WorldWideScience

Sample records for accurate genome alignment

  1. How accurately is ncRNA aligned within whole-genome multiple alignments?

    Ruzzo Walter L

    2007-10-01

    Full Text Available Abstract Background Multiple alignment of homologous DNA sequences is of great interest to biologists since it provides a window into evolutionary processes. At present, the accuracy of whole-genome multiple alignments, particularly in noncoding regions, has not been thoroughly evaluated. Results We evaluate the alignment accuracy of certain noncoding regions using noncoding RNA alignments from Rfam as a reference. We inspect the MULTIZ 17-vertebrate alignment from the UCSC Genome Browser for all the human sequences in the Rfam seed alignments. In particular, we find 638 instances of chimeric and partial alignments to human noncoding RNA elements, of which at least 225 can be improved by straightforward means. As a byproduct of our procedure, we predict many novel instances of known ncRNA families that are suggested by the alignment. Conclusion MULTIZ does a fairly accurate job of aligning these genomes in these difficult regions. However, our experiments indicate that better alignments exist in some regions.

  2. How accurately is ncRNA aligned within whole-genome multiple alignments?

    Ruzzo Walter L; Wang Adrienne X; Tompa Martin

    2007-01-01

    Abstract Background Multiple alignment of homologous DNA sequences is of great interest to biologists since it provides a window into evolutionary processes. At present, the accuracy of whole-genome multiple alignments, particularly in noncoding regions, has not been thoroughly evaluated. Results We evaluate the alignment accuracy of certain noncoding regions using noncoding RNA alignments from Rfam as a reference. We inspect the MULTIZ 17-vertebrate alignment from the UCSC Genome Browser for...

  3. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan;

    2009-01-01

    heuristics. RESULTS: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect...

  4. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  5. Faster and More Accurate Sequence Alignment with SNAP

    Zaharia, Matei; Curtis, Kristal; Fox, Armando; Patterson, David; Shenker, Scott; Stoica, Ion; Karp, Richard M; Sittler, Taylor

    2011-01-01

    We present the Scalable Nucleotide Alignment Program (SNAP), a new short and long read aligner that is both more accurate (i.e., aligns more reads with fewer errors) and 10-100x faster than state-of-the-art tools such as BWA. Unlike recent aligners based on the Burrows-Wheeler transform, SNAP uses a simple hash index of short seed sequences from the genome, similar to BLAST's. However, SNAP greatly reduces the number and cost of local alignment checks performed through several measures: it uses longer seeds to reduce the false positive locations considered, leverages larger memory capacities to speed index lookup, and excludes most candidate locations without fully computing their edit distance to the read. The result is an algorithm that scales well for reads from one hundred to thousands of bases long and provides a rich error model that can match classes of mutations (e.g., longer indels) that today's fast aligners ignore. We calculate that SNAP can align a dataset with 30x coverage of a human genome in le...

  6. Genome Update: alignment of bacterial chromosomes

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh;

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and......, as an example, an alignment of seven Staphylococcus aureus genomes and one Staphylococcus epidermidis genome is presented....

  7. Strategies and tools for whole genome alignments

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  8. Accurate laboratory boresight alignment of transmitter/receiver optical axes

    Martinek, Stephen J.

    1986-01-01

    An apparatus and procedure for the boresight alignment of the transmitter and receiver optical axes of a laser radar system are described. This accurate technique is applicable to both shared and dual aperture systems. A laser autostigmatic cube interferometer (LACI) is utilized to align a paraboloid in autocollimation. The LACI pinhole located at the paraboloid center of curvature becomes the far field receiver track and transmit reference point when illuminated by the transmit beam via a fiber optic pick-off/delay line. Boresight alignment accuracy better than 20 microrad is achievable.

  9. BFAST: an alignment tool for large scale genome resequencing.

    Nils Homer

    Full Text Available BACKGROUND: The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation. METHODOLOGY: We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels. CONCLUSIONS: We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net.

  10. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Arabi E. keshk

    2014-05-01

    Full Text Available The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between sequences. This paper introduces an enhancement of dynamic algorithm of genome sequence alignment, which called EDAGSA. It is filling the three main diagonals without filling the entire matrix by the unused data. It gets the optimal solution with decreasing the execution time and therefore the performance is increased. To illustrate the effectiveness of optimizing the performance of the proposed algorithm, it is compared with the traditional methods such as Needleman-Wunsch, Smith-Waterman and longest common subsequence algorithms. Also, database is implemented for using the algorithm in multi-sequence alignments for searching the optimal sequence that matches the given sequence.

  11. BBMap: A Fast, Accurate, Splice-Aware Aligner

    Bushnell, Brian

    2014-03-17

    Alignment of reads is one of the primary computational tasks in bioinformatics. Of paramount importance to resequencing, alignment is also crucial to other areas - quality control, scaffolding, string-graph assembly, homology detection, assembly evaluation, error-correction, expression quantification, and even as a tool to evaluate other tools. An optimal aligner would greatly improve virtually any sequencing process, but optimal alignment is prohibitively expensive for gigabases of data. Here, we will present BBMap [1], a fast splice-aware aligner for short and long reads. We will demonstrate that BBMap has superior speed, sensitivity, and specificity to alternative high-throughput aligners bowtie2 [2], bwa [3], smalt, [4] GSNAP [5], and BLASR [6].

  12. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Lefkowitz Elliot J

    2005-08-01

    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  13. Accurate and comprehensive sequencing of personal genomes

    Ajay, Subramanian S.; Parker, Stephen C.J.; Ozel Abaan, Hatice; Fuentes Fajardo, Karin V.; Margulies, Elliott H.

    2011-01-01

    As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ∼30× coverage is not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results are based on analyses...

  14. Development in Rice Genome Research Based on Accurate Genome Sequence

    2008-01-01

    Rice is one of the most important crops in the world. Although genetic improvement is a key technology for the acceleration of rice breeding, a lack of genome information had restricted efforts in molecular-based breeding until the completion of the high-quality rice genome sequence, which opened new opportunities for research in various areas of genomics. The syntenic relationship of the rice genome to other cereal genomes makes the rice genome invaluable for understanding how cereal genomes...

  15. A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base

    Xinlong WANG; Gongxun SHEN

    2005-01-01

    In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed.It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer.Over here,the two-position alignment principle is presented.On the basis of this SINS error model,a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates,and the novel azimuth error estimation algorithm is used for the two-position alignment.Consequently,the speed and accuracy of the SINS's initial alignment is enhanced greatly.The computer simulation results illustrate the efficiency of this alignment method.

  16. Comparative genomics beyond sequence-based alignments

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  17. Accurate monitoring of large aligned objects with videometric techniques

    Klumb, F; Grussenmeyer, P

    1999-01-01

    This paper describes a new videometric technique designed to monitor the deformations and misalignments of large vital components in the centre of a future particle detector. It relies on a geometrical principle called "reciprocal collimation" of two CCD cameras: the combination of the video devices in pair gives rise to a network of well located reference lines that surround the object to be surveyed. Each observed point, which in practice is a bright point-like light- source, is accurately located with respect to this network of neighbouring axes. Adjustment calculations provide the three- dimensional position of the object fitted with various light-sources. An experimental test-bench, equipped with four cameras, has corroborated the precision predicted by previous simulations of the system. (11 refs).

  18. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments. PMID:25695597

  19. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Arabi E. keshk

    2014-01-01

    The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between se...

  20. Microsatellite evolution inferred from human– chimpanzee genomic sequence alignments

    Webster, Matthew T.; Smith, Nick G.C.; Ellegren, Hans

    2002-01-01

    Most studies of microsatellite evolution utilize long, highly mutable loci, which are unrepresentative of the majority of simple repeats in the human genome. Here we use an unbiased sample of 2,467 microsatellite loci derived from alignments of 5.1 Mb of genomic sequence from human and chimpanzee to investigate the mutation process of tandemly repetitive DNA. The results indicate that the process of microsatellite evolution is highly heterogeneous, exhibiting differences between loci of diffe...

  1. A test facility of super-accurate alignment system for a linear collider

    To develop an alignment system for Japan Linear Collider (JLC), a test facility consisting of a laser interferometer and piezo tranducers has been constructed at KEK. The fundamental test using the sine wave disturbing vibration shows the distance between the interferometer head and the corner cube has been kept stable within an accuracy of 50 nm up to 20 Hz by the feedback technique, called active alignment method. The experiment with the random frequency disturbance suggests this system can be extended to the possible super-accurate alignment system

  2. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  3. Considerations in the identification of functional RNA structural elements in genomic alignments

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  4. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS

    Warris, S.; Yalcin, F.; Jackson, K.J.; Nap, J.P.H.

    2015-01-01

    Motivation To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate d

  5. Volume visualization of multiple alignment of genomic DNA

    Shah, Nameeta; Weber, Gunther H.; Dillard, Scott E.; Hamann, Bernd

    2004-05-01

    Genomes of hundreds of species have been sequenced to date and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We provide results for aligned DNA sequence data and compare it with traditional 1D line plots. Our technique, coupled with 1D line plots, results in effective multiresolution visualization of very large aligned sequence data sets.

  6. Analysis of Chimpanzee History Based on Genome Sequence Alignments

    Caswell, Jennifer L.; Richter, Daniel J.; Neubauer, Julie; Schirmer, Christine; Gnerre, Sante; Mallick, Swapan; Reich, David Emil

    2008-01-01

    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously...

  7. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    Sven Warris

    Full Text Available To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis.With the Parallel SW Alignment Software (PaSWAS it is possible (a to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs to perform high-speed sequence alignments, and (b retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1 tag recovery in next generation sequence data and (2 isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  8. Alignment of capillary electrophoresis-mass spectrometry datasets using accurate mass information.

    Nevedomskaya, Ekaterina; Derks, Rico; Deelder, André M; Mayboroda, Oleg A; Palmblad, Magnus

    2009-12-01

    Capillary electrophoresis-mass spectrometry (CE-MS) is a powerful technique for the analysis of small soluble compounds in biological fluids. A major drawback of CE is the poor migration time reproducibility, which makes it difficult to combine data from different experiments and correctly assign compounds. A number of alignment algorithms have been developed but not all of them can cope with large and irregular time shifts between CE-MS runs. Here we present a genetic algorithm designed for alignment of CE-MS data using accurate mass information. The utility of the algorithm was demonstrated on real data, and the results were compared with one of the existing packages. The new algorithm showed a significant reduction of elution time variation in the aligned datasets. The importance of mass accuracy for the performance of the algorithm was also demonstrated by comparing alignments of datasets from a standard time-of-flight (TOF) instrument with those from the new ultrahigh resolution TOF maXis (Bruker Daltonics). PMID:19826795

  9. Volume visualization of multiple alignment of large genomicDNA

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  10. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detecto...

  11. Automated whole-genome multiple alignment of rat, mouse, and human

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  12. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences

    Schwartz, Scott; Elnitski, Laura; Li, Mei; Weirauch, Matt; Riemer, Cathy; Smit, Arian; Green, Eric D; Hardison, Ross C.; Miller, Webb

    2003-01-01

    Analysis of multiple sequence alignments can generate important, testable hypotheses about the phylogenetic history and cellular function of genomic sequences. We describe the MultiPipMaker server, which aligns multiple, long genomic DNA sequences quickly and with good sensitivity (available at http://bio.cse.psu.edu/ since May 2001). Alignments are computed between a contiguous reference sequence and one or more secondary sequences, which can be finished or draft sequence. The outputs includ...

  13. Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

    Souza, A. M.

    2013-10-07

    We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  14. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements

    Darling, Aaron C.E.; Mau, Bob; Blattner, Frederick R.; Perna, Nicole T.

    2004-01-01

    As genomes evolve, they undergo large-scale evolutionary processes that present a challenge to sequence comparison not posed by short sequences. Recombination causes frequent genome rearrangements, horizontal transfer introduces new sequences into bacterial chromosomes, and deletions remove segments of the genome. Consequently, each genome is a mosaic of unique lineage-specific segments, regions shared with a subset of other genomes and segments conserved among all the genomes under considera...

