WorldWideScience

Sample records for accuracy wire scanner

  1. Fast and High Accuracy Wire Scanner

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  2. Twisting wire scanner

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  3. Twisting wire scanner

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  4. Improvements to Existing Jefferson Lab Wire Scanners

    McCaughan, Michael D. [JLAB; Tiefenback, Michael G. [JLAB; Turner, Dennis L. [JLAB

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  5. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  6. Vibration measurements of a wire scanner - Experimental setup and models

    Herranz, Juan; Barjau, Ana; Dehning, Bernd

    2016-03-01

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new performance demands a wire travelling speed up to 20 m s-1 and a position measurement accuracy of the order of 1 μm. The vibrations of the mechanical parts of the system and particularly the vibrations of the thin carbon wire have been identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations has been given high priority for the design and operation of the new device. This article presents a new strategy to measure the wire vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which is directly proportional to the wire elongation caused by the oscillations.

  7. The PS Booster Fast Wire Scanner

    Burger, S; Priestnall, K; Raich, U

    2003-01-01

    The very tight emittance budget for LHC type beams makes precise emittance measurements in the injector complex a necessity. The PS machine uses 2 fast wire scanners per transverse plane for emittance measurement of the circulating beams. In order to ease comparison the same type of wire scanners have been newly installed in the upstream machine, the PS Booster, where each of the 4 rings is equipped with 2 wire scanners measuring the horizontal and vertical profiles. Those wire scanners use new and more modern control and readout electronics featuring dedicated intelligent motor movement controllers, which relieves the very stringent real time constraints due to the very high speed of 20m/s. In order to be able to measure primary beams at the very low injection energy of the Booster (50MeV) secondary emission currents from the wire can be measured as well as secondary particle flows at higher primary particle energies during and after acceleration. The solution adopted for the control of the devices is descri...

  8. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  9. Improvement in measurement accuracy for hybrid scanner

    The capability to provide dense three-dimensional (3D) data (point clouds) at high speed and at high accuracy has made terrestrial laser scanners (TLS) widely used for many purposes especially for documentation, management and analysis. However, similar to other 3D sensors, proper understanding regarding the error sources is necessary to ensure high quality data. A procedure known as calibration is employed to evaluate these errors. This process is crucial for TLS in order to make it suitable for accurate 3D applications (e.g. industrial measurement, reverse engineering and monitoring). Two calibration procedures available for TLS: 1) component, and 2) system calibration. The requirements of special laboratories and tools which are not affordable by most TLS users have become principle drawback for component calibration. In contrast, system calibration only requires a room with appropriate targets. By employing optimal network configuration, this study has performed system calibration through self-calibration for Leica ScanStation C10 scanner. A laboratory with dimensions of 15.5 m × 9 m × 3 m and 138 well-distributed planar targets were used to derive four calibration parameters. Statistical analysis (e.g. t-test) has shown that only two calculated parameters, the constant rangefinder offset error (0.7 mm) and the vertical circle index error (−45.4) were significant for the calibrated scanner. Photogrammetric technique was utilised to calibrate the 3D test points at the calibration field. By using the test points, the residual pattern of raw data and self-calibration results were plotted into the graph to visually demonstrate the improvement in accuracy for Leica ScanStation C10 scanner

  10. Vacuum Actuator and Controller Design for a Fast Wire Scanner

    Dehning, B; Herranz Alvarez, J; Koujili, M; Sirvent Blasco, J L

    2012-01-01

    To cope with increasing requirements in terms of accuracy and beam intensity limits a beam wire scanner (BWS) design is under development for the CERN accelerators complex. The main parameters have been determined; the wire speed should be 20 m·s -1 when interacting with the beam and a beam width determination accuracy of 2µm under the harsh radioactive environment should be reached. To meet this goal, the proposed solution locates all moveable parts of the actuator and the angular sensors in the beam vacuum pipe in order to reduce the friction and to allow a direct position measurement. One absolute positioning sensor will be used for the brushless motor feedback and one custom, high precision incremental design will target the beam size determination. The laboratory tests set up for the actuator and the incremental sensor will be presented along with the motor control feedback loops developed with the DSpace environment using Simulink and MatLab tools. Finally, the development of the digital...

  11. Thermal analysis for wire scanners in the CSNS Linac

    Yang, Tao; Fu, Shinian; Xu, Taoguang; Xu, Zhihong; Meng, Ming; Qiu, Ruiyang; Tian, Jianmin; Zeng, Lei; Li, Peng; Li, Fang; Wang, Biao

    2014-10-01

    3 MeV H- beam from the Radio Frequency Quadrupole (RFQ) will be accelerated to 80 MeV in the CSNS (China Spallation Neutron Source) linear accelerator (Linac). The wire scanner is used to measure the transverse beam profile and the emittance, and the carbon or tungsten wire is considered to use. Thermal analysis of the wire scanners in the Linac is presented in this paper. The maximum temperature (Tm) of the wire decreases as the beam energy increases, and we also calculate the influence of all possible parameters on Tm. Tm of carbon wire is significantly lower than tungsten wire if both the beam parameters and wire geometric parameters are set to the same, which can be attributed to its higher heat capacity and radiant emissivity. In addition, we present the results of sublimation rate of the wire, which show that tungsten wire has a much lower evaporation rate than carbon wire in the same temperature, which can be attributed to the different vapor pressures of the two materials. To limit the thermionic emission, the maximum beam frequency approximately has an exponential relationship with beam rms size at a certain beam pulse width.

  12. LANSCE wire scanner AFE: analysis, design, and fabrication

    The goal of the design LANSCE-R Wire-Scanner Analog Front-end Electronics is to develop a high-performance, dual-axis wire-scanner analog front-end system implemented in a single cRIO module. This new design accommodates macropulse widths as wide as 700 μs at a maximum pulse rate of 120Hz. A lossey integrator is utilized as the integration element to eliminate the requirement for providing gating signals to each wire scanner. The long macropulse and the high repetition rate present conflicting requirements for the design of the integrator. The long macropulse requires a long integration time constant to assure minimum integrator droop for accurate charge integration, and the high repetition rate requires a short time constant to assure adequate integrator reset between macropulses. Also, grounding is a serious concern due to the small signal levels. This paper reviews the basic Wire Scanner AFE system design implemented in the cRIO-module form factor to capture the charge information from the wire sensors and the grounding topology to assure minimum noise contamination of the wire signals.

  13. Beam test of wire scanner beam size monitor

    A beam size monitor for emittance measurement is required to have around 10μm resolution for injector linac, and to have a few tenth μm resolution for an extracted beam from a damping ring in Accelerator Test Facility (ATF). A wire scanner is a one of the candidate of a beam size monitor with a high resolution. The design and development study of the wire scanning stage has been done. The beam test using Tohoku 300MeV Linac was done and the emittance was measured by this wire scanner. A detection of beam size signal was done by a scintillator gamma detector placed at downstream of the wire stage. All of the measurements are taken by the computer. The beam test results are described. (author)

  14. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  15. Mechanical optimisation of a high-precision fast wire scanner at CERN

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  16. Tuning of MEBT-Chopper by using wire scanner monitor

    In J-PARC, a macro pulse with several hundred micro seconds is shaped into a pulse with medium bunch structure of about one MHz, by a RF chopper at MEBT section. The comb-like structured pulse is injected into the following DTL section. The remaining fraction of the beam in the bottom of the comb-like structure, is measured by a wire scanner monitor (with preamplifier) located in the downstream. The remaining fraction (compared to the nominal signal) is of the order of 0.1%. (author)

  17. Secondary particle acquisition system for the CERN beam wire scanners upgrade

    The increasing requirements of CERN experiments make essential the upgrade of beam instrumentation in general, and high accuracy beam profile monitors in particular. The CERN Beam Instrumentation Group has been working during the last years on the Wire Scanners upgrade. These systems cross a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected to reconstruct the beam profile. For the new secondary shower acquisition system, it is necessary to perform very low noise measurements with high dynamic range coverage. The aim is to design a system without tuneable parameters and compatible for any beam wire scanner location at the CERN complex. Polycrystalline chemical vapour deposition diamond detectors (pCVD) are proposed as new detectors for this application because of their radiation hardness, fast response and linearity over a high dynamic range. For the detector readout, the acquisition electronics must be designed to exploit the detector capabilities and perform bunch by bunch measurements at 40MHz. This paper describes the design challenges of such a system, analysing different acquisition possibilities from the signal integrity point of view. The proposed system architecture is shown in detail and the development status presented

  18. EVALUATING PARAMETERS AFFECTING THE GEOREFERENCING ACCURACY OF TERRESTRIAL LASER SCANNERS

    M. Miri

    2012-09-01

    Full Text Available Today laser scanning is used as a powerful technology in measuring various simple and complex objects in cultural heritage applications. Depending on the size and the complexity of the objects, these measurements are usually made from several stations. Similar to all other surveying techniques, the coordinate systems of such measurements need to be registered. For this, a number of retro-reflective targets visible from different stations are used. In practice, the target centres are entered in the computations. The accuracy of the target centres, therefore, need to be high or the final object coordinates might not be of sufficient accuracy. A number of factors including the distance between a target and the laser scanner, the direction of the target surface with respect to the laser scanner beams, the intensity and the number of reflected laser beams affect the accuracy of target centres. In this paper, various tests are carried out to examine the effect of such factors on the accuracy of coordinates obtained for the target centres. The results show that the distance to the laser scanner and the angle between a target surface and the corresponding laser beams have considerable effects on the locational accuracy of the targets.

  19. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  20. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  1. Laser Wire Scanner Basic Process and Perspectives for the CTF's and CLIC Machines

    Lefèvre, T

    2002-01-01

    In a laser wire scanner, the basic idea is to replace the solid wire classically used in a standard wire scanner by a narrow laser beam. The basic process involved is the Thomson-Compton scattering process, where photons are scattered from the laser beam by the incoming electrons. By counting the number of scattered photons or degraded electrons as a function of laser position the bunch profile can be reconstructed. In this note the Compton scattering mechanism is first presented. In the framework of the CLIC project, a laser wire scanner (LWS) could be used as a non-interfering beam profile measurement both on the Drive Beam for a high current electron beam and on the Main Beam for very small electron beam sizes. A design for a LWS on the CTF2 and CTF3 machines is proposed and some considerations for the use of a LWS on the CLIC main beam are also mentioned.

  2. LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS

    A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulses (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.

  3. Laser and electron beam diagnostics with wire scanners in the XUV-seeding experiment at FLASH

    The free-electron laser (FLASH) in Hamburg delivers intense femtosecond laser pulses in the extreme ultra violet and soft X-ray spectral range for many kinds of experiments, like material science and femtochemistry. To improve the FEL properties in terms of spectral stability, a direct seeding experiment (sFLASH), using a high harmonic generation source as a seed laser was installed at FLASH. The longitudinal and transversal overlap of the seed laser and electron beam is crucial for the seeding process. Among others, wire scanners are used for measuring the transverse laser and electron beam profiles, to perform the transverse overlap. Wire scanners are scanning a thin wire across the electron beam or the laser while measuring the interaction between electrons or photons with the wire. The interaction produces a flux of secondary particles, which are detected with beam loss monitors or MCP detectors.

  4. Laser and electron beam diagnostics with wire scanners in the XUV-seeding experiment at FLASH

    Hass, Eugen; Azima, Armin; Curbis, Francesca; Delsim-Hashemi, Hossein; Drescher, Markus; Hipp, Ulrich; Malrezopoulos, Theopilos; Miltchev, Velizar; Mittenzwey, Manuel; Rehders, Marie; Rossbach, Joerg; Roensch-Schulenburg, Juliane; Tarkeshian, Roxana; Wieland, Marek; Boedewaldt, Joern [Universitaet Hamburg (Germany); Bajt, Sasa; Duesterer, Stefan; Honkavaara, Katja; Laarmann, Tim; Schlarb, Holger [DESY, Hamburg (Germany); Khan, S. [DELTA, Dortmund (Germany); Ischebeck, Rasmus [PSI Villigen (Switzerland)

    2011-07-01

    The free-electron laser (FLASH) in Hamburg delivers intense femtosecond laser pulses in the extreme ultra violet and soft X-ray spectral range for many kinds of experiments, like material science and femtochemistry. To improve the FEL properties in terms of spectral stability, a direct seeding experiment (sFLASH), using a high harmonic generation source as a seed laser was installed at FLASH. The longitudinal and transversal overlap of the seed laser and electron beam is crucial for the seeding process. Among others, wire scanners are used for measuring the transverse laser and electron beam profiles, to perform the transverse overlap. Wire scanners are scanning a thin wire across the electron beam or the laser while measuring the interaction between electrons or photons with the wire. The interaction produces a flux of secondary particles, which are detected with beam loss monitors or MCP detectors.

  5. Interpretation of Wire-Scanner asymmetric profiles in a Low-Energy ring

    Cieslak-Kowalska, Magdalena Anna

    2016-01-01

    In the CERN PS Booster, wire-scanner profile measurements performed at injection energy are affected by a strong asymmetry. The shape was reproduced with the code PyORBIT, assuming that the effect is due to the beam evolution during the scans, under the influence of space-charge forces and Multiple Coulomb Scattering at the wire itself. Reproducing the transverse profiles during beam evolution allows to use them reliably as input for simulation benchmarking.

  6. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  7. High dynamic range diamond detector acquisition system for beam wire scanner applications

    The CERN Beam Instrumentation group has been working during the last years on the beam wire scanners upgrade to cope up with the increasing requirements of CERN experiments. These devices are used to measure the beam profile by crossing a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected and correlated with the wire position to reconstruct the beam profile. The upgraded secondary particles acquisition electronics will use polycrystalline chemical vapour deposition (pCVD) diamond detectors for particle shower measurements, with low noise acquisitions performed on the tunnel, near the detector. The digital data is transmitted to the surface through an optical link with the GBT protocol. Two integrator ASICs (ICECAL and QIE10) are being characterized and compared for detector readout with the complete acquisition chain prototype. This contribution presents the project status, the QIE10 front-end performance and the first measurements with the complete acquisition system prototype. In addition, diamond detector signals from particle showers generated by an operational beam wire scanner are analysed and compared with an operational system

  8. On the behavior of a wire of the Wire Scanner in the IPHI diagnosis line

    A proton beam of 3 MeV energy and 100 mA intensity during 200 μs and a period T a second crosses an 150 mm x 33 μm carbon wire. The particles in the packet are distributed according to a di-Gaussian law with σX = 2 mm and σY = 6 mm. In these conditions the wire of the X plane centered in the beam acquires a peak temperature of about 1800 deg. C. The intensity of the secondary electron current recovered on the wire amounts about 306 μA. The thermo-electronic current for a time t = 200 μs (at the period T) has an intensity of 45 μA, i.e. 15% of the nominal signal. These figures for current are orders of magnitude, particularly for the thermo-electronic current where an intervening parameter is affected by a high uncertainty. The calculation method gives the spatial and time distribution of the temperatures by taking into account the radiative and conductive thermic transfers as well as the linearity of the materials characteristics as functions depending on temperature

  9. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  10. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10-3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  11. Sensor modeling, self-calibration and accuracy testing of panoramic cameras and laser scanners

    Amiri Parian, Jafar; Gruen, Armin

    2010-01-01

    Terrestrial Linear Array CCD-based panoramic cameras have been used for purely imaging purposes, but they also have a high potential for use in high accuracy measurement applications. The imaging geometry and the high information content of those images make them suitable candidates for quantitative image analysis. For that a particular sensor model has to be established and the inherent accuracy potential has to be investigated. We developed a sensor model for terrestrial Linear Array-based panoramic cameras by means of a modified bundle adjustment with additional parameters, which models substantial deviations of a real camera from the ideal one. We used 3D straight-line information in addition to tie points to conduct a full calibration and orientation without control point information. Due to the similarity of the operation of laser scanners to panoramic cameras the sensor model of the panoramic cameras was extended for the self-calibration of laser scanners. We present the joint sensor model for panoramic cameras and laser scanners and the results of self-calibration, which indicate a subpixel accuracy level for such highly dynamic systems. Finally we demonstrate the systems' accuracy of two typical panoramic cameras in 3D point positioning, using both a minimal number of control points and a free network adjustment. With these new panoramic imaging devices we have additional powerful sensors for image recording and efficient 3D object modeling.

  12. Performance of wire scanner beam profile monitors to determine the emittance and position of high power CW electron beams of the NBS-Los Alamos racetrack microtron

    The NBS-LANL Race Track Microtron (RTM) injector produces a sub-millimeter diameter, 600 μA, 5 MeV CW electron beam. In order to steer and focus this electron beam and to measure its emittance and energy spread, a system of wire scanner beam profile monitors has been developed. Three wire scanners are mounted in a straight line with approximately one meter spacing for emittance measurements. The fourth wire scanner is positioned after a 450 bending magnet for energy spread measurements

  13. Quantification of terrestrial laser scanner (TLS) elevation accuracy in oil palm plantation for IFSAR improvement

    Muhadi, N. A.; Abdullah, A. F.; Kassim, M. S. M.

    2016-06-01

    In order to ensure the oil palm productivity is high, plantation site should be chosen wisely. Slope is one of the essential factors that need to be taken into consideration when doing a site selection. High quality of plantation area map with elevation information is needed for decision-making especially when dealing with hilly and steep area. Therefore, accurate digital elevation models (DEMs) are required. This research aims to increase the accuracy of Interferometric Synthetic Aperture Radar (IFSAR) by integrating Terrestrial Laser Scanner (TLS) to generate DEMs. However, the focus of this paper is to evaluate the z-value accuracy of TLS data and Real-Time Kinematic GPS (RTK-GPS) as a reference. Besides, this paper studied the importance of filtering process in developing an accurate DEMs. From this study, it has been concluded that the differences of z-values between TLS and IFSAR were small if the points were located on route and when TLS data has been filtered. This paper also concludes that laser scanner (TLS) should be set up on the route to reduce elevation error.

  14. Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    Agapov, I; Blair, G A; Bosser, J; Braun, H H; Bravin, E; Boorman, G; Boogert, S T; Carter, J; D'amico, E; Delerue, N; Howell, D F; Doebert, S; Driouichi, C; Frisch, J; Hutchins, K Honkavaaram S; Kamps, T; Lefevre, T; Lewin, H; Paris, T; Poirier, F; Price, M T; Maccaferi, R; Malton, S; Penn, G; Ross, I N; Ross, M; Schlarb, H; Schmueser, P; Schreiber, S; Sertore, D; Walker, N; Wendt, M; Wittenburg, K

    2014-01-01

    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).

  15. Accuracy of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners

    A study was performed to determine the accuracies and reproducibilities of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners. The nodules were simulated by spherical balls of three diameters (4.8, 9.5, and 16 mm) and two compositions (50 and 100 mg/cc CaCO3 in water-equivalent plastic). All were scanned in a liquid-water-filled container at the center of a water-equivalent-plastic phantom and in air cavities within the same phantom using GE multi-detector CT scanners. The nodules were also scanned within simulated lung regions in an anthropomorphic thorax section phantom that was bolused on both sides with water-equivalent slabs. Results were compared for three scanning protocols--the protocol for the National Lung Screening Trial (NLST), the protocol for the Lung Tissue Research Consortium (LTRC) study, and a high resolution (small pitch, thin slice and small scan interval) higher dose ''gold standard'' protocol. Scans were repeated three times with each protocol to assess reproducibility. The CT numbers of the nodules in water were found to be nearly independent of nodule size. However, the presence and the size of an air cavity surrounding a nodule had a significant effect (e.g., the CT number of a 50 mg/cc nodule was 64 HU in water, 37 HU in a 1.8 cm diameter air cavity, and 19 HU in a 4.4 cm diameter air cavity). This variability of CT number with size of air cavity may affect the results of the LTRC study in which patients are scanned at both full inspiration and full expiration. The CT numbers of the 9.5 and 16 mm diameter nodules within the anthropomorphic phantom were highly reproducible (average standard deviations of 2 HU or less) for all protocols. On the other hand, both accuracy and reproducibility were significantly degraded for the 4.8 mm diameter nodules, especially for the NLST (2.5 mm thickness, 2 mm slice interval) technique. Use of thinner slice (1.25 mm) and slice interval (1.25 mm) scans that can be reconstructed

  16. Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications

    Craig Glennie

    2011-03-01

    Full Text Available The temporal stability and static calibration and analysis of the Velodyne HDL‑64E S2 scanning LiDAR system is discussed and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is updated to include misalignments between the angular encoder and scanner axis of rotation, which are found to be a marginally significant source of error. It is reported that the horizontal and vertical laser offsets cannot reliably be obtained with the current calibration model due to their high correlation with the horizontal and vertical offsets. By analyzing observations from two separate HDL-64E S2 scanners it was found that the temporal stability of the horizontal angle offset is near the quantization level of the encoder, but the vertical angular offset, distance offset and distance scale are slightly larger than expected. This is felt to be due to long term variations in the scanner range, whose root cause is as of yet unidentified. Nevertheless, a temporally averaged calibration dataset for each of the scanners resulted in a 25% improvement in the 3D planar misclosure residual RMSE over the standard factory calibration model.

  17. Test Measurements of a 20 ms-1 Carbon Wire Beam Scanner

    De Freitas, J; Emery, J; Herranz Alvarez, J F; Koujili, M; Ramos, D; Sapinski, M; Ait-Amira, Y; Djerdir, A

    2011-01-01

    This paper pre­sents the de­sign of the ac­tu­a­tor for the fast and high ac­cu­ra­cy Wire Scan­ner sys­tem. The ac­tu­a­tor con­sists of a ro­tary brushless syn­chronous motor with the per­ma­nent mag­net rotor in­stalled in­side the vac­u­um cham­ber and the sta­tor in­stalled out­side. The fork, per­ma­nent mag­net rotor and two an­gu­lar po­si­tion sen­sors are mount­ed on the same axis and lo­cat­ed in­side the beam vac­u­um cham­ber. The system has to re­sist a bake-out tem­per­a­ture of 200 C and ion­iz­ing radi­a­tion up to tenths of kGy/year. Max­i­mum wire trav­el­ling speed of 20 m/s and a po­si­tion mea­sure­ment ac­cu­ra­cy of 4 um is re­quired. Therefore, the sys­tem must avoid gen­er­at­ing vi­bra­tion and electromagnet­ic in­ter­fer­ence. A dig­i­tal feed­back con­troller will allow max­i­mum flex­i­bil­i­ty for the loop pa­ram­e­ters and feeds the 3-phase lin­ear power driv­er. The per­for­mance of the pr...

  18. Comparison of the Accuracy of Canon KU-1 IOL Measurer and VPLUS A/B Scanner in Axial Length Measurement

    Chuyin Chen; Zhende Lin; Bo Feng; Yonghua Li

    2003-01-01

    Purpose: To evaluate the accuracy of Canon KU-1 IOL measurer (Japanese Canon Company) and VPLUS A/B scanner (French Quantel Company) in axial length (AL)measurement.Methods:Canon KU-1 IOL measurer and VPLUS A/B scanner were used to measure axial length of human cataractous eyes before cataract surgery. Two hundred and twentytwo cases (433 eyes) were involved. The results were compared and the postoperative visual acuity, refractive results were recorded during the follow-ups to evaluate the accuracy of the two instruments.Results:In the 222 cases (433 eyes), the absolute value of the measurement differences was 0.4 mm or above in 35 eyes, 0.8 mm or above in 17 eyes, 1.2 mm or above in 12 eyes,2.0mm or above in 5 eyes. The refractive error was less than 2.0D in all patients. The mean values of ocular axial length by the two methods were 23.82 mm and 23.83 mm respectively and the difference had no statistic significance with compared t test ( P=0.902, two tail, or=0.01).Conclusion:The accurate AL measurements can be obtained with the two instruments and the measurement results should be analyzed comprehensively to obtain accurate values in the complicated cases.

  19. Accuracy Comparison of Digital Surface Models Created by Unmanned Aerial Systems Imagery and Terrestrial Laser Scanner

    Naumann, M.; Geist, M.; Bill, R.; Niemeyer, F.; Grenzdörffer, G.

    2013-08-01

    The main focus of the paper is a comparative study in which we have investigated, whether automatically generated digital surface models (DSM) obtained from unmanned aerial systems (UAS) imagery are comparable with DSM obtained from terrestrial laser scanning (TLS). The research is conducted at a pilot dike for coastal engineering. The effort and the achievable accuracy of both DSMs are compared. The error budgets of these two methods are investigated and the models obtained in each case compared against each other.

  20. Geometric accuracy of dynamic MLC tracking with an implantable wired electromagnetic transponder

    Ravkilde, Thomas; Hoejbjerre, Klaus; Fledelius, Walther; Worm, Esben (Dept. of Oncology, Aarhus Univ. Hospital (Denmark)), e-mail: thomravk@rm.dk; Keall, Paul J. (Central Clinical School, Univ. of Sydney (Australia); Dept. of Radiation Oncology, Stanford Univ. (United States)); Poulsen, Per R. (Dept. of Oncology, Aarhus Univ. Hospital (Denmark); Inst. of Clinical Medicine, Aarhus Univ. (Denmark))

    2011-08-15

    Background. Tumor motion during radiotherapy delivery can substantially deteriorate the target dose distribution. A promising method to overcome this problem is dynamic multi-leaf collimator (DMLC) tracking. The purpose of this phantom study was to integrate a wired electromagnetic (EM) transponder localization system with DMLC tracking and to investigate the geometric accuracy of the integrated system. Material and methods. DMLC tracking experiments were performed on a Trilogy accelerator with a prototype DMLC tracking system. A wired implantable EM transponder was mounted on a motion stage with a 3 mm tungsten sphere used for target visualization in continuous portal images. The three dimensional (3D) transponder position signal was used for DMLC aperture adaption. The motion stage was programmed to reproduce eight representative patient-measured trajectories for prostate and for lung tumors. The tracking system latency was determined and prediction was used for the lung tumor trajectories to account for the latency. For each trajectory, three conformal fields with a 10 cm circular MLC aperture and 72 s treatment duration were delivered: (1) a 358 deg arc field; (2) an anterior static field; and (3) a lateral static field. The tracking error was measured as the difference between the marker position and the MLC aperture in the portal images. Results. The tracking system latency was 140 ms. The mean root-mean-square (rms) of the 3D transponder localization error was 0.53/0.54 mm for prostate/lung tumor trajectories. The mean rms of the two dimensional (2D) tracking error was 0.69 mm (prostate) and 0.98 mm (lung tumors) with tracking and 3.4 mm (prostate) and 5.3 mm (lung tumors) without tracking. Conclusions. DMLC tracking was integrated with a wired EM transponder localization system and investigated for arc and static field delivery. The system provides sub-mm geometrical errors for most trajectories

  1. Geometric accuracy of dynamic MLC tracking with an implantable wired electromagnetic transponder

    Background. Tumor motion during radiotherapy delivery can substantially deteriorate the target dose distribution. A promising method to overcome this problem is dynamic multi-leaf collimator (DMLC) tracking. The purpose of this phantom study was to integrate a wired electromagnetic (EM) transponder localization system with DMLC tracking and to investigate the geometric accuracy of the integrated system. Material and methods. DMLC tracking experiments were performed on a Trilogy accelerator with a prototype DMLC tracking system. A wired implantable EM transponder was mounted on a motion stage with a 3 mm tungsten sphere used for target visualization in continuous portal images. The three dimensional (3D) transponder position signal was used for DMLC aperture adaption. The motion stage was programmed to reproduce eight representative patient-measured trajectories for prostate and for lung tumors. The tracking system latency was determined and prediction was used for the lung tumor trajectories to account for the latency. For each trajectory, three conformal fields with a 10 cm circular MLC aperture and 72 s treatment duration were delivered: (1) a 358 deg arc field; (2) an anterior static field; and (3) a lateral static field. The tracking error was measured as the difference between the marker position and the MLC aperture in the portal images. Results. The tracking system latency was 140 ms. The mean root-mean-square (rms) of the 3D transponder localization error was 0.53/0.54 mm for prostate/lung tumor trajectories. The mean rms of the two dimensional (2D) tracking error was 0.69 mm (prostate) and 0.98 mm (lung tumors) with tracking and 3.4 mm (prostate) and 5.3 mm (lung tumors) without tracking. Conclusions. DMLC tracking was integrated with a wired EM transponder localization system and investigated for arc and static field delivery. The system provides sub-mm geometrical errors for most trajectories

  2. A new borehole wire extensometer with high accuracy and stability for observation of local geodynamic processes.

    Mentes, Gy

    2012-01-01

    Very stable and reliable instruments with high accuracy are required in field measurements for continuous monitoring local geodynamic processes, such as tectonic movements, ground motions in landslide prone areas, etc. A sensitive borehole wire extensometer with low energy consumption was developed in the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences to observe very small vertical movements (in the order of a few millimeters) of the upper layer of the soil due to hydrological, meteorological and biological processes. The newly developed instrument eliminates the disadvantages of the borehole wire extensometers which are presently used. Its sensitivity and stability are much higher than these parameters of the previous instruments. The instrument is able to measure distance variations without instrumental drift in a range of 0-4 mm with a resolution of better than 1 μm. Since the effect of the yearly temperature variations can be easily removed from the extensometric data record, the compensation for the short-periodic (daily) thermal effects on the instrument was of high priority during the design of the instrument. This paper describes the construction and calibration of the extensometer. The extensometer was installed for monitoring vertical ground movements due to hydro-meteorological processes on the high loess wall of the Danube River at Dunaföldvár, Hungary. The efficiency of the temperature compensation of the instrument was investigated in detail on the basis of the measured data series. PMID:22299988

  3. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner

    PET reconstruction is key to the quantification of PET data. To our knowledge, no comparative study of reconstruction methods has been performed to date. In this study, we compared reconstruction methods with various filters in terms of their spatial resolution, non-uniformities (NU), recovery coefficients (RCs), and spillover ratios (SORs). In addition, the linearity of reconstructed radioactivity between linearity of measured and true concentrations were also assessed. A Siemens Inveon PET scanner was used in this study. Spatial resolution was measured with NEMA standard by using a 1 mm3 sized 18F point source. Image quality was assessed in terms of NU, RC and SOR. To measure the effect of reconstruction algorithms and filters, data was reconstructed using FBP, 3D reprojection algorithm (3DRP), ordered subset expectation maximization 2D (OSEM 2D), and maximum a posteriori (MAP) with various filters or smoothing factors (β). To assess the linearity of reconstructed radioactivity, image quality phantom filled with 18F was used using FBP, OSEM and MAP (β =1.5 and 5 × 10−5). The highest achievable volumetric resolution was 2.31 mm3 and the highest RCs were obtained when OSEM 2D was used. SOR was 4.87% for air and 3.97% for water, obtained OSEM 2D reconstruction was used. The measured radioactivity of reconstruction image was proportional to the injected one for radioactivity below 16 MBq/ml when FBP or OSEM 2D reconstruction methods were used. By contrast, when the MAP reconstruction method was used, activity of reconstruction image increased proportionally, regardless of the amount of injected radioactivity. When OSEM 2D or FBP were used, the measured radioactivity concentration was reduced by 53% compared with true injected radioactivity for radioactivity <16 MBq/ml. The OSEM 2D reconstruction method provides the highest achievable volumetric resolution and highest RC among all the tested methods and yields a linear relation between the measured and true

  4. High-Precision Surface Inspection: Uncertainty Evaluation within an Accuracy Range of 15μm with Triangulation-based Laser Line Scanners

    Dupuis, Jan; Kuhlmann, Heiner

    2014-06-01

    Triangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

  5. Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional measurement

    Kumar, Jagadeesha; Attridge, Alex; Wood, P. K. C.; Williams, Mark A.

    2011-03-01

    Industrial x-ray computed tomography (CT) scanners are used for non-contact dimensional measurement of small, fragile components and difficult-to-access internal features of castings and mouldings. However, the accuracy and repeatability of measurements are influenced by factors such as cone-beam system geometry, test object configuration, x-ray power, material and size of test object, detector characteristics and data analysis methods. An attempt is made in this work to understand the measurement errors of a CT scanner over the complete scan volume, taking into account only the errors in system geometry and the object configuration within the scanner. A cone-beam simulation model is developed with the radiographic image projection and reconstruction steps. A known amount of errors in geometrical parameters were introduced in the model to understand the effect of geometry of the cone-beam CT system on measurement accuracy for different positions, orientations and sizes of the test object. Simulation analysis shows that the geometrical parameters have a significant influence on the dimensional measurement at specific configurations of the test object. Finally, the importance of system alignment and estimation of correct parameters for accurate CT measurements is outlined based on the analysis.

