WorldWideScience

Sample records for accumulation mode particles

  1. Fractional activation of accumulation-mode particles in warm continental stratiform clouds

    The degree of activation of accumulation-mode particles (AMP) in clouds has been studied using continuous (1 second average) aircraft measurements of the number concentrations of cloud droplets (Ncd, 2 to 35 μm diameter) and of unactivated AMP (Namp, 0.17 to 2.07 μm diameter) in cloud interstitial air. The magnitude and spatial variation of the activated fraction (F) of all measured particles (defined as F triple-bond Ncd/Ntot, where Ntot = Ncd + Namp) are investigated, based on measurements made during ten aircraft flights in non-precipitating warm continental stratiform clouds near Syracuse NY in the fall of 1984. Based on instantaneous observations throughout the clouds, the spatial distribution of F was found to be quite nonuniform. In general, F was low in cloud edges and where total particle loading was high and/or cloud convective activity was low. In the interior of clouds, the value of F exceeded 0.9 for 36% of the data, but was below 0.6 for 28%. Factors influencing F the most were the total particle loading (Ntot) and the thermal stability of the cloud layer. The dependence of F on Ntot in cloud interior was characterized by two distinct regimes. For Ntot -3, F was generally close to unity and relatively insensitive to Ntot. For Ntot > 800 cm-3, F tended to decrease with increasing Ntot. This decrease was greatest in a stable stratus deck embedded in a warm moist airmass. The results suggest that, in warm continental stratiform clouds, the process of particle activation becomes nonlinear and self-limiting at high particle loading. The degree of this nonlinearity depends on cloud convective activity (thermal instability)

  2. Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America

    R. Krejci

    2005-01-01

    Full Text Available Single particle analysis of aerosols particles larger than 0.2 μm diameter was performed on 24 samples collected over Surinam tropical rain forest and in the adjacent marine boundary layer (MBL during the LBA-CLAIRE 98 campaign in March 1998. Elemental composition and morphology of 2308 particles was determined using SEM-EDX. The aerosol particles were divided into seven groups according to their chemical composition: organic particles, mineral dust, aged mineral dust, sea salt, aged sea salt, Ca-rich, and biogenic aerosol. However the organic material in aerosol particles cannot be identified directly by SEM-EDX, we present indirect method of detection of organic material using this technique. Samples were further divided with respect to the distinct atmospheric layers present in the tropical troposphere including MBL, continental mixed layer, cloud convective layer, free troposphere and region of deep convection outflow. The organic and mineral dust particles are two major groups observed over the rainforest. In the MBL also sea salt particles represented a large fraction between 15 and 27%. The organic particles control much of the chemical characteristic of the aerosol in the continental tropical troposphere. Their abundance ranged from less than 20% in the MBL to more than 90% in the free troposphere between 4.5- and 12.6-km altitude. During the transport of the air masses from the MBL over the rain forest, fraction of organic aerosol particles more than doubled, reaching 40–60% in the continental boundary layer. This increase was attributed to direct emissions of biogenic aerosols from the tropical vegetation. The high fraction of the organic accumulation mode particles in the upper tropical troposphere could be a good indicator for the air masses originated over the tropical rain forest.

  3. Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America

    R. Krejci

    2004-01-01

    Full Text Available Single particle analysis of aerosols particles larger than 0.2 µm diameter was performed on 24 samples collected over Surinam tropical rain forest and in the adjacent marine boundary layer (MBL during the LBA-CLAIRE 98 campaign in March 1998. Elemental composition and morphology of 2308 particles was determined using SEM-EDX. The aerosol particles were divided into seven groups according to their chemical composition: organic particles, mineral dust, aged mineral dust, sea salt, aged sea salt, Ca-rich, and biogenic aerosol. Samples were further divided with respect to the distinct atmospheric layers present in the tropical troposphere including MBL, continental mixed layer, cloud convective layer, free troposphere and region of deep convection outflow. The organic and mineral dust particles are two major groups observed over the rainforest. In the MBL also sea salt particles represented a large fraction between 15 and 27%. The organic particles control much of the chemical characteristic of the aerosol in the continental tropical troposphere. Their abundance ranged from less than 20% in the MBL to more than 90% in the free troposphere between 4.5 and 12.6 km altitude. During the transport of the air masses from the MBL over the rain forest, fraction of organic aerosol particles more than doubled, reaching 40-60% in the continental boundary layer. This increase was attributed to direct emissions of biogenic aerosols from the tropical vegetation. The high fraction of the organic accumulation mode particles in the upper tropical troposphere could be a good indicator for the air masses originated over the tropical rain forest.

  4. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    L. Ahlm

    2012-10-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus, were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources.

    The biogenic factor was strongly correlated (r ~ 0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp < 100 nm (r~ 0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r ~ 0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with

  5. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    L. Ahlm

    2013-03-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign, when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July, the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs, and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r~0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dpr~0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r~0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp>100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering the biogenic

  6. "DIAGNOSTIC" PULSE FOR SINGLE-PARTICLE-LIKE BEAM POSITION MEASUREMENTS DURING ACCUMULATION/PRODUCTION MODE IN THE LOS ALAMOS PROTON STORAGE RING

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory; Bjorklund, Eric A. [Los Alamos National Laboratory; Bolme, Gerald O. [Los Alamos National Laboratory; Hall, Michael J. [Los Alamos National Laboratory; Kwon, Sung I. [Los Alamos National Laboratory; Martinez, Martin P. [Los Alamos National Laboratory; Prokop, Mark S. [Los Alamos National Laboratory; Shelley, Fred E. Jr. [Los Alamos National Laboratory; Torrez, Phillip A. [Los Alamos National Laboratory

    2012-05-14

    Beam position monitors (BPMs) are the primary diagnostic in the Los Alamos Proton Storage Ring (PSR). When injecting one turn, the transversemotion is approximated as a single particle with initial betatron position and angle {rvec x}{sub 0} and {rvec x}'{sub 0}. With single-turn injection, we fit the betatron tune, closed orbit (CO), and injection offset ({rvec x}{sub 0} and {rvec x}'{sub 0} at the injection point) to the turn-by-turn beam position. In production mode, we accumulate multiple turns, the transverse phase space fills after 5 injections (horizontal and vertical fractional betatron tunes {approx}0.2) resulting in no coherent betatron motion, and only the CO may be measured. The injection offset, which determines the accumulated beam size and is very sensitive to steering upstream of the ring, is not measurable in production mode. We describe our approach and ongoing efforts to measure the injection offset during production mode by injecting a 'diagnostic' pulse {approx}50 {micro}s after the accumulated beam is extracted. We also study the effects of increasing the linac RF gate length to accommodate the diagnostic pulse on the production beam position, transverse size, and loss.

  7. Effects of particle shape, hematite content and semi-external mixing with carbonaceous components on the optical properties of accumulation mode mineral dust

    S. K. Mishra

    2010-12-01

    Full Text Available The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite and metalic component like hematite (Fe2O3. The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0–8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1 organic carbon (especially HULIS component (2 Brown carbon and (3 black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above

  8. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark

    Andersen, Zorana Jovanovic; Wåhlin, Peter; Raaschou-Nielsen, O;

    2008-01-01

    in diameter, respectively) and ambient gasses. We utilised data on size distribution to calculate NC(tot) for four modes with median diameters 12, 23, 57 and 212 nm, and NC(100) (number concentration of particles <100 nm in diameter) and examined their associations with health outcomes. We used a...... time series Poisson generalised additive model adjusted for overdispersion, season, day of the week, public holidays, school holidays, influenza, pollen and meteorology, with up to 5 days' lagged exposure. RESULTS AND CONCLUSIONS: The adverse health effects of particulate matter on CVD and RD hospital...

  9. Energetic particle effects on global MHD modes

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω*i). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  10. Alpha particle destabilization of the TAE modes

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  11. Geodesic Acoustic Modes Induced by Energetic Particles

    Zhou, Tianchun; Berk, Herbert

    2009-11-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode. Landau damping due to thermal species is investigated.

  12. Surface charge accumulation of particles containing radionuclides in open air

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. - Highlights: • Radioactivity-induced charge enhances electrostatic particle interactions. • Radioactivity-induced particle charging is important in radioactivity transport. • Ionization rate coefficients of beta-emitting radionuclides are reported

  13. Accumulation and modeling of particles in drinking water pipe fittings

    K. Neilands; M. Bernats; J. Rubulis

    2012-01-01

    The effect of pipe fittings (mainly T-pieces) on particle accumulation in drinking water distribution networks were shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinyl chloride pipe sections were linked with analysis of pipe geometry. Up to 0.29 kg of the total amount mobilized in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in fittings was defined as J and introduced into ...

  14. Accumulation and modeling of particles in drinking water pipe fittings

    K. Neilands

    2012-09-01

    Full Text Available The effect of pipe fittings (mainly T-pieces on particle accumulation in drinking water distribution networks were shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinyl chloride pipe sections were linked with analysis of pipe geometry. Up to 0.29 kg of the total amount mobilized in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in fittings was defined as J and introduced into the existing turbidity model PODDS (prediction of discoloration in distribution systems proposed by Boxall et al. (2001 which describes the erosion of particles leading to discoloration events in drinking water network viz sections of straight pipes. However, this work does not interpret mobilization of particles in pipe fittings which have been considered in this article. T-pieces were the object of this study and depending of the diameter or daily flow velocity, the coefficient J varied from 1.16 to 8.02. The study showed that pipe fittings act as catchment areas for particle accumulation in drinking water networks.

  15. Accumulation and modeling of particles in drinking water pipe fittings

    K. Neilands

    2012-04-01

    Full Text Available The effect of pipe fittings – mainly T-pieces – on particle accumulation in drinking water distribution networks is shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinylchloride pipe sections have been linked with the analysis of pipe geometry. Up to 0.29 kg of the total mass of particles was found to be accumulated in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in the fittings was defined as J and introduced into the existing turbidity model PODDS (Prediction of Discolouration in Distribution Systems proposed by Boxall et al. (2001, which describes the erosion of particles leading to discoloration events in drinking water networks, viz. sections, of straight pipes. It does not interpret the mobilization of particles in pipe fittings, however, which have been considered in this article. T-pieces were the object of this study and depending on the diameter or daily flow velocity, the coefficient J varied from 1.16 to 8.02.

  16. Origin of particle accumulation structures in liquid bridges: Particle-boundary-interactions versus inertia

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2016-07-01

    The formation of particle-accumulation structures in the flow in a cylindrical liquid bridge driven by the thermocapillary effect is studied with the aim of determining the physical mechanism which forms the structures. The flow is modeled using the incompressible Navier-Stokes and energy equations with the assumption of constant fluid properties except for surface tension, which is assumed to depend linearly on temperature. Different models for the motion of small non-interacting spherical particles at low concentration are employed, taking into account particle inertia due to density differences between fluid and particles and the restricted particle motion near the boundaries of the flow domain. Attention is focused on differences in formation time between particle-accumulation structures arising as a result of inertial effects only, particle-boundary-interaction effects only, and a combination of the two.

  17. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  18. Higher order microfibre modes for dielectric particle trapping and propulsion

    Maimaiti, Aili; Sergides, Marios; Gusachenko, Ivan; Chormaic, Síle Nic

    2014-01-01

    Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. In this work, we demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Single polystyrene particles were trapped and propelled in the evanescent fields of higher order and fundamental modes near the surface of microfibres. Speed enhancement of particle propulsion was observed for the higher order modes compared to the fundamental mo...

  19. Narrow resonances of high mass in particle-anti particle mode

    A review is given of high mass narrow resonances in the particle--antiparticle mode. Included are a discussion of the particle properties, the detection apparatus at Brookhaven, the first measurements, and the discovery of the new particles

  20. Quasilinear Model for Energetic Particles Interacting with TAE Modes

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2010-11-01

    TAE instabilities are thought to be a major source of Energetic Particle transport which could set limits on operational scenarios, especially for burning plasmas, and causes damage to the first wall. The quasilinear model proposed by Berk et al.ootnotetextH. L. Berk et al, Nucl. Fusion, 35:1661, 1995. relies on diffusion mechanisms for particle dynamics to captures the evolution of the energetic particle distribution function and the associated mode amplitude. Using the bump-on-tail as a paradigm, we analyze the dynamics near the resonances for accurate diffusion coefficient representation. We verify the model to get the predicted single mode saturation levels and benchmark the case of multimode overlap against particle codes. Using the TAE mode structures computed by the ideal MHD code NOVA, we generalize this method to relax energetic particles' profiles in the full 3D phase space.

  1. Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing

    Zhang, Ying; Li, Zhengqiang; Zhang, Yuhuan; Chen, Yu; Cuesta, Juan; Ma, Yan

    2016-08-01

    We present characteristic peaks of atmospheric columnar aerosol volume size distribution retrieved from the AErosol RObotic NETwork (AERONET) ground-based Sun-sky radiometer observation, and their correlations with aerosol optical properties and meteorological conditions in Beijing over 2013. The results show that the aerosol volume particle size distribution (VPSD) can be decomposed into up to four characteristic peaks, located in accumulation and coarse modes, respectively. The mean center radii of extra peaks in accumulation and coarse modes locate around 0.28 (±0.09) to 0.38 (±0.11) and 1.25 (±0.56) to 1.47 (±0.30) μm, respectively. The multi-peak size distributions are found in different aerosol loading conditions, with the mean aerosol optical depth (440 nm) of 0.58, 0.49, 1.18 and 1.04 for 2-, 3-I/II and 4-peak VPSD types, while the correspondingly mean relative humidity values are 58, 54, 72 and 67 %, respectively. The results also show the significant increase (from 0.25 to 0.40 μm) of the mean extra peak median radius in the accumulation mode for the 3-peak-II cases, which agrees with aerosol hygroscopic growth related to relative humidity and/or cloud or fog processing.

  2. Clogging processes caused by biofilms growth and organic particles accumulation in lab-scale vertical flow constructed wetlands

    ZHAO Lianfang; ZHU Wei; TONG Wei

    2009-01-01

    The accumulation of organic matter in substratum pores is regarded as an important factor causing clogging in the subsurface flow constructed wetlands.In this study,the developing process of clogging separately caused by biofilm growth and organic particles accumulation instead of total organic matter accumulation was investigated in two groups of lab-scale vertical flow constructed wetlands (VFCWs) fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent.Results showed that the growth of biofilms within the substratum pores certainly caused remarkable reduction of effective porosity,especially for the strong organic wastewater,whereas its influence on infiltration rate was negligible.It was implied that the most important contribution of biofilm growth to clogging is accelerating the occurrence of clogging.In comparison with biofilm growth,particles accumulation within pores could rapidly reduce infiltration rate besides effective porosity and the clogging occurred in the upper 0-15 cm layer.With approximately equal amount of accumulated organic matter,the effective porosity of the clogged layer in starch-fed systems was far less than that of glucose-fed systems,which indicated that composition and accumulation mode of the accumulated organic matter played an important role in causing clogging besides the amount.According to the results,some related methods to prevent and recover the clogging phenomenon were suggested.

  3. Alpha particle effects on global MHD modes, and alpha particle transport in ignited tokamaks

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable primarily by the circulating α-particles through wave-particle resonances. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions, as well as Alfven continuum damping. Stability criteria are presented for TFTR, CIT, and ITER tokamaks in terms of the α-particle beta βα, the α-particle pressure gradient parameter (ω*/ωA), where ω* is the α-particle diamagnetic drift frequency, and the α-particle velocity (vα/vA) parameter. Typically the volume averaged α-particle beta threshold is on the order of 10-4. Rough estimates of the TAE mode saturation level give δBr/B ∼ 10-3 for typical D-T tokamak operations. Significant α-particle losses are found when the amplitude of the global MHD modes is large, on the order of (δBr/B) ≥ 10-4. For (δBr/B) = 5 x 10-4, the α-particle loss time is appreciably shorter than the α-particle slowing-down time. 13 refs., 1 fig

  4. High frequency single mode traveling wave structure for particle acceleration

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  5. Sausage mode of a pinched charged particle beam

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion

  6. Energetic/alpha particle effects on MHD modes and transport

    A nonvariational kinetic-MHD stability code (NOVA-K) has been employed to study TAE stability in TFRR D-T and DIII-D experiments and to achieve understanding of TAE instability drive and damping mechanism. Reasonably good agreement between theory and experiment has been obtained. In these experiments the dominant damping mechanism is due to both the thermal ion Landau damping and/or the beam ion Landau damping. Based on ITER EDA parameters, the TAE modes are expected to be unstable in normal ITER operations. Energetic particle transport has been studied using a test particle code (ORBIT). Energetic particle loss scales linearly with the TAE mode amplitude and can be large for TFRR and DIII-D for δBr/B > 10-4 due to large banana orbit. From quasi-linear (ORBIT) and nonlinear kinetic-MHD (MH3D-K) simulations the saturation of TAE modes is due to nonlinear wave particle trapping and energetic particle profile modification in both radial and energy space. Finally, a convective bucket transport mechanism by MHD waves with time-dependent frequency is presented. Based on the energy-selective characteristics of the bucket transport mechanism, undesirable particles such as helium ash can be removed from the plasma core efficiently

  7. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    M. Väkevä

    2001-12-01

    Full Text Available An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare.

  8. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    M. Väkevä

    2002-01-01

    Full Text Available An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare.

  9. The inconsistency of French regulation mode faced with the financialization of accumulation pattern.

    Mickaël Clévenot; Yann Guy

    2007-01-01

    The absence of specifically dedicated method to represent financialized capitalism constitutes a significant gap in contemporary macroeconomic modelling considering the impact of finance on the rules of wealth production and distribution. From both the lessons of Regulation theory in terms of accumulation pattern and regulation mode declined through the concepts of institutional hierarchy and complementarity, and the neo-Cambridgian modelling framework, one tries to establish the causes which...

  10. Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    MacLeod, S. J.; See, A. M.; Hamilton, A. R.; Farrer, I.; Ritchie, D A; Ritzmann, J.; Ludwig, A.; Wieck, A. D.

    2015-01-01

    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surf...

  11. Masses of charmed particles, decay modes and lifetimes

    Basic characteristics of charmed particles obtained up to the middle of 1981 are discussed in the survey. Stated in brief are main predictions of the theory on charmed particles properties. Experimental data on masses, decay modes and lifetimes of D and F mesons as well as charmed baryons are considered. Basic experiments are described. It is pointed out that in the experiments single and pair production events as well as charmed particle decay have been observed. The charmed particles lifetime lies within the limits of 10-12 - 10-13C. The lifetime of D+- mesons is approximately three times longer than the D0 mesons lifetime. The lifetime of F mesons and Λsub(e) baryons is close to D0 mesons lifetime

  12. Particle simulation of energetic particle driven Alfven modes in NBI heated DIII-D experiments

    The mutual nonlinear interactions of shear Alfven modes and alpha particles can enhance their transport in burning plasmas. Theoretical and numerical works have shown that rapid transport of energetic ions can take place because of fast growing Alfven modes (e.g. energetic particle driven modes, EPMs). This kind of transport has been observed in experiments as well as in numerical simulations. Hybrid MHD-gyrokinetic codes can investigate linear and nonlinear dynamics of energetic particle (EP) driven modes, retaining the mutual interaction between waves and EPs self-consistently. Self-consistent nonlinear wave-particle interactions (both in configuration and velocity space) are crucial for a correct description of the mode dynamics in the case of strongly driven modes; thus, a non-perturbative approach is mandatory. The knowledge of the threshold characterizing the transition from weakly to strongly driven regimes is of primary importance for burning plasma operations (e.g. for ITER), in order to avoid EPM enhanced EP transport regimes. The hybrid MHD-gyrokinetic code (HMGC) has been applied to the interpretation of phenomena observed in present experiments with neutral beam (NB) heating. In reversed-shear beam-heated DIII-D discharges, a large discrepancy between the expected and measured EP radial density profiles has been observed in the presence of large Alfvenic activity. HMGC simulations with EP radial profiles expected from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial profiles at saturation level close to experimental measurements. The frequency spectra obtained from several simulations with different toroidal mode numbers, as calculated during the saturated phase when the strong EPMs transform in weak reversed-shear Alfven modes, are quite close to experimental observations both in absolute frequency and in radial localization. In this work, we discuss in particular the effects of nonlinear coupling

  13. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  14. Accumulation of Settling Particles in Some Coral Reef Areas of Peninsular Malaysia

    The aim of this study was to determine the accumulation of settling particles in coral reefs of Peninsular Malaysia. Settling particles were collected from the coral reefs of Port Dickson, Pulau Langkawi, Pulau Tioman, Pulau Redang and Pulau Tinggi from 2005 to 2008. The average total settling particles in Pulau Langkawi and Port Dickson was 49.8 mg/ cm2/ day, while for Pulau Tioman, Pulau Redang, and Pulau Tinggi was 3.5 mg/ cm2/ day. The results showed that accumulations rate in west coast were higher than east coast of Peninsular Malaysia. However, Pulau Tioman in the east coast received high accumulations rate of settling particles in certain times of the year due to sediment resuspension at shallow reefs caused by high energy seasonal yearly wave and monsoon. (author)

  15. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu

    2016-01-01

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  16. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    Jia, Guozhang; Xiang, Nong; Huang, Yueheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Xueyi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States); Lin, Yu [Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States)

    2016-01-15

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  17. Nonlinear simulations of particle source effects on edge localized mode

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  18. Nonlinear simulations of particle source effects on edge localized mode

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom

  19. Two accumulation modes of marine-origin natural gas in the Tarim Basin

    2007-01-01

    Hetianhe gas field, Lungudong gas field and Tazhong gas field are marine marine-origin natural gas reservoirs in the craton area in the Tarim Basin. The natural gas is generated from Cambrian source rocks. The simulation experiment indicated that the cracking of the dispersedly dissoluble organic matter remaining in the source rocks is the main origin of marine natural gas. There are two modes to form gas reservoirs, one is the dry gas reservoir such as Hetianhe gas field, in which gas accumulated on the fault belt with violent tectonic movement, the other is condensate gas reservoir formed on the inheriting uplift such as Lunnan and Tazhong gas fields. The hybrid simulation experiment of cracking gas and crude oil indicated that crude oil accumulated on a large scale in those uplift belts at the early stage, and natural gas filled the ancient oil reservoir at the late stage, and the gas reservoirs were formed after the gas mixed with the crude oil.

  20. Excitation of external kink mode by trapped energetic particles

    Guo, S. C.; Xu, X. Y.; Liu, Y. Q.; Wang, Z. R.

    2016-05-01

    An unstable fishbone-like non-resonant external kink mode (FLEM) is numerically found to be driven by the precessional drift motion of trapped energetic particles (EPs) in both reversed-field pinch (RFP) and tokamak plasmas, even under the ideal wall boundary condition. In the presence of a sufficiently large fraction of trapped energetic ions in high beta plasmas, the FLEM instability may occur. The excitation condition is discussed in detail. The frequency of the FLEM is linked to the precessional drift frequency of EPs, and varies with the plasma flow speed. Therefore, it is usually much higher than that of the typical resistive wall mode (RWM). In general, the growth rate of FLEM does not depend on the wall resistivity. However, the wall position can significantly affect the mode’s property. The drift kinetic effects from thermal particles (mainly due to the transit resonance of passing particles) play a stabilizing role on FLEMs. In the presence of EPs, the FLEM and the RWM can co-exist or even couple to each other, depending on the plasma parameters. The FLEM instabilities in RFP and tokamaks have rather similar physics nature, although certain sub-dominant characters appear differently in the two configurations.

  1. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Visser, Jaco H.; Ralf Moos; David J. Kubinski; Isabella Marr; Gregor Beulertz; Andrea Groß

    2012-01-01

    The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental resul...

  2. Collective modes and fast particle confinement in ITER

    The results of numerical models have been compared to the existing data to investigate damping mechanisms, check parametric dependencies and extrapolate the existing experimental results to reactor conditions that remain inaccessible to present day tokamaks. Stabilising mechanisms involving mode conversion to kinetic Alfven waves have been identified. The comparison between theory and experiment suggests that the limit above which the alpha particle pressure starts giving rise to instabilities that can degrade the plasma performance is much higher in conventional burn scenarios than in reversed shear configurations. (author)

  3. New modes of particle accelerations techniques and sources. Formal report

    Parsa, Z. [ed.

    1996-12-31

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  4. New modes of particle accelerations techniques and sources. Formal report

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  5. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast.

    Kauffmann, Louise; Chauvin, Alan; Guyader, Nathalie; Peyrin, Carole

    2015-02-01

    Visual analysis follows a default, predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) are processed more rapidly than high spatial frequencies (HSF), allowing an initial coarse parsing of visual input, prior to analysis of finer information. Our study investigated the influence of spatial frequency processing order, accumulation mode (i.e. how spatial frequency information is received as an input by the visual system, throughout processing), and differences in luminance contrast between spatial frequencies on rapid scene categorization. In Experiment 1, we used sequences composed of six filtered scenes, assembled from LSF to HSF (coarse-to-fine) or from HSF to LSF (fine-to-coarse) to test the effects of spatial frequency order. Spatial frequencies were either successive or additive within sequences to test the effects of spatial frequency accumulation mode. Results showed that participants categorized coarse-to-fine sequences more rapidly than fine-to-coarse sequences, irrespective of spatial frequency accumulation in the sequences. In Experiment 2, we investigated the extent to which differences in luminance contrast rather than in spatial frequency account for the advantage of coarse-to-fine over fine-to-coarse processing. Results showed that both spatial frequencies and luminance contrast account for a predominant coarse-to-fine processing, but that the coarse-to-fine advantage stems mainly from differences in spatial frequencies. Our study cautions against the use of contrast normalization in studies investigating spatial frequency processing. We argue that this type of experimental manipulation can impair the intrinsic properties of a visual stimulus. As the visual system relies on these to enable recognition, bias may be induced in strategies of visual analysis. PMID:25499838

  6. Particle transport in JET and TCV-H mode plasmas

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  7. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  8. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions

  9. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  10. Sulphuric acid closure and contribution to nucleation mode particle growth

    M. Boy

    2005-01-01

    Full Text Available Sulphuric acid concentrations were measured and calculated based on pseudo steady state model with corresponding measurements of CO, NOx, O3, SO2, methane and non-methane hydrocarbon (NMHC concentrations as well as solar spectral irradiance and particle number concentrations with size distributions. The measurements were performed as a part of the EU project QUEST (Quantification of Aerosol Nucleation in the European Boundary layer during an intensive field campaign, which was conducted in Hyytiälä, Finland in March–April 2003. In this paper, the closure between measured and calculated H2SO4 concentrations is investigated. Besides that, also the contribution of sulphuric acid to nucleation mode particle growth rates is studied. Hydroxyl and hydroperoxy radical concentrations were determined using a pseudo steady state box model including photo stationary states. The maximum midday OH concentrations ranged between 4.1×105 to 1.8×106 molecules cm-3 and the corresponding values for HO2 were 1.0×107 to 1.5×108 molecules cm-3. The dominant source term for hydroxyl radicals is the reaction of NO with HO2 (56% and the reaction of CO with OH covers around 41% of the sinks. The sulphuric acid source term is the reaction SO2 with OH and the sink term is condensation of sulphuric acid. The closure between measured and calculated sulphuric acid concentrations is achieved with a high agreement to the measured values. In sensitivity studies, we used different values for the non-methane hydrocarbons, the peroxy radicals and nitrogen dioxide. The best fits between calculated and measured values were found by decreasing the NO2 concentration when it exceeded values of 1.5 ppb and doubling the non-methane hydrocarbon concentrations. The ratio, standard deviation and correlation coefficient between measured and calculated sulphuric acid concentrations are 0.99, 0.412 and 0.645, respectively. The maximum midday sulphuric acid concentrations varied between

  11. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. PMID:27295441

  12. Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

    Park, Jaehong; Workman, Jared; Blackman, Eric; Ren, Chuang; Siller, Robert

    2012-10-01

    Low Mach number, high plasma beta, fast mode shocks likely occur in the outflows from reconnection sites associated with solar flares. These shocks are sites of particle energization with observable consequences, but there has been much less work on understanding the underlying physics compared to that of Mach number shocks. To make progress, we have simulated a low Mach number/high beta shock using 2D particle-in-cell simulations with a ``moving wall'' method and studied the shock structure and particle acceleration processes therein [Park et. al (2012), Phys. Plasmas, 19, 062904]. The moving wall method can control the shock speed in the simulation frame to allow smaller simulation boxes and longer simulation times. We found that the modified two-stream instability in the shock transition region is responsible for shock sustenance via turbulent dissipation and entropy creation throughout the downstream region long after the initial shock formation. Particle tracking and the particle energy distributions show that both electrons and ions participate in shock-drift-acceleration (SDA). The simulation combined with a theoretical analysis reveals a two-temperature Maxwellian distribution for the electron energy distribution via SDA.

  13. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  14. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, a

    2005-01-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of organic fraction in the nucleation mode size class in differ...

  15. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  16. Alterations in particle accumulation and clearance in lungs of rats chronically exposed to diesel exhaust

    F344 rats were chronically exposed to diesel exhaust at target soot concentrations of 0 (control, C), 0.35 (low, L), 3.5 (medium, M), and 7.0 (high, H) mg/m3. Accumulated lung burdens of diesel soot were measured after 6, 12, 18, and 24 months of exposure. Parallel measurements of particle deposition and clearance were made to provide insight into the mechanisms of particle accumulation in lungs. The fractional deposition of inhaled 67Ga2O3 particles after 6, 12, 18, and 24 months of exposure and of inhaled 134Cs-fused aluminosilicate particles after 24 months were similar for all groups. Progressive increases in lung burdens of soot particles were observed in M and H exposed rats, reaching levels of 11.5 +/- 0.5 and 20.5 +/- 0.8 mg/lung (mean +/- SE), respectively, after 24 months. Rats in the L group had smaller relative increases in lung burden, reaching levels of 0.60 +/- 0.02 mg/lung after 24 months. Tracheal mucociliary clearance measurements, using 99mTc-macroaggregated albumin deposited in the trachea, showed no changes at anytime. There were statistically significant increases in clearance half-times of inhaled radiolabeled particles of 67Ga2O3 as early as 6 months at the H level and 18 months at the M level; no significant changes were seen at the L level. Rats inhaled fused aluminosilicate particles labeled with 134Cs after 24 months of diesel exhaust exposure to measure long-term components of pulmonary clearance. The long-term clearance half-times were 79 +/- 5, 81 +/- 5, 264 +/- 50, and 240 +/- 50 days (mean +/- SE) for the C, L, M, and H groups, respectively. Differences were significant between the C and both the M and H exposure groups (p less than 0.01)

  17. Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surface gates and the 2D electron gas is small. In this work, we demonstrate that the hybrid devices made from the same wafer have reproducible electrical characteristics, with identical mobility and density traces over a large range of 2D densities. In addition, thermal cycling does not influence the measured electrical characteristics. As a demonstration of concept, we have fabricated a hybrid single-electron transistor on a shallow (50 nm) AlGaAs/GaAs heterostructure that shows clear Coulomb blockade oscillations in the low temperature conductance

  18. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Jaco H. Visser

    2012-03-01

    Full Text Available The accumulating-type (or integrating-type NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s, the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.

  19. Sulphuric acid closure and contribution to nucleation mode particle growth

    M. Boy

    2004-10-01

    Full Text Available Sulphuric acid concentrations were measured and calculated based on pseudo steady state model with corresponding measurements of CO, NOx, O3, SO2, methane and non-methane hydrocarbon (NMHC concentrations as well as solar spectral irradiance and particle number concentrations with size distributions. The measurements were performed as a part of the EU project QUEST (Quantification of Aerosol Nucleation in the European Boundary layer during an intensive field campaign, which was conducted in Hyytiälä, Finland in March–April 2003. In this paper, the closure between measured and calculated H2SO4 concentrations is investigated. Besides that, also the contribution of sulphuric acid to nucleation mode particle growth rates is studied. Hydroxyl and hydroperoxy radical concentrations were determined using a pseudo steady state box model including photo stationary states. The maximum midday OH concentrations ranged between 4.1×105 to 1.8×106molecules cm−3 and the corresponding values for HO2 were 1.0×107 to 1.5×108molecules cm−3. The dominant source term for hydroxyl radicals is the reaction of NO with HO2 (56% and the reaction of CO with OH covers around 41% of the sinks. The sulphuric acid source term is the reaction SO2 with OH and the sink term is condensation of sulphuric acid. The closure between measured and calculated sulphuric acid concentrations is achieved with a high agreement to the measured values. In sensitivity studies, we used different values for the non-methane hydrocarbons, the peroxy radicals and nitrogen dioxide. The best fits between calculated and measured values were found by decreasing the NO2 concentration when it exceeded values of 1.5 ppb and doubling the non-methane hydrocarbon concentrations. The ratio, standard deviation and correlation coefficient

  20. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.

    2014-05-01

    The mass concentration, chemical composition and sources of quasi-ultrafine (quasi-UFP, PM0.25), accumulation (PM0.25-2.5) and coarse mode (PM2.5-10) particles were determined in indoor and outdoor air at 39 schools in Barcelona (Spain). Quasi-UFP mass concentrations measured (25.6 μg m-3 outdoors, 23.4 μg m-3 indoors) are significantly higher than those reported in other studies, and characterised by higher carbonaceous and mineral matter contents and a lower proportion of secondary inorganic ions. Results suggest that quasi-UFPs in Barcelona are affected by local sources in the schools, mainly human activity (e.g. organic material from textiles, etc., contributing 23-46% to total quasi-UFP mass) and playgrounds (in the form of mineral matter, contributing about 9% to the quasi-UFP mass). The particle size distribution patterns of toxicologically relevant metals and major aerosol components was characterised, displaying two modes for most elements and components, and one mode for inorganic salts (ammonium nitrate and sulfate) and elemental carbon (EC). Regarding metals, Ni and Cr were partitioned mainly in quasi-UFPs and could thus be of interest for epidemiological studies, given their high redox properties. Exposure of children to quasi-UFP mass and chemical species was assessed by comparing the concentrations measured at urban background and traffic areas schools. Finally, three main indoor sources across all size fractions were identified by assessing indoor / outdoor ratios (I / O) of PM species used as their tracers: human activity (organic material), cleaning products, paints and plastics (Cl- source), and a metallic mixed source (comprising combinations of Cu, Zn, Co, Cd, Pb, As, V and Cr). Our results support the need to enforce targeted legislation to determine a minimum "safe" distance between major roads and newly built schools to reduce exposure to traffic-derived metals in quasi-UFPs.

