, at a constant traverse speed of 63 mm/min and relatively low rotational speeds of 200 and 315 rpm. Depending on the processing conditions, the initial grain size of 14.8 μm in the base metal was subsequently decreased to 0.8–2.2 μm in the processed areas. The microstructural characterizations by orientation imaging and transmission electron microscopy revealed that the grain structure evolution in the stir zone is primarily dominated by discontinuous dynamic recrystallization. The material flow was found to be near simple shear deformation and the developed textures were composed of a mixture of A/A‾ and C components of ideal simple shear textures. The mechanical properties were also evaluated by the longitudinal tensile tests and microhardness measurements. The obtained results showed that, despite a 50% decrease in ductility, the highest yield and ultimate tensile strength of the friction stir processed samples are respectively about 1.6 and 1.2 times higher than those of the base metal. In good agreement with the tensile properties, the increased hardness of the stir zone was attributed to the grain structure refinement

  15. Effects of hydrogen diffusion on the mechanical properties of austenite 316L steel at ambient temperature

    This study examined how the strain rate affects the room-temperature tensile behavior of hydrogen-charged 316L stainless steels. A high-temperature homogenization treatment was applied to the specimens after hydrogen charging and copper electroplating to remove the hydrogen concentration gradient. A softening phenomenon was observed in the hardening behavior of the H-charged and homogenized specimen at a strain rate of 2x10-3/s. The observation was further confirmed by an inspection of the fracture surface of the tensile test specimen. (author)

  16. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca10(PO4)6(OH)2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  17. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    Ni Putu Mira Sumarta

    2011-03-01

    Full Text Available Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP titanium in baby hamster kidney-21 (BHK-21 fibroblast culture through MTT assay. Methods: Eight samples were prepared from reconstruction plates made of stainless steel type 316L grade 2 (Coen’s reconstruction plate® that had been cut into cylindrical form of 2 mm in diameter and 3 mm long. The other one were made of CP titanium (STEMA Gmbh® of 2 mm in diameter and 2,2 mm long; and had been cleaned with silica paper and ultrasonic cleaner, and sterilized in autoclave at 121° C for 20 minutes.9 Both samples were bathed into microplate well containing 50 μl of fibroblast cells with 2 x 105 density in Rosewell Park Memorial Institute-1640 (RPMI-1640 media, spinned at 30 rpm for 5 minutes. Microplate well was incubated for 24 and 48 hours in 37° C. After 24 hours, each well that will be read at 24 hour were added with 50 μl solution containing 5mg/ml MTT reagent in phosphate buffer saline (PBS solutions, then reincubated for 4 hours in CO2 10% and 37° C. Colorometric assay with MTT was used to evaluate viability of the cells population after 24 hours. Then, each well were added with 50 μl dimethyl sulfoxide (DMSO and reincubated for 5 minutes in 37° C. the wells were read using Elisa reader in 620 nm wave length. Same steps were done for the wells that will be read in 48 hours. Each data were tabulated and analyzed using independent T-test with significance of 5%. Results: This study showed that the percentage of living fibroblast after exposure to 316L stainless steel reconstruction plate was 61.58% after 24 hours and 62

  18. Rheological Properties of Mixtures of 316L Stainless Stell Powders With Polyproplylen Based Binders

    KARATAŞ, Çetin

    1998-01-01

    The flowabilities of feedstocks for powder injection molding (PIM), of 316L stainless steel powders (mean diameters 5.84, 30.42, 40.35, 67.42 mm) with thermoplastic binders (60% paraffin, 35% polypropylene, 5% stearic acid) were investigated. For this purpose, a capillary rheometer was designed and constructed. The rheometer was heated in 30 minutes to 300 °C with an accuracy of \\pm 1 °C. Its load range was 63-55.000 grams. The best flow measurements were made at 175 °C for all feed...

  19. Processing and properties of sinters prepared from 316L steel nanopowders

    J. Paduch

    2007-04-01

    Full Text Available Purpose: The results of the research work on processing the sinters obtained from nanocrystalline powders of 316L steel are presented.Design/methodology/approach: The 316L steel powder has been mechanically alloyed from a set of elementary powders with use of Fritsch Vario-Planetary Mill Pulverisette 4. The time of 12 hours of milling has been needed for producing the powder. The X-ray diffraction has been used for controlling of the mechanical alloying process. The Rietveld method has been used to calculate the contents of the components of the powder. Cold and hot isostatic pressing have been applied to make the compacts. The pressure of 500 MPa and 900 MPa of cold pressing, and 150 MPa of hot pressing have been used. The green compacts have been pressed isostaticly using liquid aluminum in the temperature of 950°C (1223 K. The X-ray diffraction have been used to identify the phase components of the sinters. The structure of the sinters have been observed using scanning electron microscope. The hardness values have been obtained by Vicker’s test.Findings: The mechanically alloyed powder has consisted of about 94 wt.% of austenite, 5 wt.% of ferrite and not more than 1 wt.% of not alloyed molybdenum. Two kinds of sinters have been produced, one kind made of pure 316L powder, second one obtained with aluminum infiltration within the volume of the sinters. The observed porosity of the sinters has depended on the applied pressing conditions strongly, mainly on the value of cold isostatic pressure. The hardness of the first kind of sinters have achieved a value of 380 HV (98N, the hardness of the second kind - more than 400 HV (98N.Practical implications: The Al infiltrated sinter has been proposed as a material for a part of Diesel engine. As an example, a part of a fuel injection has been produced.Originality/value: The nanocrystalline 316L powder has been obtained using mechanical alloying process. The original method of hot isostatic