  6. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (Korea, Republic of)

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  7. Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner

    Quantification accuracy and partial volume effect (PVE) of the Siemens Inveon PET scanner were evaluated. The influence of transmission source activities (40 and 160 MBq) on the quantification accuracy and the PVE were determined. Dynamic range, object size and PVE for different sphere sizes, contrast ratios and positions in the field of view (FOV) were evaluated. The acquired data were reconstructed using different algorithms and correction methods. The activity level of the transmission source and the total emission activity in the FOV strongly influenced the attenuation maps. Reconstruction algorithms, correction methods, object size and location within the FOV had a strong influence on the PVE in all configurations. All evaluated parameters potentially influence the quantification accuracy. Hence, all protocols should be kept constant during a study to allow a comparison between different scans. (paper)

  8. A simple digital-optical system to improve accuracy of hot-wire measurements

    A high precision traverse mechanism with micro-resolution was designed to capture accurately the velocity profile of the very thin turbulent attachment line on a swept body. To ensure that the traverse mechanism could position the hot wire reliably, a simple digital optical system was designed to check the performance of the traverse by measuring the displacement of the hot wire: a vertical displacement of 2.4 µm was achievable and this could be further reduced to 0.6 µm using micro-stepping. Due to the simplicity of the set-up it was equally useful for probe wall positioning and the velocity profiles captured clearly demonstrated that the optical set-up helped in resolving the near wall flow more accurately, regardless of the thinness of the boundary layer. The captured data compare well with the results from similar investigations, with arguably higher precision achieved. (paper)

  9. Research Into the Collimation and Horizontal Axis Errors Influence on the Z+F Laser Scanner Accuracy of Verticality Measurement

    Sawicki, J.; Kowalczyk, M.

    2016-06-01

    Aim of this study was to appoint values of collimation and horizontal axis errors of the laser scanner ZF 5006h owned by Department of Geodesy and Cartography, Warsaw University of Technology, and then to determine the effect of those errors on the results of measurements. An experiment has been performed, involving measurement of the test field , founded in the Main Hall of the Main Building of the Warsaw University of Technology, during which values of instrumental errors of interest were determined. Then, an universal computer program that automates the proposed algorithm and capable of applying corrections to measured target coordinates or even entire point clouds from individual stations, has been developed.

  10. Diagnostic accuracy of state-of-the-art MDCT scanners without gantry tilt in patients with oral and oropharyngeal cancer

    Bannas, Peter, E-mail: p.bannas@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Habermann, Christian R., E-mail: c.habermann@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Jung, Caroline, E-mail: cjung@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Bley, Thorsten A., E-mail: t.bley@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Ittrich, Harald, E-mail: Ittrich@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Adam, Gerhard, E-mail: g.adam@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Koops, Andreas, E-mail: koops@uke.de [Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2012-12-15

    Purpose: Current CT-protocols for staging oral and oropharyngeal cancer include primary transversal slices and secondary tilted slices to avoid artifact-producing regions of dental metalwork. Some of the latest MDCT scanners do not allow gantry tilt. Hence, we assessed the relevance of secondary tilted slices in tumor staging. Materials and methods: Scans of a tiltable 64-row MDCT-scanner of 82 patients with oral or oropharyngeal cancer were retrospectively and independently evaluated twice by three readers: once using the primary transversal scans only, and once taking the transversal and secondary tilted scans into account. Tumor diameters and TN-stage were determined with both methods. Artifacts on transversal scans were analyzed using a 3-point-ranking-scale. Results: Image quality was impaired by severe artifacts in 24% of transversal slices of the oral cavity and in 12% of the oropharynx. The three readers detected an average of 57.7 ± 2.1 of 82 tumors (70%) on transversal CT slices. An average of 6.3 ± 0.6 more tumors (8%) were detected when transversal studies were evaluated in conjunction with secondary tilted slices, leading to a significantly (p = 0.0156–0.0313) increased average detection rate of 64.0 ± 2.0 tumors (78%). Moreover, secondary tilted slices led to a correction of underestimated tumor stages in up to six patients (7.3%). Conclusion: Tilted slices that avoid artifact-producing regions of dental metalwork significantly improve the reader's sensitivity and are of incremental value for staging of oral and oropharyngeal cancers.

  11. Diagnostic accuracy of state-of-the-art MDCT scanners without gantry tilt in patients with oral and oropharyngeal cancer

    Purpose: Current CT-protocols for staging oral and oropharyngeal cancer include primary transversal slices and secondary tilted slices to avoid artifact-producing regions of dental metalwork. Some of the latest MDCT scanners do not allow gantry tilt. Hence, we assessed the relevance of secondary tilted slices in tumor staging. Materials and methods: Scans of a tiltable 64-row MDCT-scanner of 82 patients with oral or oropharyngeal cancer were retrospectively and independently evaluated twice by three readers: once using the primary transversal scans only, and once taking the transversal and secondary tilted scans into account. Tumor diameters and TN-stage were determined with both methods. Artifacts on transversal scans were analyzed using a 3-point-ranking-scale. Results: Image quality was impaired by severe artifacts in 24% of transversal slices of the oral cavity and in 12% of the oropharynx. The three readers detected an average of 57.7 ± 2.1 of 82 tumors (70%) on transversal CT slices. An average of 6.3 ± 0.6 more tumors (8%) were detected when transversal studies were evaluated in conjunction with secondary tilted slices, leading to a significantly (p = 0.0156–0.0313) increased average detection rate of 64.0 ± 2.0 tumors (78%). Moreover, secondary tilted slices led to a correction of underestimated tumor stages in up to six patients (7.3%). Conclusion: Tilted slices that avoid artifact-producing regions of dental metalwork significantly improve the reader's sensitivity and are of incremental value for staging of oral and oropharyngeal cancers.

  12. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 3: ERBE scanner measurement accuracy analysis due to reduced housekeeping data

    Choi, Sang H.; Chrisman, Dan A., Jr.; Halyo, Nesim

    1987-01-01

    The accuracy of scanner measurements was evaluated when the sampling frequency of sensor housekeeping (HK) data was reduced from once every scan to once every eight scans. The resulting increase in uncertainty was greatest for sources with rapid or extreme temperature changes. This analysis focused on the mirror attenuator mosaic (MAM) baffle and plate and scanner radiometer baffle due to their relatively high temperature changes during solar calibrations. Since only solar simulator data were available, the solar temperatures were approximated on these components and the radiative and thermal gradients in the MAM baffle due to reflected sunlight. Of the two cases considered for the MAM plate and baffle temperatures, one uses temperatures obtained from the ground calibration. The other attempt uses temperatures computed from the MAM baffle model. This analysis shows that the heat input variations due largely to the solar radiance and irradiance during a scan cycle are small. It also demonstrates that reasonable intervals longer than the current HK data acquisition interval should not significantly affect the estimation of a radiation field in the sensor field-of-view.

  13. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner

    Purpose: This study was performed to investigate the accuracies of the synthesized monochromatic images and effective atomic number maps obtained with the new GE Discovery CT750 HD CT scanner. Methods: A Gammex-RMI model 467 tissue characterization phantom and the CT number linearity section of a Phantom Laboratory Catphan 600 phantom were scanned using the dual energy (DE) feature on the GE CT750 HD scanner. Synthesized monochromatic images at various energies between 40 and 120 keV and effective atomic number (Zeff) maps were generated. Regions of interest were placed within these images/maps to measure the average monochromatic CT numbers and average Zeff of the materials within these phantoms. The true Zeff values were either supplied by the phantom manufacturer or computed using Mayneord's equation. The linear attenuation coefficients for the true CT numbers were computed using the NIST XCOM program with the input of manufacturer supplied elemental compositions and densities. The effects of small variations in the assumed true densities of the materials were also investigated. Finally, the effect of body size on the accuracies of the synthesized monochromatic CT numbers was investigated using a custom lumbar section phantom with and without an external fat-mimicking ring. Results: Other than the Zeff of the simulated lung inserts in the tissue characterization phantom, which could not be measured by DECT, the Zeff values of all of the other materials in the tissue characterization and Catphan phantoms were accurate to 15%. The accuracies of the synthesized monochromatic CT numbers of the materials in both phantoms varied with energy and material. For the 40-120 keV range, RMS errors between the measured and true CT numbers in the Catphan are 8-25 HU when the true CT numbers were computed using the nominal plastic densities. These RMS errors improve to 3-12 HU for assumed true densities within the nominal density ±0.02 g/cc range. The RMS errors between the

  14. Proton scanner

    The scanner is based on the nuclear scattering of high energy protons by the nucleons (protons and neutrons) included in the atomic nuclei. Because of the wide scattering angle, three coordinates in space of the interaction point can be computed, giving directly three dimensional radiographs. Volumic resolution is of about a few cubic-millimeters. Because the base interaction is the strong nuclear force, the atomic dependence of the information obtained is different from that of the X-ray scanner, for which the base interaction is electro-magnetic force. (orig./VJ)

  15. On Improving Accuracy of Finite-Element Solutions of the Effective-Mass Schrödinger Equation for Interdiffused Quantum Wells and Quantum Wires

    D. B., Topalović; V. V., Arsoski; Pavlović, S.; N. A., Čukarić; Ž. Tadić, M.; F. M., Peeters

    2016-01-01

    We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schrödinger equation. The accuracy of the solution is explored as it varies with the range of the numerical domain. The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires. Also, the model of a linear harmonic oscillator is considered for comparison reasons. It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range, which is thus considered to be optimal. This range is found to depend on the number of mesh nodes N approximately as α0 logeα1(α2N), where the values of the constants α0, α1, and α2 are determined by fitting the numerical data. And the optimal range is found to be a weak function of the diffusion length. Moreover, it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schrödinger equation. Supported by the Ministry of Education, Science, and Technological Development of Serbia and the Flemish fund for Scientific Research (FWO Vlaanderen)

  16. Scanner calibration revisited

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  17. Scanner sipping

    During the 4th routine inspection of Biblis A and B, the new method of 'scanner sipping' - a modified 'wet sipping' technique - has been applied for the first time. The curve of activity release from a fuel element into the water of the sipping box is continuously recorded as a function of temperature. Information on the leaktightness of the fuel element is obtained from the increase with temperature of the activity concentration of selected nuclides. The method gives more accurate information than the common method within a shorter period of time; it helps to distinguish between defects and contamination and, with a 30% shorter time required for the measurements, it helps to save personnel costs. (orig./HP)

  18. Network Security Scanner

    G. MURALI; M.Pranavi; Y.Navateja; K. Bhargavi

    2011-01-01

    Network Security Scanner (NSS) is a tool that allows auditing and monitoring remote network computers for possible vulnerabilities, checks your network for all potential methods that a hacker might use to attack it. Network Security Scanner is a complete networking utilities package that includes a wide range of tools for network security auditing, vulnerability Auditing, scanning, monitoring and more. Network Security Scanner (NSS) is an easy to use, intuitive network security scanner that c...

  19. The Threading Hole Processing Position and Accuracy of Numerical Control Electrospark Wire-electrode Cutting%数控电火花线切割穿丝孔加工位置及精度影响

    王晖; 杨德治

    2011-01-01

    With the mold industry and other manufacturing industry's rapid development, the electrospark wire-electrode cutting of various process parameters such as size precision, surface roughness and so put forward more and more requirements. In the electrospark wire-electrode cutting processing through the wire hole is a frequently encountered problems, threading hole is the starting point of molybdenum wire moving relative to a workpiece, but also the procedures for the implementation of the starting position. The threading hole location on machining accuracy and cutting speed are in a great relationship, this paper lay the threading hole position and accuracy are discussed.%随着模具产业和其它加工制造业的飞速发展,对电火花线切割各项工艺指标如尺寸精度、表面粗糙度等都提出了越来越高的要求。在电火花线切割加工中打穿丝孔是一个经常遇到的基本问题,穿丝孔是钼丝相对于工件运动的起点,同时也是程序执行的起始位置。穿丝孔的位置对于加工精度及切割速度关系甚大,文中就打好穿丝孔位置及精度问题进行了论述。

  20. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.

  1. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV∕u proton∕deuteron low energy beam transport beam line.

    Vainas, B; Eliyahu, I; Weissman, L; Berkovits, D

    2012-02-01

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton∕deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum. PMID:22380317

  2. Recent micro-CT scanner developments at UGCT

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  3. Recent micro-CT scanner developments at UGCT

    Dierick, Manuel, E-mail: Manuel.Dierick@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van Loo, Denis, E-mail: info@XRE.be [XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Masschaele, Bert [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van den Bulcke, Jan [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Van Acker, Joris, E-mail: Joris.VanAcker@UGent.be [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Cnudde, Veerle, E-mail: Veerle.Cnudde@UGent.be [UGCT-SGIG, Department of Geology and Soil Science, Faculty of Sciences, Ghent University, Krijgslaan 281, S8, 9000 Ghent (Belgium); Van Hoorebeke, Luc, E-mail: Luc.VanHoorebeke@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium)

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kV{sub max}) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  4. Recent micro-CT scanner developments at UGCT

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results

  5. Verification of a CT scanner using a miniature step gauge

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S; Müller, Pavel; De Chiffre, Leonardo

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning in dimensional metrology. Influence of workpiece orientation, magnification, source-object-detector distances and surface extraction method on metrological performances of a CT scanner was evaluated. Resu...

  6. Scanner matching optimization

    Kupers, Michiel; Klingbeil, Patrick; Tschischgale, Joerg; Buhl, Stefan; Hempel, Fritjof

    2009-03-01

    Cost of ownership of scanners for the manufacturing of front end layers is becoming increasingly expensive. The ability to quickly switch the production of a layer to another scanner in case it is down is important. This paper presents a method to match the scanner grids in the most optimal manner so that use of front end scanners in effect becomes interchangeable. A breakdown of the various components of overlay is given and we discuss methods to optimize the matching strategy in the fab. A concern here is how to separate the scanner and process induced effects. We look at the relative contributions of intrafield and interfield errors caused by the scanner and the process. Experimental results of a method to control the scanner grid are presented and discussed. We compare the overlay results before and after optimizing the scanner grids and show that the matching penalty is reduced by 20%. We conclude with some thoughts on the need to correct the remaining matching errors.

  7. Verification of a CT scanner using a miniature step gauge

    Cantatore, Angela; Andreasen, J.L.; Carmignato, S.; Müller, Pavel; De Chiffre, Leonardo

    2011-01-01

    The work deals with performance verification of a CT scanner using a 42mm miniature replica step gauge developed for optical scanner verification. Errors quantification and optimization of CT system set-up in terms of resolution and measurement accuracy are fundamental for use of CT scanning in d...

  8. Gaseous wire detectors

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations

  9. Colorimetric Scanner Characterisation

    Jon Y. Hardeberg

    2003-12-01

    Full Text Available In this paper, methods for the colorimetric characterisation of colour scanners are proposed and evaluated. These methods apply equally to other colour image input devices such as digital cameras. The goal of our characterisation is to establish the relationship between the device-dependent colour space of the scanner and the device-independent CIELAB colour space. The scanner characterisation is based on polynomial regression techniques. Several regression schemes have been tested. The retained method consists in applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D polynomial regression function directly to CIELAB space. This method gives very good results in terms of residual colour differences. This is partly due to the fact that the RMS error that is minimised in the regression corresponds to ΔE*ab which is well correlated to visual colour differences.

  10. Measuring PET scanner sensitivity

    Sensitivity parameters derived from a plot of a scanner's true coincidence count (TCC) rates as a function of activity in a 20 cm cylindrical phantom have no direct link to image quality. Noise equivalent count (NEC) rate curves, which incorporate the noise effects of subtracting the randoms and scatter count components provide a direct link between image signal-to-noise ratios and the scatter, randoms and trues coincidence count rates. The authors have measured TCC and NEC curves with a standardized 20 cm diameter nylon cylinder for five different PET scanners with several scanner-collimator combinations. In addition, the authors have compared TCC and NEC curves on one scanner with those from an Alderson brain phantom

  11. wire chamber

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Characterization of color scanners based on SVR

    Li, Bin; Zhang, Yi-xin

    2012-01-01

    By researching the principle of colorimetric characterization method and Support Vector Regression (SVR), we analyze the feasibility of nonlinear transformation from scanner RGB color space to CIELAB color space based on SVR and built a new characterization model. Then we use the MATLABR2009a software to make a data simulation experiment to verify the accuracy of this model and figure out the color differences by CIEDE2000 color difference formula. Based on CIEDE2000 color difference formula, the average, the maximum and the minimum color differences of the training set are 1.2376, 2.5593 and 0.2182, the average, the maximum and the minimum color differences of the text set are 1.9318, 4.1421 and 0.4228. From the experimental results, we can make a conclusion that SVR can realize the nonlinear transformation from scanner RGB color space to CIELAB color space and the model satisfies the accuracy of scanner characterization. Therefore, SVR can be used into the color scanner characterization management.

  13. Analysis of a low-aberration holographic scanner.

    Shiozawa, T; Iwaoka, H

    1988-05-15

    Low-aberration holographic scanners that eliminate the need tor lenses or mirrors promise to greatly reduce the cost of laser printers and image scanners. This paper describes how the spot profile of such a scanner can be predicted using the Fresnel-Kirchhoff diffraction integral, and the diffraction efficiency of the scanner can be predicted using Kogelnik's coupled-wave theory. Experimental results verity the accuracy of these design methods. For a prototype scanner used in a high-resolution He-Ne laser printer, the measured linearity error was under +/- 100 microm, and the spot size (half-intensity beamwidth) was under 60 microm for a span (scan width) of 280 mm. PMID:20531695

  14. Ionization beam scanner

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  15. Freestanding Complex Optical Scanners.

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  16. Network Security Scanner

    G. Murali

    2011-11-01

    Full Text Available Network Security Scanner (NSS is a tool that allows auditing and monitoring remote network computers for possible vulnerabilities, checks your network for all potential methods that a hacker might use to attack it. Network Security Scanner is a complete networking utilities package that includes a wide range of tools for network security auditing, vulnerability Auditing, scanning, monitoring and more. Network Security Scanner (NSS is an easy to use, intuitive network security scanner that can quickly scan and audit your network computers for vulnerabilities, exploits, and information enumerations. Vulnerability management is an on-going process that protects your valuable data and it is a key component of an effective information security strategy, which provides comprehensive, preemptive protection against threats to your enterprise security. N.S.S is built on an architecture that allows for high reliability and scalability that caters for both medium and large sized networks. NSS consists of six modules. They are Host Scanning, Port Scanning, Pinging, NSLookup, Vulnerability Auditing and Trace route. NSS also performs live host detection, operating system identification, SNMP Auditing. Finds rouge services and open TCP and UDP ports. The ability varies to perform scanning over the network identifying the live hosts and guess the operating system of the remote hosts and installed programs into the remote hosts. Apart identifying the live hosts we could map the ports and list the services which are running in the host.

  17. Microarray Scanner for Fluorescence Detection

    2003-01-01

    A novel pseudo confocal microarray scanner is introduced, in which one dimension scanning is performed by a galvanometer optical scanner and a telecentric objective, another dimension scanning is performed by a stepping motor.

  18. Current Concept of Geometrical Accuracy

    Görög Augustín; Görögová Ingrid

    2014-01-01

    Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutter´s geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners). During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the fiel...

  19. Wire Chamber

    1986-01-01

    Two wire chambers made originally for the R807 Experiment at CERN's Intersecting Storage Rings. In 1986 they were used for the PS 201 experiment (Obelix Experiment) at LEAR, the Low Energy Antiproton Ring. The group of researchers from Turin, using the chambers at that time, changed the acquisition system using for the first time 8 bit (10 bit non linear) analog to digital conversion for incoming signals from the chambers. The acquisition system was controlled by 54 CPU and 80 digital signal processors. The power required for all the electronics was 40 kW. For the period, this system was one of the most powerful on-line apparatus in the world. The Obelix Experiment was closed in 1996. To find more about how a wire chamber works, see the description for object CERN-OBJ-DE-038.

  20. Extension of a thin-wire algorithm for wires moved laterally within a mesh

    Burke, G J; Steich, D J

    1998-11-01

    It was shown that the accuracy of results for wires moved laterally from mesh edges can be greatly improved by taking account of the behavior of the field in the vicinity of the wire. Also, the distance to the end of the wire can be adjusted within a cell by using a general second-order difference form for the derivative. Making the wire location completely independent of the mesh would require the additional ability to tilt the wire with respect to the edges. This seems to be a considerably more difficult problem than moving the wires laterally, since the component of the mesh field parallel to the wire gets mixed with the larger radial electric field due to charge on the wire. Simply averaging the mesh fields did not seem to work well, except in the case where the wire was tilted in one coordinate plane, and the mesh fields above and below the plane of the wire, on edges orthogonal to the wire normal, could be averaged. Further study is needed to develop a more general capability to tilt a wire with respect to the mesh.

  1. Coronary calcium scoring: modelling, predicting and correcting for the effect of CT scanner spatial resolution on Agatston and volume scores

    The purpose of this study was to evaluate the impact of spatial resolution on coronary calcium scoring by x-ray CT, to assess the scoring performance of different CT scanners as they are operated in the field and to correct for the effects of CT scanner spatial resolution on coronary calcium scoring. A phantom consisting of five aluminium wires of known diameter in water was used to measure spatial resolution and to assess scoring performance. Fourteen CT scanners (three helical, two dual, two electron-beam and seven multi-detector) from four manufacturers were evaluated, some under different operating conditions. One scanner was monitored over a 3 month period and again 6 months later. Both spatial resolution and image pixel size significantly affect calcium scoring results. Spatial resolution can be measured with a precision of about 2%. Scanner spatial resolution ranged from 1 to 1.7 mm full-width-half-maximum (FWHM), and pixel size from 0.25 to 0.86 mm. Spatial resolution differences introduce systematic scoring differences that range from 38% to 1100% depending on wire size. Significant temporal variations in spatial resolution were observed in the monitored scanner. By correcting all the scanners to the same target spatial resolution, the standard deviation of individual scanners with respect to a mean value (the spread) can be reduced by 25-70% for different wires. In conclusion, scanner spatial resolution significantly affects calcium scoring and should be controlled for. Scanner performance can change over time. Under ideal conditions, CT scanners should be operated with a standard spatial resolution for calcium scoring. When this is not possible, post-processing correction is a viable alternative

  2. Unconventional applications of wire bonding create opportunities for microsystem integration

    Automatic wire bonding is a highly mature, cost-efficient and broadly available back-end process, intended to create electrical interconnections in semiconductor chip packaging. Modern production wire-bonding tools can bond wires with speeds of up to 30 bonds per second with placement accuracies of better than 2 μm, and the ability to form each wire individually into a desired shape. These features render wire bonding a versatile tool also for integrating wires in applications other than electrical interconnections. Wire bonding has been adapted and used to implement a variety of innovative microstructures. This paper reviews unconventional uses and applications of wire bonding that have been reported in the literature. The used wire-bonding techniques and materials are discussed, and the implemented applications are presented. They include the realization and integration of coils, transformers, inductors, antennas, electrodes, through silicon vias, plugs, liquid and vacuum seals, plastic fibers, shape memory alloy actuators, energy harvesters and sensors. (topical review)

  3. The cobalt-60 container scanner

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  4. Voxel-based classification of FDG PET in dementia using inter-scanner normalization.

    Thiele, Frank; Young, Stewart; Buchert, Ralph; Wenzel, Fabian

    2013-08-15

    Statistical mapping of FDG PET brain images has become a common tool in differential diagnosis of patients with dementia. We present a voxel-based classification system of neurodegenerative dementias based on partial least squares (PLS). Such a classifier relies on image databases of normal controls and dementia cases as training data. Variations in PET image characteristics can be expected between databases, for example due to differences in instrumentation, patient preparation, and image reconstruction. This study evaluates (i) the impact of databases from different scanners on classification accuracy and (ii) a method to improve inter-scanner classification. Brain FDG PET databases from three scanners (A, B, C) at two clinical sites were evaluated. Diagnostic categories included normal controls (NC, nA=26, nB=20, nC=24 for each scanner respectively), Alzheimer's disease (AD, nA=44, nB=11, nC=16), and frontotemporal dementia (FTD, nA=13, nB=13, nC=5). Spatially normalized images were classified as NC, AD, or FTD using partial least squares. Supervised learning was employed to determine classifier parameters, whereby available data is sub-divided into training and test sets. Four different database setups were evaluated: (i) "in-scanner": training and test data from the same scanner, (ii) "x-scanner": training and test data from different scanners, (iii) "train other": train on both x-scanners, and (iv) "train all": train on all scanners. In order to moderate the impact of inter-scanner variations on image evaluation, voxel-by-voxel scaling was applied based on "ratio images". Good classification accuracy of on average 94% was achieved for the in-scanner setups. Accuracy deteriorated for setups with mismatched scanners (79-91%). Ratio-image normalization improved all results with mismatched scanners (85-92%). In conclusion, automatic classification of individual FDG PET in differential diagnosis of dementia is feasible. Accuracy can vary with respect to scanner or

  5. Industrial CT scanner, TOSCANER-3000

    By the combined use of techniques of medical CT scanner and industrial X ray, development was made of a novel industrial CT scanner first in Japan, with plastics, ceramics, rubber, aluminium etc. for the subject. Being able to produce fine tomograms in a short time, to memorize and reserve test data, and to analyze the tomograms by means of rich functions of image processing, it can be widely utilized for quality control and inspection of products. (author)

  6. Nogle muligheder i scanner data

    Juhl, Hans Jørn

    2000-01-01

    I artiklen gives en diskussion af en række af de muligheder for effektivisering af marketingaktiviteter, der er til stede for såvel mærkevareudbyder som detaillist, ved udnyttelse af information fra scanner data......I artiklen gives en diskussion af en række af de muligheder for effektivisering af marketingaktiviteter, der er til stede for såvel mærkevareudbyder som detaillist, ved udnyttelse af information fra scanner data...

  7. Densitometry of autoradiographs by scanner

    One of the advantages of the autoradiography technique is the possibility of obtaining the distribution of the chemical elements over the whole surface samples. A method for transformation of the autoradiography image into an electronic format with the use of the digital document scanners of different types has been developed for computer analysis purposes. It is shown that the technique developed allows us to obtain the two-dimensional distribution of optical density of autoradiograms, replacing one-dimensional densitometry with the using of a microphotometer. A comparison with conventional densitometry is presented. In our work we examined both Small Office Home Office (SOHO) and drum type scanners. Drum scanners give a linear response within a wide range of optical density (up to 2.5), whereas SOHO-scanners possess a linear dependence characteristics up to 0.5. We have demonstrated that the response of SOHO-scanners can be approximated reasonably well by an exponential dependence permitting the optical density measurement to be extended to 2. The effects of the driver as well as of other parameters (gamma, contrast, brightness, filters and etc.) on the final image were studied. The digital scanners were used as tools for 2-D densitometry to investigate the distribution of Co, Fe, Pt and Ir bearing phases in geological samples

  8. REMEDY OF WIRE LAG IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM)

    Sinha, S. K.

    2010-01-01

    WEDM is extensively used these days for generating complex geometries with tight tolerances on difficult-tomachine materials. Therefore, demand for improvement in precision has been ever increasing. The main source of inaccuracy is wire-lag, the cause and effect of which is well-known. Research has been going on to overcome this drawback. So far, the techniques suggested for improvement in accuracy are, in general, based on monitoring the machining process at hardware-level, which is not only...

  9. EFFECTS OF WIRE LAG IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM

    S. K. SINHA

    2010-11-01

    Full Text Available WEDM is very useful wherever complex geometry with tight tolerances needs to be generated on hard materials. In view of modern and sophisticated technology readily available these days, the expectation of accuracy in WEDM is ever-increasing, and therefore, techniques for the improvement in WEDM must be developed. The main cause of inaccuracy is wire-lag, the cause and effect of which is described in the present work, along with a technique to obviate the problem in straight cutting. In a subsequent paper, a software approach (since the problem gets too complicated for improvement of accuracy in contour cutting is described.

  10. Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line Scanner Data

    Barbara Koch

    2011-05-01

    Full Text Available So far, only a few studies have been carried out in central European forests to estimate individual tree stem volume of pine trees from high resolution remote sensing data. In this article information derived from airborne laser scanner and multispectral line scanner data were tested to predict the stem volume of 178 pines (Pinus sylvestris in a study site in the south-west of Germany. First, tree crowns were automatically delineated using both multispectral and laser scanner data. Next, tree height, crown diameter and crown volume were derived for each crown segment. All combinations of the derived tree features were used as explanatory variables in allometric models to predict the stem volume. A model with tree height and crown diameter had the best performance with respect to the prediction accuracy determined by a leave-one-out cross-validation: Root Mean Square Error (RMSE = 24.02% and Bias = 1.36%.

  11. Aircraft Scanners = NASA Digital Aerial Scanners (TMS, TIMS, NS001): Pre 1996

    U.S. Geological Survey, Department of the Interior — The Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners including NS-001 Mutispectral scanner, Daedalus thematic mapper...

  12. Measurement of MRI scanner noise

    The present paper describes a simple method for the analysis of MRI scanner noise. Besides the heating of body tissue by strong RF radiation and the formation of circular currents in the body induced bey switching field gradients, a noise level of more than 100 dB(A) during the measurement belongs to the potential risks of MRI [1,2]. This risk is of particular concern for staff and accompanying persons who remain close to the scanner for different reasons (e.g., monitoring of anesthetized patients, reassuring of children). For this reason, and given the scanty information on noise provided in the manuals of the scanners, it is useful to quantify the noise level more exactly. This applies also to the evaluation of different sound-reducing methods for the patient. This presents the results of noise level measurements in the tomograph and in its surrounding, with and without noise reduction by headphones. (orig.)

  13. Geometric calibration between PET scanner and structured light scanner

    Kjer, Hans Martin; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold;

    2011-01-01

    is a structured light scanner placed just above the patient tunnel on the High Resolution Research Tomograph (HRRT, Siemens). It continuously registers point clouds of a part of the patient's face. The relative motion is estimated as the rigid transformation between frames. A geometric calibration...

  14. Temporal analysis of multispectral scanner data.

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  15. An RF dosimeter for independent SAR measurement in MRI scanners

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  16. Barcode scanner for ring dosemeters

    A barcode scanner for circular bar codes was developed as an additional module for a dosimeter-reader manufactured in the USA. The new scanner had to fulfill all existing interface specifications (power supply, serial interface) to be integrated seamlessly into the existing instrument. The size of the barcode reader had to be compact enough to fit into the instrument without the need for additional external components. The barcode scanner has been realized using image processing technology. The system is designed in a way to fulfill all the functions of the 'old' laser barcode scanner (decoding of linear codes) plus the additional function of decoding circular barcodes in parallel. The system consists of CCD (charge coupled device) camera, infrared illumination, image processing hardware (frame grabber) and computer. The computer runs an image processing software developed in C. The result of the development effort is a fully functional prototype that is to be adapted for serial production (with minor modifications) by the US-manufacturer. (author)

  17. Automatic inventory of components by laser 3D scanner

    One of the existing needs in nuclear decommissioning projects is to provide an inventory of components to be dismantled, which is available from its spatial location and elements that exist in your environment. The Laser scanner technology is a system of data acquisition that allows 3D models composed of millions of points, it's models with pinpoint accuracy and are available in a very short space of time. (Author)

  18. Wire bonding in microelectronics

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  19. A virtual spectral CT scanner

    Full text: Spectral computed tomography (sCT) brings a promise of improved tissue discrimination when compared to conventional CT. At the heart of this new technology are energy selective photon counting detectors (PCD) combined with theorics on how to select optimal energy bins for discriminating two or more materials. Several theories have been published on how to select these energy bins, but so far the diagnostic utility of optimised sCT has not been fully exploited. This work presents a first step towards a virtual sCT scanner based on the well bench marked BEAMnrc Monte Carlo code and the computer power of the University of Canterbury BlueFern supe computer. A computational model of a recently developed sCT scanner (MARS-CT) has been developed to produce virtual X-ray projection data through an imaging object. The energy and position of all transmitted photons impinging on the detector plane can be extracted without the additional complications introduced by non ideal behaviour (such as charge-sharing) of current detectors. The photons are grouped into selective energy bins to produce energy selective projection images of the imaging object (see Fig. I). This enables the comparison of conventional CT with optimised spectral CT. Furthermore, the virtual sCT scanner is an ideal tool to compare and evaluate the different theoretical models (which optimise different metrics) in terms of relevant clinical parameters such as image contrast. In further work we are planning to include the physical limitations of the detector so the virtual sCT scanner closely resembles the MARS CT scanner.

  20. Laser Wire Stripper

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  1. 21 CFR 892.1220 - Fluorescent scanner.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended to measure the induced fluorescent radiation in the body by...

  2. Application of intra-oral dental scanners in the digital workflow of implantology

    Meer, van der, D; Andriessen, F.S.; Wismeijer, D.; Ren, Y.

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona), the iTero (Cadent) and the Lava COS (3M). In software the digital files were imported and the distance between the centres of the cylinders and the angulation b...