  1. Effect of inoculum addition modes and leachate recirculation on anaerobic digestion of solid cattle manure in an accumulation system

    El-Mashad, H.M.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2006-01-01

    The effect of both leachate recirculation (at 40 and 50 °C) and the mode of inoculum addition (at 50 °C) on the performance of a non-mixed accumulation (i.e. fed batch) system treating solid cattle wastes was investigated, using laboratory scale reactors at a filling time of 60 days. A relatively hi

  2. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-01

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed. PMID:24346588

  3. Acceleration of quasi-particle modes in Bose-Einstein condensates

    Marzlin, Karl-Peter; Zhang, Weiping

    1998-01-01

    We analytically examine the dynamics of quasi-particle modes occuring in a Bose-Einstein condensate which is subject to a weak acceleration. It is shown that the momentum of a quasi-particle mode is squeezed rather than accelerated.

  4. Effect of energetic particle distribution on bounce resonance excitation of the ideal ballooning mode

    The kinetic effect of energetic trapped particles on the stability of magnetohydrodynamic (MHD) ballooning mode is studied in a tokamak with the circular cross section. The bounce resonance contribution of trapped energetic particles is found to play an important role in the outer inertial region of the ballooning mode perturbation, and destabilizes the ballooning mode when the shear effect is not strong. The inhomogeneity of a model slowing down energetic particle distribution in velocity space, δF/δE, is effective to stabilize the bounce resonant mode. (author)

  5. Impact of particles on sediment accumulation in a drinking water distribution system.

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough. PMID:18789809

  6. Fine particle control of radiocesium accumulation in contaminated flood plain soils

    Fine particles are known to play an important role in trace element concentration and their redistribution in the environment. Their specific behavior in flooding processes can lead to considerable accumulation of the incorporated technical pollution in particular elementary landscapes at the corresponding geo-morphological levels and soil depths in case of a strong pollutant fixation that is typical for 137Cs. The main goal of the study was to reveal the natural texture-dependent patterns of radiocesium redistribution in flood plain soils contaminated due to air or water radiocesium releases. (authors)

  7. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K;

    2014-01-01

    exposure to 6.4mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there...... were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes....

  8. Destabilization of low-n peeling modes by trapped energetic particles

    The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value βc*, which is sensitive to the pitch angle of trapped EPs. The dependence of βc* on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs

  9. Volatility of Nuclei Mode Arctic Aerosol Particles during Summer

    Biskos, J.G.; Vratolis, S.; Ondráček, Jakub; Karanasioy, A.A.; Eleftheriadis, K.

    -: -, 2009, T160A13. [European Aerosol Conference 2009. Karlsruhe (DE), 06.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : arctic aerosol * nucleation mode * volatility Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Effects of dispersive wave modes on charged particles transport

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  11. Particle transport in JET and TCV H-mode plasmas

    Maslov, Mikhail

    2009-01-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized...

  12. Normal modes of prion proteins: from native to infectious particle.

    Samson, Abraham O; Levitt, Michael

    2011-03-29

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e., mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease in α-helical content along with an increase in β-strand content. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each, which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions that are prone to conversion than in wild-type prions because of differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change in prion proteins. PMID:21338080

  13. Trapped particle induced fishbone mode in spherical tokamaks

    The stability of the fishbone mode in the presence of trapped energetic ions in plasmas of spherical tokamaks is investigated. It has been shown that, when plasma β is sufficiently high to result in a magnetic valley in the equilibrium magnetic field, the fishbone mode is stable due to the inversion of direction of the toroidal precession. This result is valid for both high frequency and low frequency fishbone branches. It is based on general qualitative analysis and calculations involving a suggested analytical expression for the equilibrium magnetic field and calculated bounce and precessional frequencies of the energetic ions. Stability conditions are obtained which agree with experimental observations. (author)

  14. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τcx) is sufficiently shorter than the slowing down time (τs) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency

  15. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  16. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms

    Quah, Bryan [Southern Illinois University Carbondale, Department of Civil and Environmental Engineering (United States); Musante, Craig; White, Jason C. [The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry (United States); Ma, Xingmao, E-mail: xma@civil.tamu.edu [Texas A& M University, Zachry Department of Civil Engineering (United States)

    2015-06-15

    The antimicrobial property of silver nanoparticles (AgNPs) makes it one of the most commonly encountered nanomaterials in commercial products. Consequently, its detection in the environment is highly likely and its potential toxicity has been heavily investigated. While it is now generally agreed that AgNP itself exerts unique toxicity to plants in addition to that of dissolved silver ion, the accumulation and fate of different forms of silver in plant tissues are unknown. This study investigates the phytotoxicity, accumulation, and transport of Ag with different physical and chemical characteristics (e.g., ionic, nanoparticles, and bulk) in two agricultural crop species: Glycine max (soybean) and Triticum aestivum (wheat). The results showed that different forms of Ag demonstrated differential toxicity in these two species, with the Ag{sup +} at the same nominal concentration displaying the strongest effect on plant growth. Exposure to 5 mg/L of elemental Ag in different forms all resulted in significant deposition on the root surface but its morphology and distribution patterns varied considerably. The Ag transport efficiency from roots to shoots differed with both Ag type and plant species. Notably, the upward transport of AgNPs (20–50 nm) was considerably more substantial than that of bulk Ag (1–3 µm). Cell fractionation studies confirmed that all types of Ag were internalized, with the plant cell wall as the predominant place for element accumulation. The findings demonstrate that Ag toxicity and in planta fate vary with particle type and that such considerations are likely necessary to adequately assess food safety concerns upon NP exposure.

  17. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms

    The antimicrobial property of silver nanoparticles (AgNPs) makes it one of the most commonly encountered nanomaterials in commercial products. Consequently, its detection in the environment is highly likely and its potential toxicity has been heavily investigated. While it is now generally agreed that AgNP itself exerts unique toxicity to plants in addition to that of dissolved silver ion, the accumulation and fate of different forms of silver in plant tissues are unknown. This study investigates the phytotoxicity, accumulation, and transport of Ag with different physical and chemical characteristics (e.g., ionic, nanoparticles, and bulk) in two agricultural crop species: Glycine max (soybean) and Triticum aestivum (wheat). The results showed that different forms of Ag demonstrated differential toxicity in these two species, with the Ag+ at the same nominal concentration displaying the strongest effect on plant growth. Exposure to 5 mg/L of elemental Ag in different forms all resulted in significant deposition on the root surface but its morphology and distribution patterns varied considerably. The Ag transport efficiency from roots to shoots differed with both Ag type and plant species. Notably, the upward transport of AgNPs (20–50 nm) was considerably more substantial than that of bulk Ag (1–3 µm). Cell fractionation studies confirmed that all types of Ag were internalized, with the plant cell wall as the predominant place for element accumulation. The findings demonstrate that Ag toxicity and in planta fate vary with particle type and that such considerations are likely necessary to adequately assess food safety concerns upon NP exposure

  18. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  19. Optical modes in linear arrays of dielectric spherical particles: A numerical investigation

    Blaustein, G S; Blaustein, Gail S.; Burin, Alexander L.

    2007-01-01

    We have investigated bound modes in finite linear chains of dielectric particles of various lengths, interparticle spacing and particle materials. Through a unique application of the multisphere Mie scattering formalism, we have developed numerical methods to calculate eigen-optical modes for various arrays of particles. These numerical methods involve the use of the multisphere scattering formalism as the entries in NxN matrices where N represents the number of particles in the chain. Eigenmodes of these matrices correspond to the eigen-optical modes of interest. We identified the eigenmodes with the highest quality factor by the application of a modified version of the Newton-Raphson algorithm. We found that convergence is strong using this algorithm for linear chains of up to several hundreds of particles. By comparing the dipolar approach with the more complex approach which utilizes a combination of both dipolar and quadrupolar approaches, we demonstrated that the dipolar approach has an accuracy of appr...

  20. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained

  1. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Bao, L.M., E-mail: baoliangman@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, G.L., E-mail: zhangguilin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Q.T.; Li, Y.; Li, X.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu, Y.K. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Yi, J.M. [Advanced Photon Source, Argonne National Laboratory, Argonne 60439 (United States)

    2015-09-15

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  2. New Receiving Mode of Extinction for Determining Particle Size and Density without Convex Lens

    WU Weiliang; CHEN Hanping; CAI Xiaoshu; WANG Naining

    2002-01-01

    In this article a new receiving mode for scattering light by particle is theoretically discussed. Using this receiving mode the convex lens can be omitted during determining the extinction of particle. Therefore the extinction coefficient of sphere particles is redefined by extrapolating the conventional one. In terms of the calculation results of light scattering the definition of near-field extinction coefficient of a swarm particle is depicted. Through the error analysis it is proved that the error coming from the new definition of extinction coefficient is acceptable for engineering application. In addition, a technique for determining the particle size and density is presented in this article and the advantage using this receiving mode is described.

  3. Effective identification of the three particle modes generated during pulverized coal combustion

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke

    2008-01-01

    Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

  4. Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs

    Comparisons are performed to study the drive current of accumulation-mode (AM) p-channel wrap-gated Fin-FETs. The drive current of the AM p-channel FET is 15%-26% larger than that of the inversion-mode (IM) p-channel FET with the same wrap-gated fin channel, because of the body current component in the AM FET, which becomes less dominative as the gate overdrive becomes larger. The drive currents of the AM p-channel wrap-gated Fin-FETs are 50% larger than those of the AM p-channel planar FETs, which arises from effective conducting surface broadening and volume accumulation in the AM wrap-gated Fin-FETs. The effective conducting surface broadening is due to wrap-gate-induced multi-surface conduction, while the volume accumulation, namely the majority carrier concentration anywhere in the fin cross section exceeding the fin doping density, is due to the coupling of electric fields from different parts of the wrap gate. Moreover, for AM p-channel wrap-gated Fin-FETs, the current in channel along (110) is larger than that in channel along (100), which arises from the surface mobility difference due to different transport directions and surface orientations. That is more obvious as the gate overdrive becomes larger, when the surface current component plays a more dominative role in the total current. (semiconductor devices)

  5. A method for detecting the presence of organic fraction in nucleation mode sized particles

    P. Vaattovaara

    2005-06-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  6. A method for detecting the presence of organic fraction in nucleation mode sized particles

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  7. L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

    Harrison, J R; Kirk, A

    2013-01-01

    The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.

  8. L-mode and inter-ELM divertor particle and heat flux width scaling on MAST

    The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density (ne,sep0.65±0.15) L-mode, (ne,sep0.76±0.19) H-mode) and plasma current (Ip-0.36±0.11) L-mode, Ip-1.05±0.18 H-mode) (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1 m2/s to 7 m2/s, and is systematically lower in H-mode compared with L-mode

  9. Toroidally asymmetric particle transport caused by phase-locking of MHD modes in RFX-mod

    The particle and energy transport in reversed field pinch experiments is affected by the locking in phase of the tearing modes, also dubbed dynamo modes, that sustain the magnetic configuration. In standard RFP pulses many m = 1 and m = 0 resonant modes have a relatively large amplitude (a spectrum dubbed MH for multiple helicity). The locking in phase of m = 1 tearing modes produces a helical deformation (locked mode (LM)) of the magnetic surfaces in a region of approximately 40 toroidal degrees. The region of the LM is characterized by a strong plasma-wall interaction and by high losses of energy and particles that account for a significant fraction of the input power and of the total particle outflux. The locking in phase of m = 0 modes modifies the plasma radius, shrinking and enlarging the plasma cross section in two wide toroidal regions of about 1000. The purpose of this paper is to investigate to what extent the locking in phase of m = 0 modes introduces toroidal asymmetries in the transport properties of the plasma. This study has been carried out investigating the shape of the density profile in the RFX-mod experiment. The analyses show that the profile exhibits a dependence on the toroidal angle, which is related to the deformation of the plasma column due to the locking in phase of m = 0 modes: the least steep density gradients at the edge are found in the region where the plasma column is shrunk, entailing that in this region the particle transport is enhanced. An analogous asymmetry also characterizes the density and magnetic fluctuations at the edge, which are enhanced in the same toroidal region where the particle transport also is enhanced. This result can be considered the first experimental evidence of an instability localized where the plasma column is shrunk

  10. Suppression of scattering for small dielectric particles: an anapole mode and invisibility

    Luk`yanchuk, Boris; Kuznetsov, Arseniy I; Miroshnichenko, Andrey E; Kivshar, Yuri S

    2016-01-01

    We reveal that an isotropic homogeneous subwavelength particle with a high refractive index can produce ultra-weak total scattering due to vanishing contribution of the electric dipole moment. This effect can be explained with the help of the Fano resonance and scattering efficiency associated with the excitation of an anapole mode. The latter is a nonradiative mode emerging from destructive interference of electric and toroidal dipole moments, and it can be employed for a design of highly transparent optical materials.

  11. Geochemical behaviors of HPHT gas reservoirs in the Yinggehai Basin and the efficient gas accumulation mode in its diapir flanks

    Chuanxin Tong

    2015-03-01

    Full Text Available The Yinggehai Basin is a Cenozoic high-temperature and high-pressure basin where diapir and thermal fluid activities were so strong that the deeply-sourced natural gas accumulated in the shallow traps in the diapir structures. A total of 11 exploratory wells were drilled in 8 diapir structures before 2010, but no commercial gas discoveries were made, provoking a hot debate on the possibility of discovering medium-to-large quality gas reservoirs in the middle and deep layers of the diaper structures. A comprehensive analysis of hydrocarbon generation kinetics, reservoir distribution and sealing conditions revealed the following findings. (1 Three gas-charging mechanisms were identified in the study area, namely slow free gas charging and accumulation under buoyancy, slow charging, evolving and accumulation of water soluble gas, and mixed-phase episodic accumulation. (2 In the high-temperature and high-pressure zones in the core of the diapir, the early gas reservoirs experienced multi-stage transformation at later periods, thus the possibility of forming large gas reservoirs dominated by hydrocarbon is small. In the flanks of the diapir, the early gas reservoirs may be well preserved at later stages, thus it is possible to discover primary gas pools. In the non-diapir zones, water soluble gas reservoirs may occur. (3 Three gas accumulation modes may exist in the study area, namely “the mixed-phase transformation mode” of semi-closed overpressure system in the core and periphery of a diapir, “the gas-phase seepage mode” in the flanks of a diapir, and “the water-phase desolvation mode” of a closed over-pressured system in the non-diapir zones. The analysis revealed that the failure of the previous exploratory drilling was caused mainly by emplacing the wells in the core of the diapir structures. The geochemical behaviors further support that the flanks of a diapir is the favorable place for high-temperature and high-pressure gas

  12. Interference of guiding polariton mode in "traffic" circle waveguides composed of dielectric spherical particles

    Polishchuk, I. Ya.; Gozman, M. I.; Blaustein, G. S.; Burin, A. L.

    2008-01-01

    The interference of polariton guiding modes propagating through "traffic circle" waveguides composed of dielectric spherical particles is investigated. The dependence of intensity of the wave on the position of the particle was studied using the multisphere the Mie scattering formalism. We show that if the frequency of light belongs to the passband of the waveguide, electromagnetic waves may be considered as two optical beams running along a circle in opposite directions and interfering with ...

  13. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    DING ZuFeng; FAN YuBo; DENG XiaoYan

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels,the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied.The three cell culture modes of the study were:(i)The endothelial cell monolayer (EC/O);(ii)endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC);(iii)endothelial cells and smooth muscle cells cultured on different sides of a MillicelI-CM membrane (EC/SMC).It was found that under the same condition,the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/φ mode,while the infiltration/accumulation of Dil-LDLs was the lowest in the EC/φ mode and the highest in the EC-SMC mode.It was also found that Dil-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate.The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids,and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  14. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Φ); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Φ mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Φ mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  15. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  16. Exposure to ultrafine particles and PM 2.5 in four Sydney transport modes

    Knibbs, Luke D.; de Dear, Richard J.

    2010-08-01

    Concentrations of ultrafine (hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM 2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM 2.5 ranged from 2.8 (train) to 8.4 (bus) × 10 4 particles cm -3 and 22.6 (automobile) to 29.6 (bus) μg m -3, respectively, and a statistically significant difference ( p < 0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 10 3 (train) and 2.2 × 10 5 (bus) particles cm -3 and 9.5 (train) to 78.7 (train) μg m -3. Estimated commuter exposures were variable, and the highest return trip mean PM 2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM 2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.

  17. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.

    Ratha, Sachitra Kumar; Babu, Santosh; Renuka, Nirmal; Prasanna, Radha; Prasad, Rachapudi Badari Narayana; Saxena, Anil Kumar

    2013-05-01

    The objective of this study was to identify the most promising nutritional mode of growth for enhanced biomass and lipid productivity in a set of twenty microalgal strains, grown under photoautotrophic and mixotrophic/heterotrophic conditions using 2% glucose as carbon source. These included four cyanobacterial strains (Cyanosarcina, Phormidium, Nostoc and Anabaena) and sixteen green algae belonging to six genera (five strains each of Chlorella and Chlorococcum, two of Scenedesmus and one each of Chlamydomonas, Kirchneria, Bracteacoccus and Ulothrix). Lipid productivity ranged from 2-13% under photoautotrophic conditions, 1.7-32% under mixotrophic conditions and 0.9-20% under heterotrophic conditions. MIC-G5 Chlorella sp. followed by MIC-G11 Chlorella sp. exhibited the highest cellular lipid content (355 and 271 μg/ml) and lipid productivity of 32% and 28% respectively in mixotrophic condition. In the glucose supplemented conditions (heterotrophic), a significant reduction in PUFA from 25.1 to 9.4, 29.2 to 12.4 and 44.7 to 10.2 was observed in MIC-G4, MIC-G5 and MIC-G11, respectively. A remarkable enhancement of 33-70% in SFA was recorded under mixotrophic conditions. As the quality of biodiesel is based on high SFA and low PUFA, our results illustrate the significance of glucose supplemented condition as a promising strategy for generating high value biodiesel from algae. PMID:22736510

  18. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles

    N. Hiranuma

    2013-09-01

    Full Text Available In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM, energy dispersive X-ray (EDX spectroscopy, dynamic light scattering (DLS, and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5 to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C T < −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing.

  19. Influence of resistivity on energetic trapped particle-induced internal kink modes

    The influence of resistivity on energetic trapped particle-induced internal kink modes, dubbed ''fishbones'' in the literature, explored. A general dispersion relation, which recovers the ideal theory in its appropriate limit, is derived and analyzed. Implications of the theory for present generation fusion devices such as the Joint European Torus are discussed. 8 refs., 2 figs

  20. Particle and power deposition on divertor targets in EAST H-mode plasmas

    Wang, L.; Xu, G.S.; Guo, H.Y.;

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons w...

  1. Particle-in-cell δf gyrokinetic simulations of the microtearing mode

    Chowdhury, J.; Chen, Yang; Wan, Weigang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Guttenfelder, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Canik, J. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-01-15

    The linear stability properties of the microtearing mode are investigated in the edge and core regimes of the National Spherical Torus Experiment (NSTX) using the particle-in-cell method based gyrokinetic code GEM. The dependence of the mode on various equilibrium quantities in both regions is compared. While the microtearing mode in the core depends upon the electron-ion collisions, in the edge region, it is found to be weakly dependent on the collisions and exists even when the collision frequency is zero. The electrostatic potential is non-negligible in each of the cases. It plays opposite roles in the core and edge of NSTX. While the microtearing mode is partially stabilized by the electrostatic potential in the core, it has substantial destabilizing effect in the edge. In addition to the spherical tokamak, we also study the microtearing mode for parameters relevant to the core of a standard tokamak. The fundamental characteristics of the mode remain the same; however, the electrostatic potential in this case is destabilizing as opposed to the core of NSTX. The velocity dependence of the collision frequency, which is crucial for the mode to grow in slab calculations, is not required to destabilize the mode in toroidal devices.

  2. Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions

    ZHANG YingXun[1; ZHOU ChengShuang[1,2; CHEN JiXian[1,2; WANG Ning[2; ZHAO Kai[1; LI ZhuXia[1

    2015-01-01

    The correlation between the shape of rapidity distribution of the yield of light charged particles and the fragmentation modes in semi-peripheral collisions for 70Zn+70Zn, 64Zn+64Zn and 64Ni+64Ni at the beam energy of 35 MeV/nucleon is investigated based on ImQMD05 code. Our studies show there is an interplay between the binary, ternary and multi-fragmentation break-up modes. The binary and ternary break-up modes more prefer to emit light charged particles at middle rapidity and give larger values of Rmid compared with the multi-fragmentation break-up mode does. The reduced rapidity distribution for the normalized yields of yield p, d, t, 3He, 4He and 6He and the corresponding values ~ Rmid oI yield can be used to estimate the probability of multi-fragmentation break-up modes. By comparing to experimental data, our results illustrate that ~40% of the collisions events belong to the multi- fragmentation break-up mode for the reactions we studied.

  3. Damping of Trapped-Particle Asymmetry Modes in Non-Neutral Plasma Columns

    Asymmetry modes (m = 1, kz ≠ 0) are diocotron-like modes in finite-length plasma columns in Malmberg-Penning traps. We have investigated the modes with a detailed 3-d particle-in-cell (PIC) drift-kinetic computer simulation. Although PIC simulations do not employ realistic collisions, the simulations in this case reproduce many of the salient features of the data. Particle transport associated with the damping is seen not to be a direct collisional effect, but rather a feature of orbital dynamics associated with transitions from trapped-to-untrapped or untrapped-to-trapped state relative to the inversion plane of the asymmetry. In the simulations we observe a B-1 dependence of the mode frequencies and a B-0.5 dependence of the damping constant for large rigidity. We further observe a steepening of the dependence of the decay constant to B-2 as the rigidity of the plasma falls below about 2.0. We have also used the simulations to investigate the modes at small seed amplitudes and observe linear flattening in the mode frequency as the seed amplitude becomes small. In contrast, the decay constant does not flatten for small seed amplitude

  4. Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

    Guo, S. C.; Liu, Y. Q.; Xu, X. Y.; Wang, Z. R.

    2016-07-01

    Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.

  5. Subcapsular sinus macrophages promote NK cell accumulation and activation in response to lymph-borne viral particles.

    Garcia, Z; Lemaitre, F; Van Rooijen, N.; Albert, M. L.; Levy, Y; Schwartz, O.; Bousso, P.

    2012-01-01

    Natural killer (NK) cells become activated during viral infection in response to cytokines or to engagement of NK cell activating receptors. However, the identity of cells sensing viral particles and mediating NK cell activation has not been defined. Here, we show that local administration of a modified vaccinia virus Ankara vaccine in mice results in the accumulation of NK cells in the subcapsular area of the draining lymph node and their activation, a process that is strictly dependent on t...

  6. Efficiency of the deposition mode ice nucleation on mineral dust particles

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  7. Evaluation of existence region and formation time of particle accumulation structure (PAS) in half-zone liquid bridge

    Gotoda, M.; Sano, T.; Kaneko, T.; Ueno, I.

    2015-03-01

    We focused on the particle accumulation structure (PAS) produced by the thermocapillary effect in a half-zone liquid bridge. Although models of the formation of the PAS have been previously proposed, they have not been experimentally verified. An assessment of the region in which the PAS exists is very subjective and often dependent on the observer, and this has necessitated the development of an objective and quantitative evaluation method. We therefore conducted a series of experiments to verify the physical model of the particle path lines in a rotating frame of reference using the fundamental frequency of the hydrothermal wave. We evaluated the intensity of the particle accumulation based on a modification of the "accumulation measure" proposed by Kuhlmann and Muldoon (Phys. Rev. E, 2012) to objectively and quantitatively determine the existence region of the SL-1 PAS. The results of the quantitative experiment revealed that the best aspect ratio (ratio of the height to radius) of the liquid bridge for the SL-1 PAS was about 0.64, and that the PAS formation time was nearly the same as the thermal diffusion time under the considered conditions (184 words, within 200 words).

  8. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet

    Chukwuemeka R. Nwokocha

    2014-01-01

    Full Text Available Context and Objectives: Cadmium (Cd toxicity leads to cell and organ damage, we comparatively examined the protection ability of different medicinal plants on Cd liver accumulation following different treatment interventions and modes of administration. Materials and Methods: Rats were fed either 7% w/w Zingiber officinale, 7% w/w Allium Sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow, while Cd (200 ppm was given in drinking water. Additives were administered together with (mode 1, a week after (mode 2 or a week before metal exposure (mode 3 for a period of six weeks. Cd liver was determined using AAS and compared using analysis of variance (ANOVA. Results: All additives significantly (P <0.5 reduced the accumulation of Cd in the liver. After adjusting for time and mode of administration, mean %protection for week 4 was significantly lower by 14.1% (P=0.02 from that for week 2 but the means did not differ with respect to additive used or mode of administration, no statistically significant interaction between modes of administration and either of additives used or time of administration in their respective relationships to percentage protection from Cd. Conclusion: Additives significantly reduced Cd accumulation through a reduction in absorption and enhancement of metal excretion.

  9. Gyro-particle, gyro-reduced-MHD, and hybrid simulation of internal kink modes

    The collision less reconnection process in Tokamaks due to the nonlinear development of m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode is simulated by the gyro-particle code (GYR3D), the gyro-reduced MHD code (GRM3D-2F), and the particle-fluid hybrid code (Hybrid3D). These codes are based on the nonlinear gyrokinetic Vlasov-Poisson-Ampere system and have exact energy invariance. GYR3D is a three-dimensional gyrokinetic magneto-inductive particle code with δf method. GRM3D-2F is a two-field and two-fluid model including the effects of electron inertia and the perturbed electron pressure gradients along the magnetic field. In Hybrid3D, electrons are treated as fluid, while ions are treated as particles. The results of these three codes agreed very well. We believe that the better understanding of the physics associated with the kinetic MHD phenomena in Tokamaks will be achieved by executing simultaneously these codes. (author)

  10. Experimental investigation of the radial structure of energetic particle driven modes

    Horvath, L; Lauber, Ph; Por, G; Gude, A; Igochine, V; Geiger, B; Maraschek, M; Guimarais, L; Nikolaeva, V; Pokol, G I

    2016-01-01

    Alfv\\'en eigenmodes (AEs) and energetic particle modes (EPMs) are often excited by energetic particles (EPs) in tokamak plasmas. One of the main open questions concerning EP driven instabilities is the non-linear evolution of the mode structure. The aim of the present paper is to investigate the properties of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG) discharges. This paper focuses on the changes in the mode structure of BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown that in case of the observed down-chirping BAEs the changes in the radial structure are smaller than the uncertainty of our measurement. This behaviour is most probably the consequence of that BAEs are normal modes, thus their radial structure strongly depends on the background plasma parameters rather than on the EP distribution. In the case of rapidly upward chirping EGAMs the analysis consistently shows shrinkage of...

  11. Optical manipulation of biological particles using LP21 mode in fiber

    We demonstrate the optical manipulation of biological particles using a low-order LP21 fiber mode. The focused four-lobed LP21 mode distribution was theoretically and experimentally found to be effective in optical tweezer applications, including selective cellular pick-up, pairing, grouping or separation, as well as rotation of cell dimers and clusters. Our proposed theoretical model estimates both the translational dragging force and rotational torque in good accordance with experimental data. With a simple all-fiber configuration, and low peak irradiation to target bioparticles, the proposed LP21 ‘optical chuck’ system has great application potential in biological test systems. (paper)

  12. Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith; Boisen, Anja

    By positioning a single gold-particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity was...... achieved by operating the cantilever in the 4th bending mode, thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor....

  13. Simulation study of a new kind of energetic particle driven geodesic acoustic mode

    A new kind of energetic particle driven geodesic acoustic mode (EGAM), which has weak bulk plasma temperature dependence of frequency, has been found in the Large Helical Device (LHD) experiments. In this work, the new kind of EGAM is investigated with a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). It is demonstrated that the new EGAM in the simulation results has weak bulk plasma temperature dependence of frequency, which is in contrast to the traditional EGAM whose frequency is proportional to the square root of bulk plasma temperature. The energetic-particle distribution function is characterized by the slowing down time τs = 10 s and charge exchange time τcx ≈ 1 s, and a Gaussian-type pitch angle distribution is assumed for the energetic ions. The energetic ion inertia term is added into the MHD momentum equation to simulate with energetic particle density comparable to the bulk plasma density. Three conditions are found to be important for the transition from the traditional EGAM to the new EGAM: 1) energetic particle pressure substantially higher than the bulk plasma pressure, 2) charge exchange time (τcx) sufficiently shorter than the slowing down time (τs) to create a bump-on-tail type distribution, and 3) bulk plasma density is low enough. A new resonance condition that EGAM frequency ωEGAM = l/K ωθ is obtained, where l and K are arbitrary integers and ωθ is particle transit frequency in poloidal direction. Most particles resonate with new EGAM at l/K = 3/5, and a few particles resonate at l/K = 2/3 and l/K = 1/2. The counter-going particles contribute more than the co-going particles for resonance, which is consistent with experimental observation in DIII-D. It is found that the new EGAM frequency increases as the central value of the Gaussian pitch angle distribution decreases, where smaller pitch angle variable corresponds to higher parallel velocity and higher transit frequency. This shows that the frequency

  14. Hall effects on anomalous heat, particle and helicity transports through tearing-mode turbulence

    The helicity transport in a current-carrying plasma results in heat and particle transports in the direction opposite to the helicity flux. Tearing-mode turbulence produces helicity flux that is proportional to the gradient of equilibrium parallel current. The helicity flux is a consequence of a fluctuating electric field with a circularly polarized component, which also causes a nonlinear parallel current (primarily an electron flux) and a nonlinear polarization current (primarily an ion flux). Such anomalous heat and particle fluxes are driven by the free-energy associated with the perturbed magnetic field in the tearing-mode turbulence, and are typically directed inward to the plasma. Both fluxes becomes large when the gradient of the equilibrium current is large. 12 refs

  15. Localized accumulation and a shelf-basin gradient of particles in the Chukchi Sea and Canada Basin, western Arctic

    Yamada, Yosuke; Fukuda, Hideki; Uchimiya, Mario; Motegi, Chiaki; Nishino, Shigeto; Kikuchi, Takashi; Nagata, Toshi

    2015-07-01

    Transparent exopolymer particles (TEP), particulate organic carbon (POC), and particles (size range: 5.2-119 μm) as determined by laser in situ scattering and transmissometry (LISST) were measured in the water column from the Chukchi Sea to the Canada Basin in the western Arctic Ocean, during the late summer of 2012. In general, the percentages of TEP-carbon to POC were high (the mean values for the shelf and slope-basin regions were 135.4 ± 58.0% (± standard deviation, n = 36) and 187.6 ± 73.3% (n = 58), respectively), relative to the corresponding values reported for other oceanic regions, suggesting that TEP play an important role in regulating particle dynamics. A hotspot (extremely high concentration) of particles, accompanied by high prokaryote abundance and production, was observed near the seafloor (depth 50 m) of the shelf region. Localized accumulation of particles was also found in the thin layer near the pycnocline (depth 10-30 m) and on the slope. Over a broader spatial scale, particle concentration gradients were identified from the shelf to the basin in the upper water column (TEP are produced in the shelf region and are potentially delivered to the slope-basin region along the pycnocline, which might support productivity and material cycles in the nutrient-depleted basin region of the western Arctic Ocean.

  16. Rapid Frequency Chirps of TAE mode due to Finite Orbit Energetic Particles

    Berk, Herb; Wang, Ge

    2013-10-01

    The tip model for the TAE mode in the large aspect ratio limit, conceived by Rosenbluth et al. in the frequency domain, together with an interaction term in the frequency domain based on a map model, has been extended into the time domain. We present the formal basis for the model, starting with the Lagrangian for the particle wave interaction. We shall discuss the formal nonlinear time domain problem and the procedure that needs to obtain solutions in the adiabatic limit.

  17. High variability of stress accumulation, seismic and aseismic release mode along the Peru-Ecuador subduction zone (Invited)

    Nocquet, J.; Villegas, J. C.; Chlieh, M.; Mothes, P. A.; Rolandone, F.; Jarrín, P.; Cisneros, D.; Vallee, M.

    2013-12-01

    Most geodetic measurements of interseismic strain along subduction zones have led to the view of coupled asperities of variable size usually separated by narrower zones of low coupling. Along the western margin of South America, fast convergence of the oceanic Nazca plate has repeatedly produced M>8 earthquakes and three of the ten largest megathrust earthquakes since 1900. Contrasting with this behavior, the segment comprised between central Peru and central Ecuador has not experienced any great earthquake for at least five centuries. New GPS measurements in Peru and Ecuador first highlight that a along a ~1000km long segment, convergence is predominantly accommodated by aseismic creep along the plate interface, with possible coupling occurring at shallow depth, close to the trench. This area is bounded by highly locked segments, which produced M>8.5 earthquakes in central Peru and northern Ecuador. While the observed low interseismic coupling explains the lack of great earthquakes, this area has experienced two earthquakes that share the characteristics of tsunamigenic earthquakes, indicating a correlation between the mode of stress accumulation along the plate interface and its release. Finally, we have observed several episodes of slow slip, sometimes associated with intense, micro to moderate seismicity. These observations suggest a specific behavior for this segment, which contrasts with the behavior of the neighboring segments.

  18. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  19. Model-Free Adaptive Fuzzy Sliding Mode Controller Optimized by Particle Swarm for Robot Manipulator

    Amin Jalali

    2013-05-01

    Full Text Available The main purpose of this paper is to design a suitable control scheme that confronts the uncertainties in a robot. Sliding mode controller (SMC is one of the most important and powerful nonlinear robust controllers which has been applied to many non-linear systems. However, this controller has some intrinsic drawbacks, namely, the chattering phenomenon, equivalent dynamic formulation, and sensitivity to the noise. This paper focuses on applying artificial intelligence integrated with the sliding mode control theory. Proposed adaptive fuzzy sliding mode controller optimized by Particle swarm algorithm (AFSMC-PSO is a Mamdani’s error based fuzzy logic controller (FLS with 7 rules integrated with sliding mode framework to provide the adaptation in order to eliminate the high frequency oscillation (chattering and adjust the linear sliding surface slope in presence of many different disturbances and the best coefficients for the sliding surface were found by offline tuning Particle Swarm Optimization (PSO. Utilizing another fuzzy logic controller as an impressive manner to replace it with the equivalent dynamic part is the main goal to make the model free controller which compensate the unknown system dynamics parameters and obtain the desired control performance without exact information about the mathematical formulation of model.