  15. WebGMAP: a web service for mapping and aligning cDNA sequences to genomes

    Liang, Chun; Liu, Lin; Ji, Guoli

    2009-01-01

    The genomes of thousands of organisms are being sequenced, often with accompanying sequences of cDNAs or ESTs. One of the great challenges in bioinformatics is to make these genomic sequences and genome annotations accessible in a user-friendly manner to general biologists to address interesting biological questions. We have created an open-access web service called WebGMAP (http://www.bioinfolab.org/software/webgmap) that seamlessly integrates cDNA-genome alignment tools, such as GMAP, with ...

  16. Multiple whole genome alignments and novel biomedical applications at the VISTA portal

    Brudno, Michael; Poliakov, Alexander; Minovitsky, Simon; Ratnere, Igor; Dubchak, Inna

    2007-01-01

    The VISTA portal for comparative genomics is designed to give biomedical scientists a unified set of tools to lead them from the raw DNA sequences through the alignment and annotation to the visualization of the results. The VISTA portal also hosts alignments of a number of genomes computed by our group, allowing users to study regions of their interest without having to manually download the individual sequences. Here we describe various algorithmic and functional improvements implement...

  17. LAF: Logic Alignment Free and its application to bacterial genomes classification

    Weitschek, Emanuel; Cunial, Fabio; Felici, Giovanni

    2015-01-01

    Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples ...

  18. ABC: software for interactive browsing of genomic multiple sequence alignment data

    Singaravelu Senthil AG

    2004-12-01

    Full Text Available Abstract Background Alignment and comparison of related genome sequences is a powerful method to identify regions likely to contain functional elements. Such analyses are data intensive, requiring the inclusion of genomic multiple sequence alignments, sequence annotations, and scores describing regional attributes of columns in the alignment. Visualization and browsing of results can be difficult, and there are currently limited software options for performing this task. Results The Application for Browsing Constraints (ABC is interactive Java software for intuitive and efficient exploration of multiple sequence alignments and data typically associated with alignments. It is used to move quickly from a summary view of the entire alignment via arbitrary levels of resolution to individual alignment columns. It allows for the simultaneous display of quantitative data, (e.g., sequence similarity or evolutionary rates and annotation data (e.g. the locations of genes, repeats, and constrained elements. It can be used to facilitate basic comparative sequence tasks, such as export of data in plain-text formats, visualization of phylogenetic trees, and generation of alignment summary graphics. Conclusions The ABC is a lightweight, stand-alone, and flexible graphical user interface for browsing genomic multiple sequence alignments of specific loci, up to hundreds of kilobases or a few megabases in length. It is coded in Java for cross-platform use and the program and source code are freely available under the General Public License. Documentation and a sample data set are also available http://mendel.stanford.edu/sidowlab/downloads.html.

  19. Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization

    Klau Gunnar W

    2007-07-01

    Full Text Available Abstract Background The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. Results We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP. We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. Conclusion The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.

  20. Electro-optical systems to accurately align (boresight) laser designator, FLIR, and CCD on the ground before the mission

    Cabib, Dario; Segal, Alon; Dolev, Jacob

    2008-10-01

    CI Systems has been involved in the development and production of in-flight boresight equipment since 19891,2, by pioneering the field with innovative laser-FLIR and laser-CCD alignment solutions. In addition, over the years we have developed a number of systems for use on the ground to align the various electro-optical instrumentation to a common Line of Sight (LOS) before the mission. This adjustment is very important for the success of the mission: the more accurate the alignment and its retention during the flight, the better the chance of a precise hit. In this paper we describe various systems developed and built at CI for use with EO pods mounted on aircraft, especially UAV's. The most important engineering tasks are design for small size and convenient mechano-optical interfaces for different pods allowing system compactness, low weight and easy operation. Some of the design considerations to meet these challenges will be given here.

  1. Multiple Whole Genome Alignments and Novel Biomedical Applicationsat the VISTA Portal

    Brudno, Michael; Poliakov, Alexander; Minovitsky, Simon; Ratnere,Igor; Dubchak, Inna

    2007-02-01

    The VISTA portal for comparative genomics is designed togive biomedical scientists a unified set of tools to lead them from theraw DNA sequences through the alignment and annotation to thevisualization of the results. The VISTA portal also hosts alignments of anumber of genomes computed by our group, allowing users to study regionsof their interest without having to manually download the individualsequences. Here we describe various algorithmic and functionalimprovements implemented in the VISTA portal over the last two years. TheVISTA Portal is accessible at http://genome.lbl.gov/vista.

  2. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method.

    Gao, Yang; Luo, Liaofu

    2012-01-15

    Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain "unclassified" viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification. PMID:22100880

  3. Discovery of Novel ncRNA Sequences in Multiple Genome Alignments on the Basis of Conserved and Stable Secondary Structures.

    Yinghan Fu

    Full Text Available Recently, non-coding RNAs (ncRNAs have been discovered with novel functions, and it has been appreciated that there is pervasive transcription of genomes. Moreover, many novel ncRNAs are not conserved on the primary sequence level. Therefore, de novo computational ncRNA detection that is accurate and efficient is desirable. The purpose of this study is to develop a ncRNA detection method based on conservation of structure in more than two genomes. A new method called Multifind, using Multilign, was developed. Multilign predicts the common secondary structure for multiple input sequences. Multifind then uses measures of structure conservation to estimate the probability that the input sequences are a conserved ncRNA using a classification support vector machine. Multilign is based on Dynalign, which folds and aligns two sequences simultaneously using a scoring scheme that does not include sequence identity; its structure prediction quality is therefore not affected by input sequence diversity. Additionally, ensemble defect was introduced to Multifind as an additional discriminating feature that quantifies the compactness of the folding space for a sequence. Benchmarks showed Multifind performs better than RNAz and LocARNATE+RNAz, a method that uses RNAz on structure alignments generated by LocARNATE, on testing sequences extracted from the Rfam database. For de novo ncRNA discovery in three genomes, Multifind and LocARNATE+RNAz had an advantage over RNAz in low similarity regions of genome alignments. Additionally, Multifind and LocARNATE+RNAz found different subsets of known ncRNA sequences, suggesting the two approaches are complementary.

  4. Base-By-Base version 2: single nucleotide-level analysis of whole viral genome alignments

    Hillary William

    2011-06-01

    Full Text Available Abstract Background Base-By-Base is a Java-based multiple sequence alignment editor. It is capable of working with protein and DNA molecules, but many of its unique features relate to the manipulation of the genomes of large DNA viruses such as poxviruses, herpesviruses, baculoviruses and asfarviruses (1-400 kb. The tool was built to serve as a platform for comparative genomics at the level of individual nucleotides. Results In version 2, BBB-v2, of Base-By-Base we have added a series of new features aimed at providing the bench virologist with a better platform to view, annotate and analyze these complex genomes. Although a poxvirus genome, for example, may be less than 200 kb, it probably encodes close to 200 proteins using multiple classes of promoters with frequent overlapping of promoters and coding sequences and even some overlapping of genes. The new features allow users to 1 add primer annotations or other data sets in batch mode, 2 export differences between sequences to other genome browsers, 3 compare multiple genomes at a single nucleotide level of detail, 4 create new alignments from subsets/subsequences of a very large master alignment and 5 allow display of summaries of deep RNA sequencing data sets on a genome sequence. Conclusion BBB-v2 significantly improves the ability of virologists to work with genome sequences and provides a platform with which they can use a multiple sequence alignment as the basis for their own editable documents. Also, a .bbb document, with a variety of annotations in addition to the basic coding regions, can be shared among collaborators or made available to an entire research community. The program is available via Virology.ca using Java Web Start and is platform independent; the Java 1.5 virtual machine is required.

  5. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  6. Accurate determination of DNA yield from individual mosquitoes for population genomic applications

    Craig S.Wilding; D.Weetman; K.Steen; M.J.Donnelly

    2009-01-01

    Accurate estimates of DNA quantity are likely to become increasingly important for successful genomic screening of insect populations via recently developed, highly multiplexed genotyping assays and high-throughput sequencing methods. Here we show that genomic DNA extractions from single Anopheles gambiae Giles using a standard commercial kit-based methodology yield extracts with concentrations below the linear range of spectrophotometric absorbance at 260 nm. Concentrations determined by spectrophotometry were not reproducible, and are therefore neither accurate nor reliable. However,DNA quantification using a fluorescent nucleic acid stain (PicoGreenR) gave highly reproducible concentration estimates, and indicated that, on average, single mosquitoes yielded approximately 300 ng of DNA. Such a total yield is currently insufficient for many highthroughput genome screening applications, necessitating whole genome amplification of all or most individuals in a population prior to genotyping.

  7. A shot in the genome: how accurately do shotgun 454 sequences represent a genome?

    Meglécz Emese

    2012-05-01

    Full Text Available Abstract Background Next generation sequencing (NGS provides a valuable method to quickly obtain sequence information from non-model organisms at a genomic scale. In principle, if sequencing is not targeted for a genomic region or sequence type (e.g. coding region, microsatellites NGS reads can be used as a genome snapshot and provide information on the different types of sequences in the genome. However, no study has ascertained if a typical 454 dataset of low coverage (1/4-1/8 of a PicoTiter plate leading to generally less than 0.1x of coverage represents all parts of genomes equally. Findings Partial genome shotgun sequencing of total DNA (without enrichment on a 454 NGS platform was used to obtain reads of Apis mellifera (454 reads hereafter. These 454 reads were compared to the assembled chromosomes of this species in three different aspects: (i dimer and trimer compositions, (ii the distribution of mapped 454 sequences along the chromosomes and (iii the numbers of different classes of microsatellites. Highly significant chi-square tests for all three types of analyses indicated that the 454 data is not a perfect random sample of the genome. Only the number of 454 reads mapped to each of the 16 chromosomes and the number of microsatellites pooled by motif (repeat unit length was not significantly different from the expected values. However, a very strong correlation (correlation coefficients greater than 0.97 was observed between most of the 454 variables (the number of different dimers and trimers, the number of 454 reads mapped to each chromosome fragments of one Mb, the number of 454 reads mapped to each chromosome, the number of microsatellites of each class and their corresponding genomic variables. Conclusions The results of chi square tests suggest that 454 shotgun reads cannot be regarded as a perfect representation of the genome especially if the comparison is done on a finer scale (e.g. chromosome fragments instead of whole

  8. Detecting phylogenetic breakpoints and discordance from genome-wide alignments for species tree reconstruction.

    Ané, Cécile

    2011-01-01

    With the easy acquisition of sequence data, it is now possible to obtain and align whole genomes across multiple related species or populations. In this work, I assess the performance of a statistical method to reconstruct the whole distribution of phylogenetic trees along the genome, estimate the proportion of the genome for which a given clade is true, and infer a concordance tree that summarizes the dominant vertical inheritance pattern. There are two main issues when dealing with whole-genome alignments, as opposed to multiple genes: the size of the data and the detection of recombination breakpoints. These breakpoints partition the genomic alignment into phylogenetically homogeneous loci, where sites within a given locus all share the same phylogenetic tree topology. To delimitate these loci, I describe here a method based on the minimum description length (MDL) principle, implemented with dynamic programming for computational efficiency. Simulations show that combining MDL partitioning with Bayesian concordance analysis provides an efficient and robust way to estimate both the vertical inheritance signal and the horizontal phylogenetic signal. The method performed well both in the presence of incomplete lineage sorting and in the presence of horizontal gene transfer. A high level of systematic bias was found here, highlighting the need for good individual tree building methods, which form the basis for more elaborate gene tree/species tree reconciliation methods. PMID:21362638