  3. Application of Intra-Oral Dental Scanners in the Digital Workflow of Implantology

    Wicher J van der Meer; Frank S Andriessen; Daniel Wismeijer; Yijin Ren

    2012-01-01

    Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona), the iTero (Cadent) and the Lava COS (3M). In software the digital files were imported and the distance between the centres of the cylinders and the angulation b...

  4. Scanner color management model based on improved back-propagation neural network

    Xinwu Li

    2008-01-01

    Scanner color management is one of the key techniques for color reproduction in information optics.A new scanner color management model is presented based on analyzing rendering principle of scanning objects.In this model,a standard color target is taken as experimental sample.Color blocks in color shade area are used to substitute complete color space to solve the difficulties in selecting experimental color blocks.Immune genetic algorithm is used to correct back-propagation neural network(BPNN)to speed up the convergence of the model.Experimental results show that the model can improve the accuracy of scanner color management.

  5. Effect of wire shape on wire array discharge

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  6. Free-space wavelength-multiplexed optical scanner demonstration.

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively. PMID:12224780

  7. A New Proton CT Scanner

    Coutrakon, G; Boi, S; Dyshkant, A; Erdelyi, B; Hedin, D; Johnson, E; Krider, J; Rykalin, V; Uzunyan, S A; Zutshi, V; Fordt, R; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P; Naimuddin, M

    2014-01-01

    The design, construction, and preliminary testing of a second generation proton CT scanner is presented. All current treatment planning systems at proton therapy centers use X-ray CT as the primary imaging modality for treatment planning to calculate doses to tumor and healthy tissues. One of the limitations of X-ray CT is in the conversion of X-ray attenuation coefficients to relative (proton) stopping powers, or RSP. This results in more proton range uncertainty, larger target volumes and therefore, more dose to healthy tissues. To help improve this, we present a novel scanner capable of high dose rates, up to 2~MHz, and large area coverage, 20~x~24~cm$^2$, for imaging an adult head phantom and reconstructing more accurate RSP values.

  8. Design of a multisensor optical surface scanner

    Bhatia, Gulab H.; Smith, Kirk E.; Commean, Paul K.; Whitestone, Jennifer J.; Vannier, Michael W.

    1994-10-01

    A reconfigurable, optical, 3D scanning system with sub-second acquisition of human body surface data was designed and simulated. Sensor elements (digital cameras/light beam projectors) that meet resolution, accuracy, and speed requirements are included in the system design. The sensors are interfaced to video frame grabber(s) under computer control resulting in a modular, low cost system. System operation and data processing are performed using a desktop graphics workstation. Surface data collected with this system can be oversampled to improve resolution and accuracy (viewed by overlapping camera/projector pairs). Multi- resolution data can be collected for different surfaces simultaneously or separately. Modeling and calibration of this reconfigurable system are achieved via a robust optimal estimation technique. Reconstruction software that allows seamless merging of a range data from multiple sensors has been implemented. Laser scanners that acquire body surface range data using one or two sensors require several seconds for data collection. Surface digitization of inaminate objects is feasible with such devices, but their use in human surface metrology is limited due to motion artifacts and occluded surfaces. Use of multiple, independent active sensors providing rapid collection and multi-resolution data enable sampling of complex human surface morphology not otherwise practical. 3D facial surface data has provided accurate measurements used in facial/craniofacial plastic surgery and modern personal protective equipment systems. Whole body data obtained with this new system is applicable to human factors research, medical diagnosis/treatment, and industrial design.

  9. REMEDY OF WIRE LAG IN WIRE ELECTRICAL DISCHARGE MACHINING (WEDM

    S. K. SINHA

    2010-12-01

    Full Text Available WEDM is extensively used these days for generating complex geometries with tight tolerances on difficult-tomachine materials. Therefore, demand for improvement in precision has been ever increasing. The main source of inaccuracy is wire-lag, the cause and effect of which is well-known. Research has been going on to overcome this drawback. So far, the techniques suggested for improvement in accuracy are, in general, based on monitoring the machining process at hardware-level, which is not only tedious but involves extra expenditure also. In the present paper, a software approach for improvement in accuracy is described, which does not require any additional investment on the machine, and still gives very good results.

  10. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong, E-mail: ouyang.jinsong@mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Ackerman, Jerome L. [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  11. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast

  12. Optical position feedback for electrostatically driven MOEMS scanners

    Tortschanoff, A.; Baumgart, M.; Frank, A.; Wildenhain, M.; Sandner, T.; Schenk, H.; Kenda, A.

    2012-03-01

    For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. Measurement of timing signals using fast differential photodiodes can be used for resonant scanner mirrors performing sinusoidal motion with large amplitude. While this approach provides excellent accuracy it cannot be directly extended to arbitrary trajectories or static deflection angles. Another approach is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present position sensing devices based on either principle and compare both approaches showing first experimental results from the implemented devices

  13. Wire + Arc Additive Manufacturing

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  14. Wire-bond inspection in IC assembly

    Rajeswari, Mandava; Rodd, Mike G.

    1996-02-01

    Wire-bonding in IC assembly process involves making a physical connection between the IC 'die' and the 'lead' by bonding wires between the two. Inspection of wire-bond quality is a' highly labor-intensive process and currently efforts are being made to automate it. This paper presents the results of a research conducted into developing a comprehensive automated wire- bond visual inspection system that is capable of performing final accept/reject inspection, providing on-line process feedback, and assisting in process validation. The proposed inspection system consists of the inspection of the bond on a bond pad, the bond on a lead and the inter-connecting wire between a bond pad and its corresponding lead. The algorithms are based on simple and easily extractable features that ensure achieving the desired accuracy and speed. A novel but simple illumination system is proposed to obtain the images of the inter- connecting wires. The proposed system is validated using several state-of-the-art IC samples. This work is sponsored by the Ministry of Science Technology and Environment, Malaysia and Intel Technology Pvt. Ltd., Malaysia.

  15. Photovoltaic Wire Project

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  16. 1998 wire development workshop proceedings

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  17. 1998 wire development workshop proceedings

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  18. Comparison of working efficiency of terrestrial laser scanner in day and night conditions

    Arslan, A. E.; Kalkan, K.

    2013-10-01

    Terrestrial Laser Scanning is a popular and widely used technique to scan existing objects, document historical sites and items, and remodel them if and when needed. Their ability to collect thousands of point data per second makes them an invaluable tool in many areas from engineering to historical reconstruction. There are many scanners in the market with different technical specifications. One main technical specification of laser scanners is range and illumination. In this study, it is tested to be determined the optimal working times of a laser scanner and the scanners consistency with its specifications sheet. In order to conduct this work, series of GNSS measurements in Istanbul Technical University have been carried out, connected to the national reference network, to determine precise positions of target points and the scanner, which makes possible to define a precise distance between the scanner and targets. Those ground surveys has been used for calibration and registration purposes. Two different scan campaigns conducted at 12 am and 11 pm to compare working efficiency of laser scanner in different illumination conditions and targets are measured with a handheld spectro-radiometer in order to determine their reflective characteristics. The obtained results are compared and their accuracies have been analysed.

  19. Initial results of the quality control in 11 computed tomography scanners at Curitiba

    The aim of this study was to evaluate the image quality of 11 scanners installed in public and private centers of Curitiba, Brazil. This sample represents 30% of the CT scanners in the city so far. The ACR CT accreditation phantom was used to verify the accomplishment of the scanners performance to the international quality requirements. The results indicate that efforts should be concentrated in the maintenance of the equipments and specific training of the technicians. Most of the scanners have showed some non-conformity. In 27,5% of the sample the positioning requirement wasn't accomplished. The CT number accuracy evaluation showed that in 72,3 % of the scanners the CT numbers were out of the tolerance range, reaching values 35% greater than the limit. The low contrast resolution criteria weren't accomplished in 9% of the scanners. The main concern is that there isn't a specific program to evaluate the image quality of the CT scanners neither to estimate the CT doses in the procedures. (author)

  20. Wire Array Photovoltaics

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  1. Selecting a CT scanner for cardiac imaging: the heart of the matter.

    Lewis, Maria A; Pascoal, Ana; Keevil, Stephen F; Lewis, Cornelius A

    2016-09-01

    Coronary angiography to assess the presence and degree of arterial stenosis is an examination now routinely performed on CT scanners. Although developments in CT technology over recent years have made great strides in improving the diagnostic accuracy of this technique, patients with certain characteristics can still be "difficult to image". The various groups will benefit from different technological enhancements depending on the type of challenge they present. Good temporal and spatial resolution, wide longitudinal (z-axis) detector coverage and high X-ray output are the key requirements of a successful CT coronary angiography (CTCA) scan. The requirement for optimal patient dose is a given. The different scanner models recommended for CTCA all excel in different aspects. The specification data presented here for these scanners and the explanation of the impact of the different features should help in making a more informed decision when selecting a scanner for CTCA. PMID:27302494

  2. Current Concept of Geometrical Accuracy

    Görög, Augustín; Görögová, Ingrid

    2014-06-01

    Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutteŕs geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners). During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the field of geometric tolerance. It is necessary to bring an overview of the basic concepts and definitions in the field. It will prevent the use of outdated and invalidated terms and definitions in the field. The knowledge presented in the contribution will provide the new perspective of the measurement that will be evaluated according to the current standards.

  3. Current Concept of Geometrical Accuracy

    Görög Augustín

    2014-06-01

    Full Text Available Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutter´s geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners. During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the field of geometric tolerance. It is necessary to bring an overview of the basic concepts and definitions in the field. It will prevent the use of outdated and invalidated terms and definitions in the field. The knowledge presented in the contribution will provide the new perspective of the measurement that will be evaluated according to the current standards.

  4. Gamma scanner conceptual design report

    The Fuels and Materials Examination Facility (FMEF) will include several stations for the nondestructive examination of irradiated fuels. One of these stations will be the gamma scanner which will be employed to detect gamma radiation from the irradiated fuel pins. The conceptual design of the gamma scan station is described. The gamma scanner will use a Standard Exam Stage (SES) as a positioner and transport mechanism for the fuel pins which it will obtain from a magazine. A pin guide mechanism mounted on the face of the collimator will assure that the fuel pins remain in front of the collimator during scanning. The collimator has remotely adjustable tungsten slits and can be manually rotated to align the slit at various angles. A shielded detector cart located in the operating corridor holds an intrinsic germanium detector and associated sodium-iodide anticoincidence detector. The electronics associated with the counting system consist of standard NIM modules to process the detector signals and a stand-alone multichannel analyzer (MCA) for counting data accumulation. Data from the MCA are bussed to the station computer for analysis and storage on magnetic tape. The station computer controls the collimator, the MCA, a source positioner and the SES through CAMAC-based interface hardware. Most of the electronic hardware is commercially available but some interfaces will require development. Conceptual drawings are included for mechanical hardware that must be designed and fabricated

  5. Automating wiring formboard design

    Van den Berg, T.

    2013-01-01

    Increase in aircraft wiring complexity call for manufacturing design improvements to reduce cost and lead-time. To achieve such improvements, a joint research project was performed by the Flight Performance and Propulsion (FPP) group and Fokker Elmo BV, the second largest aircraft wiring harness man

  6. Water Desalination with Wires.

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode. PMID:26285717

  7. X-ray microtomographic scanners

    Syryamkin, V. I., E-mail: klestov-simon@mail.ru; Klestov, S. A., E-mail: klestov-simon@mail.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  8. Combined PET/MRI scanner

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  9. Laser Scanner For Automatic Storage

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  10. Discriminant analyses of Bendix scanner data

    Richardson, A. J.; Wiegand, C. L.; Leamer, R. W.; Gerbermann, A. H.; Torline, R. J.

    1972-01-01

    Flights over Weslaco, Texas are discussed, using the 9-channel Bendix scanner, providing calibrated data in the 380 to 1000 nm wavelength interval. These flights were at 2000 ft. These data gave seasonal coverage from the time signals, representing mainly the soil background. The ground truth data are provided; signature processing studies relating scanner data to ground truth were also carried out.

  11. Sewer Scanner and Evaluation Technology (SSET)

    ECT Team, Purdue

    2007-01-01

    The investment in sanitary sewer collection system represent a major component of $20 trillion of U.S. investment in civil infrastructure systems. Sewer Scanner and Evaluation Technology (SSET) will overcome weaknesses of the closed circuit television and provide the engineer with more and higher quality information for rehabilitation decision making process by utilizing optical scanner and gyroscope technology.

  12. Immediate Feedback on Accuracy and Performance: The Effects of Wireless Technology on Food Safety Tracking at a Distribution Center

    Goomas, David T.

    2012-01-01

    The effects of wireless ring scanners, which provided immediate auditory and visual feedback, were evaluated to increase the performance and accuracy of order selectors at a meat distribution center. The scanners not only increased performance and accuracy compared to paper pick sheets, but were also instrumental in immediate and accurate data…

  13. A dedicated tool for PET scanner simulations using FLUKA

    Positron emission tomography (PET) is a well-established medical imaging technique. It is based on the detection of pairs of annihilation gamma rays from a beta+-emitting radionuclide, usually inoculated in the body via a biologically active molecule. Apart from its wide-spread use for clinical diagnosis, new applications are proposed. This includes notably the usage of PET for treatment monitoring of radiation therapy with protons and ions. PET is currently the only available technique for non-invasive monitoring of ion beam dose delivery, which was tested in several clinical pilot studies. For hadrontherapy, the distribution of positron emitters, produced by the ion beam, can be analyzed to verify the correct treatment delivery. The adaptation of previous PET scanners to new environments and the necessity of more precise diagnostics by better image quality triggered the development of new PET scanner designs. The use of Monte Carlo (MC) codes is essential in the early stages of the scanner design to simulate the transport of particles and nuclear interactions from therapeutic ion beams or radioisotopes and to predict radiation fields in tissues and radiation emerging from the patient. In particular, range verification using PET is based on the comparison of detected and simulated activity distributions. The accuracy of the MC code for the relevant physics processes is obviously essential for such applications. In this work we present new developments of the physics models with importance for PET monitoring and integrated tools for PET scanner simulations for FLUKA, a fully-integrated MC particle-transport code, which is widely used for an extended range of applications (accelerator shielding, detector and target design, calorimetry, activation, dosimetry, medical physics, radiobiology, ...). The developed tools include a PET scanner geometry builder and a dedicated scoring routine for coincident event determination. The geometry builder allows the efficient

  14. Thermosonic wire bonding of IC devices using palladium wire

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  15. Copper wire bonding

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  16. Development of a mixed pixel filter for improved dimension estimation using AMCW laser scanner

    Wang, Qian; Sohn, Hoon; Cheng, Jack C. P.

    2016-09-01

    Accurate dimension estimation is desired in many fields, but the traditional dimension estimation methods are time-consuming and labor-intensive. In the recent decades, 3D laser scanners have become popular for dimension estimation due to their high measurement speed and accuracy. Nonetheless, scan data obtained by amplitude-modulated continuous-wave (AMCW) laser scanners suffer from erroneous data called mixed pixels, which can influence the accuracy of dimension estimation. This study develops a mixed pixel filter for improved dimension estimation using AMCW laser scanners. The distance measurement of mixed pixels is firstly formulated based on the working principle of laser scanners. Then, a mixed pixel filter that can minimize the classification errors between valid points and mixed pixels is developed. Validation experiments were conducted to verify the formulation of the distance measurement of mixed pixels and to examine the performance of the proposed mixed pixel filter. Experimental results show that, for a specimen with dimensions of 840 mm × 300 mm, the overall errors of the dimensions estimated after applying the proposed filter are 1.9 mm and 1.0 mm for two different scanning resolutions, respectively. These errors are much smaller than the errors (4.8 mm and 3.5 mm) obtained by the scanner's built-in filter.

  17. Utilization of low-field MR scanners

    The evident advantage of high-field MR (magnetic resonance) scanners is their higher signal-to-noise ratio, which results in improved imaging. While no reliable efficacy studies exist that compare the diagnostic capabilities of low-versus high-field scanners, the adoption and acceptance of low-field MRI (magnetic resonance imaging) is subject to biases. On the other hand, the cost savings associated with low-field MRI hardware are obvious. The running costs of a non-superconductive low-field scanner show even greater differences in favor of low-field scanners. Patient anxiety and safety issues also reflect the advantages of low-field scanners. Recent technological developments in the realm of low-field MR scanners will lead to higher image quality, shorter scan times, and refined imaging protocols. Interventional and intraoperative use also supports the installation of low-field MR scanners. Utilization of low-field systems has the potential to enhance overall cost reductions with little or no loss of diagnostic performance. (author)

  18. Time-Domain Simulation of Three Dimensional Quantum Wires.

    Sullivan, Dennis M; Mossman, Sean; Kuzyk, Mark G

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  19. Time-Domain Simulation of Three Dimensional Quantum Wires

    Mossman, Sean; Kuzyk, Mark G.

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  20. Optical design for POS hologram scanner

    Yamazaki, Kozo; Ichikawa, Toshiyuki; Ikeda, Hiroyuki; Inagaki, Takefumi

    1986-08-01

    This paper presents newly developed optical design techniques for a shallow-type POS hologram scanner. POS scanner optical design involves design of the scan pattern to read the bar code and design of the detection system. For scan pattern design, we have developed a "readability map" method and a "scanning diagram" method. Detection system design took into account laser safety standards, and we used a technique for estimating the power of the detected signal. We have realized a shallow-type POS hologram scanner which is only 16cm high and can be operated from a sitting position.

  1. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  2. Optical tomographic in-air scanner for external radiation beam 3D gel dosimetry

    Full text: Optical CT scanners are used to measure 3D radiation dose distributions in radiosensitive gels. For radiotherapy dose verification, 3D dose measurements are useful for verification of complex linear accelerator treatment planning and delivery techniques. Presently optical CTs require the use of a liquid bath to match the refractive index of the gel to minimise refraction of the light rays leading to distortion and artifacts. This work aims to develop a technique for scanning gel samples in free-air, without the requirement for a matching liquid bath. The scanner uses a He-Ne laser beam, fanned across the acrylic cylindrical gel container by a rotating mirror. The gel container was designed to produce parallel light ray paths through the gel. A pin phantom was used to quantify geometrical distortion of the reconstructed image, while uniform field exposures were used to consider noise, uniformity and artifacts. Small diameter wires provided an indication of the spatial resolution of the scanner. Pin phantom scans show geometrical distortion comparable to scanners using matching fluid baths. Noise, uniformity and artifacts were not found to be major limitations for this scanner approach. Spatial resolution was limited by laser beam spot size, typically 0.4 mm full width half maximum. A free-air optical CT scanner has been developed with the advantage of scanning without a matching fluid bath. Test results show it has potential to provide suitable quality 3D dosimetry measurements for external beam dose verification, while offering significant advantages in convenience and efficiency for routine use.

  3. Radiographic verification of pedicle screw pilot hole placement in thoracic spine using Kirschner wires versus spiral wires

    LIU Yi 刘一; ZHANG Shao-kun 张绍昆; MIAO Wei-wei 苗巍巍; SHAN Yu-xing 单玉兴; SUN Da-hui 孙大辉; WANG Bai 王柏; LI Yin-liang 李印良; HUANG Xiao-gang 黄晓刚

    2003-01-01

    Objective: To evaluate the feasibility of the pedicle screw pilot holes placement in thoracic spine using the spiral wires as the guide pin.Methods: The pedicle screw pilot holes were drilled within the center of the pedicle and the lateral and medial pedicle walls were violated in 9 human dried thoracic vertebrae.Kirschner wires or spiral wires were separately placed in the holes, and then the posteroanterior and lateral radiographs were taken.The radiographs were evaluated by 3 experienced spine surgeons and 3 young orthopedists.After radiographs were shown to these observers, they combined the posteroanterior and lateral radiographs in each place and determined whether the pedicle screw pilot hole violated the pedicle cortex or not.The results were analyzed by a statistical software.Results: Sensitivity, specificity and accuracy of the method using spiral wires to detect pedicle pilot hole placement were significantly higher than those of using Kirschner wires.With a true posteroanterior radiograph, the sensitivity, specificity and accuracy of the method using spiral wires approximated or attained 100%.Conclusions: The method of intrapedicular pilot hole placement verification using spiral wires is effective for guiding the accurate placement of pedicle screws.

  4. A Cross-Platform Smartphone Brain Scanner

    Larsen, Jakob Eg; Stopczynski, Arkadiusz; Stahlhut, Carsten; Petersen, Michael Kai; Hansen, Lars Kai

    We describe a smartphone brain scanner with a low-costwireless 14-channel Emotiv EEG neuroheadset interfacingwith multiple mobile devices. This personal informaticssystem enables minimally invasive and continuouscapturing of brain imaging data in natural settings. Thesystem applies an inverse...

  5. Get Mobile – The Smartphone Brain Scanner

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai; Larsen, Jakob Eg; Hansen, Lars Kai

    2012-01-01

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Implementation of the smartphone brain scanner is based on the Qt framework and benefits from t...

  6. Electric wiring domestic

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  7. Wiring and lighting

    Kitcher, Chris

    2013-01-01

    Wiring and Lighting provides a comprehensive guide to DIY wiring around the home. It sets out the regulations and legal requirements surrounding electrical installation work, giving clear guidelines that will enable the reader to understand what electrical work they are able to carry out, and what the testing and certification requirements are once the work is completed. Topics covered include: Different types of circuits; Types of cables and cable installation under floors and through joists; Isolating, earthing and bonding; Accessory boxes and fixings; Voltage bands; Detailed advice on safe

  8. Modern wiring practice

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  9. a Light-Weight Laser Scanner for Uav Applications

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  10. MEMS temperature scanner: principles, advances, and applications

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  11. VEGETATION CHARACTERISTICS USING MULTI-RETURN TERRESTRIAL LASER SCANNER

    F. Pirotti

    2012-09-01

    Full Text Available Distinguishing vegetation characteristics in a terrestrial laser scanner dataset is an interesting issue for environmental assessment. Methods for filtering vegetation points to distinguish them from ground class have been widely studied mostly on datasets derived from airborne laser scanner, less so for terrestrial laser scanners (TLS. Recent developments in terrestrial laser sensors – further ranges, faster acquisition and multiple return echoes for some models – has risen interest for surface modelling applications. The downside of TLS is that a typical dataset has a very dense cloud, with obvious side-effects on post-processing time. Here we use a scan from a sensor which provides evaluation of multiple target echoes providing with more than 70 million points on our study area. The area presents a complex set of features ranging from dense vegetation undergrowth to very steep and uneven terrain. The method consists on a first step which subsets the original points to define ground candidates by taking into account the ordinal return number and the amplitude. Next a custom progressive morphological filter (closing operation is applied on ground candidate points using multidimensional (varying resolutions grids and a structure element to determine cell values. Vegetation density mapping over the area is then estimated using a weighted ration of point counts in the tri-dimensional space over each cell. The overall result is a pipeline for processing TLS points clouds with minimal user interaction, producing a Digital Terrain Model (DTM, a Digital Surface Model (DSM a vegetation density map and a derived canopy height model (CHM. Results on DTM show an accuracy (RMSE of 0.307 m with a mean error of 0.0573 m compared to a control DTM extracted from Terrascan's progressive triangulation procedure. The derived CHM was tested over 30 tree heights resulting in 27 trees having an absolute error value below 0.2 m (three were just below 0.7 m.

  12. Wire chamber conference

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  13. A World without Wires

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  14. Practical wiring in SI units

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  15. Guard wires in spark chambers

    The experiments with spark counters have shown that by surrounding the anode wire with two wires of a larger diameter, an increase of the detection efficiency of about 25% is observed. The analysis of the amplitudes of the pulses in those guard wires with the coincident pulses in the anode wire shows that is is possible to determine. The ionizing particle incidence position with rather simple and conventional electronic circuitry. (author). 5 refs, 7 figs

  16. Wire EDM for Refractory Materials

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  17. Feasibility study of small animal imaging using clinical PET/CT scanner

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  18. LHC magnet quench test with beam loss generated by wire scan

    Sapinski, M; Dahlerup-Petersen, K; Dehning, B; Emery, j; Ferrari, A; Guerrero, A; Holzer, E B; Koujili, M; Lechner, A; Nebot, E; Scheubel, M; Steckert, J; Verweij, A; Wenninger, J

    2011-01-01

    Beam losses with millisecond duration have been observed in the LHC in 2010 and 2011. They are thought to be provoked by dust particles falling into the beam. These losses could compromise the LHC availability if they provoke quenches of superconducting magnets. In order to investigate the quench limits for this loss mechanism, a quench test using a wire scanner has been performed, with the wire movement through the beam mimicking a loss with similar spatial and temporal distribution as in the case of dust particles. This paper will show the conclusions reached for millisecond-duration dust-provoked quench limits. It will include details on the maximum energy deposited in the coil as estimated using FLUKA code, showing a reasonable agreement with quench limit estimated from the heat transfer code QP3. In addition, information on the damage limit for carbon wires in proton beamswill be presented, following electronmicroscope analysis which revealed strong wire sublimation.

  19. Cognition for robot scanner based remote welding

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  20. Strain sensing systems tailored for tensile measurement of fragile wires

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  1. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  2. Electro-optic and acousto-optic laser beam scanners

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  3. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Maloney, D.; Doggett, K.

    1997-08-01

    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  4. Task force report on computerized tomographic scanners

    1978-10-01

    Computerized axial tomography (CAT) scanning was the focus of a task force established by the Bergen-Passaic Health Systems Agency in New Jersey. The task force reviewed the literature on CAT technology and its applications, surveyed four northeastern hospitals with operating CAT scanning installations, and created three working subcommittees which produced written reports. It was agreed by task force members that certain criteria should be used when evaluating applications for CAT scanners, e.g., service area, staff resources, emergency room activity, radiotherapy, 24-hour scanner coverage, the medically indigent, and cost. Overall, it was determined that CAT is a proven diagnostic tool of significant value and that it should be available to residents of the Bergen-Passaic health service area. Since the CAT field is rapidly evolving and changing, however, it was not possible to define quantitatively the long-term need for and supply of CAT scanners in the region. Appendixes present supporting data on the task force findings.

  5. Functional Extensions To High Performance Document Scanners

    Green, W. B.; Chansky, L. M.; Land, R. A.; Van den Heuvel, R. C.; Kraemer, E. J.; Steele, L. W.; Sherrill, C. J.

    1989-07-01

    Document processing systems based on electronic imaging technology are evolving rapidly, motivated by technology advances in optical storage, image scanners, image compression, high speed digital communications, and high resolution displays. These evolving systems require high speed reliable image scanning systems to create the digital image data base that is at the heart of the applications addressed by these evolving systems. High speed production document scanners must provide the capability of converting a wide variety of input material into high quality digital imagery. The required capabilities include: (i) the ability to scan varying sizes and weights of paper, (ii) image enhancement techniques adequate to produce quality imagery from a document material that may depart significantly from standard high contrast black and white office correspondence, (iii) standard compression options, and (iv) a standard interface to a host or control processor providing full control of all scanner operations and all image processing options. As electronic document processing systems proliferate, additional capabilities will be required to support automated or semi-automated document indexing and selective capture of document content. Capabilities now present on microfilming systems will be required as options or features on document capture systems. These capabilities will include: endorsers, bar code readers, and optical character recognition (OCR) capability. Bar code and OCR capabilities will be required to support automated indexing of scanned material, and OCR capability within specific areas of scanned document material will be required to support indexing and specific application needs. These features will also be supported and controlled through a standard host interface. This paper describes the architecture of the TDC DocuScan Digital Image Scanner. The scanner is a double-sided scanner that produces compressed imagery of both sides of a scanned page in under two

  6. Medical imaging with a microwave tomographic scanner.

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  7. Miniature rotating transmissive optical drum scanner

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  8. A simple scanner for Compton tomography

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  9. From Wires to Cosmology

    Amin, Mustafa A

    2015-01-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  10. Randomly Wired Multistage Networks

    Maggs, Bruce M.

    1993-01-01

    Randomly wired multistage networks have recently been shown to outperform traditional multistage networks in three respects. First, they have fast deterministic packet-switching and circuit-switching algorithms for routing permutations. Second, they are nonblocking, and there are on-line algorithms for establishing new connections in them, even if many requests for connections are made simultaneously. Finally, and perhaps most importantly, they are highly fault tolerant.

  11. A PET scanner developed by CERN

    Laurent Guiraud

    1998-01-01

    This image shows a Position Emission Tomography (PET) scanner at the Hopital Cantonal Universitaire de Genève. Development of the multiwire proportional chamber at CERN in the mid-1970s was soon seen as a potential device for medical imaging. It is much more sensitive than previous devices and greatly reduced the dose of radiation received by the patient.

  12. Industrial X-ray CT scanner

    New inspection needs are being posed as a result of recent development of new materials and new technology. Introduced is a newly developed industrial X-ray CT Scanner including application examples, which will answer to some of the new needs

  13. Ultrasonic Scanner Control and Data Acquisition

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  14. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    Jofre M.; Anzolin G.; Steinlechner F.; Oliverio N.; Torres J. P.; Pruneri V.; Mitchell M.W.

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galva...

  15. Dual wire welding torch and method

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated. PMID:27557199

  17. Right wire in orthodontics: a review

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  18. Inter-site and inter-scanner diffusion MRI data harmonization.

    Mirzaalian, H; Ning, L; Savadjiev, P; Pasternak, O; Bouix, S; Michailovich, O; Grant, G; Marx, C E; Morey, R A; Flashman, L A; George, M S; McAllister, T W; Andaluz, N; Shutter, L; Coimbra, R; Zafonte, R D; Coleman, M J; Kubicki, M; Westin, C F; Stein, M B; Shenton, M E; Rathi, Y

    2016-07-15

    We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the

  19. Occurrence and characteristics of mutual interference between LIDAR scanners

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  20. Dual-Antenna Terrestrial Laser Scanner Georeferencing Using Auxiliary Photogrammetric Observations

    Benjamin Wilkinson

    2015-09-01

    Full Text Available Terrestrial laser scanning typically requires the use of artificial targets for registration and georeferencing the data. This equipment can be burdensome to transport and set up, representing expense in both time and labor. Environmental factors such as terrain can sometimes make target placement dangerous or impossible, or lead to weak network geometry and therefore degraded product accuracy. The use of additional sensors can help reduce the required number of artificial targets and, in some cases, eliminate the need for them altogether. The research presented here extends methods for direct georeferencing of terrestrial laser scanner data using a dual GNSS antenna apparatus with additional photogrammetric observations from a scanner-mounted camera. Novel combinations of observations and processing methods were tested on data collected at two disparate sites in order to find the best method in terms of processing efficiency and product quality. In addition, a general model for the scanner and auxiliary data is given which can be used for least-squares adjustment and uncertainty estimation in similar systems with varied and diverse configurations. We found that the dual-antenna system resulted in cm-level accuracy practical for many applications and superior to conventional one-antenna systems, and that auxiliary photogrammetric observation significantly increased accuracy of the dual-antenna solution.

  1. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  2. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  3. Review of wire chamber aging

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  4. AUTOMATED CONTROL AND REAL-TIME DATA PROCESSING OF WIRE SCANNER/HALO SCRAPER MEASUREMENTS

    The Low-Energy Demonstration Accelerator (LEDA), assembled and operating at Los Alamos National Laboratory, provides the platform for obtaining measurements of high-power proton beam-halo formation. Control system software and hardware have been integrated and customized to enable the production of real-time beam-halo profiles. The Experimental Physics and Industrial Control System (EPICS) hosted on a VXI platform, Interactive Data Language (IDL) programs hosted on UNIX platforms, and LabVIEW (LV) Virtual Instruments hosted on a PC platform have been integrated and customized to provide real-time, synchronous motor control, data acquisition, and data analysis of data acquired through specialized DSP instrumentation. These modules communicate through EPICS Channel Access (CA) communication protocol extensions to control and manage execution flow ensuring synchronous data acquisition and real-time processing of measurement data. This paper describes the software integration and management scheme implemented to produce these real-time beam profiles

  5. Applications of Optical Scanners in an Academic Center.

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  6. Shot noise in parallel wires

    Lagerqvist, Johan; Chen, Yu-Chang; Di Ventra, Massimiliano

    2004-01-01

    We report first-principles calculations of shot noise properties of parallel carbon wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. We find that, with increasing interwire distance, the current approaches rapidly a value close to twice the current of each wire, while the Fano factor, for the same distances, is still larger than the Fano factor of a single wire. This enhanced Fano factor is the signature of the correlation between electron...

  7. THERMAL CONDUCTIVITY OF METALLIC WIRES

    LU XIANG; GU JI-HUA; CHU JUN-HAO

    2001-01-01

    The effect of radial thickness on the thermal conductivity of a free standing wire is investigated. The thermal conductivity is evaluated using the Boltzmann equation. A simple expression for the reduction in conductivity due to the increase of boundary scattering is presented. A comparison is made between the experimental results of indium wires and the theoretical calculations. It is shown that this decrease of conductivity in wires is smaller than that in film where heat flux is perpendicular to the surface.