  20. Energetic particle stabilization of ballooning modes in a finite aspect ratio tokamak

    The effect of energetic trapped particles on the stabilization of high toroidal mode number (n→∞) ballooning modes in tokamaks is investigated numerically in the low frequency limit, for a realistic anisotropic equilibrium with a circular cross-section and a moderate aspect ratio of 3. In the case when qm (safety factor at the magnetic axis) is close to unity, energetic ions can double the ballooning first stability beta limit. This enhanced beta value is limited by the drift non-reversal condition used here as a theoretical assumption. In this case, second stability is not achieved because, with an aspect ratio of 3, the second stability limit is either very high or does not exist. However, if qm is increased somewhat above unity, there exists a second stability region on a large fraction of the flux surfaces for moderate beta values, i.e. there is an unstable region between the first and the second stability without energetic particles. It is shown that the energetic trapped particles can partially or completely stabilize this unstable gap between first and second stability. In summary, second stability can be attained by the introduction of energetic particles, in combination with current profile control to increase qm above unity, when the parameters that determine the energetic pressure profile are properly chosen. (author)

  1. Energetic particle stabilization of ballooning modes in a finite-aspect-ratio tokamak

    The effect of energetic trapped particles on the stabilization of high-toroidal-mode-number (n → ∞) ballooning modes in tokamaks is investigated numerically in the low frequency limit, for a realistic anisotropic equilibrium with a circular cross-section and a moderate aspect ratio of 3. In the case when qm (safety factor at the magnetic axis) is close to unity, energetic ions can double the ballooning first stability beta limit. This enhanced beta value is limited by the drift-nonreversal condition used here as a theoretical assumption. In this case, second stability is not achieved because, with an aspect ratio of 3, the second stability limit is either very high or does not exist. However, if qm is increased somewhat above unity, there exists a second stability region on a large fraction of the flux surfaces for moderate beta values; i.e., there is an unstable region between first and second stability without energetic particles. It is shown that the energetic trapped particles can partially or completely stabilize this unstable gap between first and second stability. In summary, second stability can be attained by the introduction of energetic particles, in combination with current profile control to increase qm above unity, when the parameters that determine the energetic pressure profile are properly chosen. (author)

  2. The Appearance of a Radio-Pulsar Magnetosphere from a Vacuum with a Strong Magnetic Field. Accumulation of Particles

    Istomin, Ya N; 10.1134/S1063772910040074

    2010-01-01

    The accumulation of electrons and positrons in the vacuum magnetosphere of a neutron star with a surface magnetic field of B~10^12 G is considered. It is shown that particles created in the magnetosphere or falling into the magnetosphere from outside undergo ultra-relativistic oscillations with a frequency of 10-100 MHz. These oscillations decay due to energy losses to curvature radiation and bremsstrahlung, with their frequencies reaching 1-10 GHz. Simultaneously, the particles undergo regular motion along the force-free surface along closed trajectories. This leads to the gradual accumulation of particles at the force-free surface and the formation of a fully charge-separated plasma layer with a density of the order of the Goldreich-Julian density. The presence of a constant source of electron-positron pairs in the magnetosphere due to the absorption of energetic cosmic gamma-rays leads to the growth of this layer, bringing about a rapid filling of the pulsar magnetosphere with electron-positron plasma if t...

  3. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  4. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  5. Accumulation of heavy particles in N-vortex flow on a disk

    IJzermans, R.H.A.; Hagmeijer, R.

    2006-01-01

    The motion of heavy particles in potential vortex flows on the unit disk is investigated theoretically and numerically. Configurations with one vortex and with two vortices are considered. In both cases, each vortex follows a regular path on the disk. In the one-vortex case, it is shown that small,

  6. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms. PMID:24907810

  7. Efficiency of the deposition mode ice nucleation on mineral dust particles

    O. Möhler

    2006-02-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 K and 223 K using the aerosol chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 µm and 0.5 µm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio Si<1.15 and temperatures of 223 K and 209 K, respectively. No significant change of the ice nucleation efficiency was found in up to three subsequent cycles of ice activation and evaporation with the same ATD aerosol. The desert dust samples SD2 and AD1 showed a significantly lower fraction of active deposition nuclei, about 0.25 at 223 K and Si<1.35. For all samples the ice activated aerosol fraction could be approximated by an exponential equation as function of Si. This formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  8. Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles.

    Xu, Heng; Wang, Cuiping; Yan, Kun; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-09-01

    Syngas based co-digestion is not only more economically attractive than separate syngas methanation but also able to upgrade biogas and increase overall CH4 amount simultaneously. However, high H2 concentration in the syngas could inhibit syntrophic degradation of propionate, resulting in propionate accumulation and even failure of the co-digestion system. In an attempt to reduce propionate accumulation via enhancing both H2 interspecies transfer (HIT) and direct interspecies electron transfer (DIET) pathways, layered granule-based biofilms induced by conductive carbon felt particles (CCFP) was employed. The results showed that propionate accumulation was effectively reduced with influent COD load up to 7gL(-1)d(-1). Two types of granule-based biofilms, namely biofilm adhered to CCFP (B-CCFP) and granules formed by self-immobilization (B-SI) were formed in the reactor. Clostridium, Syntrophobacter, Methanospirillum were possibly involved in HIT and Clostridium, Geobacter, Anaerolineaceae, Methanosaeta in DIET, both of which might be responsible for the high-rate propionate degradation. PMID:27289059

  9. Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex.

    Kuismanen, E; Hedman, K; Saraste, J; Pettersson, R F

    1982-01-01

    We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of...

  10. Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes.

  11. Structure of wave-particle resonances and Alfvén mode saturation

    Wang, X.; Lauber, Ph. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Briguglio, S.; Fusco, V. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Zonca, F. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University Hangzhou 310027 (China)

    2016-01-15

    The dynamics of beta-induced Alfvén eigenmodes driven by anisotropic co-passing or counter-passing fast ions, in a low-shear magnetic equilibrium, is investigated by self-consistent hybrid MHD-particle simulations with the XHMGC code. Though the modes exhibit similar structure and frequency in both cases and the linear growth rate is 10% larger for counter-passing ions than for co-passing ions, the nonlinear saturation amplitude is much larger in co-passing case. Moreover, different scalings for the saturation amplitude with increasing growth rates are observed in the two cases. It is shown that these differences are caused by the different radial dependence of resonance frequencies of co-passing and counter-passing fast ions: flat in the former case, steep in the latter case, so that the resonance width is, respectively, larger (in the former case) or smaller (in the latter case) than the mode width.

  12. A quasi-stationary approach to particle concentration and distribution in gear oil for wear mode estimation

    Henneberg, Morten; Eriksen, René Lynge; Jørgensen, Bent; Fich, Jens

    Suspension of wear particles in gear oil with respect to the diversity of particle size combined with filter mechanisms has been analyzed. Coupling of wear modes from tribology is combined with particle size bins to show how a mathematical model can be expanded to include information gained from...... sensors that can segment particles into size bins. In order to establish boundary conditions for the model based on real data, a filtration test is included. Finally, the model is fitted to data from a gear in operation and differences between real data and the model are discussed. The findings show that...... particles less than 14 μm dominate the wear. Hence, it is concluded that abrasion dominate the wear, for the gear in operation, and it is concluded to be in quasi-stationary mode. The distribution of the particles is observed in conjunction with the particle quantity to determine a basis for normal...

  13. Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators

    Di Gennaro, E.; Savo, S.; Andreone, A.; Galdi, V.; Castaldi, G.; Pierro, V.; Masullo, M. Rosaria

    2008-10-01

    In this letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via two-dimensional and three-dimensional full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  14. Mode Confinement in Photonic Quasi-Crystal Point-Defect Cavities for Particle Accelerators

    Di Gennaro, E; Andreone, A; Galdi, V; Castaldi, G; Pierro, V; Masullo, M R

    2008-01-01

    In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via 2-D and 3-D full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that, for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  15. Wave-particle dualism and complementarity unraveled by a different mode.

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P

    2012-06-12

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr's principle of complementarity when applied to the paradigm of wave-particle dualism--that is, to Young's double-slit experiment--implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM(01) pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561

  16. High-lying collective and single-particle modes via heavy ions at intermediate energies

    High-lying excited states, embedded in a substantial continuum are observed in a variety of nuclear reactions induced by intermediate energy hadronic probes. The study of inelastic scattering induced by heavy ion beams at the intermediate energy shows a strong excitation of the low multiple giant resonances. At higher excitation energies (30 to 80 MeV) new structures are present for all the colliding systems. In the stripping channel high-spin single-particle states are selectively populated both at low (0.3 MeV) and intermediate excitation energies (10-20 MeV). The recent empirical data on these high-lying excited structures and on the underlying continuum are presented. The interpretation in terms of new high-lying collective or single-particle modes and/or projectile-like excitations is discussed. (author). 22 refs., 10 figs

  17. An image-intensifier system for the study of rare decay modes of elementary particles

    Filamentary chamber-image intensifier systems have been developed which yield pictures of charged-particle tracks which are limited in spatial resolution only by the unit filament size, and which exhibit a time-resolution of about one microsecond. This device, used in conjunction with auxiliary particle counters, is well suited to the study of rare decay modes of elementary particles such as, for example, π- and K-mesons. The method employs a filamentary chamber divided into two or more regions. In one of the regions the incident mesons stop and subsequently decay. The other regions are traversed by the decay products. One face of the chamber is viewed by the image-intensifier system afld the opposite face is viewed by photomultiplier tubes, one for each of the separate chamber regions. It is required to trigger the image intensifier systems that a counter telescope, including one of the chamber photomultipliers, indicates that a meson has stopped in the proper region, and also that appropriate delayed coincidences obtain between that stopping event and pulses from the other chamber photomultipliers which indicate the passage of a decay particle. Under these conditions the event is photographed and, in addition, the time sequence of the several counter outputs is available for recording. The system is capable of utilizing a large-incident meson current and accepts decay-product particles over a large solid angle. The counter selection procedure limits the number of photographs necessary to observe a given decay mode and facilitates the extraction of useful data from the photographs that are taken. Such a system, with a two-section chamber 2 in x 2 in, has recently been employed in a measurement of the lifetime of the π+ meson and in a preliminary attempt to observe directly the decay mode, π+ → μ+ + ν + γ. The lifetime measurement was intended mainly to investigate sources of background in this technique in preparation for later experiments, including

  18. Duality of diffusion dynamics in particle motion in soft-mode turbulence

    Suzuki, Masaru; Sueto, Hiroshi; Hosokawa, Yusaku; Muramoto, Naoyuki; Narumi, Takayuki; Hidaka, Yoshiki; Kai, Shoichi

    2013-10-01

    Nonthermal Brownian motion is investigated experimentally by injecting a particle into soft-mode turbulence (SMT), in the electroconvection of a nematic liquid crystal. It is clarified that the particle motion can be classified into two phases: fast motion, where particles move with the local convective flow, and slow motion, where they are carried by global slow pattern dynamics. We propose a simplified model to clarify the mechanism of the short-time and asymptotic behavior of diffusion. In our model, the correlation time is estimated as a function of a control parameter ɛ. The scaling of the SMT pattern correlation time, τd˜ɛ-1, is estimated from the particle dynamics, which is consistent with a previous report observed from the Eulerian viewpoint. The origin of the non-Gaussian distribution of the displacement in the short-time regime is also discussed and an analytical curve is introduced that quantitatively agrees with the experimental data. Our results clearly illustrate the characteristics of diffusive motion in SMT, which are considerably different from the conventional Brownian motion.

  19. Profiling of fine- and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code

    M. R. Perrone

    2014-08-01

    Full Text Available The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC to retrieve the vertical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork sun/sky photometer measurements is investigated. The used lidar signals are at 355, 532 and 1064 nm. Aerosol extinction coefficient (αL, lidar ratio (LRL, and Ångstrom exponent (ÅL profiles from LIRIC are compared with the corresponding profiles (α, LR, and Å retrieved from a Constrained Iterative Inversion (CII procedure to investigate the LIRIC retrieval ability. Then, an aerosol classification framework which relies on the use of a graphical framework and on the combined analysis of the Ångstrom exponent (at the 355 and 1064 nm wavelength pair, Å(355, 1064 and its spectral curvature (ΔÅ = Å(355, 532–Å(532, 1064 is used to investigate the ability of LIRIC to retrieve vertical profiles of fine and coarse-mode particles. The Å-ΔÅ aerosol classification framework allows estimating the dependence on altitude of the aerosol fine modal radius and of the fine mode contribution to the whole aerosol optical thickness, as discussed in Perrone et al. (2014. The application of LIRIC to three different aerosol scenarios dealing with aerosol properties dependent on altitude has revealed that the differences between αL and α vary with the altitude and on average increase with the decrease of the lidar signal wavelength. It has also been found that the differences between ÅL and corresponding Å values vary with the altitude and the wavelength pair. The sensitivity of Ångstrom exponents to the aerosol size distribution which vary with the wavelength pair was responsible for these last results. The aerosol classification framework has revealed that

  20. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    Liu, Yun [ORNL

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  1. Energetic Particle Physics in FAST H-Mode Scenario with Combined NNBI and ICRH

    Full text: In the Fusion Advanced Studies Torus (FAST), the extreme H-mode scenario requires 40 MW of external heating, mainly supplied by NNBI (10 MW) and ICRH (30 MW). The extreme H-mode is characterized by high magnetic field B =8, 5 T and high plasma current Ip = 8 MA for a discharge time duration of about 12s, with peak density 5 x 1020 m-3 and temperature 9 keV at the plasma centre. Strongly supra-thermal fast ions, such as those expected to be generated in FAST by NNBI and minority ICRH, both in the MeV range of energy, are characterized by small orbit to machine size ratios and predominantly transfer their energy to plasma electrons via collisional slowing down. This energetic ion population can excite meso-scale fluctuations with the same characteristics of those expected in reactor relevant conditions and, for this reason, FAST can address a number of important burning plasma physics issues, such as radial transport of energetic ions due to collective mode excitations, coupling of meso-scale fluctuations with micro-turbulence, etc. Moreover, the combination of ICRH+NNBI in FAST adds great flexibility in the experimental study of these phenomena, for it allows the generation of fast ion populations with different velocity space anisotropy and radial profile; especially power density radial profiles regulate fluctuation intensity profiles and, ultimately, transport processes of both thermal and supra-thermal plasma components. Numerical simulation and modeling are based on the use of various transport codes that are iteratively coupled with a bi-dimensional full wave-quasi-linear solver for ICRH, which also includes the solution of the NNBI-plasma Fokker-Planck equation. Numerical results are obtained self-consistently by the transport code CRONOS with combined ICRH/NNBI heating in the FAST plasma, and ICRH in the frequency range 80 - 85MHz, on 1 - 3% He3 minority concentration in D plasma and 1 MeV energy Deuterium N-beam. The energetic particle

  2. Silica uptake by Spartina – evidence of multiple modes of accumulation from salt marshes around the world

    Joanna C Carey; Fulweiler, Robinson W.

    2014-01-01

    Silicon (Si) plays a critical role in plant functional ecology, protecting plants from multiple environmental stressors. While all terrestrial plants contain some Si, wetland grasses are frequently found to have the highest concentrations, although the mechanisms driving Si accumulation in wetland grasses remain in large part uncertain. For example, active Si accumulation is often assumed to be responsible for elevated Si concentrations found in wetland grasses. However, life stage and differ...

  3. Study of the magnetic compressional mode in a hot particle plasma

    The integral equation for the magnetic compressional mode, accounting for geometrical effects along the field line and using the eikonal approximation across the field line, is solved numerically for the eigenvalues and eigenfunctions. These results reproduce the analytic estimates when there is strong drift reversal. For typical EBT-S parameters, instability is observed for all pressure scale lengths just below those needed for drift reversal, i.e., vertical bar Rpar. delta(P/sub c/ + P/sub perpendicular h/)/2B2par. deltar vertical bar > 1 (where P is the particle pressure, c and h refer to cold and hot components, B is the midplane magnetic field, and R is the midplane radius of curvature). If larger core densities are present, a wave-particle resonance arises when the particle drifts are not reversed, causing instability up to much larger pressure scale lengths. Stability for all values of the ratio of hot electron density to core density is obtained with vertical bar Rpar. deltaP/sub c//B2par. deltar vertical bar > 1 + P/sub parallel h//P/sub perpendicular h/

  4. Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas

    Wang, Lingfeng, E-mail: wanglf@swip.ac.cn; He, Zhixiong; He, Hongda; Shen, Y. [Southwestern Institute of Physics, Chengdu 610041 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-07-15

    Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low β (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming (kρ{sub i})∼q{sup −3}∼β≪1, where q, k, and ρ{sub i} are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical β{sub h}/β{sub i} values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle λ{sub 0}B<0.4 in certain parameter regions. Finite β effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio T{sub e}/T{sub i}. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio T{sub h}/T{sub i} region. The harmonic features of the EKEGAMs are discussed as well.

  5. Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation

    Neuenschwander, B.; Kramer, Th.; Lauer, B.; Jaeggi, B.

    2015-03-01

    The burst mode for ps and fs pulses for steel and copper is investigated. It is found that the reduction of the energy in a single pulse (in the burst) represents the main factor for the often reported gain in the removal rate using the burst mode e.g. for steel no investigated burst sequence lead to a higher removal rate compared to single pulses at higher repetition rate. But for copper a situation was found where the burst mode leads to a real increase of the removal rate in the range of 20%. Further the burst mode offers the possibility to generate slightly melted flat surfaces with good optical properties in the case of steel. Temperature simulations indicate that the surface state during the burst mode could be responsible for the melting effect or the formation of cavities in clusters which reduces the surface quality.

  6. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  7. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  8. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  9. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  10. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry

  11. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    Bao, J., E-mail: baojian@pku.edu.cn [Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kuley, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2015-12-10

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.

  12. Is the first excited state of the $\\alpha$-particle a breathing mode?

    Bacca, Sonia; Leidemann, Winfried; Orlandini, Giuseppina

    2014-01-01

    The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy distribution itself at different momentum transfers q. Realistic nuclear forces of chiral and phenomenological nature are employed. Various indications for a collective breathing mode are found: i) the specific shape of the transition density, ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q and iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of the alpha-particle values between 20 and 30 MeV are found.

  13. Global Theories of Geodesic Acoustic Modes: Excitation by Energetic Particles and Drift Wave Turbulences

    Full text: Excitation of Geodesic Acoustic Modes (GAMs) by both energetic particles (EPs) and drift wave (DW) turbulences taking into account plasma nonuniformities are investigated in this work. The global radial mode structures of EP induced GAM (EGAM) are systematically studied and their properties are found to depend on the nonuniformities of both the GAM continuous spectrum and EP radial profile. For a radially broad EP drive, the eigenmode equation valid for arbitrary EP drift orbit width is derived, and then solved using a Fourier transformation technique. The excited EGAM is shown to strongly couple to the GAM continuous spectrum; resulting in a finite drive threshold in EP density. The cross-scale couplings between micro-, meso- and macro-scales, discussed in this work, are mediated by the EP dynamics and have many interesting similarities with complex behaviors, expected in burning plasmas of fusion interest. The excitation of GAM by DW turbulence accounting for various kinetic dispersiveness and nonuniformities is also investigated, with the paradigm of three-wave resonant parametric decay instability. Considering the scale length of linear DW eigenmode envelope is much smaller than that of particle diamagnetic drift frequency L*, in the linear growth phase, the parametric instability is convective for typical tokamak parameters, when the finite group velocities of GAM and DW sideband are taken into account. This is a case of less practical interest. However, if we look at longer time scales, and finite L* effects are taken into account, the convectively amplified GAM-DW wave-packet pair is reflected at the DW linear turning points, resulting in a quasi-exponentially growing absolute instability. DW turbulence spreading with the excitation of GAM is also investigated, with emphasis on quantitative understanding of the dispersiveness associated with kinetic GAM. (author)

  14. One nucleon transfer reactions induced by heavy ions: single particles states and collective modes

    In one nucleon transfer reactions induced by heavy ion beams, broad and very prominent structures are observed above 10 MeV excitation energy. The aim of this work is to try to understand these structures and to distinguish between interpretations in terms of the excitation of single particles states or collective modes such as giant resonances. We studied one nucleon transfer reactions on different targets 207Pb, 209Bi, 59Co, 63Cu, 58Ni, 120Sn) with beams of 20Ne at 48 MeV/A and of 36Ar at 42 MeV/A, detecting reaction products with a magnetic spectrometer, in order to verify the presence of those structures and to measure them in broad range of reactions. The different experimental results show that these bumps cannot be attributed to low multipolarity giant resonances (L=1 or 2). These results have been compared with two very different theoretical approaches. The first one uses a reaction model in order to evaluate the cross section of the different processes that can contribute to the transfer spectra. The second one is based on a microscopic description of the excited states in the random phase approximation (RPA), followed by a cross section calculation in the distorted wave Born approximation (DWBA). In the framework of these models, it appears that the observed structures are dominated by the excitation of high spin single particle states. Nevertheless, a small part of the cross section can be attributed to collective excitations of high multipolarity

  15. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    Reid, J S; B. Brooks; Crahan, K. K.; De Leeuw, G.; E. A. Reid; Anderson, F.D.; D. A. Hegg; T. F. Eck; O'Neill, N.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at the subtropical marine Pacific site. Here we examine coarse mode particle size distributions. Similar to what has been shown for airborne dust, optical particle counters such as the Forward Scatte...

  16. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  17. Recrystallization of bulk and plasma-coated tungsten with accumulated thermal energy relevant to Type-I ELM in ITER H-mode operation

    Kim, Hyun-Su, E-mail: khs0722@snu.ac.kr; Lim, Sun-Taek; Jin, Younggil; Lee, Jin Young; Song, Jae-Min; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2015-08-15

    The recrystallization of bulk tungsten is investigated under various thermal loads that are relevant to the accumulation energy during Type-I ELM in ITER H-mode operation. A thermal plasma torch is used to examine only the thermal load effect on the material; therefore, the charge and atomic effects are ignored. In this condition, recrystallization is observed in bulk W with a surface temperature above 1700 °C. The effect becomes severe with a finite recrystallization thickness near the surface, which introduces vertical cracking along grain boundaries with increasing thermal load. However, plasma-sprayed tungsten (PS-W) is not crystallized because neighboring lamellas merge, destroying their interlayer and producing no vertical cracks. This is attributed to an annealing effect in PS-W. Therefore, these results suggest that a multilayer W structure is advantageous in the fabrication of W, especially for long pulse operation in a future fusion reactor.

  18. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonli...

  19. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    Reid, Jeffrey S.; Brooks, Barbara; Crahan, Katie K.; Hegg, Dean A.; Eck, Thomas F.; O'Neill, Norm; de Leeuw, Gerrit; Reid, Elizabeth A.; Anderson, Kenneth D.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at the subtropical marine Pacific site. Here we examine coarse mode particle size distributions. Similar to what has been shown for airborne dust, optical particle counters such as the Forward Scattering Spectrometer Probe (FSSP), Classical Scattering Aerosol Spectrometer Probe (CSASP) and the Cloud Aerosol Spectrometer (CAS) within the Cloud Aerosol and Precipitation Spectrometer (CAPS) instrument systematically overestimate particle size, and consequently volume, for sea salt particles. Ground-based aerodynamic particle sizers (APS) and AERONET inversions yield much more reasonable results. A wing pod mounted APS gave mixed results and may not be appropriate for marine boundary layer studies. Relating our findings to previous studies does much to explain the bulk of the differences in the literature and leads us to conclude that the largest uncertainty facing flux and airborne cloud/aerosol interaction studies is likely due to the instrumentation itself. To our knowledge, there does not exist an in situ aircraft system that adequately measures the ambient volume distribution of coarse mode sea salt particles. Most empirically based sea salt flux parameterizations can trace their heritage to a clearly biased measurement technique. The current "state of the art" in this field prevents any true form of clear sky radiative "closure" for clean marine environments.

  20. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth. PMID:25531028

  1. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    Xiao, Jianyuan; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Yu, Zhi; Xiang, Nong [Theory and Simulation Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  2. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments

  3. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  4. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser

    By directly brushing and scribing an ultra-thin (< 5-μm thick) polymer polyvinyl alcohol (PVA) film on one end-face of a FC/APC connector in erbium-doped fiber laser (EDFL), and then imprinting it with the graphite nano-particles exfoliated from a graphite foil, the intra-cavity graphite nano-particle based saturable absorber can be formed to induce passive mode-locking effect in the EDFL. Such a novel approach greatly suppresses the film-thickness induced laser-beam divergent loss to 3.4%, thus enhancing the intra-cavity circulating power to promote the shortening on mode-locking pulsewidth. The saturable absorber with area coverage ratio of graphite nano-particles is detuned from 70 to 25% to provide the modulation depth enhancing from 11 to 20% and the saturated transmittance from 27 to 60%. Optimizing the coverage ratio reduces the non-saturable loss to 40% and enhances the modulation depth to 21%, such that the sub-ps soliton mode-locking can be initiated to provide a chirped pulsewidth of 482 fs and a linewidth of 2.87 nm

  5. What is a particle-conserving Topological Superfluid? The fate of Majorana modes beyond mean-field theory

    Ortiz, Gerardo; Cobanera, Emilio

    2016-09-01

    We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules. Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson-Gaudin-Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.

  6. Many-particle density-matrix approach to a quantum dot system for the strong electron accumulation case

    Indlekofer, K. M.; LÜth, H.

    2000-01-01

    We consider the system of an electronic quantum dot with a base set of discrete single-particle levels due to quantization effects in an arbitrarily given attractive potential. Intradot electron-electron interaction is described employing the full many-particle Coulomb interaction Hamiltonian in second quantization. Interaction effects arising from a capacitive response of the environment is incorporated within the framework of a classical interaction term. Hereby the environment consists of ...

  7. Energy transmission modes based on Tabu search and particle swarm hybrid optimization algorithm

    LI xiang; CUI Ji-feng; QI Jian-xun; YANG Shang-dong

    2007-01-01

    In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage, To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency Was established, and then, a new Tabu search and power transmission was gained.Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methodsthat are based on regional price differences. freight rates and annual cost witll the proposed method, the result indicates that the economic efficiency of the energy transfer Can be enhanced by 3.14%, 5.78% and 6.01%, respectively.

  8. A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    Vilella, A; Trenado, J; Vila, A; Casanova, R; Vos, M; Garrido, L; Dieguez, A

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.

  9. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.

    2016-06-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.

  10. Wave-Particle Interaction Analyzer for the Pitch Angle Scattering of Electrons by Whistler-mode Chorus Emissions

    Kitahara, M.; Katoh, Y.

    2015-12-01

    Pitch angle scattering of electrons caused by chorus emissions is one of significant wave-particle interactions in the magnetosphere. A number of previous studies treat the pitch angle scattering as a diffusion of distribution function and calculate diffusion coefficients from observed wave spectra. However, in the diffusion model, we cannot evaluate the nonlinearity of the pitch angle scattering, while recent theoretical works and observation results have pointed out the importance of nonlinear effects. A concept of Wave-Particle Interaction Analysis (WPIA) is proposed by Fukuhara et al. (2009). In the frame of the WPIA, we can directly detect wave-particle interactions by calculating the energy exchange between waves and particles. In the present study, in addition to the method to detect the energy exchange, we propose a method to directly detect the pitch angle scattering of resonant particles by calculating G. The G is defined as the accumulation value of a pitch angular component of the Lorentz force acting on each particle. We apply the proposed method to results of the one-dimensional electron hybrid simulation (Katoh and Omura, 2007a, b). By using the wave and particle data obtained at fixed points assumed in the simulation system, we conduct the pseudo-observation in the simulation. In the result of the analysis, we obtain significant values of G for electrons in the kinetic energy and pitch angle ranges satisfying the cyclotron resonance condition. We compare the result of the analysis of G with the temporal variation of both the pitch angle distributions and the wave spectra. While the pitch angle distribution varies by a few percent through interactions, we obtain the statistically significant G. Furthermore, we compare the G with diffusion coefficient D. While the D showed the broadband diffusive scattering, the G values indicated the narrowband strong scattering. We note that in deriving Fokker-Planck equation and diffusion coefficient D, we use the

  11. Nonlinear force dependence on optically bound arrays of micro-particles trapped in the evanescent fields of fundamental and higher order microfibre modes

    Maimaiti, Aili; Truong, Viet Giang; Ritsch, Helmut; Chormaic, Sile Nic

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 {\\mu}m polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles, which can be well modelled by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data an...

  12. Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode

    In this work, the effect of particle shape (flakes) on the magnetorheological (MR) properties of an iron based MR fluid, constituted of two different volume fractions of particles dispersed in a liquid carrier, is studied. To compare the MR effect, spherical iron carbonyl particle based MR fluid is studied. In both MR fluids, linear viscoelastic behavior has been extensively investigated using small amplitude oscillatory analysis and magnetic sweep tests, in the presence and absence of a magnetic field (H). The amplitude sweep tests reveal that flake-based MR fluid shows a higher storage modulus compared to sphere-based MR fluid and saturates at a lower magnetic field strength. The variation of storage modulus with magnetic field strength shows an Hn dependence, where n varies from 2.2 to 2.4 for 20% volume fraction while it varies from 1.6 to 2 for a dilute sample. In the case of sphere-based MR fluid, at 20% volume fraction the variation of storage modulus is nearly linear with the magnetic field at low strain amplitude, and with increasing strain amplitude shows H2 dependence. At lower volume fraction in both cases, the loss modulus increases linearly with the magnetic field strength. The observed enhancement in the MR effect in the flake-based MR fluid is likely due to the stronger particle–particle interaction which results in higher friction between the particles. The sedimentation rate decreases by nearly 50% when flakes are used. The study reveals that one can use the irregular shaped particles for MR applications at low fields (∼80 kA m−1). (paper)

  13. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    Battaglia, D. J. [PPPL; Boedo, J. A. [University of California San Diego; Burrell, K. H. [General Atomics; Chang, C. S. [PPPL; Canik, J. M. [ORNL; deGrassie, J. S. [General Atomics; Gerhardt, S. P. [PPPL; Grierson, B. A. [General Atomics; Groebner, R. J. [General Atomics; Maingi, Rajesh [PPPL; Smith, S. P. [General Atomics

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  14. Wave-particle dualism and complementarity unraveled by a different mode

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.

    2012-01-01

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spo...

  15. Particle-area dependence of mineral dust in the immersion mode: investigations with freely suspended drops in an acoustic levitator

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-05-01

    The heterogeneous freezing temperatures of supercooled drops were measured by using an acoustic levitator. This technique allows to freely suspending single drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. Heterogeneous nucleation caused by several mineral dust particles (montmorillonite, two types of illite) was investigated in the immersion mode. Drops of 1 \\unit{mm} in radius were monitored by a video camera during cooling down to -28 °C to simulate the tropospheric temperature range. The surface temperature of the drops was remotely determined with an infra-red thermometer so that the onset of freezing was indicated. For comparisons, measurements with one particle type were additionally performed in the Mainz vertical wind tunnel with drops of 340 \\unit{{μ}m} radius freely suspended. The data were interpreted regarding the particle surfaces immersed in the drops. Immersion freezing was observed in a temperature range between -13 and -26 °C in dependence of particle type and surface area per drop. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model.

  16. Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber

    Lee, Junsu; Park, June; Koo, Joonhoi; Jhon, Young Min; Lee, Ju Han

    2016-03-01

    We investigated the feasibility of using a WS2-deposited side-polished fiber as a harmonic mode-locker to produce a femtosecond fiber laser with a frequency of 1.51 GHz. Our work focuses on using a side-polished fiber platform with non-uniform WS2 particles prepared through liquid phase exfoliation method without centrifugation. Femtosecond optical pulses were generated from an all-fiberized erbium-doped fiber-based ring cavity by increasing the pump power to achieve a tunable pulse repetition rate from 14.57 MHz to 1.51 GHz (104th harmonic). The characteristics of the output pulse were systematically investigated to analyze the pulse repetition rate, harmonic order, average output power, pulse energy, and pulse width as a function of the pump power. The output performance of the laser was compared to that of a laser based on a microfiber-based WS2 film SA described in (Yan et al 2015 Opt. Mater. Express 5 479-89). This experimental demonstration reaffirms that a side-polished fiber is an effective platform to implement an ultrafast harmonic mode-locker, and non-uniform WS2 particles prepared via simple liquid phase exfoliation method without centrifugation provide a suitable saturable absorption response at 1.55 μm.

  17. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  18. Effects of particle transport on helium ash accumulation and sustained ignition in the ITER [International Tokamak Experimental Reactor] design

    The buildup of helium ash in the proposed ITER experiment has been studied in a series of simulations with the BALDUR transport code. Using radially dependent thermal diffusivities which were scaled from JET values, we studied the role of particle transport coefficients and edge recycling on helium poisoning of ignition. A sustained ignition was obtained when the exhaust of helium from the edge plasma was allowed to exceed 10% of the helium flux into the edge plasma from the core plasma, and the ratio of particle (He ion) to thermal diffusivities, D/χ, was larger than 1/4. The simulations included the effects of sawtooth oscillations, radiative as well as conductive energy loss channels, and density profile variations. 29 refs., 11 figs

  19. Investigation of interplay of single particle and collective modes of excitation in sd shell nuclei

    Nuclei in the neighborhood of doubly closed 40Ca usually exhibit characteristics of single particle excitations at low energies. However, several nuclei viz., 40Ca and 36Ar in this mass region have also revealed deformed states (even superdeformation) at relatively higher excitation energies. The observed Superdeformed (SD) bands in these α-conjugate nuclei have been explained using complementary descriptions in terms of particle-hole excitations in the shell model, and α-clustering configurations within various cluster models. In 36Ar, 40Ca, the average deformation (β2) of the SD bands generated with (4p-4h) and (8p-8h) excitations in the pf (N=3) shell, are 0.45 and 0.59, respectively. This is similar to the observation in heavier nuclei where the occupation numbers of high-N orbital have been found to characterise SD bands

  20. Multiobjective Design of Turbo Injection Mode for Axial Flux Motor in Plastic Injection Molding Machine by Particle Swarm Optimization

    Jian-Long Kuo

    2015-01-01

    Full Text Available This paper proposes a turbo injection mode (TIM for an axial flux motor to apply onto injection molding machine. Since the injection molding machine requires different speed and force parameters setting when finishing a complete injection process. The interleaved winding structure in the motor provides two different injection levels to provide enough injection forces. Two wye-wye windings are designed to switch two control modes conveniently. Wye-wye configuration is used to switch two force levels for the motor. When only one set of wye-winding is energized, field weakening function is achieved. Both of the torque and speed increase under field weakening operation. To achieve two control objectives for torque and speed of the motor, fuzzy based multiple performance characteristics index (MPCI with particle swarm optimization (PSO is used to find out the multiobjective optimal design solution. Both of the torque and speed are expected to be maximal at the same time. Three control factors are selected as studied factors: winding diameter, winding type, and air-gap. Experimental results show that both of the torque and speed increase under the optimal condition. This will provide enough large torque and speed to perform the turbo injection mode in injection process for the injection molding machine.

