WorldWideScience

Sample records for accumbens stimulate ethanol

  1. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference.

    Pelkonen, Anssi; Hiltunen, Mikko; Kiianmaa, Kalervo; Yavich, Leonid

    2010-08-01

    The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats. PMID:20533994

  2. Nucleus accumbens stimulation in pathological obesity.

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  3. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H

    2009-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg...

  4. In Vivo Chronic Intermittent Ethanol Exposure Reverses the Polarity of Synaptic Plasticity in the Nucleus Accumbens Shell

    Jeanes, Zachary M.; Buske, Tavanna R.; Morrisett, Richard A.

    2011-01-01

    Glutamatergic synaptic plasticity in the nucleus accumbens (NAc) is implicated in response to sensitization to psychomotor-stimulating agents, yet ethanol effects here are undefined. We studied the acute in vitro and in vivo effects of ethanol in medium spiny neurons from the shell NAc subregion of slices of C57BL/6 mice by using whole-cell voltage-clamp recordings of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) excitatory postsynaptic current (EPSCs). Synaptic conditioning (l...

  5. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  6. In vivo chronic intermittent ethanol exposure reverses the polarity of synaptic plasticity in the nucleus accumbens shell.

    Jeanes, Zachary M; Buske, Tavanna R; Morrisett, Richard A

    2011-01-01

    Glutamatergic synaptic plasticity in the nucleus accumbens (NAc) is implicated in response to sensitization to psychomotor-stimulating agents, yet ethanol effects here are undefined. We studied the acute in vitro and in vivo effects of ethanol in medium spiny neurons from the shell NAc subregion of slices of C57BL/6 mice by using whole-cell voltage-clamp recordings of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) excitatory postsynaptic current (EPSCs). Synaptic conditioning (low-frequency stimulation with concurrent postsynaptic depolarization) reliably depressed AMPA EPSCs by nearly 30%; this accumbal long-term depression (LTD) was blocked by a nonselective N-methyl-D-aspartate (NMDA) receptor antagonist (DL-2-amino-5-phosphonovaleric acid) and a selective NMDA receptor 2B antagonist [R-(R*,S*)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidine propanol]. Acute ethanol exposure inhibited the depression of AMPA EPSCs differentially with increasing concentrations, but this inhibitory action of ethanol was occluded by a D1-selective dopamine receptor agonist. Ethanol dependence was elicited in C57BL/6 mice by two separate 4-day bouts of chronic intermittent ethanol (CIE) vapor exposure. When assessed 24 h after a single bout of in vivo CIE vapor exposure, NAc LTD was absent, and instead NMDA receptor-dependent synaptic potentiation [long-term potentiation (LTP)] was reliably observed. It is noteworthy that both LTP and LTD were completely absent after an extended withdrawal (72 h) after a single 3-day CIE vapor bout. These observations demonstrate that 1) accumbal synaptic depression is mediated by NR2B receptors, 2) accumbal synaptic depression is highly sensitive to both acute and chronic ethanol exposure, and 3) alterations in this synaptic process may constitute a neural adaptation that contributes to the induction and/or expression of ethanol dependence. PMID:20947635

  7. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  8. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    Maier, Esther Y.; Ledesma, Ramon T.; Seiwell, Andrew P.; Duvauchelle, Christine L.

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  9. Familiar companions diminish cocaine conditioning and attenuate cocaine-stimulated dopamine release in the nucleus accumbens.

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Wang, Shyi-Wu; Yu, Lung

    2016-06-01

    This study aimed to assess the impact of companions on the rewarding effects of cocaine. Three cage mates, serving as companions, were housed with each experimental mouse throughout cocaine-place conditioning in a cocaine-induced conditioned place preference (CPP) paradigm using conditioning doses of 10 and 20mg/kg. The presence of companions decreased the magnitude of the CPP. At 20mg/kg, cocaine stimulated dopamine (DA) release in the nucleus accumbens as evidenced by a significant decrease in total (spontaneous and electrical stimulation-provoked) DA release in accumbal superfusate samples. The presence of companions prevented this cocaine-stimulated DA release; such a reduction in cocaine-induced DA release may account for the reduction in the magnitude of the CPP in the presence of the companions. Furthermore, cocaine pretreatment (2.5mg/kg) was found to prevent the companion-produced decreases in cocaine (10mg/kg/conditioning)-induced CPP as well as the cocaine (10mg/kg)-stimulated DA release. Moreover, the presence of methamphetamine (MA) (1mg/kg)-treated companions decreased cocaine (20mg/kg/conditioning)-induced CPP and prevented the cocaine (20mg/kg)-stimulated DA release. Finally, the presence of companions decreased the magnitude of the CPP could not seem to be accounted for by cocaine-stimulated corticosterone (CORT) release. Taken together, these results indicate that familiar companions, regardless of their pharmacological status, may exert dampening effects on CPP induced by moderate to high conditioning doses of cocaine, at least in part, by preventing cocaine-stimulated DA release in the nucleus accumbens. PMID:27001454

  10. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. PMID:25787124

  11. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  12. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation

    Beyene, Manna; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior and is transiently activated upon presentation of reward-predictive cues. It has previously been shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These dopamine transients ...

  13. Synergistic effects of ethanol and cocaine on brain stimulation reward.

    Lewis, M. J.; June, H L

    1994-01-01

    The effects of two widely abused drugs, ethanol and cocaine, were examined alone and in combination on intracranial reward processes. In agreement with previous research, higher doses of both cocaine and ethanol alone produced facilitation of behavior maintained by brain stimulation reward. Low intraperitoneal doses of ethanol and cocaine, which alone did not affect performance, were found to reduce stimulation reward threshold and modestly increase response rate. The enhancement of brain sti...

  14. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  15. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning.

    Clissold, Kara A; Pratt, Wayne E

    2014-11-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer. PMID:25101542

  16. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    SusanneEla Fleur; Geoffreyvan der Plasse; MatthijsFeenstra; AndriesKalsbeek

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation...

  17. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  18. Chronic ethanol consumption decreases adrenal responsiveness to adrenocorticotropin (ACTH) stimulation

    Increased alcohol consumption by adolescents and teenagers has heightened awareness of potential endocrine and developmental alterations. The current study was designed to determine whether chronic ethanol intake alters pituitary and adrenal function in the developing rat. One month old male Sprague Dawley rats were administered 6% ethanol in drinking water. After one month of treatment animals were sacrificed and blood, pituitary and adrenal glands collected. Plasma was assayed for ACTH and corticosterone (CS) by radioimmunossay (RIA). Five anterior pituitary glands per group were challenged with 100 μM corticotropin releasing factor (CRF) for 90 min at 37C under 95% air / 5% CO2. Media were analyzed for either ACTH (pituitary) or CS (adrenal) by RIA. Plasma ACTH and CS were unaffected by ethanol consumption. Pituitary response to CRF was not altered by ethanol. The lack of difference in ACTH release was not due to differences in pituitary content of ACTH. However, chronic ethanol consumption did decrease adrenal responsiveness to ACTH stimulation. In vitro corticosterone production was 1.21 ± 0.14 μg/adrenal in controls and 0.70 ± 0.06 μg/adrenal in ethanol consuming rats

  19. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations

  20. Mianserin, but not Ondansetron, reduces the locomotor stimulating effect of ethanol in preweanling rats

    Ariaslow, Carles; Spear, Norman E.

    2011-01-01

    During infancy rats are highly sensitive to the locomotor stimulating effect of ethanol, an effect particularly observed when they are tested during the rising phase of the blood ethanol curve and in a novel environment. According to a recent study infant rats require some degree of stress to get stimulated after being challenged with ethanol. Ethanol-induced stimulation in preweanling rats required the activation of CRH-1 receptors. Considering these antecedents, we explored modulation of th...

  1. Active stimulation site of nucleus accumbens deep brain stimulation in obsessive-compulsive disorder is localized in the ventral internal capsule.

    van den Munckhof, Pepijn; Bosch, D Andries; Mantione, Mariska H M; Figee, Martijn; Denys, Damiaan A J P; Schuurman, P Richard

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder characterized by persistent thoughts and repetitive ritualistic behaviours. Despite optimal cognitive-behavioral and pharmacological therapy, approximately 10 % of patients remain treatment-resistant. Deep brain stimulation (DBS) is being investigated as experimental therapy for treatment-refractory OCD. In the current study, we determined the relationship between anatomical location of active electrode contacts and clinical outcome in 16 OCD patients undergoing bilateral nucleus accumbens (NAc) DBS. We found that most patients actually do not receive active stimulation in the NAc but in the more laterally, anteriorly and dorsally located ventral part of the anterior limb of the internal capsule, ventral ALIC (vALIC). Our nine patients receiving bilateral vALIC DBS improved on average 73 % on their Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores, whereas the six patients with their centers of stimulation located otherwise improved on average only 42 %. We therefore propose bilateral vALIC as a promising new DBS target for patients with treatment-refractory OCD. Future studies employing a direct vALIC targeting approach in larger patient numbers are needed to test whether this proposal holds true. PMID:23652657

  2. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats

    Spiga, S.; Talani, G; Mulas, G.; Licheri, V; Fois, GR; Muggironi, G; Masala, N; Cannizzaro, C; Biggio, G; E. Sanna; Diana, M.

    2014-01-01

    This paper examines the intimate neuroarchitecture of the nucleus accumbens shell region and how it affects synaptic plasticity in alcohol-dependent rats. To do so, a simultaneous morphometrical/immunofluorescence method was applied to visualize various types of dendritic spines and patch-clamp techniques to detect changes in synaptic currents. Using these tools, we show a selective loss of “long thin” spines accompanied by an impaired long-term depression (LTD) in alcohol-dependent rats. Dop...

  3. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  4. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  5. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    Marcus Heldmann

    Full Text Available The influence of bilateral deep brain stimulation (DBS of the nucleus nucleus (NAcc on the processing of reward in a gambling paradigm was investigated using H(2[(15O]-PET (positron emission tomography in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  6. The Effects of Nucleus Accumbens μ-opioid and Adenosine 2A Receptor Stimulation and Blockade on Instrumental Learning

    Clissold, Kara A.; Pratt, Wayne E.

    2014-01-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained ...

  7. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  8. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  9. High-fat intake induced by mu-opioid activation of the nucleus accumbens is inhibited by Y1R-blockade and MC3/4R-stimulation

    Zheng, Huiyuan; Townsend, R. Leigh; Shin, Andrew; Patterson, Laurel M.; Phifer, Curtis B.; Berthoud, Hans-Rudolf

    2010-01-01

    Nucleus accumbens mu-opioid receptor activation can strongly stimulate intake of high-fat food in satiated rats, and one of the mechanisms involves activation of lateral hypothalamic orexin neurons and orexin receptor-1 signaling in the mesolimbic dopamine system. Here, we tested the potential contribution of NPY/Y1R and α-MSH/MC3/4R-signaling to accumbens-induced high-fat feeding. Prior administration of the selective Y1R antagonist 1229U91 or the MC3/4R agonist MTII into the lateral ventric...