  8. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90° to 180°) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  9. Wire communication engineering

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  10. Wire explosion in water

    Prukner, Václav; Koláček, Karel; Schmidt, Jiří; Frolov, Oleksandr; Štraus, Jaroslav

    Praha, 2007 - (Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.). s. 145-145 ISBN 978-80-87026-00-7. [XXVIII International conference on phenomena in ionized gases ICPIG’07/28th./. 15.7.2007-20.7.2007, Prague] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Wire explosion * x-ray * laser * plasma Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Wire explosion in water

    Prukner, Václav; Koláček, Karel; Schmidt, Jiří; Frolov, Oleksandr; Štraus, Jaroslav

    Prague: Institute of Plasma Physics AS CR,v.v.i, 2008 - (Schmidt, J.; Šimek, M.; Pekárek, S.; Prukner, V.), s. 1279-1281. (ICPIG. 28). ISBN 978-80-87026-01-4. [XXVIII International conference on phenomena in ionized gases ICPIG’07. Prague (CZ), 15.07.2007-20.07.2007] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Wire explosion * x-ray * laser * plasma Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Wiring regulations in brief

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  13. Evaluation of a pulsed terrestrial laser scanner based on ISO standards

    The evaluation of the accuracy and precision of measuring equipment is critical in order to achieve results that meet the specifications of a given project. Standard calibration models and field procedures exist for all traditional surveying instruments, but are still lacking for recently developed technologies like terrestrial laser scanners (TLS). The main reason is limited knowledge of errors that affect these systems, owing to the proprietary design of the scanners and their software, and the integration of many potential sources of error. Owing to the difficulty of separating the different error sources of TLS, it is proposed in this paper that a test procedure can assess the overall achievable precision for a scanner instrument without individual errors being known. The proposed tests are based on the International Organization for Standardization specifications for geodetic instruments (www.iso.org). The tests can be performed in either a controlled or uncontrolled environment, which is advantageous for on-the-job calibration. A pulsed terrestrial laser scanner (Leica Scanstation 2) was used as a test subject and the evaluation results indicated that the specific instrument performed well within the manufacturer’s specifications. (paper)

  14. Improved attenuation correction for freely moving animal brain PET studies using a virtual scanner geometry

    Angelis, Georgios I.; Ryder, William J.; Kyme, Andre Z.; Fulton, Roger R.; Meikle, Steven R.

    2014-03-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals can be very challenging since the body of the animal is often within the field of view and introduces a non negligible atten- uating factor that can degrade the quantitative accuracy of the reconstructed images. An attractive approach that avoids the need for a transmission scan involves the generation of the convex hull of the animal's head based on the reconstructed emission images. However, this approach ignores the potential attenuation introduced by the animal's body. In this work, we propose a virtual scanner geometry, which moves in synchrony with the animal's head and discriminates between those events that traverse only the animal's head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal's body. For each pose a new virtual scanner geometry was defined and therefore a new system matrix was calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made rat phantom. Results showed that when the animal's body is within the FOV and not accounted for during attenuation correction it can lead to bias of up to 10%. On the contrary, at- tenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias <2%), without the need to account for the animal's body.

  15. Evaluation of a pulsed terrestrial laser scanner based on ISO standards

    Tsakiri, M.; Pagounis, V.; Arabatzi, O.

    2015-03-01

    The evaluation of the accuracy and precision of measuring equipment is critical in order to achieve results that meet the specifications of a given project. Standard calibration models and field procedures exist for all traditional surveying instruments, but are still lacking for recently developed technologies like terrestrial laser scanners (TLS). The main reason is limited knowledge of errors that affect these systems, owing to the proprietary design of the scanners and their software, and the integration of many potential sources of error. Owing to the difficulty of separating the different error sources of TLS, it is proposed in this paper that a test procedure can assess the overall achievable precision for a scanner instrument without individual errors being known. The proposed tests are based on the International Organization for Standardization specifications for geodetic instruments (www.iso.org). The tests can be performed in either a controlled or uncontrolled environment, which is advantageous for on-the-job calibration. A pulsed terrestrial laser scanner (Leica Scanstation 2) was used as a test subject and the evaluation results indicated that the specific instrument performed well within the manufacturer’s specifications.

  16. Laser scanner 3D terrestri e mobile

    Mario Ciamba

    2013-08-01

    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia.A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  17. Compact conscious animal positron emission tomography scanner

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  18. Development of high pressure pipe scanners

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results

  19. Inferring Consideration Set from Scanner Data

    Wirawan Dony Dahana; Nozomi Nakajima

    2011-01-01

    Consideration set has been one of main research topics in marketing field for a long time. Using interview data, many studies have been conducted to investigate the nature of its content. However, only few studies tried to do so by using consumer purchase history. By modeling the process of consideration and choice set formation, in this research we try to elicit consumer consideration set from scanner data. Some managerial implications for marketing decisions derived from the information of ...

  20. Get Mobile – The Smartphone Brain Scanner

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Petersen, Michael Kai;

    This demonstration will provide live-interaction with a smartphone brain scanner consisting of a low-cost wireless 14-channel EEG headset (Emotiv Epoc) and a mobile device. With our system it is possible to perform real-time functional brain imaging on a smartphone device, including stimulus deli......) that are based on Linux operating systems. Thus our system runs on multiple platforms, including Maemo/MeeGo based smartphones, Android-based smartphones and tablet devices....

  1. Determining Block Detector Positions for PET Scanners

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2009-01-01

    We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the...

  2. Scanner-based macroscopic color variation estimation

    Kuo, Chunghui; Lai, Di; Zeise, Eric

    2006-01-01

    Flatbed scanners have been adopted successfully in the measurement of microscopic image artifacts, such as granularity and mottle, in print samples because of their capability of providing full color, high resolution images. Accurate macroscopic color measurement relies on the use of colorimeters or spectrophotometers to provide a surrogate for human vision. The very different color response characteristics of flatbed scanners from any standard colorimetric response limits the utility of a flatbed scanner as a macroscopic color measuring device. This metamerism constraint can be significantly relaxed if our objective is mainly to quantify the color variations within a printed page or between pages where a small bias in measured colors can be tolerated as long as the color distributions relative to the individual mean values is similar. Two scenarios when converting color from the device RGB color space to a standardized color space such as CIELab are studied in this paper, blind and semi-blind color transformation, depending on the availability of the black channel information. We will show that both approaches offer satisfactory results in quantifying macroscopic color variation across pages while the semi-blind color transformation further provides fairly accurate color prediction capability.

  3. Software development for modeling positrons emission tomograph scanners

    The Geant4 Application for Tomographic Emission (GATE) is an international platform recognized and used to develop Computational Model Exposure (CME) in the context of Nuclear Medicine, although currently there are dedicated modules for applications in Radiotherapy and Computed Tomography (CT). GATE uses Monte Carlo (MC) methods, and has a scripting language of its own. The writing of scripts for simulation of a PET scanner in GATE involves a number of interrelated steps, and the accuracy of the simulation is dependent on the correct setup of the geometries involved, since the physical processes depend on them, as well as the modeling of electronic detectors in module Digitizer, for example. The manual implementation of this setup can be a source of errors, especially for users without experience in the field of simulations or without any previous knowledge of a programming language, and also due to the the fact that the modeling process in GATE still remains bounded to LINUX / UNIX based systems, an environment only familiar to a few. This becomes an obstacle for beginners and prevents the use of GATE by a larger number of users interested in optimizing their experiments and/or clinical protocols through a more accessible, fast and friendly application. The objective of this work is therefore to develop a user-friendly software for the modeling of Positron Emission Tomography called GUIGATE (Graphical User Interface for GATE), with specific modules dedicated to quality control in PET scanners. The results exhibit the features available in this first version of GUIGATE, present in a set of windows that allow users to create their input files, perform and display in real time the model and analyze its output file in a single environment, allowing so intuitively access the entire architecture of the GATE simulation and to CERN's data analyzer, the ROOT. (author)

  4. Telescope with a wide field of view internal optical scanner

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  5. The Current in a Wire

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  6. Precise measurement of internal sense-wire locations in high energy physics detectors

    The central tracking region of the Solenoidal Detector Collaboration detector being designed to operate at the Superconducting Super Collider will utilize gas-filled straw tubes for particle tracking; the straws, each containing a thin central wire for charge collection, will be collected into modules of a few hundred straws each. It is crucial for proper interpretation of the data that the positions of the sense wires be known to very high precision. A pattern-deviation scanning system is being investigated for determining if the sense wires in constructed modules are within 35 μm of their intended locations. The system involves moving a module in steps through a broad x-ray beam and comparing a response matrix of transmission measurements to a template which is characteristic of a ''perfectly'' aligned module. The pattern-deviation scanner approach is described and simulation results are presented. (author)

  7. Terrestrial Laser Scanner, Terrestrial SAR-RAR and topographic data: an integration proposal for monitoring the temple of Sagrada Familia in Barcelona

    Marambio Castillo, Alejandro Esteban; Pucci, Barbara; Jungner, Andreas; Núñez Andrés, María Amparo; Buill Pozuelo, Felipe

    2009-01-01

    In this paper three techniques are proposed to be integrated: Terrestrial Synthetic Aperture Radar, Terrestrial Laser Scanner and Traditional Topography. Terrestrial Synthetic Aperture Radar (SAR) is an evolving instrument that can be been used to detect deformations with high accuracy. The Ground-Based SAR instrument used in this paper has an intrinsic accuracy of submillimeter level which makes it suitable for high accuracy deformation detection. It is however fundamental to be ...

  8. Electroplated superconducting wire

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  9. The impact of different alignment strategies on the overall performance of a white light scanner according to sphere spacing error specified in VDI 2634

    Klaas, Erik; Kropp, Johannes; Mongon, Bill

    2011-03-01

    System alignment strategies impact the overall performance of white light scanners, in particular affecting the uncertainty that is determined using the sphere spacing error specified in the VDI 2634 guideline. This paper addresses the accuracy of optical white light or so called "topometric" scanners. In almost any application of such scanners it is necessary to put together scans from different directions: from a couple of scans to a couple of hundred scans. Accuracy for the scanner itself can usually be well described for a single scan. However, the accuracy for assembled data sets from many scans is harder to estimate and specify as it depends on many more parameters as well as on the alignment strategy being used. This paper will describe different alignment strategies including the use of robots, tracking systems, and targets, as well as best fitting methods. The impact of these methods on the resulting overall accuracy is described and demonstrated using real test examples. In addition, different methods of achieving these accuracy numbers will be presented including using guidelines such as provided in VDI 2634. This paper will briefly touch on the basic principles of white light scanning to understand the potential as well as to illustrate the limitations of these techniques. This paper is intended to provide a useful guideline for engineers or quality managers who want to establish or learn more about new scanning technologies, with special attention given to the accuracy issues.

  10. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANGreg3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUSTM laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANGregistered3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed

  11. Potentials of small, lightweight and low cost Multi-Echo Laser Scanners for detecting Grape Berries

    Djuricic, A.; Weinmann, M.; Jutzi, B.

    2014-06-01

    Mobile sensor devices offer great opportunities for automatic scene analysis and object recognition. Nowadays a new generation of ranging devices is available, like laser scanners which are small and light weighted. Concerning these improvements specific applications can be tackled. In this contribution we focus on vineyard monitoring for detecting and counting grape berries with a small, lightweight and low cost multi-echo laser scanner. Therefore a Hokuyo UTM-30LX-EW laser range finder is utilized for capturing the data in close range up to 1m. In order to process the data the following methodology is proposed: after smoothing and morphological techniques are applied on the laserscanning intensity and range images the number of visible grape berries is determined from the resulting segments. The approach performs with a detection accuracy of above 84%. The results reveal the high potential of such close range ranging devices for locating and counting grape berries. Thus, the methodology provides practical support for viticulture applications.

  12. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  13. Plasma chemistry in wire chambers

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  14. Parametric optimization of wire cut electrical discharge machining

    M. Durairaj

    2014-03-01

    Full Text Available Wire Electrical Discharge Machining is a manufacturing process whereby a desired shape is obtained using electrical discharges (or by repetitive spark cycle.  Precision and intricate machining are the strengths.  Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements. Selection of optimum machining and machining parameters combinations is needed for obtaining higher cutting efficiency and accuracy. In this present study, machining is done using Wire-Cut EDM and optimization of surface roughness is done using Taguchi’s design of experiments. Experimentation was planned as per Taguchi’s L’16 orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, and pulse OFF time and Wire feed. Dielectric fluid pressure, wire speed, wire tension, resistance and cutting length are taken as fixed parameters. Inconel 800 was selected as a work material to conduct the experiments. From experimental results, the surface roughness was determined for each machining performance criteria. Signal to noise ratio was applied to measure the performance characteristics deviating from the actual value. Finally, experimental confirmation was carried out to identify the effectiveness of this proposed method.   Keywords: Optimization; Taguchi’s L-16 Orthogonal Array; Surface Roughness; S/N Ratio.

  15. Positron Scanner for Locating Brain Tumors

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  16. System analysis of bar code laser scanner

    Wang, Jianpu; Chen, Zhaofeng; Lu, Zukang

    1996-10-01

    This paper focuses on realizing the three important aspects of bar code scanner: generating a high quality scanning light beam, acquiring a fairly even distribution characteristic of light collection, achieving a low signal dynamic range over a large depth of field. To do this, we analyze the spatial distribution and propagation characteristics of scanning laser beam, the vignetting characteristic of optical collection system and their respective optimal design; propose a novel optical automatic gain control method to attain a constant collection over a large working depth.

  17. Biomedical Imaging and Sensing using Flatbed Scanners

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features o...

  18. Inter laboratory comparison of industrial CT scanners

    Angel, Jais Andreas Breusch; Cantatore, Angela; De Chiffre, Leonardo

    2012-01-01

    In this report results from an intercomparison of industrial CT scanners are presented. Three audit items, similar to common industrial parts, were selected for circulation: a single polymer part with complex geometry (Item 1), a simple geometry part made of two polymers (Item 2) and a miniature...... step gauge produced using a polymer replica material (Item 3). The items circulated among six participants in Denmark and Germany. The circulation took place between March 2011 and June 2011. The items were measured according to a given protocol....

  19. Calibrations for analyzing industrial samples on medical CT scanners

    Presented in this paper are calibrations for obtaining meaningful CT data for industrial samples using medical scanners. Calibrations were made using a second generation, dual slice Technicare Deltascan 100 scanner with a tungsten source, seven BGO detectors (three per slice plus one reference), a DEC PDP 11/04 computer system, and a set scan circle size of 11.4 inches. The unit operates at a tube current and voltage of 120 KV and 25 mA, respectively. While some calibrations are specific to the Deltascan 100, others can be applied to most medical instruments. Two types of calibrations are presented: (1) those that involve changes only to the sample; and (2) those that involve changes to the scanner and scanner software. The first type is necessary for cases in which a leased or rented scanner that cannot be modified is being used. Both types are useful for cases in which scanner modification is possible

  20. Target Price Accuracy

    Alexander G. Kerl

    2011-01-01

    This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown) 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio). However, target price accuracy is positive...

  1. Wire ropes tension, endurance, reliability

    Feyrer, Klaus

    2015-01-01

    The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.

  2. Liquid fraction measurement by wire-mesh sensor in air-water stratified flows

    In this study, we carried out experiments for measuring the liquid fraction by using the commercial wire-mesh sensor which consists of 16x16 wires and high-speed camera in air-water stratified flows. For evaluating the accuracy of the wire-mesh sensor, static experiment was performed. Also the liquid fractions measured by the wire-mesh sensor in horizontal loop that pipe has inner diameter 40 mm and length is 5 m was compared with that by the high-speed camera. Deviation for the liquid fraction between the wire-mesh sensor and the high-speed camera is 0.02, small. Also it seems to have good agreements since it is showing similar trend. (author)

  3. Was the Scanner Calibration Slide used for its intended purpose?

    Zong Yaping

    2011-04-01

    Full Text Available Abstract In the article, Scanner calibration revisited, BMC Bioinformatics 2010, 11:361, Dr. Pozhitkov used the Scanner Calibration Slide, a key product of Full Moon BioSystems to generate data in his study of microarray scanner PMT response and proposed a mathematic model for PMT response 1. In the end, the author concluded that "Full Moon BioSystems calibration slides are inadequate for performing calibration," and recommended "against using these slides." We found these conclusions are seriously flawed and misleading, and his recommendation against using the Scanner Calibration Slide was not properly supported.

  4. High-picture quality industrial CT scanner

    Industrial X-ray-CT-scanners, which provide cross-sectional images of a tested sample without destroying it, are attracting attention as a new nondestructive inspection device. In 1982, Toshiba commenced the development of industrial CT scanners, and introduced the 'TOSCANER' -3000 and-4000 series. Now, the state of the art 'TOSCANER'-20000 series of CT systems has been developed incorporating the latest computer tomography and image processing technology, such as the T9506 image processor. One of the advantages of this system is its applicability to a wide range of X-ray energy . The 'TOSCANER'-20000 series can be utilized for inspecting castings and other materials with relatively low-transparency to X-rays, as well as ceramics, composite materials and other materials with high X-ray transparency. A further feature of the new system is its high-picture quality, with a high-spatial resolution resulting from a pixel size of 0.2x0.2(mm). (author)

  5. Interferometric Laser Scanner for Direction Determination

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  6. Interferometric Laser Scanner for Direction Determination.

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  7. Quest for an open MRI scanner.

    Bertora, Franco; Borceto, Alice; Viale, Andrea; Sandini, Giulio

    2014-01-01

    A study of the motor cortex during the programming, execution and mental representation of voluntary movement is of great relevance; its evaluation in conditions close to reality is necessary, given the close integration of the visuomotor, sensory feedback and proprioceptive systems, as of yet, a functional Magnetic Resonance Imaging (fMRI) scanner allowing a human subject to maintain erect stance, observe the surroundings and conserve limb freedom is still a dream. The need for high field suggests a solenoid magnet geometry that forces an unnatural posture that affects the results, particularly when the motor cortex is investigated. In contrast in a motor functional study, the scanner should allow the subject to sit or stand, with unobstructed sight and unimpeded movement. Two approaches are presented here to solve this problem. In the first approach, an increased field intensity in an open magnet is obtained lining the "back wall" of the cavity with a sheet of current: this boosts the field intensity at the cost of the introduction of a gradient, which has to be canceled by the introduction of an opposite gradient; The second approach is an adaptation of the "double doughnut" architecture, in which the cavity widens at the center to provide additional room for the subject. The detailed design of this kind of structure has proven the feasibility of the solution. PMID:25227008

  8. A hybrid scanner for positron imaging

    A hybrid scanner has been built, which is specially designed for total body metabolic studies with short-lived labelled compounds. The scanner consists of two parallel detectors, 40-cm long, one above and one below the patient, which move along the body. The positions of scintillations along the detectors are detected by photomultipliers at the ends of the crystals, and the positions of scintillations along the patient's body are derived from the position of the mechanism carrying the detectors. Both single photon and coincidence modes are possible. The collimation was optimized for semi-dynamic total-body metabolic studies. The sensitivity of the instrument to a point source is about 400 counts/μCi per minute in the single photon mode and 60 counts/μCi per minute in the coincidence mode with positron energy. The resolution is 28 mm versus 22 mm (FWHM), and the maximal count rates with 25% loss are 22 000 versus 1700 counts/s. The scanning speed can be varied from 0.5 to 20 cm/s and the instrument is designed to scan five times per minute over one metre of the body. This makes relatively accurate measurements possible on phenomena that occur over 2 to 20 minutes. As preliminary applications the accumulation of 18F in a rabbit and a study of ethanol metabolism in a human subject are described. (author)

  9. Antenna Near-Field Probe Station Scanner

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  10. Trends in Wire Electrical Discharge Machining (WEDM): A Review

    Ms. Sharanya S. Nair; Ms. Nehal Joshi

    2014-01-01

    The exponential growth of manufacturing industries and production and the increased need of accuracy and precision throws the spotlight on the nontraditional machining processes. The machining of metals and nonmetals having special properties like high strength, high hardness and toughness is done by non- conventional machining methods. Wire electrical discharge machining is one of the earliest non-traditional machining processes. This machining process competes with conventional ...

  11. Parametric optimization of wire cut electrical discharge machining

    Durairaj, M; A.K.S. Ansari; M. H. Gauthamkumar

    2014-01-01

    Wire Electrical Discharge Machining is a manufacturing process whereby a desired shape is obtained using electrical discharges (or) by repetitive spark cycle.  Precision and intricate machining are the strengths.  Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements. Selection of optimum machining and machining parameters combinations is needed for obtaining higher cutting efficiency and accuracy. In this present study, machining i...

  12. Pulsed wire magnetic field measurement of MPW 14 at PLS

    A 14 cm-period multipole wiggler (MPW 14) was measured using a pulsed wire measurement (PWM) method. The PWM system uses a subminiature photo interrupter, which has a very sensitive output to the changes on the area of optical aperture. To improve the accuracy of measurement, the trigger pulses are synchronized with the background oscillation of the system. The magnetic field profile of the MPW 14 measured with PWM method was compared with that obtained with a Hall probe mapping

  13. Method of manufacturing superconductor wire

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  14. Topology Optimized Photonic Wire Splitters

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard;

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  15. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The insulation shall not be punctured for test purposes. Splice in underground wire shall have...

  16. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The insulation shall not be punctured for test purposes. A splice in underground wire shall...

  17. HTS Wire Development Workshop: Proceedings

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  18. 1 mil gold bond wire study.

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  19. Design of a portable CAT scanner for utility pole inspection

    Work is under way at the University of Missouri, Columbia (UMC) to design, build, and test a portable computerized axial tomography (CAT) device for the nondestructive, field imaging of wooden utility poles. CAT is a well-established medical technology that has recently been applied to a number of industrial applications. Wooden utility poles are prone to rot and decay at ground level; current techniques to assess this loss of strength are relatively primitive, i.e., tapping the pole (hitting the pole with a hammer) or boring into the pole for samples and then testing inside the bore hole with an electrical pulse device. The accuracy in identifying poles needing replacement using these techniques is ∼ 70%. Since the cost of replacing a pole ranges from hundreds to thousands of dollars, an accurate, nondestructive method is needed. CAT can accurately image a wooden utility pole (since the size, density, and atomic elements of a pole are similar to the human head to torso), as was confirmed by imaging poles using the UMC nuclear engineering EMI-1010 medical scanner. Detailed images have been produced showing the ring structure of the wood and voids due to rot or decay. Images approaching this quality have also been produced on living trees using semiportable systems by other researchers

  20. ELECTROCHEMICAL MICROMACHINING USING VIBRATILE TUNGSTEN WIRE FOR HIGH-ASPECT-RATIO MICROSTRUCTURES

    Wang, K

    2010-01-01

    Electrochemical micromachining can remove electrically conductive materials with the transferring of ions, so that high precision is achievable. A novel method for fabricating high-aspect-ratio microstructures by electrochemical micromachining using vibratile tungsten wire was proposed in this paper. The slight vibration of tungsten wire can improve the machining stability. The relations between the machining accuracy and machining parameters were experimentally studied. Micro groove with the...

  1. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  2. Wire chambers revisited

    Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. A gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of ''gas only'' photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera.The only clinical detector have been developed for positron emission tomography, where thin lead or lead-glass can provide an acceptable convertor for 511 keV photons. Two MWPC positron cameras have been evaluated clinically and one is now routine use in clinical oncology. The problems of detection efficiency have not been solved by these detectors although reliability and large-area PET imaging have been proven. (orig./HSI)

  3. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  4. Improved Accurate Extrinsic Calibration Algorithm of Camera and Two-dimensional Laser Scanner

    Jianlei Kong; Lei Yan; Jinhao Liu; Qingqing Huang; Xiaokang Ding

    2013-01-01

    In the object detecting system composed of a camera and a two-dimensional laser scanner (2DLS), the extrinsic calibration is an essential step to operate properly. However, the edge points of object cannot be detected accurately by 2DLS due to angular resolution limit, which caused loss of accuracy of the extrinsic calibration between camera and 2DLS. In this paper a new algorithm is proposed to solve this problem. Firstly, the least-squares method was applied to linearly fit laser data locat...

  5. Necessity and clinical application of diagnostic CT in PET-CT scanner

    PET scanning has a definite clinical impact on diagnosis, initial staging, restaging, monitoring therapeutic effects of malignancies, and on assessment of myocardial viability. Whereas, PET scans has false positive diagnosis and false negative diagnosis of malignant lesions. It leads to reduce specifity in PET imaging. application of diagnostic CT, especially applying contrast enhanced CT scans, three dimensional technique, CTA(CT angiography), CT perfusion and CT virtual endoscopy can realize dominance complementation with PET and CT, PET-CT imaging diagnosis combines with PET and CT diagnostic technique, it improves sensitivity, specifity, and accuracy in clinical application of PET-CT scanner. (authors)

  6. Track counting and thickness measurement of LR115 radon detectors using a commercial image scanner

    An original optical method for track counting and film thickness determination of etched LR115 radon detectors was developed. The method offers several advantages compared with standard techniques. In particular, it is non-destructive, very simple and rather inexpensive, since it uses a commercial scanner and a free software. The complete analysis and the calibration procedure carried out for the determination of radon specific activity are reported. A comparison with the results of spark counting defines the accuracy and the precision of the new technique. (authors)

  7. An improved image algorithm for CT scanners

    A common artifact in CT head-section images is a cupping or broad ''whitening'' effect near the skull which is due at least in part to the polychromaticity of the x-ray beam. In this paper, a general method is presented for removing this artifact empirically by a combination of two approaches. The gross cupping is removed by modifying the raw transmission data prior to reconstruction. The residual whitening near the bone is removed by conveniently modifying the reconstruction-filter function. Examples of the modifications are shown using the ASE CT scanner. The method convolves or deconvolves the CT image with an appropriate point spread function. Since the filter-function modifications conceptually done in real space rather than in frequency space, the details of the modifications are more easily understood

  8. Robotic aircraft scanner for neutron radiographic inspection

    A robotic positioner and manipulator, a key component of a mobile neutron radiography system (MNRS) for aircraft inspection, is described. The MNRS is designed to inspect military aircraft for hidden corrosion in aluminum structures. The MNRS is comprised of an accelerator-based (Kaman A-711 sealed tube neutron generator using the deuterium-tritium reaction) thermal neutron source, electronic neutron imaging system, robotic positioner and manipulator for the source/imager, control trailer housing system control electronics and digital image processing system, mobile dark room for film processing, self-contained electrical power source, and radiation safety system. For in situ aircraft inspection, the robotic scanner is programmed (in a teach/learn mode) to scan a region of the components (e.g., wings, stabilizers, etc.) using a control pendant

  9. Radiation dosimetry of computed tomography x-ray scanners

    This report describes the development and application of the methods employed in National Radiation Laboratory (NRL) surveys of computed tomography x-ray scanners (CT scanners). It includes descriptions of the phantoms and equipment used, discussion of the various dose parameters measured, the principles of the various dosimetry systems employed and some indication of the doses to occupationally exposed personnel

  10. 21 CFR 892.1330 - Nuclear whole body scanner.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner....

  11. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner....

  12. Thermionic scanner pinpoints work function of emitter surfaces

    Rasor, N. S.

    1966-01-01

    In the electron tube testing, a thermionic scanner makes accurate spatial resolution measurements of the metallic surface work functions of emitters. The scanner determines the emitter function and its local departures from the mean value on a point-by-point basis for display on an oscilloscope.

  13. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot (2...

  14. Immersion and dry ArF scanners enabling 22nm HP production and beyond

    Uehara, Yusaku; Ishikawa, Jun; Kohno, Hirotaka; Tanaka, Eiichiro; Ohba, Masanori; Shibazaki, Yuichi

    2012-03-01

    Streamlign innovations, sufficient overlay accuracy for critical layers, as well as maximized productivity can be achieved. Furthermore, CoO will be significantly improved, which is the vital benefit when comparing ArF dry vs. immersion scanners. In this paper / presentation the latest S621D and S320F performance data will be introduced.

  15. Technical innovation: Wire guided ductography

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  16. Californium Recovery from Palladium Wire

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  17. Relative accuracy evaluation.

    Yan Zhang

    Full Text Available The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms.

  18. Relative accuracy evaluation.

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  19. Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction

    Myklebost Ola

    2004-02-01

    Full Text Available Abstract Background High throughput gene expression data from spotted cDNA microarrays are collected by scanning the signal intensities of the corresponding spots by dedicated fluorescence scanners. The major scanner settings for increasing the spot intensities are the laser power and the voltage of the photomultiplier tube (PMT. It is required that the expression ratios are independent of these settings. We have investigated the relationships between PMT voltage, spot intensities, and expression ratios for different scanners, in order to define an optimal scanning procedure. Results All scanners showed a limited intensity range from 200 to 50 000 (mean spot intensity, for which the expression ratios were independent of PMT voltage. This usable intensity range was considerably less than the maximum detection range of the PMTs. The use of spot and background intensities outside this range led to errors in the ratios. The errors at high intensities were caused by saturation of pixel intensities within the spots. An algorithm was developed to correct the intensities of these spots, and, hence, extend the upper limit of the usable intensity range. Conclusions It is suggested that the PMT voltage should be increased to avoid intensities of the weakest spots below the usable range, allowing the brightest spots to reach the level of saturation. Subsequently, a second set of images should be acquired with a lower PMT setting such that no pixels are in saturation. Reliable data for spots with saturation in the first set of images can easily be extracted from the second set of images by the use of our algorithm. This procedure would lead to an increase in the accuracy of the data and in the number of data points achieved in each experiment compared to traditional procedures.

  20. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    Angelis, G. I.; Kyme, A. Z.; Ryder, W. J.; Fulton, R. R.; Meikle, S. R.

    2014-10-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies.

  1. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry

    Asero, G.; Greco, C.; Gueli, A. M.; Raffaele, L.; Spampinato, S.

    2016-03-01

    Introduction: Radiochromic films are two-dimensional dosimeters that do not require developing and give values of absorbed dose with accuracy and precision. Since this dosimeter colours directly after irradiation, it can be digitized with commercial optical flatbed scanners to obtain a calibration curve that links blackening of the film with dose. Although the film has an intrinsic high spatial resolution, the scanner determines the actual resolution of this dosimeter, in particular the "dot per inch" (dpi) parameter. The present study investigates the effective spatial resolution of a scanner used for Gafchromic® XR-QA2 film (designed for radiology Quality Assurance) analysis. Material and methods: The quantitative evaluation of the resolution was performed with the Modulation Transfer Function (MTF) method, comparing the nominal resolution with the experimental one. The analysis was performed with two procedures. First, the 1951 USAF resolution test chart, a tool that tests the performance of optical devices, was used. Secondly, a combined system of mammography X-ray tube, XR-QA2 film and a bar pattern object was used. In both cases the MTF method has been applied and the results were compared. Results: The USAF and the film images have been acquired with increasing dpi and a standard protocol for radiochromic analysis, to evaluate horizontal and vertical and resolution. The effective resolution corresponds to the value of the MTF at 50%. In both cases and for both procedures, it was verified that, starting from a dpi value, the effective resolution saturates. Conclusion: The study found that, for dosimetric applications, the dpi of the scanner have to be adjusted to a reasonable value because, if too high, it requires high scanning and computational time without providing additional information.

  2. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies. (paper)

  3. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry

    Introduction: Radiochromic films are two-dimensional dosimeters that do not require developing and give values of absorbed dose with accuracy and precision. Since this dosimeter colours directly after irradiation, it can be digitized with commercial optical flatbed scanners to obtain a calibration curve that links blackening of the film with dose. Although the film has an intrinsic high spatial resolution, the scanner determines the actual resolution of this dosimeter, in particular the 'dot per inch' (dpi) parameter. The present study investigates the effective spatial resolution of a scanner used for Gafchromic® XR-QA2 film (designed for radiology Quality Assurance) analysis. Material and methods: The quantitative evaluation of the resolution was performed with the Modulation Transfer Function (MTF) method, comparing the nominal resolution with the experimental one. The analysis was performed with two procedures. First, the 1951 USAF resolution test chart, a tool that tests the performance of optical devices, was used. Secondly, a combined system of mammography X-ray tube, XR-QA2 film and a bar pattern object was used. In both cases the MTF method has been applied and the results were compared. Results: The USAF and the film images have been acquired with increasing dpi and a standard protocol for radiochromic analysis, to evaluate horizontal and vertical and resolution. The effective resolution corresponds to the value of the MTF at 50%. In both cases and for both procedures, it was verified that, starting from a dpi value, the effective resolution saturates. Conclusion: The study found that, for dosimetric applications, the dpi of the scanner have to be adjusted to a reasonable value because, if too high, it requires high scanning and computational time without providing additional information

  4. Antenna coupled photonic wire lasers.

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  5. Wire system aging assessment and condition monitoring (WASCO)

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  6. Wire system aging assessment and condition monitoring (WASCO)

    Fantoni, P.F. [Institutt for energiteknikk (Norway); Nordlund, A. [Chalmers Univ. of Technology (Sweden)

    2006-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  7. A wired - impressa e digital

    Pontes, Sara Raquel Machado

    2015-01-01

    O tema abordado neste relatório de estágio é a revista Wired impressa vs. digital. Tendo em conta, que uma das primeiras revistas a ser publicadas para Ipad foi a Wired, um periódico icónico que aborda assuntos referentes à tecnologia, decidi realizar uma análise exaustiva desta revista de forma a relacionar estes dois mundos tão díspares. Para tal, dividi este trabalho em duas partes distintas, sendo a primeira delas divididas em dois capítulos. No primeiro capítulo faz-se uma breve contextu...