  1. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    Väkevä, M.; Kulmala, M.; F. Stratmann; Hämeri, K.

    2001-01-01

    An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA) has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in w...

  2. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    Väkevä, M.; Kulmala, M.; F. Stratmann; Hämeri, K.

    2002-01-01

    An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA) has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest...

  3. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 μg m−3, respectively, and particle number concentrations (PNC) were 1.1 × 104, 1.0 × 104 and 2.2 × 104 cm−3. Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. - Highlights: • The highest PNC and PM2.5 occurred around noon and late rush hours, respectively. • Higher PM2.5 and PNC, but lower PAHs and BaP TEQ were found in Beijing subway. • Traffic congestion, roadside cooking, and construction evidently enhanced roadway PM. • Ventilation and air-conditioning system impact PM level in bus and subway cabins. - Higher PMC and PNC, but lower particulate PAHs and BaP TEQ were found in Beijing subway. PNC and PMC in on-roadway modes were peaked around noon and late rush hours, respectively

  4. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI.

    Lütz-Meindl, Ursula; Lütz, Cornelius

    2006-01-01

    Snow algae frequently occur in alpine and polar permanent snow ecosystems and have developed adaptations to their harsh environment, where extreme temperature regimes high irradiation and low nutrient levels prevail. They live in a unique microhabitat, namely the liquid water between snow crystals. The predominant form appears as 'red snow' and in polar environment also 'green snow' frequently occurs. Light microscopy showed that most cells are densely covered by non-biotic particles of so far unknown composition. As snow normally contains very low amounts of nutrients, introduced mainly airborne like dust and precipitation, the inorganic particles at the surface of the snow algae may be important for their survival. By using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), we investigated element distribution in ultrathin sections of snow algae from different polar (Svalbard, 5 m a.s.l., 79 degrees N and maritime Antarctic, King George Island, 10 m a.s.l., 62 degrees S) and alpine habitats (2400-3100 m a.s.l. Tyrol) for the present study. It turned out that the main elements of the cell wall attached particles are Si, Al, Fe and O independently from the origin of the snow algae. Interestingly, the same elements were also found in vacuolar compartments inside the cells. These vacuoles contain electron dense granules or crystals and are frequently found to be connected to the cortical cytoplasm. This finding suggests an uptake mechanism of the respective elements by pinocytosis. Co-transport of toxic aluminium together with silicon may be unavoidable as the inorganic nutrient uptake of the snow algae is limited to the thin water layer between the ice crystals. However, formation of insoluble aluminium silicates may serve as detoxification mechanism. PMID:16376553

  5. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  6. Wave-particle interactions in the equatorial source region of whistler-mode emissions

    Santolík, Ondřej; Gurnett, D. A.; Pickett, J. S.; Grimald, S.; Décréau, P. M. E.; Parrot, M.; Cornilleau-Wehrlin, N.; El-Lemdani Mazouz, F.; Schriver, D.; Meredith, N. P.; Fazakerley, A.

    2010-01-01

    Roč. 115, - (2010), A00F16/1-A00F16/13. ISSN 0148-0227 R&D Projects: GA MŠk(CZ) ME10001; GA ČR GA205/09/1253 Grant ostatní: MŠMT(CZ) MSM0021620860; GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : wave -particle interactions * equatorial region * Cluster spacecraft Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  7. Particle-hole symmetry, many-body localization, and topological edge modes

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    2016-04-01

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: Even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the noninteracting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders.

  8. Tree bark suber-included particles: A long-term accumulation site for elements of atmospheric origin

    Catinon, Mickaël; Ayrault, Sophie; Spadini, Lorenzo; Boudouma, Omar; Asta, Juliette; Tissut, Michel; Ravanel, Patrick

    2011-02-01

    The deposition of atmospheric elements on and into the bark of 4-year-old Fraxinus excelsior L. was studied. The elemental composition of the suber tissue was established through ICP-MS analysis and the presence of solid mineral particles included in this suber was established and described through SEM-EDX. Fractionation of the suber elements mixture was obtained after ashing at 550 °C through successive water (C fraction) and HNO 3 2 M (D fraction) extraction, leading to an insoluble residue mainly composed of the solid mineral particles (E fraction). The triplicated % weight of C, D and E were respectively 34.4 ± 2.7, 64.8 ± 2.7 and 0.8 ± 0.1% of the suber ashes weight. The main component of C was K, of D was Ca. Noticeable amounts of Mg were also observed in D. The E fraction, composed of insoluble particles, was mostly constituted of geogenic products, with elements such as Si, Al, K, Mg, representing primary minerals. E also contained Ca 3(PO 4) 2 and concentrated the main part of Pb and Fe. Moreover, The SEM-EDX analysis evidenced that this fraction also concentrated several types of fly ashes of industrial origin. The study of the distribution between C, D and E was analysed through ICP-MS with respect to their origin. The origin of the elements found in such bark was either geogenic (clay, micas, quartz…), anthropogenic or biogenic (for instance large amounts of solid Ca organic salts having a storage role). As opposed to the E fraction, the C fraction, mainly composed of highly soluble K+ is characteristic of a biological pool of plant origin. In fraction D, the very high amount of Ca++ corresponds to two different origins: biological or acid soluble minerals such as calcite. Furthermore, the D fraction contains the most part of pollutants of anthropic origin such as Zn, Cu, Ni, Co, Cd. As a whole, the fractionation procedure of the suber samples allows to separate elements as a function of their origin but also gives valuable information on

  9. Particle simulation of mode transition in dielectric barrier discharges at different gas pressures

    The dielectric barrier discharges (DBDs) at different gas pressures are investigated by use of two-dimensional particle-in-cell simulation with Monte Carlo collisions included. The pressure-dependent transition from Townsend to filamentary discharge operating in a glow regime has been demonstrated. In the filamentary discharge, four different phases are distinguished: a Townsend phase, a space-charge dominated avalanche phase, a cathode-layer formation, and a decay phase. The evolution of the electric fields, plasma densities, kinetic energy distributions, filament diameters, and breakdown voltages associated with different discharges has been presented. The above simulation results are in good agreement with previous experimental observations, suggesting that such simulation may provide guidance for the control of DBDs. (paper)

  10. Accumulation of anthracotic particles along lymphatics of the human lung: Relevance to 'hot spot' formation after inhalation of poorly soluble radionuclides

    Large lung sections of humans of advanced adult age revealed a markedly nonuniform retention pattern of dense anthracotic particle aggregates, with an impressive accumulation of this material along pulmonary lymphatics, i.e. the deep (peribronchial), septal (perivenous) and superficial (pleural) networks. Conversely, the alveolar parenchyme contained only occasional, small aggregates of macrophages heavily loaded with carbon, representing little more than 2% of this material in lung tissue. Although translocation kinetics of anthracotic particles cannot readily be compared to those of highly toxic α-emitting, poorly soluble radionuclides such as 239PuO2, lymphatic drainage of the latter over the years may also be expected to lead to a concentration of radioactive material along lymph vessels. Since human data on the effects of inhaled 239PuO2 are virtually lacking, the above distribution pattern is apt to help in identifying cells and other tissue components most heavily at risk. Findings are also relevant to the problem of ''hot spot'' formation in vivo and its possible sequelae. The latter are briefly discussed with regard to both stochastic and non-stochastic effects. (orig.)

  11. Inhibition effects of suspended and accumulated particles on adhesion and development of Undaria pinnatifida zoospores; Kaisuichu kendaku ryushi no chinko taiseki ga wakame yusoshi no chakusei to sono seicho ni oyobosu sogai sayo

    Suzuki, Y.; Maruyama, T.; Takami, T. [Miyazaki University, Miyazaki (Japan). Faculty of Engineering; Miura, A. [Aomori University, Aomori (Japan). Faculty of Engineering

    1998-10-10

    In order to reveal effects of suspended and accumulated particles in sea water on the adhesion and development of Undaria pinnatifida zoospores on the substratum, adhesion Inhibition tests were conducted using kaolinite as model particles under the following three cases of natural conditions; Case 1: suspended particles together with zoospores, Case 2: zoospores released after accumulation of particles on the substratum, and Case 3: accumulated particles on zoospores adhered on the substratum. Case 2 provided the most effective inhibition for the adhesion of zoospores, and 50% of effective concentration of particles was 29{mu}g/cm{sup 2}. Zoospores adhered on the substratum were developed to gametophytes even when covered and deposited by kaolinite particles. It was difficult for these gametophytes to develop to sporophytes. Remarkable inhibition was observed in the development process via gametophytes and sporophytes to young sporophytes. The inhibition was observed for crust spores at lower concentration. Higher adhesion performance on the substratum was found for zoospores. 18 refs., 4 figs., 1 tab.

  12. Reflection-mode scattering-type scanning near-field optical microscope using a laser trapped gold colloidal particle as a scattering probe

    We have developed a reflection-mode scattering-type scanning near-field optical microscope using a laser trapped gold colloidal particle as a scattering probe and succeeded in observing the reflectance change of an opaque semiconductor sample with the alternating layers of GaAs and Al0.55Ga0.45As. The spatial resolution became as high as 200 nm when using a 200 nm gold colloidal particle. The results indicated that the resolution obtained in the experiment is in good agreement with the trapped particle size and overcame the diffraction limit (420 nm) of the lens system. [copyright] 2001 American Institute of Physics

  13. Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls

    Groth, M.; Brezinsek, S.; Belo, P.; Corrigan, G.; Harting, D.; Wiesen, S.; Beurskens, M. N. A.; Brix, M.; Clever, M.; Coenen, J. W.; Eich, T.; Flanagan, J.; Giroud, C.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Lowry, C.; Maggi, C. F.; Marsen, S.; Meigs, A. G.; Sergienko, G.; Sieglin, B.; Silva, C.; Sirinelli, A.; Stamp, M. F.; van Rooij, G. J.

    2013-01-01

    Divertor radiation profiles, and power and particle fluxes to the target have been measured in attached \\{JET\\} L-mode plasmas with carbon and beryllium/tungsten wall materials. In the beryllium/tungsten configuration, factors of 2–3 higher power loads and peak temperatures at the low field side tar

  14. Flux and accumulation of sedimentary particles off the continental slope of Pakistan: a comparison of water column and seafloor estimates from the oxygen minimum zone, NE Arabian Sea

    H. Schulz

    2013-07-01

    Full Text Available Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps, 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m−2 d−1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m−2 d−1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction. However, the high winter flux events (HFE by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden

  15. Electrostatic transport in L-mode scrape-off layer plasmas in the Tore Supra tokamak. I. Particle balance

    Particle balance is investigated using a Mach probe at the top of the scrape-off layer of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi etal., Nucl. Fusion 49, 104010 (2009)]. Contributions from both poloidal EXB flows and ionization sources are found to be small. As a result the local parallel flow is a response of the radial flux distribution between the two strike points of open field lines, and the density profile is determined by the field-line-integrated radial flux. By scanning the poloidal position of the strike point on a secondary limiter situated at the outboard midplane, an indirect poloidal mapping of the radial flux distribution is obtained. The radial flux is centered at the outboard midplane and is relatively well described by a Gaussian distribution of half poloidal width of about 50° at the last closed flux surface, decaying to about 30° in the far scrape-off layer. The turbulent radial flux measured locally with a rake probe shows a reasonable agreement with the poloidal mapping obtained by the Mach probe. It is shown than the radial convective velocity decays along radius at the plasma top but should increase with radius at the outboard midplane.

  16. Electrostatic transport in L-mode scrape-off layer plasmas in the Tore Supra tokamak. I. Particle balance

    Fedorczak, N. [Center for Momentum Transport and Flow Organisation, University of California at San Diego, San Diego, California 92093 (United States); Gunn, J. P.; Pascal, J.-Y.; Ghendrih, Ph.; Monier-Garbet, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives, Institut de Recherche pour la Fusion Magnetique Controlee, F-13108 Saint-Paul-Lez-Durance (France); Marandet, Y. [Laboratoire de Physique des Interactions Ioniques et Moleculaires, UMR 6633 Universite de Provence/CNRS, Centre de St. Jerome, F-13397 Marseille, Cedex-20 (France)

    2012-07-15

    Particle balance is investigated using a Mach probe at the top of the scrape-off layer of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi etal., Nucl. Fusion 49, 104010 (2009)]. Contributions from both poloidal EXB flows and ionization sources are found to be small. As a result the local parallel flow is a response of the radial flux distribution between the two strike points of open field lines, and the density profile is determined by the field-line-integrated radial flux. By scanning the poloidal position of the strike point on a secondary limiter situated at the outboard midplane, an indirect poloidal mapping of the radial flux distribution is obtained. The radial flux is centered at the outboard midplane and is relatively well described by a Gaussian distribution of half poloidal width of about 50 Degree-Sign at the last closed flux surface, decaying to about 30 Degree-Sign in the far scrape-off layer. The turbulent radial flux measured locally with a rake probe shows a reasonable agreement with the poloidal mapping obtained by the Mach probe. It is shown than the radial convective velocity decays along radius at the plasma top but should increase with radius at the outboard midplane.

  17. Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation

    When grown under defined conditions Dunaliella bardawil accumulates a high concentration of beta-carotene, which is composed primarily of two isomers, all-trans and 9-cis beta-carotene. The high beta-carotene alga is substantially resistant to photoinhibition of photosynthetic oxygen evolution when compared with low beta-carotene D. bardawil or with Dunaliella salina which is incapable of accumulating beta-carotene. Protection against photoinhibition in the high beta-carotene D. bardawil is very strong when blue light is used as the photoinhibitory agent, intermediate with white light, and nonexistent with red light. These observations suggest that the massively accumulated beta-carotene in D. bardawil protects the alga against damage by high irradiation by screening through absorption of the blue region of the spectrum. Irradiation of D. bardawil by high intensity blue light results in the following temporal sequence of events: photoinhibition of oxygen evolution, photodestruction of 9-cis beta-carotene, photodestruction of all-trans beta-carotene, photodestruction of chlorophyll and cell death

  18. Dynamic mode decomposition of separated flow over a finite blunt plate: time-resolved particle image velocimetry measurements

    Liu, Yingzheng; Zhang, Qingshan

    2015-07-01

    Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady

  19. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  20. Two- and three-particle states in a nonrelativistic four-fermion model in the fine-tuning renormalization scheme: Goldstone mode versus extension theory

    In a nonrelativistic contact four-fermion model we show that simple regularization prescriptions together with a definite fine-tuning of the cut-off parameter dependence of 'bare' quantities give the exact solutions for the two-particle sector and Goldstone modes. Their correspondence with the self-adjoint extension into Pontryagin space is established leading to self-adjoint semi-bounded Hamiltonians in three-particle sectors as well. Renormalized Faddeev equations for the bound states with Fredholm properties are obtained and analyzed. (author)

  1. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas

  2. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  3. Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems

    Jui-Ho Chen; Her-Terng Yau; Weir Hung

    2014-01-01

    This paper proposes a sliding mode extremum seeking control (SMESC) of chaos embedded particle swarm optimization (CEPSO) Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designe...

  4. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.; Wang, Hailong; Yang, Fengyuan; Pelekhov, Denis V.; Hammel, P. Chris [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. We find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.

  5. Simplified models for the nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    An analytical model that is based on purely differential equations of the nonlinear dynamics of two plasma modes driven resonantly by high-energy ions near the instability threshold is presented here. The well-known integro-differential model of Berk and Breizman (BB) extended to the case of two plasma modes is simplified here to a system of two coupled nonlinear differential equations of fifth order. The effects of the Krook, diffusion and dynamical friction (drag) relaxation processes are considered, whereas shifts in frequency and wavenumber between the modes are neglected. In spite of these simplifications the main features of the dynamics of the two plasma modes are retained. The numerical solutions to the model equations show competition between the two modes for survival, oscillations, chaotic regimes and 'blow-up' behavior, similar to the BB model.

  6. Simplified models for the nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    Galant, Grzegorz; Zalesny, Jaroslaw; Berczynski, Pawel; Berczynski, Stefan [West Pomeranian University of Technology, Szczecin (Poland); Lisak, Mietek, E-mail: galant@chalmers.se [Chalmers University of Technology, Goeteborg (Sweden)

    2011-05-01

    An analytical model that is based on purely differential equations of the nonlinear dynamics of two plasma modes driven resonantly by high-energy ions near the instability threshold is presented here. The well-known integro-differential model of Berk and Breizman (BB) extended to the case of two plasma modes is simplified here to a system of two coupled nonlinear differential equations of fifth order. The effects of the Krook, diffusion and dynamical friction (drag) relaxation processes are considered, whereas shifts in frequency and wavenumber between the modes are neglected. In spite of these simplifications the main features of the dynamics of the two plasma modes are retained. The numerical solutions to the model equations show competition between the two modes for survival, oscillations, chaotic regimes and 'blow-up' behavior, similar to the BB model.

  7. Observation of impurity accumulation and concurrent impurity influx in PBX

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Zeff peaks in the center to values of about 5. The central metallic densities can be high, n/sub met//n/sub e/ ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm3, consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft x-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6 x 1010 and 10 x 1010 particles/cm2s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3 x 1012 and 1 x 1012 particles/cm2s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained

  8. Evidence for the Importance of Trapped Particle Resonances for Resistive Wall Mode Stability in High Beta Tokamak Plasmas

    Active measurements of the plasma stability in tokamak plasmas reveal the importance of kinetic resonances for resistive wall mode stability. The rotation dependence of the magnetic plasma response to externally applied quasistatic n=1 magnetic fields clearly shows the signatures of an interaction between the resistive wall mode and the precession and bounce motions of trapped thermal ions, as predicted by a perturbative model of plasma stability including kinetic effects. The identification of the stabilization mechanism is an essential step towards quantitative predictions for the prospects of ''passive'' resistive wall mode stabilization, i.e., without the use of an ''active'' feedback system, in fusion-alpha heated plasmas.

  9. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  10. Seasonal Variations of Number Size Distributions and Mass Concentrations of Atmospheric Particles in Beijing

    YU Jianhua; Benjamin GUINOT; YU Tong; WANG Xin; LIU Wenqing

    2005-01-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities.Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  11. Selective inhibition of jasmonic acid accumulation by a small α, β-unsaturated carbonyl and phenidone reveals different modes of octadecanoid signalling activation in response to insect elicitors and green leaf volatiles in Zea mays

    Engelberth Jurgen

    2011-10-01

    Full Text Available Abstract Background Plants often release a complex blend of volatile organic compounds (VOC in response to insect herbivore damage. Among those blends of VOC green leaf volatiles (GLV have been demonstrated to function as defence signals between plants, thereby providing protection against impending herbivory. A problem in understanding the mode of action of these 6-carbon aldehydes, alcohols, and esters is caused by their structural diversity. Besides different degrees of oxidation, E-2- as well as Z-3-configured isomers are often released. This study was therefore initiated to determine the structural requirement necessary to exhibit biological activity measured as jasmonic acid (JA accumulation in Zea mays seedlings. Findings The structure/function analysis of green leaf volatiles and related compounds revealed that an olefinic bond in position 2 or 3 and a size of 6-8 carbons is required for biological activity in maize. Also, it was found that the presence of an α, β-unsaturated carbonyl is not a prerequisite for activity. However, by treating plants first with volatile acrolein it was discovered that this smallest α, β-unsaturated carbonyl inhibits JA accumulation in response to insect elicitor treatment, but not after GLV exposure. This selective inhibitory effect was also found for phenidone, an inhibitor of lipoxygenases. These findings led to the discovery of a pool of protein-associated 12-oxo-phytodienoic acid, a biosynthetic precursor of JA, which appeared to be rapidly converted into JA upon exposure to GLV. Conclusions The structure/function analysis of GLV demonstrates a high degree of correlation between the compounds released by wounded plants in nature and their biological activity. The selective inhibitory effects of acrolein and phenidone on insect elicitor- and GLV-induced JA accumulation in maize led to the discovery of a pool of protein-associated precursor, which is rapidly activated and transformed to JA after

  12. Analysis of Halley comet dust particle composition from the data of the PUMA device in the regime of zero mode

    Results of measuring element composition of dust particles of the Halley comet by PUMA reflector time-transit mass-spectrometers are presented. The dust element composition is determined by analysis of plasma ionic composition forming during dust particle - target impact. Analysis of obtained material permits to make the following conclusions. The Halley cometary dust particles contain a great amount of light elements. Their presence may be most naturally explained by availability of organic compounds, they may be like compounds detected in carbonaceous chondrites (kerogens, aminoacids). Composition of dust particles in the range of elements from Na to Fe may be explained by availability of silicates and in certain cases of FeS troilite. The main element abundance ratio approximately corresponds to typical for similar formations of solar system. Isotopic ratios of main elements (C, Mg, Si, Cl, Fe) on the average coincide with the ratios of isotope abundances in the solar system

  13. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer

    Pototsky, Andrey; Thiele, Uwe; Stark, Holger

    2016-01-01

    We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. Although the particles predominantly swim normal to the free film surface, their motion also has a component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion)...

  14. Maximum-likelihood estimates of the frequency and other parameters of signals of laser Doppler measuring systems operating in the one-particle-scattering mode

    Maximum-likelihood equations are presented for estimates of the Doppler frequency (speed) and other unknown parameters of signals of laser Doppler anemometers and lidars operating in the one-particle-scattering mode. Shot noise was assumed to be the main interfering factor of the problem. The error correlation matrix was calculated and the Rao - Cramer bounds were determined. The results are confirmed by the computer simulation of the Doppler signal and the numerical solution of the maximum-likelihood equations for the Doppler frequency. The obtained estimate is unbiased, and its dispersion coincides with the Rao-Cramer bound. (laser applications and other topics in quantum electronics)

  15. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  16. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    Reid, J.S.; Brooks, B.; Crahan, K.K.; Leeuw, G. de; Reid, E.A.; Anderson, F.D.; Hegg, D.A.; Eck, T.F.; O'Neill, N.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at

  17. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  18. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle- in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design. (authors)

  19. Ultrafine-Particle Emission Factors as a Function of Vehicle Mode of Operation for LDVs Based on Near-Roadway Monitoring.

    Zhai, Wenjuan; Wen, Dongqi; Xiang, Sheng; Hu, Zhice; Noll, Kenneth E

    2016-01-19

    This paper presents ultrafine-particle (UFP) emission factors (EFs) as a function of vehicle mode of operation (free flow and congestion) using (1) concurrent 5 min measurements of UFPs and carbon monoxide (CO) concentration, wind speed and direction, traffic volume and speed near a roadway that is restricted to light-duty vehicles (LDVs) and (2) inverse dispersion model calculations. Short-term measurements are required to characterize the highly variable and rapidly changing UFP concentration generated by vehicles. Under congestion conditions, the UFP vehicle EFs increased from 0.5 × 10(13) to 2 × 10(13) (particles km(-1) vehicle(-1)) when vehicle flow increased from 5500 to 7500 vehicles/h. For free-flow conditions, the EF is constant at 1.5 × 10(13) (particles km(-1) vehicle(-1)). The analysis is based on the assumption that air-quality models adequately describe the dilution process due to both traffic and atmospheric turbulence. The approach used to verify this assumption was to use an emission factor model to determine EFs for CO and then estimate dilution factors using measured CO concentrations. This procedure eliminates the need to rely only on air quality models to generate dilution factors. The EFs are suitable for fleet emissions under real-world traffic conditions. PMID:26674658

  20. Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-11-01

    The heterogeneous freezing temperatures of supercooled drops were measured using an acoustic levitator. This technique allows one to freely suspend single drops in the air without any wall contact. Heterogeneous nucleation by two types of illite (illite IMt1 and illite NX) and a montmorillonite sample was investigated in the immersion mode. Drops of 1 mm in radius were monitored by a video camera while cooled down to -28 °C to simulate freezing within the tropospheric temperature range. The surface temperature of the drops was contact-free, determined with an infrared thermometer; the onset of freezing was indicated by a sudden increase of the drop surface temperature. For comparison, measurements with one particle type (illite NX) were additionally performed in the Mainz vertical wind tunnel with drops of 340 μm radius freely suspended. Immersion freezing was observed in a temperature range between -13 and -26 °C as a function of particle type and particle surface area immersed in the drops. Isothermal experiments in the wind tunnel indicated that after the cooling stage freezing still proceeds, at least during the investigated time period of 30 s. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model. Although the wind tunnel results do not support the time-independence of the freezing process both models are applicable for comparing the results from the two experimental techniques.

  1. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer.

    Pototsky, Andrey; Thiele, Uwe; Stark, Holger

    2016-05-01

    We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal to the free film surface with only a small component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion). The dynamics of the film height profile is determined by i) the upward pushing force of the swimmers onto the liquid-gas interface, ii) the solutal Marangoni force due to gradients in the swimmer concentration, and iii) the rotational diffusion of the swimmers together with the in-plane active motion. After reviewing and extending the analysis of the linear stability of the uniform state, we analyse the fully nonlinear dynamic equations and show that point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in highly regular (standing, travelling, and modulated waves) and various irregular patterns. PMID:27145959

  2. Particle and energy transport in dedicated ρ*, β and ν* scans in JET ELMy H-modes

    Studying plasma transport in terms of the non-dimensional parameters (ρ*, β, ν*) is a natural way to separate important physical transport processes. (ρ*, the ion Larmor radius normalised to the plasma minor radius, separates Bohm/gyro-Bohm transport; β, the ratio of plasma pressure to magnetic pressure separates electrostatic and electromagnetic transport; and ν*, the ion collision rate scaled to the ion bounce frequency, describes the effect of collisionality. With this in mind, scans have been performed on JET (MarkIIGB-SRP divertor) with one of ρ*, β, ν* varied whilst the other two remained fixed. Both particle transport, using trace tritium (T) injection, and energy transport have been studied. The ρ* behaviour of energy and trace T transport is found to be consistent with the essentially gyro-Bohm like dependence of the scaling used in the ITER design, IPB98(y,2), although trace T confinement in the outer region (x=0.65-0.85) is Bohm like (D/B0∝ρ*-1.90±0.38). The ν* scans showed energy confinement decreasing with increasing ν* (B0·τE∝ν*-0.35±0.04) more strongly than in IPB98(y,2), with trace T confinement having the opposite trend although the results are more ambiguous. The three β scans show a negligible effect of β on energy confinement (B0·τE∝β*0.04, β*-0.03, β*-0.01), in contrast to IPB98(y,2), which is consistent with electrostatic models. Trace T confinement, however, increases with increasing β (D∝Dg-Bohm·β*-0.34±0.08, D∝DBohm·β*-0.55±0.09) which is inconsistent with IPB98(y,2) and electrostatic models, but is shown to be consistent with a model based on stochastic electromagnetic fields. It remains to describe both particle and energy transport with a unified model. Extrapolation of these results to ITER indicates a moderate increase in energy confinement time for βN=1.8 (2%), but a dramatic improvement for higher βN (e.g. 50% higher for βN=3). The impact on ITER of increased particle confinement at high

  3. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  4. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  5. Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems

    Jui-Ho Chen

    2014-03-01

    Full Text Available This paper proposes a sliding mode extremum seeking control (SMESC of chaos embedded particle swarm optimization (CEPSO Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designed by simulation, in comparison with the traditional wind power control method, and the simulated dynamic response obtained by the SMESC algorithm proposed in this paper is better than the traditional hill-climbing search (HCS and extremum seeking control (ESC algorithms in the transient or steady states, validating the advantages and practicability of the method proposed in this paper.

  6. Helicity-based particle-relabeling operator and normal mode expansion of the dissipationless incompressible Hall magnetohydrodynamics.

    Araki, Keisuke

    2015-12-01

    The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are investigated from Lagrangian mechanical viewpoint. The hybrid and magnetic helicities are shown to emerge, respectively, from the application of the particle relabeling symmetry for ion and electron flows to Noether's first theorem, while the constant of motion associated with the theorem is generally given by their arbitrary linear combination. Furthermore, integral path variation associated with the invariant action is expressed by the operation of an integrodifferential operator on the reference path. The eigenfunctions of this operator are double Beltrami flows, i.e., force-free stationary solutions to the equation of motion and provide a family of orthogonal function bases that yields the spectral representation of the equation of motion with a remarkably simple form. Among the double Beltrami flows, considering the influence of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Elsässer variables are found to be the most suitable for avoiding problems with singularities in the standard magnetohydrodynamic limit. PMID:26764837

  7. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of

  8. Accumulation of satellites

    Formation and evolution of circumplanetary satellite swarms are investigated. Characteristic times of various processes are estimated. The characteristic time for the accumulation of the bodies in the swarm was several orders of magnitude shorter than that of the planet, i.e. than the time of the replenishment of the material by the swarm (108 yr). The model of the accumulation of the swarm is constructed taking into account the increase of its mass due to trapping of heliocentrically moving particles and its decrease due to outfall of the inner part of the swarm onto the growing planet. The accumulation of circumplanetary bodies is also considered. The main features of the evolution of the swarm essentially depend on the size distribution of bodies in the swarm and in the zone of the planet and also on the degree of the concentration of the swarm mass toward the planet. If the sum of the exponents of the inverse power laws of these distributions is less than 7, the model of the transparent swarm developed in this paper should be preferred. When this sum is greater than 7, the model of opaque swarm suggested by A. Harris and W.M. Kaula is better. There is predominant trapping of small particles into the swarm due to their more frequent collisions. Optical thickness of the protoplanetary cloud in radial direction is estimated. It is shown that at the final stage of the planetary accumulation, the cloud was semitransparent in the region of terrestrial planets and volatile substances evaporated at collisions could be swept out from the outer parts of the satellite swarm by the solar wind

  9. Variation of particle number concentration and size distributions at the urban environment in Vilnius (Lithuania)

    Ulevicius, Vidmantas; Byčenkienë, Steigvilë; Plauškaitë, Kristina; Dudoitis, Vadimas

    2013-05-01

    This study presents results of research on urban aerosol particles with a focus on the particle size distribution and the aerosol particle number concentration (PNC). The real time measurements of the aerosol PNC in the size range of 9-840 nm were performed at the urban background site using a Condensed Particle Counter and Scanning Mobility Particle Sizer (SMPS). Strong diurnal patterns in aerosol PNC were evident as a direct effect of three sources of the aerosol particles (nucleation, traffic, and residential heating appliances). The traffic exhaust emissions were a major contributor of the pollution observed at the roadside site that was dominated by the nucleation mode particles, while particles formed due to the residential heating appliances and secondary formation processes contributed to the accumulation mode particles and could impact the variation of PNC and its size distribution during the same day.

  10. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) and its implications for health

    Lyu, Y.; Xu, T.; Li, X.; Cheng, T.; Yang, X.; Sun, X.; Chen, J.

    2015-12-01

    In order better to understand the particle-size distribution of particulate PBDEs and their deposition pattern in human respiratory tract, we made an one year campaign 2012-2013 for the measurement of size-resolved aerosol particles at Shanghai urban site. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increased, accumulation mode peak intensity increased while coarse mode peak intensity decreased. This change was the consistent with the variation of PBDEs' sub-cooled vapor pressure. Absorption and adsorption process dominated the distribution of PBDEs among the different size particles. Evaluated deposition flux of Σ13PBDE was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine mode particles contributed major PBDEs in the alveoli region. In associated with the fact that fine particles can penetrate deeper into the respiratory system, fine particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  11. Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health

    Lyu, Yan; Xu, Tingting; Li, Xiang; Cheng, Tiantao; Yang, Xin; Sun, Xiaomin; Chen, Jianmin

    2016-03-01

    In order to better understand the size distribution of particle-associated PBDEs and their deposition pattern in the human respiratory tract, we carried out a 1-year campaign during 2012-2013 for the measurement of size-resolved particles at the urban site of Shanghai. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increases, accumulation-mode peak intensity increased while coarse-mode peak intensity decreased. This change was consistent with the variation of PBDEs' subcooled vapor pressure. Absorption and adsorption processes dominated the distribution of PBDEs among the different size particles. The evaluated deposition flux of Σ13 PBDEs was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine-mode particles contributed major PBDEs in the alveoli region. In association with the fact that fine particles can penetrate deeper into the respiratory system, fine-particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  12. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction

  13. Solids Accumulation Scouting Studies

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  14. Ice slurry accumulation

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  15. Stochastic model of ultrafine particle deposition and clearance in the human respiratory tract

    Deposition and clearance of insoluble ultrafine particles, ranging from 1 to 100 nm, were simulated by stochastic models using Monte Carlo methods. Brownian motion is the dominant mode of deposition in human airways. The additional effects of convective diffusion in bifurcations and axial diffusion (convective mixing) primarily affect particle transport and deposition of particles in the 1-10 nm range. Regarding total deposition, the effects of both convective mechanisms are practically compensated by the concomitant effect of molecular radial diffusion (Brownian motion). During the first hours following inhalation, 1 nm particles are predicted to be cleared much faster than particles in the size range from 10 to 100 nm, with a retained fraction of about 80% after 24 h. For 1-10 nm particles, extracellular transfer to blood is the most likely mode of clearance, while uptake and subsequent accumulation in epithelial cells are assumed to be the preferential mechanisms for 10-100 nm particles. (author)

  16. Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles

    We demonstrate the nanoscale p-type Bi2Te3 powder-based saturable absorber-induced passive mode-locking of the erbium-doped fiber laser (EDFL) with sub-picosecond pulsewidth. Such a nanoscale topological insulator powder is obtained by polishing the bulk p-type Bi2Te3 in a commercial thermoelectric cooler (TE cooler). This is then directly brushed onto the end-face of a single-mode fiber patchcord, to avoid any mis-connecting loss caused by laser beam divergence, which can result in a mode-locked pulsewidth of 436 fs in the self-amplitude modulation mode of a TE cooler. To further shorten the pulse, the soliton compression is operated by well-controlling the group delay dispersion and self-phase modulation, providing the passively mode-locked EDFL with a pulsewidth as short as 403 fs. (letters)

  17. FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS

    Mittal, Tushar; Chiang, Eugene [Department of Earth and Planetary Science, 307 McCone Hall, University of California, Berkeley, CA 94720-4767 (United States)

    2015-01-01

    The brightest transitional protoplanetary disks are often azimuthally asymmetric: their millimeter-wave thermal emission peaks strongly on one side. Dust overdensities can exceed ∼100:1, while gas densities vary by factors less than a few. We propose that these remarkable ALMA observations—which may bear on how planetesimals form—reflect a gravitational global mode in the gas disk. The mode is (1) fast—its pattern speed equals the disk's mean Keplerian frequency; (2) of azimuthal wavenumber m = 1, displacing the host star from the barycenter; and (3) Toomre-stable. We solve for gas streamlines including the indirect stellar potential in the frame rotating with the pattern speed, under the drastic simplification that gas does not feel its own gravity. Near corotation, the gas disk takes the form of a horseshoe-shaped annulus. Dust particles with aerodynamic stopping times much shorter or much longer than the orbital period are dragged by gas toward the horseshoe center. For intermediate stopping times, dust converges toward a ∼45° wide arc on the corotation circle. Particles that do not reach their final accumulation points within disk lifetimes, either because of gas turbulence or long particle drift times, conform to horseshoe-shaped gas streamlines. Our mode is not self-consistent because we neglect gas self-gravity; still, we expect that trends between accumulation location and particle size, similar to those we have found, are generically predicted by fast modes and are potentially observable. Unlike vortices, global modes are not restricted in radial width to the pressure scale height; their large radial and azimuthal extents may better match observations.