  9. Alignment-free comparison of genome sequences by a new numerical characterization.

    Huang, Guohua; Zhou, Houqing; Li, Yongfan; Xu, Lixin

    2011-07-21

    In order to compare different genome sequences, an alignment-free method has proposed. First, we presented a new graphical representation of DNA sequences without degeneracy, which is conducive to intuitive comparison of sequences. Then, a new numerical characterization based on the representation was introduced to quantitatively depict the intrinsic nature of genome sequences, and considered as a 10-dimensional vector in the mathematical space. Alignment-free comparison of sequences was performed by computing the distances between vectors of the corresponding numerical characterizations, which define the evolutionary relationship. Two data sets of DNA sequences were constructed to assess the performance on sequence comparison. The results illustrate well validity of the method. The new numerical characterization provides a powerful tool for genome comparison. PMID:21536050

  10. GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality.

    Wu, Thomas D; Reeder, Jens; Lawrence, Michael; Becker, Gabe; Brauer, Matthew J

    2016-01-01

    The programs GMAP and GSNAP, for aligning RNA-Seq and DNA-Seq datasets to genomes, have evolved along with advances in biological methodology to handle longer reads, larger volumes of data, and new types of biological assays. The genomic representation has been improved to include linear genomes that can compare sequences using single-instruction multiple-data (SIMD) instructions, compressed genomic hash tables with fast access using SIMD instructions, handling of large genomes with more than four billion bp, and enhanced suffix arrays (ESAs) with novel data structures for fast access. Improvements to the algorithms have included a greedy match-and-extend algorithm using suffix arrays, segment chaining using genomic hash tables, diagonalization using segmental hash tables, and nucleotide-level dynamic programming procedures that use SIMD instructions and eliminate the need for F-loop calculations. Enhancements to the functionality of the programs include standardization of indel positions, handling of ambiguous splicing, clipping and merging of overlapping paired-end reads, and alignments to circular chromosomes and alternate scaffolds. The programs have been adapted for use in pipelines by integrating their usage into R/Bioconductor packages such as gmapR and HTSeqGenie, and these pipelines have facilitated the discovery of numerous biological phenomena. PMID:27008021

  11. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  12. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  13. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes.

    Christopher A Lavender

    2015-05-01

    Full Text Available HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively. Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.

  14. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

    Dewey Colin N

    2011-08-01

    Full Text Available Abstract Background RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. Results We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. Conclusions RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost

  15. READSCAN: A fast and scalable pathogen discovery program with accurate genome relative abundance estimation

    Naeem, Raeece

    2012-11-28

    Summary: READSCAN is a highly scalable parallel program to identify non-host sequences (of potential pathogen origin) and estimate their genome relative abundance in high-throughput sequence datasets. READSCAN accurately classified human and viral sequences on a 20.1 million reads simulated dataset in <27 min using a small Beowulf compute cluster with 16 nodes (Supplementary Material). Availability: http://cbrc.kaust.edu.sa/readscan Contact: or raeece.naeem@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. 2012 The Author(s).

  16. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  17. Flexible and accurate detection of genomic copy-number changes from aCGH.

    Oscar M Rueda

    2007-06-01

    Full Text Available Genomic DNA copy-number alterations (CNAs are associated with complex diseases, including cancer: CNAs are indeed related to tumoral grade, metastasis, and patient survival. CNAs discovered from array-based comparative genomic hybridization (aCGH data have been instrumental in identifying disease-related genes and potential therapeutic targets. To be immediately useful in both clinical and basic research scenarios, aCGH data analysis requires accurate methods that do not impose unrealistic biological assumptions and that provide direct answers to the key question, "What is the probability that this gene/region has CNAs?" Current approaches fail, however, to meet these requirements. Here, we introduce reversible jump aCGH (RJaCGH, a new method for identifying CNAs from aCGH; we use a nonhomogeneous hidden Markov model fitted via reversible jump Markov chain Monte Carlo; and we incorporate model uncertainty through Bayesian model averaging. RJaCGH provides an estimate of the probability that a gene/region has CNAs while incorporating interprobe distance and the capability to analyze data on a chromosome or genome-wide basis. RJaCGH outperforms alternative methods, and the performance difference is even larger with noisy data and highly variable interprobe distance, both commonly found features in aCGH data. Furthermore, our probabilistic method allows us to identify minimal common regions of CNAs among samples and can be extended to incorporate expression data. In summary, we provide a rigorous statistical framework for locating genes and chromosomal regions with CNAs with potential applications to cancer and other complex human diseases.

  18. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.

    Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-07-01

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. PMID:27106060

  19. Empirical Transition Probability Indexing Sparse-Coding Belief Propagation (ETPI-SCoBeP) Genome Sequence Alignment

    Aminmohammad Roozgard; Nafise Barzigar; Shuang Wang; Xiaoqian Jiang; Samuel Cheng

    2015-01-01

    The advance in human genome sequencing technology has significantly reduced the cost of data generation and overwhelms the computing capability of sequence analysis. Efficiency, efficacy, and scalability remain challenging in sequence alignment, which is an important and foundational operation for genome data analysis. In this paper, we propose a two-stage approach to tackle this problem. In the preprocessing step, we match blocks of reference and target sequences based on the similarities be...

  20. Two Methods of Whole-Genome Amplification Enable Accurate Genotyping Across a 2320-SNP Linkage Panel

    Barker, David L.; Hansen, Mark S. T.; Faruqi, A. Fawad; Giannola, Diane; Irsula, Orlando R.; Lasken, Roger S; Latterich, Martin; Makarov, Vladimir; Oliphant, Arnold; Pinter, Jonathon H.; Shen, Richard; Sleptsova, Irina; Ziehler, William; Lai, Eric

    2004-01-01

    Comprehensive genome scans involving many thousands of SNP assays will require significant amounts of genomic DNA from each sample. We report two successful methods for amplifying whole-genomic DNA prior to SNP analysis, multiple displacement amplification, and OmniPlex technology. We determined the coverage of amplification by analyzing a SNP linkage marker set that contained 2320 SNP markers spread across the genome at an average distance of 2.5 cM. We observed a concordance of >99.8% in ge...

  1. Arapan-S: a fast and highly accurate whole-genome assembly software for viruses and small genomes

    Sahli Mohammed; Shibuya Tetsuo

    2012-01-01

    Abstract Background Genome assembly is considered to be a challenging problem in computational biology, and has been studied extensively by many researchers. It is extremely difficult to build a general assembler that is able to reconstruct the original sequence instead of many contigs. However, we believe that creating specific assemblers, for solving specific cases, will be much more fruitful than creating general assemblers. Findings In this paper, we present Arapan-S, a whole-genome assem...

  2. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna;

    2015-01-01

    produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...

  3. SPA: a probabilistic algorithm for spliced alignment.

    Erik van Nimwegen; Nicodeme Paul; Robert Sheridan; Mihaela Zavolan

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because the...

  4. Arapan-S: a fast and highly accurate whole-genome assembly software for viruses and small genomes

    Sahli Mohammed

    2012-05-01

    Full Text Available Abstract Background Genome assembly is considered to be a challenging problem in computational biology, and has been studied extensively by many researchers. It is extremely difficult to build a general assembler that is able to reconstruct the original sequence instead of many contigs. However, we believe that creating specific assemblers, for solving specific cases, will be much more fruitful than creating general assemblers. Findings In this paper, we present Arapan-S, a whole-genome assembly program dedicated to handling small genomes. It provides only one contig (along with the reverse complement of this contig in many cases. Although genomes consist of a number of segments, the implemented algorithm can detect all the segments, as we demonstrate for Influenza Virus A. The Arapan-S program is based on the de Bruijn graph. We have implemented a very sophisticated and fast method to reconstruct the original sequence and neglect erroneous k-mers. The method explores the graph by using neither the shortest nor the longest path, but rather a specific and reliable path based on the coverage level or k-mers’ lengths. Arapan-S uses short reads, and it was tested on raw data downloaded from the NCBI Trace Archive. Conclusions Our findings show that the accuracy of the assembly was very high; the result was checked against the European Bioinformatics Institute (EBI database using the NCBI BLAST Sequence Similarity Search. The identity and the genome coverage was more than 99%. We also compared the efficiency of Arapan-S with other well-known assemblers. In dealing with small genomes, the accuracy of Arapan-S is significantly higher than the accuracy of other assemblers. The assembly process is very fast and requires only a few seconds. Arapan-S is available for free to the public. The binary files for Arapan-S are available through http://sourceforge.net/projects/dnascissor/files/.

  5. Accurate Prediction of the Statistics of Repetitions in Random Sequences: A Case Study in Archaea Genomes.

    Régnier, Mireille; Chassignet, Philippe

    2016-01-01

    Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences. PMID:27376057

  6. The admixed population structure in Danish Jersey dairy cattle challenges accurate genomic predictions

    Thomasen, Jørn Rind; Sørensen, Anders Christian; Su, Guosheng; Madsen, Per; Lund, Mogens Sandø; Guldbrandtsen, Bernt

    2013-01-01

    The main purpose of this study is to evaluate whether the population structure in Danish Jersey known from the history of the breed also is reflected in the markers. This is done by comparing the linkage disequilibrium and persistence of phase for subgroups of Jersey animals with high proportions...... structure incorporated 1,730 genotyped Jersey animals. In total 39,542 SNP markers were included in the analysis. The 1,079 genotyped bulls with de-regressed proof for udder health were used in the analysis for the predictions of the genomic breeding values. A range of random regressions models that...... included the breed origin were analyzed and compared to a basic genomic model that assumes a homogeneous breed structure. The main finding in this study is that the importation of germ plasma from the US Jersey population is readily reflected in the genomes of modern Danish Jersey animals. Firstly, linkage...

  7. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  8. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data.

    Worby, Colin J.; Marc Lipsitch; Hanage, William P

    2014-01-01

    The prospect of using whole genome sequence data to investigate bacterial disease outbreaks has been keenly anticipated in many quarters, and the large-scale collection and sequencing of isolates from cases is becoming increasingly feasible. While sequence data can provide many important insights into disease spread and pathogen adaptation, it remains unclear how successfully they may be used to estimate individual routes of transmission. Several studies have attempted to reconstruct transmis...

  9. Within-Host Bacterial Diversity Hinders Accurate Reconstruction of Transmission Networks from Genomic Distance Data

    Worby, Colin J.; Marc Lipsitch; William P Hanage

    2014-01-01

    The prospect of using whole genome sequence data to investigate bacterial disease outbreaks has been keenly anticipated in many quarters, and the large-scale collection and sequencing of isolates from cases is becoming increasingly feasible. While sequence data can provide many important insights into disease spread and pathogen adaptation, it remains unclear how successfully they may be used to estimate individual routes of transmission. Several studies have attempted to reconstruct transmis...

  10. Discovery of Novel ncRNA Sequences in Multiple Genome Alignments on the Basis of Conserved and Stable Secondary Structures

    Fu, Yinghan; Xu, Zhenjiang Zech; Lu, Zhi J.; ZHAO, SHAN; Mathews, David H.

    2015-01-01

    Recently, non-coding RNAs (ncRNAs) have been discovered with novel functions, and it has been appreciated that there is pervasive transcription of genomes. Moreover, many novel ncRNAs are not conserved on the primary sequence level. Therefore, de novo computational ncRNA detection that is accurate and efficient is desirable. The purpose of this study is to develop a ncRNA detection method based on conservation of structure in more than two genomes. A new method called Multifind, using Multili...

  11. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Guanghong Zuo; Bailin Hao

    2015-01-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/without login requirements.

  12. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  13. Novel methods for accurate identification, isolation, and genomic analysis of symptomatic microenvironments in atherosclerotic arteries.