  20. Solute segregation on Σ3 and random grain boundaries in type 316L stainless steel

    Solute segregation and impurity segregation on random and Σ3 grain boundaries in a type 316L stainless steel were investigated by means of atom probe tomography (APT). Segregation of Mo, P, B, and C was observed on random grain boundaries, irrespective of grain boundary misorientation. Two-dimensional concentration maps along the grain boundary plane revealed that the concentrations of all segregated elements were not homogeneous and no co-segregation was observed. In contrast, no segregation was observed on Σ3 grain boundaries

  1. Lattice rotation induced by plasma nitriding in a 316L polycrystalline stainless steel

    Stinville, J.C. [Laboratoire de Mecanique et de Physique des Materiaux, ENSMA, 86961 Futuroscope-Chasseneuil (France)] [Laboratoire de Physique des Materiaux, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Villechaise, P., E-mail: patrick.villechaise@lmpm.ensma.fr [Laboratoire de Mecanique et de Physique des Materiaux, ENSMA, 86961 Futuroscope-Chasseneuil (France); Templier, C.; Riviere, J.P.; Drouet, M. [Laboratoire de Physique des Materiaux, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France)

    2010-05-15

    The introduction at moderate temperature of nitrogen in the 316L austenitic stainless steel by plasma nitriding modifies the crystallographic texture in the very near surface region. The evolution of texture components has been quantitatively characterized by electron backscattered diffraction. The analysis of these experiments shows that the amplitude of the lattice rotation as well as the direction of rotation are directly related to the initial orientation of each grain. The retexturing behaviour is consistent with the lattice rotation upon tensile elongation of polycrystalline materials predicted by the Taylor model.

  2. Modeling of the Tension and Compression Behavior of Sintered 316L Using Micro Computed Tomography

    Doroszko Michał

    2015-06-01

    Full Text Available This paper describes the method of numerical modeling of the tension and compression behavior of sintered 316L. In order to take into account the shape of the mesostructures of materials in the numerical modeling, X-ray microtomography was used. Based on the micro-CT images, three-dimensional geometrical models mapped shapes of the porosity were generated. To the numerical calculations was used finite element method. Based on the received stress and strain fields was described the mechanism of deformation of the materials until fracture. The influence of material discontinuities at the mesoscopic scale on macromechanical properties of the porous materials was investigated.

  3. Thermo-mechanical and isothermal fatigue behavior of austenitic stainless steel AISI 316L

    Škorík, Viktor; Šulák, Ivo; Obrtlík, Karel; Polák, Jaroslav

    Ostrava: TANGER Ltd, 2015. ISBN 978-80-87294-58-1. [METAL 2015 - International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA15-20991S; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Thermo-mechanical fatigue (TMF) * In-phase cycling (IP) * Isothermal fatigue (IF) * AISI 316L * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures

    Man, Jiří; Valtr, B.; Weidner, A.; Petrenec, Martin; Obrtlík, Karel; Polák, Jaroslav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1625-1633. ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA AV ČR 1QS200410502; GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack initiation * 316L steel * Persistent slip band (PSB) * Extrusion * Intrusion * Atomic force microscopy (AFM) Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    MJ Danielson; SG Pitman

    2000-02-23

    Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

  6. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  7. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. PMID:26072197

  8. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M.

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3-6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  9. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  10. Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties

    Different charging conditions aimed at introducing significant hydrogen concentrations without microstructural damages in a 316L austenitic stainless steel were investigated. The equivalent hydrogen pressure developed at the surface of the samples during cathodic charging was estimated from hydrogen concentration measurements. A clear hydrogen absorption, controlled by diffusion, was evidenced during the immersion of 316L steel samples in 30% MgCl2 at the open circuit potential at 117 deg. C. Deuterium profiling by SIMS was performed to check the validity of the few literature data on hydrogen diffusivity in the near room temperature range in this material. On the other hand, the macroscopic effects of hydrogen on the tensile characteristics of the steel were investigated and compared at 20 deg. C and at -196 deg. C with samples cathodically pre-charged, charged during tensile straining or pre-charged at high temperature-high pressure in gas phase. Hydrogen is shown to affect both the short range and the long range forces exerted on the strain-induced mobile dislocations. The hydrogen-induced softening effect observed at 20 deg. C and the systematic decrease of the ductility support a mechanism involving the enhanced transport of hydrogen atoms by mobile dislocations. This mechanism is confirmed by the absence of softening and of ductility loss at -196 deg. C and by the strain-enhanced tritium desorption from samples cathodically pre-charged with tritium, measured by β counting during tensile deformation

  11. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected. PMID:17968502

  12. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties. PMID:17072844

  13. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  14. Modelling of microstructural creep damage in welded joints of 316L stainless steel

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  15. Effect of the aging treatment in the fractures mechanics of welded joints of steel 316L