  8. Characterization and use of a gamma radiation TLC scanner for radiochemical purity measurements of radiopharmaceutical kit preparations of sup(99m)Tc(dmpe)sub(2)Clsub(2)sup(+)

    A simple, low cost TLC scanner system for the characterization of γ-emitting radiopharmaceuticals is described. The TLC γ scanner has a linear response range of approx. 0.074 Mbq up to >2.94 Mbq. The accuracy and reproducibility of measurement is better than +-5% (relative). The utility of the TLC scanner system is demonstrated by application to the radioanalytical evaluation of sup(99m)Tc(dmpe)sub(2)Clsub(2)sup(+) preparations. A comparison with HPLC radioanalytical separations is made. (author)

  9. Assessing Pathologies on Villamayor Stone (salamanca, Spain) by Terrestrial Laser Scanner Intensity Data

    García-Talegón, J.; Calabrés, S.; Fernández-Lozano, J.; Iñigo, A. C.; Herrero-Fernández, H.; Arias-Pérez, B.; González-Aguilera, D.

    2015-02-01

    This paper deals with the assessing of pathologies in façades using a variety of intensity data provided by different terrestrial laser scanner. In particular, a complex building built in the Villamayor Stone that is to be candidate as a Global Heritage Stone Resource has been chosen as study case. The Villamayor Stone were quarrying for the construction and ornamentation of monuments in Salamanca, declared World Heritage City by UNESCO in 1988. The objective of this paper is to assess the pathologies of Villamayor Stone and compare the results obtained through the laser techniques with the classical techniques of mapped pathologies (i.e. visual inspection). For that intensity data coming from laser scanners will be used as non-destructive techniques applied to the façades and several retired plaques (after of building restoration) of Villamayor Stone with pathologies (fissures, scales, loss of matter, humidity/biological colonization) carried to the laboratory. Subsequently it will perform different comparisons between the accuracy reached with the different sensors and a high precision model setup on laboratory which performs as "ground truth". In particular, the following objectives will be pursued: i) accuracy assessment of the results obtained in in situ and laboratory; ii) an automation or semi-automation of the detection of pathologies in Villamayor Stone; iii) discriminate the different types of Villamayor Stone used in the façades in function of the radiometric response; iv) establish a methodology for detection and assessing of pathologies based on laser scanner intensity data applied to monuments and modern buildings built in Villamayor Stone.

  10. ASSESSING PATHOLOGIES ON VILLAMAYOR STONE (SALAMANCA, SPAIN BY TERRESTRIAL LASER SCANNER INTENSITY DATA

    J. García-Talegón

    2015-02-01

    Full Text Available This paper deals with the assessing of pathologies in façades using a variety of intensity data provided by different terrestrial laser scanner. In particular, a complex building built in the Villamayor Stone that is to be candidate as a Global Heritage Stone Resource has been chosen as study case. The Villamayor Stone were quarrying for the construction and ornamentation of monuments in Salamanca, declared World Heritage City by UNESCO in 1988. The objective of this paper is to assess the pathologies of Villamayor Stone and compare the results obtained through the laser techniques with the classical techniques of mapped pathologies (i.e. visual inspection. For that intensity data coming from laser scanners will be used as non-destructive techniques applied to the façades and several retired plaques (after of building restoration of Villamayor Stone with pathologies (fissures, scales, loss of matter, humidity/biological colonization carried to the laboratory. Subsequently it will perform different comparisons between the accuracy reached with the different sensors and a high precision model setup on laboratory which performs as “ground truth”. In particular, the following objectives will be pursued: i accuracy assessment of the results obtained in in situ and laboratory; ii an automation or semi-automation of the detection of pathologies in Villamayor Stone; iii discriminate the different types of Villamayor Stone used in the façades in function of the radiometric response; iv establish a methodology for detection and assessing of pathologies based on laser scanner intensity data applied to monuments and modern buildings built in Villamayor Stone.

  11. The Truth about Accuracy

    Buekens, Filip; Truyen, Frederik

    2014-01-01

    When we evaluate the outcomes of investigative actions as justified or unjustified, good or bad, rational or irrational, we make, in a broad sense of the term, evaluative judgments about them. We look at operational accuracy as a desirable and evaluable quality of the outcomes and explore how the concepts of accuracy and precision, on the basis of insights borrowed from pragmatics and measurement theory, can be seen to do useful work in epistemology. Operational accuracy (but not metaphysical...

  12. Rethinking Empathic Accuracy

    Meadors, Joshua

    2014-01-01

    The present study is a methodological examination of the implicit empathic accuracy measure introduced by Zaki, Ochsner, and Bolger (2008). Empathic accuracy (EA) is defined as the ability to understand another person's thoughts and feelings (Ickes, 1993). Because this definition is similar to definitions of cognitive empathy (e.g., Shamay-Tsoory, 2011) and because affective empathy does not appear to be related to empathic accuracy (Zaki et al., 2008), the Basic Empathy Scale--which measures...

  13. Wire Capture Programs for Macintosh and IBM.

    Wiley, Gale

    1989-01-01

    Discusses wire capture programs (computer programs which gather and process wire services such as the Associated Press or United Press) for computer labs in journalism departments. Describes details of such programs for Macintosh, IBM, and IBM clones. (SR)

  14. Anode wire aging tests with selected gases

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether

  15. Confocal scanner for vertical particle tracks in the nuclear photoemulsion

    A confocal scanner for selective observation of the vertical particle tracks in the nuclear photoemulsion is described. The particle track being searched for is imaging at an angle of 45 deg with respect to the optical axis of the system. The confocal scanner is provided with a new optical element, an 'image orthogonalizator', by means of which the extended image of the inclined vertical particle track is rotated over an angle of 90 deg. The stereoscopic version of the confocal scanner is presented as well. The described systems will be used in the experiments for investigation of the neutrino oscillations in the accelerators experiments

  16. CT scanner for diagnosis of three most common diseases

    Conventional computed tomography (CT) scanners generate cross-sectional images of the human body and render three-dimensional images of organs. However the scanning of moving organs such as the heart and lung was unsuitable. Recently, however, multislice helical CT scanners have appeared with dramatically improved performance and functions, including the capability to render three-dimensional images of moving organs. Accordingly, the functions of the latest CT scanners for diagnosing the three most common diseases (cancer, cardiac disease, and cerebrovascular disease) are changing. (author)

  17. Scanner for the detection of contraband in air cargo containers

    Full text: There is a growing worldwide need to rapidly scan bulk air cargo for contraband such as illicit drugs and explosives. CSIRO has been working with Australian Customs Service to develop an innovative and cost-effective solution capable of directly scanning air freight containers in 1-2 minutes without unpacking. A new scanner has been developed that combines fast neutron and gamma-ray radiography to provide high-resolution images that include information on material composition. A full-scale prototype scanner has been successfully tested in the laboratory and a commercial-scale scanner will be installed at Brisbane airport in 2005. Copyright (2005) Australian Institute of Physics

  18. Performance evaluation of an Inveon PET preclinical scanner

    Constantinescu, Cristian C.; Mukherjee, Jogeshwar

    2009-01-01

    We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with 18F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a 22Na point source, placed on the animal bed and positioned at ...

  19. Transport Through Carbon Nanotube Wires

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  20. Wire-based tracking using mutual information

    Andrade-Cetto, J.; Thomas, Federico

    2006-01-01

    Wire-based tracking devices are an affordable alternative to costly tracking devices. They consist of a fixed base and a platform, attached to the moving object, connected by six wires whose tension is maintained along the tracked trajectory. One important shortcoming of this kind of devices is that they are forced to operate in reduced workspaces so as to avoid singular configurations. Singularities can be eliminated by adding more wires but this causes more wire interferences, and a higher ...

  1. Novel Wiring Technologies for Aerospace Applications

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  2. Wire topology optimisation for low power CMOS

    Zuber, Paul

    2007-01-01

    Power optimisation has become one of the most important goals when designing integrated systems. A methodology is proposed that reduces the power consumption of a detail-routed circuit by modifying its wire topology. Its principle is a re-distribution of the local whitespace between parallel wires depending on the switching activities of the wires. The more active a wire the more space it will acquire and thus the less toggle energy is required. After optimisation, the new layout is returned...

  3. Density distribution measurement for powder compacts using an X-ray CT scanner

    Method of density measurement using an X-ray CT scanner was investigated particularly for powder compacts. Since X-ray absorption characteristics are different in various materials, densities are able to be known from CT values, which are functions of X-ray absorption coefficients of the materials. High energy X-rays around 200-300keV realized high correlation between the CT values and material densities. The values, however, were influenced by the size of samples and varied within the same sample even that is uniform in density. These phenomena were caused by beam hardening characteristics in white X-ray of the CT scanner and by the problem of accuracy in CT computation. In spite of the condition, very high correlation was obtained between densities and CT values in aluminum powder compacts. A density distribution in the compact, which was converted from the measured CT value distribution, exhibited a typical distribution in powder compact. Because of the beam hardening and the problem in computation accuracy, CT values in a wrought aluminum sample distributed within about 2.5% of the mean density. Almost the same error should be considered in CT value distributions in powder compacts. (author)

  4. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  5. Getting "Wired" for McLuhan's Cyberculture.

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and presents critiques of a utopian…

  6. Time synchronization of a wired sensor network for structural health monitoring

    This paper introduces a time synchronization system for wired smart sensor networks to be applied to the structural health monitoring of gigantic structures. The jitter of sensor nodes in the wired network depends on the wire length between the origin and the destination of the time synchronization signals. The proposed system can theoretically achieve the accuracy to limit the jitter of sensors within 34 ns by adjusting the timing depending on the wire length, and experimentally showed the jitter of 190 m separation to be within 25 ns. The proposed system uses local area network (LAN) cables and does not require additional cabling for synchronization. Thus the proposed synchronization system can be embedded in the sensor network with minimal cost

  7. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  8. Landsat 1-5 Multispectral Scanner V1

    National Aeronautics and Space Administration — Abstract: The Landsat Multispectral Scanner (MSS) was a sensor onboard Landsats 1 through 5 and acquired images of the Earth nearly continuously from July 1972 to...

  9. A finite element model for independent wire rope core with double helical geometry subjected to axial loads

    Cengiz Erdonmez; C Erdem Imrak

    2011-12-01

    Due to the complex geometry of wires within a wire rope, it is difficult to model and analyse independent wire rope core accurately (IWRC). In this paper, a more realistic three-dimensional modelling approach and finite element analysis of wire ropes are explained. Single helical geometry is enough to model simple straight strand while IWRC has a more complex geometry by inclusion of double helical wires in outer strands. Taking the advantage of the double helical wires, three-dimensional IWRCs modelling is applied for both right regular lay and lang lay IWRCs. Wire-by-wire based results are gathered by using the proposed modelling and analysis method under various loading conditions. Illustrative examples are given for those show the accuracy and the robustness of the present FE analysis scheme with considering frictional properties and contact interactions between wires. FE analysis results are compared with the analytical and available test results and show reasonable agreement with a simpler and more practical approach.

  10. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision

    Ender, Andreas; Mehl, Albert

    2013-01-01

    STATEMENT OF PROBLEM: A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. PURPOSE: The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. MATERIAL AND METHODS: A steel reference dentate model was fabricated and measured with a...

  11. Accurate modeling of a DOI capable small animal PET scanner using GATE

    In this work we developed a Monte Carlo (MC) model of the Sedecal Argus pre-clinical PET scanner, using GATE (Geant4 Application for Tomographic Emission). This is a dual-ring scanner which features DOI compensation by means of two layers of detector crystals (LYSO and GSO). Geometry of detectors and sources, pulses readout and selection of coincidence events were modeled with GATE, while a separate code was developed in order to emulate the processing of digitized data (for example, customized time windows and data flow saturation), the final binning of the lines of response and to reproduce the data output format of the scanner's acquisition software. Validation of the model was performed by modeling several phantoms used in experimental measurements, in order to compare the results of the simulations. Spatial resolution, sensitivity, scatter fraction, count rates and NECR were tested. Moreover, the NEMA NU-4 phantom was modeled in order to check for the image quality yielded by the model. Noise, contrast of cold and hot regions and recovery coefficient were calculated and compared using images of the NEMA phantom acquired with our scanner. The energy spectrum of coincidence events due to the small amount of 176Lu in LYSO crystals, which was suitably included in our model, was also compared with experimental measurements. Spatial resolution, sensitivity and scatter fraction showed an agreement within 7%. Comparison of the count rates curves resulted satisfactory, being the values within the uncertainties, in the range of activities practically used in research scans. Analysis of the NEMA phantom images also showed a good agreement between simulated and acquired data, within 9% for all the tested parameters. This work shows that basic MC modeling of this kind of system is possible using GATE as a base platform; extension through suitably written customized code allows for an adequate level of accuracy in the results. Our careful validation against experimental

  12. Architectural survey of Monserrate Palace - laser scanner survey

    Luísa Cortesão

    2012-01-01

    In order to obtain a complete set of measured drawings (plans, sections and elevations) for developing infrastructure projects in the Palace of Monserrate, a laser scanning survey was conducted. This technology is based on the principle of measuring distances by resorting to a laser beam, issued by an active sensor known as a laser scanner. This scanner is combined with a camera using a color sensor.

  13. Data scanner system of the BELLE silicon vertex detector

    Fukunaga, C. [Tokyo Metropolitan Univ. (Japan); Korhonen, T. [Univ. of Helsinki (Finland). Research Inst. of High Energy Physics; Tanaka, M.; Ikeda, H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan). Dept. of Physics

    1996-02-01

    A data scanner system, which is a part of the front-end data acquisition system of the BELLE silicon vertex detector, makes an analog-to-digital conversion of preamplified signals from the detector and stores digitized data into local memory. The sequence control and buffer managing are performed by a software process of an on-board CPU. With this data scanner system, the authors can achieve data taking with less than 10% dead time up to 800 Hz trigger rate.

  14. Alignment and resolution studies of the MARS CT scanner

    This paper describes a procedure of alignment of the MARS CT scanner with cone-beam geometry. The position of the x-ray source relative to the detector, the tilt of the detector are measured during alignment. The mechanical precision of gantry movement is determined. Significant improvement in the quality of image reconstruction has been achieved as a result of the calibration. Spatial resolution (PTF) of the scanner is confirmed to be about 30 μm

  15. A fast ADC scanner for multiparameter nuclear physics experiments

    A fast readout system for multiparameter experiments in nuclear physics is described. The central part of the CAMAC aquisition hardware is an ADC scanner module. The scanner incorporates a new arbitration logic and direct memory access for simultaneous transfer of singles and correlated data. Together with specially designed ADC interfaces the system can be set up for any configuration of singles and multiparameter events from 1 up to 15 ADC's in one crate

  16. Transport through multiply connected quantum wires

    Das, Sourin; Rao, Sumathi

    2003-01-01

    We study transport through multiply coupled carbon nano-tubes (quantum wires) and compute the conductances through the two wires as a function of the two gate voltages $g_1$ and $g_2$ controlling the chemical potential of the electrons in the two wires. We find that there is an {\\it equilibrium} cross-conductance, and we obtain its dependence on the temperature and length of the wires. The effective action of the model for the wires in the strong coupling (equivalently Coulomb interaction) li...

  17. Laboratory and field portable system for calibrating airborne multispectral scanners

    Manufacturers of airborne multispectral scanners suggest procedures for calibration and alignment that are usually awkward and even questionable. For example, the procedures may require: separating the scanner from calibration and alignment sources by 100 feet or more, employing folding mirrors, tampering with the detectors after the procedures are finished, etc. Under the best of conditions such procedures require about three hours yielding questionable confidence in the results; under many conditions, however, procedures commonly take six to eight hours, yielding no satisfactory results. EG and G, Inc. has designed and built a calibration and alignment system for airborne scanners which solves those problems, permitting the procedures to be carried out in about two to three hours. This equipment can be quickly disassembled, transported with the scanner in all but the smallest single engine aircraft, and reassembled in a few hours. The subsystems of this equipment are commonly available from manufacturers of optical and electronic equipment. The other components are easily purchased, or fabricated. The scanner discussed is the Model DS-1260 digital line scanner manufactured by Daedalus Enterprises, Inc. It is a dual-sensor system which is operated in one of two combination of sensors: one spectrometer head (which provides simultaneous coverage in ten visible channels) and one thermal infrared detector, or simply two thermal infrared detectors

  18. RESEARCH AND PRACTICE ON NONDESTRUCTIVE FLAW DETECTION INSTALLATION FOR WIRE-CORE BELT

    刘志河; 张海涛; 绍庆龙

    1997-01-01

    Electromagnetic self-induction theory and computer are adopted and study of online monitoring technique for wire-core belt is conducted, the study shows that there is direct proportion between distance I of broken ends and output volt V, when I≥60 mm, V keeps constantly, the running speed v of wire-core belt has no big effect on output volt V, there is inverse proportion between the height h from probe to the surface of the belt and output volt V, when h≥30mm, V tends to be zero. Based on the test result, on-line monitoring installation is developed, the practice proved that the accuracy of broken wire monitoring can be above 95%, the monitoring accuracy of joint twitch can be 0.04 V/mm.

  19. High speed aluminum wire anodizing and process

    A high speed aluminum wire anodizing machine and process are provided which includes anodizing aluminum wire in an anodizer tank having wire ingress and egress openings. At least two adjacent rotatable wire accumulator drums are provided in the tank, preferably with means for producing a flow of anodizing electrolytes into each of the drums through an end hub thereof and out of the sidewalls of the drums passed circumferential wire separators. An anode is located proximal to the wire ingress opening, preferably in a contact cell which has an adjustable wire egress window. At least one cathode is provided in the tank. The cathode is preferably either between the drums or a pair of cathodes are provided above and below the drums adjacent to the sidewalls thereof, or both

  20. Wireless handheld scanners integrated with waste tracking

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has embraced mobile wireless technology to help the disposition of hazardous and mixed radiological waste. The following paper describes one application the INEEL developed to increase the data accuracy and near-real time reporting requirements for waste management. With the continuous operational demands at the ''site'', it was difficult to sustain an accurate, up-to-date database required for regulatory compliance audits and reporting. Incorporating wireless mobile technology, the INEEL was able to increase the accuracy while reducing the data delay times previously encountered. Installation issues prolonged the project along with obstacles encountered with operations personnel. However, the success of this project was found in persistence and management support as well as the technology itself. Future wireless, mobile computing will continue at the INEEL for years to come based on a successful project that was able to integrate new technology to an existing waste management system with proven, increased data accuracy

  1. Sintered wire cesium dispenser photocathode

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  2. Printed wiring board process improvement

    Evans, M. E.; Gentry, F. L.

    1985-07-01

    This project investigated ways of improving printed wiring board (PWB) fabrication at BKCD. The primary objective of the mechaning portion was to determine the best manufacturing techniques for rigid double-sided and multilayer printed wiring products, and to identify the process changes required to implement those techniques. Another objective was to improve solder thickness and shelf life by using the hot air leveling process. All process variables were identified and a suitable manufacturing process was established. Copper plating of PWBs presently used a solution of copper pyrophosphate that has several disadvantages. The properties of the copper deposit from an acid copper sulfate process and relative ease of chemical control offer advantages over the pyrophosphate process and are being evaluated for use.

  3. Practical circuits with Physarum Wires

    Whiting, James G. H.; Mayne, Richard; Moody, Nadine; Costello, Ben de Lacy; Adamatzky, Andrew

    2015-01-01

    Purpose: Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio- electronic components. Until recently, practical examples of electronic circuits using PWs have been limited. These PWs have been shown to be self repairing, offering significant advantage over traditional electronic components. This article documents work performed to produce practical circuits using PWs. Method: We have demonstrated through manufacture and tes...

  4. Phonon spectra in quantum wires

    Ilić Dušan; Raković Dejan; Šetrajčić Jovan

    2007-01-01

    Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most imp...

  5. Diagnosing Eyewitness Accuracy

    Russ, Andrew

    2015-01-01

    Eyewitnesses frequently mistake innocent people for the perpetrator of an observed crime. Such misidentifications have led to the wrongful convictions of many people. Despite this, no reliable method yet exists to determine eyewitness accuracy. This thesis explored two new experimental methods for this purpose. Chapter 2 investigated whether repetition priming can measure prior exposure to a target and compared this with observers’ explicit eyewitness accuracy. Across three experiments slower...

  6. An effective scatter correction method based on single scatter simulation for a 3D whole-body PET scanner

    Hamamatsu SHR74000 is a newly designed full three-dimensional (3D) whole body positron emission tomography (PET) scanner with small crystal size and large field of view (FOV). With the improvement of sensitivity, the scatter events increase significantly at the same time, especially for large objects. Monte Carlo simulations help us to understand the scatter phenomena and provide good references for scatter correction. In this paper, we introduce an effective scatter correction method based on single scatter simulation for the new PET scanner, which accounts for the full 3D scatter correction. With the results from Monte Carlo simulations, we implement a new scale method with special concentration on scatter events from outside the axial FOV and multiple scatter events. The effects of scatter correction are investigated and evaluated by phantom experiments; the results show good improvements in quantitative accuracy and contrast of the images, even for large objects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Evaluation of the accuracy of shoe fitting in older people using three-dimensional foot scanning

    Menz, Hylton B; Auhl, Maria; Ristevski, Sonja; Frescos, Nicoletta; Munteanu, Shannon E

    2014-01-01

    Background Ill-fitting footwear is a common problem in older people. The objective of this study was to determine the accuracy of shoe fitting in older people by comparing the dimensions of allocated shoes to foot dimensions obtained with a three-dimensional (3D) scanner. Methods The shoe sizes of 56 older people were determined with the Brannock device®, and weightbearing foot scans were obtained with the FotoScan 3D scanner (Precision 3D Ltd, Weston-super-mare, UK). Participants were provid...

  8. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging.

    Lapointe, Eric; Pichette, Julien; Bérubé-Lauzière, Yves

    2012-06-01

    We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners. PMID:22755630

  9. Digital dental surface registration with laser scanner for orthodontics set-up planning

    Alcaniz-Raya, Mariano L.; Albalat, Salvador E.; Grau Colomer, Vincente; Monserrat, Carlos A.

    1997-05-01

    We present an optical measuring system based on laser structured light suitable for its diary use in orthodontics clinics that fit four main requirements: (1) to avoid use of stone models, (2) to automatically discriminate geometric points belonging to teeth and gum, (3) to automatically calculate diagnostic parameters used by orthodontists, (4) to make use of low cost and easy to use technology for future commercial use. Proposed technique is based in the use of hydrocolloids mould used by orthodontists for stone model obtention. These mould of the inside of patient's mouth are composed of very fluent materials like alginate or hydrocolloids that reveal fine details of dental anatomy. Alginate mould are both very easy to obtain and very low costly. Once captured, alginate moulds are digitized by mean of a newly developed and patented 3D dental scanner. Developed scanner is based in the optical triangulation method based in the projection of a laser line on the alginate mould surface. Line deformation gives uncalibrated shape information. Relative linear movements of the mould with respect to the sensor head gives more sections thus obtaining a full 3D uncalibrated dentition model. Developed device makes use of redundant CCD in the sensor head and servocontrolled linear axis for mould movement. Last step is calibration to get a real and precise X, Y, Z image. All the process is done automatically. The scanner has been specially adapted for 3D dental anatomy capturing in order to fulfill specific requirements such as: scanning time, accuracy, security and correct acquisition of 'hidden points' in alginate mould. Measurement realized on phantoms with known geometry quite similar to dental anatomy present errors less than 0,1 mm. Scanning of global dental anatomy is 2 minutes, and generation of 3D graphics of dental cast takes approximately 30 seconds in a Pentium-based PC.

  10. Performance of a volumetric CT scanner based upon a flat-panel imager

    Jaffray, David A.; Siewerdsen, Jeffrey H.; Drake, Douglas G.

    1999-05-01

    approximately 900 to 1100. The contrast sensitivity of the CBCT system and the conventional scanner was compared using these same materials. Images of a uniform water bath were acquired for characterization of the response uniformity and the dependence of noise on exposure. The spatial frequency response characteristics of the system were measured using a steel wire, from which the point spread function and modulation transfer function were determined. Finally, the soft-tissue contrast and spatial resolution of the CBCT system was demonstrated in volumetric images of a euthanized rat. The image quality was compared to images of the same subject acquired with an equivalent technique on the commercial scanner. A table-top CBCT scanner based upon an a- Si:H FPI has been constructed, and a system for CBCT image acquisition, processing, and reconstruction has been implemented. This system is capable of producing high-quality volumetric images. Reconstructions were generated from 300 radiographs (100 kVp; 1 mAs per projection) obtained at 1.2 degree increments through 360 degrees. Image acquisition and reconstruction required approximately 30 min and approximately 2 h 20 min (250 MHz UltraSparc), respectively. The system has demonstrated signal and noise performance comparable to that of commercial CT scanners. The imaging performance of the prototype supports the hypothesis that FPIs can be employed in computed tomography applications.

  11. Polarimetry and Schlieren diagnostics of underwater exploding wires

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ∼80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  12. "Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire

    Galina Kraftmakher

    2012-08-01

    Full Text Available Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is suggested a concept of magnetic response based on antiparallel resonant currents excited by magnetic field of surface polaritons in many spatial LC-circuits created from cut-wire pairs of a grating and section of longitudinal cut-wire. Three separately observed resonant effects connected with grating, LC-circuits and with longitudinal cut-wire have been identified applying measurements in waveguides, cutoff waveguides and free space. To tune and mark resonance split cut-wires are loaded with varactor diodes.

  13. A Vibrating Wire System For Quadrupole Fiducialization

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  14. Description of a transmission X-ray computed tomography scanner

    A new prototype X-ray computed tomography scanner has been designed, constructed and tested locally. The major system employs an X-ray tube, a semiconductor detector, data logger and a three-dimensional sample position controller driven by three stepping motors, which allow two linear translations in addition to the rotational motion. The image resolution is determined by the step size and the diameter of the X-ray beam, which is controlled by the pinhole collimator. The scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. This system, due to the semiconductor detector used, presents the novelty of being potentially able to acquire both in CT (transmission) mode and in SPECT (emission) mode. The imaging system performance is inspected for different phantoms, and some typical reconstructed images are presented. - Highlights: → A prototype X-ray transmission CT scanner system was designed and constructed successfully at the X-ray Laboratory in the University of Jordan. → X-ray CT scanner demonstrated its capability as a non-destructive tool for evaluating the internal atomic details of material objects. → Some general problems of X-ray CT scanning and image reconstruction are discussed and some suggested solutions are presented. → Scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. → Internal geometrical structure can be determined from CT images.

  15. Characterization of a Large, Low-Cost 3D Scanner

    Jeremy Straub

    2015-01-01

    Full Text Available Imagery-based 3D scanning can be performed by scanners with multiple form factors, ranging from small and inexpensive scanners requiring manual movement around a stationary object to large freestanding (nearly instantaneous units. Small mobile units are problematic for use in scanning living creatures, which may be unwilling or unable to (or for the very young and animals, unaware of the need to hold a fixed position for an extended period of time. Alternately, very high cost scanners that can capture a complete scan within a few seconds are available, but they are cost prohibitive for some applications. This paper seeks to assess the performance of a large, low-cost 3D scanner, presented in prior work, which is able to concurrently capture imagery from all around an object. It provides the capabilities of the large, freestanding units at a price point akin to the smaller, mobile ones. This allows access to 3D scanning technology (particularly for applications requiring instantaneous imaging at a lower cost. Problematically, prior analysis of the scanner’s performance was extremely limited. This paper characterizes the efficacy of the scanner for scanning both inanimate objects and humans. Given the importance of lighting to visible light scanning systems, the scanner’s performance under multiple lighting configurations is evaluated, characterizing its sensitivity to lighting design.

  16. Phosphorus in antique iron music wire.

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords. PMID:17812747

  17. Vibrating Wire for Beam Profile Scanning

    Arutunian, S G; Mailian, M R; Sinenko, I G; Vasiniuk, I E

    1999-01-01

    The method for measurement of transverse profile (emittance) of the bunch by detecting of radiation arising scattering at of the bunch on the scanning wire is wide-spread. In this work the information about scattering bunch is proposed to measure using the oscillation frequency of the tightened scanning wire. In such way the system of radiation (or secondary particles) extraction and measurement can be removed. Dependence of oscillations frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam, influence of beam self field. Preliminary calculations show that influence caused by wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, niobium zirconium alloys). A scheme of self oscillations generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. Special method of wire fixation and elimination of trans...

  18. Electro-mechanics of drift tube wires

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  19. Electromagnetic Behaviour of Metallic Wire Structures

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  20. Fast and accurate line scanner based on white light interferometry

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  1. Accuracy of Approximate Eigenstates

    Lucha, Wolfgang; Lucha, Wolfgang

    2000-01-01

    Besides perturbation theory, which requires, of course, the knowledge of the exact unperturbed solution, variational techniques represent the main tool for any investigation of the eigenvalue problem of some semibounded operator H in quantum theory. For a reasonable choice of the employed trial subspace of the domain of H, the lowest eigenvalues of H usually can be located with acceptable precision whereas the trial-subspace vectors corresponding to these eigenvalues approximate, in general, the exact eigenstates of H with much less accuracy. Accordingly, various measures for the accuracy of the approximate eigenstates derived by variational techniques are scrutinized. In particular, the matrix elements of the commutator of the operator H and (suitably chosen) different operators, with respect to degenerate approximate eigenstates of H obtained by some variational method, are proposed here as new criteria for the accuracy of variational eigenstates. These considerations are applied to that Hamiltonian the eig...

  2. Diagnostic test accuracy

    Campbell, Jared M.; Klugar, Miloslav; Ding, Sandrine; Carmody, Dennis P.; Håkonsen, Sasja Jul; Jadotte, Yuri T.; White, Sarahlouise; Munn, Zachary

    2015-01-01

    in providing methodological guidance for the conduct of systematic reviews and has developed methods and guidance for reviewers conducting systematic reviews of studies of diagnostic test accuracy. Diagnostic tests are used to identify the presence or absence of a condition for the purpose of...... developing an appropriate treatment plan. Owing to demands for improvements in speed, cost, ease of performance, patient safety, and accuracy, new diagnostic tests are continuously developed, and there are often several tests available for the diagnosis of a particular condition. In order to provide the...... evidence necessary for clinicians and other healthcare professionals to make informed decisions regarding the optimum test to use, primary studies need to be carried out on the accuracy of diagnostic tests and the results of these studies synthesized through systematic review. The Joanna Briggs Institute...

  3. Anomalous Thermal Transport in Quantum Wires

    Fazio, Rosario; Hekking, F. W. J.; Khmelnitskii, D. E.

    1997-01-01

    We study thermal transport in a one-dimensional quantum wire, connected to reservoirs. Despite of the absence of electron backscattering, interactions in the wire strongly influence thermal transport. Electrons propagate with unitary transmission through the wire and electric conductance is not affected. Energy, however, is carried by bosonic excitations (plasmons) which suffer from scattering even on scales much larger than the Fermi wavelength. If the electron density varies randomly, plasm...

  4. Wrapped Wire Detects Rupture Of Pressure Vessel

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  5. IEE wiring regulations explained and illustrated

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  6. Wire Whip Keeps Spray Nozzle Clean

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  7. Aging aircraft wiring: a proactive management methodology

    Tambouratzis, Vasileios.

    2001-01-01

    During the last years, military budgets have been dramatically reduced and the services have been unable to acquire sufficient new systems. Military aviation is one of the areas that have been severely impacted. The result is that the current fleet faces significant aging aircraft problems. Aircraft wiring is one of the areas that have severely affected by the aging process. Recent accidents involving aging wiring problems and reduced operational readiness due to aging wiring have made clear ...