    Slevin, Mark; Baldellou, Maribel; Hill, Elspeth; Alexander, Yvonne; McDowell, Garry; Murgatroyd, Christopher; Carroll, Michael; Degens, Hans; Krupinski, Jerzy; Rovira, Norma; Chowdhury, Mohammad; Serracino-Inglott, Ferdinand; Badimon, Lina

    2014-01-01

    A challenge facing surgeons is identification and selection of patients for carotid endarterectomy or coronary artery bypass/surgical intervention. While some patients with atherosclerosis develop unstable plaques liable to undergo thrombosis, others form more stable plaques and are asymptomatic. Identification of the cellular signaling mechanisms associated with production of the inflammatory, hemorrhagic lesions of mature heterogenic plaques will help significantly in our understanding of the differences in microenvironment associated with development of regions susceptible to rupture and thrombosis and may help to predict the risk of plaque rupture and guide surgical intervention to patients who will most benefit. Here, we demonstrate detailed and novel methodologies for successful and, more importantly, accurate and reproducible extraction, sampling, and analysis of micro-regions in stable and unstable coronary/carotid arteries. This information can be applied to samples from other origins and so should be useful for scientists working with micro-isolation techniques in all fields of biomedical science. PMID:24510873

  14. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds

    2008-01-01

    Tibetan chicken lives in high-altitude area and has adapted well to hypoxia genetically. Shouguang chicken and Silky chicken are both lowland chicken breeds. In the present study, the complete mito-chondrial genome sequences of the three chicken breeds were all sequenced. The results showed that the mitochondrial DNAs (mtDNAs) of Shouguang chicken and Silky chicken consist of 16784 bp and 16785 bp respectively, and Tibetan chicken mitochondrial genome varies from 16784 bp to 16786 bp. After sequence analysis, 120 mutations, including 4 single nucleotide polymorphisms (SNPs) in tRNA genes, 9 SNPs and 1 insertion in rRNA genes, 38 SNPs and 1 deletion in D-LOOP, 66 SNPs in pro-tein-coding genes, were found. This work will provide clues for the future study on the association between mitochondrial genes and the adaptation to hypoxia.Tibetan chicken, lowland chicken, mitochondrial genome, hypoxia.

  15. Alignment validation

    Golling, T

    2007-01-01

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under construction at CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector and the muon system requires an accurate alignment of all detector elements. Alignment information is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  16. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Wincker Patrick

    2009-12-01

    , 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.

  17. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes.

    Lin, Hsin-Hung; Liao, Yu-Chieh

    2016-01-01

    Metagenomics, the application of shotgun sequencing, facilitates the reconstruction of the genomes of individual species from natural environments. A major challenge in the genome recovery domain is to agglomerate or 'bin' sequences assembled from metagenomic reads into individual groups. Metagenomic binning without consideration of reference sequences enables the comprehensive discovery of new microbial organisms and aids in the microbial genome reconstruction process. Here we present MyCC, an automated binning tool that combines genomic signatures, marker genes and optional contig coverages within one or multiple samples, in order to visualize the metagenomes and to identify the reconstructed genomic fragments. We demonstrate the superior performance of MyCC compared to other binning tools including CONCOCT, GroopM, MaxBin and MetaBAT on both synthetic and real human gut communities with a small sample size (one to 11 samples), as well as on a large metagenome dataset (over 250 samples). Moreover, we demonstrate the visualization of metagenomes in MyCC to aid in the reconstruction of genomes from distinct bins. MyCC is freely available at http://sourceforge.net/projects/sb2nhri/files/MyCC/. PMID:27067514

  18. Long Read Alignment with Parallel MapReduce Cloud Platform.

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  19. Evaluation of microRNA alignment techniques.

    Ziemann, Mark; Kaspi, Antony; El-Osta, Assam

    2016-08-01

    Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164

  20. Long Read Alignment with Parallel MapReduce Cloud Platform

    Ahmed Abdulhakim Al-Absi

    2015-01-01

    Full Text Available Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner’s Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  1. SPA: a probabilistic algorithm for spliced alignment.

    Erik van Nimwegen

    2006-04-01

    Full Text Available Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5' and 3' ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non

  2. SPA: A Probabilistic Algorithm for Spliced Alignment

    van Nimwegen, Erik; Paul, Nicodeme; Sheridan, Robert; Zavolan, Mihaela

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5′ and 3′ ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non-canonical splice

  3. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    2011-08-30

    Abstract Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources

  4. A rank-based sequence aligner with applications in phylogenetic analysis.

    Liviu P Dinu

    Full Text Available Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD. The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing [Formula: see text]-mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.

  5. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  6. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions.

    Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan

    2016-05-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To

  7. Nimble Protein Sequence Alignment in Grid (NPSAG

    K. Somasundaram

    2008-01-01

    Full Text Available In Bio-Informatics application, the analysis of protein sequence is a kind of computation driven science which has rapidly and quickly growing biological data. Also databases used in these applications are heterogeneous in nature and alignment of protein sequence using physical techniques is expensive, slow and results are not always guaranteed/accurate. So this application requires cross-platform, cost-effective and more computing power algorithm for sequence matching and searching a sequence in database. Grid is one of the most emerging technologies of cost effective computing paradigm for large class of data and compute intensive application which enables large-scale aggregation and sharing of computational data and other resources across institutional boundaries. We proposed the Grid architecture for searching of distributed, heterogeneous genomic databases which contained protein sequences to speed up the analysis of large scale sequence data and performed sequence alignment for residues match.

  8. Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins.

    Tang, Yi; Lu, Huaguang

    2016-04-01

    Newly emerging avian orthoreovirus (ARV) variants have been continuously detected in Pennsylvania poultry since 2011. In this paper, we report our recent diagnostic assay development of one-step real-time RT-PCR (rRT-PCR) for the rapid and universal detection of all ARVs or reference strains of chicken, pheasant and turkey origins and six σC genotypes of the newly emerging field ARV variants in Pennsylvania (PA) poultry. Primers and probes for the rRT-PCR were designed from the conserved region of the M1 genome segment 5' end based on the whole-genome alignment of various ARV strains, including six field variants or novel strains obtained in PA poultry. The detection limit of the newly developed rRT-PCR for ARV was as low as 10 copies/reaction of viral RNA, and 10(0.50)-10(0.88) tissue culture infectious dose (TCID50)/100μL of viruses. This new rRT-PCR detected all six σC genotypes from the 66 ARV field variant strains and reference strains tested in this study. There were no cross-reactions with other avian viruses. Reproducibility of the assay was confirmed by intra- and inter-assay tests with variability from 0.12% to 2.19%. Sensitivity and specificity of this new rRT-PCR for ARV were achieved at 100% and 88%, respectively, in comparison with virus isolation as the "gold standard" in testing poultry tissue specimen. PMID:26812128

  9. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories....

  10. Pyro-Align: Sample-Align based Multiple Alignment system for Pyrosequencing Reads of Large Number

    Saeed, Fahad

    2009-01-01

    Pyro-Align is a multiple alignment program specifically designed for pyrosequencing reads of huge number. Multiple sequence alignment is shown to be NP-hard and heuristics are designed for approximate solutions. Multiple sequence alignment of pyrosequenceing reads is complex mainly because of 2 factors. One being the huge number of reads, making the use of traditional heuristics,that scale very poorly for large number, unsuitable. The second reason is that the alignment cannot be performed arbitrarily, because the position of the reads with respect to the original genome is important and has to be taken into account.In this report we present a short description of the multiple alignment system for pyrosequencing reads.

  11. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.

    Lee, Wan-Ping; Stromberg, Michael P; Ward, Alistair; Stewart, Chip; Garrison, Erik P; Marth, Gabor T

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me). PMID:24599324

  12. Conditional alignment random fields for multiple motion sequence alignment.

    Kim, Minyoung

    2013-11-01

    We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities. PMID:24051737

  13. A statistical framework for accurate taxonomic assignment of metagenomic sequencing reads.

    Hongmei Jiang

    Full Text Available The advent of next-generation sequencing technologies has greatly promoted the field of metagenomics which studies genetic material recovered directly from an environment. Characterization of genomic composition of a metagenomic sample is essential for understanding the structure of the microbial community. Multiple genomes contained in a metagenomic sample can be identified and quantitated through homology searches of sequence reads with known sequences catalogued in reference databases. Traditionally, reads with multiple genomic hits are assigned to non-specific or high ranks of the taxonomy tree, thereby impacting on accurate estimates of relative abundance of multiple genomes present in a sample. Instead of assigning reads one by one to the taxonomy tree as many existing methods do, we propose a statistical framework to model the identified candidate genomes to which sequence reads have hits. After obtaining the estimated proportion of reads generated by each genome, sequence reads are assigned to the candidate genomes and the taxonomy tree based on the estimated probability by taking into account both sequence alignment scores and estimated genome abundance. The proposed method is comprehensively tested on both simulated datasets and two real datasets. It assigns reads to the low taxonomic ranks very accurately. Our statistical approach of taxonomic assignment of metagenomic reads, TAMER, is implemented in R and available at http://faculty.wcas.northwestern.edu/hji403/MetaR.htm.

  14. Hardware Acceleration of Bioinformatics Sequence Alignment Applications

    Hasan, L.

    2011-01-01

    Biological sequence alignment is an important and challenging task in bioinformatics. Alignment may be defined as an arrangement of two or more DNA or protein sequences to highlight the regions of their similarity. Sequence alignment is used to infer the evolutionary relationship between a set of protein or DNA sequences. An accurate alignment can provide valuable information for experimentation on the newly found sequences. It is indispensable in basic research as well as in practical applic...

  15. Inferring comprehensible business/ICT alignment rules.

    Cumps, Bjorn; Martens, David; De Backer, Manu; Haesen, Raf; Viaene, Stijn; Dedene, Guido; Baesens, Bart; Snoeck, Monique

    2009-01-01

    We inferred business rules for business/ICT alignment by applying a novel rule induction algorithm on a data set containing rich alignment information polled from 641 organisations in 7 European countries. The alignment rule set was created using AntMiner+, a rule induction technique with a reputation of inducing accurate, comprehensible, and intuitive predictive models from data. Our data set consisted of 18 alignment practices distilled from an analysis of relevant publications and validate...

  16. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  17. Beyond Alignment

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  18. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.)

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2014-01-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integra...

  19. Image alignment

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  20. A distributed system for fast alignment of next-generation sequencing data

    Srimani, Jaydeep K.; Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  1. Parallel and Scalable Short-Read Alignment on Multi-Core Clusters Using UPC+.

    González-Domínguez, Jorge; Liu, Yongchao; Schmidt, Bertil

    2016-01-01

    The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net). PMID:26731399

  2. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  3. Beam alignment system

    A patent is claimed for the invention of a beam alignment system. The aim of the invention is the obtention of an accurate monitoring of the beam position and direction. It is of great interest in the nuclear industry. The invention can be applied in an infrared laser beam for welding operations. An auxiliar radiation source is incorporated to the device. The system's configuration allows a simultaneous and separated utilisation of two beams. The description and the design of the proposed system are provided

  4. STELLAR: fast and exact local alignments

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  5. Seeking the perfect alignment

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  6. Considerations for clinical read alignment and mutational profiling using next-generation sequencing

    Gavin R Oliver

    2012-07-01

    Full Text Available Next-generation sequencing technologies are increasingly being applied in clinical settings, however the data are characterized by a range of platform-specific artifacts making downstream analysis problematic and error prone. One major application of NGS is in the profiling of clinically relevant mutations whereby sequences are aligned to a reference genome and potential mutations assessed and scored. Accurate sequence alignment is pivotal in reliable assessment of potential mutations however selection of appropriate alignment tools is a non-trivial task complicated by the availability of multiple solutions each with its own performance characteristics. Using BRCA1 as an example, we have simulated and mutated a test dataset based on Illumina sequencing technology. Our findings reveal key differences in the performances of a range of common commercial and open source tools and will be of importance to anyone using NGS to profile mutations in clinical or basic research.

  7. A cross-species alignment tool (CAT)

    Li, Heng; Guan, Liang; Liu, Tao;

    2007-01-01

    sensitive methods which are usually applied in aligning inter-species sequences. RESULTS: Here we present a new algorithm called CAT (for Cross-species Alignment Tool). It is designed to align mRNA sequences to mammalian-sized genomes. CAT is implemented using C scripts and is freely available on the web at...... http://xat.sourceforge.net/. CONCLUSIONS: Examined from different angles, CAT outperforms other extant alignment tools. Tested against all available mouse-human and zebrafish-human orthologs, we demonstrate that CAT combines the specificity and speed of the best intra-species algorithms, like BLAT and...