  10. Chronic ethanol inhibits receptor-stimulated phosphoinositide hydrolysis in rat liver slices

    Gonzales, R.A.; Crews, F.T. (Department of Pharmacology, University of Texas, Austin (USA))

    1991-03-01

    The effects of chronic ethanol feeding on norepinephrine (NE)- and arginine-vasopressin (AVP)-stimulated phosphoinositide (PI) hydrolysis in rat liver slices was determined. The maximum NE-stimulated PI response was significantly reduced by 40% in liver slices from 8-month-old rats which had been treated for 5 months with a liquid diet containing ethanol compared to pair-fed controls. The maximum AVP-stimulated PI response was decreased by 39% in liver slices from the ethanol-fed rats compared to control. EC50 values for NE- and AVP-stimulated PI hydrolysis in liver slices were not affected by the chronic ethanol treatment. Similar reductions in the maximal NE- and AVP-stimulated PI hydrolysis (28% and 27%, respectively) were found in 22-month-old rats which had been maintained on an ethanol containing diet for 5 months compared to pair-fed controls. The binding of (3H)prazosin and (3H)AVP to liver plasma membranes from 8-month-old ethanol-fed rats was not significantly different from binding to liver membranes from sucrose-fed controls. Our data suggest that chronic ethanol ingestion may lead to a reduction in PI-linked signal transduction in liver.

  11. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  12. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  13. Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification

    FANG Jun; GU Jian-wen; YANG Wen-tao; QIN Xue-ying; HU Yong-hua

    2012-01-01

    Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the relationship between these nuclei and addiction.Our study aimed to explore the physiological and psychological effects of electrically stimulating the AMY and the NAc in herein addicts after detoxification by observing changes of heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria.Methods A total of 70 heroin addicts after detoxification were recruited,and 61 of them were eligible to be given stereotactic surgery for heroin abstinence.The operation was carried out after determining the coordinates of all target nucleuses,and stimulation was performed at the AMY and the NAc solely or jointly.Heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria were recorded and analyzed.Results The average heat rate was (66±10) beats/min before electric stimulation,and significantly increased to (84±14) beats/min during stimulation,and changed to (73±12) beats/min 10 minutes after stimulation.There was a significant elevation of the average arterial pressure from 83 mmHg before stimulation to 98 mmHg during the stimulation,and it then decreased to 90 mmHg after stimulation.Forty-three of the 61 patients showed intense euphoria similar to heroin induced euphoria.The largest number (118/186) of euphoric responses occurred when the AMY and the NAc were stimulated at the same time.Odds ratio was 5.4 (95% CI: 2.4-11.9,P <0.0001) to quantify the association.Results from a Logistic regression model showed a positive correlation between unilateral stimulation of either the AMY or NAC and induction of euphoria (OR >1 ),especially when the left AMY or left NAc was stimulated (P <0.05).Conclusions Our data are consistent with existing results that the AMY and the NAc are related to addiction

  14. Stimulant effects of ethanol in adolescent Swiss mice: development of sensitization and consequences in adulthood

    Quoilin, Caroline; Didone, Vincent; Quertemont, Etienne

    2011-01-01

    The adolescent period is characterized by behavioral and neurobiological changes, which might predispose adolescents to the long-term negative consequences of alcohol. For example, enhanced risks of alcohol dependence are reported when drinking is initiated early. In the present studies, we used Swiss female mice to test whether chronic ethanol injections during adolescence durably affect the sensitivity to the stimulant effects of ethanol in adulthood. In a first set of experiments, several ...

  15. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  16. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  17. Nucleus accumbens receives gastric vagal inputs

    Sangeeta MEHENDALE; Jing-tian XIE; Han H AUNG; Xiong-Fei GUAN; Chun-Su YUAN

    2004-01-01

    AIM: To localize and characterize the response of single accumbal neurons to electrical stimulation of the gastric vagal fibers. METHODS: Unitary responses to electrical stimulation of the ventral and dorsal gastric vagal fibers which serve the proximal stomach were recorded extracellularly in the nucleus accumbens in anesthetized cats.RESULTS: The evoked units recorded in the nucleus accumbens consisted of phasic and tonic responses, with a mean latency of (396±43) ms. Convergence of ventral and dorsal gastric vagal inputs onto single phasic and tonic accumbal units was observed. For tonic inhibitory responses, convergence was exhibited when stimulation applied to both the ventral and dorsal gastric vagal branches resulted in a significantly longer inhibitory period than did stimulation of a single gastric vagal branch. Comparing the gastric vagally evoked accumbal unitary responses to the neuronal responses recorded in the nucleus tractus solitarius, parabrachial nucleus and hypothalamus in our previous studies, our data showed a higher percentage of single spike responses and shorter response duration's in the nucleus accumbens than in the other nuclei. This suggests that the synaptic drive from the gastric vagal inputs to the nucleus accumbens is less powerful than in the other structures. CONCLUSION: The present study localized and characterized gastric vagally evoked responses in the nucleus accumbens, which suggest that the nucleus accumbens may process gastric signals concerned with the ingestive process.

  18. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects.

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  19. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  20. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  1. Deep brain stimulation of nucleus accumbens for refractory anorexia nervosa%脑深部电刺激治疗难治性神经性厌食症

    孙伯民; 李殿友; 占世坤; 林国珍; 庞琦

    2012-01-01

    Objective To study the effect of deep brain stimulation (DBS) in bilateral nucleus accumbens (NAc) for patients with refractory anorexia nervosa.Methods Four patients with severe,refractory anorexia nervosa who failed to psychological,medical and behavior therapies underwent DBS of bilateral NAc.DBS electrodes were implanted by MRI guided stereotactic surgery.The body mass index (BMI) and other psychiatrist - rated scales such as Yale - Brown obsessive - compulsive rating scale (YBOCS) and Hamilton anxiety rating scale ( HAMA ) were performed as a double - blind clinical assessment before and after surgery by psychiatrists.Results All patients were followed - up from 9 to 50 months (mean 39 months).Compared with preoperative baseline condition (mean BMI =11.4),the score was gradually increased to normal ( BMI > 17.9) after stimulation for 3 - 12 months.Meanwhile,their eating behavior,OCD,anxiety symptoms were also improved slowly but steadily.The menstrual of all these patients recovered after stimulation of 3 - 12 months.The DBS devices of 2 patients were removed 30 months after the surgery because the battery were worn out and the effects were stable during the follow - up period.There was no severe side effect and complication in these patients.Conclusions NAc stimulation is very effective and safe for the treatment of refractory anorexia nervosa.It is a promising procedure to improve anorexia symptoms as well as its accompanied psychiatric symptoms.%目的 探讨脑深部电刺激(DBS)治疗难治性神经性厌食症.方法 4例经过心理及药物治疗无效的难治性神经性厌食症患者,接受磁共振导向立体定向双侧伏隔核DBS植入,术后给予持续慢性高频电刺激.采用身体质量指数(BMI)及其他精神科量表如Yale - Brown强迫症量表(YBOCS)、汉密尔顿焦虑量表(HAMA)评估DBS治疗难治性神经性厌食症的长期疗效.结果 所有患者随访9-50个月(平均39个月).经过3-12个月的慢性电

  2. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  3. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  4. Selection of hemicellulosic hydrolysate pretreatments and fermentation conditions to stimulate xylitol protection by ethanol-producing yeasts

    Converti, A. [Ist. di Ingegneria Chimica e di Processo `G.B. Bonino`, Facolta di Ingegneria, Univ. degli Studi di Genova (Italy); Del Borghi, M. [Ist. di Ingegneria Chimica e di Processo `G.B. Bonino`, Facolta di Ingegneria, Univ. degli Studi di Genova (Italy)

    1996-12-31

    Xylitol production from hardwood hemicellulosic hydrolysates by well-known ethanol-producing yeasts was stimulated through an experimental schedule including pretreatments of the hydrolysate, the choice of the best xylitol producer and the selection of the optimum fermentation conditions. The xylitol or ethanol yields obtained on consumed xylose demonstrated that their production was stimulated under completely different conditions, as to be expected by the fact that these catabolites are the final products of different metabolic pathways. In particular, the catabolism of Pachysolen tannophilus, that is the best ethanol producer from this natural substrate, could be targeted towards xylitol rather than towards ethanol production by ensuring a strongly reducing environment through a suitable pretreatment of the hydrolysate. The final removal of fermentation inhibitors by adsorption onto highly adsorbing substances allowed a further 20% xylitol yield increase. (orig.)

  5. Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine

    Meyer, Paul J.; Meshul, Charles K.; Phillips, Tamara J.

    2009-01-01

    Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug-induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug-induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesol...

  6. Role of orexin-2 receptors in the nucleus accumbens in antinociception induced by carbachol stimulation of the lateral hypothalamus in formalin test.

    Yazdi, Fatemeh; Jahangirvand, Mahboubeh; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-08-01

    Orexins, which are mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), play an important role in pain modulation. Previously, it has been established that the nucleus accumbens (NAc) is involved in the modulation of formalin-induced nociceptive responses, a model of tonic pain. In this study, the role of intra-accumbal orexin-2 receptors (OX2rs) in the mediation of formalin-induced pain was investigated. A volume of 0.5 μl of 10, 20, and 40 nmol/l solutions of TCS OX2 29, an OX2r antagonist, were unilaterally microinjected into the NAc 5 min before an intra-LH carbachol microinjection (0.5 μl of 250 nmol/l solution). After 5 min, animals received a subcutaneous injection of formalin 2.5% (50 μl) into the hind paw. Pain-related behaviors were assessed at 5 min intervals during a 60-min test period. The findings showed that TCS OX2 29 administration dose dependently blocked carbachol-induced antinociception during both phases of formalin-induced pain. The antianalgesic effect of TCS OX2 29 was greater during the late phase compared with the early phase. These observations suggest that the NAc, as a part of a descending pain-modulatory circuitry, partially mediates LH-induced analgesia in the formalin test through recruitment of OX2rs. This makes the orexinergic system a good potential therapeutic target in the control of persistent inflammatory pain. PMID:26871404

  7. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  8. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat

    Geoffrey van der Plasse; Regina Schrama; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.; Westenberg, Herman G. M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  9. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    van der Plasse, G.; Schrama, R.; van Seters, S.; Vanderschuren, L. J. M. J.; Westenberg, H.G.M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  10. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells

    Kim, Sunghee; Lee, Min-Sup; Lee, Bonggi; Gwon, Wi-Gyeong; Joung, Eun-Ji; Yoon, Na-Young; Kim, Hyeung-Rak

    2014-01-01

    Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E...