  8. Digital Hammurabi: design and development of a 3D scanner for cuneiform tablets

    Hahn, Daniel V.; Duncan, Donald D.; Baldwin, Kevin C.; Cohen, Jonathon D.; Purnomo, Budirijanto

    2006-02-01

    Cuneiform is an ancient form of writing in which wooden reeds were used to impress shapes upon moist clay tablets. Upon drying, the tablets preserved the written script with remarkable accuracy and durability. There are currently hundreds of thousands of cuneiform tablets spread throughout the world in both museums and private collections. The global scale of these artifacts presents several problems for scholars who wish to study them. It may be difficult or impossible to obtain access to a given collection. In addition, photographic records of the tablets many times prove to be inadequate for proper examination. Photographs lack the ability to alter the lighting conditions and view direction. As a solution to these problems, we describe a 3D scanner capable of acquiring the shape, color, and reflectance of a tablet as a complete 3D object. This data set could then be stored in an online library and manipulated by suitable rendering software that would allow a user to specify any view direction and lighting condition. The scanner utilizes a camera and telecentric lens to acquire images of the tablet under varying controlled illumination conditions. Image data are processed using photometric stereo and structured light techniques to determine the tablet shape; color information is reconstructed from primary color monochrome image data. The scanned surface is sampled at 26.8 μm lateral spacing and the height information is calculated on a much smaller scale. Scans of adjacent tablet sides are registered together to form a 3D surface model.

  9. Measurement of Rotor Blade Deformations of Wind Energy Converters with Laser Scanners

    Wind energy converters in operation are exposed to high stresses which result in large deformations of the rotor blades. In this paper a method for determination of deformations of rotating rotor blades is presented using multiple synchronous laser scanners and cameras. In a first step, multiple scanners in 1D mode are used which record cross sections at different positions along the rotor blades. By comparing the recorded cross sections with a CAD model of the rotor blade, the deformations in out-of-plane and torsional direction can be derived. In order to ensure that the positions of the cross sections are defined in the coordinate system of the wind energy converter, the nacelle is pre-scanned and a 3D transformation is performed using known coordinates from the manufacturer. To account for the relatively slow movement of the nacelle, it is observed by a photogrammetric camera. The results of the nacelle's motion are considered in the analysis of the 1D data. First test recordings were carried out with different measurement frequencies to enable comparisons of accuracy. Furthermore, first results of the cross-section measurements are presented. For the next step the 3D scans will be evaluated which have been acquired using a further instrument simultaneously with the 1D scans. In the same way as before the 3D points will be transferred to the reference system of the nacelle, and then combined with the 1D data

  10. Inverse solutions for a Risley prism scanner with iterative refinement by a forward solution.

    Li, Anhu; Gao, Xinjian; Sun, Wansong; Yi, Wanli; Bian, Yongming; Liu, Hongzhan; Liu, Liren

    2015-11-20

    Risley prism scanners are increasingly used for laser beam steering due to their wide angular scanning range and high resolution. However, the inverse problem, which focuses on obtaining the required prisms' orientations for a given target position, has not been perfectly solved so far. The existing inverse solutions are not accurate or efficient enough for high-accuracy and real-time tracking. An iterative method that combines an approximate inverse solution with an iterative refinement by the forward solution is set forth in this paper. Two case studies indicate that the rotation motions of Risley prism pairs controlled by iterative solutions can slew the beam to create the desired tracking pattern quickly and accurately. Based on this method, a Risley prism scanner developed as a standard trajectory generator is implemented for the error measurement of a robotic manipulator in our experiments. The simulation and experimental results show that the inverse solution for one target point can be obtained within nine iterations for a prescribed tracking error threshold. PMID:26836567

  11. Non-laser-based scanner for three-dimensional digitization of historical artifacts

    A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 μm (or more) and depth resolutions of approximately 2 μm.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertian and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 μm as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform

  12. Landslide Monitoring Using Terrestrial Laser Scanner: Georeferencing and Canopy Filtering Issues in a Case Study

    Barbarella, M.; Fiani, M.

    2012-07-01

    In order to define a methodology that faces the major critical issues, we used a Terrestrial Laser Scanner to monitor a large landslide that caused significant disruptions both to an important state road and to a major railway line in Italy. To survey the landslide we used three different models of Terrestrial Laser Scanners, including a "full wave form" one, potentially useful for filtering vegetation from the data. The output of each measurement campaign is a Digital Surface Model referred to a unique reference system. Starting from the DSMs we produced the Digital Terrain Models, one for each survey. The use of different models of TLS together with the software packages recommended by the companies for data processing, allowed us to compare the surveys and to evaluate the reliability and the accuracy of results. The comparison of data has been useful in order to identify and analyse over time the areas of greatest deformation and the directions of landslide movement and it also gives us some elements about the validity of the technique in this kind of applications. The laser surveys have shown a strong dynamic of the slope but have also highlighted some difficulties in order to efficiently filtering the data. Using two different kinds of TLS, full wave form and mono eco, on the same portion of landslide allows us to make comparisons between the two methodologies for landslide monitoring in a real-world context.

  13. Thermal anchoring of wires in large scale superconducting coil test experiment

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  14. Wired

    Carlowicz, Michael

    Every American grade school and library ought to have free access to the Internet, and universities and institutions ought to have better access, according to the Clinton Administration.In an October 10 speech in Knoxville, Tennessee, President Clinton proposed that all of the nation's 100,000 public schools and 9,000 libraries receive a two-tiered E-rate (education rate) for access to Internet services. All schools and libraries should receive basic connections for free, as well as deep discounts on video conferencing and highspeed connections (with prices influenced by how much the school can afford to pay). The basic connections (and part of the cost of the more sophisticated connections) would be paid from a special federal fund that currently provides below-cost phone service to households in poor and rural areas. That fund is currently drawn from fees assessed on local and long-distance telephone providers; the Clinton Administration would have cable operators and cellular service providers contribute as well. Companies that provide Internet services would be paid at the best available commercial rate.

  15. Wiring systems and fault finding

    Scaddan, Brian

    1905-01-01

    This book deals with an area of practice which many students and non-electricians find particularly challenging. It explains how to interpret circuit diagrams, wiring systems and the principles and practice of testing and fault diagnosis. It will give the reader confidence to understand the principles of testing and to apply this knowledge to fault finding in electrical circuits.It is a handy reference for anybody who needs to be able to trace faults in circuits, whether in domestic, commercial or industrial settings. It will be a time-saver for all electricians, plumbers, heating engineers, t

  16. Trends in Wire Electrical Discharge Machining (WEDM: A Review

    Ms. Sharanya S. Nair

    2014-12-01

    Full Text Available The exponential growth of manufacturing industries and production and the increased need of accuracy and precision throws the spotlight on the nontraditional machining processes. The machining of metals and nonmetals having special properties like high strength, high hardness and toughness is done by non- conventional machining methods. Wire electrical discharge machining is one of the earliest non-traditional machining processes. This machining process competes with conventional machining such as milling, broaching, grinding etc. However, its ability to cut extremely intricate and delicate shapes with utmost accuracy makes this process most suitable among all other processes. The otherwise hard to be machined materials like carbides, tungsten, zirconium etc. can be easily machined using this process. This paper reviews notable work done in the field of WEDM by various researchers.

  17. Uniform wire segmentation algorithm of distributed interconnects

    Yin Guoli; Lin Zhenghui

    2007-01-01

    A uniform wire segmentation algorithm for performance optimization of distributed RLC interconnects was proposed in this paper. The optimal wire length for identical segments and buffer size for buffer insertion are obtained through computation and derivation, based on a 2-pole approximation model of distributed RLC interconnect. For typical inductance value and long wires under 180nm technology, experiments show that the uniform wire segmentation technique proposed in the paper can reduce delay by about 27% ~ 56% , while requires 34%~69% less total buffer usage and thus 29% to 58% less power consumption. It is suitable for long RLC interconnect performance optimization.

  18. Wire alignment system for ATF LINAC

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  19. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  20. Design and performance of HEAD PENN-PET scanner

    A new PET scanner for brain imaging (and animals) has been designed with very high sensitivity and spatial resolution. The design is an evolution of the PENN-PET scanner, which uses large position-sensitive NaI(Tl) detectors, with Anger-type positioning logic, and which allows 3-D volume imaging, without septa. The new design is built with a single annular crystal coupled to 180 photomultiplier tubes, and uses local triggering electronics to subdivide the detector into small zones and to determine coincident events within the detector. The axial acceptance angle of ± 27 deg, with a field-of-view of 25.6 cm, is larger than any currently operating PET scanner. Performance measurements are presented

  1. Gigapixel inline digital holographic microscopy using a consumer scanner

    Shimobaba, Tomoyoshi; Kakue, Takashi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Masuda, Nobuyuki; Ito, Tomoyoshi

    2013-01-01

    We demonstrate a gigapixel inline digital holographic microscopy using a consumer scanner. The consumer scanner can maximally scan an A4 size image (297mm x 210mm) with 4800 dpi (= 5.29 um), theoretically achieving a resolution of 56,144 x 39,698 = 2.22 gigapixels. The system using a consumer scanner has a simple structure, compared with synthetic aperture digital holography using a camera mounted on a two-dimensional moving stage. In this demonstration, we captured an inline hologram with 23,602 x 18,023 pixels (= 0.43 gigapixels). In addition, to accelerate the reconstruction time of the gigapixel hologram and decrease the amount of memory for the reconstruction, we applied the band-limited double-step Fresnel diffraction to the reconstruction.

  2. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    J. J. Diao; Qing Cao

    2011-01-01

    Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  3. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    J. J. Diao

    2011-03-01

    Full Text Available Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  4. Novel scanner characterization method for color measurement and diagnostics applications

    Lee, Bong-Sun; Bala, Raja; Sharma, Gaurav

    2006-02-01

    We propose a novel scanner characterization approach for applications requiring color measurement of hardcopy output in printer calibration, characterization, and diagnostic applications. It is assumed that a typical printed medium comprises the three basic colorants C, M, Y. The proposed method is particularly advantageous when additional colorants are used in the print (e.g. black (K)). A family of scanner characterization targets is constructed, each varying in C, M, Y and at a fixed level of K. A corresponding family of 3-D scanner characterizations is derived, one for each level of K. Each characterization maps scanner RGB to a colorimetric representation such as CIELAB, using standard characterization techniques. These are then combined into a single 4-D characterization mapping RGBK to CIELAB. A refinement of the technique improves performance significantly by using a function of the scanned values for K (e.g. the scanner's green channel response to printed K) instead of the digital K value directly. This makes this new approach more robust with respect to variations in printed K over time. Secondly it enables, with a single scanner characterization, accurate color measurement of prints from different printers within the same family. Results show that the 4-D characterization technique can significantly outperform standard 3-D approaches especially in cases where the image being scanned is a patch target made up of unconstrained CMYK combinations. Thus the algorithm finds particular use in printer characterization and diagnostic applications. The method readily generalizes to printed media containing other (e.g "hi-fi") colorants, and also to other image capture devices such as digital cameras.

  5. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  6. Kalibrasi Single-Normal Hot-Wire Probe Sigmond Cohn Alloy 851 untuk Aliran Jet Terpulsasi

    Hariyo Priambudi Setyo Pratomo; Klaus Bremhorst

    2006-01-01

    Calibration of a Sigmond Cohn alloy 851 single normal hot-wire probe was performed with a stationary calibration method with a range of nozzle exit velocity from 2 up to 80 m/s. The calibration aims to determine the best calibration response equation associated with the accuracy of curve fit. The curve fit accuracy test shows that the extended power-law equation provides a better curve fit than the simple power-law equation. A look-up table method used can improve the accuracy of curve fit of...

  7. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  8. Scanner baseliner monitoring and control in high volume manufacturing

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  9. A prototype quantitative film scanner for radiochromic film dosimetry

    We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg. and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed

  10. Free-space wavelength-multiplexed optical scanner.

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam. PMID:18364951

  11. D Super-Resolution Approach for Sparse Laser Scanner Data

    Hosseinyalamdary, S.; Yilmaz, A.

    2015-08-01

    Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking, object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse, unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.

  12. Enhanced Algorithms for Estimating Tree Trunk Diameter Using 2D Laser Scanner

    Ola Ringdahl

    2013-10-01

    Full Text Available Accurate vehicle localization in forest environments is still an unresolved problem. Global navigation satellite systems (GNSS have well known limitations in dense forest, and have to be combined with for instance laser based SLAM algorithms to provide satisfying accuracy. Such algorithms typically require accurate detection of trees, and estimation of tree center locations in laser data. Both these operations depend on accurate estimations of tree trunk diameter. Diameter estimations are important also for several other forestry automation and remote sensing applications. This paper evaluates several existing algorithms for diameter estimation using 2D laser scanner data. Enhanced algorithms, compensating for beam width and using multiple scans, were also developed and evaluated. The best existing algorithms overestimated tree trunk diameter by ca. 40%. Our enhanced algorithms, compensating for laser beam width, reduced this error to less than 12%.

  13. Multi-Target Detection from Full-Waveform Airborne Laser Scanner Using Phd Filter

    Fuse, T.; Hiramatsu, D.; Nakanishi, W.

    2016-06-01

    We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn't require a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and confirmed its ability and accuracy.

  14. Impiego della tecnologia laser scanner su mezzo mobile terrestre per il city modelling

    Giorgio Vassena

    2009-03-01

    Full Text Available Use of laser scanner on mobile equipment for city modellingThe use of GPS/INS systems on mobile instrumental equipment for 3D city modelling is more and more widespread as advanced technology of survey. These systems offer good versatility, even if with some problems linked to urban canyon and to the drift of inertial systems.In urban contest it seems also profitable the employmentof classical topographic equipment for surveying of position of mobile mean in the 3D and colour data acquisition phase. This technology, easy to use, guarantees a good efficacy on urban scale and accuracies of alignment comparable to those of consolidated technology. The employment of equipment commonly available from operators makes the method proposed economically favourable, results being equal.

  15. Novel Aerial 3D Mapping System Based on UAV Platforms and 2D Laser Scanners

    David Roca

    2016-01-01

    Full Text Available The acquisition of 3D geometric data from an aerial view implies a high number of advantages with respect to terrestrial acquisition, the greatest being that aerial view allows the acquisition of information from areas with no or difficult accessibility, such as roofs and tops of trees. If the aerial platform is copter-type, other advantages are present, such as the capability of displacement at very low-speed, allowing for a more detailed acquisition. This paper presents a novel Aerial 3D Mapping System based on a copter-type platform, where a 2D laser scanner is integrated with a GNSS sensor and an IMU for the generation of georeferenced 3D point clouds. The accuracy and precision of the system are evaluated through the measurement of geometries in the point clouds generated by the system, as well as through the geolocation of target points for which the real global coordinates are known.

  16. Data processing and image reconstruction methods for the HEAD PENN-PET scanner

    Methods of reconstruction and quantitation are developed for a 3D system and are evaluated on the septa-less HEAD PENN-PET scanner, which has a very large axial acceptance angle (θmax = ±28 degree in the center) and large axial field-of-view of 256 mm. To overcome the difficulties of data storage and reconstruction time with 3D reconstruction, the authors have reduced the size of the 4-D projection matrix required for 3D-RP reconstruction, and compared the results to the Fourier rebinning (FORE) algorithm. Both approaches achieve a favorable tradeoff in data storage requirements, reconstruction time, and accuracy that are suitable for clinical use. The authors have also studied the application of the FORE algorithm to transmission scans acquired with a singles point source (137Cs) so that data quantitation can be performed

  17. Air ionization wire plane chamber

    Radiation Measurement for protection level instrumentation requires large number of detectors. Since the number is large, the detector should be cost effective and yet should have good sensitivity. Gas detectors with presently available microelectronics and signal processing capabilities opened a new era in radiation monitoring. Present paper describes the use of air filled multi anode grid planes as detector for alpha detection. Due to multiple anode wire planes, the charge collection efficiency of the air ionization chamber is higher as compared to conventional ionization chamber. The signal from this Wire Plane Chamber (WPC) has a faster and narrower pulse shape as compared to conventional two-electrode chamber of similar dimensions. The reduction in capacitance also improves the signal to noise ratio so that air can be used as the ionization medium without any special cleaning procedure etc and it may be possible to use even engineering plastic as the structural material for the chamber. The paper gives the results obtained so far with this air ionization chamber. (author)

  18. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  19. The flammable uranic waste gamma scanner

    At the Yi-Bin fuel fabrication plant, used protective clothing and items which have been used to clear the floors, walls and equipment are usually packed and temporarily stored as flammable waste waiting for incineration at a later time. The weight of the waste bag could be about 40 kg in a package of about 400 mm diameter and 800 mm long, in which the 235U content may be from 1 to 30 g. Although it would be quite easy to measure the 235U content with high accuracy from the great volume reduction after incineration, it is difficult for the facility operator to achieve a nuclear material balance in due time without proper non-destructive assay (NDA) instrumentation. Considering the nature of heterogeneous uranium distribution and other irregular features, such as the matrix composition, weight and size, difficulties are always encountered in taking typical samples for destructive assay. In order to solve the problem, development of an advanced NDA system, described in the paper, was encouraged for in-field application of low density waste assay to improve the overall capability of the nuclear material measurement system at this Chinese fuel fabrication plant. 3 refs, 6 figs

  20. Implementation of virtual simulation with a wide-bore multislice helcalct scanner

    Full text: Multislice large-bore CT scanners specifically designed for radiotherapy have very recently become available. The issues relating to these type of scanners in radiotherapy and the implementation of virtual simulation are therefore of much current interest. A GE LightSpeed RT 4-slice helical CT scanner with a 80 cm bore size was installed in the radiation oncology department of the Newcastle Mater Hospital. This replaced our only simulator, a conventional unit. Specific issues relating to the imaging performance, and virtual simulation process with the large-bore multislice scanner were studied to ensure an accurate radiotherapy process. The detector array fully samples a 50 cm diameter scan circle. The reconstructed diameter can be increased to 65 cm with partial sampling of the extra volume. The GE Advantage Sim (ASim) virtual simulation software was commissioned, with transfer of CT images and DICOM RT plans to the Pinnacle radiotherapy planning system (RTPS) for dose calculation. Some specific issues investigated were: 1) The image quality performance for image reconstruction with the 65 cm area compared to 50 cm was measured with a line-pair phantom. 2) The accuracy of CT numbers with lateral position was assessed with a commercial electron density phantom. 3) Couch lateral movement and sag during acquisition were measured with the couch weighted with 86 kg. 4) The accuracy of the transfer of plans from ASim to Pinnacle was verified with known plan geometries. Image resolution throughout the entire CT image was found to be significantly lower when scan reconstruction was performed with 65 cm scan circle compared to 50 cm. The 0.3, 0.38 and 0.5 1p/mm bars were clearly distinguishable with the 50 cm reconstruction compared to only the 0.3 1p/mm bars in the 65 cm reconstruction. 2) CT numbers varied significantly outside the 50 cm reconstructed area. 3) Couch lateral movement during scanning was within 1 mm. Couch sag was 4 mm at the imaging plane

  1. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound

    Objectives: This study aims to evaluate the clinical utility of automated breast volume scanner (ABVS) against handheld ultrasound in detecting and diagnosing breast lesions. Methods: Eighty-one patients were subjected to both automated breast volume scanner and handheld ultrasound examination in the supine position. The number of lesions detected and the average scanning time (both device-specific and user-specific) for each device were compared. The diagnostic accuracy, sensitivity and specificity were calculated for each method. The maximum diameters of the lesions based on handheld ultrasound and ABVS were compared with the final pathological sizes. Results: Of the 81 patients, both automated breast volume scanner and handheld ultrasound detected 95 breast lesions. Compared with the pathological diagnosis in 35 lesions, both ABVS and handheld ultrasound exhibited high sensitivity (both 100%) and high specificity (95.0%, and 85.0%, respectively). In addition, ABVS had a higher diagnostic accuracy (97.1%) than handheld ultrasound (91.4%) for breast neoplasms. More importantly, ABVS was capable of displaying the retraction phenomenon in coronal plane. All the invasive ductal carcinomas (12 lesions) presented the retraction phenomenon. In contrast, intraductal carcinomas (3 lesions) and benign lesions did not display such features. Thus, retraction phenomenon had a high specificity (100.0%) and high sensitivity (80.0%) in detecting breast cancer while it also had high accuracy (91.4%) in determining malignant from benign lesions. There was no significant difference in maximum diameters of pathology, 2D and ABVS (p > 0.05), however the correlation coefficient revealed that ABVS had better correlation with pathology (r = 0.616) than 2D (r = 0.468). The user scanning time for the ABVS demonstrated no difference between two examiners (11.7 ± 1.3 min and 12.1 ± 1.4 min; p > 0.05). However, device-specific scanning time was longer for ABVS than handheld ultrasound (11

  2. Microfabricated wire arrays for Z-pinch.

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  3. Topological transition in coated wire medium

    Gorlach, Maxim A; Slobozhanyuk, Alexey P; Bogdanov, Andrey A; Belov, Pavel A

    2016-01-01

    We develop a theory of nonlocal homogenization for metamaterial consisting of parallel metallic wires with dielectric coating. It is demonstrated that manipulation of dielectric contrast between wire dielectric shell and host material results in switching of metamaterial dispersion regime from elliptic to the hyperbolic one, i.e. the topological transition takes place. We confirm our theoretical predictions by full-wave numerical simulations.

  4. WIRED magazine announces rave awards nominees

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  5. Flywheel system using wire-wound rotor

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  6. Accuracy study of new computer-assisted orthopedic surgery software

    Sidon, Eli [Department of Orthopaedic Surgery, Beilinson-Rabin Medical Center, Petach Tikva (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Steinberg, Ely L., E-mail: steinberge@tasmc.health.gov.il [Department of Orthopaedic Surgery, Tel-Aviv Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2012-12-15

    Purpose: The new computerized system is based on image analysis and designed to aid in orthopedic surgeries by virtual trajectory of the guide wire, intra-operative planning and various measurements. Validation of the accuracy and safety of any computer-aided surgery system is essential before implementing it clinically. We examined the accuracy of guide-wire length and angle measurements and fusion of multiple adjacent images (panoramic view image, PVI{sup ®}) of the new software. Methods: This is a 2-part study. Part I: twenty guide wires were drilled to various depths in a synthetic femur model and the results obtained by the software measurements were compared with manual measurements by a caliper and a depth gauge. Part II: a sawbone femur shaft was osteotomized and various inclinations of >10° to the varus or valgus angles were tested. The manually obtained measurements of angles and lengths were compared to the new computerized system software PVI. Results: There was a significant positive linear correlation between all groups of the computerized length and the control measurements (r > 0.983, p < 0.01). There was no significant difference among different distances, angles or positions from the image intensifier. There was a significant positive linear correlation between the angle and length measurement on the PVI and the control measurement (r > 0.993, p < 0.01). Conclusions: The new computerized software has high reliability in performing measurements of length using an aiming, positioning and referring device intra-operatively.

  7. Accuracy study of new computer-assisted orthopedic surgery software

    Purpose: The new computerized system is based on image analysis and designed to aid in orthopedic surgeries by virtual trajectory of the guide wire, intra-operative planning and various measurements. Validation of the accuracy and safety of any computer-aided surgery system is essential before implementing it clinically. We examined the accuracy of guide-wire length and angle measurements and fusion of multiple adjacent images (panoramic view image, PVI®) of the new software. Methods: This is a 2-part study. Part I: twenty guide wires were drilled to various depths in a synthetic femur model and the results obtained by the software measurements were compared with manual measurements by a caliper and a depth gauge. Part II: a sawbone femur shaft was osteotomized and various inclinations of >10° to the varus or valgus angles were tested. The manually obtained measurements of angles and lengths were compared to the new computerized system software PVI. Results: There was a significant positive linear correlation between all groups of the computerized length and the control measurements (r > 0.983, p 0.993, p < 0.01). Conclusions: The new computerized software has high reliability in performing measurements of length using an aiming, positioning and referring device intra-operatively.

  8. The Accuracy of Multiples

    Stauropoulos Antonios

    2011-01-01

    Full Text Available Problem statement: Equity valuation with the use of multiples is widely used by academics and practitioners concerning its functionality. This study aims to explore the sensitivity of three multiples in terms of accuracy. Approach: Price-to-Sales (P/S multiple, the price-to-book value of equity (P/B multiple and the Price-to-Earnings (P/E multiple are three multiples under consideration, using both current and one-year-ahead earnings forecasts. Results: Evidence of empirical results show that, the multiples P/mdfy1 and P/mnfy1 are effective in terms of accuracy, with their means being negatively biased and their medians being positively biased. Finally, current earnings are identified as more appropriate value driver for the calculation of the P/E ratio by terms of accuracy. The results can be considered as reliable owing to the large sample and the procedure followed for its selection. Conclusion: This study offers a better understanding of the valuation approach through the use of multiples, in order analysts assumption to be more carefully and properly chosen and their results to be more accurately produced.

  9. Overlay accuracy fundamentals

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  10. Realization of a Strained Atomic Wire Superlattice.

    Song, Inkyung; Goh, Jung Suk; Lee, Sung-Hoon; Jung, Sung Won; Shin, Jin Sung; Yamane, Hiroyuki; Kosugi, Nobuhiro; Yeom, Han Woong

    2015-11-24

    A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires. PMID:26446292

  11. Integrated taut wire sensor alarm monitoring system

    For many years mechanical taut wire intrusion detection systems have played a key role in protecting high risk facilities. The taut wire sensor has the advantage that it combines a physical barrier with an intrusion sensor, a useful feature where no fence is installed or planned. However, mechanical taut wire sensors have proven to have several major disadvantages, including: no sensitivity adjustment, no sensor self-test feature, no remote control capability, and inflexible mounting constraints. This paper deals with a new generation of solid state taut wire sensor which overcomes the deficiencies of the aging mechanical design. The new sensor uses a microprocessor to filter out sources of nuisance alarms, yet maintains exceptional sensitivity to intrusion and tamper attempts. Being solid sate, the new sensor can be mounted in any orientation, even upside down. Moreover, when combined with a new, advanced alarm monitoring system, the solid state taut wire fence will support remote sensitivity adjustment and remote sensor self-test control

  12. Dosimetric evaluation of a 320 detector row CT scanner unit

    The technologic improvements in Multislice scanners include the increment in the X-ray beam width. Some new CT scanners are equipped with a 320 detector row which allows a longitudinal coverage of 160 mm and a total of 640 slices for a single rotation. When such parameters are used the length of the traditional pencil chamber (10 cm) is no more appropriate to measure the standard weighted computed tomography dose index (CTDIw) value. Dosimetric measurements were performed on a 640 slices Toshiba Aquilion One CT scanner using common instrumentation available in Medical Physics Departments. For the measurements in air, two different ionization chambers were completely exposed to the beam. Dosimeters showed an acceptable agreement in the measurements. To evaluate the actual shape of the dose profile strips of Gafchromic XRQA film were used. Films were previously calibrated on site. From the graphic response of the scanned film it is possible to evaluate the full width at half maximum (FWHM) of the dose profile which represent the actual beam width. Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP) need to be changed when the beam width of the CT scanner is over 100 mm. To perform dose evaluation with the conventional instrumentation, two parameters should be considered: the average absorbed dose and the actual beam width. To measure the average absorbed dose, the conventional ionization chamber can be used. For the measurement of the width of the dose profile, Gafchromic XRQA film seemed to be suitable

  13. OCR Scanners Facilitate WP Training in Business Schools and Colleges.

    School Business Affairs, 1983

    1983-01-01

    Optical Character Recognition Scanners (OCR) scan typed text and feed it directly into word processing systems, saving input time. OCRs are valuable in word processing training programs because they allow more students access to classes and more time for skill training. (MD)

  14. Scanners, optical character readers, Cyrillic alphabet and Russian translations

    Johnson, Gordon G.

    1995-01-01

    The writing of code for capture, in a uniform format, of bit maps of words and characters from scanner PICT files is presented. The coding of Dynamic Pattern Matched for the identification of the characters, words and sentences in preparation for translation is discussed.

  15. Hologram Scanner Design And Fabrication In Dichromated Gelatin (DCG)

    Rallison, Richard; Lowe, Rick

    1983-07-01

    Two major applications of holographic scanners are considered, the first is the code reader scanner now in use in supermarkets and soon to be used in automated warehousing. The second is the multipurpose line scanner currently used in line printers and soon to be included in automated inspection systems. Code reader facets perform multiple functions, each one deflects and focuses laser light at a unique angle and scans a short arc, the return light from a bar code is collimated by the same facet and is subsequently focused through a small aperture. Ambient light is diffracted at other angles and focused at points all around the aperture giving a high signal to noise ratio and the large high efficiency facets gather sufficient return light so that photo diodes and low power lasers can be used in the system. Line scanners can be made in a large variety of sizes and configurations inexpensively and with perfect fidelity, each one being a holographic replica of a master hologram. Focused arcs as well as parallel straight lines and even arbitrary computer generated scans are possible. The limitations and considerations of such devices are discussed along with design criteria related to fabrication problems and actual production line results.

  16. Benchmarking Advanced Control Algorithms for a Laser Scanner System

    Stoustrup, Jakob; Ordys, A.W.; Smillie, I.

    1996-01-01

    The paper describes tests performed on the laser scanner system toassess feasibility of modern control techniques in achieving a requiredperformance in the trajectory following problem. The two methods tested areQTR H-infinity and Predictive Control. The results are ilustated ona simulation example....

  17. COMPUTER PROCESSING OF MULTISPECTRAL SCANNER DATA OVER COAL STRIP MINES

    There is little doubt that remote sensing techniques can be effectively applied to the task of monitoring coal strip mine progress and reclamation work. Aircraft multispectral scanner data acquired over six coal strip mines in the states of Wyoming, Montana, Colorado, and Arizona...

  18. FMRI scanner noise interaction with affective neural processes.

    Stavros Skouras

    Full Text Available The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy. Participants (N=34, 19 female were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier and emotion (fear, neutral, joy were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus. Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes.

  19. Positioning accuracy in a registration-free CT-based navigation system

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology

  20. Phonon spectra in quantum wires

    Ilić Dušan

    2007-01-01

    Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.

  1. Method for calibration of an axial tomographic scanner

    The method of calibrating an axial tomographic scanner including frame means having an opening therein in which an object to be examined is to be placed, source and detector means mounted on the frame means for directing one or more beams of penetrating radiation through the object from the source to the detector means, and means to rotate the scanner including the source and detector means about the object whereby a plurality of sets of data corresponding to the transmission or absorption by the object of a plurality of beams of penetrating radiation are collected; the calibration method comprising mounting calibration means supporting an adjustable centering member onto the frame means, positioning the adjustable centering member at approximately the center of rotation of the scanner, placing position-sensitive indicator means adjacent the approximately centered member, rotating the scanner and the calibration means mounted thereon at least one time and, if necessary, adjusting the positioning of the centering member until the centering member is coincident with the center of rotation of the scanner as determined by minimum deflection of the position-sensitive indicator means, rotating and translating the source and detector means and determining for each angular orientation of the frame means supporting the source and detector means the central position of each translational scan relative to the centered member and/or if a plurality of detectors are utilized with the detector means for each planar slice of the object being examined, the central position of each translational scan for each detector relative to the centered member

  2. A micron resolution optical scanner for characterization of silicon detectors

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper

  3. NMR of geophysical drill cores with a mobile Halbach scanner

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  4. NMR of geophysical drill cores with a mobile Halbach scanner

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  5. Effect of mixing scanner types and reconstruction kernels on the characterization of lung parenchymal pathologies: emphysema, interstitial pulmonary fibrosis and normal non-smokers

    Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric

    2006-03-01

    In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can

  6. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    2004-10-25

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at En'Urga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, a rugged prototype scanner will be developed and evaluated, both at En'Urga Inc. and any potential field sites.

  7. Metric Accuracy Evaluation of Dense Matching Algorithms in Archeological Applications

    C. Re

    2011-12-01

    Full Text Available In the cultural heritage field the recording and documentation of small and medium size objects with very detailed Digital Surface Models (DSM is readily possible by through the use of high resolution and high precision triangulation laser scanners. 3D surface recording of archaeological objects can be easily achieved in museums; however, this type of record can be quite expensive. In many cases photogrammetry can provide a viable alternative for the generation of DSMs. The photogrammetric procedure has some benefits with respect to laser survey. The research described in this paper sets out to verify the reconstruction accuracy of DSMs of some archaeological artifacts obtained by photogrammetric survey. The experimentation has been carried out on some objects preserved in the Petrie Museum of Egyptian Archaeology at University College London (UCL. DSMs produced by two photogrammetric software packages are compared with the digital 3D model obtained by a state of the art triangulation color laser scanner. Intercomparison between the generated DSM has allowed an evaluation of metric accuracy of the photogrammetric approach applied to archaeological documentation and of precision performances of the two software packages.