  8. Multiscale peak alignment for chromatographic datasets.

    Zhang, Zhi-Min; Liang, Yi-Zeng; Lu, Hong-Mei; Tan, Bin-Bin; Xu, Xiao-Na; Ferro, Miguel

    2012-02-01

    Chromatography has been extensively applied in many fields, such as metabolomics and quality control of herbal medicines. Preprocessing, especially peak alignment, is a time-consuming task prior to the extraction of useful information from the datasets by chemometrics and statistics. To accurately and rapidly align shift peaks among one-dimensional chromatograms, multiscale peak alignment (MSPA) is presented in this research. Peaks of each chromatogram were detected based on continuous wavelet transform (CWT) and aligned against a reference chromatogram from large to small scale gradually, and the aligning procedure is accelerated by fast Fourier transform cross correlation. The presented method was compared with two widely used alignment methods on chromatographic dataset, which demonstrates that MSPA can preserve the shapes of peaks and has an excellent speed during alignment. Furthermore, MSPA method is robust and not sensitive to noise and baseline. MSPA was implemented and is available at http://code.google.com/p/mspa. PMID:22222564

  9. Dissecting multiple sequence alignment methods : the analysis, design and development of generic multiple sequence alignment components in SeqAn

    Rausch, T.

    2010-01-01

    Multiple sequence alignments are an indispensable tool in bioinformatics. Many applications rely on accurate multiple alignments, including protein structure prediction, phylogeny and the modeling of binding sites. In this thesis we dissected and analyzed the crucial algorithms and data structures required to construct such a multiple alignment. Based upon that dissection, we present a novel graph-based multiple sequence alignment program and a new method for multi-read alignments occurring i...

  10. Microbial genomic taxonomy

    Cristiane C Thompson; Chimetto, Luciane; Edwards, Robert A.; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes,  70% in silico Genome-to-Genome Hybridization similarity (G...

  11. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.

    Wan-Ping Lee

    Full Text Available MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me.

  12. Fast and sensitive alignment of microbial whole genome sequencing reads to large sequence datasets on a desktop PC: application to metagenomic datasets and pathogen identification.

    Lőrinc S Pongor

    Full Text Available Next generation sequencing (NGS of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2 and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner.

  13. Multiple sequence alignment accuracy and evolutionary distance estimation

    Rosenberg Michael S

    2005-01-01

    Abstract Background Sequence alignment is a common tool in bioinformatics and comparative genomics. It is generally assumed that multiple sequence alignment yields better results than pair wise sequence alignment, but this assumption has rarely been tested, and never with the control provided by simulation analysis. This study used sequence simulation to examine the gain in accuracy of adding a third sequence to a pair wise alignment, particularly concentrating on how the phylogenetic positio...

  14. Alignment-free sequence comparison with spaced k-mers

    Boden, Marcus; Schöneich, Martin; Horwege, Sebastian; Lindner, Sebastian; Leimeister, Chris; Morgenstern, Burkhard

    2013-01-01

    Alignment-free methods are increasingly used for genome analysis and phylogeny reconstruction since they circumvent various difficulties of traditional approaches that rely on multiple sequence alignments. In particular, they are much faster than alignment-based methods. Most alignment-free approaches work by analyzing the k-mer composition of sequences. In this paper, we propose to use 'spaced k-mers', i.e. patterns of deterministic and 'don't care' positions instead of contiguous k-me...

  15. DNA Align Editor: DNA Alignment Editor Tool

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  16. Innovative optical alignment technique for CMP wafers

    Sugaya, Ayako; Kanaya, Yuho; Nakajima, Shinichi; Nagayama, Tadashi; Shiraishi, Naomasa

    2002-07-01

    Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.

  17. nGASP - the nematode genome annotation assessment project

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  18. Desktop aligner for fabrication of multilayer microfluidic devices

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm-1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  19. MGAviewer: a desktop visualization tool for analysis of metagenomics alignment data

    Zhu, Zhengwei; Niu, Beifang; Chen, Jing; Wu, Sitao; Sun, Shulei; Li, Weizhong

    2012-01-01

    Summary: Numerous metagenomics projects have produced tremendous amounts of sequencing data. Aligning these sequences to reference genomes is an essential analysis in metagenomics studies. Large-scale alignment data call for intuitive and efficient visualization tool. However, current tools such as various genome browsers are highly specialized to handle intraspecies mapping results. They are not suitable for alignment data in metagenomics, which are often interspecies alignments. We have dev...

  20. Accurate discrimination of conserved coding and non-coding regions through multiple indicators of evolutionary dynamics

    Pesole Graziano

    2009-09-01

    Full Text Available Abstract Background The conservation of sequences between related genomes has long been recognised as an indication of functional significance and recognition of sequence homology is one of the principal approaches used in the annotation of newly sequenced genomes. In the context of recent findings that the number non-coding transcripts in higher organisms is likely to be much higher than previously imagined, discrimination between conserved coding and non-coding sequences is a topic of considerable interest. Additionally, it should be considered desirable to discriminate between coding and non-coding conserved sequences without recourse to the use of sequence similarity searches of protein databases as such approaches exclude the identification of novel conserved proteins without characterized homologs and may be influenced by the presence in databases of sequences which are erroneously annotated as coding. Results Here we present a machine learning-based approach for the discrimination of conserved coding sequences. Our method calculates various statistics related to the evolutionary dynamics of two aligned sequences. These features are considered by a Support Vector Machine which designates the alignment coding or non-coding with an associated probability score. Conclusion We show that our approach is both sensitive and accurate with respect to comparable methods and illustrate several situations in which it may be applied, including the identification of conserved coding regions in genome sequences and the discrimination of coding from non-coding cDNA sequences.

  1. On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences

    Iriyama, Satoshi; Ohya, Masanori

    2009-02-01

    The alignment of genome sequences or amino acid sequences is one of fundamental operations for the study of life. Usual computational complexity for the multiple alignment of N sequences with common length L by dynamic programming is O(LN). This alignment is considered as one of the NP problems, so that it is desirable to find a nice algorithm of the multiple alignment. Thus in this paper we propose the quantum algorithm for the multiple alignment based on the works12,1,2 in which the NP complete problem was shown to be the P problem by means of quantum algorithm and chaos information dynamics.

  2. Screening synteny blocks in pairwise genome comparisons through integer programming

    Paterson Andrew H

    2011-04-01

    Full Text Available Abstract Background It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. Results We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP, which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes. Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes

  3. MUON DETECTORS: ALIGNMENT

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  4. MUON DETECTORS: ALIGNMENT

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  5. Whole genome phylogenies for multiple Drosophila species

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  6. Fast statistical alignment.

    Robert K Bradley

    2009-05-01

    Full Text Available We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.

  7. Fast statistical alignment.

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  8. Ultra-large alignments using phylogeny-aware profiles.

    Nguyen, Nam-Phuong D; Mirarab, Siavash; Kumar, Keerthana; Warnow, Tandy

    2015-01-01

    Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine learning technique, the ensemble of hidden Markov models, which we propose here. UPP produces highly accurate alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing fragmentary sequences. UPP is available at https://github.com/smirarab/sepp . PMID:26076734

  9. CSA: An efficient algorithm to improve circular DNA multiple alignment

    Pereira Luísa

    2009-07-01

    Full Text Available Abstract Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment

  10. On comparing two structured RNA multiple alignments.

    Patel, Vandanaben; Wang, Jason T L; Setia, Shefali; Verma, Anurag; Warden, Charles D; Zhang, Kaizhong

    2010-12-01

    We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server. PMID:21121021

  11. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  12. Implementation of a parallel protein structure alignment service on cloud.

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  13. A novel approach to multiple sequence alignment using hadoop data grids.

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences. PMID:21224205

  14. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  15. MUON DETECTORS: ALIGNMENT

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  16. Syntenator: Multiple gene order alignments with a gene-specific scoring function

    Dieterich Christoph; Rödelsperger Christian

    2008-01-01

    Abstract Background Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level. Results We present a novel approach to ide...

  17. The Human Genome Browser at UCSC

    Kent, W James; Sugnet, Charles W.; Furey, Terrence S.; Roskin, Krishna M; Pringle, Tom H.; Zahler, Alan M.; Haussler, and David

    2002-01-01

    As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies,...

  18. An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast

    Taneda Akito

    2008-12-01

    Full Text Available Abstract Background Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA discovery. Results We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared S. cerevisiae genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%. By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences. Conclusion The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.

  19. Laser alignment of rotating equipment at PNL

    Lateral vibration in direct-drive equipment is usually caused by misalignment. Over the years, because of the need to improve on techniques and ways of working more efficiently, various types of alignment methods have evolved. In the beginning, craftsmen used a straight-edge scale across the coupling with a feeler gauge measuring the misalignment error. This is still preferred today for aligning small couplings. The industry has since decided that alignment of large direct-drive equipment needed a more accurate type of instrumentation. Rim and face is another of the first alignment methods and is used on all sizes of equipment. A disadvantage of the rim and face method is that in most cases the coupling has to be disassembled. This can cause alignment problems when the coupling is reassembled. Also, the rim and face method is not fast enough to work satisfactorily on alignment of thermally hot equipment. Another concern is that the coupling has to be manufactured accurately for correct rim and face readings. Reverse dial alignment is an improvement over the rim and face method, and depending on the operator's experience, this method can be very accurate. A good training program along with field experience will bring the operator to a proper level of proficiency for a successful program. A hand-held computer with reverse dial calculations in memory is a must for job efficiency. An advantage over the rim and face method is that the coupling is not disassembled and remains locked together. Reverse dial instrumentation measures from both shaft center lines, rather than the coupling surface so the machining of the coupling during manufacture is not a major concern

  20. Fast Statistical Alignment

    Bradley, Robert K.; Adam Roberts; Michael Smoot; Sudeep Juvekar; Jaeyoung Do; Colin Dewey; Ian Holmes; Lior Pachter

    2009-01-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multi...

  1. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  2. Horizontal carbon nanotube alignment.

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  3. Orthodontics and Aligners

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  4. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  5. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    Steven Kelly

    Full Text Available The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  6. Multiple sequence alignment accuracy and evolutionary distance estimation

    Rosenberg Michael S

    2005-11-01

    Full Text Available Abstract Background Sequence alignment is a common tool in bioinformatics and comparative genomics. It is generally assumed that multiple sequence alignment yields better results than pair wise sequence alignment, but this assumption has rarely been tested, and never with the control provided by simulation analysis. This study used sequence simulation to examine the gain in accuracy of adding a third sequence to a pair wise alignment, particularly concentrating on how the phylogenetic position of the additional sequence relative to the first pair changes the accuracy of the initial pair's alignment as well as their estimated evolutionary distance. Results The maximal gain in alignment accuracy was found not when the third sequence is directly intermediate between the initial two sequences, but rather when it perfectly subdivides the branch leading from the root of the tree to one of the original sequences (making it half as close to one sequence as the other. Evolutionary distance estimation in the multiple alignment framework, however, is largely unrelated to alignment accuracy and rather is dependent on the position of the third sequence; the closer the branch leading to the third sequence is to the root of the tree, the larger the estimated distance between the first two sequences. Conclusion The bias in distance estimation appears to be a direct result of the standard greedy progressive algorithm used by many multiple alignment methods. These results have implications for choosing new taxa and genomes to sequence when resources are limited.