  18. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering

    2000-02-01

    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  19. Effects of continuously regenerating diesel particulate filters on regulated emissions and number-size distribution of particles emitted from a diesel engine.

    Liu, Zhihua; Shah, Asad Naeem; Ge, Yunshan; Ding, Yan; Tan, Jianwei; Jiang, Lei; Yu, Linxiao; Zhao, Wei; Wang, Chu; Zeng, Tao

    2011-01-01

    The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investigated in this study. Two CRDPF units (CRDPF-1 and CRDPF-2) with different specifications were separately retrofitted to the engine running with European steady-state cycle (ESC). An electrical low pressure impactor (ELPI) was used for particle number-size distribution measurement and mass estimation. The conversion/reduction rate (R(CR)) of hydrocarbons (HC) and carbon monoxide (CO) across CRDPF-1 was 83% and 96.3%, respectively. Similarly, the R(CR) of HC and CO and across CRDPF-2 was 91.8% and 99.1%, respectively. The number concentration of particles and their concentration peaks; nuclei mode, accumulation mode and total particles; and particle mass were highly reduced with the CRDPF units. The nuclei mode particles at downstream of CRDPF-1 and CRDPF-2 decreased by 99.9% to 100% and 97.8% to 99.8% respectively; and the particle mass reduced by 73% to 92.2% and 35.3% to 72.4%, respectively, depending on the engine conditions. In addition, nuclei mode particles increased with the increasing of engine speed due to the heterogeneous nucleation initiated by the higher exhaust temperature, while accumulation mode particles were higher at higher loads due to the decrease in the air-to-fuel ratio (A/F) at higher loads. PMID:21790053

  20. An angular momentum conserving Affine-Particle-In-Cell method

    Jiang, Chenfanfu; Teran, Joseph

    2016-01-01

    We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than locally constant as in traditional PIC. We show that this representation allows APIC to conserve linear and angular momentum across transfers while also dramatically reducing numerical diffusion usually associated with PIC. Notably, conservation is achieved with lumped mass, as opposed to the more commonly used Fluid Implicit Particle (FLIP) transfers which require a 'full' mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains a filtering property of the original PIC and thus does not accumulate velocity modes on particles as FLIP does. In particular, we demonstrate that APIC does not experience velocity instabilities that are characteristic of FLIP in a number of Material Point Method (MPM) hyperelasticity calculations. Lastly, we demonstrate th...

  1. Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks

    The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways to achieve fusion, the tokamak, based on magnetic confinement, is the most promising one. A gas is heated up to hundreds of millions of degrees and becomes a plasma, which is maintained - or confined - in a toroidal vessel by helical magnetic field lines. Then, deuterium and tritium are injected and fuse to create an α particle and an energetic neutron. In order to have a favorable power balance, the power produced by fusion reactions must exceed the power needed to heat the plasma and the power losses. This can be cast in a very simple expression which stipulates that the product of the density, the temperature and the energy confinement time must exceed some given value. Unfortunately, present-days tokamaks are not able to reach this condition, mostly due to plasma turbulence. The latter phenomenon enhances the heat losses and degrades the energy confinement time, which cannot be predicted by analytical theories such as the so-called neoclassical theory in which the heat losses are caused by Coulomb collisions. Therefore, numerical simulations are being developed to model plasma turbulence, mainly caused by the Ion and Electron Temperature-Gradient and the Trapped-Electron-Mode (TEM) instabilities. The plasma is described by a distribution function which evolves according to the Vlasov equation. The electromagnetic fields created by the particles are self-consistently obtained through Maxwell’s equations. The resulting Vlasov-Maxwell system is greatly simplified by using the gyrokinetic theory, which consists, through an appropriate ordering, of eliminating the fast gyromotion (compared to the typical frequency of instabilities). Nevertheless, it is still extremely difficult to solve this system numerically due to the large range of time and spatial scales to be resolved. In this thesis, the Vlasov

  2. The α particle diagnostics on the base of CO2-laser radiation scattering on thermal fluctuations of ion Berstein mode type

    A new way of α-particle diagnostics enabling by means of laser scattering to determine an average energy and relative concentration of α-particles with high space resolution, is discussed. The technique is based on scattering of CO2-laser radiation on plasma fluctuations of Bernstein ion wave type with frequencies exceeding frequency of low hybrid resonance

  3. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode and/or with gas amplification

    Charpak, Georges; Breuil, P; Peskov, Vladimir

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and cetera. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification. . To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of 1. The second type alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10E4). A detailed comparison between these two detectors is given as well as comparison with the commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible ap...

  4. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle-substrate chemistry and morphology, and of operating conditions.

    Darwich, Samer; Mougin, Karine; Rao, Akshata; Gnecco, Enrico; Jayaraman, Shrisudersan; Haidara, Hamidou

    2011-01-01

    One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (-CH(3)) and hydroxyl (-OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles. PMID:21977418

  5. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement

    Cheng Huang; Diming Lou; Zhiyuan Hu; Piqiang Tan; Di Yao; Wei Hu; Peng Li; Jin Ren; Changhong Chen

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements.The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) × 108 cm-3.The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles.The particle number concentration was down to 2.0 × 106 cm-3 and 2.7 × 107 cm-3 under decelerating and idling operations and as high as 5.0 × 108 cm-3 under accelerating operation.It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases.The particle number presented a "U" shaped distribution with changing speed at high engine load conditions,which implies that the particle number will reach its lowest level at medium engine speeds.The particle sizes of both measurements showed single mode distributions.The peak of particle size was located at about 50-80 nm in the accumulation mode particle range.Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  6. Taming the post-Newtonian expansion: Simplifying the modes of the gravitational wave energy flux at infinity for a point particle in a circular orbit around a Schwarzschild black hole

    Johnson-McDaniel, Nathan K

    2014-01-01

    (Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...

  7. 多手段综合分析在塔河油田石炭系薄储集层预测中的应用%Modes of Es2/Es3 unconformity and feature of hydrocarbon migration and accumulation in Bonan Sag

    刘桂珍; 杜伟维; 范琪

    2013-01-01

    Taking Es2/Es3 class II unconformity in Paleogene of the south slope zone of Bonan Sag in Jiyang Depression as an example, the modes of class II unconformity and the feature of hydrocarbon migration and accumulation are analyzed based on mineralogy, drilling and logging data and seismic information. The results show that Es2/Es3 class II unconformity structure is a no-clay structure. There are four types of unconformity combination modes according to the occurrence and the lithology superposition relation of the strata above and below the unconformity surface. The plane distribution of the unconformity combination modes controls the hydrocarbon migration and accumulation feature of linear migration and local enrichment.%针对塔河油田石炭系卡拉沙依组砂岩储集层埋藏深、砂层薄、横向变化快、非均质性严重、地震识别困难等问题,通过对地震资料提频,利用地震切片、曲线重构下的测井约束反演和相控储层预测等多手段技术综合分析,将地震属性和反演波阻抗有机结合,指导储集层砂体相控解释,确定了含油砂体的空间展布与描述.实践表明,该方法能有效地利用地震数据体进行薄层储集体预测.

  8. Soot particles at an elevated site in eastern China during the passage of a strong cyclone

    Atmospheric particles larger than 0.2 μm were collected at the top of Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 μm in all samples. The number–size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2–0.3 μm. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1–0.3 μm. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3–0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage. - Highlights: ► Particles at an elevated site in eastern China in a strong cyclone were studied. ► Aged status of soot particles in the prefrontal and postfrontal air was similar. Soot particles in elevated layers could be considered as aged ones.

  9. Number size distributions and seasonality of submicron particles in Europe 2008-2009

    Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P. P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; Harrison, R. M.; Beddows, D.; O'Dowd, C.; Jennings, S. G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.

    2011-06-01

    Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the

  10. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  11. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: → Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. → This phototoxicity was well-correlated to photocatalytic ROS generation. → Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. → Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. → Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  12. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  13. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    A dual-cavity TM02–TM01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM01 mode feedback

  14. Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by a deciduous forest in northern Japan during the summer of 2011

    J. Jung

    2014-03-01

    Full Text Available To investigate the hygroscopic property of ultrafine particles during the new particle formation event, hygroscopic growth factors (g(RH of size-segregated atmospheric particles were measured at an urban site in Sapporo, northern Japan, during the summer of 2011. Hygroscopic growth factors at 85% RH (g(85% of freshly formed nucleation mode particles were measured at a dry particle diameter (Dp centered at 20 nm to be 1.11 to 1.28 (average 1.16 ± 0.06, which are equivalent to 1.17 to 1.35 (1.23 ± 0.06 for a dry Dp centered at 100 nm after considering the Kelvin effect. These values are comparable with those of secondary organic aerosols, suggesting that low-volatility organic vapors are important to the burst of nucleation mode particles at the measurement site surrounded by a deciduous forest. Gradual increases in mode diameter after the burst of nucleation mode particles were obtained under southerly wind condition with a dominant contribution of intermediately-hygroscopic particles. However, sharp increases in mode diameter were obtained when wind direction shifted to northwesterly or northeasterly with a sharp increase in highly-hygroscopic particle faction in the Aitken mode particles, indicating that local wind direction is an important factor controlling the growth of newly formed particles and their hygroscopic properties. Higher g(85% values (1.27 ± 0.05 were obtained at a dry Dp of 120 nm when the air masses originated from the Asian Continent, whereas lower g(85% values (1.19 ± 0.06 were obtained when clean marine air masses arrived at the urban site. These results indicate that the hygroscopic property of large Aitken and small accumulation mode particles (80–165 nm is highly influenced by the long-range atmospheric transport of particles and their precursors.

  15. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    R. C. Moffet

    2007-05-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area – 2006 campaign (MCMA-2006 between 7–27 March, 2006. Biomass and organic carbon (OC particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns.

  16. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Zhang, Y. M. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China); Graduate Univ. of Chinese Academy of Sciences, Beijing (China)); Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Shen, X. J. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China)), e-mail: xiaoye@cams.cma.gov.cn; Gong, S. L. (Air Quality Research Div., Science and Technology Branch, Environment Canada, Toronto (Canada)); Yang, S. (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Inst. of Atmospheric Physics, CAS, Beijing (China))

    2011-07-15

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O{sub 3} and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM{sub 1}) and sulphate; nitrate and ammonium were more minor contributors

  17. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  18. 颗粒离散元模拟堆积碎石土变形的参数灵敏度分析%Particles discrete element simulation accumulation of gravel soil deformation parameter sensitivity analysis

    董辉; 马一跃; 傅鹤林; 王智超; 陈铖

    2015-01-01

    The author uses the granular discrete element method to simulate the arbitrary shape stone and calibrate the mesoscopic parameters of gravel soil which was mainly constituted by weathering , unloading ,alluvial ,deluvial ,etc .Calibration is based on indoor triaxial compression experiments meas‐ured data at the same time considering the scale effect of sample .T his paper analyzed the sensitivity of the mesoscopic parameters w hich affection the accumulation of gravel soil macro deformation characteris‐tics through the virtual experiment .Studies have shown that :① The mesoscopic parameters of gravel soils based on indoor experimental calibration relative error is within 5% .② The size of the virtual experiment include model 1(101 mm × 200 mm) and the model 2(300 mm × 600 mm) .The model 2 to mesoscopi parameters calibration has scale effect ,but the relative error controlled within 9% .③ There are nonlinear positive relationships between the coefficient of friction of discrete element particles and the angle of internal friction ,and the shear strength ,and the residual strength .When the friction coefficient increased by 0 .1 ,the peak deviator stress average increased 118 .85 kPa and the residual strength average increased 90 .44 kPa .④ The greater the confining pressure ,the weaker the material dilatancy is ,when the confining pressure is changing betw een 100 kPa~500 kPa ,the dilatancy characteristic value K is obtained from 3 to 6 .The cohesive force of the damaged model nearly increases linearly as confining pressure increases .⑤ The greater the Young’s modulus ,the greater the shear strength of the gravel soil is ,but there is not a linear relationship between them .Moreover ,Young’s modulus does not affect residual strength of material significantly .%采用颗粒离散单元方法,实现任意形状块石的模拟,基于室内试验数据标定滑坡坡体物质的堆(残、坡)积碎石土的细观参数,并考虑试样尺

  19. In-vehicle particle air pollution and its mitigation

    Tartakovsky, L.; Baibikov, V.; Czerwinski, J.; Gutman, M.; Kasper, M.; Popescu, D.; Veinblat, M.; Zvirin, Y.

    2013-01-01

    This work presents results of particle mass, number and size measurements inside passenger cars (PCs), vans and urban buses. Effects of the in-cabin air purifier on particle concentrations and average size inside a vehicle are studied. Use of the air purifier leads to a dramatic reduction, by 95-99%, in the measured ultrafine particles number concentration inside a vehicle compared with outside readings. Extremely low particle concentrations may be reached without a danger of vehicle occupants' exposure to elevated CO2 levels. The lowest values of particle concentrations inside a PC without air purifier are registered under the recirculation ventilation mode, but the issue of CO2 accumulation limits the use of this mode to very short driving events. Lower PM concentrations are found inside newer cars, if this ventilation mode is used. Great differences by a factor of 2.5-3 in PM10 concentrations are found between the PCs and the buses. Smoking inside a car leads to a dramatic increase, by approximately 90 times, in PM2.5 concentrations.

  20. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54 %) and combustion aerosol (27 %) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33 %) and accumulation mode aerosol (37 %) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49 % during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45 %) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing. PMID:26667647

  1. Trapping of photophoretic particles

    Magiera, Martin P

    2014-01-01

    A trapping mechanism for self-propelled particles based on an inhomogeneous drive is presented and studied analytically as well as by computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the swimmers in the shaded part. The mechanism can be traced back to a finite penetration depth of particles impinging from the illuminated part of the system into the shaded part.

  2. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  3. Plastids and Carotenoid Accumulation.

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  4. Chimpanzee accumulative stone throwing.

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  5. Particle deposition to forests: An alternative to K-theory

    Huang, Cheng-Wei; Launiainen, Samuli; Grönholm, Tiia; Katul, Gabriel G.

    2014-09-01

    It has been known for some time that flux-gradient closure schemes (or K-theory), widely used to model the aerosol sized particle turbulent diffusivity, are problematic within canopies. Reported momentum transport in a zero- or counter-mean velocity gradient flow within open trunk spaces of forests is prototypical of the failure of K-theory. To circumvent this problem, a multi-layered and size-resolved second-order closure model is developed using the mean particle turbulent flux budget as a primary closure for the particle turbulent flux instead of K-theory. The proposed model is evaluated against the multi-level size-resolved particle fluxes and particle concentration measurements conducted within and above a tall Scots pine forest situated in Hyytiälä, Southern Finland. Conditions promoting the failure of K-theory for different particle sizes and canopy layers and the characteristics of the particle transport processes within the canopy sub-layer (CSL) are discussed. Using the model, it is shown that K-theory may still be plausible for modeling the particle deposition velocity when the particle size range is smaller than 1 μm provided the local particle turbulent diffusivity is estimated from the characteristic turbulent relaxation time scale and the vertical velocity variance. Model calculations suggest that the partitioning of particle deposition onto foliage and forest floor appears insensitive to the friction velocity for particles smaller than 100 nm (ultrafine), but decreases with increasing friction velocity for particles larger than 100 nm (accumulation and coarse modes).

  6. Accelerator modes of square well system

    Sankaranarayanan, R; Sheorey, V.B.

    2002-01-01

    We study accelerator modes of a particle, confined in an one-dimensional infinite square well potential, subjected to a time-periodic pulsed field. Dynamics of such a particle can be described by one generalization of the kicked rotor. In comparison with the kicked rotor, this generalization is shown to have a much larger parametric space for existence of the modes. Using this freedom we provide evidence that accelerator mode assisted anomalous transport is greatly enhanced when low order res...

  7. Antiproton Accumulator (AA)

    Photographic Service

    1980-01-01

    The AA in its final stage of construction, before it disappeared from view under concrete shielding. Antiprotons were first injected, stochastically cooled and accumulated in July 1980. From 1981 on, the AA provided antiprotons for collisions with protons, first in the ISR, then in the SPS Collider. From 1983 on, it also sent antiprotons, via the PS, to the Low-Energy Antiproton Ring (LEAR). The AA was dismantled in 1997 and shipped to Japan.

  8. Information Accumulation in Development

    Acemoglu, Daron; Zilibotti, Fabrizio

    1998-01-01

    We propose a model in which economic relations and institutions in advanced and less developed countires differ as these societies have access to different amounts of information. The lack of information in less developped economies makes it hard to evaluate the performance of managers, and leads to high "agency costs". Differencies in the amount of information have a variety of sources. As well as factors related to the informational infrastructure, we emphasize that societies accumulate inf...

  9. Chimpanzee accumulative stone throwing

    Hjalmar S Kühl; Kalan, Ammie K.; Mimi Arandjelovic; Floris Aubert; Lucy D’Auvergne; Annemarie Goedmakers; Sorrel Jones; Laura Kehoe; Sebastien Regnaut; Alexander Tickle; Els Ton; Joost van Schijndel; Abwe, Ekwoge E; Samuel Angedakin; Anthony Agbor

    2016-01-01

    The authors would like to thank the Max Planck Society and Krekeler Foundation for generous funding of the Pan African Programme. The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behav...

  10. Accumulation of Radiocesium in Eleutherococcus sciadophylloides

    1. Introduction: After Fukushima Daiichi Nuclear Power Plant accident, radiocesium (137Cs) had deposited on forests in Fukushima Prefecture. In order to comprehend radiocesium circulation in forest ecosystem, it is important to understand about properties of 137Cs accumulation of each plant species. In addition, 137Cs accumulator plants would be candidates of phyto-remediation, which is a remediation method using plants to remove pollutants from environment. We aimed to find 137Cs accumulator plants and to clarify the accumulate mechanisms. 2. Materials and Methods: We collected soil and plant samples at 22 points in Fukushima Prefecture more than once a year from May 2011 to October 2013. Surface (0-5 cm) soils were collected at the same site as the plant sampling. The soil samples were air-dried for 2-3 weeks and then passed through a 2 mm sieve. Foliar samples were washed with tap water to remove soil particles and rinsed with deionized water for 137Cs and other elements analysis. The samples were dried at 80 deg. C for 48 hr and ground with a mill mixer. 137Cs activities in soil and plant samples were determined by means of high-purity Ge detector (HPGe). The elements concentrations of the plant samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) after wet digestion with HNO3. 3. Results and Discussion: As a whole trend, evergreen tree species such as Camellia japonica and Cryptomeria japonica contained 137Cs at high concentration due to the deposited 137Cs on old leaves and foliar absorption. The activities in leaves of deciduous tree species were lower than those in evergreen trees. However, we confirmed that a deciduous tree species, Eleutherococcus sciadophylloides, collected in 2012 and 2013 accumulated 137Cs, whereas that collected in 2011 did not accumulate 137Cs. The 137Cs concentration of E. sciadophylloides in 2012 and 2013 were higher than those of other woody plant species taken at the same sites. Therefore, it is

  11. Failure Modes

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo; Sørensen, John Dalsgaard

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  12. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  13. Aerosol particle formation - meteorological and synoptic processes behind the event

    Sogacheva, L.

    2008-07-01

    Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiaelae, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiaelae were highest in continental air masses, arriving at Hyytiaelae from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the

  14. ACCUMULATION OF AMYLOLYTIC ENZYMES IN WHEAT GRAIN DURING MALTING PROCESS

    Марина Феликсовна Ростовская; Анастасия Николаевна Извекова; Алексей Григорьевич Клыков

    2014-01-01

    The content of protein, starch, amylolytic enzymes in the grain of the two varieties of spring wheat (Triticum aestivum L.) grown in the Primorye Territory was determined. The accumulation of amylolytic enzymes in the germination process of wheat with different levels of proteins in the grain was investigated. The effect of mode of germination to accumulation amylolytic enzymes in order to optimize the malting process of  grain in obtaining wheat malt also was studied.

  15. ACCUMULATION OF AMYLOLYTIC ENZYMES IN WHEAT GRAIN DURING MALTING PROCESS

    Марина Феликсовна Ростовская

    2014-10-01

    Full Text Available The content of protein, starch, amylolytic enzymes in the grain of the two varieties of spring wheat (Triticum aestivum L. grown in the Primorye Territory was determined. The accumulation of amylolytic enzymes in the germination process of wheat with different levels of proteins in the grain was investigated. The effect of mode of germination to accumulation amylolytic enzymes in order to optimize the malting process of  grain in obtaining wheat malt also was studied.

  16. Saturation of Alfven modes in tokamaks

    White, Roscoe; Gorelenkov, Nikolai; Gorelenkova, Marina; Podesta, Mario; Chen, Yang

    2015-11-01

    The effect of Alfven modes on high energetic particles in tokamaks is important in general, and could be of significance for ITER. This work is a combination of analytic models and numerical simulation to find the saturation levels of unstable Alfven modes and the resulting effect on beam and alpha particle distributions. Solving the drift kinetic equation with a guiding center code in the presence of Alfven modes driven unstable by a distribution of high energy particles requires the use of a δf formalism, wherby the initial distribution f0 is assumed to be a steady state high energy particle distribution in the absense of the modes, and f =f0 + δf describes the particle distribution in the presence of the modes. The Hamiltonian is written as H =H0 +H1 with H0 giving the unperturbed motion, conserving particle energy E, toroidal canonical momentum Pζ, and magnetic moment μ. By writing the initial particle distribution in terms of these variables, a simple means of calculating mode-particle energy and momentum transfer results, giving a very accurate δf formalism.

  17. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  18. Particle Pollution

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  19. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO, Siberia, during a summer campaign

    E. F. Mikhailov

    2015-03-01

    Full Text Available In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO in Central Siberia (61° N; 89° E from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS and transmission electron microscopy (TEM. A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws fraction was estimated to be ∼0

  20. The Antiproton Accumulator (AA)

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  1. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China

    N. Kivekäs

    2009-08-01

    Full Text Available Particle number size distributions in size range 12–570 nm were measured continuously at Mount Waliguan, a remote mountain-top station in inland China. The station is located at the altitude of 3816 m a.s.l., and some 600–1200 m above the surrounding area. The measurement period lasted from September 2005 to May 2007. The measurements were verified with independent CPC measurements at the same site. The average particle concentration in ambient conditions was 2030 cm−3, which is higher than the values measured at similar altitude in other regions of the world. On average, the Aitken mode contributed to roughly half of the particle number concentration. The concentrations were found to be higher during the summer than during the winter. The diurnal variation was also investigated and a clear pattern was found for the nucleation mode during all seasons, so that the nucleation mode particle concentration increased in the afternoon. The same pattern was visible in the Aitken mode during the summer, whereas the accumulation mode did not show any level of diurnal pattern during any season. Excluding the nucleation mode, the average day-time particle concentrations were not significantly higher than those measured at night-time, indicating no systematic pattern of change between planetary boundary layer conditions and free troposphere conditions. In air masses coming from east, the number concentration of particles was higher than in other air masses, which indicates that the air mass might be affected anthropogenic pollution east of the station. Also other factors, such as active new-particle formation, keep aerosol number concentrations high in the area.

  2. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China

    N. Kivekäs

    2009-01-01

    Full Text Available Particle number size distributions in size range 12–570nm were measured continuously at Mount Waliguan, a remote mountain-top station in inland China. The station is located at the altitude of 3816 m above the sea level, and some 600 m above the surrounding area. The measurement period lasted from September 2005 to May 2007. The measurements were verified with independent CPC measurements at the same site. The average particle concentration in ambient conditions was 2040 cm−3, which is higher than the values measured at similar altitude in other regions of the world. On average, the Aitken mode contributed to roughly half of the particle number concentration. The concentrations were found to be higher during the summer than during the winter. The diurnal variation was also investigated and a clear pattern was found for the nucleation mode during all seasons, so that the nucleation mode particle concentration increased in the afternoon. The same pattern was visible in the Aitken mode during the summer, whereas the accumulation mode did not show any level of diurnal pattern. Excluding the nucleation mode, the average day-time particle concentrations were not significantly higher than those measured at night-time, indicating no systematic pattern of change between planetary boundary layer conditions and free troposphere conditions. In air masses coming from east, the number concentration of particles was higher than in other air masses, which indicates that the air mass might be affected by anthropogenic pollution east of the station. Also other factors, such as active new-particle formation, keep aerosol number concentrations high in the area.

  3. Modethema Mode

    Julia Bertschik

    2001-07-01

    Full Text Available Das Themenheft „Mode/Kunst – Fashion/Art“ der Zeitschrift figurationen versammelt heterogene Beiträge, die die Beziehung zwischen Kleidermode und Kunst von der Renaissance bis in die Gegenwart unter literaturwissenschaftlichem Schwerpunkt untersuchen. Reflexionen internationaler Künstler/-innen, Autorinnen und Autoren über die modischen Inszenierungsweisen des Körpers werden dabei auf ihre Darstellung der Geschlechter ebenso überprüft wie auf ihre ästhetische Stellung innerhalb des künstlerischen Gesamtwerks oder des zeitspezifischen Kanons.

  4. Theory of resistive fishbone modes

    A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasma. Theoretical analysis of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exist. One is the Chen-White branch with ω ≅ dm>, corresponding to a higher threshold in βh, the other is the Coppi's branch with ω ≅ ω*i, and a much lower threshold in βh. The latter mode should put a rather unfavourable restriction on heating efficiency and plasma energy confinement. However, we find that resistivity effect is essential for this mode. A new resistive fishbone mode analysis is carried out. In the (γmbd,βb) space, the stability diagram shows complicated structure, the Coppi's branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate varies with the increase in βh, its peak value is still very small compared to other internal modes. The implications of these results to the future tokamak experiments are discussed

  5. Damping of tensor modes in inflation

    Ng, Kin-Wang

    2011-01-01

    We discuss the damping of tensor modes due to anisotropic stress in inflation. The effect is negligible in standard inflation and may be significantly large in inflation models that involve drastic production of free-streaming particles.

  6. Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere

    D. V. Spracklen

    2007-01-01

    Full Text Available A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP. We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL. Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the

  7. The Antiproton Accumulator (AA)

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  8. Batteries and accumulators in France

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  9. Test Plan - Solids Accumulation Scouting Studies

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  10. Test Plan - Solids Accumulation Scouting Studies

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility

  11. Impurity behavior in PBX L- and H-mode plasmas

    Intrinsic impurity behavior and transport properties in neutral-beam-heated L- and H-mode PBX tokamak plasmas were studied with a variety of impurity diagnostics. Central impurity accumulation was most often observed in H-mode discharges and sometimes resulted in a thermal collapse due to high central metallic radiation (-- 1.5 W/cm3). The accumulation was evident from peaked Z/sub eff/ and radiated power profiles and further substantiated from specific VUV and X-ray spectroscopy measurements. It is shown that impurity accumulation was neither unique nor inevitable in H-mode discharges, and it could be suppressed by sufficient gas puffing. Central accumulation was also seen in L-mode plasmas even with co-injected neutral beams. This usually occurred at high beam power and relatively low density. While there was no significant difference in the degree of accumulation between L- and H-mode discharges, the Z/sub eff/ profile itself was more peaked in the H-mode due to flatter electron density profiles in H-mode plasmas than in L-mode plasmas. The degree of accumulation increased as Z/sub eff/(0) itself increased and is qualitatively explained by neoclassical convection and diffusion driven by impurity--impurity collisions in addition to the usual impurity--plasma ion contributions in the central plasma region of interest. 44 refs., 20 figs

  12. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  13. 柴达木盆地北缘南八仙构造油气运聚成藏机理与模式探讨%Discussion of the Mode and Mechanism of Oil and Gas Accumulation in the Nanbaxian Pool in the North of the Qaidam Basin

    李凤君; 罗群; 陈淑兰; 刘运宏; 田丰华

    2005-01-01

    Because of the difference of oil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.

  14. Erosion, sediment transportation and accumulation in rivers

    N.I.ALEKSEEVSKIY; K.M.BERKOVICH; R.S.CHALOV

    2008-01-01

    The present paper analyses the interrelation between erosion,sediment transportation and accumulation proposed by N.I.Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia.Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile,channel morphological patterns,alluvial bedforms (bars,dunes) and individual sediment particles.Relations between river geomorphic activity,flow transportation capacity and sediment budgets are established (sediment input and output;channel bed erosion and sediment entrainment into flow -termination of sediment transport and its deposition).Channel planforms,floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales.This paper is dedicated to the 100th anniversary of N.I.Makkaveyev,Professor of the Moscow State University,author of the book "River channel and erosion in its basin" (1955).That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.

  15. Accumulation of Radiocesium in Eleutherococcus sciadophylloides

    Sugiura, Y.; Takenaka, C.; Kanasashi, T. [Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya City, Aichi Prefecture (Japan); Deguchi, S. [School of Agricultural Sciences, Nagoya University, Nagoya City, Aichi Prefecture, 464-8601 (Japan); Matsuda, Y. [Graduate School of Bioresources, Mie University, Tsu City, Mie Prefecture, 514-0102 (Japan); Ozawa, H. [Fukushima Prefectural Forestry Research Centre, Koriyama City Fukushima Prefecture, 963-0112 (Japan)

    2014-07-01

    1. Introduction: After Fukushima Daiichi Nuclear Power Plant accident, radiocesium ({sup 137}Cs) had deposited on forests in Fukushima Prefecture. In order to comprehend radiocesium circulation in forest ecosystem, it is important to understand about properties of {sup 137}Cs accumulation of each plant species. In addition, {sup 137}Cs accumulator plants would be candidates of phyto-remediation, which is a remediation method using plants to remove pollutants from environment. We aimed to find {sup 137}Cs accumulator plants and to clarify the accumulate mechanisms. 2. Materials and Methods: We collected soil and plant samples at 22 points in Fukushima Prefecture more than once a year from May 2011 to October 2013. Surface (0-5 cm) soils were collected at the same site as the plant sampling. The soil samples were air-dried for 2-3 weeks and then passed through a 2 mm sieve. Foliar samples were washed with tap water to remove soil particles and rinsed with deionized water for {sup 137}Cs and other elements analysis. The samples were dried at 80 deg. C for 48 hr and ground with a mill mixer. {sup 137}Cs activities in soil and plant samples were determined by means of high-purity Ge detector (HPGe). The elements concentrations of the plant samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) after wet digestion with HNO{sub 3}. 3. Results and Discussion: As a whole trend, evergreen tree species such as Camellia japonica and Cryptomeria japonica contained {sup 137}Cs at high concentration due to the deposited {sup 137}Cs on old leaves and foliar absorption. The activities in leaves of deciduous tree species were lower than those in evergreen trees. However, we confirmed that a deciduous tree species, Eleutherococcus sciadophylloides, collected in 2012 and 2013 accumulated {sup 137}Cs, whereas that collected in 2011 did not accumulate {sup 137}Cs. The {sup 137}Cs concentration of E. sciadophylloides in 2012 and 2013 were higher than those of

  16. Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment

    I. Salma

    2010-06-01

    Full Text Available Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6–1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8×103 to 29×103 cm−3 with a yearly median of 11.8×103 cm−3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79±6%. Daily average number concentrations in various size fractions and contribution of ultrafine particles to the total particle number showed no seasonal dependency. Monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. Median diameters of the Aitken and accumulation modes were shifted to larger values before nucleation started and over the growth process, which can be related to the presence of aged aerosol under the conditions that favour nucleation and growth. Particle concentrations were usually increased substantially after nucleations. Overall mean and standard deviation of the nucleation mode number concentrations were (10.4±2.8×103 cm−3. Mean ratio and standard deviation of the nucleation mode number concentration to the total particle number concentration that was averaged for two hours just before the formation was detected was 2.3±1.1. Nucleation unambiguously occurred on 83 days, which represent 27% of all relevant days. Its frequency showed a

  17. The potential contribution of organic salts to new particle growth

    K. C. Barsanti

    2008-12-01

    Full Text Available Field and lab measurements suggest that low-molecular weight (MW organic acids and bases exist in accumulation and nucleation mode particles, despite their relatively high pure-liquid vapor pressures. The mechanism(s by which such compounds contribute to the mass growth of existing aerosol particles and newly formed particles has not been thoroughly explored. One mechanism by which low-MW compounds may contribute to new particle growth is through the formation of organic salts. In this paper we use thermodynamic modeling to explore the potential for organic salt formation by atmospherically relevant organic acids and bases for two system types: one in which the relative contribution of ammonia vs. amines in forming organic salts was evaluated, the other in which the decrease in volatility of organic acids and bases due to organic salt formation was assessed. The modeling approach employed relied heavily on group contribution and other estimation methods for necessary physical and chemical parameters. The results of this work suggest that amines may be an important contributor to organic salt formation, and that experimental data are greatly needed to improve our understanding of organic salt formation in atmospherically relevant systems and to accurately predict the potential contribution of such salts to new particle growth.