  8. Assessing the Intraoperative Accuracy of Pedicle Screw Placement by Using a Bone-Mounted Miniature Robot System through Secondary Registration

    Wu, Chieh-Hsin; Tsai, Cheng-Yu; Chang, Chih-Hui; Lin, Chih-Lung; Tsai, Tai-Hsin

    2016-01-01

    Introduction Pedicle screws are commonly employed to restore spinal stability and correct deformities. The Renaissance robotic system was developed to improve the accuracy of pedicle screw placement. Purpose In this study, we developed an intraoperative classification system for evaluating the accuracy of pedicle screw placements through secondary registration. Furthermore, we evaluated the benefits of using the Renaissance robotic system in pedicle screw placement and postoperative evaluations. Finally, we examined the factors affecting the accuracy of pedicle screw implantation. Results Through use of the Renaissance robotic system, the accuracy of Kirschner-wire (K-wire) placements deviating <3 mm from the planned trajectory was determined to be 98.74%. According to our classification system, the robot-guided pedicle screw implantation attained an accuracy of 94.00% before repositioning and 98.74% after repositioning. However, the malposition rate before repositioning was 5.99%; among these placements, 4.73% were immediately repositioned using the robot system and 1.26% were manually repositioned after a failed robot repositioning attempt. Most K-wire entry points deviated caudally and laterally. Conclusion The Renaissance robotic system offers high accuracy in pedicle screw placement. Secondary registration improves the accuracy through increasing the precision of the positioning; moreover, intraoperative evaluation enables immediate repositioning. Furthermore, the K-wire tends to deviate caudally and laterally from the entry point because of skiving, which is characteristic of robot-assisted pedicle screw placement. PMID:27054360

  9. Dust trajectory sensor: Accuracy and data analysis

    The Dust Trajectory Sensor (DTS) instrument is developed for the measurement of the velocity vector of cosmic dust particles. The trajectory information is imperative in determining the particles' origin and distinguishing dust particles from different sources. The velocity vector also reveals information on the history of interaction between the charged dust particle and the magnetospheric or interplanetary space environment. The DTS operational principle is based on measuring the induced charge from the dust on an array of wire electrodes. In recent work, the DTS geometry has been optimized [S. Auer, E. Gruen, S. Kempf, R. Srama, A. Srowig, Z. Sternovsky, and V Tschernjawski, Rev. Sci. Instrum. 79, 084501 (2008)] and a method of triggering was developed [S. Auer, G. Lawrence, E. Gruen, H. Henkel, S. Kempf, R. Srama, and Z. Sternovsky, Nucl. Instrum. Methods Phys. Res. A 622, 74 (2010)]. This article presents the method of analyzing the DTS data and results from a parametric study on the accuracy of the measurements. A laboratory version of the DTS has been constructed and tested with particles in the velocity range of 2-5 km/s using the Heidelberg dust accelerator facility. Both the numerical study and the analyzed experimental data show that the accuracy of the DTS instrument is better than about 1% in velocity and 1 deg. in direction.

  10. Dust trajectory sensor: accuracy and data analysis.

    Xie, J; Sternovsky, Z; Grün, E; Auer, S; Duncan, N; Drake, K; Le, H; Horanyi, M; Srama, R

    2011-10-01

    The Dust Trajectory Sensor (DTS) instrument is developed for the measurement of the velocity vector of cosmic dust particles. The trajectory information is imperative in determining the particles' origin and distinguishing dust particles from different sources. The velocity vector also reveals information on the history of interaction between the charged dust particle and the magnetospheric or interplanetary space environment. The DTS operational principle is based on measuring the induced charge from the dust on an array of wire electrodes. In recent work, the DTS geometry has been optimized [S. Auer, E. Grün, S. Kempf, R. Srama, A. Srowig, Z. Sternovsky, and V Tschernjawski, Rev. Sci. Instrum. 79, 084501 (2008)] and a method of triggering was developed [S. Auer, G. Lawrence, E. Grün, H. Henkel, S. Kempf, R. Srama, and Z. Sternovsky, Nucl. Instrum. Methods Phys. Res. A 622, 74 (2010)]. This article presents the method of analyzing the DTS data and results from a parametric study on the accuracy of the measurements. A laboratory version of the DTS has been constructed and tested with particles in the velocity range of 2-5 km/s using the Heidelberg dust accelerator facility. Both the numerical study and the analyzed experimental data show that the accuracy of the DTS instrument is better than about 1% in velocity and 1° in direction. PMID:22047326

  11. In Situ Electrochemical Deposition of Microscopic Wires

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops

  12. Performance comparison of a state-of-the-art neuro-SPET scanner and a dedicated neuro-PET scanner

    The physical performances of two current state-of-the-art scanners dedicated to functional imaging of the brain, one a SPET scanner and the other a PET scanner, have been compared under identical conditions. The aim of the study was to compare the capabilities of the devices under conditions resembling the routine clinical environment, as well as to consider other issues such as radiation burden for some common investigations. Both systems have slightly less than 11-cm axial fields of view. The PET system can be operated in a septa-less (3D) mode as well as conventionally with septa (2D). The spatial resolution of both devices was less than 8 mm in all dimensions in scattering media. On average, the PET scanner's resolution was approximately 10%-15% better than the SPET system. Energy resolution on the SPET system was superior due the scinitillator use [NaI(Tl)]. Sensitivity in air with a line source on the PET system was found to be ∝150 times greater in 3D and ∝25 times greater in 2D than with the SPET system. A normal subject was studied on each system in an attempt to obtain the highest quality data possible for a subjective comparison. It is clear that, while PET retains the advantages of more desirable radiopharmaceuticals and higher sensitivity, the quality obtainable from SPET devices has improved markedly. SPET may prove a useful for many clinical investigations. (orig.)

  13. Direct determination of geometric alignment parameters for cone-beam scanners

    Mennessier, C; Clackdoyle, R.; Noo, F.

    2009-01-01

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each ...

  14. Raising the Barcode Scanner: Technology and Productivity in the Retail Sector

    Emek Basker

    2011-01-01

    Barcodes and barcode scanners transformed the grocery industry in the 1970s. I use store-level data from the 1972, 1977, and 1982 Census of Retail Trade, matched to data on store scanner installations, to estimate scanners' effect on labor productivity. I find that scanners increased a store's labor productivity, on average, by approximately 4.5 percent in the first few years. The effect was larger in stores carrying more packaged products, consistent with the presence of network externalitie...

  15. PubMed vs. HighWire Press: a head-to-head comparison of two medical literature search engines.

    Vanhecke, Thomas E; Barnes, Michael A; Zimmerman, Janet; Shoichet, Sandor

    2007-09-01

    PubMed and HighWire Press are both useful medical literature search engines available for free to anyone on the internet. We measured retrieval accuracy, number of results generated, retrieval speed, features and search tools on HighWire Press and PubMed using the quick search features of each. We found that using HighWire Press resulted in a higher likelihood of retrieving the desired article and higher number of search results than the same search on PubMed. PubMed was faster than HighWire Press in delivering search results regardless of search settings. There are considerable differences in search features between these two search engines. PMID:17184763

  16. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  17. Experimental study of free abrasive wire sawing by using multi-strands wire

    Yao Chunyan; Wang Jinsheng; Peng Wei; Jin Xin; Chen Shijie

    2013-01-01

    Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi-strands characteristics,we use it to replace the steel wire to do slicing experiment. In this paper,multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire,it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic-ing experiments by applying multi-strands wire (ϕ0.25 mm) and steel wire (ϕ0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire,but the kerf width of the former is wider than that of the latter in the same experimental conditions.

  18. A new generation of PET scanners for small animal studies

    Complete text of publication follows. Research on small animal PET scanners has been a hot topic in recent years. These devices are used in the preclinical phases of drug tests and during the development of new radiopharmaceuticals. They also provide a cost efficient way to test new materials, new design concepts and new technologies that later can be used to build more efficient human medical imaging devices. The development of a PET scanner requires expertise on different fields, therefore a consortium was formed that brought together Hungarian academic and industrial partners: the Nuclear Research Institute (which has experience in the development of nuclear detectors and data acquisition systems), the PET Center of the University of Debrecen (which has clinical experience in the application of nuclear imaging devices and background in image processing software), Mediso Ltd. (which has been developing, manufacturing, selling and servicing medical imaging devices since 1990) and other academic partners. This consortium has been working together since 2003: the knowledge base acquired during the development of our small animal PET scanners (miniPET-I and miniPET-II) is now being utilized to build a commercial multimodal human PET scanner. The operation of a PET scanner is based on the simultaneous detection ('coincidence') of two gamma photons originating from a positron annihilation. In traditional PET scanners coincidence is detected by a central unit during the measurement. In our system there is no such central module: all detected single gamma events are recorded (list mode data acquisition), and the list of events are processed using a computer cluster (built from PCs). The usage of independent detector modules and commercial components reduce both development and maintenance costs. Also, this mode of data acquisition is more suitable for development purposes, since once the data is collected and stored it can be used many times to test different signal

  19. Failure analysis of explanted sternal wires.

    Shih, Chun-Ming; Su, Yea-Yang; Lin, Shing-Jong; Shih, Chun-Che

    2005-05-01

    To classify and understand the mechanisms of surface damages and fracture mechanisms of sternal wires, explanted stainless steel sternal wires were collected from patients with sternal dehiscence following open-heart surgery. Surface alterations and fractured ends of sternal wires were examined and analyzed. Eighty fractured wires extracted from 25 patients from January 1999 to December 2003, with mean implantation interval of 55+/-149 days (range 5-729 days) after cardiac surgery, were studied by various techniques. The extracted wires were cleaned and the fibrotic tissues were removed. Irregularities and fractured ends were assayed by a scanning electron microscopy. After stereomicroscopy and documentation, the explants were cleaned with 1% sodium hypochlorite to remove the blood and tissues and was followed by cleaned with deionized water and alcohol. The explants were examined by stereomicroscopy, and irregularities on surface and fracture surfaces of sternal wires were assayed by scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and X-ray mapping. The explants with surrounding fibrotic tissue were stained and examined with stereomicroscopy and transmission electronic microscopy. Corrosion pits were found on the surface of explanted sternal wires. EDAX and X-ray mapping examinations revealed diminution of nickel concentration in the severely corroded pits on sternal wires. A feature of transgranular cracking was observed for stress corrosion cracking and striation character for typical corrosion fatigue was also identified. TEM examination of tissue showed the metallic particles in phagolysosomes of macrophages inside the surrounding sternal tissue. The synergic effect of hostile environment and the stress could be the precursors of failures for sternal wires. PMID:15576179

  20. In-Situ Wire Damage Detection System

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  1. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  2. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  3. Detectors Ensure Function, Safety of Aircraft Wiring

    2013-01-01

    Pedro Medelius waited patiently in his lab at Kennedy Space Center. He had just received word that a colleague was bringing over a cable from a Space Shuttle solid rocket booster to test Medelius new invention. Medelius was calm until his colleague arrived, with about 30 other people. "Talk about testing under pressure," says Medelius. "There were people there from the Navy, the Air Force, and the Federal Aviation Administration." After the group s arrival, Medelius took a deep breath and connected his Standing Wave Reflectometer (SWR) to the cable. He wiggled the cable around, and the display showed a fault (a short or open circuit in wire) about an inch and a half inside the connector on the cable. His colleague questioned the results, because he had already checked that area on the cable. Medelius used the SWR to check again but got the same result. "That is when we took the cable apart and looked inside," Medelius says. "Lo and behold, that was exactly where the fault was." The impetus for Medelius new wire inspection technology came about in 1999 when one of the space shuttles lost power due to a fault somewhere in its more than 200 miles of electrical wiring. "The backup circuit was activated and prevented a major dysfunction, but nevertheless, there was a problem with the wiring," Medelius describes. Even though technicians used a device called a multimeter to measure the electrical current to find which wire had a fault, it could not pinpoint exactly where on the wire the fault was located. For that, technicians had to visually inspect the wire. "Sometimes they would have to remove the whole wire assembly and visually inspect every single wire. It was a very tedious operation because the wires are behind cabinets. They go all over the place in the shuttle," says Medelius. "NASA needed an instrument capable of telling them exactly where the faults were occurring." To meet NASA s needs for a highly precise device to inspect electrical power bundles, wires

  4. Colloidally deposited nanoparticle wires for biophysical detection

    Shen, Sophie C.; Liu, Wen-Tao; Diao, Jia-Jie

    2015-12-01

    Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules. Project supported by the Fundamental Research Funds for the Central Universities through Xi’an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304).

  5. Magnetoimpedance response in current annealed amorphous wires

    In this work, the magnetoimpedance (MI) effect in amorphous wires submitted to current annealing treatment in vacuum is presented. The influence of circular anisotropy and stress relaxation induced during the annealing on the impedance dependence on external magnetic field is shown. An increase in the MI ratio for the annealed wires is observed up to a maximum value which is approximately three times higher than the maximum value obtained for the as-cast wire. For high enough times of current annealing treatment a decrease in the MI ratio is observed due to the formation of crystalline phase

  6. Magnetoimpedance response in current annealed amorphous wires

    Garcia, D. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)]. E-mail: danielgg@usal.es; Raposo, V. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Borza, F. [Wolfson Centre for Magnetics Technology, Cardiff University, New Port Road, P.O. Box 925, CF24 0YF Cardiff (United Kingdom); Montero, O. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Iniguez, J. [Dpto. Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)

    2006-09-15

    In this work, the magnetoimpedance (MI) effect in amorphous wires submitted to current annealing treatment in vacuum is presented. The influence of circular anisotropy and stress relaxation induced during the annealing on the impedance dependence on external magnetic field is shown. An increase in the MI ratio for the annealed wires is observed up to a maximum value which is approximately three times higher than the maximum value obtained for the as-cast wire. For high enough times of current annealing treatment a decrease in the MI ratio is observed due to the formation of crystalline phase.

  7. Wire-rope emplacement of diagnostics systems

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  8. Pulse speed on a plucked wire

    Odekirk, Tristan; Slaton, William V.

    2012-04-01

    This paper serves to update an elegant experiment published in The Physics Teacher to measure the speed of a pulse on a taut metal wire. Unfortunately, commercially available units2 that serve the same purpose are priced outside the range of most high school or college physics teaching laboratories. Wakeland et al. show how an affordable adaptation of the traditional standing wave apparatus using taut metal wire and horseshoe magnets can be used to measure the speed of a pulse by using an oscilloscope to measure an induced voltage in the wire as the pulse transverses the middle of the magnets, which are a known distance apart.

  9. Copper Wire Bonding Concerns and Best Practices

    Chauhan, Preeti; Zhong, Z. W.; Pecht, Michael

    2013-08-01

    Copper wire bonding of microelectronic parts has developed as a means to cut the costs of using the more mature technology of gold wire bonding. However, with this new technology, changes in the bonding processes as well as bonding metallurgy can affect product reliability. This paper discusses the challenges associated with copper wire bonding and the solutions that the industry has been implementing. The paper also provides information to enable customers to conduct qualification and reliability tests on microelectronic packages to facilitate adoption in their target applications.

  10. Key technique of a detection sensor for coal mine wire ropes

    WANG Hong-yao; XU Zhao; HUA Gang; TIAN Jie; ZHOU Bing-bing; LU Yan-hong; CHEN Feng-jun

    2009-01-01

    Wire ropes, employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue. The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments. Magnetic flux leakage detection method (MFL), as an effective method, is these days widely used in detection of bro-ken strands of wire ropes. In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage (MFL), the effect of the distance between a sensor and the surface of a wire rope (i.e., lift-off) on detection by magnetic flux leakage was in-vestigated. An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the struc-ture of the detector is proposed from the point of view of the design of a magnetic circuit, to restrain the impact of fluctuations of sensor lift-off. The effect of this kind of method is validated by simulation and computation. The results show that the detection sensitivity is markedly increased by this method. Furthermore, the signal-to-noise ratio (SNR) can be increased by over 28%. This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accu-racy of MFL detection.

  11. IMPROVEMENT OF 3D MONTE CARLO LOCALIZATION USING A DEPTH CAMERA AND TERRESTRIAL LASER SCANNER

    S. Kanai

    2015-05-01

    Full Text Available Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and lifelong robotic assistance. So far, Monte Carlo Localization (MCL has given one of the promising solutions for the indoor localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a few hundreds millimetre error at up to a few FPS or is not fully verified with the precise ground truth. Therefore, the purpose of this study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

  12. The Issue of Documentation of Hardly Accessible Historical Monuments by Using of Photogrammetry and Laser Scanner Techniques

    Karol Bartoš

    2011-12-01

    Full Text Available This article deals with issues of measuring hardly accessible historical monuments on the example of the Slanec castle, Slovakia. In the first phase the convergence case of close-range photogrammetry was applied using digital camera Pentax K10D. Subsequently was created its 3D model in the PhotoModeler Scanner software. Special attention was paid to shape of ground, surroundings and characteristic of object of interest about choice of the right method and technique of making digital images. Processing of images was made with the highest possible accuracy with respect to the used method and apparatus. As a result of processing, the exact spatial model was made, which was exported to different formats. Also digital photo-plan with real photo textures and vector drawings was made. In the next phase the whole object of castle was measured with the laser scanner Leica ScanStation C10 and the final point cloud was processed in the best available software. The results obtained by both methods were compared in comparable digital formats with respect to the positional accuracy of final models. In the final phase is planned to obtain images appropriate for convergence case of photogrammetry using digital camera placed on a carrier on the MikroKopter HexaKopter controlled from the ground. Then the final comparison and further analysis of all acquired models can be made.

  13. Strategy for silicon based hot-wire chemical vapor deposition without wire silicide formation

    Laukart, Artur, E-mail: artur.laukart@ist.fraunhofer.de; Harig, Tino; Höfer, Markus; Schäfer, Lothar

    2015-01-30

    Silicide formation of wires during hot-wire chemical vapor deposition (HWCVD) of silicon based coatings is a key challenge which has to be overcome before HWCVD can be transferred successfully into industry. Silicide formation of tungsten wires is not occurring at temperatures of approximately 1900 °C and above when maintaining a silane partial pressure below approximately 1 Pa. Proceeding silicide formation at the cold ends where the wires are electrically contacted was completely prevented by continuously moving the cold ends of the wires into the hot deposition zone, resulting in a retransformation of the tungsten phase. Thus the maintenance period of a HWCVD manufacturing tool can be freed from wire lifetime.

  14. Comparison of vidar dosimetry advantage pro and epson perfection V700 scanner in densitometry of radiochomic EBT2 film in measurement of high dose gradient

    Bura, W.; Tangboonduangjit, P.; Damrongkijudom, N.

    2016-03-01

    Nowadays the radiochromic film is widely used to obtain dose distribution in two dimensions with high spatial resolution, less energy dependence and near tissue equivalent. It can be a commissioning tool to verify high dose gradient of dose distribution for IMRT and VMAT techniques. However, the film scanner could affect the accuracy of dose distribution if lack of precaution. In this study, the comparison between Epson perfection V700 and Vidar Dosimetry Pro Advantage (RED) is evaluated in terms of the capability to verify the 2D dose distribution for conventional and VMAT techniques. The Gafchromic® EBT2 films were read from two types of scanners (Epson perfection V700 and Vidar Dosimetry Pro Advantage) for volumetric modulated radiation therapy (VMAT) dosimetry. The software for analyzing the results of Epson perfection V700 and Vidar Dosimetry Pro Advantage are SNC Patient software and Omnipro’ IMRT software, respectively. Comparisons between measured and calculated dose distributions are reported as %passing rate and the gamma index for tolerance parameters of 3% and 3mm. The study found that the %passing rate obtained from Vidar scanner and Epson V700 scanner compared with Eclipse treatment planning system is more than 98% with the criteria of (3%/3mm).

  15. Bladder filling variation during radiation treatment of prostate cancer: Can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling?

    Purpose: To investigate the use of a bladder ultrasound scanner in achieving a better reproducible bladder filling during irradiation of pelvic tumors, specifically prostate cancer. Methods and Materials: First, the accuracy of the bladder ultrasound scanner relative to computed tomography was validated in a group of 26 patients. Next, daily bladder volume variation was evaluated in a group of 18 patients. Another 16 patients participated in a biofeedback protocol, aiming at a more constant bladder volume. The last objective was to study correlations between prostate motion and bladder filling, by using electronic portal imaging device data on implanted gold markers. Results: A strong correlation between bladder scanner volume and computed tomography volume (r = 0.95) was found. Daily bladder volume variation was very high (1 Sd = 47.2%). Bladder filling and daily variation did not significantly differ between the control and the feedback group (47.2% and 40.1%, respectively). Furthermore, no linear correlations between bladder volume variation and prostate motion were found. Conclusions: This study shows large variations in daily bladder volume. The use of a biofeedback protocol yields little reduction in bladder volume variation. Even so, the bladder scanner is an easy to use and accurate tool to register these variations

  16. Accuracy of tablet splitting.

    McDevitt, J T; Gurst, A H; Chen, Y

    1998-01-01

    We attempted to determine the accuracy of manually splitting hydrochlorothiazide tablets. Ninety-four healthy volunteers each split ten 25-mg hydrochlorothiazide tablets, which were then weighed using an analytical balance. Demographics, grip and pinch strength, digit circumference, and tablet-splitting experience were documented. Subjects were also surveyed regarding their willingness to pay a premium for commercially available, lower-dose tablets. Of 1752 manually split tablet portions, 41.3% deviated from ideal weight by more than 10% and 12.4% deviated by more than 20%. Gender, age, education, and tablet-splitting experience were not predictive of variability. Most subjects (96.8%) stated a preference for commercially produced, lower-dose tablets, and 77.2% were willing to pay more for them. For drugs with steep dose-response curves or narrow therapeutic windows, the differences we recorded could be clinically relevant. PMID:9469693

  17. Whole-body CT scanner, TCT-60A/60

    As whole-body CT scanners, TCT-60A (high class), TCT-80A (popular type) and TCT-70A (for medium-scale hospitals) had already been seriated. Now TCT-60A/60 has made its advent to answer the demand in the market of high-class units. This third-generation CT scanner, utilizing pulsed X-rays, and employing the highest pulse rate in the world (200 pulses per second), obtains high-quality images at high speed. As for the resolution, this unit, making the most of Toshiba's close-up technique, employing small focus X-ray tube, has practicalized 0.5-mm resolution. In addition, it utilizes 34 fan-shaped X-rays and a low patient couch. (author)

  18. A tomographic gamma-ray scanner for industrial applications

    An experimental computerised tomographic (CT) gamma-ray scanner is being developed for the non-destructive testing of industrial objects. A micro-computer controlled traversing system steps the test object across a collimated gamma-ray beam the transmitted intensity of which is measured by a NaI(Tl) detector for a large number of beam paths both through the object and the surrounding air. These data are used to reconstruct an image of the scanned section in terms of a two-dimensional distribution of linear attenuation coefficients at the gamma-ray energy used. A 100 mCi 241AM source of 59.6 keV gamma-rays has been used initially in order to compare the performance with medical CT X-ray scanners. (orig.)

  19. Investigation of beam steering performances in rotation Risley-prism scanner.

    Li, Anhu; Sun, Wansong; Yi, Wanli; Zuo, Qiyou

    2016-06-13

    Rotation Risley-prism scanner appears to be the most promising solution to high-accuracy beam scanning and target tracking. In the paper, some important issues crucial to the function implementation are thoroughly investigated. First the forming law of scan blind zone relative to double-prism structural parameters is explored by a quantitative analysis method. Then the nonlinear relationship between the rotation speeds of double prisms and the change rate of beam deviation angle is presented, and the beam scan singularity is indicated as an essential factor that confines the beam scan region. Finally, the high-accuracy radial scan theory is verified to illustrate the important application owing to the high reduction ratio from the rotation angles of double prisms to the deviation angles of the emergent beam. The research not only reveals the inner mechanisms of the Risley-prism beam scanning in principle, but also provide a foundation for the nonlinear control of various beam scan modes. PMID:27410303

  20. Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners

    Barkan, Eric; Swartz, Jerome

    1982-04-01

    Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.

  1. t matrix of metallic wire structures

    Zhan, T. R., E-mail: phystrzhan@gmail.com; Chui, S. T., E-mail: chui@bartol.udel.edu [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States)

    2014-04-14

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.

  2. Fine filamentary NbTi superconducting wires

    The present interest in NbTi composite conductors with very fine filaments has developed because of the requirements of the Superconducint Super Collider. The Fermilab Tevatron utilizes wire with 8 μm diameter filaments; the SSC may require wire with less than 3 μm diameter filaments. The reduction in filament diameter means that, while Fermilab wire required 2,000 filaments, a similar size wire for the SSC will require 40,000 or more filaments. Conventional techniques of billet assembly will no longer suffice. Recent improvements in billet design, material preparation, and billet assembly techniques have resulted in a production size NbTi billet containing 4,164 filaments. Extensive development of thermomechanical processing schedules has enabled us to optimize the critical current density in this material to a distinctly higher level than has been previously reported. Experiments have been started to explore the feasibility of scaling this material to a 40,000 filament conductor

  3. First principle study on AIN Nano wire

    We present a first-principle study on the atomic and electronic structure of AIN Nanowire and examine the dependence of surface stress on nanowire lateral size and shape. The hexagonal wire size ranging as 10-16-22 A. We investigate the unsaturated dangling bond state in the region of bandgap with varying the wires diameter. We also calculated the surface formation energy and find that it decreases with increasing the wire diameter and a greater stability (lower surface formation energy) comes with hexagonal wire. We also study the dependence of theoretical prediction on various density functional theory (DFT) treatment using DMOL3 local orbital density functional method with an effective core potential. (author)

  4. Highly stretchable wrinkled gold thin film wires

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications

  5. Highly stretchable wrinkled gold thin film wires

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  6. Inferring Evoked and Consideration Set from Scanner Data

    Wirawan Dony Dahana; Nozomi Nakajima

    2011-01-01

    Evoked and consideration set have been one of main research topics in marketing field for a long time. Using interview data, many studies have been conducted to investigate the nature of its content. However, only few studies tried to do so by using consumer purchase history. By modeling the process of evoked and consideration set formation, in this research we try to elicit consumer evoked set from scanner data. Some managerial implications for marketing decisions derived from the informatio...

  7. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Trindade, A.; Varela, J.

    2009-10-01

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Português de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 × 2 × 20 mm3 LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean CDOI-1 is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  8. Optimal grouping for a nuclear magnetic resonance (NMR) scanner

    VANDAELE, Nico; VAN NIEUWENHUYSE, Inneke; CUPERS, Sascha

    2001-01-01

    In this paper we analyze how a Nuclear Magnetic Resonance Scanner can be managed more efficiently, simultaneously improving patient comfort (in terms of total time spent in the system) and increasing availability in case of emergency calls. By means of a superposition approach, all relevant data on the arrival and service process of different patient types are transformed into a general single server, single class queueing model. The objective function consists of the weighted average patient...

  9. Scanner tags, comic book piracy and participatory culture

    Delwiche, Aaron

    2014-01-01

    To learn more about the motivations of individuals who scan and distribute comic books, this study reports findings from a content analysis of 389 scanner tags extracted from comic books posted on the torrent network Pirate Bay. Coded according to four categories linked to the literature on comic fandom and participatory culture, tags were analyzed in terms of recognition, aesthetic style, textual signifiers, and visual signifiers. Though comic book pirates seek recognition from their peers, ...

  10. An innovative optical and chemical drill core scanner

    Sjöqvist, A. S. L.; M. Arthursson; A. Lundström; Calderón Estrada, E.; Inerfeldt, A.; Lorenz, H.

    2015-01-01

    We describe a new innovative drill core scanner that semi-automatedly analyses drill cores directly in drill core trays with X-ray fluorescence spectrometry, without the need for much sample preparation or operator intervention. The instrument is fed with entire core trays, which are photographed at high resolution and scanned by a 3-D profiling laser. Algorithms recognise the geometry of the core tray, number of slots, location of the drill cores, calculate the optimal scanning path, and exe...

  11. Determination of cerebral blood flow with the EMI CT scanner

    Cerebral blood flow (CBF) determinations were made in seven baboons and two patients with the EMI CT dedicated head scanner. The method for determining the CBF was tested and measurements were made during physiological states elicited by changes in pCO2 and depth of anaesthesia. The method has a number of advantages, particularly for assessing CBF responses to pCO2 changes. (author)

  12. Determining the surface roughness coefficient by 3D Scanner

    Karmen Fifer Bizjak

    2010-01-01

    Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D) scanner as an alternative to curren...

  13. Optimization and characterization of PET scanners for Medical Imaging

    Cucciati,

    2014-01-01

    Positron emission tomography is an imaging technique that appeared to be a valid instrument for cancers detection and neuro-imaging studies. Since first models built during 1960s, an incredible effort has been done by researchers to develop scanners more and more advanced with higher specificity and efficiency. Monte Carlo simulations have shown to be a very important tool during design phase of PET prototypes thanks to their ability to simulate systems with many coupled degrees of freedom, a...

  14. 47 CFR 32.2321 - Customer premises wiring.

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is...

  15. Audio wiring guide how to wire the most popular audio and video connectors

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  16. Simplified Calculation of Maximum Wire Tension in case of Short Circuit

    I. I. Sergey; A. P. Andrukevich

    2007-01-01

    Modified method for a simplified calculation of a maximum wire tension in case of a short circuit. This method makes it possible to take into account a real trajectory of their movement and elements of a switch-gear. An accuracy evaluation of the simplified calculation has been done with the help of a calculative experiment using a BusEf computer software. A correction factor has been obtained to take into account an influence of insulator strings on a tension value.

  17. Flow pattern identification based on a single-wire capacitance probe

    To identify flow patterns in horizontal gas-liquid flows,a single-wire capacitance probe was used for voltage output for the first time. Regardless of the measurement accuracy of water layer height, the statistic parameters of the voltage-time traces were compared within the same sampling time of 5 s under different flow patterns, including maximum, minimum, range, and average. The results show that most of flow patterns were accurately identified except for some transition lines. (authors)

  18. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-01-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between...... the full nonequilibrium Green's function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide...

  19. 'Chrysanthemum petal' arrangements of silver nano wires.

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618

  20. Communication and wiring in the cortical connectome

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring p...

  1. Communication and Wiring in the Cortical Connectome

    Julian Budd; Zoltan F Kisvarday

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring p...

  2. A Magnetic Sensor with Amorphous Wire

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  3. Novel use of the "buddy"wire.

    O'Hare, A

    2008-12-29

    Summary: During interventional procedures the tortuosity of the vasculature hampers catheter stability. The buddy wire may be used to aid and maintain vascular access.We describe a case of acute subarachnoid haemorrhage secondary to dissecting aneurysm of the vertebral artery.We discuss the value of the buddy wire during balloon occlusion of the vertebral artery not as it is typically used, but to actually prevent the balloon repeatedly entering the posterior inferior cerebellar artery during the procedure.

  4. Graphene wire medium: Homogenization and application

    Andryieuski, Andrei; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2012-01-01

    In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example...... of the graphene wire medium application we demonstrate a reconfigurable hyperlens for the terahertz subwavelength imaging capable of resolving two sources with separation λ0/5 in the far-field....

  5. Assessment of aec system response in ge 16 slices scanner

    Computed Tomography scanners equipped with system for Automatic Exposure Control ( AEC ) have been recently installed into clinical practice in Macedonia. Assessment of their AEC settings and performances is important task from patient doses and images quality point of view . This study was done by analyzing of CT examinations in patients in the City Hospital ' 8 September' in Skopje. The examinations were carried out by GE Bright Speed 16 slices scanner equipped with AEC system . In all patients were applied the same protocol with constant acquisition parameters was applied , and images were reconstructed by standard mode . Patient dimensions and image noise were measured from the scouts and axial images. From DICOM header the information related to dose, TCM and slice position were extracted . It was found that scanner automatic exposure system adjusts exposure mainly according to maximal patient lateral dimension (LR) and applying the same Noise Index (NI) value in patients with different size does not provides necessarily the same image noise level. In patients which LR dimension was less than 30 cm it was found that AEC adjusts tube current at the minimum of m A interval with no modulation throughout different body parts. (Author)

  6. Image reconstruction using a first generation CT scanner

    Computed tomography (CT) is a non-destructive imaging technique that has been used in medical diagnosis since 1971. For many years the CT technique has also been applied to material characterisation and the detection of defects and flaws in industrial components associated with the nuclear, aerospace and missile industries. This paper reports on the construction of a first generation CT scanner built to demonstrate some applications of CT in the field of non-destructive testing and characterisation of materials. The scanner uses a mono-energetic 667 keV Cs-137 gamma radiation source and sodium iodide detector. The analogue output of the detector is connected to a Minekin rate meter. The object is placed on a specimen stage with the movement controlled by stepper motors through a GPIB interface. The projection data is acquired by placing the object at various angles with respect to the incident radiation and scanning the object laterally through a fixed source and detector assembly. The attenuation data is then processed on a Pentium computer using the summation filtered back-projection image reconstruction method. The mass attenuation coefficients were measured for aluminium, stainless steel, brass and lead and the results compared favourably with published data. The CT scanner will be improved to study various other applications in materials science and be used to establish a modern computed tomographic scanning facility. (author)

  7. Using Laser Scanners to Augment the Systematic Error Pointing Model

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  8. Determining the surface roughness coefficient by 3D Scanner

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  9. The Edinburgh Pipe Phantom: characterising ultrasound scanners beyond 50 MHz

    Moran, C M [Medical Physics, University of Edinburgh, Edinburgh, EH16 4TJ (United Kingdom); Ellis, W; Janeczko, A; Pye, S D [Medical Physics Department, NHS Lothian University Hospitals Division, Royal Infirmary, Edinburgh EH16 4SA (United Kingdom); Bell, D, E-mail: carmel.moran@ed.ac.uk [Precision Acoustics Ltd, Hampton Farm Business Park, Dorset, DT2 8QH (United Kingdom)

    2011-02-01

    The ability to measure the imaging performance of pre-clinical and clinical ultrasound scanners is important but difficult to achieve objectively. The Edinburgh Pipe Phantom was originally developed to assess the technical performance of clinical scanners up to 15MHz. It comprises a series of anechoic cylinders with diameters 0.4 - 8mm embedded in agar-based tissue mimic. This design enables measurement of the characteristics (Resolution Integral R, Depth of Field L{sub R}, Characteristic Resolution D{sub R}) of grey-scale images with transducer centre frequencies from about 2.5 to 15MHz. We describe further development of the Edinburgh Pipe Phantom as a tool for characterising ultrasound scanners with centre frequencies up to at least 50MHz. This was achieved by moulding a series of anechoic pipe structures (diameters 0.045 - 1.5mm) into a block of agar-based tissue mimic. We report measurements of R, L{sub R} and D{sub R} for a series of 10 transducers (5 single element and 5 array transducers) designed for pre-clinical scanning, with centre frequencies in the range 15-55 MHz. Values of R ranged from 18-72 for single element transducers and 49-58 for linear array transducers. In conclusion, the pre-clinical pipe phantom was able to successfully determine the imaging characteristics of ultrasound probes up to 55MHz.