  7. MUON DETECTORS: ALIGNMENT

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  8. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  9. MUON DETECTORS: ALIGNMENT

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  10. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  11. Real Interference Alignment

    Motahari, Abolfazl Seyed; Maddah-Ali, Mohammad-Ali; Khandani, Amir Keyvan

    2010-01-01

    In this paper, we show that the total Degrees-Of-Freedoms (DOF) of the $K$-user Gaussian Interference Channel (GIC) can be achieved by incorporating a new alignment technique known as \\emph{real interference alignment}. This technique compared to its ancestor \\emph{vector interference alignment} performs on a single real line and exploits the properties of real numbers to provide optimal signaling. The real interference alignment relies on a new coding scheme in which several data streams having fractional multiplexing gains are sent by transmitters and interfering streams are aligned at receivers. The coding scheme is backed up by a recent result in the field of Diophantine approximation, which states that the convergence part of the Khintchine-Groshev theorem holds for points on non-degenerate manifolds.

  12. BMGE (Block Mapping and Gathering with Entropy: a new software for selection of phylogenetic informative regions from multiple sequence alignments

    Gribaldo Simonetta

    2010-07-01

    Full Text Available Abstract Background The quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step. Results Here is presented a new software, named BMGE (Block Mapping and Gathering with Entropy, that is designed to select regions in a multiple sequence alignment that are suited for phylogenetic inference. For each character, BMGE computes a score closely related to an entropy value. Calculation of these entropy-like scores is weighted with BLOSUM or PAM similarity matrices in order to distinguish among biologically expected and unexpected variability for each aligned character. Sets of contiguous characters with a score above a given threshold are considered as not suited for phylogenetic inference and then removed. Simulation analyses show that the character trimming performed by BMGE produces datasets leading to accurate trees, especially with alignments including distantly-related sequences. BMGE also implements trimming and recoding methods aimed at minimizing phylogeny reconstruction artefacts due to compositional heterogeneity. Conclusions BMGE is able to perform biologically relevant trimming on a multiple alignment of DNA, codon or amino acid sequences. Java source code and executable are freely available at ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/.

  13. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping

    Shi Weisong

    2011-06-01

    Full Text Available Abstract Background Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS. However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. Results To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80% mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http

  14. Galaxy alignments: An overview

    Joachimi, Benjamin; Kitching, Thomas D; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-01-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  15. Alignment for CSR

    Cooled Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) belongs to China great scientific project in China. The alignment for it is very difficult because of very large area and very high accuracy. For the special case in HIRFL-CSR, some new methods and new instruments are used, including the construction of survey control network, the usage of laser tracker, and CSR alignment database system with applications developed to store and analyze data. The author describes the whole procedure of CSR alignment

  16. DivA: detection of non-homologous and very divergent regions in protein sequence alignments

    Zepeda Mendoza, Marie Lisandra; Nygaard, Sanne; Rodrigues da Fonseca, Rute Andreia

    2014-01-01

    Background Sequence alignments are used to find evidence of homology but sometimes contain regions that are difficult to align which can interfere with the quality of the subsequent analyses. Although it is possible to remove problematic regions manually, this is non-practical in large genome scale studies, and the results suffer from irreproducibility arising from subjectivity. Some automated alignment trimming methods have been developed to remove problematic regions in alignments but these...

  17. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data

    Allam, Amin

    2015-07-14

    Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low. Results: We present Karect, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also introduce an improved framework for evaluating the quality of error correction.

  18. Control rod housing alignment and repair method

    This patent describes a method for underwater welding of a control rod drive housing inserted through a stub tube to maintain requisite alignment and elevation of the top of the control rod drive housing to an overlying and corresponding aperture in a core plate as measured by an alignment device which determines the relative elevation and angularity with respect to the aperture. It comprises providing a welding cylinder dependent from the alignment device such that the elevation of the top of the welding cylinder is in a fixed relationship to the alignment device and is gas-proof; pressurizing the welding cylinder with inert welding gas sufficient to maintain the interior of the welding cylinder dry; lowering the welding cylinder through the aperture in the core plate by depending the cylinder with respect to the alignment device, the lowering including lowering through and adjusting the elevation relationship of the welding cylinder to the alignment device such that when the alignment device is in position to measure the elevation and angularity of the new control rod drive housing, the lower distal end of the welding cylinder extends below the upper periphery of the stub where welding is to occur; inserting a new control rod drive housing through the stub tube and positioning the control rod drive housing to a predetermined relationship to the anticipated final position of the control rod drive housing; providing welding implements transversely rotatably mounted interior of the welding cylinder relative to the alignment device such that the welding implements may be accurately positioned for dispensing weldment around the periphery of the top of the stub tube and at the side of the control rod drive housing; measuring the elevation and angularity of the control rod drive housing; and dispensing weldment along the top of the stub tube and at the side of the control rod drive housing

  19. Tidal alignment of galaxies

    Blazek, Jonathan; Seljak, Uroš

    2015-01-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between ...

  20. MUON DETECTORS: ALIGNMENT

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  1. Syntenator: Multiple gene order alignments with a gene-specific scoring function

    Dieterich Christoph

    2008-11-01

    Full Text Available Abstract Background Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level. Results We present a novel approach to identify regions of conserved synteny across multiple genomes. Syntenator represents genomes and alignments thereof as partial order graphs (POGs. These POGs are aligned by a dynamic programming approach employing a gene-specific scoring function. The scoring function reflects the level of protein sequence similarity for each possible gene pair. Our method consistently defines larger homologous regions in pairwise gene order alignments than nucleotide-level comparisons. Our method is superior to methods that work on predefined homology gene sets (as implemented in Blockfinder. Syntenator successfully reproduces 80% of the EnsEMBL man-mouse conserved syntenic blocks. The full potential of our method becomes visible by comparing remotely related genomes and multiple genomes. Gene order alignments potentially resolve up to 75% of the EnsEMBL 1:many orthology relations and 27% of the many:many orthology relations. Conclusion We propose Syntenator as a software solution to reliably infer conserved syntenies among distantly related genomes. The software is available from http://www2.tuebingen.mpg.de/abt4/plone.

  2. ATLAS Muon Endcap Alignment

    Bensinger, J R

    2005-01-01

    To align the endcap muon chambers of the ATLAS experiment, an optical grid is set up between aluminum “alignment bars” nested in each layer of chambers. Optical lines are made of laser diodes and CCD cameras that form an alignment grid. The alignment bars are self-aligning. They are then carefully measured using a large coordinate measuring machine (CMM). The subsequent shape changes of the bar are determined by calculations that are corrected by the readings of the internal monitors. The relationship between the bars is then established by a network of sensors that measure the bearing angle of light sources on the other parts of the system. The system is over-determined and the location and orientation of each bar is determined using a fitting program. Chambers are then referenced to the alignment grid using proximity sensors. This information is used to provide corrections to the nominal chamber positions before calculating track momentum. The performance of the system has been validated in a test beam ...

  3. MUON DETECTORS: ALIGNMENT

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  4. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  5. Using structure to explore the sequence alignment space of remote homologs.

    Andrew Kuziemko

    2011-10-01

    Full Text Available Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  6. HAMSA: Highly Accelerated Multiple Sequence Aligner

    Naglaa M. Reda

    2016-06-01

    Full Text Available For biologists, the existence of an efficient tool for multiple sequence alignment is essential. This work presents a new parallel aligner called HAMSA. HAMSA is a bioinformatics application designed for highly accelerated alignment of multiple sequences of proteins and DNA/RNA on a multi-core cluster system. The design of HAMSA is based on a combination of our new optimized algorithms proposed recently of vectorization, partitioning, and scheduling. It mainly operates on a distance vector instead of a distance matrix. It accomplishes similarity computations and generates the guide tree in a highly accelerated and accurate manner. HAMSA outperforms MSAProbs with 21.9- fold speedup, and ClustalW-MPI of 11-fold speedup. It can be considered as an essential tool for structure prediction, protein classification, motive finding and drug design studies.

  7. Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses.

    Pightling, Arthur W; Petronella, Nicholas; Pagotto, Franco

    2014-01-01

    The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should

  8. Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses.

    Arthur W Pightling

    Full Text Available The wide availability of whole-genome sequencing (WGS and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i depth of sequencing coverage, ii choice of reference-guided short-read sequence assembler, iii choice of reference genome, and iv whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT, using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming. We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers

  9. Scintillation counter: photomultiplier tube alignment

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  10. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  11. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  12. Parameter Identification Method for SINS Initial Alignment under Inertial Frame

    Haijian Xue

    2016-01-01

    Full Text Available The performance of a strapdown inertial navigation system (SINS largely depends on the accuracy and rapidness of the initial alignment. The conventional alignment method with parameter identification has been already applied widely, but it needs to calculate the gyroscope drifts through two-position method; then the time of initial alignment is greatly prolonged. For this issue, a novel self-alignment algorithm by parameter identification method under inertial frame for SINS is proposed in this paper. Firstly, this coarse alignment method using the gravity in the inertial frame as a reference is discussed to overcome the limit of dynamic disturbance on a rocking base and fulfill the requirement for the fine alignment. Secondly, the fine alignment method by parameter identification under inertial frame is formulated. The theoretical analysis results show that the fine alignment model is fully self-aligned with no external reference information and the gyrodrifts can be estimated in real time. The simulation results demonstrate that the proposed method can achieve rapid and highly accurate initial alignment for SINS.

  13. A New Analytic Alignment Method for a SINS

    Caiming Tan

    2015-11-01

    Full Text Available Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration.

  14. Accurate Finite Difference Algorithms

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  15. MaxAlign: maximizing usable data in an alignment

    Pedersen Anders G; Sackett Peter W; Gouveia-Oliveira Rodrigo

    2007-01-01

    Abstract Background The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. Results MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns – the alignment area – by selecting the ...

  16. Anatomically Plausible Surface Alignment and Reconstruction

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...... energy that has earlier proved to be particularly well suited for human surface scans. The method has been tested on full cranial scans of ten test subjects and on several scans of the outer human ear....

  17. Efficient alignment-free DNA barcode analytics

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient ...

  18. Automatic face alignment by maximizing similarity score

    Boom, Bas; Spreeuwers, Luuk; Veldhuis, Raymond; Fred, A.; Jain, A. K.

    2007-01-01

    Accurate face registration is of vital importance to the performance of a face recognition algorithm. We propose a face registration method which searches for the optimal alignment by maximizing the score of a face recognition algorithm. In this paper we investigate the practical usability of our face registration method. Experiments show that our registration method achieves better results in face verification than the landmark based registration method. We even obtain face verification resu...

  19. MUON DETECTORS: ALIGNMENT

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  20. Ergodic Secret Alignment

    Bassily, Raef

    2010-01-01

    In this paper, we introduce two new achievable schemes for the fading multiple access wiretap channel (MAC-WT). In the model that we consider, we assume that perfect knowledge of the state of all channels is available at all the nodes in a causal fashion. Our schemes use this knowledge together with the time varying nature of the channel model to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher dimensionality space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment (SBA)), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment (ESA)). For each scheme, we obtain the resulting achievable secrecy rate region. We show that the secrecy rates achieved by both schemes scale with SNR as 1/2log(SNR...

  1. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  2. Alignment telescope for Antares

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since each telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirement as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 μrad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane

  3. MUON DETECTORS: ALIGNMENT

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  4. RNA Structural Alignments, Part I

    Havgaard, Jakob Hull; Gorodkin, Jan

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...

  5. The CMS Tracker Alignment Strategy

    Weber, Martin

    2006-01-01

    CMS silicon Tracker alignment consists of three key components: Survey during tracker construction, measurements with the Laser Alignment System during operation and track based alignment. Methods and results are explained in detail, with a special focus on track based alignment due to its enormous complexity and numerical challenges.

  6. MUSE optical alignment procedure

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  7. Cactus Graphs for Genome Comparisons

    Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David

    We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

  8. Strategic Alignment of Business Intelligence

    Cederberg, Niclas

    2010-01-01

    This thesis is about the concept of strategic alignment of business intelligence. It is based on a theoretical foundation that is used to define and explain business intelligence, data warehousing and strategic alignment. By combining a number of different methods for strategic alignment a framework for alignment of business intelligence is suggested. This framework addresses all different aspects of business intelligence identified as relevant for strategic alignment of business intelligence...