  18. Physics of the H-mode

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  19. Study of second stability for ITG modes

    The second stability regime for ion-temperature-gradient (ITG) modes is studied in details with a global linear gyrokinetic particle-in-cell code which takes the full toroidal MHD equilibrium data. The trapped-ion and the toroidal ITG regimes are explored. We perform simultaneous ideal MHD stability computations for both kink (n = 1) and ballooning (n = ∝) modes. We use the results to find partially optimized configurations that are stable to ideal MHD modes and where the ITG modes are stable or have very low growth rates. Such configurations are expected to have very low level of ITG-induced transport. (orig.)

  20. Evidence accumulation for spatial reasoning

    Matsuyama, T.; Hwang, V. S. S.; Davis, L. S.

    1984-01-01

    The evidence accumulation proces of an image understanding system is described enabling the system to perform top-down(goal-oriented) picture processing as well as bottom-up verification of consistent spatial relations among objects.

  1. Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign

    B. Quennehen

    2011-04-01

    Full Text Available Within the framework of the POLARCAT-France campaign, aerosol physical, chemical and optical properties over Greenland were measured onboard the French ATR-42 research aircraft. The Lagrangian particle dispersion model FLEXPART was used to determine air mass origins. The study focuses particularly on the characterization of air masses transported from the North American continent. Air masses that picked up emissions from Canadian and Alaskan boreal forest fires as well as from the cities on the American east coast were identified and selected for a detailed study. Measurements of CO concentrations, aerosol chemical composition, aerosol size distributions, aerosol volatile fractions and aerosol light absorption (mainly from black carbon are used in order to study the relationship between CO enhancement, ageing of the air masses, aerosol particle concentrations and size distributions. Aerosol size distributions are in good agreement with previous studies, even though, wet scavenging potentially occurred along the pathway between the emission sources and Greenland leading to lower concentrations in the aerosol accumulation mode. The measured aerosol size distributions show a significant enhancement of Aitken mode particles. It is demonstrated that the Aitken mode is largely composed of black carbon, while the accumulation mode is more dominated by organics, as deduced from aerosol mass spectrometric AMS and aerosol volatility measurements. Overall, during the campaign rather small amounts of black carbon from the North American continent were transported towards Greenland. An important finding given the potential climate impacts of black carbon in the Arctic.

  2. Oligopoly banking and capital accumulation

    Nicola Cetorelli; Pietro F. Peretto

    2000-01-01

    We develop a dynamic general equilibrium model of capital accumulation where credit is intermediated by banks operating in a Cournot oligopoly. The number of banks affects capital accumulation through two channels. First, it affects the quantity of credit available to entrepreneurs. Second, it affects banks' decisions to collect costly information about entrepreneurs, and thus determines the efficiency of the credit market. We show that under plausible conditions, the market structure that ma...

  3. Cystathionine accumulation in Saccharomyces cerevisiae.

    Ono, B; Suruga, T; Yamamoto, M.; Yamamoto, S.; Murata, K; Kimura, A; Shinoda, S; Ohmori, S.

    1984-01-01

    A cysteine-dependent strain of Saccharomyces cerevisiae and its prototrophic revertants accumulated cystathionine in cells. The cystathionine accumulation was caused by a single mutation having a high incidence of gene conversion. The mutation was designated cys3 and was shown to cause loss of gamma-cystathionase activity. Cysteine dependence of the initial strain was determined by two linked and interacting mutations, cys3 and cys1 . Since cys1 mutations cause a loss of serine acetyltransfer...

  4. Kinetic approach to long wave length modes in rotating plasmas

    Stability of low frequency long wave length modes is studied by a kinetic approach in rotating Maxwellian plasmas. In the rigid rotator model, the centrifugal force due to the plasma rotation strongly destabilizes the ballooning modes particularly when the Mach number is close to unity. The fluid flow shear weakly stabilizes the ballooning mode. Energetic particles are effective to stabilize the ballooning mode particularly in the high-β region even in the rotating plasmas. The electric potential induced from the radial electric field increases the particle trapping rate for eΦ>0. For Φ<0 as in tokamaks, electron trapping rate increases, which destabilizes the dissipative trapped electron mode. (author)

  5. Primitive Accumulation and Temporalities of Capitalism

    Joanna Bednarek

    2015-04-01

    Full Text Available The main thesis of the article is the statement that capitalism is composed of many different, incoherent temporalities, as well as that apprehension of capitalism from the angle of primitive accumulation enables the more accurate grasp of the modes of its functioning, including the complexity created by the interactions of the temporalities mentionned. The problem of primitive accumulation is, as Sandro Mezzadra proves, a good starting point for analysing this issue. It allows us to pose two questions: first, the question of the relation between the historical dimension and the structural logic of capitalism; second, the question of hierarchical relation between the center and the periphery of the capitalist system.Dipesh Chakrabarty’s project of ‘provincializing Europe’ proves helpful here, as it’s goal is deconstruction of the categories of progress, modernization and the capital with its abstract structure. The aim is not to negate the fact that capitalist abstraction is a real force, but to show that this force develops by means of constant assimiliation of the other – redefined as ‘backward’ or archaic. The linear scheme is in force, because it is the main mechanism of imposing the power of capital; as such, it is not politically neutral.

  6. Berreman mode and epsilon near zero mode.

    Vassant, Simon; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques

    2012-10-01

    In this paper, we discuss the existence of an electromagnetic mode propagating in a thin dielectric film deposited on a metallic film at the particular frequency such that the dielectric permittivity vanishes. We discuss the remarkable properties of this mode in terms of extreme subwavelength mode confinment and its potential applications. We also discuss the link between this mode, the IR absorption peak on a thin dielectric film known as Berreman effect and the surface phonon polariton mode at the air/dielectric interface. Finally, we establish a connection with the polarization shift occuring in quantum wells. PMID:23188363

  7. Effects of different corn/wheat year-round tillage modes on post-anthesis dry matter accumulation and transfer and grain yield of wheat in rain-fed farming area of Southern Henan Province.%豫南雨养区周年不同耕作模式对小麦花后干物质动态和产量的影响

    李向东; 季书勤; 张德奇; 郭瑞; 王汉芳; 吕凤荣

    2011-01-01

    A 4-year ( 2006 -2009 ) field experiment was conducted to study the effects of different com-wheat year-round tillage modes on the post-anthesis dry matter accumulation and transfer, grain-filling, and grain yield of winter wheat in a rain-fed farming area of southern Henan Province. Six modes including traditional tillage ( T1 ) , non-straw mulching and pre-sowing shallow plough for corn + straw mulching and non-tillage for wheat (T2), straw mulching and pre-sowing shallow plough for corn + non-straw-mulching and non-tillage for wheat (T3) , non-straw mulching and pre-sowing deep plough for corn + non-straw mulching and non-tillage for wheat (T4) , straw mulching and pre-sowing deep plough for com + straw mulching and non-tillage for wheat (T3) , and non-straw mulching and pre-sowing shallow plough for com + burying smashed straw in soil and rotor tillage (T6) were examined. Among the test modes, T, and T5 showed the best effects, under which, the leaf staying-green period of winter wheat was the longest, and the dry matter accumulation in vegetative organs was significantly higher ( P<0. 05 ) than that under other modes. Also, the transfer amount of the pre-anthesis assimilates in vegetative organs under T,and T5 was higher, and the transfer amount and rate of post-anthesis assimilates in the vegetative organs were 11.9% and 11.7%, and 11.6% and 11.4% higher than those under T3 and T6, respectively ( P<0. 01). Under T, and T5 , the contribution of the post-anthesis assimilates to the grain yield of winter wheat was 8. 4% and 7. 9% , and 8. 8% and 8. 3% higher than that under T3 and T6( P<0. 05 ) , and the grain yield was 7545. 0 and 7480. 5 kg · hnT2, being 14. 8% and 13, 8% higher than that under T6 , respectively (P<0. 01) . Overall, mode T5 had the best effect in promoting the dry matter accumulation in winter wheat vegetative organs and the transfer of post-anthesis assimilates to the grain, and also, played important roles in soil water conservation and

  8. Distinguishability, contrast and complementarity in multimode two-particle interferences

    Sancho, P.

    2004-01-01

    Multimode two-particle systems show interference effects in one-particle detections when both particles have common modes. We explore the possibility of extending the usual concepts of distinguishability and visibility to these types of systems. Distinguishability will refer now to the balance between common and different modes of a two-particle system, instead of the standard definition concerning available alternatives for a one-particle system. On the other hand, the usual concept of visib...

  9. Kinetic calculation of the resistive wall mode and fishbone-like mode instability in tokamak

    Hao, G. Z.; Yang, S. X.; Liu, Y. Q.; Wang, Z. X.; Wang, A. K.; He, H. D.

    2016-06-01

    Kinetic effects of both trapped thermal and energetic particles on the resistive wall mode (RWM) and on the fishbone-like mode (FLM) are investigated in theory. Here, the trapped thermal particles include both ions and electrons. The FLM is driven by trapped energetic particles. The results demonstrate that thermal particle collisions can either stabilize or destabilize the RWM, depending on the energetic particle pressure βh . Furthermore, the critical value of βh for triggering the FLM is increased when the thermal particle contribution is taken into account. The critical value sensitively depends on the plasma collision frequency. In addition, the plasma inertia is found to have a negligible influence on the FLM.

  10. Glycogen accumulation in alveolar type II cells in 3-methylindole--induced pulmonary edema in goats.

    Atwal, O. S.; Bray, T. M.

    1981-01-01

    The present study shows that intravenous infusion of 3-methylindole (3MI) induced acute pulmonary edema in goats. Edematous changes were seen in the alveoli and the interalveolar interstitium. At 72 hours after treatment, an accumulation of glycogen that had a pathognomonic appearance of alpha particles was observed in the alveolar Type II cells. A rich accumulation of glycogen particles and defective lamellar bodies containing triglycerides were the significant morphologic changes in the alv...

  11. Light-weight materials produced by accumulative roll bonding

    Govindaraj, Nagaraj Vinayagam

    2013-01-01

    The work presented in this thesis is an experimental study of roll bonding and accumulative roll bonding of similar and dissimilar metal combinations with special focus on bond strength evaluation, post process heat treatments and layer continuity of the harder phase. Three objectives have been pursued. The first objective was development of a new method to test the bond strength in tensile mode. The second objective was to assess the influence of post deformation heat treatments on the mecha...

  12. Polarization particle drift and quasi-particle invariants

    The second-order approximation in quasi-particle description of magnetized plasmas is studied. Reduced particle and guiding-centre velocities are derived taking account of the second-order renormalization and polarization drift modified owing to finite-Larmor-radius effects. The second-order adiabatic invariant of quasi-particle motion is found. Global adiabatic invariants for the magnetized plasma are revealed, and their possible role in energy exchange between particles and fields, nonlinear mode cascades and global plasma stability is shown. 49 refs

  13. An experiment to measure accurately the lifetime of the $D^{0}, D^{\\pm}, F^{\\pm}, \\lambda_{c}$-charm particles and to study their hadronic production and decay properties

    2002-01-01

    We propose to use the EHS with the hydrogen bubble chamber HOLEBC equipped with classical optics to accumulate statistics of several hundred fully reconstructed D|0 and D@+ and several tens of F@+ and @L^c decays produced by 360 GeV/c @p|- and 360 GeV/c proton beams. The main aim of the experiment is to de these particles. Interesting information will also be obtained on branching ratios, decay modes and hadronic production mechanisms.

  14. Particle-Particle-String Vertex

    Ishibashi, Nobuyuki

    1996-01-01

    We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.

  15. Seasonality of ultrafine and sub-micron aerosols and the inferences on particle formation processes

    H. C. Cheung

    2015-08-01

    the particle number concentration (PNC and size distribution (PSD with size range of 4–736 nm. The results indicate that the mass concentration of PM1 was elevated during cold seasons with peak level of 18.5 μg m-3 in spring, whereas the highest UFPs concentration was measured in summertime with a seasonal mean of 1.62 μg m-3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents in PM1. The seasonal median of total PNCs ranged from 13.9 × 103 cm-3 in autumn to 19.4 × 103 cm-3 in spring. The PSD information retrieved from the corresponding PNC measurements indicates that the nucleation mode PNC (N4–25 peaked at 11.6 × 103 cm-3 in winter, whereas the Aitken mode (N25–100 and accumulation mode (N100–736 exhibited summer maxima at 6.0 × 103 and 3.1 × 103 cm-3, respectively. The shift in PSD during summertime is attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributes to the growth of aerosol particles in the atmosphere. In addition, remarkable photochemical production of particles was observed in spring and summer seasons, which was characterized with averaged particle growth and formation rates of 4.3 ± 0.8 nm h-1 and 1.6 ± 0.8 cm-3 s-1, respectively. The prevalence of new particle formation (NPF in summer is suggested as a result of seasonally enhanced photochemical oxidation of SO2, which contributes to the production of H2SO4, and low level of PM10 (d ≤ 10 μm that serves as the condensation sink. Regarding the sources of aerosol particles, correlation analysis upon the PNCs against NOx revealed that the local vehicular exhaust was the dominant contributor of the UFPs throughout a year. On the contrary, the Asian pollution outbreaks can have significant influence in the PNC of accumulation mode particles during the seasons of winter monsoons

  16. Particles Emission from Gasoline Vehicles

    WANG Jun-fang; GE Yun-shan; TAN Jian-wei; HE Chao; YOU Ke-wei; YOU Qiu-wen

    2009-01-01

    Number concentration and size distribution from gasoline cars are investigated at transient modes on the chassis dynamometers,which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles.Results indicate that,during cold start,particle number emission is higher than that under hot start.It is found that the number of particles increases with the vehicle speeds.Furthermore,particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle.In addition,the tentative information about composition of emitted particles is also discussed.

  17. Dynamic radioactive particle source

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  18. Accumulation of mercury in fish

    In model experiments the direct uptake (excluding the food chain) of different dissolved mercury compounds by female species of Poecilia reticulata was investigated using the radiochemical tracer method. Hg-203 labelled Hg(NO3)2 and CH3HgCl were dissolved in deionized water resulting in concentrations of 0.1/1/5/10 and 20 ng Hg/ml H2O. The fish were measured in vivo using a 3'' x 3'' NaI(Tl) well-type-detector. The experiments showed, that the accumulation rate (ng Hg/g/sub fi/. d) depends very much on the chemical form and the concentration of the dissolved Hg-compound. The accumulation in a CH3HgCl-solution is about four times as fast as in a Hg(NO3)2- solution. In the presence of complexing agents the accumulation rates decrease whereas the accumulation rates increase with increasing Hg-concentration in the water. The release of incorporated methylmercury has a half life of about 69 days. For inorganic mercury a two step mechanism has been found with half lives of 4 days and 68 days, respectively. The relative amount of mercury released in the second step increases with increasing time of incorporation. This indicates the methylation of inorganic mercury in the fish

  19. Pension funds and capital accumulation

    Belan, Pascal; Michel, Philippe; Wigniolle, Bertrand

    2001-01-01

    This note presents a model in which pension funds, by holding a signifiant share of capital assets, can exert a non competitive behavior on labor market. This leads to lower wages and higher capital returns, and can reduce capital accumulation and Long-run welfare.

  20. List mode multichannel analyzer

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  1. Particle migration leads to deposition-free fractionation

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    In membrane filtration, theporesizeofthemembranedeterminesthesizeof ‘particles’ that shouldbe rejected,leading to accumulation of particles on the membrane surface and changed particle retention in time.A process without accumulation and thereby constant retention as function of time would be well s

  2. Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard

    C G Deshpande; A K Kamra

    2014-02-01

    Measurements of the number concentration and size distribution of aerosol particles in the size range of 0.5–20 m diameter were made with an aerodynamic particle sizer at an Arctic site at Ny-Alesund, Svalbard in August–September 2007 during the International Polar Year 2007–2008. Data are analyzed to study the aerosol number concentration–wind speed relationships. The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. Total number concentration of aerosol particles increases with increase in wind speed, the increase being more when winds from open leads over the oceanic sector are reaching the station as compared to when winds from pack ice in other directions are reaching the station. The larger increase with winds from the oceanic sector is attributed to the enhanced bubble-breaking activity and increased entrainment of dimethyl sulphide particles at the sea surface. Although, the increase in total aerosol number concentration associated with the winds from the oceanic sector is spread over the whole range of particle sizes, the increase in coarse mode particles is more prominent than that in the accumulation mode particles. The age of airmass over pack ice is also an important factor to determine the aerosol concentration over the Arctic region. The process of rainout/washout of the aerosol particles due to drizzle/snowfall is an effective sink mechanism in the Arctic environment. The aerosol particle concentration starts decreasing within a few minutes from the start of these events but requires a few hours to restore to the normal background aerosol level after the end of event.

  3. Influence of the operating modes of wood-fired stoves on particle emissions; Einfluss der Betriebsweise auf die Partikelemissionen von Holzoefen. Projektzusatz 1+2 zum Projekt Wirkung von Verbrennungspartikeln

    Klippel, N.; Nussbaumer, T.

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) examines the influence of the operating characteristics of wood-fired stoves on their particle emissions. Four types of stove are compared: A metal stove with small combustion chamber and a low mass of ceramic lining, a stove with a large combustion chamber and heavier ceramic lining, a newly designed stove with two-stage combustion using gasification and gas oxidation in a separate combustion chamber using secondary air and a modern pellet-fired stove operated with wood and straw pellets. The report describes the measurement programme and presents the results obtained using gravimetric measurements. The spectrum of particle emissions measured for the four types of stove are presented and discussed. The correlation of carbon monoxide and fine-dust emissions is examined. The results of biological tests and the chemical analysis of the dust are discussed.

  4. Energetic particle physics issues for ITER

    This paper summarizes our present understanding of the following energetic/alpha particle physics issues for the 21 MA, 20 TF coil ITER Interim Design configuration and operational scenarios: (a) toroidal field ripple effects on alpha particle confinement, (b) energetic particle interaction with low frequency MHD modes, (c) energetic particle excitation of toroidal Alfven eigenmodes, and (d) energetic particle transport due to MHD modes. TF ripple effects on alpha loss in ITER under a number of different operating conditions are found to be small with a maximum loss of 1%. With careful plasma control in ITER reversed-shear operation, TF ripple induced alpha loss can be reduced to below the nominal ITER design limit of 5%. Fishbone modes are expected to be unstable for βα > 1%, and sawtooth stabilization is lost if the ideal kink growth rate exceeds 10% of the deeply trapped alpha precessional drift frequency evaluated at the q = 1 surface. However, it is expected that the fishbone modes will lead only to a local flattening of the alpha profile due to small banana size. MHD modes observed during slow decrease of stored energy after fast partial electron temperature collapse in JT-60U reversed-shear experiments may be resonant type instabilities; they may have implications on the energetic particle confinement in ITER reversed-shear operation. From the results of various TAE stability code calculations, ITER equilibria appear to lie close to TAE linear stability thresholds. However, the prognosis depends strongly on q profile and profiles of alpha and other high energy particles species. If TAE modes are unstable in ITER, the stochastic diffusion is the main loss mechanism, which scales with (δBr/B)2, because of the relatively small alpha particle banana orbit size. For isolated TAE modes the particle loss is very small, and TAE modes saturate via the resonant wave-particle trapping process at very small amplitude

  5. Alpha particle physics for ITER

    The paper is devoted to the analysis of a variety of physical processes which, in the ITER EDA configuration, determine the nature of alpha particle heating in the plasma interior and alpha particle losses to the first wall. The paper consists of results from the alpha particle toroidal field (TF) ripple loss calculations and an analysis of alpha particle collective effects including Alfven modes, sawtooth stabilization, etc. It is shown that the ripple loss in the present ITER configuration is only a few per cent, which cannot directly affect the achievement of ignition. In spite of the up-down asymmetry, the loss fraction does not strongly depend on the toroidal drift direction. However, the heat load is highly localized and can be as high as 1 MW/m2 on the top of the protective limiters. Preliminary calculations of toroidicity induced Alfven eigenmode (TAE) stability indicate that high n numbers may be unstable, but the computational tools, needed for reliable quantitative predictions, are still in a state of development. The likelihood of appreciable alpha particle loss will depend on whether TAE modes produce stochastic alpha particle diffusion or not. The effect of fast particles on the m = 1 mode is also discussed. (author). 15 refs, 2 figs, 1 tab

  6. Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment

    I. Salma

    2011-02-01

    Full Text Available Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6–1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8 × 103 to 29 ×103 cm−3 with a yearly median of 11.8 × 103 cm−3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79 ± 6%. Typical diurnal variation of the particle number concentration was related to the major emission patterns in cities, new particle formation, sinks of particles and meteorology. Shapes of the monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. New particle formation and growth unambiguously occurred on 83 days, which represent 27% of all relevant days. Hence, new particle formation and growth are not rare phenomena in Budapest. Their frequency showed an apparent seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. New particle formation events were linked to increased gas-phase H2SO4 concentrations. In the studied area, new particle formation is mainly affected by condensation sink and solar radiation. The formation process seems to be not sensitive to SO2, which was present in a yearly median concentration of 6.7 μg m−3. This suggests that the precursor gas was always available in excess

  7. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    ZHANG XuSheng; ZHAO Hui; HU ZongJie; WU ZhiJun; LI LiGuang

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes: nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 rim. Only CM was observed for all fuels under the condition of 50 N. M, 2000 r/min. When the engine torque was higher than 150 N. M, log-modal PSD of diesel shifted to bimodal. At higher loads, if the biodiesel blend ratio was below 60%, the PSD of bio-diesel blends still included the two modes. However, no NM particles were found for pure biodiesel. At lower loads, only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparUcle formation indi-cated that for the light-duty diesel engine with oxidation catalysts, fuel consumption and exhaust temperature increased with increasing the engine loads, and Sol was converted to SO3 by catalyst which, in its hydrated form, could act as the precursor for biodiesei NM formation. Therefore, sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  8. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes:nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 nm. Only CM was observed for all fuels under the condition of 50 N.m,2000 r/min. When the engine torque was higher than 150 N.m,log-modal PSD of diesel shifted to bimodal. At higher loads,if the biodiesel blend ratio was below 60%,the PSD of biodiesel blends still included the two modes. However,no NM particles were found for pure biodiesel. At lower loads,only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparticle formation indicated that for the light-duty diesel engine with oxidation catalysts,fuel consumption and exhaust temperature increased with increasing the engine loads,and SO2 was converted to SO3 by catalyst which,in its hydrated form,could act as the precursor for biodiesel NM formation. Therefore,sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  9. Particle energization

    Gisler, G.

    1990-01-01

    A first-principles approach to the physics of particle energization is presented. The general physics of particle acceleration is then applied to a number of the classical astrophysical mechanisms for accelerating particles, with references to recent literature where these are used in specific circumstances. The solar flare is recommended as a microcosm for studying particle acceleration because many different processes seem to be occurring in close proximity, and there is abundant high time resolution data for diagnosing those processes. Finally, a list of possible sites and mechanisms for particle acceleration in spiral galaxies is presented. 66 refs., 6 figs., 3 tabs.

  10. Helium accumulation effects using bench marked 0-D model

    Helium ''ash'' accumulation is a key issue relative to our ability to achieve a steady-state ignited tokamak. 1-D transport simulations using the BALDUR code have been used to examine the correlation between the global helium particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. In this paper, burn conditions for an ITER-like plasma with various helium edge recycling coefficients are examined

  11. Ash accumulation effects using bench marked 0-D model

    Ash accumulation is a key issue relative to our ability to achieve D-3He ARIES III burn conditions. 1-1/2-d transport simulations using the BALDUR code have been used to examine the correlation between the global ash particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. The burn conditions for an ARIES-III plasma with various ash edge recycling coefficients are examined

  12. Idealization Second Quantization of Composite Particles

    ZHOU Duan-Lu; YU Si-Xia; SUN Chang-Pu

    2001-01-01

    A practical method is developed to deal with the second quantization of the many-body system containing the composite particles.In our treatment,the modes associated with composite particles are regarded approximately as independent ones compared with those of unbound particles.The field operators of the composite particles thus arise naturally in the second quantization Hamiltonian.To be emphasized,the second quantization Hamiltonian has the regular structures which correspond clearly to different physical processes.``

  13. Destruction of false vacuum by massive particles

    The rate of false vacuum decay in (1 + 1) dimensions induced by a massive boson or fermion particle which serves as a center of nucleation of critical bubble of the lower vacuum is calculated. The pesence of a particle gives an exponential enhancement of the decay rate and sufficiently heavy particles practically immediately blow up the false vacuum. The particle itself is carried away to infinity in a form of zero mode bound on soliton

  14. A Systematic Analysis of Coal Accumulation Process

    CHENG Aiguo

    2008-01-01

    Formation of coal seam and coal-rich zone is an integrated result of a series of factors in coal accumulation process. The coal accumulation system is an architectural aggregation of coal accumulation factors. It can be classified into 4 levels: the global coal accumulation super-system, the coal accumulation domain mega.system, the coal accumulation basin system, and the coal seam or coal seam set sub-system. The coal accumulation process is an open, dynamic, and grey system, and is meanwhile a system with such natures as aggregation, relevance, entirety, purpose-orientated, hierarchy, and environment adaptability. In this paper, we take coal accumulation process as a system to study origin of coal seam and coal-rich zone; and we will discuss a methodology of the systematic analysis of coal accumulation process. As an example, the Ordos coal basin was investigated to elucidate the application of the method of the coal accumulation system analysis.

  15. Thermal stability analysis of ignited plasma on ELMy-H mode, L-mode and high βp-mode

    We investigated the operational condition of the self-ignited plasma. The high βp limit, the β limit, and the density limit are also estimated as the operational limits for the reference. We showed the typical burning performances of three different modes, evaluating the ignition conditions for different values of ρ (ρ=τ*He/τE, where τ*He is the global particle confinement time for He-ash and τE is the energy confinement time). We choose the parameters to distinguish the mode as Ip = 20 MA for the L-mode and Ip 10 MA for the high-βp-mode, respectively. The achievement of the self-ignited steady state of the high βp-mode operation is predicted to be difficult in ITER-like plasma from the viewpoints of the Greenwald density limit, the β limit (this constraint is not so stringent, if operation in the second stability regime is possible), and the thermal stability. Another scenario proposed for ITER is to operate at ELMy-H mode. The analysis done here shows that the ELMy-H mode case, the thermally stable operation can be obtained even if ρ has a higher value. Near the Greenwald density limit (ne∼8.0 x 1019 m-3), the burning performance are up to P∼0.64 GW on the ELMy-H mode, and P∼0.62 GW on the L-mode, respectively (with Ip=20 MA, and ρ=11). If a higher density operation than the Greenwald limit is possible, the ELMy-H mode seems to be a better candidate of operational mode. We assumed that the fast α-particles could be confined perfectly and fully thermalized before they were lost from the plasma. However if the orbital loss of fast α-particles is not neglected, the effective confinement of α-particles reduces. The characteristics of the energy confinement time could be also changed in the presence of α-heating and ash poisoning. We neglect the synchrotron radiation assuming that the plasma is black body. Analytical investigation of the synchrotron radiation in torus configurations has been carried out. In the high temperature and the low

  16. Metal accumulating plants: Medium's role

    Rabier, J.; Prudent, P.; Szymanska, B.; Mevy, J.-P.

    2003-05-01

    To evaluate phytoremediation potentialities by metal accumulation in tolerant plants, trials are carried out using in vitro cultures. Organie compounds influence on metal accumulation is studied with metals supplemented media. The tested compounds on zinc and lead absorption by Brassica juncea, are chelating agents (EDTA, citric acid) and soluble organic fractions of compost. EDTA seems to enhance the transfer of lead in plant but it is the opposite in the case of zinc. Citric acid stimulates root absorption for both zinc and lead. For the aqueous extracts of compost, variable effects are obtained according to the origin of compost (green wastes and food wastes). In'all tested conditions of cultures, zinc is mainly exported towards shoot while lead is stored in root.

  17. Aggregation Of Volcanic Particles: Physical Constraints Provided By Field And Numerical Investigations

    Rossi, E.; Bagheri, G.; Bonadonna, C.

    2014-12-01

    The characterization and parameterization of both sedimentation and aggregation of volcanic particles is necessary for an accurate description of the sink term in numerical models of tephra dispersal used for the evaluation of tephra hazards. Nonetheless, our understanding of particle fallout in various eruptive and atmospheric conditions is still limited mostly due to the lack of direct observations. A comparative investigation of sedimentation and aggregation of volcanic particles is here presented based on field experiments and numerical simulations. Field experiments are based on detailed observations of particle fallout during Vulcanian explosions and ash emissions at Sakurajima volcano (Japan) on August 3, 2013. Column height was up to about 3 km above sea level and the cloud spread with average velocity of about 7 ms-1 toward southeast direction. Aggregates that fell at a distance of about 4 km from the vent were filmed with a high-speed and high-resolution camera before depositing on collection glasses. In order to preserve and analyze particle aggregates with the Scanning Electron Microscope, collecting glasses were covered with a special adhesive tape. Dedicated trays were also used to collect the depositing tephra at five-minute intervals to investigate both accumulation rate and particle size. CILAS grain size analysis showed that mode of particles deposited on the ground decreased with time from 550 μm to 250 μm at the reference location. Aggregate size ranged between 400 and 900 μm (based on video analysis) and they mostly consist of a single or multiple particles acting as nuclei with diameter between 200 and 800 μm coated with ash particles (clusters. Aggregation significantly affected particle residence time in the spreading cloud by changing the associated settling velocity. Based on numerical constraints, aggregates were thought to be formed within the rising plume or at the corner with the horizontal cloud and within 200 seconds of the onset

  18. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Muller, Thomas; Conrath, Thomas; Voigtlander, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A. M.; Zahn, Andreas

    2016-05-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  19. Exercise bicycle for accumulator charging

    Nekvapil, Jan

    2014-01-01

    Bachelor thesis is about possible solution construction of exercise bicycle with electric part working as a electric source. The first part of document introduces readers to issues about lead acid accumulators and charging, electronically commutated motors and electric converters. The second part shows potential solving constitution of exercise bicycle and we choose components and devices. EC motor will be connected with exercise bicycle by chain transmission. Transfer energy is realized thro...

  20. Crises and human capital accumulation

    Freddy Heylen; Lorenzo Pozzi

    2007-01-01

    This paper studies the effects of crises on human capital formation. Theoretically, a crisis undermines total factor productivity, which reduces the return to working and to accumulating physical capital. If the crisis is temporary, young agents will study now and work later. Human capital rises. To test our model we rely on inflation crises as our main empirical proxy. Using GMM panel procedures, our analysis for 86 countries in 1970-2000 confirms the positive effects of crises on human capi...

  1. Debt Redemption and Reserve Accumulation

    Laura Alfaro; Fabio Kanczuk

    2013-01-01

    Foreign participation in local-currency bond markets in emerging countries has increased dramatically over the past decade. In light of this trend, we revisit sovereign debt sustainability and incentives to default when the sovereign is temporarily excluded from capital markets. Differently from previous analyses, we assume that in addition to accumulating international reserves, countries can borrow internationally using their own currency. As opposed to traditional sovereign debt models (al...

  2. Influence of cross-field drifts and chemical sputtering on simulations of divertor particle and heat loads in ohmic and L-mode plasmas in DIII-D, AUG, and JET using UEDGE

    Groth, M., E-mail: mathias.groth@tkk.fi [Aalto University, Association EURATOM-Tekes, Otakaari 4, 02015 Espoo (Finland); Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94550 (United States); Porter, G.D.; Rensink, M.E.; Rognlien, T.D. [Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94550 (United States); Wiesen, S. [Forschungszentrum Juelich GmbH, EURATOM-Assoziation, TEC, Juelich (Germany); Wischmeier, M.; Eich, T.; Herrmann, A. [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Jachmich, S. [Association ' Euratom-Belgian state' , Ecole Royale Militaire, Brussels (Belgium); Lasnier, C.J. [Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94550 (United States); Mueller, H.W. [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States); Beurskens, M.N.A. [EURATOM/CCFE - Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Bray, B.D. [General Atomics, San Diego, CA (United States); Brezinsek, S. [Forschungszentrum Juelich GmbH, EURATOM-Assoziation, TEC, Juelich (Germany); Brooks, N.H. [General Atomics, San Diego, CA (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94550 (United States); Fuchs, C. [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Huber, A. [Forschungszentrum Juelich GmbH, EURATOM-Assoziation, TEC, Juelich (Germany); Kallenbach, A. [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany)

    2011-08-01

    Measurements and simulations with the UEDGE code of radiated power, and ion saturation currents and power loads to the target plates have been compared for density scans in ohmic and low confinement mode plasmas in DIII-D, ASDEX Upgrade, and JET. Simulations including cross-field drifts and assuming elevated chemical sputtering yields of 3%-4% move the numerical solutions closer to many of the measurements compared to omitting the drifts and using the published Davis-Haasz yields. Adopting these assumptions the simulations reproduce the measured currents and powers, and their functional dependence on upstream density to within a factor of 2, with the exception of the ion currents to the low field side target in ASDEX Upgrade and the high field side target in JET. The applicability of using enhanced sputtering yields is discussed by comparing measured and simulated emission from low charge state carbon in the divertor regions.

  3. Particle therapy

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  4. Particle therapy

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  5. Morphology and Optical Properties of Mixed Aerosol Particles

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    LLPS in accumulation-sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode particles of the same composition would allow proving that LLPS indeed occurs in particles of accumulation mode size. Up to now LLPS has not been studied for particles in this size range. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011.
 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 
3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012.
 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.

  6. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station

    Qi, X. M.; Ding, A. J.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Herrmann, E.; Xie, Y. N.; Zheng, L. F.; Manninen, H.; Aalto, P.; Sun, J. N.; Xu, Z. N.; Chi, X. G.; Huang, X.; Boy, M.; Virkkula, A.; Yang, X.-Q.; Fu, C. B.; Kulmala, M.