    The austenitic stainless steel 316L is widely used in nuclear industry because of its excellent mechanical properties and corrosion resistance. These properties must be evaluated in order to prevent failure and extend the life of equipment. The microstructure in the weld fusion zone consists on an austenite matrix with 5-12% of delta ferrite met stable at room temperature. However the pressurized water reactors operate at temperatures in the range 290-325 deg C, thus welds may be susceptible to thermal aging embrittlement after long service life. According to the literature, this occurs due to the spinodal decomposition. Therefore, the purpose of this study was to evaluate the mechanical properties of 316L stainless steel welds by hardness and tensile tests before and after heat treatment. In this regard, two steel plates were welded and part of the material was heat treated at 335 deg C for 1000 hours. The tests after heat treatment showed an increase of only 4% in ultimate tensile strength and an increase of 28% in hardness. No changes were observed in the material microstructure, however according to literature changes can be identified by transmission electron microscopy. The curves of impact energy vs. temperature showed little change but, it was not able to observe a ductile-brittle transition and images of microstructure from scanning electronic microscopy (SEM) did not show fragile behavior. (author)

  16. Preparation and characterization of stainless steel 316L/HA biocomposite

    Gilbert Silva

    2012-01-01

    Full Text Available The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (% HA were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD.

  17. Preparation and characterization of stainless steel 316L/HA biocomposite

    Gilbert Silva

    2013-04-01

    Full Text Available The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (% HA were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD.

  18. Phase transformation of 316L stainless steel from wire to fiber

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  19. Parylene coatings on stainless steel 316L surface for medical applications — Mechanical and protective properties

    The mechanical and protective properties of parylene N and C coatings (2–20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3–5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants. - Highlights: ► Parylene biocompatible coating was applied for steel implant surfaces by CVD method. ► Mechanical and protective properties of polymer layers were determined. ► Rival discrimination between parylene N and C on steel 316L was performed. ► Total metal ions release was reduced more efficiently by parylene C coating. ► Critical load for initial cracks was 3–5 times higher for parylene C coating.

  20. Fabrication of antibacterial and hydrophilic electroless Ni-B coating on 316L stainless steel

    Bülbül, Ferhat; Bülbül, Leman Elif

    2016-01-01

    Biomaterial-associated bacterial infection is one of the most common complications with medical vehicles and implants made of stainless steel. A surface coating treatment like electroless Ni-B deposition, a new candidate to be used in a broad range of engineering applications owing to many advantages such as low cost, thickness uniformity, good wear resistance, may improve the antibacterial activity and physical properties of biomedical devices made of stainless steel. In this study, the antibacterial property of the electroless Ni-B film coated on AISI 316L (UNS S31603) stainless steel is basically investigated. Inhibition halo diameter measurement after incubation at 37 °C and 24 h demonstrates the existence of antimicrobial activity of the electroless Ni-B coating deposited on 316L stainless steel over the Escherichia coli test bacteria. The results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and microhardness measurement studies confirms that the coating deposited on the substrate has an uniform amorphous and a harder structure. Besides, the wettability property of the uncoated substrate and the coating was measured as the contact angle of water. The water contact angle reduced about from 97.7 to 69.25°.

  1. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation

    Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.

  2. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications. - Highlights: ► Successful electrodeposition of HAp on 316L SS by a simple method ► The influence of some key parameters on the HAP morphology was discussed. ► Morphological and structural changes of HAP layer in SBF were thoroughly investigated

  3. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  4. HIP of stainless steel 316L considered at the mesoscopic scale: Numerical modelling and experimental characterization

    A two and three-dimensional finite element simulation of HIP (Hot Isostatic Pressing) at mesoscopic scale is proposed, in view of an in-depth understanding of the different physical mechanisms involved in powder densification. The model is formulated in a Eulerian framework, using level set formulation and adaptive meshing and re-meshing strategy to identify particle interactions inside a representative elementary volume (REV). A statistical generator is in charge of the definition of the initial configuration under the constraint of accounting for the real particle size distribution. Mechanical boundary conditions are applied to the REV, resulting in the deformation of particles and densification of the REV. As a first approach, the power-law creep of particles is considered as the unique densification mechanism. Starting from data issued from macroscopic simulations of the HIPping of a part made of 316L powder, mesoscopic simulations in different locations of the part have been carried out (macro-to-meso approach). The results of these simulations are presented and discussed in the light of experimental studies (optical microscopy and SEM, EBSD, EPMA) of the structure and microstructure of the compact, which were obtained from interrupted compactions. Mechanical tests on fully densified 316L were also conducted. (author)

  5. Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests

    Facheris, G., E-mail: giacomo.facheris@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Janssens, K.G.F., E-mail: koen.janssens@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2013-04-15

    Highlights: ► Characterization of cyclic plastic deformation behavior of plate and tubular 316L. ► Strain-controlled ratcheting response between room temperature and 200 °C. ► Isotropic cyclic hardening is dependent on the yield criterion used. ► Ratcheting induced hardening mostly affects the kinematic hardening component. ► Ratcheting induced hardening is related to the mean strain and the ratcheting rate. -- Abstract: With the purpose of analyzing the fatigue behavior under loading conditions relevant for the primary cooling circuit of a light water nuclear reactor, a set of uniaxial low cycle fatigue and strain-controlled ratcheting tests (also named ‘cyclic tension tests’) has been performed at room temperature and at 200 °C on specimens manufactured from two different batches of stainless steel grade 316L. The experiments have been repeated varying strain amplitude, cyclic ratcheting rate and ratcheting direction in order to investigate the influence on the cyclic deformation behavior. In strain-controlled ratcheting tests, the stress response is found to be a superposition of two hardening mechanisms: the first one due to the zero mean strain cycling and the second one linked with the monotonic drifting of mean plastic strain. An approach is proposed to distinguish the effect of each mechanism and the influence of the test parameters on the hardening mechanisms is discussed.