  11. Ethanol stimulates formation of leukotriene C4 in rat gastric mucosa

    Ethanol-induced gastric mucosal damage is characterized by microcirculatory changes such as stasis and plasma leakage. Sluggish blood flow and stasis have also been observed after administration of exogenous leukotriene (LT) C4. The effect of ethanol on the release of LTC4 from rat gastric mucosa was therefore investigated. It was found that intragastric instillation of ethanol increases gastric mucosal release of LTC4 in a dose- and time-dependent manner parallel to the production of gastric lesions. The lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the anti-ulcer drug carbenoxolone (CX) inhibited mucosal release of LTC4 and simultaneously protected against gastric damage caused by ethanol. It is concluded that increased formation of LTC4 and/or other 5-lipoxygenase-derived products of arachidonate metabolism may be involved in ethanol-induced gastric damage. Furthermore, inhibition of the 5-lipoxygenase pathway may be an important mechanism of action of gastric protective drugs

  12. 伏隔核DBS对大鼠海洛因强化作用的影响%Effects of deep brain stimulation of nucleus accumbens on heroin reinforcement in rats

    王冉; 刘惠芬; 江基尧; 周洪语; 郭烈美; 周建鹏; 徐纪文; 王桂松; 周文华; 刘昱; 张富强

    2011-01-01

    Objective To investigate the effects of deep brain stimulation of nucleus accumbens on heroin reinforcement. Methods The rats were trained for heroin self-administration using fixed ratio and then progressive ratio program. Bilateral concentric bipolar electrodes were implanted into NAc when reaching the conditioning criterion. The rats were randomly divided into two groups, the stimulated group and the sham-stimulated group: the former were given stimulation for lh daily for 10 consecutive days (parameters: frequency, 130Hz; pulse duration,l00μs; intensity 100μA), the latter were prepared similarly but without stimulation. One day after DBS, the rats were subjected to a progressive ratio test. On the next day, the rats were subjected to a Morris water maze test. The locomotor activity were tested before and after DBS respectively. Results In the PR test, stimulated rats showed significantly fewer active nose-poke responses (211.17 ± 98.31) than sham- stimulated rats (356.17 ± 66.25), this was also reflected in the number of rewards (stimulated 10.83 ± 1.72 vs sham- stimulated 13.50± 1.05, P<0.05). No significant difference was found between the two groups in Morris water maze performance and locomotor activity (P>0.05). Conclusion DBS of NAc significantly reduce the reinforcing effects of heroin as well as the desire for heroin, without long-term influence on motor activity, learning and memory.%目的 观察脑深部电刺激伏隔核核心部对大鼠海洛因强化作用的影响.方法 用固定比率程序建立大鼠海洛因自身给药模型,随机分为刺激组(6只)和假刺激组(6只),训练累进比率程序达稳定状态后,两组大鼠行双侧伏隔核核心部微电极植入.刺激组大鼠每日给予高频电刺激1h(频率130tHz,电流150μA,波宽100μs),连续10d.刺激结束后两组大鼠进行累进比率程序测试.两组大鼠在刺激前、后分别测试自发活动;累进比率程序测试结束

  13. Rapid feedback processing in human nucleus accumbens and motor thalamus

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  14. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol.

    Gordon, A S; Collier, K; Diamond, I.

    1986-01-01

    The acute and chronic neurologic effects of ethanol appear to be due to its interaction with neural cell membranes. Chronic exposure to ethanol induces changes in the membrane that lead to tolerance to the effects of ethanol. However, the actual membrane changes that account for tolerance to ethanol are not understood. We have developed a model cell culture system, using NG108-15 neuroblastoma-glioma hybrid cells, to study cellular tolerance to ethanol. We have found that adenosine receptor-s...

  15. Neurons of human nucleus accumbens

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  16. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Eric C Kong

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  17. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes

    Lu, Xiao-Yu; Liu, Bing-Chen; Wang, Li-Hua; Yang, Li-li; Bao, Qing; Zhai, Yu-Jia; Alli, Abdel A.; Thai, Tiffany L.; Eaton, Douglas C.; WANG Wei-zhi; Ma, He-Ping

    2015-01-01

    Our recent studies indicate that hydrogen peroxide (H2O2) only at high concentrations can cause oxidative stress in renal epithelial cells and induce apoptosis of podocytes. Consistently, the present study shows that H2O2, even at 1 mM, failed to induce intracellular oxidative stress and apoptosis of the podocytes due to efficient activity of catalase, an enzyme which degrades H2O2 to produce water and oxygen (O2). However, H2O2 acted as a source of O2 to allow acute ethanol to induce superox...

  18. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats.

    Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J

    2016-10-01

    Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. PMID:27260326

  19. Developmental neurotoxicity of ethanol (EtOH): Interaction with muscarinic receptor (MR) stimulated phosphoinositide metabolism

    We have previously reported that administration of EtOH (4g/kg/day) to rats from postnatal day 4 to day 10 causes microencephaly and decreases MR-stimulated inositol metabolism on days 7 and 10. An identical exposure to EtOH of adult rats, which resulted in similar blood EtOH concentrations, did not have any effect on the same system. To test whether a differential sensitivity of the phosphoinostitide (PI) system coupled to MR during development could account for these findings, we have investigated the in vitro effects of EtOH on carbachol (CB)-stimulated PI metabolism in rat brain slices. EtOH (500 mM) caused a 30% decrease of maximal accumulation of [3H] inositol phosphates (InsPs) induced by CB and a two fold increase in its EC50 in 7 day-old rats, but had no effect on adults. The effect of EtOH on MR-stimulated PI metabolism in 7 day-old rats was dependent on the time of preincubation of the slices with EtOH. After 90 min preincubation, the effect of EtOH was significant at a concentration as low as 50 mM, which is obtained after in vivo administration of EtOH. The inhibitory effect of EtOH was brain region- and age- dependent, with its maximal effect occurring on days 7-10. These results confirm that the PI system coupled to MR could represent a relevant target for the developmental neurotoxicity of EtOH

  20. Chronic Ethanol Feeding Suppresses β-Adrenergic Receptor-Stimulated Lipolysis in Adipocytes Isolated from Epididymal Fat

    Kang, Li; Nagy, Laura E.

    2006-01-01

    Chronic ethanol consumption disrupts G protein-dependent signaling pathways in rat adipocytes. Because lipolysis in adipocytes is regulated by G protein-mediated cAMP signal transduction, we hypothesized that cAMP-regulated lipolysis may be vulnerable to long-term ethanol exposure. Male Wistar rats were fed a liquid diet containing ethanol as 35% of total calories or pair-fed a control diet that isocalorically substituted maltose dextrins for ethanol for 4 wk. Lipolysis was measured by glycer...

  1. The interference of ethanol with heroin-stimulated psychomotor activation in mice is not related to changed brain concentrations of the active metabolites 6MAM or morphine.

    Andersen, Jannike M; Haugen, Karianne S; Ripel, Ase; Mørland, Jørg

    2014-02-01

    It has been suggested that the potentiating effect observed in human beings when combining alcohol and heroin may be due to an interference of ethanol with the pharmacokinetics of heroin, leading to accumulation of the biologically active metabolites, 6-monoacetylmorphine (6MAM) and morphine. However, experimental evidence for this hypothesis is lacking. In this study, we used mice and examined the effect of ethanol on the metabolism of heroin by combining a locomotor activity test, which is a behaviour model representative of psychomotor stimulation, with pharmacokinetic studies in blood and brain tissue. Pre-treatment with ethanol (1 and 2.5 g/kg, po) affected heroin-stimulated (2.5 and 15 μmol/kg, sc) locomotor activation significantly, resulting in a dose-dependent reduction in run distance. However, the change in the activity profiles did not indicate any increase in the concentration of active metabolites. Pharmacokinetic studies in blood and brain supported the behavioural findings, showing no change in the time-versus-concentration curves of either 6MAM or morphine after administration of heroin (15 μmol/kg, sc) to mice pre-treated with ethanol (2.5 g/kg, po). The concentration of heroin itself was elevated, but is probably of minor importance because heroin has low biological activity by itself. The in vivo pharmacokinetic findings were supported by experiments in vitro. In conclusion, studies in mice do not support the hypothesis from epidemiological studies of a pharmacokinetic interaction between alcohol and heroin. PMID:24102968

  2. Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices.

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Xia, Zheng-Yuan; Wang, Hui

    2010-12-01

    1. Indole-3-carbinol (I3C), a major indole compound found in high levels in cruciferous vegetables, shows a broad spectrum of biological activities. However, few studies have reported the effect of I3C on alcoholic liver injury. In the present study, we investigated the protective effect of I3C on acute ethanol-induced hepatotoxicity and acetaldehyde-stimulated hepatic stellate cells (HSC) activation using precision-cut liver slices (PCLS). 2. Rat PCLS were incubated with 50 mmol/L ethanol or 350 μmol/L acetaldehyde, and different concentrations (100-400 μmol/L) of I3C were added into the culture system of these two liver injury models, respectively. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde (MDA) content in tissue. Activities of alcoholic enzymes were also determined. α-Smooth muscle actin (α-SMA), transforming growth factor (TGF-β(1) ) and hydroxyproline (HYP) were used as indices to evaluate the activation of HSC. In addition, matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase (TIMP-1) were observed to estimate collagen degradation. 3. I3C significantly reduced the enzyme leakage in ethanol-treated slices. In I3C groups, cytochrome P450 (CYP) 2E1 activities were inhibited by 40.9-51.8%, whereas alcohol dehydrogenase (ADH) activity was enhanced 1.6-fold compared with the ethanol-treated group. I3C also showed an inhibitory effect against HSC activation and collagen production stimulated by acetaldehyde. After being incubated with I3C (400 μmol/L), the expression of MMP-1 was markedly enhanced, whereas TIMP-1 was decreased. 4. These results showed that I3C protected PCLS against alcoholic liver injury, which might be associated with the regulation of ethanol metabolic enzymes, attenuation of oxidative injury and acceleration of collagen degradation. PMID:20880187

  3. Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets

    Gardebroek, C.; Hernandez, M.A.