  9. RHIC survey and alignment

    The Relativistic Heavy Ion Collider consists of two interlaced plane rings, a pair of mirror-symmetric beam injection arcs, a spatially curved beam transfer line from the Alternating Gradient Synchrotron, and a collection of precisely positioned and aligned magnets, on appropriately positioned support stands, threaded on those arcs. RHIC geometry is defined by six beam crossing points exactly in a plane, lying precisely at the vertices of a regular hexagon of specified size position and orientation of this hexagon are defined geodetically. Survey control and alignment procedures, currently in use to construct RHIC, are described

  10. Improving Multiple Sequence Alignments by Revising Sequence Families with Alignment Scoring Approaches

    Levchuk, Aleksandr O.

    2011-01-01

    Characterizing the functional, structural, and evolutionary relationships of biological sequences is an important task in modern genomics and computational biology. Most of these applications involve the assembly of sequence families by similarity searching, subsequent formation of multiple sequence alignments (MSAs) and downstream phylogenetic analyses. Especially, MSAs play a central role in this modeling workflow. Thus, the quality of the MSAs is of critical importance for its success. In ...

  11. Discriminative Shape Alignment

    Loog, M.; de Bruijne, M.

    taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  12. Aligning Mental Representations

    Kano Glückstad, Fumiko

    2013-01-01

    This work introduces a framework that implements asymmetric communication theory proposed by Sperber and Wilson [1]. The framework applies a generalization model known as the Bayesian model of generalization (BMG) [2] for aligning knowledge possessed by two communicating parties. The work focuses...

  13. MUON DETECTORS: ALIGNMENT

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  14. Microbial genomic taxonomy.

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes,  70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  15. Detection of Off-normal Images for NIF Automatic Alignment

    Candy, J V; Awwal, A S; McClay, W A; Ferguson, S W; Burkhart, S C

    2005-07-11

    One of the major purposes of National Ignition Facility at Lawrence Livermore National Laboratory is to accurately focus 192 high energy laser beams on a nanoscale (mm) fusion target at the precise location and time. The automatic alignment system developed for NIF is used to align the beams in order to achieve the required focusing effect. However, if a distorted image is inadvertently created by a faulty camera shutter or some other opto-mechanical malfunction, the resulting image termed ''off-normal'' must be detected and rejected before further alignment processing occurs. Thus the off-normal processor acts as a preprocessor to automatic alignment image processing. In this work, we discuss the development of an ''off-normal'' pre-processor capable of rapidly detecting the off-normal images and performing the rejection. Wide variety of off-normal images for each loop is used to develop the criterion for rejections accurately.

  16. Monitoring, alignment and control of the RICH detectors

    D'Ambrosio, C; Gaspar, C; Laub, M; Lindner, R; Muheim, F; Papanestis, A; Soler, FJP

    2001-01-01

    The physical quantities of the RICH detectors need to be monitored throughout the duration of the experiment to ensure that their performance remains within the design specifications. The present note describes all the physical quantities that need to be monitored and a description of possible devices that could be implemented to achieve the specified level of control. In addition, the angular resolution of the RICH detectors depends on an accurate alignment of the system. Proposals for this alignment procedure are described.

  17. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  18. ABS: Sequence alignment by scanning

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  19. Fast global sequence alignment technique

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  20. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D;

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls......, for imputing sequence variant genotypes into reference sets for genomic prediction. Run 3.0 included 429 sequences, with 31.8 million variants detected. BayesRC, a new method for genomic prediction, addresses some challenges associated with using the sequence data, and takes advantage of biological...... information. In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant...

  1. Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee

    Synnott Keith

    2011-08-01

    Full Text Available Abstract Background Long term survivorship in total knee arthroplasty is significantly dependant on prosthesis alignment. Our aim was determine which alignment guide was more accurate in positioning of the tibial component in total knee arthroplasty. We also aimed to assess whether there was any difference in short term patient outcome. Method A comparison of intramedullary versus extramedullary alignment jig was performed. Radiological alignment of tibial components and patient outcomes of 103 Triathlon total knee arthroplasties were analysed. Results Use of the intramedullary was found to be significantly more accurate in determining coronal alignment (p = 0.02 while use of the extramedullary jig was found to give more accurate results in sagittal alignment (p = 0.04. There was no significant difference in WOMAC or SF-36 at six months. Conclusion Use of an intramedullary jig is preferable for positioning of the tibial component using this knee system.

  2. Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee

    Cashman, James P

    2011-08-20

    Abstract Background Long term survivorship in total knee arthroplasty is significantly dependant on prosthesis alignment. Our aim was determine which alignment guide was more accurate in positioning of the tibial component in total knee arthroplasty. We also aimed to assess whether there was any difference in short term patient outcome. Method A comparison of intramedullary versus extramedullary alignment jig was performed. Radiological alignment of tibial components and patient outcomes of 103 Triathlon total knee arthroplasties were analysed. Results Use of the intramedullary was found to be significantly more accurate in determining coronal alignment (p = 0.02) while use of the extramedullary jig was found to give more accurate results in sagittal alignment (p = 0.04). There was no significant difference in WOMAC or SF-36 at six months. Conclusion Use of an intramedullary jig is preferable for positioning of the tibial component using this knee system.

  3. MaxAlign: maximizing usable data in an alignment

    Pedersen Anders G

    2007-08-01

    Full Text Available Abstract Background The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. Results MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid symbols that are present in gap-free columns – the alignment area – by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS that we consider useful for comparing tree topologies. Conclusion We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.

  4. The diploid genome sequence of an Asian individual

    Wang, Jun; Wang, Wei; Li, Ruiqiang;

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...

  5. Alignments of RNA structures.

    Blin, Guillaume; Denise, Alain; Dulucq, Serge; Herrbach, Claire; Touzet, Hélène

    2010-01-01

    We describe a theoretical unifying framework to express the comparison of RNA structures, which we call alignment hierarchy. This framework relies on the definition of common supersequences for arc-annotated sequences and encompasses the main existing models for RNA structure comparison based on trees and arc-annotated sequences with a variety of edit operations. It also gives rise to edit models that have not been studied yet. We provide a thorough analysis of the alignment hierarchy, including a new polynomial-time algorithm and an NP-completeness proof. The polynomial-time algorithm involves biologically relevant edit operations such as pairing or unpairing nucleotides. It has been implemented in a software, called gardenia, which is available at the Web server http://bioinfo.lifl.fr/RNA/gardenia. PMID:20431150

  6. Jet activity versus alignment

    Lokhtin, I P; Sarycheva, L I; Snigirev, A M

    2005-01-01

    The hypothesis about the relation between the observed alignment of spots in the x-ray film in cosmic ray emulsion experiments and the features of events in which jets prevail at super high energies is tested. Due to strong correlation between jet axis directions and that between momenta (almost collinearity) of jet particles, the evaluated degree of alignment is considerably larger than that at randomly selected chaoticly located spots in the x-ray film. It appears comparable with experimental data provided that the height of primary interaction, the collision energy and the total energy of selected clusters meet certain conditions. The Monte Carlo generator PYTHIA, which basically well describes jet events in hadron-hadron interactions, was used for the analysis.

  7. Inflation by alignment

    Burgess, C.P. [PH -TH Division, CERN,CH-1211, Genève 23 (Switzerland); Department of Physics & Astronomy, McMaster University,1280 Main Street West, Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo ON (Canada); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  8. Alignment of concerns

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn; Moll, Jonas; Nielsen, Karen Dam

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insights...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  9. Nuclear reactor alignment plate configuration

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  10. Alignment at the ESRF

    The ESRF Survey and Alignment group is responsible for the installation, control and periodic realignment of the accelerators and experiments which produce high quality x-rays used by scientists from Europe and around the world. Alignment tolerances are typically less than one millimetre and often in the order of several micrometers. The group is composed of one engineer, five highly trained survey technicians, one electronic and one computer technician. This team is fortified during peak periods by technicians from an external survey company. First an overview and comparative study of the main large-scale survey instrumentation and methods used by the group is made. Secondly a discussion of long term deformation on the ESRF site is presented. This is followed by presentation of the methods used in the realignment of the various machines. Two important aspects of our work, beamline and front-end alignment, and the so-called machine exotic devices are briefly discussed. Finally, the ESRF calibration bench is presented. (authors)

  11. Image correlation method for DNA sequence alignment.

    Millaray Curilem Saldías

    Full Text Available The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs and 100 scenes represented by 100 x 100 images each (in total, one million base pair database were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%, specificity (98.99% and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  12. Semiautomated improvement of RNA alignments

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne;

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily...... the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at (http://sarse.ku.dk)....

  13. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    James J Davis

    2016-02-01

    Full Text Available The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL. This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.

  14. Comparative Genome Viewer

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  15. Alignment as a Teacher Variable

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  16. An Exact Mathematical Programming Approach to Multiple RNA Sequence-Structure Alignment

    Bauer, M.; Klau, Gunnar; Reinert, K.

    2008-01-01

    One of the main tasks in computational biology is the computation of alignments of genomic sequences to reveal their commonalities. In case of DNA or protein sequences, sequence information alone is usually sufficient to compute reliable alignments. RNA molecules, however, build spatial conformations, which can be represented by graph-like secondary structures. Often, secondary structures are more conserved than the actual sequence. Hence, computing reliable alignments of RNA molecules ...

  17. Evaluation and Comparison of Multiple Aligners for Next-Generation Sequencing Data Analysis

    Jing Shang; Fei Zhu; Wanwipa Vongsangnak; Yifei Tang; Wenyu Zhang; Bairong Shen

    2014-01-01

    Next-generation sequencing (NGS) technology has rapidly advanced and generated the massive data volumes. To align and map the NGS data, biologists often randomly select a number of aligners without concerning their suitable feature, high performance, and high accuracy as well as sequence variations and polymorphisms existing on reference genome. This study aims to systematically evaluate and compare the capability of multiple aligners for NGS data analysis. To explore this capability, we firs...

  18. GPCODON ALIGNMENT: A GLOBAL PAIRWISE CODON BASED SEQUENCE ALIGNMENT APPROACH

    Zeinab A. Fareed

    2016-02-01

    Full Text Available The alignment of two DNA sequences is a basic step in the analysis of biological data. Sequencing a long DNA sequence is one of the most interesting problems in bioinformatics. Several techniques have been developed to solve this sequence alignment problem like dynamic programming and heuristic algorithms. In this paper, we introduce (GPCodon alignment a pairwise DNA-DNA method for global sequence alignment that improves the accuracy of pairwise sequence alignment. We use a new scoring matrix to produce the final alignment called the empirical codon substitution matrix. Using this matrix in our technique enabled the discovery of new relationships between sequences that could not be discovered using traditional matrices. In addition, we present experimental results that show the performance of the proposed technique over eleven datasets of average length of 2967 bps. We compared the efficiency and accuracy of our techniques against a comparable tool called “Pairwise Align Codons” [1].

  19. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair. PMID:26253720

  20. Combinatorial Approaches to Accurate Identification of Orthologous Genes

    Shi, Guanqun

    2011-01-01

    The accurate identification of orthologous genes across different species is a critical and challenging problem in comparative genomics and has a wide spectrum of biological applications including gene function inference, evolutionary studies and systems biology. During the past several years, many methods have been proposed for ortholog assignment based on sequence similarity, phylogenetic approaches, synteny information, and genome rearrangement. Although these methods share many commonly a...

  1. High-throughput sequence alignment using Graphics Processing Units

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  2. The CMS Muon System Alignment

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  3. Alignment in hadronic interactions

    Wibig, T

    2000-01-01

    The alignment of the products of very high energy interactions seen in mountain altitude experiments is one of the most puzzling phenomena in cosmic ray physics for quite a long time. The observations of the Pamir and Chacaltaya emulsion chamber groups and by the Tien-Shan extensive air shower experiment, together with a very clear event seen in the Concorde French-Japanese experiment in the stratosphere, makes the experimental basis very substantial. In the present paper a novel possible explanation is put forward.