    2015-11-01

    Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed 2 years (2011-2013) of measurements of submicron particles (6-800 nm) at a suburban site in the western Yangtze River Delta (YRD) of eastern China. The number concentrations (NCs) of particles in the nucleation, Aitken and accumulation modes were 5300 ± 5500, 8000 ± 4400, 5800 ± 3200 cm-3, respectively. The NCs of total particles are comparable to those at urban/suburban sites in other Chinese megacities, such as Beijing, but about 10 times higher than in the remote western China. Long-range and regional transport largely influenced number concentrations and size distributions of submicron particles. The highest and lowest accumulation-mode particle number concentrations were observed in air masses from the YRD and coastal regions, respectively. Continental air masses from inland brought the highest concentrations of nucleation-mode particles. New particle formation (NPF) events, apparent in 44 % of the effective measurement days, occurred frequently in all the seasons except winter. The frequency of NPF in spring, summer and autumn is much higher than other measurement sites in China. Sulfuric acid was found to be the main driver of NPF events. The particle formation rate was the highest in spring (3.6 ± 2.4 cm-3 s-1), whereas the particle growth rate had the highest values in summer (12.8 ± 4.4 nm h-1). The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the particle growth rates showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and strong photochemical processes, NPF events occurred with larger frequency and higher growth rates compared with the same period in 2012. The difference in the location and strength of the subtropical high pressure system, which influences

  7. Trapping of interacting propelled colloidal particles in inhomogeneous media

    Magiera, Martin P.; Brendel, Lothar

    2014-01-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive....

  8. Entry Modes of Starbucks

    Santamaría Sotillo, Beatriz; Ni, Shuang

    2008-01-01

    Topic:When an MNC seeks to enter a foreign country, it must choose the most appropriate entry mode for that specific market, such as exporting, licensing, a turnkey project, franchising, joint ventures or wholly-owned subsidiaries. There are many factors which affect the choice of entry modes. Influential factors contributing to the entry mode decision can have different degrees of impact for each particular country. As a consequence, an MNC has to use different entry modes in order to adapt ...

  9. Switching mode power supplies

    Beard, David W.

    1980-01-01

    The subject of switching mode power supplies was examined. A comparison between linear regulators and switching mode power supplies was made to show the options available for the various types of convertors. Two switching mode power supplies were constructed and tested. The operating efficiency of both systems was found to be more than eighty percent over the specified input voltage and load current conditions. The switching mode power supply circuits required additional ...

  10. Particle physics

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  11. Integrated mode converter for mode division multiplexing

    Perez-Galacho, Diego; Alonso-Ramos, Carlos Alberto; Marris-Morini, Delphine; Vakarin, Vladyslav; Le Roux, Xavier; Ortega-Moñux, Alejandro; Wangüemert-Perez, Juan Gonzalo; Vivien, Laurent

    2016-05-01

    The ever growing demands of bandwidth in optical communication systems are making traditional Wavelength Division Multiplexing (WDM) based systems to reach its limit. In order to cope with future bandwidth demand is necessary to use new levels of orthogonality, such as the waveguide mode or the polarization state. Mode Division Multiplexing (MDM) has recently attracted attention as a possible solution to increase aggregate bandwidth. In this work we discuss the proposition a of mode converter that can cover the whole C-Band of optical communications. The Mode Converter is based on two Multimode Interference (MMI) couplers and a phase shifter. Insertion loss (IL) below 0.2 dB and Extinction ratio (ER) higher than 20 dB in a broad bandwidth range of 1.5 μm to 1.6 μm have been estimated. The total length of the device is less than 30 μm.

  12. Modes of log gravity

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Ei

  13. Accumulation of cobalt by cephalopods

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 200C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  14. IMM Iterated Extended Particle Filter Algorithm

    Yang Wan; Shouyong Wang; Xing Qin

    2013-01-01

    In order to solve the tracking problem of radar maneuvering target in nonlinear system model and non-Gaussian noise background, this paper puts forward one interacting multiple model (IMM) iterated extended particle filter algorithm (IMM-IEHPF). The algorithm makes use of multiple modes to model the target motion form to track any maneuvering target and each mode uses iterated extended particle filter (IEHPF) to deal with the state estimation problem of nonlinear non-Gaussian system. IEH...

  15. Diffraction of entangled particles by light gratings

    Sancho, Pedro

    2015-01-01

    We analyze the diffraction regime of the Kapitza-Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light-matter interaction on entanglement. When the ...

  16. Particle Distribution in a Fixed Bed Down Draft Wood Gasifier

    Hindsgaul, Claus

    2005-01-01

    Char particle samples were collected from six distances above the grate in a fixed bed of a down draft biomass gasifier. Each sample was separated into twelve size fractions by screening through standard sieves in order to determine the local particle size distribution. The ash contents of each...... particle fraction was determined. The measured ash content in the larger particles was nearly constant throughout the bed, while ash accumulated in particle sizes around 1 mm near the bottom....

  17. Normal Modes of the B=4 Skyrme Soliton

    Barnes, C; Turok, N G; Barnes, Chris; Baskerville, Kim; Turok, Neil

    1997-01-01

    The Skyrme model of nuclear physics requires quantisation if it is to match observed nuclear properties. A simple technique is used to find the normal mode spectrum of the baryon number $B=4$ Skyrme soliton, representing the $\\alpha$ particle. We find sixteen vibrational modes and classify them under the cubic symmetry group $O_h$ of the static solution. The spectrum possesses a remarkable structure, with the lowest energy modes lying in those representations expected from an approximate correspondence between Skyrmions and BPS monopoles. The next mode up is the `breather', and above that are higher multipole breathing modes.

  18. Modes of Log Gravity

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity", linearized about its anti-de Sitter vacuum, are investigated. All "log mode" solutions, which we categorize as `spin 2' or `Proca', arise as limits of the massive spin 2 modes of the non-critical theory. The linearized Einstein tensor of a spin 2 log mode is itself a 'non-gauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.

  19. Fuel recycling and natural density in EAST H-mode discharges

    Highlights: • ELM frequency has clear effect on natural density in EAST tokamak. • Plasma heating power has weak effect on natural density. • Wall retention has weak effect on natural density due to intensive lithium coating. - Abstract: The natural density (plasma density without gas puffing) of an ELMy H-mode discharge is strongly affected by fuel recycling and plasma parameters. In the EAST 2012 campaign fuel recycling and natural density were investigated in H-mode discharges. The results show that natural density is decreased gradually with high frequency ELMs, and increased with low frequency ELMs or in ELM-free phase. Plasma density is increased gradually when H-mode discharge is in the phase of alternating ELM and ELM-free. A statistical investigation and scaling of natural density with various plasma normalized parameters shows the natural density is affected by plasma current, heating power, magnetic configuration, first wall temperature, and divertor cryopump status. The influence of plasma heating power, total number of injected particles, and accumulated fuel retention is very weak, probably due to the intensive lithium conditionings. The results indicate that the natural density could be partially controlled by the combination of different parameters

  20. Particle physics

    Carlsmith, Duncan

    2012-01-01

    Particle Physics is the first book to connect theory and experiment in particle physics. Duncan Carlsmith provides the first accessible exposition of the standard model with sufficient mathematical depth to demystify the language of gauge theory and Feynman diagrams used by researchers in the field. Carlsmith also connects theories to past, present, and future experiments.

  1. Mode selection laser

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  2. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean

  3. Biota-Sediment Accumulation Factor Data

    U.S. Environmental Protection Agency — The Biota-Sediment Accumulation Factor contains approximately 20,000 biota-sediment accumulation factors (BSAFs) from 20 locations (mostly Superfund sites) for...

  4. Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer

    J. D. Allan

    2006-01-01

    Full Text Available The study of the growth of nucleation-mode particles is important, as this prevents their loss through diffusion and allows them to reach sizes where they may become effective cloud condensation nuclei. Hyytiälä, a forested site in southern Finland, frequently experiences particle nucleation events during the spring and autumn, where particles first appear during the morning and continue to grow for several hours afterwards. As part of the QUEST 2 intensive field campaign during March and April 2003, an Aerodyne Aerosol Mass Spectrometer (AMS was deployed alongside other aerosol instrumentation to study the particulate composition and dynamics of growth events and characterise the background aerosol. Despite the small mass concentrations, the AMS was able to distinguish the grown particles in the <100 nm regime several hours after an event and confirm that the particles were principally organic in composition. The AMS was also able to derive a mass spectral fingerprint for the organic species present, and found that it was consistent between events and independent of the mean particle diameter during non-polluted cases, implying the same species were also condensing onto the accumulation mode. The results were compared with those from offline analyses such as GC-MS and were consistent with the hypothesis that the main components were alkanes from plant waxes and the oxidation products of terpenes.

  5. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station

    X. M. Qi

    2015-04-01

    Full Text Available Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed two-year (2011–2013 of measurements of submicron particles (6–800 nm at a suburban site in western Yangtze River delta (YRD of East China. The number concentrations (NCs of particles in the nucleation, Aitken and accumulation modes were 5300 ± 5500, 8000 ± 4400, 5800 ± 3200 cm-3, respectively. Number concentrations and size distributions of submicron particles were also influenced by long-range and regional transport of air masses. The highest and lowest accumulation mode particle number concentrations were observed in air masses from YRD and coastal region, respectively. Continental air masses from inland had the highest concentrations of nucleation mode particles. New particle formation (NPF events, apparent in 44% of the effective measurement days, occurred frequently in all the seasons except winter. Radiation and pre-existing particles were found to be the main factors influencing the occurrence of NPF events. The particle formation rate was the highest in spring (3.6 ± 2.4 cm-3 s-1, whereas the particle growth rate had the highest values in summer (12.8 ± 4.4 nm h-1. The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the growth rate showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and photochemical pollution, NPF events occurred more frequently and the growth rate was much higher than in the same period of 2012. The difference in the location and strength of sub-tropical High, which influences the air mass transport pathways and solar radiation, seems to be the driving cause for year-to-year differences. This study reported the longest continuous measurement records of submicron particles in the East China and gained a comprehensive

  6. Simulation study of Bernstein modes

    The properties of Bernstein modes were investigated through computer simulations using two-dimensional and two-and-one-half-dimensional (i.e., two spatial and three velocity coordinates) electrostatic models with fixed magnetic field. The measured discrete spectrum was found to agree with the linear dispersion relation for these modes. The quasi-periodic phenomenon of early phase-mixing damping and later recurrence, predicted by Baldwin and Rowlands, was observed. For large wavenumber k/sub perpendicular/, the initial damping rate is the same as that for Landau damping in an unmagnetized plasma; for small k/sub perpendicular/, however, it is much stronger. The recurrence peaks slowly damp in time at a rate proportional to k2/sub perpendicular/D, where D is the measured cross-field particle diffusion coefficient which is dominated by convective transport. Finally, splitting of the main spectral peaks and the appearance of subpeaks at half-integral multiples of the cyclotron frequency are observed and may be explained by nonlinear mode coupling

  7. 47 CFR 32.3100 - Accumulated depreciation.

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation. 32.3100 Section 32... Accumulated depreciation. (a) This account shall include the accumulated depreciation associated with the... with depreciation amounts concurrently charged to Account 6561, Depreciation...

  8. VH mode accessibility and global H-mode properties in previous and present JET configurations

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs

  9. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Jones, T.T.C.; Ali-Arshad, S.; Bures, M.; Christiansen, J.P.; Esch, H.P.L. de; Fishpool, G.; Jarvis, O.N.; Koenig, R.; Lawson, K.D.; Lomas, P.J.; Marcus, F.B.; Sartori, R.; Schunke, B.; Smeulders, P.; Stork, D.; Taroni, A.; Thomas, P.R.; Thomsen, K. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  10. Markov models for accumulating mutations

    Beerenwinkel, Niko

    2007-01-01

    We introduce and analyze a waiting time model for the accumulation of genetic changes. The continuous time conjunctive Bayesian network is defined by a partially ordered set of mutations and by the rate of fixation of each mutation. The partial order encodes constraints on the order in which mutations can fixate in the population, shedding light on the mutational pathways underlying the evolutionary process. We study a censored version of the model and derive equations for an EM algorithm to perform maximum likelihood estimation of the model parameters. We also show how to select the maximum likelihood poset. The model is applied to genetic data from different cancers and from drug resistant HIV samples, indicating implications for diagnosis and treatment.

  11. Chip integrated fuel cell accumulator

    Frank, M.; Erdler, G.; Frerichs, H.-P.; Müller, C.; Reinecke, H.

    A unique new design of a chip integrated fuel cell accumulator is presented. The system combines an electrolyser and a self-breathing polymer electrolyte membrane (PEM) fuel cell with integrated palladium hydrogen storage on a silicon substrate. Outstanding advantages of this assembly are the fuel cell with integrated hydrogen storage, the possibility of refuelling it by electrolysis and the opportunity of simply refilling the electrolyte by adding water. By applying an electrical current, wiring the palladium hydrogen storage as cathode and the counter-electrode as anode, the electrolyser produces hydrogen at the palladium surface and oxygen at the electrolyser cell anode. The generated hydrogen is absorbed by the palladium electrode and the hydrogen storage is refilled consequently enabling the fuel cell to function.

  12. Chip integrated fuel cell accumulator

    Frank, M.; Mueller, C.; Reinecke, H. [Laboratory for Process Technology, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg (Germany); Erdler, G.; Frerichs, H.-P. [Micronas GmbH, Hans-Bunte-Strasse 19, Freiburg (Germany)

    2008-07-01

    A unique new design of a chip integrated fuel cell accumulator is presented. The system combines an electrolyser and a self-breathing polymer electrolyte membrane (PEM) fuel cell with integrated palladium hydrogen storage on a silicon substrate. Outstanding advantages of this assembly are the fuel cell with integrated hydrogen storage, the possibility of refuelling it by electrolysis and the opportunity of simply refilling the electrolyte by adding water. By applying an electrical current, wiring the palladium hydrogen storage as cathode and the counter-electrode as anode, the electrolyser produces hydrogen at the palladium surface and oxygen at the electrolyser cell anode. The generated hydrogen is absorbed by the palladium electrode and the hydrogen storage is refilled consequently enabling the fuel cell to function. (author)

  13. Electron-Positron Accumulator (EPA)

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  14. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF. PMID:16955891

  15. Potential source regions of dust accumulated in northern Africa

    Wasowska, S.; Woronko, B.

    2012-04-01

    Sahara is the largest source of the dust in the world. The material sampled from dust storms in Tunisia (Nefta Oasis, El Kantoui Harbor), north Egypt (Alexandria) and Morocco (Mhamid Oasis) (March 2001, March and April 2009) was taken to identify the potential sources of dust accumulation and transport paths in North Africa. The samples were analyzed on grain size, micromorphology of silt grain surfaces in Scanning Electron Microscope (SEM), elemental composition of grains and their surface crusts, loss on ignition, mineralogical composition of samples and carbonate content. Additionally the meteorological situation was analyzed during the dust storm occurrences and preceding periods. The results of grain size analyses show that all studied sediments belong to the small dust type, and dust accumulated in Mhamid is the clay mineral agglomerated (CMA) dust. The source of the CMA are the old dry lake beds. Dust particles are mobilized as aggregates of clay minerals, what is controlled by structure (particle packing) of the original lake sediment, and accumulation is dry and wet as well. The results of the analysis of the quartz grain surface micromorphology, the elemental composition and loss on ignition indicate that dust accumulated in Morocco originated from a relatively homogenous sediment source and, on the other hand, dust found in Alexandria comes from a diversified source. Dust sampled in Tunisia is characterized by the highest content of carbonates and organic matter which suggests the intensive dispelling acting on the weathered material from carbonate rocks and local Mediterranean soil covers rich in CaCO3. The analyses of meteorological conditions during the dust storms and the analyses of the textural characteristics of deposits show that it is highly probable that analysed aeolian dust was transported both for shorter and longer distances. Hypothetic source areas of dust accumulated in Mhamid could be the old ergs, some located 300-500 km away like

  16. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii.

    Sui, Xiao; Niu, Xiangfeng; Shi, Mengliang; Pei, Guangsheng; Li, Jinghan; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-12-24

    The heterotrophic dinoflagellate alga Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In this study, we first evaluated two antioxidant compounds, butylated hydroxyanisole (BHA) and propyl gallate (PG), for their effects on lipid accumulation in C. cohnii. The results showed that antioxidant BHA could increase lipid accumulation in C. cohnii by 8.80% at a final concentration of 30 μM, while PG had no obvious effect on lipid accumulation at the tested concentrations. To decipher the molecular mechanism responsible for the increased lipid accumulation by BHA, we employed an integrated GC-MS and LC-MS metabolomic approach to determine the time-series metabolic profiles with or without BHA, and then subjected the metabolomic data to a principal component analysis (PCA) and a weighted gene coexpression network analysis (WGCNA) network analyses to identify the key metabolic modules and metabolites possibly relevant to the increased lipid accumulation. LC-MS analysis showed that several metabolites, including NADPH, could be important for the stimulation role of BHA on lipid accumulation. Meanwhile GC-MS and network analyses allowed identification of eight metabolic modules and nine hub metabolites possibly relevant to the stimulation role of BHA in C. cohnii. The study provided a metabolomics view of the BHA mode of action on lipid accumulation in C. cohnii, and the information could be valuable for a better understanding of antioxidant effects on lipid accumulation in other microalgae as well. PMID:25436856

  17. Guidelines for Waste Accumulation Areas (WAAs)

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs

  18. Guidelines for Waste Accumulation Areas (WAAs)

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs.

  19. Radionuclide accumulation peculiarities demonstrated by vegetable varieties

    This study focused on ecological and genetic aspects of radionuclide accumulation demonstrated by a number of vegetable varieties. The researches resulted in determining the cabbage varieties which were characterised by the minimal level of radionuclide accumulation. It was shown that the above varieties manifested the relation between radionuclide accumulation and morphobiological characteristics such as vegetation period duration and yield criteria. The study specified the genotypes with high ecological stability as regards to radionuclide accumulation: 'Beloruskaya 85' cabbage and 'Dokhodny' tomato showed the best response to Cs 137, while 'Beloruskaya 85', 'Rusinovka', 'Amager 611' cabbage varieties and 'Sprint' tomato showed the minimal level of Sr 90 accumulation. (authors)

  20. Double-mode pulsation

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  1. Energetic Ion Interactions with Tearing Mode Stability

    Halfmoon, Michael; Brennan, Dylan

    2015-11-01

    This study focuses on the interactions between energetic ions and pressure-driven, slow growing tearing modes in high beta tokamaks. Previous studies have shown that energetic ions interact with and affect the tearing mode stability, in a mechanism similar to those of ideal MHD instabilities and resistive wall modes. The 2/1 tearing mode is found to be damped or stabilized in the presence of energetic ions, with the most significant effects on the slow-growing resistive mode. To gain an understanding of the underlying physics of these effects, we have investigated a combination of reduced analytics and numerical simulations. In the reduced model, a high aspect ratio, step function equilibrium is investigated, where the dynamics of high-energy ions interacting with the tearing mode is implemented through integration over the pressure step. In the simulations, a series of experimentally relevant D-shaped equilibria with fixed monotonic safety factor and varying peaked pressure profiles is analyzed using the δf hybrid kinetic-mhd code in NIMROD. Results show a damping effect from the ions that is consistent between the reduced model and the simulations. The stabilizing effect is mainly due to trapped particle resonance, causing the tearing mode to have a finite frequency. US DOE Grant DE- SC0004125.

  2. Sludge accumulation pattern inside oxidation ditch case study.

    Fouad, Moharram; El-Morsy, Ahmed

    2014-01-01

    The sludge accumulation pattern of an oxidation ditch (OD) plant treating municipal wastewater was observed under dry and wet weather conditions, during 3 years of operation. The accumulation patterns along the ditches and their rates were revealed. In addition, the composition of the accumulation was investigated. Finally, the ratio of sand and volatile particles, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids, as well as the removal efficiency were also observed against the accumulated sludge. Further, a laboratory-scale channel was used to investigate the settleability of grit after mixing with variable values of MLSS. The observed results indicated that the economical design and operation of ODs using a velocity value between 0.3-0.35 m/s is not recommended, to avoid the settling of all solids. High values of MLSS and sludge age need high horizontal velocity (more than 0.35 m/s) and more power to avoid settling problems and system failure. The influence of flow velocity on the sludge settleability was studied, enabling better planning of future ditch design and operation. PMID:24960009

  3. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  4. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  5. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  6. Elementary particles

    Fritzsch, Harald; Heusch, Karin

    Introduction -- Electrons and atomic nuclei -- Quantum properties of atoms and particles -- The knives of Democritus -- Quarks inside atomic nuclei -- Quantum electrodynamics -- Quantum chromodynamics -- Mesons, baryons, and quarks -- Electroweak interactions -- Grand unification -- Conclusion.

  7. Elementary Particles

    Parham, R.

    1974-01-01

    Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)

  8. Stochastic component mode synthesis

    Bah, Mamadou T.; Nair, Prasanth B.; Bhaskar, Atul; Keane, Andy J.

    2003-01-01

    In this paper, a stochastic component mode synthesis method is developed for the dynamic analysis of large-scale structures with parameter uncertainties. The main idea is to represent each component displacement using a subspace spanned by a set of stochastic basis vectors in the same fashion as in stochastic reduced basis methods [1, 2]. These vectors represent however stochastic modes in contrast to the deterministic modes used in conventional substructuring methods [3]. The Craig-Bampton r...

  9. Streaming gravity mode instability

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  10. Resistive ballooning mode equation

    Bateman, G.; Nelson, D. B.

    1978-10-01

    A second-order ordinary differential equation on each flux surface is derived for the high mode number limit of resistive MHD ballooning modes in tokamaks with arbitrary cross section, aspect ratio, and shear. The equation is structurally similar to that used to study ideal MHD ballooning modes computationally. The model used in this paper indicates that all tokamak plasmas are unstable, with growth rate proportional to resistivity when the pressure gradient is less than the critical value needed for ideal MHD stability.

  11. Particle identification

    A variety of subjects are addressed within the general context of searching for limitations in capability of particle identification due to high average rates. Topics receiving attention included Cerenkov ring imaging, transition radiation, synchrotron radiation, time-of-flight, high P spectrometer, heavy quark tagging with leptons, general purpose muon and electron detector, and dE/dx. It is concluded that particle identification will probably not represent a primary obstacle at luminosities of 1033cm-2sec-1

  12. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  13. Quasilinear Line Broadened Model for Energetic Particle Transport

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  14. Higgs particles

    The theoretical work on models of the electroweak interaction and simple grand unified models with a nonstandard set of Higgs particles is reviewed. Emphasis is placed on light and even strictly massless Higgs particles: Goldstone and pseudo-Goldstone bosons. It is shown that such bosons arise in a natural way in the theory if the Higgs particles are in fact composite. The low-energy effective Lagrangian of these particles is studied. A detailed study is made of the problem of CP breaking in a strong interaction and of a natural solution of this problem through the introduction of a pseudo-Goldstone particle: an axion. The theory of the ''standard'' axion and its experimental status are reviewed. Possible ''invisible'' and ''visualized'' axions are discussed, as are certain astrophysical aspects of the existence of an axion. By analogy with the axion, an analysis is made of another hypothetical particle: the strictly massless Goldstone boson or arion. Model-independent properties of the arion are determined. The similarity between the arion fields and magnetic fields and the differences between these fields are shown. Possible methods for detecting an arion field are discussed. An experiment which has set a limit on the strength of the arion interaction is described. Neutral Goldstone bosons whose emission is accompanied by changes in fermion flavors (''familons'') are discussed. Two versions of the theory with a Goldstone boson (a majoron) which arises upon a spontaneous breaking of lepton number are described

  15. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  16. Analysis of micro-particles in TRISTAN vacuum chambers

    Micro-particles in the beam chamber of a TRISTAN vacuum system were investigated from the point of view of suppressing micro-particles trapped in the accumulation ring. Micro-particles coming from ion pumps (IP) and distributed ion pumps (DIP), aluminium alloy particles produced during treatment of aluminium alloy chambers for welding, micro-particles from the environment, i.e.soil (granite rocks or amphiboles), particles of concrete and painting materials were identified. A molten iron particle found in a chamber suggests interaction between the particle and bunched electron beam. Most of the particles coming from outside the chambers can be avoided by using high class clean rooms. The particles from the ion pumps can be reduced using different pumps which do not emit particles. The particles produced during assembly of, for example, DIP must be suppressed by accepting different assembling from the traditional ones. (author)

  17. Hygroscopic growth of urban aerosol particles in Beijing (China during wintertime: a comparison of three experimental methods

    J. Meier

    2009-03-01

    Full Text Available This paper presents hygroscopicity measurements of aerosol particles in the urban atmosphere of Beijing carried out in January 2005. Therefore, three different methods were used: 1 Combining Humidifying Differential Mobility Particle Sizer (H-DMPS and Twin Differential Mobility Particle Sizer (TDMPS measurements; 2 Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA technique; 3 Calculating hygroscopic growth factors on the basis of a solubility model quantified by Micro Orifice Uniform Deposit Impactor (MOUDI samples. Particle number size distributions from H-DMPS and TDMPS were evaluated to derive size-resolved descriptive hygroscopic growth factors (DHGF of 30–400 nm particles at relative humidities (RH of 55%, 77% and 90%. The atmospheric particles in Beijing were rather hydrophobic, with a maximum growth factor in the accumulation mode around 1.40 (±0.03 at 90% RH. The descriptive hygroscopic growth factors decreased significantly towards the lower measurement limit (1.04 (±0.15 at Dp=30 nm. A good agreement was found between the DHGFs and the H-TDMA-derived hygroscopic growth factors in the accumulation mode (100–400 nm, the DHGFs underestimated the values from the H-TDMA in the Aitken mode (<100 nm by up to 0.1 at 90% RH. The calculation of hygroscopic growth factors based on the measured chemical composition showed that different modes of combining the inorganic ions caused a variation in growth factor of 0.1 at 90% RH. The solubility model was able to reproduce the size-dependent trend in the growth factor found by the other methods. In two cases of ion-dominated aerosol, the composition-derived growth factors tended to agree (±0.05 or underestimate (up to 0.1 the values measured by the other two methods. In the case of the organic-dominated aerosol, the reverse was true, with an overestimation of up to 0.2. The results shed light on the real experimental and methodological uncertainties that are still

  18. Elementary particle physics: Experimental

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 1013eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  19. Circling particles and drafting in optical vortices

    Reichert, Michael; Stark, Holger

    2004-01-01

    Particles suspended in a viscous fluid circle in optical vortices generated by holographic optical-tweezer techniques [Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901]. We model this system and show that hydrodynamic interactions between the circling particles determine their collective motion. We perform a linear-stability analysis to investigate the stability of regular particle clusters and illustrate the limit cycle to which the unstable modes converge. We clarify that drafting o...

  20. Kinetic effect of toroidal rotation on the geodesic acoustic mode

    Guo, W., E-mail: wfguo@ipp.ac.cn; Ye, L.; Zhou, D.; Xiao, X. [Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui 230031 (China); Wang, S. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-01-15

    Kinetic effects of the toroidal rotation on the geodesic acoustic mode are theoretically investigated. It is found that when the toroidal rotation increases, the damping rate increases in the weak rotation regime due to the rotation enhancement of wave-particle interaction, and it decreases in the strong rotation regime due to the reduction of the number of resonant particles. Theoretical results are consistent with the behaviors of the geodesic acoustic mode recently observed in DIII-D and ASDEX-Upgrade. The kinetic damping effect of the rotation on the geodesic acoustic mode may shed light on the regulation of turbulence through the controlling the toroidal rotation.

  1. Diffraction of entangled particles by light gratings

    Sancho, Pedro

    2015-04-01

    We analyze the diffraction regime of the Kapitza-Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light-matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt's number. In particular, symmetric entanglement can cancel the exchange effects.

  2. Surface plasmon polaritons scattering by subwavelength dielectric particles

    Aporvari, Mehdi Shafiei

    2015-01-01

    Surface plasmon polaritons scattering from subwavelength dielectric particles is investigated using finite difference time domain method. It is shown that coupling an incident surface plasmon polariton to inter-cavity modes of the particle can dramatically changes transmitted fields and plasmon-induced forces. In particular, both transmission and optical forces are highly sensitive to the particle size that is related to the excitation of whispering gallery modes or standing-wave modes depending on the particle shape and size. This features might have potential sensing applications.

  3. Fast magnetic reconnection associated with kink modes

    A three-dimensional particle-in-cell simulation in a large system demonstrates that a kink mode significantly contributes to a fast reconnection by providing magnetic dissipation through anomalous resistivity. The anomalous resistivity is generated due to the electron heating in the thin electron current sheet. It is interesting that, although the kink mode broadens the width of the current sheet and decreases the inertia resistivity, the anomalous resistivity compensates the depletion so as to keep a high reconnection rate. The present result suggests that the electron dynamics in the electron diffusion region is automatically adjusted so as to produce sufficient dissipation for the fast magnetic reconnection. (author)

  4. Characterization and parameterization of atmospheric particle number-, mass-, and chemical-size distributions in central Europe during LACE 98 and MINT

    Neusüß, C.; Wex, H.; Birmili, W.; Wiedensohler, A.; Koziar, C.; Busch, B.; Brüggemann, E.; Gnauk, T.; Ebert, M.; Covert, D. S.

    2002-11-01

    Intensive measurements of chemical and physical properties of the atmospheric aerosol have been performed at two sites in central Europe during the Melpitz-Intensive (MINT) in November 1997 and the Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) in July and August 1998. Number-size distributions, hygroscopic particle growth, size-segregated gravimetric mass, and size-segregated chemical masses of water-soluble ions and organic and elemental carbon of aerosol particles have been measured. To obtain information on the quality of the different methods, the number-derived, gravimetric, and chemically derived mass distributions are compared. Gravimetric mass of fine particles is attributed completely to chemical composition by carbonaceous material and ions, including an estimate of the water content due to hygroscopic compounds. For the characterization of coarse particles, which contribute less to the total mass concentration, insoluble material has to be included in the mass balance. Mass concentrations calculated from the number-size distributions are well correlated with the gravimetric mass concentration; however, the calculated mass is larger, especially for the Aitken and accumulation modes. The number-derived mass concentration is most sensitive to the sizing uncertainty of the measured number-size distribution. Moreover, the impactor cutoffs and the limited knowledge about the density of the particles (especially with high carbon content) account for a major part of the uncertainties. The overall uncertainty of the calculated mass, determined as the standard deviation of the average value in a Monte Carlo approach, is found to be about 10%. Lognormal parameters for the number-size and volume-size distributions as well as gravimetric mass-size distribution and corresponding chemical composition are presented for different air mass types. Most of the modal parameters do not differ significantly between the air mass types. Higher mass concentrations

  5. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis.

    Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-06-21

    The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles. PMID:27219077

  6. Ballooning mode spectrum in general toroidal systems

    Dewar, R.L.; Glasser, A.H.

    1982-04-01

    A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.

  7. Quantum gravity and inventory accumulation

    Sheffield, Scott

    2011-01-01

    We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surfa...

  8. Environmental applications of the particle analysis system

    Moritz, E.J.; Hoffman, C.R.

    1993-09-28

    This study demonstrates the applicability of particle counting technology for analysis of various water treatment systems at the Rocky Flats Plant. The Particle Analysis System described in this study determined the water quality of samples from environmental remediation, stormwater treatment, and drinking water treatment operations. Samples were measured in either discrete or on-line mode. This data showed filtration efficiencies, particle counts, particle size distributions, and real-time treatment system performance. Particle counting proved more sensitive than the turbidimetric measurement technique commonly used by the water treatment industry. Particle counting is a two-dimensional measurement of counts and sizes, whereas turbidity is a one-dimensional measurement of water clarity. Samples showing identical turbidities could be distinguished easily with the Particle Analysis System. The Particle Analysis System proved to be an efficient and reliable water quality measurement tool, and it is applicable to a variety of water treatment systems at the Rocky Flats Plant.

  9. Microwave plasma mode conversion

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.)

  10. Modes of collaborative reflection

    Degeling, Martin; Prilla, Michael

    2011-01-01

    In this paper, we describe different modes of collaborative reflection as processes of learning at the workplace. We explain why reflection is a decisive means of learning and - based on the modes we describe - how groups of people can be supported in reflection together. For this, we describe how scheduled, concurrent and spontaneous collaborative reflection can be supported by articulation, guidance and synergizing.

  11. Linear mode competition studies in multi-cavity gyroklystron amplifiers

    In multi-cavity gyroklystron amplifiers, the drift sections between cavities are generally designed to cutoff the mode of interest; it is the isolation between cavities that keeps the circuit from oscillating as a whole. Higher frequency modes, however, are not cutoff in the drift tubes. Because of their long effective length, these modes may have low start oscillation currents. Using the scattering matrix method, the authors find the modes in a complex, cylindrical cavity as an expansion in transverse eigenfunctions. They then compute the start oscillation current by numerically integrating the particles through the circuit. The start oscillation current determines the level of wall loading needed to suppress the mode. Results are presented for the two cavity gyroklystron amplifier to be used in an initial University of Maryland experiments. Curves of start oscillation current vs. magnetic field are shown for selected modes with azimuthal mode numbers of 0,1, and 2

  12. New model of cobalt activity accumulation on stainless steel piping surfaces under boiling water reactor conditions

    A new technique for on-line measurement of corrosion amount and activity accumulation was developed. Cobalt activity accumulation tests were conducted under the normal water chemistry (NWC) condition (electrochemical corrosion potential (ECP): +0.15 V vs. SHE) and the hydrogen water chemistry (HWC) condition (ECP -0.30 V vs. SHE, -0.42 V vs. SHE) to evaluate cobalt activity accumulation under HWC conditions in boiling water reactors (BWRs). Total corrosion decreased and cobalt activity accumulation increased as ECP decreased. Experimental data were reproduced by a new model, in which cobalt activity deposits on oxide particle surfaces by absorption or replacement. This model estimated the cobalt activity accumulation under HWC conditions (ECP <-0.42 V vs. SHE) after 10000 h to be 12 times as large as that under NWC conditions (ECP +0.15 V vs. SHE). (author)

  13. Twin mode rotation method

    R.G. 1.92 modal combination rules for the response spectrum method design of multiple degrees of freedom (MDOF) piping systems are known to yield highly overestimated results for correlated close modes, so-called ''twin modes.'' These modes occur either when two independent sub-structures of a system possess identical natural frequencies, or when a large mass ratio exists between two coupled sub-structures at tuned natural frequencies. The Twin Mode Rotation (TMR) method aims at removing this unwanted degree of conservatism by performing a rotation of the twin mode pair in the modal space before combining them following R.G. 1.92. The theoretical basis and validation of the method and its practical implementation are presented. Academic problems and real cases in large-scale piping systems are discussed

  14. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    Hirsikko, A.; Vakkari, V.; Tiitta, P.; Manninen, H. E.; Gagné, S.; Laakso, H.; Kulmala, M.; Mirme, A.; Mirme, S.; Mabaso, D.; Beukes, J. P.; Laakso, L.