  10. Ballistic transport through coupled T-shaped quantum wires

    Lin, Yuh-Kae; Lin, Kao-Chin; Chuu, Der-San

    2003-01-01

    The ballistic conductance of a coupled $T$-shaped semiconductor quantum wire (CTQW) are studied. Two types of CTQW are considered, one of which is a $\\Pi $-shaped quantum wire ($\\Pi $QW) which consists of two transverse wires on the same side of the main wire and the other a $\\Pi $-clone quantum wire ($\\Pi $CQW) which consists of two transverse wires on the opposite sides of the main wire. The mode matching method and Landauer-Buttiker theory are employed to study the energy dependence of the...

  11. Metallurgical investigation of wire breakage of tyre bead grade

    Piyas Palit; Souvik Das; Jitendra Mathur

    2015-01-01

    Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The f...

  12. Performance of an improved first generation optical CT scanner for 3D dosimetry

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans. (note)

  13. Torsional MEMS scanner design for high-resolution scanning display systems

    Urey, Hakan

    2002-06-01

    In scanning display systems, high horizontal and vertical resolution, and high refresh rate requirements translate into large mirror-size scan-angle product and high scanner-frequency requirements. A comparison between published scan-angle mirror-size product values for MEMS scanners and a steel mechanical scanner is presented. Current performance levels of steel mechanical scanners are better; however, Silicon MEMS scanners have good material properties and should be able to reach and exceed the performance levels of conventional mechanical scanners. The resolution limitations of mechanical and MEMS scanners are established using dynamic mirror deformation, flexure stress, and other oscillation mode frequencies. Analytical formulas for torsional, vertical deflection mode, lateral deflection mode, and rocking mode natural frequencies are derived using mechanical beam deflection theory.

  14. Accuracy evaluation of 3D lidar data from small UAV

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  15. Status of Project GRAND's Proportional Wire Chamber Array

    Poirier, J; Barchie, J; D'Andrea, C; Dunford, M; Green, M; Gress, J; Lin, T; Race, D; Skibba, R; Van Laecke, G; Wysocki, M

    2001-01-01

    Project GRAND is an extensive air shower array of proportional wire chambers. It has 64 stations in a 100m x 100m area; each station has eight planes of proportional wire chambers with a 50 mm steel absorber plate above the bottom two planes. This arrangement of planes, each 1.25 square meters of area, allow an angular measurement for each track to 0.25 degrees in each of two projections. The steel absorber plate allows a measurement of the identity of each muon track to 96% accuracy. Two data-taking triggers allow data to be simultaneously taken for a) extensive air showers (multiple coincidence station hits) at about 1 Hz and b) single muons (single tracks of identified muons) at 2000 Hz. Eight on-line computers pre-analyze the single track data and store the results on magnetic tape in compacted form with a minimum of computer dead-time. One additional computer reads data from the shower triggers and records this raw data on a separate magnetic tape with no pre-analysis.

  16. Adsorption of iodine on silver wire

    It is an important process in which iodine is adsorbed on silver wire during the preparation of 125I seed sources. In this paper, a technique of adsorption of iodine on silver wire was studied. The influence of several factors, such as the type of reagent for halogenation, the time for halogenation, the time for adsorption, pH value, ion concentration, carrier iodine and so on, on the utilization rate of 131I was investigated, and the effectiveness of our proposed technique for adsorption of iodine on silver wire was confirmed. The procedure is summarized as follows: silver wire acidification: using 4 mol/L HNO3 as halogenation agent, stirring acidified for 20 min; silver wire halogenation: used 2 mol/L NaClO3 as halogenated agent, halogenation for 3 h; adsorption of iodine on silver wire: room temperature, pH value for the reaction is about 3, the time for adsorption is 30 min, carrier iodine is 27.5 μg. Original radioactivity of reaction solution was determined based on radioactivity of source-core that user required. (authors)

  17. Domain wall resistance in epitaxial Fe wires

    Hassel, C., E-mail: christoph.hassel@uni-due.d [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, 47048 Duisburg (Germany); Roemer, F.M.; Reckers, N. [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, 47048 Duisburg (Germany); Kronast, F. [Bessy GmbH, Berlin (Germany); Dumpich, G.; Lindner, J. [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, 47048 Duisburg (Germany)

    2011-04-15

    We studied the magnetoresistance behavior of epitaxial Fe wires grown on GaAs(1 1 0) with varying widths at room temperature. Single nanowires show a wire width (w) dependence of the coercive field, which increases with 1/w for decreasing wire widths. This enables the pinning of a single domain wall in the connection area of two wires with different widths. Magnetoresistance measurements of such wire structures clearly reveal resistance contributions arising from a domain wall. The presence of the domain wall is proven by photoemission electron-microscopy with synchrotron radiation. Moreover, micromagnetic simulations are performed to determine the spin orientations, especially within the domain wall. This permits us to calculate the anisotropic magnetoresistance caused by the domain wall. Taking this into account, we determine the intrinsic domain wall resistance, for which we found a positive value of 0.2%, in agreement with theoretical predictions. - Research highlights: > Magnetoresistance of epitaxial Fe wires is studied. > Pinning of a single domain wall at constriction. > Detection of domain wall by resistance and XPEEM measurements. > AMR contribution calculated by micromagnetic simulations. > Positive intrinsic domain wall resistance in agreement with theory.

  18. Domain wall resistance in epitaxial Fe wires

    We studied the magnetoresistance behavior of epitaxial Fe wires grown on GaAs(1 1 0) with varying widths at room temperature. Single nanowires show a wire width (w) dependence of the coercive field, which increases with 1/w for decreasing wire widths. This enables the pinning of a single domain wall in the connection area of two wires with different widths. Magnetoresistance measurements of such wire structures clearly reveal resistance contributions arising from a domain wall. The presence of the domain wall is proven by photoemission electron-microscopy with synchrotron radiation. Moreover, micromagnetic simulations are performed to determine the spin orientations, especially within the domain wall. This permits us to calculate the anisotropic magnetoresistance caused by the domain wall. Taking this into account, we determine the intrinsic domain wall resistance, for which we found a positive value of 0.2%, in agreement with theoretical predictions. - Research highlights: → Magnetoresistance of epitaxial Fe wires is studied. → Pinning of a single domain wall at constriction. → Detection of domain wall by resistance and XPEEM measurements. → AMR contribution calculated by micromagnetic simulations. → Positive intrinsic domain wall resistance in agreement with theory.

  19. Chemistry of radiation damage to wire chambers

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF4/iC4H10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF4-rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF4, acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF4/iC4H10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C2H6. Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl3F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  20. The technology of testing the safety of steel wire ropes

    Zhang, Xiaochun; Hu, Caiwen

    2005-12-01

    To estimate the security of steel wire rope, the broken wire condition, the capability of the rope to bear weight and the state of stress balance of each wire in the steel wire rope were investigated. The wavelet translation method was applied to analyze the signals of magnetic field leakage from the steel wire rope. The result of the time-frequency analysis of the signals can be used to make certain of he position and the amount of the broken wire. Using the static surveillance method as a basis, a dynamic surveillance method was designed to detect the stress balance of the steel wire rope. This technology makes it possible to check the stress condition of each wire on line. It can be concluded that a wavelet translation analysis and the dynamic surveillance technique are effective methods to detect on line and real-time the broken wire and the stress balance of multistrand wire ropes.

  1. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  2. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  3. Empolder and application of LiveWire program

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  4. The shared neural basis of empathy and facial imitation accuracy.

    Braadbaart, L; de Grauw, H; Perrett, D I; Waiter, G D; Williams, J H G

    2014-01-01

    Empathy involves experiencing emotion vicariously, and understanding the reasons for those emotions. It may be served partly by a motor simulation function, and therefore share a neural basis with imitation (as opposed to mimicry), as both involve sensorimotor representations of intentions based on perceptions of others' actions. We recently showed a correlation between imitation accuracy and Empathy Quotient (EQ) using a facial imitation task and hypothesised that this relationship would be mediated by the human mirror neuron system. During functional Magnetic Resonance Imaging (fMRI), 20 adults observed novel 'blends' of facial emotional expressions. According to instruction, they either imitated (i.e. matched) the expressions or executed alternative, pre-prescribed mismatched actions as control. Outside the scanner we replicated the association between imitation accuracy and EQ. During fMRI, activity was greater during mismatch compared to imitation, particularly in the bilateral insula. Activity during imitation correlated with EQ in somatosensory cortex, intraparietal sulcus and premotor cortex. Imitation accuracy correlated with activity in insula and areas serving motor control. Overlapping voxels for the accuracy and EQ correlations occurred in premotor cortex. We suggest that both empathy and facial imitation rely on formation of action plans (or a simulation of others' intentions) in the premotor cortex, in connection with representations of emotional expressions based in the somatosensory cortex. In addition, the insula may play a key role in the social regulation of facial expression. PMID:24012546

  5. Reticence, Accuracy and Efficacy

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  6. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  7. Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning

    Craig Glennie

    2010-06-01

    Full Text Available The static calibration and analysis of the Velodyne HDL-64E S2 scanning LiDAR system is presented and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is derived and discussed. A planar feature based least squares adjustment approach is presented and utilized in a minimally constrained network in order to derive an optimal solution for the laser’s internal calibration parameters. Finally, the results of the adjustment along with a detailed examination of the adjustment residuals are given. A three-fold improvement in the planar misclosure residual RMSE over the standard factory calibration model was achieved by the proposed calibration. Results also suggest that there may still be some unmodelled distortions in the range measurements from the scanner. However, despite this, the overall precision of the adjusted laser scanner data appears to make it a viable choice for high accuracy mobile scanning applications.

  8. Radiochromic film dosimetry with flatbed scanners: A fast and accurate method for dose calibration and uniformity correction with single film exposure

    Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupled device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18x18 cm2 open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18x18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification

  9. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110}α or {112}α slip plane traces in the ferrite.

  10. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang, Xiaoxu; Liu, Wei; Liu, Qing

    2010-01-01

    microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates......The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  11. Design and performance evaluation of a coplanar multimodality scanner for rodent imaging

    Lage, E; Vaquero, J J; Sisniega, A; Tapias, G; Abella, M; Rodriguez-Ruano, A; Desco, M [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Espana, S [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid (Spain); Ortuno, J E [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza (Spain); Udias, A [Departamento de Estadistica e Investigacion Operativa, Universidad Rey Juan Carlos, Fuenlabrada (Spain)], E-mail: elage@mce.hggm.es

    2009-09-21

    This work reports on the development and performance evaluation of the VrPET/CT, a new multimodality scanner with coplanar geometry for in vivo rodent imaging. The scanner design is based on a partial-ring PET system and a small-animal CT assembled on a rotatory gantry without axial displacement between the geometric centers of both fields of view (FOV). We report on the PET system performance based on the NEMA NU-4 protocol; the performance characteristics of the CT component are not included herein. The accuracy of inter-modality alignment and the imaging capability of the whole system are also evaluated on phantom and animal studies. Tangential spatial resolution of PET images ranged between 1.56 mm at the center of the FOV and 2.46 at a radial offset of 3.5 cm. The radial resolution varies from 1.48 mm to 1.88 mm, and the axial resolution from 2.34 mm to 3.38 mm for the same positions. The energy resolution was 16.5% on average for the entire system. The absolute coincidence sensitivity is 2.2% for a 100-700 keV energy window with a 3.8 ns coincident window. The scatter fraction values for the same settings were 11.45% for a mouse-sized phantom and 23.26% for a rat-sized phantom. The peak noise equivalent count rates were also evaluated for those phantoms obtaining 70.8 kcps at 0.66 MBq/cc and 31.5 kcps at 0.11 MBq/cc, respectively. The accuracy of inter-modality alignment is below half the PET resolution, and the image quality of biological specimens agrees with measured performance parameters. The assessment presented in this study shows that the VrPET/CT system is a good performance small-animal imager, while the cost derived from a partial ring detection system is substantially reduced as compared with a full-ring PET tomograph.

  12. Assembly for activity distribution measurement of wires

    Activation method is used as a basic method for the neutron fluence measurement in the LVR-15 research reactor. Activation foils have usually been used as the monitors. At present an assembly for the measurement of linear specific activity distribution of wires has been developed. The assembly allows the activation wires to be used for neutron fluence measurement mainly in the reactor core. More detailed results of linear distribution and simpler handling with radioactive material are the advantages of activation wires compared with foils. More difficult calibration and processing of measured data are disadvantages on the other hand. The assembly consists of a spectrometer with HPGe detector for gamma activity measurement, a Pb shielding collimator around the detector, an outer Pb shielding, a transporting equipment and a controlling PC. The diameter of the collimator is 20 mm. The wire from Cu, Fe, Ni or Co material with diameter of 0.3 mm to 1.0 mm is placed on a support Al stick with diameter of 6 mm. After irradiation the stick with the wire is placed in the transporting equipment above the Pb shielding collimator and measured. Response function for the point radiation source on the line, where the wire is placed during the measurement, is the main characteristic of the assembly. The response function also depends on the energy of gamma radiation. The design of the Pb shielding collimator is described and the measured response functions for a few point radiation sources are given in the paper. During the measurement the stick with the wire moves above the collimator aperture and the peak count rates depending on position of wire with step of 10 mm to 50 mm are measured. As the response function for point source has not the ideal rectangular distribution (i.e. constant positive value above the collimator aperture and zero value for points out of the aperture) the evaluation of activities is not so simple as for measurement of individual samples. In the paper the

  13. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner. ClairvivoPET

    In this study, we evaluated the performance of a newly commercialized small-animal positron emission tomography (PET) scanner, ClairvivoPET, which provides significant advantages in spatial resolution, sensitivity, and quantitative accuracy. This scanner consists of depth of interaction detector modules with a large axial extent of 151 mm and an external 137Cs source for attenuation correction. Physical performances, resolution, sensitivity, scatter fraction (SF), counting rate including noise equivalent count (NEC) rate, quantitative accuracy versus activity strength, and transmission accuracy, were measured and evaluated. Animal studies were also performed. Transaxial spatial resolution, measured with a capillary tube, was 1.54 mm at the center and 2.93 mm at a radial offset of 40 mm. The absolute sensitivity was 8.2% at the center, and SFs for mouse- and rat-sized phantoms were 10.7% and 24.2%, respectively. Peak NEC rates for mouse- and rat-sized uniform cylindrical phantoms were 328 kcps at 173 kBq/ml and 119 kcps at 49 kBq/ml, respectively. The quantitative stability of emission counts against activity strength was within 2% over 5 half-lives, ranging from 0.6 MBq to 30 MBq. Transmission measurement based on segmented attenuation correction allowed 6-min and 10-min scans for mouse- and rat-sized cylindrical phantoms, respectively. Rat imaging injected with 18F-NaF resulted in visibility of fine bone structures, and mouse imaging injected with 18F-D-fluoromethyl tyrosine demonstrated the feasibility of using this system to obtain simultaneous time activity curves from separate regions, such as for the heart and tumors. ClairvivoPET is well suited to quantitative imaging even with short scan times, and will provide a number of advantages in new drug development and for kinetic measurement in molecular imaging. (author)

  14. Frequency response of a thermocouple wire: Effects of axial conduction

    Forney, L. J.; Fralick, G. C.

    1990-01-01

    Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties.

  15. Image fusion based on images of SPECT and CT modalities acquired in separated scanners

    fixation may not be a limitation to acquire images from different modalities in separate scanners. The accuracy of patient positioning may not be crucial when skull or head is been studied, because it is a rigid region that makes co-registration of images really easy. That is not the case for the rest of the body, where the articulation between regions or even in the same region makes a rigid co-registration impossible, when repositioning the patient in the second scanner is not taken care of. With a good repositioning, a reasonable co-registration is feasible. Modem software for 3D elastic co-registration may improve certain inaccuracies on positioning while they are not important. In our institution we use a Dual Head SPECT scanner, using conventional protocols depending on the tracer and the region studied. Typically, 60 to 120 frames with 30 to 60 second acquisition time per frame, and different matrix sizes (64x64,128x128) are used in collecting nuclear medicine tomographic images. It's also possible to acquire images in a Single-head SPECT scintillation camera, using a specific number of frames, but taking care of the total acquisition time. CT images are acquired on a helical CT, 1.5 pitch 0 deg. tilt angle, 5 mm thickness, no interslice space. In several cases a retro reconstruction to 2.5 mm can be used. Image co-registration and fusion are made on a Xeleris Workstation (GE), which allows to co-register different modalities, with a good display of fused images for clinical analysis. A second workstation running another software, which allows different automatic methods, was used and results were compared. Clinical experience was obtained with patients with a facial tumor disease (using Tc99m MDP as the radiopharmaceutical marker), patients with hepatic hemangioma suspected disease (using red cells labeled with 99mTc) and patients with pulmonary disease (using Ga67 as the radiopharmaceutical marker). Results in the application of this protocol reveal the validity

  16. Forgotten Kirschner Wire Causing Severe Hematuria

    Santosh Kumar

    2014-01-01

    Full Text Available Kirschner wire (K-wire is commonly used in the treatment of hip fracture and its migration into pelvis leading to bladder injury is a very rare complication. Nonremoval of these devices either because of lack of followup or because of prolonged requirement due to disease process is associated with this complication. We report a case of a patient who presented with acute onset severe hematuria with clot retention secondary to perforation of bladder by a migrated K-wire placed earlier, for the treatment of hip fracture. Initial imaging showed its presence in the soft tissues of the pelvis away from the major vascular structures. Patient was taken for emergency laparotomy and wire was removed after cystotomy. Postoperative period was uneventful and patient was discharged in satisfactory condition. K-wires are commonly used in the management of fracture bones and their migration has been reported in the literature although such migration in the intrapelvic region involving bladder is very rare. Early diagnosis and prompt removal of such foreign bodies are required to avert potentially fatal involvement of major structures.

  17. Integrated Electrical Wire Insulation Repair System

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  18. Temperature dependence of APD-based PET scanners

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  19. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  20. Measurement of electron density and effective atomic number by dual-energy scan using a 320-detector computed tomography scanner with raw data-based analysis: a phantom study.

    Tatsugami, Fuminari; Higaki, Toru; Kiguchi, Masao; Tsushima, So; Taniguchi, Akira; Kaichi, Yoko; Yamagami, Takuji; Awai, Kazuo

    2014-01-01

    We evaluated the accuracy of the electron densities and effective atomic numbers determined by raw data-based dual-energy analysis on a 320-detector computed tomography scanner. The mean (SD) errors between the measured and true electron densities and between the measured and true effective atomic numbers were 1.3% (1.5%) and 3.1% (3.2%), respectively. Electron densities and effective atomic numbers can be determined with high accuracy, which may help to improve accuracy in radiotherapy treatment planning. PMID:24983439

  1. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  2. Applicability of optical scanner method for fine root dynamics

    Kume, Tomonori; Ohashi, Mizue; Makita, Naoki; Khoon Kho, Lip; Katayama, Ayumi; Matsumoto, Kazuho; Ikeno, Hidetoshi

    2016-04-01

    Fine root dynamics is one of the important components in forest carbon cycling, as ~60 % of tree photosynthetic production can be allocated to root growth and metabolic activities. Various techniques have been developed for monitoring fine root biomass, production, mortality in order to understand carbon pools and fluxes resulting from fine roots dynamics. The minirhizotron method is now a widely used technique, in which a transparent tube is inserted into the soil and researchers count an increase and decrease of roots along the tube using images taken by a minirhizotron camera or minirhizotron video camera inside the tube. This method allows us to observe root behavior directly without destruction, but has several weaknesses; e.g., the difficulty of scaling up the results to stand level because of the small observation windows. Also, most of the image analysis are performed manually, which may yield insufficient quantitative and objective data. Recently, scanner method has been proposed, which can produce much bigger-size images (A4-size) with lower cost than those of the minirhizotron methods. However, laborious and time-consuming image analysis still limits the applicability of this method. In this study, therefore, we aimed to develop a new protocol for scanner image analysis to extract root behavior in soil. We evaluated applicability of this method in two ways; 1) the impact of different observers including root-study professionals, semi- and non-professionals on the detected results of root dynamics such as abundance, growth, and decomposition, and 2) the impact of window size on the results using a random sampling basis exercise. We applied our new protocol to analyze temporal changes of root behavior from sequential scanner images derived from a Bornean tropical forests. The results detected by the six observers showed considerable concordance in temporal changes in the abundance and the growth of fine roots but less in the decomposition. We also examined

  3. Feature-space transformation improves supervised segmentation across scanners

    van Opbroek, Annegreet; Achterberg, Hakim C.; de Bruijne, Marleen

    2015-01-01

    Image-segmentation techniques based on supervised classification generally perform well on the condition that training and test samples have the same feature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions...... results showed that our feature space transformation improved the Dice overlap of segmentations obtained with an SVM classifier from 0.36 to 0.85 when only 10 atlases were used and from 0.79 to 0.85 when around 100 atlases were used....

  4. A new electronic read-out for the YAPPET scanner

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  5. Computed tomography scanner applied to soil compaction studies

    The soil compaction problem was studied using a first generation computed tomography scanner (CT). This apparatus gets images of soil cross sections samples, with resolution of a few millimeters. We performed the following laboratory and field experiments: basic experiments of equipment calibrations and resolutions studies; measurements of compacted soil thin layers; measurements of soil compaction caused by agricultural tools; stress-strain modelling in confined soil sample, with several moisture degree; characterizations of soil bulk density profile with samples collected in a hole (trench), comparing with a cone penetrometer technique. (author)

  6. Automated nondestructive weld testing based on a line scanner

    The major advantages of radiography using line scanners are the enhanced contrast due to stray radiation collimation, and the possibility to optimize the ray incidence for detection of crack-type inhomogeneities. A modified photodiode line camera of Bio-Imaging Research was used for the experimental system. The Gd2O2S luminescent screen is used for converting the incident X-ray quanta into photons. Thus the camera can scan a surface of 100 mm. The effective pixel resolution is 50 μm. The system therefore also enables application of the computerized laminography. (orig./CB)

  7. Inspection of Samples using a fast Millimetre Wave Scanner

    Millimeterwaves and terahertz sensors can cover a broad field of applications ranging from production control to security scanners. The outstanding features are the transparency of many materials like textiles, paper and plastics in this frequency region, the good contrast of any humid or dense dielectric material and the capability to employ miniaturized RF systems and small antenna apertures or dielectric probes. A stand-alone-millimetre-wave-imager, SAMMY, was developed and built, to demonstrate the outstanding features of this part of the electromagnetic spectrum for material inspection.

  8. Inspection of Samples using a fast Millimetre Wave Scanner

    Hommes, A.; Nüssler, D.; Warok, P.; Krebs, C.; Heinen, S.; Essen, H.

    2011-08-01

    Millimeterwaves and terahertz sensors can cover a broad field of applications ranging from production control to security scanners. The outstanding features are the transparency of many materials like textiles, paper and plastics in this frequency region, the good contrast of any humid or dense dielectric material and the capability to employ miniaturized RF systems and small antenna apertures or dielectric probes. A stand-alone-millimetre-wave-imager, SAMMY, was developed and built, to demonstrate the outstanding features of this part of the electromagnetic spectrum for material inspection.

  9. Scatter fraction of the J-PET tomography scanner

    Kowalski, P; Raczyński, L; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Głowacz, B; Jasińska, J; Kamińska, D; Korcyl, G; Kozik, T; Krzemień, W; Kubicz, E; Mohammad, M; Niedźwiecki, Sz; Pałka, M; Pawlik-Niedźwiecka, M; Rudy, Z; Silarski, M; Smyrski, J; Strzelecki, A; Wieczorek, A; Zgardzińska, B; Zieliński, M; Moskal, P

    2016-01-01

    A novel Positron Emission Tomography system, based on plastic scintillators, is being developed by the J-PET collaboration. In this article we present the simulation results of the scatter fraction, representing one of the parameters crucial for background studies defined in the NEMA-NU-2-2012 norm. We elaborate an event selection methods allowing to suppress events in which gamma quanta were scattered in the phantom or underwent the multiple scattering in the detector. The estimated scatter fraction for the single-layer J-PET scanner varies from 37% to 53% depending on the applied energy threshold.

  10. Final task report on Fort St. Vrain temperature scanner system

    A Fort St. Vrain temperature scanner system was designed. Its primary use is to display in graphic format the thermal distribution of the helium, the feedwater, and the steam temperatures on the 12 steam generators during rise-to-power testing at the Fort St. Vrain High-Temperature Gas-Cooled Reactor. The graphic information allows an operator to immediately access hot spots, thermal imbalance, and any thermal information that indicates impending trouble. The system, including the software written for it, is described. (auth)

  11. Deriving debris-flow characteristics from vertical laser profile scanners

    Jacquemart, Mylène; Felix, Morsdorf; Graf, Christoph

    2015-04-01

    Two well-known debris-flow channels in the Swiss Alps, the Dorfbach, in the community of Randa, canton of Valais and the Spreitgraben (community of Guttannen, BE) were fitted with a setup of two laser profile scanners each. Since 2011 (Randa site) and 2012 (Spreitgraben site), these devices have been scanning the passing debris flows at rates of 50 Hz or 75 Hz, recording several million across bed profiles with point densities of roughly 20 points per meter during debris-flow events. In order to comprehend the vast possibilities this extraordinary data set offers, a preliminary evaluation has been undertaken, writing code that allows for a semi-automatic extraction of the main debris-flow characteristics maximum flow height, peak discharge, total discharge as well as spatially distributed flow velocity. The analysis of 13 events, of which 12 took place at the Dorfbach site, and one took place at the Spreitgraben site, revealed that a large-scale Particle Image Velocimetry (PIV) approach can be used to derive flow velocities, and these in turn can be used to compute discharge curves for all of the recorded events. Total automation has proven to be unrealistic, because the choice of the bed geometry greatly influences discharge results. Also, excluding outlying velocity values is necessary, in order to find reliable peak discharge values. Nevertheless, we find that the laser scanners offer distinct advantages over the 'established' setup consisting of geophones and a radar gauge because the scanners catch the debris flow as it changes its flow path and offer much higher resolution in terms of distributed flow height measurements. Furthermore, the single profiles of the recorded debris flows were analyzed with regard to their surface geometry by fitting fourth order polynomials to find the points of inflection along the profiles. From this, we have been able to estimate the amount of flow height that debris flows gain by building their well-known convex fronts, and

  12. A new electronic read-out for the YAPPET scanner

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper

  13. An automated geometric correction system for airborne multispectral scanner imagery

    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and more routine environmental assessments of nuclear facilities. The USDOE RSL maintains a small fleet of specially equipped aircraft that are used as platforms for remote sensor systems. The aircraft include helicopters, light aircraft, and a business jet suitable for high altitude acquisitions. Multispectral scanners flown on these platforms are subject to geometric distortions related to variations in aircraft orientation (pitch, roll, and yaw), position, and velocity during data acquistions

  14. Analysis framework for the J-PET scanner

    Krzemień, W; Gruntowski, A; Stola, K; Trybek, D; Bednarski, T; Białas, P; Czerwiński, E; Kamińska, D; Kapłon, L; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Kubicz, E; Moskal, P; Niedźwiecki, Sz; Pałka, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Wiślicki, W; Zieliński, M; Zoń, N

    2015-01-01

    J-PET analysis framework is a flexible, lightweight, ROOT-based software package which provides the tools to develop reconstruction and calibration procedures for PET tomography. In this article we present the implementation of the full data-processing chain in the J-PET framework which is used for the data analysis of the J-PET tomography scanner. The Framework incorporates automated handling of PET setup parameters' database as well as high level tools for building data reconstruction procedures. Each of these components is briefly discussed.

  15. Performance evaluation of an Inveon PET preclinical scanner.

    Constantinescu, Cristian C; Mukherjee, Jogeshwar

    2009-05-01

    We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon

  16. Performance evaluation of an Inveon PET preclinical scanner

    We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with 18F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a 22Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Φ = 60, L = 150 mm) and mouse-like (Φ = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity 18F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with 18F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system

  17. Back-propagation of accuracy

    Senashova, M. Yu.; Gorban, A. N.; Wunsch II, D. C.

    2003-01-01

    In this paper we solve the problem: how to determine maximal allowable errors, possible for signals and parameters of each element of a network proceeding from the condition that the vector of output signals of the network should be calculated with given accuracy? "Back-propagation of accuracy" is developed to solve this problem. The calculation of allowable errors for each element of network by back-propagation of accuracy is surprisingly similar to a back-propagation of error, because it is...

  18. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS insertion: an in vitro study.

    Maoqing Fu

    Full Text Available BACKGROUND: With the properties of three-column fixation and anterior-approach-only procedure, anterior transpedicular screw (ATPS is ideal for severe multilevel traumatic cervical instabilities. However, the accurate insertion of ATPS remains challenging. Here we constructed a patient-specific biocompatible drill template and evaluated its accuracy in assisting ATPS insertion. METHODS: After ethical approval, 24 formalin-preserved cervical vertebrae (C2-C7 were CT scanned. 3D reconstruction models of cervical vertebra were obtained with 2-mm-diameter virtual pin tracts at the central pedicles. The 3D models were used for rapid prototyping (RP printing. A 2-mm-diameter Kirschner wire was then inserted into the pin tract of the RP model before polymethylmethacrylate was used to construct the patient-specific biocompatible drill template. After removal of the anterior soft tissue, a 2-mm-diameter Kirschner wire was inserted into the cervical pedicle with the assistance of drill template. Cadaveric cervical spines with pin tracts were subsequently scanned using the same CT scanner. A 3D reconstruction was performed of the scanned spines to get 3D models of the vertebrae containing the actual pin tracts. The deviations were calculated between 3D models with virtual and actual pin tracts at the middle point of the cervical pedicle. 3D models of 3.5 mm-diameter screws were used in simulated insertion to grade the screw positions. FINDINGS: The patient-specific biocompatible drill template was constructed to assist ATPS insertion successfully. There were no significant differences between medial/lateral deviations (P = 0.797 or between superior/inferior deviations (P = 0.741. The absolute deviation values were 0.82±0.75 mm and 1.10±0.96 mm in axial and sagittal planes, respectively. In the simulated insertion, the screws in non-critical position were 44/48 (91.7%. CONCLUSIONS: The patient-specific drill template is biocompatible, easy

  19. Comparison of actuation schemes for wire-driven parallel robots

    Merlet, Jean-Pierre

    2013-01-01

    There are two main systems that can be used to coil and uncoil the wires of a wire-driven parallel robots: a rotary motor that turns a drum on which the wire is coiled or a linear motor with a pulley system. The rotary category may be divided into two sub-categories: the system with a spiral guide for the coiling, allowing only layer for the wire and the system without guide, that allows for several wire layers with the drawback that the amount of coiled wire for one mot...

  20. Estimation of quality for steel wire ropes according

    Pavel Peterka; Boroka Ján; Kreák Jozef

    1997-01-01

    Life and work dependability of steel wire ropes depend also on their quality. Test results of the steel wire ropes for pull, bend and torque are used for determination of their work capacity by safety factors and standards. To estimate the quality of steel wire ropes a factor of unequal pull steel wires, which we evaluated for sixty nine operating steel wire ropes made in various countries, can be calculated. The tests revealed that producers of steel wire ropes use for their products steel ...