  6. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  7. Characterization of 316L steel welded joints irradiated between 15 to 41 dpa

    Solution annealed austenitic stainless steel Type 316L has been selected for use in the Next European Torus First Wall. Specimens taken from the European Reference Type 316L steel and welds, including electron beam, manual metal arc and weld deposits, have been irradiated at temperatures between 4120C to 5450C to neutron doses ranging from 15 through 41 dpa. Post irradiation experiments conducted have included density and dimensional measurements, tensile, fracture mechanics, fatigue crack growth rate, low cycle fatigue, and creep-fatigue tests. Irradiated specimens undergo dimensional changes with a maximum swelling (about 5%) occurring in specimens irradiated to 41 dpa at about 4500C. Yield stress and ultimate tensile strength have been found to sharply increase, reaching levels as high as 250% in the temperature range of 400-4500C. A significant decrease has been observed in the tensile elongation with the uniform elongation of some welded specimens attaining values as low as 1%. Fracture toughness of welded materials have also been found to sharply decrease particularly in weld deposits. Fatigue crack growth rate and continuous fatigue resistance of weldments have been found to be particularly affected by irradiation. It is concluded that for NET conditions, where the irradiation doses are significantly lower than the doses used in the present study (<15 dpa) and consequently the mechanical property changes will be less severe, swelling data in the range of 5 to 15 dpa are mostly needed

  8. Effects of heat treatments on microstructure changes in the interface of Cu/SS316L joint materials

    Precipitation and dispersion strengthened copper alloys joined with 316L austenitic stainless steel are expected to be heat sink materials in the first wall and divertor of International Thermonuclear Experimental Reactor (ITER) owing to the good thermal conductivity of Cu alloys. In the present study, the effects of heat treatment on microstructural stability in the interface of CuNiBe/SS316L and CuAl25/SS316L have been investigated. In the as-received CuNiBe/SS316L joints, voids were observed at the interface, and in the stainless steel side near the interface. But in the CuAl25/SS316L joints, voids were observed only in the Cu side near the interface. These voids would have a significant effect on the mechanical properties of joints. The results of annealing experiments showed that the microstructures in the interface of both types of joints were thermally stable during annealing at 573 and 673 K for 100 h

  9. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  10. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  11. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid

    FAN Xin; CHEN Jian; ZOU Jian-peng; WAN Qian; ZHOU Zhong-cheng; RUAN Jian-ming

    2009-01-01

    HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.

  12. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  13. Optimization of the contact mechanical strength of magnetron-sputtered nitrogen-doped AISI 316L physically vapour deposited coatings

    The reactive magnetron sputtering technique adopted produces perfectly adhering nitrogen-doped AISI 316L coatings on construction and stainless steel substrates (AISI 316L and 4135). Surface mechanical testing was done by indentation and sclerometric, frictional, low cycle fatigue. The major damage parameters adopted were the critical coating cracking loads, track depression and lateral pile-up volumes. It is shown that the detrimental effect of growth defects on coating brittleness can be controlled to some extent by optimizing substrate surface treatment prior to and bias voltage during deposition. (orig.)

  14. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  15. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel

    The influence of rare earth addition in weld metal, on the microstructure and oxidation behaviour of AISI 316L stainless steel in dry air under isothermal condition at 973 K for 240 h is reported. Rare earth metal (REM) doped weld metal zone exhibits better oxidation resistance during isothermal holding as compared to base metal and undoped weld metal zone of 316L. Presence of both Ce and Nb in weld metal shows superior oxidation resistance than with Ce alone. TIG weld microstructures are presented by optical microscopy. The morphologies of the scales and nature of their adherence to the alloy substrates, and scale spallation have been characterized by SEM and EDAX

  16. Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants

    Gobi Saravanan Kaliaraj; Vinita Vishwakarma; Ananthakumar Ramadoss; D Ramachandran; Arul Maximus Rabel

    2015-08-01

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating’s compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets activation and superior corrosion resistance than the uncoated 316L SS.

  17. On the wear of TiBx/TiSiyCz coatings deposited on 316L steel

    Bilayer TiBx/TiSiyCz coatings were formed on AISI 316L steel substrates by dual beam ion beam assisted deposition from TiBx and TiSiyCz targets. Coated and uncoated substrates were subjected to nanoindentation, scratch and friction-wear tests. Scratch and ball-on-disc tests were conducted in non-lubricated sliding, using a diamond pin and 100Cr6 steel ball, respectively. Scanning electron microscopy and atomic force microscopy were used to examine the surfaces of coated samples, before and after tests. To investigate wear mechanisms in the coating-substrate systems, thin foils were prepared from worn areas for transmission electron microscopy observations. TiBx/TiSiyCz coatings proved to be well adherent to steel substrates. The main wear mechanism was of abrasive type. Intensive plastic deformation of steel substrate under critical loads was revealed.

  18. Hydrogen assisted failure of precracked specimens of 316L stainless steel

    The simultaneous action of cathodic hydrogen charging and slow mechanical loading on precracked samples of 316L stainless steel is examined in order to assess the flaw tolerance of this steel, which has been included in the group of possible structural materials for the first wall of the future fusion reactors. The steel is shown to retain a significant part of its flaw tolerance even in the most severe test conditions, but the loading rate is found to change the damage phenomenology of hydrogen from bifurcated crack extension to multi-cracking and enlargement of the blunted crack tip. This change is explained on the basis of a competition mechanism between hydrogen action and mechanical deformation. (orig.)

  19. The phase change in 316L S.S. irradiated at 500 degree C

    The home made 316L S.S. was irradiated by 1.5 MeV proton and 1.8 MeV alpha particle respectively. The phase stability in irradiated samples was investigated by X-ray diffraction. No new phase was found in the specimen which was irradiated by 1.8 MeV alpha particles. But some new phases such as Cr2O3, (CrM)N were found in the specimens irradiated by 1.5 MeV proton. The content of new phases is increased with the doses. The new phase are all the compound of element O, N, S, C and base element Fe, Cr, Ni, Mo

  20. On factors influencing fatigue process in steel 316L used in hydrogen energy technologies

    Full text: Investigations of fatigue in steels exposed to hydrogen media is extremely important problem, hi this work, an austenitic stainless steel ASTM 316L resistant to hydrogen destructive influence is examined. The experiments presented have used hydrogen charged and uncharged specimens and were carried out under rotating bending and tension-compression fatigue in three different laboratories: at The University of Chemical Technology and Metallurgy, Sofia, Bulgaria; at Sandia National Laboratory, California and The University of Tufts, Medford, Massachusetts, USA; The Institute Hydrogenous at Kyushu University, Japan. The results are presented in Wohler curves complemented by 'Short fatigue crack length - Number of cycles' curves and 'Frequency - Lifetimes' plots, and compared respectively. key words: fatigue, hydrogen fatigue, stainless steel, Wohler curve, short fatigue crack

  1. Effects of applied potential on SCC and HE for STS 316L in seawater

    Offshore structures that are made of austenitic stainless steels are exposed to a severe corrosion environment, with fracturing of the passive film occurring by chloride ion intrusion, stress from dynamic external forces and fatigue due to wave and tidal forces. In this paper, we report our evaluation of the durability of STS 316L with respect to stress corrosion cracking and hydrogen embrittlement in natural seawater, which was carried out via electrochemical methods and slow strain rate tests (SSRTs). The effect of hydrogen on the material was assessed using a SSRT with an applied potential of -0.95 V (versus Ag/AgCl). In addition, potentials below an applied potential of -1.2 V indicate samples that are affected by atomic and molecular hydrogen. Theoretically, the optimum corrosion protection range possible without stress corrosion cracking and hydrogen embrittlement occurring is thought to be between-0.56 and -0.9 V.

  2. An investigation of the aseptic loosening of an AISI 316L stainless steel hip prosthesis

    The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.

  3. The surface cleanliness of 316 L + N stainless steel studied by SIMS and AES

    Mathewson, A G

    1974-01-01

    Some cleaning methods for 316 L+N stainless steel including solvent cleaning, high temperature treatment in vacuo and gas discharge cleaning have been studied by SIMS and AES with a view to providing a clean vacuum chamber surface with low gas desorption under ion bombardment. After solvent cleaning the main surface contaminant was found to be C and its associated compounds. Laboratory investigations on small samples of stainless steel showed that clean surfaces could be obtained by heating in vacuo to 800 degrees C followed by exposure to air and by argon or argon/10% oxygen discharge cleaning. Due to a cross contamination within the vacuum system, the 800 degrees C treated chamber gave positive desorption coefficients under ion bombardment. The pure argon discharge cleaned chambers proved stable giving negative desorption coefficients up to 2200 eV ion energy even after several weeks storage discharge treatment and installation. (10 refs).

  4. Modeling of the lattice rotations induced by plasma nitriding of 316L polycrystalline stainless steel

    The anisotropic lattice rotation of individual grains induced by plasma nitriding of 316L austenitic stainless steel has been analyzed with the aim of identifying correlations between the initial grain’s orientation and the rotation behavior. Due to the quite large nitriding-induced strains (up to 20%), the Taylor–Bishop–Hill model has been chosen for the simulation of the lattice rotations. The model predicts the overall rotations, both amplitude and direction, reasonably well over the entire stereographic triangle. The magnitude of the rotations is in agreement with the level of deformation induced by insertion of nitrogen atoms into an austenitic lattice. With regard to plasticity, parallels between the nitriding process and tensile elongation along the normal surface can be drawn

  5. Influence of annealing on grain boundary segregation of neutron irradiated type 316L stainless steel

    Type 316L stainless steel was neutron irradiated (8x1025 n/m2, E>1MeV) and annealed at 673 K - 973 K for 1 hour. After the annealing, intergranular fracture ratio measurement by SSRT, grain boundary analysis by FE-TEM with EDS and simulation of grain boundary Cr depletion healing were performed in order to consider an effect of segregation healing on IASCC. The intergranular fracture ratio was healed to 0% by annealing above 723 K, but the healing of grain boundary Cr depletion of 723 K annealed specimen was not recognized by EDS analysis. Considering about the EDS analysis result and analysis probe diameter, concentration profiles were calculated. As a result, it was considered that grain boundary segregation which depleted to about 8 mass% by neutron irradiation, healed to about 12 mass% by annealing at 723 K, so that IASCC susceptibility was decreased. (author)

  6. Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel

    Highlights: ► Friction stir processing (FSP) as a repair method. ► Sigma phase formed in the FSP zone. ► Low heat input contributes to restrain sigma phase precipitation. - Abstract: Banded structures, which vary with welding parameters, were observed in friction stir processing of 316L austenite stainless steel. Sigma phase precipitation was detected in banded structures by transmission electron microscopy. The amount of banded structure had direct ratio relations with heat input. The higher the heat input, the larger the area of banded structures. This is attributable to slower cooling rate at high heat input, which results in longer exposure to the temperature range for precipitation. The formation of sigma phase produced Cr depletion, which resulted in largely degraded corrosion resistance. The present study suggests that low heat input (i.e. low rotation speeds, low working loads and high welding speed) contributes to restrain sigma phase precipitation.

  7. Effect of Starch Binders in Alumina Coatings on Aisi 316 L Stainless Steel for Medical Application

    Ghazali, M. J.; Pauzi, A. A.; Azhari, C. H.; Ghani, J. A.; Sulong, A. B.; Mustafa, R.

    A slurry immersion technique of alumina coatings was carried out on several AISI 316 L stainless steels using two types of binding agents; commercial starch and Sarawakian starch (sago), which were also mixed with polyvinylchloride (PVA) for strengthening purposes. The sintering temperatures in this work were varied from 500 to 1000°C. Prior to sintering process, all stainless steels were metallographically ground and polished to approximately 0.6 µm of average roughness. Detailed characterisations on the sintered specimens were carried out with the aid of the secondary electron microscopy (SEM), microhardness and a profilometer. The results revealed that coated steels using sago binder showed improved adhesion and homogenous microstructures with greater hardness of 2642 HV than those found in coated steel with commercial starch after sintering process.

  8. Electrochemical and surface study of the oxide growth and conversion on 316L stainless steel

    Oxide formation and conversion mechanism as a function of potential on 316L stainless steel was investigated using electrochemical and surface analysis techniques. All of the results were consistent with the electrochemical thermodynamics. Four potential regions were identified for anodic oxidation. In Ox I, conversion of the defective chromium oxide layer to an iron/chromium spinel phase occurred. This was followed by conversion of the upper Fe3O4 oxide to a passivating γ-Fe2O3 layer in Ox II. At potentials > 0.0 VSCE, Ox III and IV involved the formation of γ-FeOOH and conversion of CrIII to soluble CrVI respectively contributing to film breakdown. (author)

  9. Cyclic deformation behavior of a 316L austenitic stainless steel processed by high pressure torsion

    The influence of severe plastic deformation (SPD) on the fatigue behavior of a modified 316L austenitic stainless steel is investigated. Different ultrafine-grained and nanocrystalline microstructures are obtained by changing the processing parameters and applying a post heat treatment procedure. Samples are fatigued using both, load and strain controlled experiments. High pressure torsion processing makes it possible to reach a saturation microstructure, which is cyclically stable up to a stress level three times higher than the stress level of the coarse-grained structure. Fracture surface investigations and surface damage clearly show that the failure behavior of the SPD states under cyclic loading is different to their coarse-grained counterparts. For these microstructures, localized deformation in shear bands seems to play a major role for crack initiation and propagation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  11. Analysis of deformation induced martensite in AISI 316L stainless steel

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  12. Effects of applied potential on SCC and HE for STS 316L in seawater

    Han, Min-Su; Park, Jae-Cheul; Jang, Seok-Ki; Kim, Seong-Jong

    2010-05-01

    Offshore structures that are made of austenitic stainless steels are exposed to a severe corrosion environment, with fracturing of the passive film occurring by chloride ion intrusion, stress from dynamic external forces and fatigue due to wave and tidal forces. In this paper, we report our evaluation of the durability of STS 316L with respect to stress corrosion cracking and hydrogen embrittlement in natural seawater, which was carried out via electrochemical methods and slow strain rate tests (SSRTs). The effect of hydrogen on the material was assessed using a SSRT with an applied potential of -0.95 V (versus Ag/AgCl). In addition, potentials below an applied potential of -1.2 V indicate samples that are affected by atomic and molecular hydrogen. Theoretically, the optimum corrosion protection range possible without stress corrosion cracking and hydrogen embrittlement occurring is thought to be between-0.56 and -0.9 V.

  13. Neutron diffraction measurement and finite element analysis of stress distribution in welded 316L stainless pipe

    Stress distribution in welded AISI 316 L stainless steel pipes (diameter 4'' and 10'') was measured using residual stress instrument installed at 30MWt HANARO reactor of KAERI. The measurements were made along the axial direction transverse to the weld direction from the weld center to the pipe edge. Measurement tracks were repeated at the depth of 1.5mm from the surfaces of the pipes and at the mid-thickness of the pipes wall. As a whole the stress distribution in diameter 4'' and diameter 10'' pipes showed the similar tendency. The stress analysis of the welded pipe was carried out using the finite element method. Reasonable agreement in stress distribution with experimental data was observed. (orig.)

  14. The Effect of Calcium Treatment on Pitting Corrosion of Type 316L Austenitic Stainless steel

    Pitting in chloride containing aqueous solution occurs mainly on manganese sulphide. Adding a slight amount of Ca as an alloying element prevents the MnS formation, since Ca is a stronger sulphide former than Mn. In this work, calcium treated Type 316L austenitic stainless steels have been investigated electrochemically to evaluate the effect of modified inclusions on pitting corrosion. Staircase polarization measurements were performed in 3.5% NaCl solution, where the occurrence of pits in materials caused current spikes. During staircase polarization test, steels with calcium treatment show low and discontinuous current spikes while those without calcium treatment show high and continuous current spikes. The results show that calcium treatment in Ca/S ratio of 1 ∼ 2 leads to an increase in the pitting potential of several hundred mV. A relationship between the calcium treatment and pit initiation sites was described

  15. Creep-fatigue behaviour of type 304 and 316L(N) in flowing sodium

    Low cycle fatigue tests with hold periods up to 24 h have been performed on types 304 and 316L(N) stainless steel in air and in flowing sodium at 550deg C. It was shown that the number of cycles to failure decreases with increasing hold times and that the failure mode changes from trans- to intercrystalline fracture. A beneficial effect of sodium occurs under pure cyclic loading and with short hold times. With the longest hold times similar behaviour in both environments has been observed. Tests on long term pre-exposed (sodium, 550deg C, 10,000 h) specimens show that strong carbide precipitation increases the number of cycles to failure in flowing sodium. (orig.)

  16. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  17. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  18. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  19. Stress corrosion cracking of stainless steel AISI 316L HAZ in PWR nuclear reactor environment

    In pressurized water reactors (PWRs), low alloy carbon steels and stainless steel are widely used in the primary water circuits. In most cases, Ni alloys are used to joint these materials and form dissimilar welds. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. Stress corrosion cracking of metals and alloys is caused by synergistic effects of environment, material condition and stress. Over the last thirty years, CST has been observed in dissimilar metal welds. This study presents a comparative work between the CST in the HAZ (Heat Affected Zone) of the AISI 316L in two different temperatures (303 deg C and 325 deg C). The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that CST is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C). (author)

  20. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel.

    Kato, Komei; Yamamoto, Akiko; Ochiai, Shojiro; Wada, Masahiro; Daigo, Yuzo; Kita, Koichi; Omori, Kenichi

    2013-07-01

    Novel 316 L stainless steel (SS) foam with 85% porosity and an open pore diameter of 70-440 μm was developed for hard tissue application. The foam sheet with a 200-μm diameter had superior cell proliferation and penetration as identified through in vitro experiments. Calcification of human osteosarcoma cells in the SS foam was observed. Multi-layered foam preparation is a potential alternative technique that satisfies multi-functional requirements such as cell penetration and binding strength to the solid metal. In tensile tests, Young's modulus and the strength of the SS foam were 4.0 GPa and 11.2 MPa respectively, which is comparable with human cancellous bone. PMID:23623090

  1. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  2. Oblique Incidence Technique for Ultrasonic Nonlinear Characterization in SUS316L Alloy

    The oblique incidence technique for ultrasonic nonlinear characterization was studied in stainless steel 316L alloy subjected to high cycle fatigue. A dog-bone plate specimen was prepared to make different fatigue-driven deformation at each position where the stress concentration could occur in the middle of specimen. In addition to the normal transmission technique, the oblique incidence technique which is newly suggested in this study, was used to measure ultrasonic nonlinear parameter. The fatigued specimen shows higher ultrasonic nonlinear parameter than the virgin specimen for both techniques. Ultrasonic nonlinear parameter highly increases in the middle of test specimen where the stress concentration exists. Relative nonlinear parameter has strong correlation with fatigue damage. Consequently, the oblique incidence technique with longitudinal wave can be potential to characterize high cycle fatigue damage

  3. Electron stimulated desorption of H3O+ from 316L stainless steel

    Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr2O3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H3O+ peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H3O+, as well as its constituents (H+, O+ and OH+) and a small amount of fluorine as F-, but no F+ or F+ complexes (HF+, etc.). An electron stimulated desorption cross-section of σ + ∼ 1.4 x 10-20 cm2 was determined for H3O+ from 316L stainless steel for hydrogen residing in surface chromium hydroxide