    2012-05-01

    South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC). The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM) were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO) and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during nucleation events were similar to results previously published for a semi

  15. Harmonic Oscillators and Elementary Particles

    Sobouti, Y

    2016-01-01

    Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...

  16. Carbon particles

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  17. Particle detectors

    Joram, Christian

    1998-01-01

    The lecture series will present and overview of the basic techniques and underlying physical principles of particle detectors, applied to current and future high energy physics experiments. Illustrating examples, mainly from the field of collider experiments, will demonstrate the performance and limitations of the various techniques. After and introduction we shall concentrate on particle tracking. Wire chambers, drift chambers, micro gaseous tracking devices and solid state trackers will be discussed. It follows and overview of scintillators, photon detection, fiber tracking and nuclear emulsions. One lecture will deal with the various techniques of calorimetry. Finally we shall focus on methods developed for particle identification. These comprise specific energy loss, time of flight Cherenkov and transition radiation detectors.

  18. Particle detectors

    Hilke, Hans Jürgen; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  19. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  20. The two-particle two-slit experiment

    Sancho, Pedro

    2014-01-01

    Identical two-particle interferometry provides a scenario where interference and exchange effects manifest at once. We present a detailed calculation of the detection patterns in the two-particle two-slit experiment by extending Feynman's Gaussian slit approach to multi-mode states. We show the existence of two regimes depending on the mode distributions. In one of them we find a novel behavior for bosons, with detection patterns almost equal to those of distinguishable particles although the...

  1. Particle physics

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  2. Virtual effects of Higgs particles

    McWilliams, Bruce; Li, Ling-Fong

    1981-02-01

    The possibility of observing Higgs particles through virtual effects is considered in detail for a general gauge theory. The effect of charged Higgs particles on low-energy weak interaction processes, like muon decay, tau decay, nuclear beta decay, pion decay, and some higher-order processes is analyzed. The effect of flavor-changing neutral Higgs particles on rare decay modes of the muon and kaon, μe conversion, K o- overlineKo and D o- overlineDo mixing is also studied. We discuss constraints on possible extensions of the Weinberg-Salam model and experiments sensitive to their Higgs particles. In particular, we analyze the neutral Higgs which couple to fermions in the minimal SU(2) L×SU(2) R×U(1) model and find that they probably have mass greater than 100 GeV.

  3. Spatial Accumulation-Rate Pattern Inferred from Radar Internal Layers and Point Measurements of Velocity and Accumulation near Taylor Mouth, Victoria Land

    Waddington, E. D.; Neumann, T. A.; Morse, D. L.; Marshall, H.

    2002-12-01

    Internal layers in ice sheets, as measured by ice-penetrating radar, are most likely isochrones. The depth to a shallow internal layer is proportional to the local accumulation rate. However, low-frequency radars often do not record very shallow layers. High-frequency radars (GPR) record shallow layers, but cannot detect the deeper layers that reflect longer-term patterns of climate. Older, deeper layers are also influenced to an increasing degree by accumulated strain due to ice flow, and by the upstream accumulation rate. For this Geophysical Inverse Problem, our Forward Model is a steady-state ice-flow model with measured ice-sheet surface topography, ice thickness, and flowband width, which tracks particles to create modelled internal layers. Ice motion is driven by the input flux into the upper end of the flowband, and by the accumulation pattern along the flowband. To solve the Inverse Problem, our observations comprise depth of an internal layer, and point measurements of accumulation rate and surface velocity. Associated uncertainties are also required. We use Least-Squares or Singular-Value Decomposition to solve for model parameters (input ice flux, piece-wise linear accumulation-rate profile, and layer age) that minimize the mismatch between the data and the model estimates of the data. If the layer age and its uncertainty are known independently, they can also be used. Variable weights can be assigned to each type of data. The data-resolution matrix shows that, for shallow layers, we can resolve high-wavenumber variations in accumulation rate. For deeper layers, we resolve spatial averages of accumulation rates. We apply the model to a flowband at Taylor Mouth between Taylor Dome and Taylor Glacier. The model finds more variation in the inferred accumulation-rate profile than in the depth-profile of an internal layer. The new accumulation-rate profile produces an improved chronology for an ice core collected along the flowline.

  4. ACCUMULATION AND CONSUMPTION IN MICROECONOMIC SYSTEM

    Serghey A. Amelkin

    2004-12-01

    Full Text Available Two main processes are common for an economic system. They are consumption and accumulation. The first one is described by utility function, either cardinal or ordinal one. The mathematical model for accumulation process can be constructed using wealth function introduced within the frame of irreversible microeconomics. Characteristics of utility and wealth functions are compared and a problem of extreme performance of resources exchange process is solved for a case when both the consumption and accumulation exist.

  5. Natural Resource Abundance and Human Capital Accumulation

    Jean-Philippe C. Stijns

    2001-01-01

    This study examines indicators of human capital accumulation together with data for natural resource abundance and rents in a panel of 102 countries running from 1970 to 1999. Mineral wealth makes a positive and marked difference on human capital accumulation. Matching on observables reveals that cross-country results are not driven by a third factor such as overall economic development. Political stability does seem to affect both human capital accumulation and subsoil wealth, but not enough...

  6. Modes of storage ring coherent instabilities

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered

  7. Predictions for particle deposition from LES of ribbed channel flow

    Predictions for the deposition of spherical and cylindrical particles from a ribbed channel flow onto adjacent flow boundaries are obtained using large eddy simulation (LES) under the assumption of one-way coupling. Results indicate that spherical particles tend to accumulate on the vertical rib wall facing the mean-flow direction with little particle deposition onto surfaces immediately downstream of the rib. This preferential deposition is not predicted for cylindrical particles

  8. TM01 mode accelerating cavity optimization

    The cost of an accelerator depends greatly upon the effective use of rf power for particle acceleration. Before completing an accelerator design, an optimization of the accelerating cells relative to the effective shunt impedance should be made to measure the structure's efficiency in providing a high and effective acceleration of particles for a given rf power. Optimization of the accelerating cell resonant at f/sub r/ = 1350 MHz (TM01 mode) relative to the maximum effective shunt impedance ZT2 was performed at the Los Alamos Scientific Laboratory using the computer program SUPERFISH. The study was parametric; one parameter was changed while the others were held constant. Frequency adjustments were made by changing the cavity radius. Results presented in this report can be used to design similar cavities at different resonant frequencies or to design a more complicated cavity (TM02 mode) for the disk and washer structure

  9. Heat Exchange and Thermal Modes of Modern Ring Furnaces

    V. I. Timoshpolsky

    2014-06-01

    Full Text Available The paper considers an accumulated experience concerning investigation of heat exchange and thermal modes of ring furnaces applied for heating simulation. Physical and mathematical model and methodology for theoretical investigation of round billet heating in the ring furnace are proposed in the paper.

  10. Cluster analysis of WIBS single particle bioaerosol data

    Robinson, N. H.; Allan, J. D.; Huffman, J. A.; Kaye, P. H.; Foot, V. E.; Gallagher, M.

    2012-09-01

    Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS). The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL) before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity) to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.

  11. Cluster analysis of WIBS single particle bioaerosol data

    N. H. Robinson

    2012-09-01

    Full Text Available Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS. The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.

  12. Characteristics of wave-particle interaction in a hydrogen plasma

    We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency ω, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with ω for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV-100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps wave-particle interaction is a serious candidate for the ring current decay. (authors)

  13. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    2010-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM...

  14. Particle Physics

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  15. Particle blender

    An infinite blender that achieves a homogeneous mixture of fuel microspheres is provided. Blending is accomplished by directing respective groups of desired particles onto the apex of a stationary coaxial cone. The particles progress downward over the cone surface and deposit in a space at the base of the cone that is described by a flexible band provided with a wide portion traversing and in continuous contact with the circumference of the cone base and extending upwardly therefrom. The band, being attached to the cone at a narrow inner end thereof, causes the cone to rotate on its arbor when the band is subsequently pulled onto a take-up spool. As a point at the end of the wide portion of the band passes the point where it is tangent to the cone, the blended particles are released into a delivery tube leading directly into a mold, and a plate mounted on the lower portion of the cone and positioned between the end of the wide portion of the band and the cone assures release of the particles only at the tangent point

  16. Surface modes in physics

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  17. Switch mode power supply

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  18. Stability of magnetic modes in tokamaks

    A theoretical study is carried out concerning two experimental topics: stabilization, by a suprathermal population, of the mode ''m=1, n=1'' which induces the sawtooth effect (modelling the role of suprathermal particles in the stabilization); stability, in the non linear regime, of the magnetic islands involved in magnetic turbulence problems (micro-tearing) and in disruption phenomena (tearing), and the effects of diamagnetism, excitation threshold and saturation levels. 45 figs., 97 refs

  19. Edge Localized Mode Control in TCV

    Rossel, Jonathan

    2012-01-01

    The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma regime, the H-mode, in which the energy and particle confinement are enhanced by a transport barrier located at the plasma edge and forming a pedestal in the plasma pressure profile. In standard axisymm...

  20. Dynamic rotor mode in antiferromagnetic nanoparticles

    Lefmann, K.; Jacobsen, H.; Garde, J; Hedegard, P.; Wischnewski, Andreas; Ancona, S.N.; Jacobsen, H. S.; Bahl, C R H; Theil Kuhn, L.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic sign...

  1. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm− 3, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm− 3). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm− 3 at the urban site and 0.9 ± 0.1 cm− 3 at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm− 3, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean value. - Highlights:

  2. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    Nicolás, J.F., E-mail: j.nicolas@umh.es [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Crespo, J.; Yubero, E.; Soler, R. [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Carratalá, A. [Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080 Alicante (Spain); Mantilla, E. [Instituto Universitario CEAM-UMH, Parque Tecnológico, C/Charles R. Darwin 14, E-46980 Paterna (Spain)

    2014-01-01

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm{sup − 3}, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm{sup − 3}). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm{sup − 3} at the urban site and 0.9 ± 0.1 cm{sup − 3} at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm{sup − 3}, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O{sub 3} levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean

  3. Dynamic rotor mode in antiferromagnetic nanoparticles

    Lefmann, Kim; Jacobsen, H.; Garde, J.;

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K....... However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all...... measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The...

  4. Low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma

    S S Duha; S K Paul; A K Banerjee; A A Mamun

    2004-11-01

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust associated modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned.

  5. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  6. Single mode thermal emission.

    Fohrmann, Lena Simone; Petrov, Alexander Yu; Lang, Slawa; Jalas, Dirk; Krauss, Thomas F; Eich, Manfred

    2015-10-19

    We report on the properties of a thermal emitter which radiates into a single mode waveguide. We show that the maximal power of thermal radiation into a propagating single mode is limited only by the temperature of the thermal emitter and does not depend on other parameters of the waveguide. Furthermore, we show that the power of the thermal emitter cannot be increased by resonant coupling. For a given temperature, the enhancement of the total emitted power is only possible if the number of excited modes is increased. Either a narrowband or a broadband thermal excitation of the mode is possible, depending on the properties of the emitter. We finally discuss an example system, namely a thermal source for silicon photonics. PMID:26480429

  7. Resonance vector mode locking

    Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P

    2015-01-01

    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...

  8. Supersymmetric mode converters

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  9. Van Kampen modes for bunch longitudinal motion

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  10. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper

    Zhang, Kai; Chen, Tianning; Wang, Xiaopeng; Fang, Jianglong

    2016-03-01

    To explore the optimal damping mechanism of non-obstructive particle dampers (NOPDs), research on the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs was carried out based on the rheological properties of vibrated granular particles. Firstly, the damping performance of NOPDs under different excitation intensity and gap clearance was investigated via cantilever system experiments, and an approximate evaluation of the effective mass and effective damping of NOPDs was performed by fitting the experimental data to an equivalent single-degree-of-freedom (SDOF) system with no damping particles. Then the phase diagrams which could show the motion mode of damping particles under different excitation intensity and gap clearance were obtained via a series of vibration table tests. Moreover, the dissipation characteristic of damping particles was explored by the discrete element method (DEM). The study results indicate that when NOPDs play the optimal damping effect the granular Leidenfrost effect whereby the entire particle bed in NOPDs is levitated above the vibrating base by a layer of highly energetic particles is observed. Finally, the damping characteristics of NOPDs was explained by collisions and frictions between particle-particle and particle-wall based on the rheology behavior of damping particles and a new dissipation mechanism was first proposed for the optimal damping performance of NOPDs.

  11. Local modes, local vacuum, local bogoljubov coefficients and the renormalised stress tensor

    Massar, S.

    1993-01-01

    Local modes and local particles are defined at any point in curved space time as those that most resemble Minkowsky modes at that point. It is shown that the renormalised stress tensor is the difference of energy between the physical vacuum and that defined by these local modes.

  12. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Baranov, M. A.; Bogdanov, K. V. [ITMO University (Russian Federation); Averkiev, N. S.; Golubev, V. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  13. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production

    Peng, J. F.; Hu, M.; Wang, Z. B.; Huang, X. F.; Kumar, P.; Wu, Z. J.; Guo, S.; Yue, D. L.; Shang, D. J.; Zheng, Z.; He, L. Y.

    2014-09-01

    Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effects on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns between 2007 and 2011 at 13 individual sites in China, including five urban sites, four regional sites, three coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15-600 nm size range. The median particle number concentrations (PNCs) were found to vary in the range of 1.1-2.2 × 104 cm-3 at urban sites, 0.8-1.5 × 104 cm-3 at regional sites, 0.4-0.6 × 104 cm-3 at coastal/background sites, and 0.5 × 104 cm-3 during cruise measurement. Peak diameters at each of these sites varied greatly from 24 to 115 nm. Particles in the 15-25 nm (nucleation mode), 25-100 nm (Aitken mode) and 100-600 nm (accumulation mode) range showed different characteristics at each sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF) events were much higher at urban and regional sites than at coastal sites and during cruise measurement. The average growth rates (GRs) of nucleation mode particles were 8.0-10.9 nm h-1 at urban sites, 7.4-13.6 nm h-1 at regional sites and 2.8-7.5 nm h-1 at coastal sites and during cruise measurement. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink (CS) during NPF days were observed among different site types

  14. On accumulation time of the Jupiter

    It is suggested that accumulation time of Mars is strongly influenced by the presence of proto-Jupiter. It is shown that accumulation time of the Mars constrains the growth time scale for Jupiter. This constraint has been roughly estimated to be ∼ 1.7x107 y nearly in agreement with the lifetime of T Tauri phase of the Sun

  15. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  16. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    C. H. Twohy

    2013-03-01

    Full Text Available The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI, and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower

  17. Bi-modes alternation stepping ultrasonic motors

    Jiamei JIN; Chunsheng ZHAO

    2008-01-01

    Based on the principle of alternative operation of two bending vibration modes in an annular stator, this paper presents a standing-wave stepping ultrasonic motor characterized by no accumulative errors driven by an open-loop control circuitry. The driving forces are generated from the motions of projections on the stator in two modes. The positioning of the motor is achieved by the cooperation between the stator projections and rotor teeth, and the number of the rotors determines the stepping angle of the motor. Two-phase sinusoidal signals corresponding to the two modal frequencies drive the motor bi-direction stepping rotation via a switch unit. The prototype runs steadily without miss-step on trial. The single-step angle displacement of the motor is 2.5°.

  18. Zero modes and divergence of entanglement entropy

    Mallayya, Krishnanand; Shankaranarayanan, S; Padmanabhan, T

    2014-01-01

    We investigate the cause of the divergence of the entanglement entropy for the free scalar fields in $(1+1)$ and $(D + 1)$ dimensional space-times. In a canonically equivalent set of variables, we show explicitly that the divergence in the entanglement entropy in $(1 + 1)-$ dimensions is due to the accumulation of large number of near-zero frequency modes as opposed to the commonly held view of divergence having UV origin. The feature revealing the divergence in zero modes is related to the observation that the entropy is invariant under a hidden scaling transformation even when the Hamiltonian is not. We discuss the role of dispersion relations and the dimensionality of the space-time on the behavior of entanglement entropy.

  19. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  20. Surgical smoke and ultrafine particles

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  1. Unified theory of particle decay modes in electonic model

    Jian, C.X.

    1982-06-01

    In a previous paper we have given a reasonable description of the total number of constituents (eletons and antieletons) in Santilli's structure model of hadrons. In this paper we shall extend these results to inlude decays of unstable hadrons. We shall continue to use the theory of stable and unstable groups with particular reference to Euler's function.

  2. Accumulation of zirconium by microalgae and cyanobacteria

    The accumulation of zirconium (Zr) as [Zr4-(OH)8(H2O)16]8+ by cyanobacteria and microalgae has been characterized. In all the cyanobacterial and microalgal species examined, accumulation consisted of a single rapid energy-independent phase (''biosorp-tion'') and no energy-dependent accumulation was observed. Biosorption of Zr was concentration-dependent, followed a Freundlich adsorption isotherm, and was dependent on pH, showing decreased accumulation with decreased pH. Prior treatment with Na+, K+, Cs+, Ca2+, Mg2+ and Sr2+ (added as chlorides) also decreased Zr accumulation by cyanobacteria and microalgae, probably a result of competition between Zr ions and othecations, including H+, for available binding sites on the cell walls. Zr desorption from micoalgae and cyanobacteria was increased by increasing external cation concentrations or by decreasing the pH of the desorption agent. (orig.)

  3. Particle identification

    Particle IDentification (PID) is fundamental to particle physics experiments. This paper reviews PID strategies and methods used by the large LHC experiments, which provide outstanding examples of the state-of-the-art. The first part focuses on the general design of these experiments with respect to PID and the technologies used. Three PID techniques are discussed in more detail: ionization measurements, time-of-flight measurements and Cherenkov imaging. Four examples of the implementation of these techniques at the LHC are given, together with selections of relevant examples from other experiments and short overviews on new developments. Finally, the Alpha Magnetic Spectrometer (AMS 02) experiment is briefly described as an impressive example of a space-based experiment using a number of familiar PID techniques.

  4. Accelerator system and method of accelerating particles

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Micromagnetic simulation of a ferromagnetic particle

    Ntallis N.

    2014-01-01

    Full Text Available In this work, the magnetic behaviour of a ferromagnetic particle has been investigated by means of micromagnetic modelling, using the Finite Element Method. The simulations were performed on an ellipsoidal particle with uniaxial magnetocrystalline anisotropy by varying the anisotropy constant, the shape and dimensions of the particle. The results indicate the critical particle size for different reversal modes. Above a critical size the formation and motion of domain walls is clearly observed. The associated nucleation and coercive fields are estimated from the demagnetization curves.

  6. Structure and Characteristics of the Quasi-Coherent Mode in EDA H-mode Plasmas

    Cziegler, I.; Terry, J. L.; Lin, L.; Snipes, J. A.; Porkolab, M.

    2006-10-01

    The quasi-coherent mode (QCM), an edge fluctuation present in Enhanced Dα (EDA) H-mode confinement in Alcator C-Mod, is thought to have a decisive role in enhancing particle transport through the edge pedestal of these plasmas. We present detailed data of the mode structure both in real and spectral space, the propagation speed and direction in various regimes, and additional information on the resistive ballooning character of the mode (e.g. mode propagation with k.B 0 in the counter-current direction). We see a second harmonic at twice the frequency and poloidal wavenumber of the fundamental of the mode (kfundcirc at z = 0 varies between 1-2 cm-1); a radial phase variation over the ˜1 cm region across the pedestal where the mode is present; and a ballooning-like poloidal variation in amplitude. These observations will be used to examine the strengths and weaknesses of different models of the QC fluctuation, and should be of use in understanding its mechanism.

  7. Particle acceleration

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  8. Particle hunters

    This century has been the century of atom constituents and of elementary particles. The electron was discovered at the very end of last century and now we are waiting for the experimental confirmation of the existence of Higgs boson. The discovery of neutrons in 1932 let out the existence of 2 new forces: the strong interaction that counterbalances the repulsive Coulomb force between protons inside the nucleus and the weak interaction that triggers the decay of the neutron. Another milestone in particle physics was the replacement of hadrons (more than 100 particles) by their constituents: a mere mix of 3 quarks and their antiparticles. The standard model was introduced in 1919 by H.Weyl, who later made it suitable for electromagnetism. This model was generalized in 1953 and in 1973-1975 it was proving fundamental for all the interactions but gravitation. Today theoretical speculations attempting to unify gravitation to the other interactions are made, they are based on super-cord and super-membrane models. The authors describe the progress of physics through this century. (A.C.)

  9. Alfven frequency modes at the edge of TFTR plasmas

    An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the α-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed

  10. The mode-locking transition of random lasers

    Leonetti, Marco; Lopez, Cefe; 10.1038/nphoton.2011.217

    2013-01-01

    The discovery of the spontaneous mode-locking of lasers, i.e., the synchronous oscillation of electromagnetic modes in a cavity, has been a milestone of photonics allowing the realization of oscillators delivering ultra-short pulses. This process is so far known to occur only in standard ordered lasers with meter size length and only in the presence of a specific device (the saturable absorber). Here we demonstrate that mode-locking can spontaneously arise also in random lasers composed by micronsized laser resonances dwelling in intrinsically disordered, self-assembled clusters of nanometer-sized particles. Moreover by engineering a novel mode-selective pumping mechanism we show that it is possible to continuously drive the system from a configuration in which the various excited electromagnetic modes oscillate in the form of several, weakly interacting, resonances to a collective strongly interacting regime. By realizing the smallest mode-locking device ever fabricated, we open the way to novel generation o...

  11. A spectroscopic analysis of density-controlled impurity behavior in the DIII-D tokamak during H-mode

    With simultaneous spectral, temporal and chordal resolution, the STRS spectrometer was built to increase both the quality and quantity of spectroscopic impurity information available from tokamak discharges. The astigmatic properties of a grazing incidence spectrometer disperse spectra and provides angular resolution. STRS was installed at the DIII-D tokamak, and its data is compared to simulations to analyze impurity behavior. An unusual impurity behavior was discovered at DIII-D during H-mode with giant edge localized modes (ELMs): depending on the plasma current, impurities either accumulate in the plasma center, or are driven out from it. They also modulate at the ELM frequency. This behavior was found to depend on the electron density profile which oscillates between centrally peaked and hollow. Naturally occurring ELM phenomena produce electron density oscillations which cause impurity cycling and allow transport studies of intrinsic impurities. Particle flux is modeled with a constant anomalous diffusion coefficient and a convection coefficient which depends on electron density gradients. MIST impurity transport code simulation use time dependent electron density profiles, oscillating with giant ELMs, to show impurity concentrations follow the density peak as theoretically predicted. This reproduced the observations of intrinsic nickel spectra, and indicates that impurity transport in DIII-D h-mode is dominated by ion density gradients

  12. NASTRAN component-mode synthesis

    Guyan, R. J.

    1976-01-01

    Procedure for dynamic substructuring analysis technique is generally as follows: calculation of component modes; selection of component normal modes, calculation of component generalized matrices, assembly of system matrices, and computation of normal modes; and retrieval of component response.

  13. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igeneous Complex, South Africa

    Hirsikko, A.; Vakkari, V.; Tiitta, P.; Manninen, H. E.; Gagné, S.; Laakso, H.; Kulmala, M.; Mirme, A.; Mirme, S.; Mabaso, D.; Beukes, J. P.; Laakso, L.

    2012-01-01

    South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring in a large geological structure termed the Bushveld Igeneous Complex (BIC). The majority of the world's platinum group metals (PGMs) and chromium originate from the BIC. Considering the importance of PGMs in the manufacturing of automotive catalytic converters, as well as the relatively poor current state of air quality and the general lack of atmospheric research in the BIC, atmospheric related research in this geographical area is of local (South African) and of international interest. The western limb of the BIC is the most exploited, with at least eleven pyrometallurgical smelters occurring within a 55 km radius. Due to the lure of employment in the industrialised BIC, the area is populated by informal, semi-formal and formal residential developments. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distribution and concentration measurements were conducted for over two years at Marikana in the heart of the western BIC. Our results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation (from industrial emissions) was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. Secondary particle formation was influenced both by local pollution sources and regional ambient conditions. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during nucleation events were similar to the results from a semi-clean savannah site in South Africa.

  14. Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth

    Z. Wu

    2013-07-01

    Full Text Available This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm during two atmospheric new particle formation (NPF events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010 field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6 nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

  15. Radiation in Particle Simulations

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle

  16. Accumulation and migration of the bodies from the zones of giant planets

    Within the model of solid-body accumulation of planets (or their nuclei) the accumulation and migration of bodies from the feeding zones of the giant planets are investigated. The investigation is based on results of computer simulation of evolving disks which initially consisted of hundreds of particles moving about the Sun and coagulating under collisions. In some models the disks initially consisted of identical bodies. In other models they included also almost-formed planets. The computer simulation results as well as analytical investigations of the disk evolution depending on the number of particles in the disk allowed some estimates and conclusions on the accumulation process when the number of initial bodies was great (∼ 106-1012). The characteristics of an initial protoplanetary circumsolar cloud, the body migration in the forming solar system, the planet orbit evolution, the formation of the beyond-Neptune belt and asteroid belts between the giant planet orbits are considered. 50 refs.; 6 figs.; 1 table

  17. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  18. Gyrokinetic simulation of internal kink modes

    Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode (δf code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the δf code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection

  19. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production

    J. F. Peng

    2014-06-01

    Full Text Available Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effect on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns, each one-month long, between 2007 and 2011 at 13 individual sites in China. These were 5 urban sites, 4 regional sites, 3 coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15–600 nm size range. The median particle number concentrations (PNC were found to vary in the range of 1.1–2.2 × 104 cm−3 at urban sites, 0.8–1.5 × 104 cm−3 at regional sites, 0.4–0.6 × 104 cm−3 at coastal/background sites, and 0.5 × 104 cm−3 during cruise measurements. Peak diameters at each of these sites varied greatly from 24 nm to 115 nm. Particles in the 15–25 nm (nucleation mode, 25–100 nm (Aitken mode and 100–600 nm (accumulation mode range showed different characteristics at each of the studied sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF events were much higher at urban and regional sites than at coastal sites and cruise measurement. The average growth rates (GRs of nucleation mode particles were 8.0–10.9 nm h−1 at urban sites, 7.4–13.6 nm h−1 at regional sites and 2.8–7.5 nm h−1 at both coastal and cruise measurement sites. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink

  20. The squeezing entangled state of two particles with unequal mass

    Yang Yang; Fan Hong-Yi

    2013-01-01

    For two unequal-mass particles,we construct the entangled state representation and then derive the corresponding squeezing operator.This squeezing operator has a natural realization in the entangled state representation,which exhibits the intrinsic relation between squeezing and quantum entanglement.This squeezing operator involves both two-mode squeezing and the direct product of two single-mode squeezings.The maximum squeezing occurs when the two particles possess equal mass.When the two particles' mass difference becomes large,the component of the two single-mode squeezings becomes dominant.

  1. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  2. Particle retention during long discharges in Tore Supra and JET

    Loarer, T.; Tsitrone, E.; Brosset, C.; Bucalossi, J.; Gunn, J.; Joffrin, E.; Monier-Garbet, P.; Pegourie, B.; Thomas, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Loarte, A. [Max-Planck-Institut fuer Plasmaphysik, EFDA-CSU-Garching, Muenchen (Germany); Lomas, P. [Euratom-UKAEA Association, Fusion Culham Science Centre, Abingdon, OX (United Kingdom); Ongena, J. [Ecole Royale Militaire-Koninklijke Militaire School (ERM-KMS), Lab. de Physique des Plasmas-Laboratorium voor Plasmafysica, Bruxelles (Belgium)

    2003-07-01

    The particle balances and the associated particle retentions for the long discharge experiments performed in Tore-Supra and for the L and H mode discharges carried out in JET are reported in this paper. From the reported experiments, the same particle retention behaviors are observed in Tore-Supra and JET in spite of the differences between the plasma geometry and the confinement mode (respectively limiter L-mode and divertor H-mode). A particle retention up to 70-80% of {gamma}(puff) for the larger gas injection has been obtained in JET. The particle retention behavior observed with the gas puff appears to be strongly dominant in the particle retention process. Indeed, no influence has been noticed from the active pumping, the saturation of the recycling area (0.4 D/C), the precedent discharges history (in terms of total 'particles retained' in the vessel) and even from the disruptions (conditioning). Also, the outgassing between discharges becomes negligible in terms of particle recovering when {gamma}(puff) and/or the discharge duration are increased. Finally, neither the edge localized modes (ELMs type-I or III) nor the disruptions modify the reported behaviour. For ITER, the particle retention is strictly limited and from the presented results it seems that strong gas injection should be avoided. (A.C.)

  3. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  4. Microbial accumulation of uranium, radium, and cesium

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  5. Geochemistry Model Validation Report: External Accumulation Model

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  6. Particle Emissions from Biomass Combustion

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  7. Particle physics

    The two main themes of this volume are the standard model of the fundamental interactions (and beyond) and astrophysics. The remarkable advances in the theoretical understanding and experimental confirmation of the standard model were reviewed in several lectures where the reader will find a thorough analysis of recent experiments as well as a detailed comparison of the standard model with experiment. On a more theoretical side, supersymmetry, supergravity and strings were discussed as well. The second theme concerns astrophysics where the school was quite successful in bridging the gap between this fascinating subject and more conventional particle physics

  8. New particles

    Current state of art in the discovery of new elementary particles is reviewed. At present, quarks and mesons are accepted as the basic constituents of matter. The charmonium model (canti-c system), and the 'open charm' are discussed. Explanations are offered for the recent discovery of the heavy lepton tau. Quark states such as the beauty and taste are also dealt with at length. The properties of the tanti-t bound system are speculated. It is concluded that the understanding of canti-c and banti-b families is facilitated by the assumption of the quarkonium model. Implications at the astrophysical level are indicated. (A.K.)

  9. Collective Dynamics of Interacting Particles in Unsteady Flows

    Abedi, Maryam

    2014-01-01

    We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid, and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability of traveling solutions is investigated in unsteady conditions. It is shown that the resulting dispersion relation is an integral equation of the Fredholm type, and yields two general families of stable modes: singular modes whose eigenvalues form a continuous spectrum, and a finite number of discrete global modes. Dependi...

  10. Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles%不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响

    张学敏; 张永亮; 姚宗路; 赵立欣; 孟海波; 田宜水

    2014-01-01

    为摸清不同进料方式的燃烧器对生物质成型燃料燃烧后颗粒物排放的影响,该文对上进料式(A 型)、水平进料式(B型)和下进料式(C型)等3种类型的燃烧器进行燃烧颗粒排放试验,采用低压电子冲击仪对玉米秸秆、棉秆、木质3种成型燃料燃烧后颗粒物排放开展数量浓度和质量浓度研究,并计算出每种燃料在3种燃烧器中每秒排放的颗粒物数量和质量分布。试验结果表明:3种燃烧器中的颗粒物质量分布都成双峰分布,主要集中在5~7级和12级,占总颗粒物质量的90%;木质和棉杆燃料在A型燃烧器中的颗粒物质量排放最少,玉米秸秆燃料在B型中颗粒物质量最少。3种燃烧器中的颗粒物数量分布都成单峰分布玉米秸秆和木质在B型燃烧器上的颗粒物数量主要集中在1~5级,在A型和C型燃烧器上颗粒物数量主要集中在3~6级;棉杆在C型燃烧器上集中在1~5级,在A型和B型燃烧器上颗粒物数量主要集中在3~6级。3种燃烧器对颗粒物质量的分布影响不大。根据试验结果,建议不同的燃料匹配不同的燃烧器。从颗粒物排放总量角度,玉米秸秆应该匹配B型燃烧器,棉杆和木质燃料应该匹配A型燃烧器。从PM2.5所占比例得出,玉米秸秆燃料应匹配C型燃烧器,棉杆匹配 B 型燃烧器,木质匹配 A 型燃烧器。并建议生物质成型燃料燃烧器结构应具有以下特点:进料连续平稳;带有主动清渣装置并且清渣波动小;鼓风配风,保证过量空气系数高。研究结果为中国生物质固体成型燃料的颗粒物排放法规的制定提供参考。%Different structure and the different feeding mode burners affect the emission and the combustion efficiency of various biomass solid fuels. However, how the burner structure and feeding mode impact on the particle emissions is not clearly understood. To investigate this

  11. Cyclotron operating mode determination based on intelligent methods

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  12. Sliding mode control and observation

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  13. Electrostatic twisted modes in multi-component dusty plasmas

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas

  14. Electrostatic twisted modes in multi-component dusty plasmas

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ikram, M. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan)

    2016-01-15

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.

  15. Mode og mozzarella

    Nielsen, Jakob Isak

    2013-01-01

    Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie.......Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie....

  16. Modeli recikliranja nezbrinutih tekstilija

    Lv, Lihua; Wang, Xiao; Wei, Chunyan; Cui, Yongzhu; Zhang, Oi

    2014-01-01

    Modeli recikliranja nekih nezbrinutih prirodnih vlakana (pamuka, lana i svile) i sintetičkog polipropilenskog vlakna opisani su na temelju njihovog životnog ciklusa koji obuhvaća proizvodnju - potrošnju - prikupljanje i klasifikaciju - recikliranje - vraćanje na tržište nezbrinutih tekstilija. Nezbrinute tekstilije su podijeljene u "neupotrijebljene" i "rabljene" nezbrinute tekstilije. Modeli recikliranja su opisani u radu i oni su vodič za razumno i učinkovito recikliranje nezbrinutih teksti...

  17. Trapped Particle Stability for the Kinetic Stabilizer

    Berk, H L

    2011-01-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favorable field-line curvature exists. The window of operation is determined for achieving MHD stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analyzed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabili...

  18. Trapped particle stability for the kinetic stabilizer

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  19. Trapped particle stability for the kinetic stabilizer

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  20. Cluster analysis of WIBS single-particle bioaerosol data

    Robinson, N. H.; Allan, J. D.; Huffman, J. A.; Kaye, P. H.; Foot, V. E.; Gallagher, M.

    2013-02-01

    Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial data sets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Wideband Integrated Bioaerosol Sensors (WIBSs). The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL) before being applied to two separate contemporaneous ambient WIBS data sets recorded in a forest site in Colorado, USA, as part of the BEACHON-RoMBAS project. Cluster analysis results between both data sets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity) to represent the following: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long-term online primary biological aerosol particle (PBAP) measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics are improved.