    2012-01-01

    This paper examines volatility transmission in oil, ethanol and corn prices in the United States between 1997 and 2011. We follow a multivariate GARCH approach to evaluate the level of interdependence and the dynamics of volatility across these markets. Preliminary results indicate a higher interact

  4. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex. PMID:26428091

  5. Music and the nucleus accumbens.

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  6. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  7. Regulation of 3H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain

  8. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  9. Nucleus Accumbens D2/3 Receptors Predict Trait Impulsivity and Cocaine Reinforcement

    Dalley, Jeffrey W.; Fryer, Tim D; Brichard, Laurent; Robinson, Emma S J; Theobald, David E. H.; Lääne, Kristjan; Peña, Yolanda; Murphy, Emily R.; Shah, Yasmene; Probst, Katrin; Abakumova, Irina; Aigbirhio, Franklin I.; Richards, Hugh K.; Hong, Young; Baron, Jean-Claude

    2007-01-01

    Stimulant addiction is often linked to excessive risk taking, sensation seeking, and impulsivity, but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts high rates of intravenous cocaine self-administration and is associated with changes in dopamine (DA) function before drug exposure. Using positron emission tomography, we demonstrated that D2/3 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that were never...

  10. Glucagon-Like Peptide 1 Receptors in Nucleus Accumbens Affect Food Intake

    Dossat, Amanda M.; Lilly, Nicole; Kay, Kristen; Williams, Diana L.

    2011-01-01

    Central glucagon-like peptide 1 receptor (GLP-1R) stimulation suppresses food intake, and hindbrain GLP-1 neurons project to numerous feeding-relevant brain regions. One such region is the nucleus accumbens (NAc), which plays a role in reward and motivated behavior. Using immunohistochemical and retrograde tracing techniques in rats, we identified a robust projection from GLP-1 neurons in the nucleus of the solitary tract to the NAc. We hypothesized that activation of NAc GLP-1Rs suppresses f...

  11. Ethanol and neuronal metabolism.

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  12. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  13. Control of nucleus accumbens activity with neurofeedback

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  14. Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

    Alaux-Cantin, Stéphanie; Warnault, Vincent; Legastelois, Rémi; Botia, Béatrice; Pierrefiche, Olivier; Vilpoux, Catherine; Naassila, Mickaël

    2013-04-01

    Adolescent alcohol binge drinking constitutes a major vulnerability factor to develop alcoholism. However, mechanisms underlying this susceptibility remain unknown. We evaluated the effect of adolescent binge-like ethanol intoxication on vulnerability to alcohol abuse in Sprague-Dawley rats. To model binge-like ethanol intoxication, every 2 days, rats received an ethanol injection (3.0 g/kg) for 2 consecutive days across 14 days either from postnatal day 30 (PND30) to 43 (early adolescence) or from PND 45 to PND 58 (late adolescence). In young adult animals, we measured free ethanol consumption in the two-bottle choice paradigm, motivation for ethanol in the operant self-administration task and both ethanol's rewarding and aversive properties in the conditioned place preference (CPP) and taste aversion (CTA) paradigms. While intermittent ethanol intoxications (IEI) during late adolescence had no effect on free-choice 10% ethanol consumption, we found that IEI during early adolescence promoted free-choice 10% ethanol consumption, enhanced motivation for ethanol in the self-administration paradigm and induced a loss of both ethanol-induced CPP and CTA in young adults. No modification in either sucrose self-administration or amphetamine-induced CPP was observed. As the nucleus accumbens (Nac) is particularly involved in addictive behavior, we analyzed IEI-induced long-term neuroadaptations in the Nac using c-Fos immunohistochemistry and an array of neurotransmission-related genes. This vulnerability to ethanol abuse was associated with a lower c-Fos immunoreactivity in the Nac and enduring alterations of the expression of Penk and Slc6a4, 2 neurotransmission-related genes that have been shown to play critical roles in the behavioral effects of ethanol and alcoholism. PMID:23287538

  15. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens.

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-06-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  16. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  17. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Hoebel, Bartley G.; Barson, Jessica R.; Pedro Rada; Leibowitz, Sarah F.; Avena, Nicole M.

    2012-01-01

    Evidence links dopamine (DA) in the nucleus accumbens (NAc) shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG), which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related t...

  18. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  19. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. PMID:25726897

  20. Ethanol poisoning

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  1. Limbic and cortical information processing in the nucleus accumbens

    Goto, Yukiori; Grace, Anthony A.

    2008-01-01

    The nucleus accumbens regulates goal-directed behaviors by integrating information from limbic structures and the prefrontal cortex. Here, we review recent studies in an attempt to provide an integrated view of the control of information processing in the nucleus accumbens in terms of the regulation of goal-directed behaviors and how disruption of these functions might underlie the pathological states in drug addiction and other psychiatric disorders. We propose a model that could account for...

  2. Ethanol Basics

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  3. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  4. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  5. Effects of betaine on ethanol-stimulated secretion of IGF-Ⅰ and IGFBP-1 in rat primary hepatocytes: involvement of p42/44 MAPK activation

    Myeong Soo Lee; Myung-Sunny Kim; Soo Young Park; Chang-Won Kang

    2006-01-01

    AIM: To evaluate the effects of betaine on the ethanolinduced secretion of IGF-Ⅰ and IGFBP-1 using radioimmunoassay and Western blotting, respectively, in primary cultured rat hepatocytes.METHODS: Hepatocytes isolated from male Sprague-Dawley rats were incubated with various concentrations of ethanol and PD98059 procedures. The hepatocytes were also treated with different doses of betaine (10-5,10-4, and 10-3 mol/L). We measured IGF-Ⅰ and IGFBP-1 using radioimmunoassay and Western blotting, respectively.RESULTS: The ethanol-induced inhibition of IGF-Ⅰ secretion was attenuated by betaine in a concentration-dependent manner in primary cultured rat hepatocytes. At 10-3 mol/L, betaine significantly increased IGF-Ⅰ secretion but decreased IGFBP-1 secretion. In addition, p42/44 mitogen-activated protein kinase (MAPK) activity was accelerated significantly from 10 min to 5 h after treatment with 10-3 mol/L betaine. Furthermore, the changes in IGF-1 and IGFBP-1 secretion resulting from the increased betaine-induced p42/44 MAPK activity in primary cultured rat hepatocytes was blocked by treatment with the MAPK inhibitor PD98059. Betaine treatment blocked the ethanol-induced inhibition of IGF-Ⅰ secretion and p42/44 MAPK activity, and the ethanol-induced increase in IGFBP-1 secretion.CONCLUSION: Betaine modulates the secretion of IGF-Ⅰ and IGFBP-1 via the activation of p42/44 MAPK in primary cultured rat hepatocytes. Betaine also alters the MAPK activations induced by ethanol.

  6. File list: ALL.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.20.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX209196,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  7. File list: NoD.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.50.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  8. File list: Pol.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.10.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209214,SRX209218,SRX209215,SRX209213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  9. File list: InP.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.20.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX791596,SRX791600,SRX209801,SRX209802,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  10. File list: Oth.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.20.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  11. File list: Oth.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.05.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  12. File list: Oth.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.10.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  13. File list: His.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.20.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...2,SRX029231,SRX029230,SRX029228,SRX209198,SRX209196 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  14. File list: NoD.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.20.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  15. File list: His.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.50.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791595,S...0,SRX209199,SRX209196,SRX209197,SRX209198,SRX209194 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  16. File list: NoD.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.10.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  17. File list: His.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.05.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX209200,S...7,SRX209211,SRX029230,SRX029232,SRX029228,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  18. File list: Unc.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.10.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...98892,SRX698891 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  19. File list: His.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.10.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...8,SRX209196,SRX209197,SRX209198,SRX209194,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  20. File list: ALL.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.10.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445333,SRX472711,SRX445335,SRX445331,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  1. File list: Pol.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.50.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209218,SRX209215,SRX209213,SRX209214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  2. File list: NoD.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.05.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  3. File list: Unc.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.05.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29238,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  4. File list: Pol.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.20.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209215,SRX209214,SRX209213,SRX209218 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  5. File list: Oth.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.50.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  6. File list: Unc.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.20.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29234,SRX029236 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  7. File list: InP.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.05.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX209802,SRX791596,SRX791600,SRX209801,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  8. File list: ALL.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.50.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445335,SRX209198,SRX445331,SRX209194,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  9. File list: ALL.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.05.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX209...SRX472713,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  10. File list: Unc.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.50.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX029...98892,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  11. File list: InP.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.50.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9801,SRX209802,SRX209803,SRX791600,SRX791596,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  12. File list: Pol.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.05.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209213,SRX209214,SRX209218,SRX209215 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  13. Ethanol fermentation

    1981-01-01

    The inulin of chicory slices was hydrolyzed enzymically and fermented to ethanol. Maximum ethanol yield was achieved with fermentation combined with saccharification, using cellulase and inulinase for saccharification. The fermenting organism was Saccharomyces cerevisiae. Kluyveromyces fragilis, containing endogenous inulinase, was also used, but with lower yield.

  14. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol.

    Marinelli, P W; Quirion, R; Gianoulakis, C

    2004-01-01

    The aim of the present study was to determine the effects of distinct categories of stressors on beta-endorphin (beta-EP) release in the arcuate nucleus (ArcN) and nucleus accumbens (NAcb) using in vivo microdialysis. Adult male rats were implanted with a cannula aimed at either the NAcb or the ArcN. On the day of testing, a 2 mm microdialysis probe was inserted into the cannula, and artificial cerebrospinal fluid was infused at 2.0 microl/min. After three baseline collections, animals either had a clothespin applied to the base of their tail for 20 min (a physical/tactile stressor), were exposed to fox urine odour for 20 min (a psychological stressor/species-specific threat), or were administered 2.4 g ethanol/kg body weight, 16.5% w/v, i.p. (a chemical/pharmacological stressor) with control animals receiving an equivalent volume of saline. Both tail-pinch and fox odour significantly increased beta-EP release from the ArcN (P<0.05), whilst only tail-pinch enhanced beta-EP release from the NAcb (P<0.01). On the other hand, alcohol stimulated beta-EP release in the NAcb as compared with saline-treated controls (P<0.01), but not in the ArcN. Although the increase in extracellular beta-EP produced by the other stressors was relatively rapid, there was a 90-min delay before alcohol administration caused beta-EP levels to exceed that of saline-injected controls. In conclusion, the fact that physical and fear-inducing psychological stressors stimulate beta-EP release in the ArcN and only physical stressors stimulate beta-EP release in the NAcb, indicates that stressors with different properties are processed differently in the brain. Also, an injection of alcohol caused a delayed increase of beta-EP in the NAcb but not the ArcN, indicating that alcohol may recruit a mechanism that is, at least partially, distinct from stress-related pathways. PMID:15283974

  15. Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats

    Zheng Lin Zhao; Guang Wen Zhao; Hou Zhong Li; Xu Dong Yang; Yi Yan Wu; Feng Lin; Li Xin Guan; Feng Guo Zhai; Jia Qi Liu; Chae Ha Yang; Sang Chan Kim; Kee Won Kim; Rong Jie Zhao

    2011-01-01

    Previously, we demonstrated acupuncture at acupoint HT7 (Shen-Men) attenuated ethanol withdrawal syndrome by normalizing the dopamine release in nucleus accumbens shell. In the present study, we investigated the effect of acupuncture on anxiety-like behavior in rats and its relevant mechanism by studying neuro-endocrine parameters during ethanol withdrawal. Rats were treated with 3 g kg−1day−1 of ethanol (20%, w/v) or saline by intraperitoneal injections for 28 days. The rats undergoing ethan...

  16. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  17. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    Acevedo, María Belén; Nizhnikov, Michael E.; Norman E. Spear; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced rein...

  18. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-01

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy. PMID:26555033

  19. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

    Lee, Kang Pa; Choi, Nan Hee; Kim, Jin Teak; Park, In-Sik

    2015-01-01

    BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine...

  20. Early role of the κ opioid receptor in ethanol-induced reinforcement

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Acevedo, Ma. Belén; Norman E. Spear

    2012-01-01

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effec...

  1. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    Megan L.T. Hilbert; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a con...

  2. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. PMID:27139934

  3. Nucleus accumbens lesions modulate the effects of Methylphenidate

    Podet, Adam; Lee, Min J.; Swann, Alan C.; Dafny, Nachum

    2010-01-01

    The psychostimulant methylphenidate (MPD, Ritalin) is the prescribed drug of choice for treatment of ADHD. In recent years, the diagnosis rate of ADHD has increased dramatically, as have the number of MPD prescriptions. Repeated exposure to psychostimulants produces behavioral sensitization in rats, an experimental indicator of a drug’s potential liability. In studies on cocaine and amphetamine, this effect has been reported to involve the nucleus accumbens (NAc), one of the nuclei belonging ...

  4. Nucleus accumbens core lesions enhance two-way active avoidance

    Lichtenberg, Nina T.; Kashtelyan, Vadim; Burton, Amanda C.; Bissonette, Gregory B.; Roesch, Matthew R.

    2013-01-01

    The majority of work examining nucleus accumbens core (NAc) has focused on functions pertaining to behaviors guided by appetitive outcomes. These studies have pointed to NAc as being critical for motivating behavior toward desirable outcomes. For example, we have recently shown that lesions of NAc impaired performance on a reward-guided decision-making task that required rats to choose between differently valued rewards. Unfortunately, much less is known about the role that NAc plays in motiv...

  5. Alterations in blood glucose levels under hyperinsulinemia affect accumbens dopamine

    Bello, Nicholas T.; Hajnal, Andras

    2006-01-01

    Dopaminergic systems have been implicated in diabetes and obesity. Notwithstanding, the most basic relationship between dopamine and plasma insulin as well as glucose levels yet remains unknown. The present experiments were designed to investigate the effects of acute hyperinsulinemia on basal dopamine levels in the nucleus accumbens of the rat under chloral hydrate anesthesia using acute microdialysis in combination with the hyperinsulinemic-glycemic clamping procedure. In Experiment 1, each...

  6. Cellulosic ethanol

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...... differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment. --------------------------------------------------------------------------------...

  7. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. PMID:26792192

  8. Variation in Oxytocin Receptor Density in the Nucleus Accumbens has Differential Effects on Affiliative Behaviors in Monogamous and Polygamous Voles

    Ross, Heather E.; Freeman, Sara M.; Spiegel, Lauren L.; Ren, Xianghui; Terwilliger, Ernest F.; Young, Larry J.

    2009-01-01

    Oxytocin receptors in the nucleus accumbens have been implicated in the regulation of alloparental behavior and pair bond formation in the socially monogamous prairie vole. Oxytocin receptor density in the nucleus accumbens is positively correlated with alloparenting in juvenile and adult female prairie voles, and oxytocin receptor antagonist infused into the nucleus accumbens blocks this behavior. Furthermore, prairie voles have higher densities of oxytocin receptors in the accumbens than no...

  9. Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback

    M.X. Cohen; N. Axmacher; D. Lenartz; C.E. Elger; V. Sturm; T.E. Schlaepfer

    2009-01-01

    The nucleus accumbens plays a key role in reinforcement-guided behaviors. Here, we report that electrophysiological oscillatory phase synchrony between the two nuclei accumbens may play a crucial role in using negative feedback to guide decision making. We recorded local field potentials from the hu

  10. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  11. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  12. Increased vulnerability to ethanol consumption in adolescent maternal separated mice.

    García-Gutiérrez, María S; Navarrete, Francisco; Aracil, Auxiliadora; Bartoll, Adrián; Martínez-Gras, Isabel; Lanciego, José L; Rubio, Gabriel; Manzanares, Jorge

    2016-07-01

    The purpose of this study was to evaluate the effects of early life stress on the vulnerability to ethanol consumption in adolescence. To this aim, mice were separated from their mothers for 12 hours/day on postnatal days 8 and 12. Emotional behavior (light-dark box, elevated plus maze and tail suspension tests) and pre-attentional deficit (pre-pulse inhibition) were evaluated in adolescent maternal separated (MS) mice. Alterations of the corticotropin-releasing factor (CRF), glucocorticoid receptor (NR3C1), tyrosine hydroxylase (TH), mu-opioid receptor (MOr), brain-derived neurotrophic factor (BDNF), neuronal nuclei (NeuN), microtubule-associated protein 2 (MAP2) and neurofilament heavy (NF200)-immunoreactive fibers were studied in the paraventricular nucleus of the hypothalamus (PVN), ventral tegmental area (VTA), nucleus accumbens (NAc) or hippocampus (HIP). The effects of maternal separation (alone or in combination with additional stressful stimuli) on ethanol consumption during adolescence were evaluated using the oral ethanol self-administration paradigm. MS mice presented mood-related alterations and pre-attentional deficit. Increased CRF, MOr and TH, and reduced BDNF, NR3C1, NeuN, MAP2 and NF200-immunoreactive fibers were observed in the PVN, NAc and HIP of adolescent MS mice. In the oral ethanol self-administration test, adolescent MS mice presented higher ethanol consumption and motivation. Exposure to additional new stressful stimuli during adolescence significantly increased the vulnerability to ethanol consumption induced by maternal separation. These results clearly demonstrated that exposure to early life stress increased the vulnerability to ethanol consumption, potentiated the effects of stressful stimuli exposure during adolescence on ethanol consumption and modified the expression of key targets involved in the response to stress, ethanol reinforcing properties and cognitive processes. PMID:25988842

  13. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  14. Effect of Propanoic Acid on Ethanol Fermentation by Saccharomyces cerevisiae in an Ethanol-Methane Coupled Fermentation Process

    张成明; 杜风光; 王欣; 毛忠贵; 孙沛勇; 唐蕾; 张建军

    2012-01-01

    Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was 〈30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was 〉53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.

  15. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    Lim, L.W.; Prickaerts, J.; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Y. Temel

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and v...

  16. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  17. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of [3H]sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems

  18. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  19. Dorsal Periaqueductal gray simultaneously modulates ventral Subiculum induced-plasticity in the Basolateral Amygdala and the Nucleus Accumbens

    Omer eHorovitz

    2015-03-01

    Full Text Available The ventral subiculum of the hippocampus projects both to the basolateral amygdala, which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens, which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g. medial prefrontal cortex to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g. periaqueductal grey - PAG to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub ability to induce plasticity in the basolateral amygdala (BLA and nucleus accumbens (NAcc simultaneously in rats. Further, dorsal PAG (dPAG priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.

  20. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    Abbas Alimoradian; Javad Sajedianfard; Faegheh Baha-aldini Beigy; Mohammad Reza Panjehshahin; Ali Akbar Owji

    2013-01-01

      Objective(s): The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control) of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle w...

  1. New evidence of ethanol's anxiolytic properties in the infant rat.

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Waters, Dustin H; Spear, Norman E

    2014-06-01

    Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13-16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development. PMID:24776303

  2. Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users

    Gilman, Jodi M.; Kuster, John K.; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J.; Breiter, Hans C.

    2014-01-01

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on y...

  3. Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats.

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Waters, Dustin H; Spear, Norman E

    2013-05-15

    Activation of nociceptin/orphanin FQ (NOP) receptors seems to attenuate ethanol-induced reinforcement in adult rodents. Since early ethanol exposure results in later increased responsiveness to ethanol, it is important to analyze NOP receptor modulation of ethanol-related behaviors during early ontogeny. By measuring NOP involvement in ethanol intake and ethanol-induced locomotor activation, we analyzed the specific participation of NOP receptors on these ethanol-related behaviors in two-week-old rats. In each experiment animals were pre-treated with the endogenous ligand for this receptor (nociceptin/orphanin FQ at 0.0, 0.5, 1.0 or 2.0 μg) or a selective NOP antagonist (J-113397 at 0.0, 0.5, 2.0 or 5.0 mg/kg). Results indicated that activation of the nociceptin receptor system had no effect on ethanol or water intake, while blockade of the NOP receptor has an unspecific effect on consummatory behavior: J-113397 increased ethanol (at a dose of 0.5 mg/kg) and water intake (at 0.5 and 5.0 mg/kg). Ethanol-mediated locomotor stimulation was attenuated by activation of the NOP system (nociceptin at 1.0 and 2.0 μg). Nociceptin had no effect on basal locomotor activity. Blockade of NOP receptors did not modify ethanol-induced locomotor activation. Contrary to what has been reported for adult rodents, nociceptin failed to suppress intake of ethanol in infants. Attenuation of ethanol-induced stimulation by activation of NOP receptor system suggests an early role of this receptor in this ethanol-related behavior. PMID:23439216

  4. Ethanol: No Free Lunch

    Schmitz Andrew; Moss Charles B.; Schmitz Troy G.

    2007-01-01

    The sharp rise in energy prices in the 1980s triggered a strong interest in the production of ethanol as an additional energy component. Economists are divided as to the payoffs from ethanol derived corn in part because of the complex interrelationship between energy produced from ethanol and energy from fossil fuels. Using a welfare economic framework, we calculate that there can be treasury savings from ethanol using tax credits as these subsidies can be smaller than direct payments to corn...

  5. Ethanol Basics (Fact Sheet)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  7. Postnatal development of excitatory postsynaptic currents in nucleus accumbens medium spiny neurons.

    Zhang, L; Warren, R A

    2008-07-17

    We have recorded excitatory postsynaptic currents (EPSCs) evoked by local electrical stimulation in 243 nucleus accumbens (nAcb) neurons in vitro during postnatal development from the day of birth (postnatal day 0; P0) to P27 and in young adults rats (P59-P71). An EPSC sensitive to glutamatergic antagonists was found in all neurons. In the majority of cases (189/243), the EPSC had two distinct components: an early one sensitive to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and a late one that was sensitive to D-2-amino-5-phosphonovaleric acid (APV) showing that early and late components of the EPSC were mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors respectively. During the first four postnatal days, the amplitudes of both the AMPA/KA and NMDA components of the EPSC were relatively small and then began to increase until the end of the second postnatal week. Whereas the amplitude of the early component appeared to stabilize from that point on, the late component began to decrease and became virtually undetectable in preparations from animals older than 3 weeks unless the AMPA/KA response was blocked with CNQX. In addition, the ratio between the amplitude of the NMDA and AMPA/KA receptor-mediated components of the EPSC followed a developmental pattern parallel to that of the NMDA receptor component showing an increase during the first two postnatal weeks followed by a decrease. Together, these results show that, during postnatal development, there is a period when NMDA receptor-mediated EPSC are preeminent and that time frame might represent a period during which the development of the nAcb might be sensitive to environmental manipulation. PMID:18554817

  8. Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats.

    Manduca, Antonia; Servadio, Michela; Damsteegt, Ruth; Campolongo, Patrizia; Vanderschuren, Louk Jmj; Trezza, Viviana

    2016-08-01

    Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia. PMID:26860202

  9. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. PMID:25828702

  10. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    The effect of ethanol on muscarine-stimulated release of l-[3H]norepinephrine ([3H]NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of [3H]NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on [3H]NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of [3H]NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++

  11. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.

    van Dijk, A; Klanker, M; van Oorschot, N; Post, R; Hamelink, R; Feenstra, M G P; Denys, D

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive-compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of principal interest to understand which brain area is responsible for the anxiolytic effect and whether high-frequency stimulation of different areas differentially affect unconditioned (innate) and conditioned (learned) anxiety. In this study, we examined the effect of stimulation in five brain areas in rats (NAc core and shell, bed nucleus of the stria terminalis (BNST), internal capsule (IC) and the ventral medial caudate nucleus (CAU)). The elevated plus maze was used to test the effect of stimulation on unconditioned anxiety, the Vogel conflict test for conditioned anxiety, and an activity test for general locomotor behaviour. We found different anxiolytic effects of stimulation in the five target areas. Stimulation of the CAU decreased both conditioned and unconditioned anxiety, while stimulation of the IC uniquely reduced conditioned anxiety. Remarkably, neither the accumbens nor the BNST stimulation affected conditioned or unconditioned anxiety. Locomotor activity increased with NAc core stimulation but decreased with the BNST. These findings suggest that (1) DBS may have a differential effect on unconditioned and conditioned anxiety depending on the stimulation area, and that (2) stimulation of the IC exclusively reduces conditioned anxiety. This suggests that the anxiolytic effects of DBS seen in OCD patients may not be induced by stimulation of the NAc, but rather by the IC. PMID:23900312

  12. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    Abbas Alimoradian

    2013-06-01

    Full Text Available   Objective(s: The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle was microinjected into the infralimbic in apomorphine and control groups respectively. Then, changes in dopamine levels in the nucleus accumbens shell were monitored. The concentration of dopamine was measured by High-Performance Liquid Chromatography-Electochemical (HPLC-ECD. Finally, the stereotyped behaviors were recorded. Results: The mean of dopamine levels for all of after microinjection period in control and drug groups were 450% and 150% respectively compared to those of before microinjection period. However, there was no significant difference between groups of apomorphine and control. In addition, the return of dopamine level to the baseline was faster in apomorphine group than the control group. Conclusion: The intra infralimbic apomorphine -induced climbing at dose of 5 μg/0.5 μl was not modulated via the increase of dopamine level in the nucleus accumbens area.

  13. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  14. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.

    Salamone, J D

    1994-04-18

    In recent years, considerable emphasis has been placed upon the putative role of nucleus accumbens dopamine systems in appetitive motivation and positive reinforcement. However, considerable evidence indicates that brain dopamine in general, and nucleus accumbens dopamine in particular, is involved in aspects of aversive motivation. Administration of dopamine antagonists or localized interference with nucleus accumbens dopamine systems has been shown to disrupt active avoidance behavior. In addition, accumbens dopamine release and metabolism is activated by a wide variety of stressful conditions. A review of the literature indicates that there are substantial similarities between the characteristics of dopaminergic involvement in appetitive and aversive motivation. There is conflicting evidence about the role of dopamine in emotion, and little evidence to suggest that the profound and consistent changes in instrumental behavior produced by interference with DA systems are due to direct dopaminergic mediation of positive affective responses such as hedonia. It is suggested that nucleus accumbens dopamine is involved in aspects of sensorimotor functions that are involved in both appetitive and aversive motivation. PMID:8037860

  15. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  16. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  17. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further e...

  18. Histone arginine methylation in cocaine action in the nucleus accumbens.

    Damez-Werno, Diane M; Sun, HaoSheng; Scobie, Kimberly N; Shao, Ningyi; Rabkin, Jaclyn; Dias, Caroline; Calipari, Erin S; Maze, Ian; Pena, Catherine J; Walker, Deena M; Cahill, Michael E; Chandra, Ramesh; Gancarz, Amy; Mouzon, Ezekiell; Landry, Joseph A; Cates, Hannah; Lobo, Mary-Kay; Dietz, David; Allis, C David; Guccione, Ernesto; Turecki, Gustavo; Defilippi, Paola; Neve, Rachael L; Hurd, Yasmin L; Shen, Li; Nestler, Eric J

    2016-08-23

    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. PMID:27506785

  19. Effect of morphine applied by intrapallidal microdialysis on the release of dopamine in the nucleus accumbens.

    Anagnostakis, Y; Spyraki, C

    1994-01-01

    The effect of morphine, administered intrapallidally, on extracellular concentrations of DA, DOPAC, and HVA in the nucleus accumbens and striatum was studied in the behaving rat using the in vivo microdialysis technique. Unilateral application of morphine hydrochloride was performed through microdialysis probes into the rat ventral pallidum (10 microliters of 0, 2.6, 4.0, 13.0, and 26.0 mM) or globus pallidus (10 microliters of 0 and 26.0 mM). The levels of DA, DOPAC, and HVA were measured using the HPLC with EC detection in dialysates collected from the nucleus accumbens, anteromedial, and anterolateral striatum. Samples were taken every 45 min over 3 h before and over 5 h after morphine or vehicle administration. Administration of morphine into the ventral pallidum resulted in increased DOPAC and HVA concentrations in the nucleus accumbens. Pretreatment with naloxone (1 mg/kg, SC) abolished this effect of morphine. Administration of morphine into the globus pallidus resulted in increased DA, DOPAC, and HVA concentrations in the nucleus accumbens and DA in the anteromedial striatum. The levels of DA and metabolites in anterolateral striatum remained rather unchanged following morphine administered into the ventral pallidum or the globus pallidus. The changes in DA neurotransmission into the nucleus accumbens induced by morphine application into the ventral pallidum and globus pallidus are reminiscent of a phasic and tonic release of DA respectively. The results show that intrapallidal morphine increases DA neurotransmission in nucleus accumbens and suggest that the effect of morphine is mediated by ventral pallidum/mesolimbic and globus pallidus/thalamocortical pathways, depending on the site of injection. PMID:8055351

  20. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat. PMID:25721736

  1. Fermentation method producing ethanol

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  2. Binge ethanol withdrawal: Effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model.

    Das, Sujan C; Althobaiti, Yusuf S; Alshehri, Fahad S; Sari, Youssef

    2016-04-15

    Alcohol withdrawal syndrome (AWS) is a medical emergency situation which appears after abrupt cessation of ethanol intake. Decreased GABA-A function and increased glutamate function are known to exist in the AWS. However, the involvement of glutamate transporters in the context of AWS requires further investigation. In this study, we used a model of ethanol withdrawal involving abrupt cessation of binge ethanol administration (4g/kg/gavage three times a day for three days) using male alcohol-preferring (P) rats. After 48h of withdrawal, P rats were re-exposed to voluntary ethanol intake. The amount of ethanol consumed was measured during post-withdrawal phase. In addition, the expression of GLT-1, GLAST and xCT were determined in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). We also measured glutamine synthetase (GS) activity, and the tissue content of glutamate, glutamine, dopamine and serotonin in both mPFC and NAc. We found that binge ethanol withdrawal escalated post-withdrawal ethanol intake, which was associated with downregulation of GLT-1 expression in both mPFC and NAc. The expression of GLAST and xCT were unchanged in the ethanol-withdrawal (EW) group compared to control group. Tissue content of glutamate was significantly lower in both mPFC and NAc, whereas tissue content of glutamine was higher in mPFC but unchanged in NAc in the EW group compared to control group. The GS activity was unchanged in both mPFC and NAc. The tissue content of DA was significantly lower in both mPFC and NAc, whereas tissue content of serotonin was unchanged in both mPFC and NAc. These findings provide important information of the critical role of GLT-1 in context of AWS. PMID:26821293

  3. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice.

    Mitsuhiro Edamura

    Full Text Available Major histocompatibility complex class I (MHCI molecules were recently identified as novel regulators of synaptic plasticity. These molecules are expressed in various brain areas, especially in regions undergoing activity-dependent synaptic plasticity, but their role in the nucleus accumbens (NAc is unknown. In this study, we investigated the effects of genetic disruption of MHCI function, through deletion of β2-microblobulin, which causes lack of cell surface expression of MHCI. First, we confirmed that MHCI molecules are expressed in the NAc core in wild-type mice. Second, we performed electrophysiological recordings with NAc core slices from wild-type and β2-microglobulin knock-out mice lacking cell surface expression of MHCI. We found that low frequency stimulation induced long-term depression in wild-type but not knock-out mice, whereas high frequency stimulation induced long-term potentiation in both genotypes, with a larger magnitude in knock-out mice. Furthermore, we demonstrated that knock-out mice showed more persistent behavioral sensitization to cocaine, which is a NAc-related behavior. Using this model, we analyzed the density of total AMPA receptors and their subunits GluR1 and GluR2 in the NAc core, by SDS-digested freeze-fracture replica labeling. After repeated cocaine exposure, the density of GluR1 was increased, but there was no change in total AMPA receptors and GluR2 levels in wild-type mice. In contrast, following repeated cocaine exposure, increased densities of total AMPA receptors, GluR1 and GluR2 were observed in knock-out mice. These results indicate that functional deficiency of MHCI enhances synaptic potentiation, induced by electrical and pharmacological stimulation.

  4. Market penetration of ethanol

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  5. Canada's ethanol retail directory

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  6. Canadian ethanol retailers' directory

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  7. Resting state functional connectivity of the nucleus accumbens in youth with a family history of alcoholism

    Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien; Nagel, Bonnie

    2013-01-01

    Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth.

  8. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens

    de Rover, Mischa; Lodder, Johannes C.; Smidt, Marten P.; Brussaard, Arjen B.

    2006-01-01

    Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens. J Neurophysiol 96: 2034-2041, 2006. First published July 12, 2006; doi:10.1152/jn.00333.2006. We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus

  9. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality. PMID:24564471

  10. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  11. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  12. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  13. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X.

    Neuhofer, Daniela; Henstridge, Christopher M; Dudok, Barna; Sepers, Marja; Lassalle, Olivier; Katona, István; Manzoni, Olivier J

    2015-01-01

    Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings

  14. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  15. Positive relationship between dietary fat, ethanol intake, triglycerides and hypothalamic peptides: Counteraction by lipid-lowering drugs

    Barson, Jessica R.; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F; Bocarsly, Miriam E.; Hoebel, Bartley G.; Leibowitz, Sarah F.

    2009-01-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TG), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further ...

  16. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides.

    Sterling, M E; Karatayev, O; Chang, G-Q; Algava, D B; Leibowitz, S F

    2015-02-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake. PMID:25257106

  17. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    The effect of ethanol on muscarine-stimulated release of [3H]NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of [3H]NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on [3H]NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of [3H]NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release

  18. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  19. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  20. Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol

    Crago, Christine Lasco; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world’s leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil, and together with the competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of this competitiveness and compares the greenhouse gas intensity of...

  1. Ethanol effects on rat brain phosphoinositide metabolism

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  2. Roles for evolving markets, policies, and technology improvements in U.S. corn ethanol industry development

    Gallagher, Paul W.

    2009-01-01

    This article reviews changes in markets, technologies, and policies that affect corn ethanol profit-ability and industry expansion. Historically, the corn ethanol industry was stimulated by high petro-fuel prices, successful corn and processing technology improvements, and government incentives, such as a blenders' tax credit and mandated markets defined by the leaded fuel ban and reformulated fuel. Presently, the corn ethanol industry has expanded slightly beyond the point of a normal capita...

  3. Neuropeptide-Y in the paraventricular nucleus increases ethanol self-administration

    Kelley, Stephen P; Nannini, Michelle A.; Bratt, Alison M.; Hodge, Clyde W.

    2001-01-01

    The paraventricular nucleus (PVN) of the hypothalamus is known to modulate feeding, obesity, and ethanol intake. Neuropeptide-Y (NPY), which is released endogenously by neurons projecting from the arcuate nucleus to the PVN, is one of the most potent stimulants of feeding behavior known. The role of NPY in the PVN on ethanol self-administration is unknown. To address this issue, rats were trained to self-administer ethanol via a sucrose fading procedure and injector guide cannulae aimed at th...

  4. Ethanol and oxidative stress.

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  5. Ethanol production from lignocellulose

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  6. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers

    Volkow, ND; Tomasi, D.; Wang, G-J; J. Logan; Alexoff, DL; Jayne, M; Fowler, JS; C Wong; P. Yin; Du, C.

    2014-01-01

    Dopamine signaling in nucleus accumbens is essential for cocaine reward. Interestingly, imaging studies have reported blunted dopamine increases in striatum (assessed as reduced binding of [11C]raclopride to D2/D3 receptors) in detoxified cocaine abusers. Here, we evaluate whether the blunted dopamine response reflected the effects of detoxification and the lack of cocaine-cues during stimulant exposure. For this purpose we studied 62 participants (43 non-detoxified cocaine abusers and 19 con...

  7. Cocaine Increases Stimulated Dopamine Release more in Periadolescent than Adult Rats

    Walker, Q. David; Kuhn, Cynthia M.

    2008-01-01

    The neural mechanisms responsible for the enhanced adolescent vulnerability for initiating drug abuse are unclear. We investigated whether age differences in dopamine neurotransmission could explain cocaine’s enhanced psychomotor effects in the periadolescent rat. Electrical stimulation the medial forebrain bundle of anesthetized post-natal age 28 days (PN28) and PN65 rats elicited dopamine release in caudate nucleus and nucleus accumbens core before and after 15 mg/kg cocaine i.p. Extracellu...

  8. Environmental benefits of ethanol

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  9. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  10. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs

  11. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO2 is needed to affect competitiveness. (author)

  12. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US$1=R$2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO2 is needed to affect competitiveness. - Research highlights: →The relative cost of ethanol produced in the US and imported from Brazil is shown to depend on currency exchange rate, feedstock costs, and co-product credits. →In 2006-2008, the cost of corn ethanol is estimated to be 15% lower than the cost of imported sugarcane ethanol at US ports. →A carbon pricing policy could affect relative costs in favor of sugarcane ethanol, but only at a high carbon price.

  13. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress.

    Bosch-Bouju, Clémentine; Larrieu, Thomas; Linders, Louisa; Manzoni, Olivier J; Layé, Sophie

    2016-08-01

    Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress. PMID:27452462

  14. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  15. Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens

    Tukey, David S.; Lee, Michelle; Xu, Duo; Eberle, Sarah E.; Goffer, Yossef; Manders, Toby R.; Ziff, Edward B.; Wang, Jing

    2013-01-01

    Background Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical an...

  16. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis

    Carlezon, William A; Thomas, Mark J.

    2008-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating t...

  17. The Addicted Synapse: Mechanisms of Synaptic and Structural Plasticity in Nucleus Accumbens

    Russo, Scott J.; Dietz, David M.; Dumitriu, Dani; Malenka, Robert C.; Nestler, Eric J.

    2010-01-01

    Addictive drugs cause persistent restructuring of several neuronal cell types in the brain’s limbic regions thought to be responsible for long-term behavioral plasticity driving addiction. Although these structural changes are well documented in nucleus accumbens medium spiny neurons, little is known regarding the underlying molecular mechanisms. Additionally, it remains unclear whether structural plasticity and its synaptic concomitants drive addictive behaviors, or whether they reflect home...

  18. Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    Münte, Thomas F.; Marcus Heldmann; Hermann Hinrichs; Josep Marco-Pallares; Krämer, Ulrike M.; Volker Sturm; Hans-Jochen Heinze

    2008-01-01

    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic mid...

  19. Dysregulation of AMPA receptor transmission in the nucleus accumbens in animal models of cocaine addiction

    Wolf, Marina E.

    2010-01-01

    Plasticity of glutamate transmission in neuronal circuits involving the nucleus accumbens (NAc) is now recognized to play a critical role in cocaine addiction. NAc neurons are excited primarily by AMPA-type glutamate receptors (AMPAR) and this is required for cocaine seeking. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that ...

  20. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin

    ALBERTSON, DAWN N.; Pruetz, Barb; Schmidt, Carl J.; KUHN, DONALD M.; Kapatos, Gregory; Bannon, Michael J.

    2004-01-01

    Chronic cocaine abuse induces long-term neural adaptations as a consequence of alterations in gene expression. This study was undertaken to identify those transcripts differentially regulated in the nucleus accumbens of human cocaine abusers. Affymetrix microarrays were used to measure transcript abundance in 10 cocaine abusers and 10 control subjects matched for age, race, sex, and brain pH. As expected, gene expression of cocaine- and amphetamine-regulated transcript (CART) was increased in...

  1. Effects of Cocaine and Withdrawal on the Mouse Nucleus Accumbens Transcriptome

    Eipper-Mains, Jodi E.; Kiraly, Drew D.; Duff, Michael O.; Horowitz, Michael J.; McManus, C. Joel; Eipper, Betty A.; Graveley, Brenton R.; Mains, Richard E

    2012-01-01

    Genetic association studies, pharmacological investigations, and analysis of mice lacking individual genes have made it clear that cocaine administration and withdrawal have a profound impact on multiple neurotransmitter systems. The GABAergic medium spiny neurons of the nucleus accumbens (NAc) exhibit changes in the expression of genes encoding receptors for glutamate and in the signaling pathways triggered by dopamine binding to G-protein coupled dopamine receptors. Deep sequence analysis p...

  2. Distinctive Profiles of Gene Expression in the Human Nucleus Accumbens Associated with Cocaine and Heroin Abuse

    ALBERTSON, DAWN N.; Schmidt, Carl J.; Kapatos, Gregory; Bannon, Michael J.

    2006-01-01

    Drug abuse is thought to induce long-term cellular and behavioral adaptations as a result of alterations in gene expression. Understanding the molecular consequences of addiction may contribute to the development of better treatment strategies. This study utilized highthroughput Affymetrix microarrays to identify gene expression changes in the post-mortem nucleus accumbens of chronic heroin abusers. These data were analyzed independently and in relation to our previously reported data involvi...

  3. Opposing Role for Egr3 in Nucleus Accumbens Cell Subtypes in Cocaine Action

    Chandra, Ramesh; Francis, T. Chase; Konkalmatt, Prasad; Amgalan, Ariunzaya; Gancarz, Amy M.; Dietz, David M.; Lobo, Mary Kay

    2015-01-01

    An imbalance in molecular signaling cascades and transcriptional regulation in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine D1 versus D2 receptors, is implicated in the behavioral responses to psychostimulants. To provide further insight into the molecular mechanisms occurring in MSN subtypes by cocaine, we examined the transcription factor early growth response 3 (Egr3). We evaluated Egr3 because it is a target of critical cocaine-mediated signaling ...

  4. SIRT1-FOXO3a Regulate Cocaine Actions in the Nucleus Accumbens

    Ferguson, Deveroux; Shao, NingYi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J.

    2015-01-01

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline in...

  5. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Wakabayashi, Ken T.; Kiyatkin, Eugene A

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within...

  6. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-01-01

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal’s neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effe...

  7. Nucleus accumbens shell, but not core, tracks motivational value of salt

    Loriaux, Amy L.; Roitman, Jamie D.; Roitman, Mitchell F.

    2011-01-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neu...

  8. Lithium ameliorates nucleus accumbens phase signaling dysfunction in a genetic mouse model of mania

    Dzirasa, Kafui; Coque, Laurent; Sidor, Michelle M.; Kumar, Sunil; Dancy, Elizabeth A.; Takahashi, Joseph S.; McClung, Colleen A.; Nicolelis, Miguel A.L.

    2010-01-01

    Polymorphisms in circadian genes such as CLOCK convey risk for bipolar disorder. While studies have begun to elucidate the molecular mechanism whereby disruption of Clock alters cellular function within mesolimbic brain regions, little remains known about how these changes alter gross neural circuit function and generate mania-like behaviors in Clock-Δ19 mice. Here we show that the phasic entrainment of nucleus accumbens (NAC) low-gamma (30–55Hz) oscillations to delta (1–4Hz) oscillations is ...