  4. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. PMID:25625550

  5. All about alignment

    2006-01-01

    The ALICE absorbers, iron wall and superstructure have been installed with great precision. The ALICE front absorber, positioned in the centre of the detector, has been installed and aligned. Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m. In addition to these, ALICE technicians have installed a 300-tonne iron filter wall made of blocks that fit together like large Lego pieces and a surrounding metal support structure to hold the tracking and trigger chambers. The absorbers house the vacuum chamber and are also the reference surface for the positioning of the tracking and trigger chambers. For this reason, the ab...

  6. Computing alignment plots efficiently

    Krusche, Peter

    2009-01-01

    Dot plots are a standard method for local comparison of biological sequences. In a dot plot, a substring to substring distance is computed for all pairs of fixed-size windows in the input strings. Commonly, the Hamming distance is used since it can be computed in linear time. However, the Hamming distance is a rather crude measure of string similarity, and using an alignment-based edit distance can greatly improve the sensitivity of the dot plot method. In this paper, we show how to compute alignment plots of the latter type efficiently. Given two strings of length m and n and a window size w, this problem consists in computing the edit distance between all pairs of substrings of length w, one from each input string. The problem can be solved by repeated application of the standard dynamic programming algorithm in time O(mnw^2). This paper gives an improved data-parallel algorithm, running in time $O(mnw/\\gamma/p)$ using vector operations that work on $\\gamma$ values in parallel and $p$ processors. We show ex...

  7. The accuracy of several multiple sequence alignment programs for proteins

    Tillier Elisabeth RM

    2006-10-01

    Full Text Available Abstract Background There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs. Results We tested nine of the most often used protein alignment programs and compared their results using sequences generated with the simulation software Simprot which creates known alignments under realistic and controlled evolutionary scenarios. We have simulated more than 30000 alignment sets using various evolutionary histories in order to define strengths and weaknesses of each program tested. We found that alignment accuracy is extremely dependent on the number of insertions and deletions in the sequences, and that indel size has a weaker effect. We also considered benchmark alignments from the latest version of BAliBASE and the results relative to BAliBASE- and Simprot-generated data sets were consistent in most cases. Conclusion Our results indicate that employing Simprot's simulated sequences allows the creation of a more flexible and broader range of alignment classes than the usual methods for alignment accuracy assessment. Simprot also allows for a quick and efficient analysis of a wider range of possible evolutionary histories that might not be present in currently available alignment sets. Among the nine programs tested, the iterative approach available in Mafft (L-INS-i and ProbCons were consistently the most accurate, with Mafft being the faster of the two.

  8. Dust alignment in astrophysical environments

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  9. Nuclear reactor internals alignment configuration

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  10. Nova laser alignment control system

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  11. Catalyzing alignment processes

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    time and in combination with other social processes establish more aligned and standardized environmental performance between countries. However, examples of the introduction of environmental management suggests that EMS’ only plays a minor role in developing the actual environmental objectives......This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  12. On aligning trees

    Calder, J

    1997-01-01

    The increasing availability of corpora annotated for linguistic structure prompts the question: if we have the same texts, annotated for phrase structure under two different schemes, to what extent do the annotations agree on structuring within the text? We suggest the term tree alignment to indicate the situation where two markup schemes choose to bracket off the same text elements. We propose a general method for determining agreement between two analyses. We then describe an efficient implementation, which is also modular in that the core of the implementation can be reused regardless of the format of markup used in the corpora. The output of the implementation on the Susanne and Penn treebank corpora is discussed.

  13. GraphAlignment: Bayesian pairwise alignment of biological networks

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  14. High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter

    Chakraborty, Sumita; Affolter, Michael; Gunderson, Kurt; Neubert, Jakob; Thomas, Nicolas; Beck, Thomas; Gerber, Michael; Graf, Stefan; Piazza, Daniele; Pommerol, Antoine; Röthlisberger, Guillaume; Seiferlin, Karsten

    2012-01-01

    The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps o...

  15. Does improved instrumentation result in better component alignment in total knee arthroplasty?

    Mo Hassaballa; Vijaya Budnar; Herbert Gbejuade; Ian Learmonth

    2011-01-01

    Accurate component alignment and joint line reproduction in total knee replacement (TKR) is crucial for successful clinical outcome. Advances in instrumentation and better understanding of the biomechanics can help to achieve better three dimensional alignments of TKR components and joint line restoration. We compared the accuracy of component alignment and joint line restoration with the use of 2 different TKR instrumentation kits (an older Gobot and a newer Xcelerate). Retrospective study o...

  16. The UCSC genome browser database

    Kuhn, R M; Karolchik, D; Zweig, A S;

    2007-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up...... to a full chromosome and includes assembly data, genes and gene predictions, mRNA and EST alignments, and comparative genomics, regulation, expression and variation data. The database is optimized for fast interactive performance with web tools that provide powerful visualization and querying capabilities......; an expanded SNP annotation track; and many new display options. The Genome Browser, other tools, downloadable data files and links to documentation and other information can be found at http://genome.ucsc.edu/....

  17. MaxAlign: maximizing usable data in an alignment

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand...

  18. Accurate pose estimation for forensic identification

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  19. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrat...

  20. MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation Sequencing Short-Read Mapping

    Lee, Wan-Ping; Stromberg, Michael P.; Ward, Alistair; Stewart, Chip; Garrison, Erik P.; Marth, Gabor T.

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the ...

  1. The Saccharomyces Genome Database Variant Viewer.

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556

  2. Lexical alignment in triadic communication

    Anouschka eFoltz

    2015-02-01

    Full Text Available Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment.

  3. In silico reconstruction of viral genomes from small RNAs improves virus-derived small interfering RNA profiling.

    Vodovar, Nicolas; Goic, Bertsy; Blanc, Hervé; Saleh, Maria-Carla

    2011-11-01

    RNA interference (RNAi) is the essential component of antiviral immunity in invertebrates and plants. One of the landmarks of the antiviral RNAi response is the production of virus-derived small interfering RNA (vsiRNA) from viral double-stranded RNA (dsRNA). vsiRNAs constitute a fragmented image of the viral genome sequence that results from Dicer cleavage. vsiRNA sequence profiling is used extensively as a surrogate to study the antiviral RNAi response by determining the nature of the viral dsRNA molecules exposed to and processed by the RNAi machinery. The accuracy of these profiles depends on the actual viral genome sequence used as a reference to align vsiRNA reads, and the interpretation of inaccurate profiles can be misleading. Using Flock house virus and Drosophila melanogaster as a model RNAi-competent organism, we show accurate reconstruction of full-length virus reference sequence from vsiRNAs and prediction of the structure of defective interfering particles (DIs). We developed a Perl script, named Paparazzi, that reconstitutes viral genomes through an iterative alignment/consensus call procedure using a related reference sequence as scaffold. As prevalent DI-derived reads introduce artifacts during reconstruction, Paparazzi eliminates DI-specific reads to improve the quality of the reconstructed genome. Paparazzi constitutes a promising alternative to Sanger sequencing in this context and an effective tool to study antiviral RNAi mechanisms by accurately quantifying vsiRNA along the replicating viral genome. We further discuss Paparazzi as a companion tool for virus discovery as it provides full-length genome sequences and corrects for potential artifacts of assembly. PMID:21880776

  4. In Silico Reconstruction of Viral Genomes from Small RNAs Improves Virus-Derived Small Interfering RNA Profiling ▿ † ‡

    Vodovar, Nicolas; Goic, Bertsy; Blanc, Hervé; Saleh, Maria-Carla

    2011-01-01

    RNA interference (RNAi) is the essential component of antiviral immunity in invertebrates and plants. One of the landmarks of the antiviral RNAi response is the production of virus-derived small interfering RNA (vsiRNA) from viral double-stranded RNA (dsRNA). vsiRNAs constitute a fragmented image of the viral genome sequence that results from Dicer cleavage. vsiRNA sequence profiling is used extensively as a surrogate to study the antiviral RNAi response by determining the nature of the viral dsRNA molecules exposed to and processed by the RNAi machinery. The accuracy of these profiles depends on the actual viral genome sequence used as a reference to align vsiRNA reads, and the interpretation of inaccurate profiles can be misleading. Using Flock house virus and Drosophila melanogaster as a model RNAi-competent organism, we show accurate reconstruction of full-length virus reference sequence from vsiRNAs and prediction of the structure of defective interfering particles (DIs). We developed a Perl script, named Paparazzi, that reconstitutes viral genomes through an iterative alignment/consensus call procedure using a related reference sequence as scaffold. As prevalent DI-derived reads introduce artifacts during reconstruction, Paparazzi eliminates DI-specific reads to improve the quality of the reconstructed genome. Paparazzi constitutes a promising alternative to Sanger sequencing in this context and an effective tool to study antiviral RNAi mechanisms by accurately quantifying vsiRNA along the replicating viral genome. We further discuss Paparazzi as a companion tool for virus discovery as it provides full-length genome sequences and corrects for potential artifacts of assembly. PMID:21880776

  5. Alignments in the nobelium isotopes

    ZHENG Shi-Zie; XU Fu-Rong; YUAN Cen-Xi; QI Chong

    2009-01-01

    Total-Routhian-Surface calculations have been performed to investigate the deformation and align-ment properties of the No isotopes. It is found that normal deformed and superdeformed states in these nuclei can coexist at low excitation energies. In neutron-deficient No isotopes, the superdeformed shapes can even become the ground states. Moreover, we plotted the kinematic moments of inertia of the No isotopes, which follow very nicely available experimental data. It is noted that, as the rotational frequency increases, align-ments develop at hω=0.2-0.3 MeV. Our calculations show that the occupation of the vj orbital plays an important role in the alignments of the No isotopes.

  6. The CMS Silicon Tracker Alignment

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  7. Using Semantic Web Technologies to Annotate and Align Microarray Designs

    Szpakowski, Sebastian; McCusker, James; Krauthammer, Michael

    2009-01-01

    In this paper, we annotate and align two different gene expression microarray designs using the Genomic ELement Ontology (GELO). GELO is a new ontology that leverages an existing community resource, Sequence Ontology (SO), to create views of genomically-aligned data in a semantic web environment. We start the process by mapping array probes to genomic coordinates. The coordinates represent an implicit link between the probes and multiple genomic elements, such as genes, transcripts, miRNA, and repetitive elements, which are represented using concepts in SO. We then use the RDF Query Language (SPARQL) to create explicit links between the probes and the elements. We show how the approach allows us to easily determine the element coverage and genomic overlap of the two array designs. We believe that the method will ultimately be useful for integration of cancer data across multiple omic studies. The ontology and other materials described in this paper are available at http://krauthammerlab.med.yale.edu/wiki/Gelo. PMID:24904201

  8. Using Semantic Web Technologies to Annotate and Align Microarray Designs

    Sebastian Szpakowski

    2009-05-01

    Full Text Available In this paper, we annotate and align two different gene expression microarray designs using the Genomic ELement Ontology (GELO. GELO is a new ontology that leverages an existing community resource, Sequence Ontology (SO, to create views of genomically-aligned data in a semantic web environment. We start the process by mapping array probes to genomic coordinates. The coordinates represent an implicit link between the probes and multiple genomic elements, such as genes, transcripts, miRNA, and repetitive elements, which are represented using concepts in SO. We then use the RDF Query Language (SPARQL to create explicit links between the probes and the elements. We show how the approach allows us to easily determine the element coverage and genomic overlap of the two array designs. We believe that the method will ultimately be useful for integration of cancer data across multiple omic studies. The ontology and other materials described in this paper are available at http://krauthammerlab.med.yale.edu/wiki/Gelo.

  9. Software for computing and annotating genomic ranges.

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  10. Testing the tidal alignment model of galaxy intrinsic alignment

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, wg+; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, wg(rp,θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of wg(rp,θ) is simply wg+(rp)cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution