WorldWideScience

Sample records for accumbens mglur5-homer2-pi3k signaling

  1. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-01

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy. PMID:26555033

  2. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli

    Cone, Jackson J; Roitman, Jamie D.; Roitman, Mitchell F.

    2015-01-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also ...

  3. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    Spencer, Sade; Brown, Robyn M.; Quintero, Gabriel C; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration...

  4. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    Saddoris, Michael P.; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either ...

  5. Activation of Astroglial Calcium Signaling by Endogenous Metabolites Succinate and Gamma-Hydroxybutyrate in the Nucleus Accumbens

    Molnár, Tünde; Héja, László; Emri, Zsuzsa; Simon, Ágnes; Nyitrai, Gabriella; Pál, Ildikó; Kardos, Julianna

    2011-01-01

    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neur...

  6. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens

    Zsuzsa Emri; Julianna Kardos

    2011-01-01

    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signalling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neu...

  7. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  8. Lithium ameliorates nucleus accumbens phase signaling dysfunction in a genetic mouse model of mania

    Dzirasa, Kafui; Coque, Laurent; Sidor, Michelle M.; Kumar, Sunil; Dancy, Elizabeth A.; Takahashi, Joseph S.; McClung, Colleen A.; Nicolelis, Miguel A.L.

    2010-01-01

    Polymorphisms in circadian genes such as CLOCK convey risk for bipolar disorder. While studies have begun to elucidate the molecular mechanism whereby disruption of Clock alters cellular function within mesolimbic brain regions, little remains known about how these changes alter gross neural circuit function and generate mania-like behaviors in Clock-Δ19 mice. Here we show that the phasic entrainment of nucleus accumbens (NAC) low-gamma (30–55Hz) oscillations to delta (1–4Hz) oscillations is ...

  9. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling. PMID:26894264

  10. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens.

    Molnár, Tünde; Héja, László; Emri, Zsuzsa; Simon, Agnes; Nyitrai, Gabriella; Pál, Ildikó; Kardos, Julianna

    2011-01-01

    Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca(2+) transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca(2+) transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca(2+) transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca(2+) dynamics evoked by GHB suggested that Ca(2+) was released from internal stores. Similarly to SUC, the GHB response was also characterized by an effective concentration of 50 μM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca(2+) signal remained in mice lacking GABA(B) receptor type 1 subunit in the presence and absence of the N-Methyl-d-Aspartate (NMDA) receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV), indicating action mechanisms independent of the GABA(B) or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252, and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91) also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca(2+) signaling in astrocytic networks. PMID:22180742

  11. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens

    Zsuzsa Emri

    2011-12-01

    Full Text Available Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signalling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC and gamma-hydroxybutyrate (GHB that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc. Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB-response was also characterized by an effective concentration of 50 µM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-D-Aspartate (NMDA receptor antagonist (2R-amino-5-phosphonovaleric acid (APV, indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252 and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91 also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signalling in astrocytic networks.

  12. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Lloyd, Kevin; Dayan, Peter

    2015-12-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  13. Nucleus accumbens receives gastric vagal inputs

    Sangeeta MEHENDALE; Jing-tian XIE; Han H AUNG; Xiong-Fei GUAN; Chun-Su YUAN

    2004-01-01

    AIM: To localize and characterize the response of single accumbal neurons to electrical stimulation of the gastric vagal fibers. METHODS: Unitary responses to electrical stimulation of the ventral and dorsal gastric vagal fibers which serve the proximal stomach were recorded extracellularly in the nucleus accumbens in anesthetized cats.RESULTS: The evoked units recorded in the nucleus accumbens consisted of phasic and tonic responses, with a mean latency of (396±43) ms. Convergence of ventral and dorsal gastric vagal inputs onto single phasic and tonic accumbal units was observed. For tonic inhibitory responses, convergence was exhibited when stimulation applied to both the ventral and dorsal gastric vagal branches resulted in a significantly longer inhibitory period than did stimulation of a single gastric vagal branch. Comparing the gastric vagally evoked accumbal unitary responses to the neuronal responses recorded in the nucleus tractus solitarius, parabrachial nucleus and hypothalamus in our previous studies, our data showed a higher percentage of single spike responses and shorter response duration's in the nucleus accumbens than in the other nuclei. This suggests that the synaptic drive from the gastric vagal inputs to the nucleus accumbens is less powerful than in the other structures. CONCLUSION: The present study localized and characterized gastric vagally evoked responses in the nucleus accumbens, which suggest that the nucleus accumbens may process gastric signals concerned with the ingestive process.

  14. Functional regulation of PI3K-associated signaling in the accumbens by binge alcohol drinking in male but not female mice.

    Cozzoli, Debra K; Kaufman, Moriah N; Nipper, Michelle A; Hashimoto, Joel G; Wiren, Kristine M; Finn, Deborah A

    2016-06-01

    It is well established that binge alcohol consumption produces alterations in Group 1 metabotropic glutamate receptors (mGlus) and related signaling cascades in the nucleus accumbens (NAC) of adult male mice, but female and adolescent mice have not been examined. Thus, the first set of studies determined whether repeated binge alcohol consumption produced similar alterations in protein and mRNA levels of Group 1 mGlu-associated signaling molecules in the NAC of male and female adult and adolescent mice. The adult (9 weeks) and adolescent (4 weeks) C57BL/6J mice were exposed to 7 binge alcohol sessions every 3rd day while controls drank water. Repeated binge alcohol consumption produced sexually divergent changes in protein levels and mRNA expression for Group 1 mGlus and downstream signaling molecules in the NAC, but there was no effect of age. Binge alcohol intake decreased mGlu5 levels in females, whereas it decreased indices of phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), 4E-binding protein 1, and p70 ribosomal protein S6 kinase in males. Expression of genes encoding mGlu1, mGlu5, the NR2A subunit of the NMDA receptor, and Homer2 were all decreased by binge alcohol consumption in males, while females were relatively resistant (only phosphoinositide-dependent protein kinase 1 was decreased). The functional implication of these differences was investigated in a separate study by inhibiting mTOR in the NAC (via infusions of rapamycin) before binge drinking sessions. Rapamycin (50 and 100 ng/side) significantly decreased binge alcohol consumption in males, while consumption in females was unaffected. Altogether these results highlight that mTOR signaling in the NAC was necessary to maintain binge alcohol consumption only in male mice and that binge drinking recruits sexually divergent signaling cascades downstream of PI3K and presumably, Group 1 mGlus. Importantly, these findings emphasize that sex should be considered in the development

  15. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice

    Thomas F. Tropea

    2011-12-01

    Full Text Available Previous work from our group and others utilizing animal models have demonstrated long lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine treatment. We have shown that prenatal cocaine treatment results in augmented D1 -induced cyclic AMP (cAMP and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str and nucleus accumbens (NAc of adult mice exposed to cocaine in utero. Basally, in the striatum of prenatal cocaine treated (PCOC mice there were significantly higher levels of a number of the transcription factors studied. Following acute administration of cocaine (15 mg/kg, i.p. or D1 agonist (SKF 82958; 1 mg/kg, i.p. there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str, that were significantly augmented in PCOC mice. In sharp contrast, in the NAc of those mice, we found increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed increased levels in PSAL mice, but significantly decreased levels in PCOC mice in both the Str and NAc following acute administration of cocaine or D1 agonist. We also found significantly higher levels of the BDNF precursor, pro-BDNF and one of its receptors, TrkB in the Str of PCOC mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the prenatal cocaine-induced phenotype.

  16. A Novel Role of the WNT-Dishevelled-GSK3β Signaling Cascade in the Mouse Nucleus Accumbens in a Social Defeat Model of Depression

    Wilkinson, Matthew B.; Dias, Caroline; Magida, Jane; Mazei-Robison, Michelle; Lobo, MaryKay; Kennedy, Pamela; Dietz, David; Covington, Herbert; Russo, Scott; Neve, Rachael; Ghose, Subroto; Tamminga, Carol; Nestler, Eric J.

    2011-01-01

    Based on earlier gene expression and chromatin array data, we identified the protein, dishevelled-2 (DVL2), as being regulated in the nucleus accumbens (NAc), a key brain reward region, in the mouse social defeat model of depression. Here, we validate these findings by showing that DVL2 mRNA and protein levels are downregulated in NAc of mice susceptible to social defeat stress, effects not seen in resilient mice. Other DVL isoforms, DVL1 and DVL3, show similar patterns of regulation. Downreg...

  17. Neurons of human nucleus accumbens

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  18. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  19. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  20. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine.

    Luo, Yi-Xiao; Han, Hua; Shao, Juan; Gao, Yuan; Yin, Xi; Zhu, Wei-Li; Han, Ying; Shi, Hai-Shui

    2016-01-01

    Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) analysis was used to analyse the dopamine concentration. The results showed that systemic TFF3 administration (0.1 mg/kg i.p.) significantly augmented cocaine- induced hyperlocomotion and CPP formation, without any effects on locomotor activity and aversive or rewarding effects per se. TFF3 significantly augmented the increment of the dopamine concentration in the NAc and the activity of the mTOR signalling pathway induced by acute cocaine exposure (10 mg/kg, i.p.) in the NAc shell, but not the core. The Intra-NAc shell infusion of rapamycin blocked TFF3-induced hyperactivity in cocaine-treatment rats. These findings indicated that TFF3 could potentiate behavioural response to cocaine, which may be associated with regulating dopamine concentration. Furthermore, the findings indicated that mTOR signalling pathway in the NAc shell is important for TFF3-induced enhancement on the cocaine-induced behavioral changes. PMID:27282818

  1. Nucleus accumbens stimulation in pathological obesity.

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  2. Music and the nucleus accumbens.

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  3. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat. PMID:25721736

  4. Opposing Role for Egr3 in Nucleus Accumbens Cell Subtypes in Cocaine Action

    Chandra, Ramesh; Francis, T. Chase; Konkalmatt, Prasad; Amgalan, Ariunzaya; Gancarz, Amy M.; Dietz, David M.; Lobo, Mary Kay

    2015-01-01

    An imbalance in molecular signaling cascades and transcriptional regulation in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine D1 versus D2 receptors, is implicated in the behavioral responses to psychostimulants. To provide further insight into the molecular mechanisms occurring in MSN subtypes by cocaine, we examined the transcription factor early growth response 3 (Egr3). We evaluated Egr3 because it is a target of critical cocaine-mediated signaling ...

  5. Control of nucleus accumbens activity with neurofeedback

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  6. Effects of Cocaine and Withdrawal on the Mouse Nucleus Accumbens Transcriptome

    Eipper-Mains, Jodi E.; Kiraly, Drew D.; Duff, Michael O.; Horowitz, Michael J.; McManus, C. Joel; Eipper, Betty A.; Graveley, Brenton R.; Mains, Richard E

    2012-01-01

    Genetic association studies, pharmacological investigations, and analysis of mice lacking individual genes have made it clear that cocaine administration and withdrawal have a profound impact on multiple neurotransmitter systems. The GABAergic medium spiny neurons of the nucleus accumbens (NAc) exhibit changes in the expression of genes encoding receptors for glutamate and in the signaling pathways triggered by dopamine binding to G-protein coupled dopamine receptors. Deep sequence analysis p...

  7. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens.

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-06-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  8. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress.

    Bosch-Bouju, Clémentine; Larrieu, Thomas; Linders, Louisa; Manzoni, Olivier J; Layé, Sophie

    2016-08-01

    Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress. PMID:27452462

  9. Limbic and cortical information processing in the nucleus accumbens

    Goto, Yukiori; Grace, Anthony A.

    2008-01-01

    The nucleus accumbens regulates goal-directed behaviors by integrating information from limbic structures and the prefrontal cortex. Here, we review recent studies in an attempt to provide an integrated view of the control of information processing in the nucleus accumbens in terms of the regulation of goal-directed behaviors and how disruption of these functions might underlie the pathological states in drug addiction and other psychiatric disorders. We propose a model that could account for...

  10. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  11. Histone arginine methylation in cocaine action in the nucleus accumbens.

    Damez-Werno, Diane M; Sun, HaoSheng; Scobie, Kimberly N; Shao, Ningyi; Rabkin, Jaclyn; Dias, Caroline; Calipari, Erin S; Maze, Ian; Pena, Catherine J; Walker, Deena M; Cahill, Michael E; Chandra, Ramesh; Gancarz, Amy; Mouzon, Ezekiell; Landry, Joseph A; Cates, Hannah; Lobo, Mary-Kay; Dietz, David; Allis, C David; Guccione, Ernesto; Turecki, Gustavo; Defilippi, Paola; Neve, Rachael L; Hurd, Yasmin L; Shen, Li; Nestler, Eric J

    2016-08-23

    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. PMID:27506785

  12. Neural Encoding of Cocaine Seeking Behavior is Coincident with Phasic Dopamine Release in the Accumbens Core and Shell

    Owesson-White, Catarina A.; Ariansen, Jennifer; Stuber, Garret D.; Cleaveland, Nathan A.; Cheer, Joseph F.; Wightman, R. Mark; Carelli, Regina M.

    2009-01-01

    Mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) are part of a complex circuit mediating cocaine-directed behaviors. However, the precise role of rapid (subsecond) dopamine release within the primary sub-regions of the NAc, the core and shell, and its relationship to NAc cell firing during this behavior remain unknown. Here, using fast-scan cyclic voltammetry (FSCV) we report rapid dopamine signaling in both the core and shell, howeve...

  13. Desire and Dread from the Nucleus Accumbens: Cortical Glutamate and Subcortical GABA Differentially Generate Motivation and Hedonic Impact in the Rat

    Faure, Alexis; Richard, Jocelyn M.; Berridge, Kent C.

    2010-01-01

    Background GABAergic signals to the nucleus accumbens (NAc) shell arise from predominantly subcortical sources whereas glutamatergic signals arise mainly from cortical-related sources. Here we contrasted GABAergic and glutamatergic generation of hedonics versus motivation processes, as a proxy for comparing subcortical and cortical controls of emotion. Local disruptions of either signals in medial shell of NAc generate intense motivated behaviors corresponding to desire and/or dread, along a ...

  14. File list: ALL.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.20.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX209196,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  15. File list: NoD.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.50.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  16. File list: Pol.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.10.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209214,SRX209218,SRX209215,SRX209213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  17. File list: InP.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.20.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX791596,SRX791600,SRX209801,SRX209802,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  18. File list: Oth.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.20.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  19. File list: Oth.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.05.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  20. File list: Oth.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.10.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  1. File list: His.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.20.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...2,SRX029231,SRX029230,SRX029228,SRX209198,SRX209196 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  2. File list: NoD.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.20.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  3. File list: His.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.50.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791595,S...0,SRX209199,SRX209196,SRX209197,SRX209198,SRX209194 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  4. File list: NoD.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.10.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  5. File list: His.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.05.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX209200,S...7,SRX209211,SRX029230,SRX029232,SRX029228,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  6. File list: Unc.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.10.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...98892,SRX698891 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  7. File list: His.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available His.Neu.10.AllAg.Nucleus_Accumbens mm9 Histone Neural Nucleus Accumbens SRX791594,S...8,SRX209196,SRX209197,SRX209198,SRX209194,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  8. File list: ALL.Neu.10.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.10.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445333,SRX472711,SRX445335,SRX445331,SRX029231 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Nucleus_Accumbens.bed ...

  9. File list: Pol.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.50.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209218,SRX209215,SRX209213,SRX209214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  10. File list: NoD.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available NoD.Neu.05.AllAg.Nucleus_Accumbens mm9 No description Neural Nucleus Accumbens http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  11. File list: Unc.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.05.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29238,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  12. File list: Pol.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.20.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209215,SRX209214,SRX209213,SRX209218 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  13. File list: Oth.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Oth.Neu.50.AllAg.Nucleus_Accumbens mm9 TFs and others Neural Nucleus Accumbens SRX4...72713 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  14. File list: Unc.Neu.20.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.20.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX698...29234,SRX029236 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Nucleus_Accumbens.bed ...

  15. File list: InP.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.05.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9803,SRX209802,SRX791596,SRX791600,SRX209801,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  16. File list: ALL.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.50.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX791...SRX445335,SRX209198,SRX445331,SRX209194,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  17. File list: ALL.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available ALL.Neu.05.AllAg.Nucleus_Accumbens mm9 All antigens Neural Nucleus Accumbens SRX209...SRX472713,SRX445333,SRX472711,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  18. File list: Unc.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Unc.Neu.50.AllAg.Nucleus_Accumbens mm9 Unclassified Neural Nucleus Accumbens SRX029...98892,SRX029235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  19. File list: InP.Neu.50.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available InP.Neu.50.AllAg.Nucleus_Accumbens mm9 Input control Neural Nucleus Accumbens SRX20...9801,SRX209802,SRX209803,SRX791600,SRX791596,SRX472711,SRX445333,SRX445335,SRX445331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Nucleus_Accumbens.bed ...

  20. File list: Pol.Neu.05.AllAg.Nucleus_Accumbens [Chip-atlas[Archive

    Full Text Available Pol.Neu.05.AllAg.Nucleus_Accumbens mm9 RNA polymerase Neural Nucleus Accumbens SRX2...09217,SRX209216,SRX209213,SRX209214,SRX209218,SRX209215 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Nucleus_Accumbens.bed ...

  1. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. PMID:25726897

  2. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  3. Rapid feedback processing in human nucleus accumbens and motor thalamus

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  4. [GABA-NO interaction in the N. Accumbens during danger-induced inhibition of exploratory behavior].

    2013-01-01

    In Sprague-Dawley rats by means of in vivo microdialysis combined with HPLC analysis, it was shown that presentation to rats during exploratory activity of a tone previously pared with footshock inhibited the exploration and prevented the exploration-induced increase in extracellular levels of citrulline (an NO co-product) in the medial n. accumbens. Intra-accumbal infusions of 20 μM bicuculline, a GABA(A)-receptor antagonist, firstly, partially restored the exploration-induced increase of extracellular citrulline levels in this brain area, which was inhibited by presentation of the tone, previously paired with foot-shock and, secondly, prevented the inhibition of exploratory behavior produced by this sound signal of danger. The data obtained indicate for the first time that signals of danger inhibit exploratory behavior and exploration-induced activation of the accumbal nitrergic system via GABA(A)-receptor mechanisms. PMID:25508395

  5. High-fat intake induced by mu-opioid activation of the nucleus accumbens is inhibited by Y1R-blockade and MC3/4R-stimulation

    Zheng, Huiyuan; Townsend, R. Leigh; Shin, Andrew; Patterson, Laurel M.; Phifer, Curtis B.; Berthoud, Hans-Rudolf

    2010-01-01

    Nucleus accumbens mu-opioid receptor activation can strongly stimulate intake of high-fat food in satiated rats, and one of the mechanisms involves activation of lateral hypothalamic orexin neurons and orexin receptor-1 signaling in the mesolimbic dopamine system. Here, we tested the potential contribution of NPY/Y1R and α-MSH/MC3/4R-signaling to accumbens-induced high-fat feeding. Prior administration of the selective Y1R antagonist 1229U91 or the MC3/4R agonist MTII into the lateral ventric...

  6. Nucleus accumbens lesions modulate the effects of Methylphenidate

    Podet, Adam; Lee, Min J.; Swann, Alan C.; Dafny, Nachum

    2010-01-01

    The psychostimulant methylphenidate (MPD, Ritalin) is the prescribed drug of choice for treatment of ADHD. In recent years, the diagnosis rate of ADHD has increased dramatically, as have the number of MPD prescriptions. Repeated exposure to psychostimulants produces behavioral sensitization in rats, an experimental indicator of a drug’s potential liability. In studies on cocaine and amphetamine, this effect has been reported to involve the nucleus accumbens (NAc), one of the nuclei belonging ...

  7. Nucleus accumbens core lesions enhance two-way active avoidance

    Lichtenberg, Nina T.; Kashtelyan, Vadim; Burton, Amanda C.; Bissonette, Gregory B.; Roesch, Matthew R.