  9. Reduced Nucleus Accumbens Reactivity and Adolescent Depression following Early-life Stress

    Goff, Bonnie; Gee, Dylan G.; Telzer, Eva H.; Humphreys, Kathryn L.; Gabard-Durnam, Laurel; Flannery, Jessica; Tottenham, Nim

    2012-01-01

    Depression is a common outcome for those having experienced early life stress (ELS). For those individuals, depression typically increases during adolescence and appears to endure into adulthood, suggesting alterations in the development of brain systems involved in depression. Developmentally, the nucleus accumbens (NAcc), a limbic structure associated with reward learning and motivation, typically undergoes dramatic functional change during adolescence; therefore, age-related changes in NAc...

  10. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli

    Cone, Jackson J; Roitman, Jamie D.; Roitman, Mitchell F.

    2015-01-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also ...

  11. Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

    Sharp, B M; H Chen; S. Gong; Wu, X; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.

    2011-01-01

    Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavio...

  12. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  13. Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses

    Ikegami, Aiko; Olsen, Christopher M; D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2007-01-01

    Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associ...

  14. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit

    Ramaekers, J.; Evers, E.; Theunissen, E.; Kuypers, K.; Goulas, A.; Stiers, P.

    2013-01-01

    Release of dopamine in the nucleus accumbens (NAcc) is essential for acute drug reward. The present study was designed to trace the reinforcing effect of dopamine release by measuring the functional connectivity (FC) between the NAcc and brain regions involved in a limbic cortical–subcortical circuit during a dopaminergic challenge. Twenty healthy volunteers received single doses of methylphenidate (40 mg) and placebo on separate test days according to a double-blind, cross-over study design....

  15. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    Spencer, Sade; Brown, Robyn M.; Quintero, Gabriel C; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration...

  16. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relat...

  17. Intra-accumbens injections of the adenosine A(2A) agonist CGS 21680 affect effort-related choice behavior in rats

    Stopper, Colin M.; WORDEN, LILA T.; Mingote, Susana; Port, Russell G.; Salamone, John D.; Font Hurtado, Laura; Pereira, Mariana; Farrar, Andrew M.

    2008-01-01

    Rationale: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements, and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating eff...

  18. Framework for developing a hierarchical model of reward focusing on the nucleus accumbens.

    Smith, Wesley; Nair, Satish S; Xu, Dong; Nair, Jyotsna; Beitman, Bernard

    2004-01-01

    Computational modeling using GENESIS platform has led to advances in fabricating a model to test the influence of molecular/proteomic adaptations on behavior due to reward. The nucleus accumbens is an area of the brain that processes information from other parts of the brain and is an integral element of the 'reward pathway' in the brain. A simplified model of the accumbens using one neuron is developed as part of a larger effort to study reward and chemical dependency with a focus on cocaine addiction. A preliminary model of a biologically realistic neuron was developed with inhibitory and excitatory afferents as well as intrasynapse dynamics. The neuron displayed characteristic behavior of a neuron found in the nucleus accumbens including bistability. The neuron has afferents from other neurons via dendrites which carry the inputs relating to behavioral aspects and to learning. To add behavioral aspects to the model, a methodology is developed to model contexts and their reinforcing effects on behavior, similar to cocaine addiction. Results using both the biological and behavioral modeling are encouraging for this preliminary model. PMID:17271623

  19. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  20. TRH injected into the nucleus accumbens shell releases dopamine and reduces feeding motivation in rats.

    Puga, L; Alcántara-Alonso, V; Coffeen, U; Jaimes, O; de Gortari, P

    2016-06-01

    The thyrotropin-releasing hormone (TRH), an anorexigenic factor that reduces food intake in food-restricted animals, may be involved in motivation for food. Injected centrally, TRH impairs acquisition of food-rewarded behavior. Through the TRH-R1 receptors, TRH injected in the nucleus accumbens increases dopamine content-perhaps the mechanism by which the peptide modulates food motivation. This, however, is still to be demonstrated. We sought to evaluate dopamine release by microdialysis after a TRH injection into the nucleus accumbens shell in free-moving fasted rats. In addition, we assessed dopamine content and turnover by HPLC and the relationship with the motivation for food by analyzing the performance of rats during a progressive-ratio (PR) operant-conditioning test. Finally, we determined serum leptin and triiodothyronine (T3) levels in order to evaluate the animals' metabolic response to food restriction and the impact of intra-accumbal TRH administration on circulating hormones. Intra-accumbal injections of TRH reduced food intake in food-restricted rats-compared to counterparts treated with saline-, without further decreasing T3 or leptin levels, which dropped due to their dietary regime. TRH-injected rats had lower breaking points on the PR schedule, which indicated lower motivation to eat. Accordingly, compared to saline-treated animals, dopamine release and turnover increased in the nucleus accumbens of TRH-injected rats, a finding that suggests a relationship between motivation for food and TRH-induced release of dopamine. PMID:27006143

  1. Ethanol fuels in Brazil

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  2. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  3. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  4. Operant Ethanol Self-Administration in Ethanol Dependent Mice

    Lopez, Marcelo F; Howard C Becker

    2014-01-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependenc...

  5. Ethanol: economic gain or drain?

    Joshua A. Byrge; Kevin L. Kliesen

    2008-01-01

    Corn-based ethanol can make a dent in demand for oil, but at what price? Food costs go up. Environmental damage worsens. If oil prices fall, ethanol production will probably collapse-as it did 20 years ago.

  6. Ethanol toxicity and oxidative stress

    Bondy, SC

    1992-01-01

    The mechanisms underlying the toxicity of ethanol have been the subject of much study, but are not well understood. Unlike many selective pharmacological agents, ethanol clearly has several major loci of action. One deleterious factor in ethanol metabolism is the potential for generation of excess amounts of free radicals. The extent to which this activity accounts for the overall toxicity of ethanol is unknown. This review outlines the enzymic steps that have the capacity to generate reactiv...

  7. Hepatotoxicity of ethanol in mice.

    Goldin, R D; Wickramasinghe, S. N.

    1987-01-01

    Mice continuously exposed to ethanol vapour (for up to 19 days) developed fatty change in the liver (from 2 days onwards) and lesions resembling those of alcoholic hepatitis in man (from 5 days onwards). They also showed biochemical evidence of liver cell damage. Sera from ethanol-treated animals contained immunoglobulins that bound to the hepatocytes of ethanol-treated but not of control animals suggesting that exposure to ethanol was followed by an immunological response to a hepatocyte neo...

  8. Implications of increased ethanol production

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  9. Reactions of ethanol on Ru

    Sturm, J. M.; Lee, C. J.; F. Bijkerk,

    2013-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. From 175 K to 200 K, ethanol is converted into ethoxy groups, which und

  10. Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2012-01-01

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

  11. Sorghum to Ethanol Research

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  12. Sorghum to Ethanol Research

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called dedicated bioenergy crops including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  13. Sorghum to Ethanol Research

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy

  14. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  15. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  16. Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior

    Schmuckermair, Claudia; Gaburro, Stefano; Sah, Anupam; Landgraf, Rainer; Sartori, Simone B.; Singewald, Nicolas

    2013-01-01

    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment wit...

  17. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in Ra was matched by a comparable decrease in glucose utilization (Rd), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on Ra is counterbalanced by equal inhibition of Rd; (2) basal Ra and Rd are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  18. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R. (Helsinki Univ. and Research Labs. of the Finnish State Alcohol Co. (Finland))

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.

  19. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.

    2009-01-01

    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of an...

  20. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  1. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  2. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants

  3. Xylose fermentation to ethanol

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  4. Steam reforming of ethanol

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition on...... Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion of...... ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending as...

  5. Innovative inexpensive ethanol

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  6. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either 3H cyclic AMP binding or as 8-azido cyclic AM32P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/μg protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase

  7. Chronic ethanol exposure enhances the aggressiveness of breast cancer: the role of p38γ.

    Xu, Mei; Wang, Siying; Ren, Zhenhua; Frank, Jacqueline A; Yang, Xiuwei H; Zhang, Zhuo; Ke, Zun-Ji; Shi, Xianglin; Luo, Jia

    2016-01-19

    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12-48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway. PMID:26655092

  8. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents

    Hollis C. Karoly

    2015-12-01

    Full Text Available Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol. Due to the role of the nucleus accumbens (NAcc in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID task. Adolescents (ages 14–18; 66% male were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n = 14, tobacco-only (n = 34, alcohol-only (n = 12, cannabis + tobacco (n = 17, cannabis + tobacco + alcohol (n = 17, and non-using controls (n = 38. All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  9. A Sustainable Ethanol Distillation System

    Yuelei Yang

    2012-01-01

    Full Text Available The discarded fruit and vegetable waste from the consumer and retailer sectors provide a reliable source for ethanol production. In this paper, an ethanol distillation system has been developed to remove the water contents from the original wash that contains only around 15% of the ethanol. The system has an ethanol production capacity of over 100,000 liters per day. It includes an ethanol condenser, a wash pre-heater, a main exhaust heat exchanger as well as a fractionating column. One unique characteristic of this system is that it utilizes the waste heat rejected from a power plant to vaporize the ethanol, thus it saves a significant amount of energy and at the same time reduces the pollution to the environment.

  10. Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in long evans rats.

    Barbier, E; Houchi, H; Warnault, V; Pierrefiche, O; Daoust, M; Naassila, M

    2009-06-30

    An important factor that may influence addiction liability is exposure during the early life period. Exposure to ethanol, early in life, can have long-lasting implications on brain function and drugs of abuse response later in life. In the present study we investigated the behavioral responses to ethanol and to psychostimulants in Long Evans rats that have been exposed to pre- and postnatal ethanol. Since a relationship between heightened drug intake and susceptibility to drug-induced locomotor activity/sensitization has been demonstrated, we tested these behavioral responses, in control and early life ethanol-exposed animals. The young adult male and female progeny were tested for locomotor response to alcohol, cocaine and d-amphetamine. Sedative, rewarding effects of alcohol and alcohol consumption were measured. Our results show that early life ethanol exposure behaviorally sensitized animals to subsequent ethanol and psychostimulants exposure. Ethanol-exposed animals were also more sensitive to the hyperlocomotor effects of all drugs of abuse tested and to those of the dopamine receptor agonist apomorphine. Locomotor sensitization to repeated injections of cocaine was facilitated in ethanol-exposed animals. Ethanol-induced conditioned place preference was also facilitated in ethanol-exposed animals. Ethanol consumption and preference were increased after early life ethanol exposure and this was associated with decreased sensitivity to the sedative effects of ethanol. The altered behavioral responses to drugs of abuse were associated with decreased striatal dopamine transporter and hippocampal NMDAR binding. Our results outline an increased vulnerability to rewarding and stimulant effects of ethanol and psychostimulants and support the epidemiological and clinical data that suggested that early chronic exposure to ethanol may increase the propensity for later self-administration of ethanol or other substances. PMID:19348874