  4. Wear of plasma nitrided and nitrocarburized AISI 316L austenitic stainless steel

    F.A.P. Fernandes

    2010-06-01

    Full Text Available Purpose: the purpose of the work is to compare the wear resistance, in dry and lubricated conditions, of AISI 316L austenitic stainless steel samples that were plasma nitrided or nitrocarburized at 450°C for 5 and 10 h, respectively.Design/methodology/approach: Hardness and wear resistance of austenitic stainless steel can be increased substantially, without losing corrosion resistance, by plasma nitriding or nitrocarburizing surface treatments. In this work, AISI 316L austenitic stainless steel was plasma nitrided and nitrocarburized at 450°C, for 5 and 10 h respectively.Findings: The obtained layers were characterized by optical microscopy, X-ray diffraction, microhardness and micro-wear tests in dry and lubricated conditions. Optical microscopy and X-ray diffraction analysis demonstrated that the nitrided layer is homogeneous and primarily composed of nitrogen rich expanded austenite with a thickness of about 15 µm. Nitrocarburized samples exhibited an external layer of chromium and iron compounds and a sub-layer of expanded austenite with a total thickness of 45 µm. Microhardness profiles showed that the hardness near to the surface was close to 1100 HV for nitriding and 1300 HV for nitrocarburizing. Plasma nitrided and nitrocarburized layers exhibited substantial wear reduction in dry and lubricated test conditions. The use of a lubricant oil reduces wear by a factor of approximately 200 compared to the dry test results.Research limitations/implications: The plasma nitrided layer yielded the best wear performance in both dry and lubricated conditions.Originality/value: Plasma nitriding resulted in the best wear performance when compared with nitrocarburizing in dry and lubricated sliding which is probably due to reduced layer fragility.

  5. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  6. The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L

    Highlights: • Microstructure and properties of the HAZ were analyzed. • Delta ferrite morphology changed, and ferrite content decreased. • Adverse effect on yield and ultimate tensile strength was negligible. • The absorbed energy and hardness decreases with increasing number of weld-repair. • The sensitivity to pitting corrosion was increased. - Abstract: The purpose of this study is to evaluate changes in the mechanical, micro structural and the corrosion properties of stainless steel 316L under repeated repair welding. The welding and the repair welding were conducted by shielded metal arc welding (SMAW). The SMAW welding process was performed using E316L filler metals. Specimen of the base metal and different conditions of shielded metal arc welding repairs were studied by looking in the micro structural changes, the chemical composition of the phases, the grain size (in the heat affected zone) and the effect on the mechanical and corrosion properties. The microstructure was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical composition of the phases was determined using energy dispersive spectrometry (EDS). The corrosion behavior in 1 M H2SO4 + 3.5% NaCl solution was evaluated using a potentiodynamic polarization method. Tensile tests, Charpy-V impact resistance and Brinell hardness tests were conducted. Hardness of the heat affected zone decreased as the number of repairs increased. Generally an increase in the yield strength (YS) and the ultimate tensile strength (UTS) occurred with welding. After the first repair, a gradual decrease in YS and UTS occurred but the values of YS and UTS were not less than values of the base metal. Significant reduction in Charpy-V impact resistance with the number of weld repairs were observed when the notch location was in the HAZ. The HAZ of welding repair specimen is more sensitive to pitting corrosion. The sensitivity of HAZ to pitting corrosion was increased by

  7. Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel

    M. Olzon-Dionysio

    2013-01-01

    Full Text Available When AISI 316L stainless steels are submitted to the nitriding process at temperatures lower than 450 °C, a high nitrogen content expanded austenite phase is formed, which shows higher hardness and higher pitting corrosion resistance compared to the untreated material. As a result, this material becomes adequate for biomedical application. The conditions of the nitriding technique, such as gas mixture, pressure, time and temperature, play an important role in some properties of the modified layer, including: thickness, hardness and N concentration along the layer. This paper explores a set of six samples of AISI 316L, nitrided at different times and temperatures, whose properties show important differences. The aim of this research is to investigate the correlation between the nitrided layer thickness (in the range of 0.77 to 11 µm with both X-ray patterns characteristics and hardness measurements, which used two distinct loads. The results of this study show that: whereas the 3.6 gf load was suitable to measure the real hardness for four of the nitrided layers showing thickness ≥ 2.9 µm, the 50 gf load measured a substrate contribution, probably even for the highest thickness, 11 µm. Moreover, analyzing different reflections of the X-ray patterns showed evidence of the clear consistency between the X-Ray depths and the nitrided layer thicknesses: if the layer thickness is lower than the penetration depth of X-rays, two phases (austenite and expanded substrate are present. If the layer thickness is higher, only the austenite is observed. Finally, concerning the citotoxicity property, all the samples, nitrided or not, were approved in the test for biocompatibility, indicating their potential use for biomedical applications.

  8. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  9. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Tecno-Academia ASTIN SENA Reginal Valle (Colombia); Castaño, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correo.univalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Biologics Research, Biotechnology Center of Excellence, Janssen R& D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL 60606 (United States); Aguilar, Y. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2015-06-15

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices.

  10. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Moessbauer spectroscopy

    Campos, M.; Souza, S. D. de [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil); Souza, S. de [Instituto de Pesquisas Energeticas e Nucleares, Centro de Ciencia e Tecnologia de Materiais (Brazil); Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil)

    2011-11-15

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic {gamma}{sup Prime} phase (Fe{sub 4}N), the hexagonal phase {epsilon} (Fe{sub 2 - 3}N) and a nitrogen supersatured solid phase {gamma}{sub N}. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Moessbauer Spectroscopy results: the larger the ratio between {epsilon} and {gamma}{sup Prime} phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for {epsilon}/{gamma}{sup Prime} is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h ({epsilon}/{gamma}{sup Prime} = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the {gamma}{sub N} phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the {gamma}{sub N} phase.