    2013-01-01

    The majority of work examining nucleus accumbens core (NAc) has focused on functions pertaining to behaviors guided by appetitive outcomes. These studies have pointed to NAc as being critical for motivating behavior toward desirable outcomes. For example, we have recently shown that lesions of NAc impaired performance on a reward-guided decision-making task that required rats to choose between differently valued rewards. Unfortunately, much less is known about the role that NAc plays in motiv...

  8. Alterations in blood glucose levels under hyperinsulinemia affect accumbens dopamine

    Bello, Nicholas T.; Hajnal, Andras

    2006-01-01

    Dopaminergic systems have been implicated in diabetes and obesity. Notwithstanding, the most basic relationship between dopamine and plasma insulin as well as glucose levels yet remains unknown. The present experiments were designed to investigate the effects of acute hyperinsulinemia on basal dopamine levels in the nucleus accumbens of the rat under chloral hydrate anesthesia using acute microdialysis in combination with the hyperinsulinemic-glycemic clamping procedure. In Experiment 1, each...

  9. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. PMID:26792192

  10. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  11. Variation in Oxytocin Receptor Density in the Nucleus Accumbens has Differential Effects on Affiliative Behaviors in Monogamous and Polygamous Voles

    Ross, Heather E.; Freeman, Sara M.; Spiegel, Lauren L.; Ren, Xianghui; Terwilliger, Ernest F.; Young, Larry J.

    2009-01-01

    Oxytocin receptors in the nucleus accumbens have been implicated in the regulation of alloparental behavior and pair bond formation in the socially monogamous prairie vole. Oxytocin receptor density in the nucleus accumbens is positively correlated with alloparenting in juvenile and adult female prairie voles, and oxytocin receptor antagonist infused into the nucleus accumbens blocks this behavior. Furthermore, prairie voles have higher densities of oxytocin receptors in the accumbens than no...

  12. Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback

    M.X. Cohen; N. Axmacher; D. Lenartz; C.E. Elger; V. Sturm; T.E. Schlaepfer

    2009-01-01

    The nucleus accumbens plays a key role in reinforcement-guided behaviors. Here, we report that electrophysiological oscillatory phase synchrony between the two nuclei accumbens may play a crucial role in using negative feedback to guide decision making. We recorded local field potentials from the hu

  13. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  14. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  15. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  16. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior.

    Crespo, Jose A; Stöckl, Petra; Zorn, Katja; Saria, Alois; Zernig, Gerald

    2008-12-01

    Acquisition of drug-reinforced behavior is accompanied by a systematic increase of release of the neurotransmitter acetylcholine (ACh) rather than dopamine, the expected prime reward neurotransmitter candidate, in the nucleus accumbens core (AcbC), with activation of both muscarinic and nicotinic ACh receptors in the AcbC by ACh volume transmission being necessary for the drug conditioning. The present findings suggest that the AcbC ACh system is preferentially activated by drug reinforcers, because (1) acquisition of food-reinforced behavior was not paralleled by activation of ACh release in the AcbC whereas acquisition of morphine-reinforced behavior, like that of cocaine or remifentanil (tested previously), was, and because (2) local intra-AcbC administration of muscarinic or nicotinic ACh receptor antagonists (atropine or mecamylamine, respectively) did not block the acquisition of food-reinforced behavior whereas acquisition of drug-reinforced behavior had been blocked. Interestingly, the speed with which a drug of abuse distributed into the AcbC and was eliminated from the AcbC determined the size of the AcbC ACh signal, with the temporally more sharply delineated drug stimulus producing a more pronounced AcbC ACh signal. The present findings suggest that muscarinic and nicotinic ACh receptors in the AcbC are preferentially involved during reward conditioning for drugs of abuse vs sweetened condensed milk as a food reinforcer. PMID:18418362

  17. The function of nucleus accumbens in drug addiction%伏核在药物成瘾中的作用

    衡立君; 高国栋

    2005-01-01

    Nucleus accumbens, an important component of brain-reward regions, is involved in the reinforcement, tolerance, addiction and expression of withdrawal syndrome of drug addiction. Previous studies of nucleus accumbens in functional anatomy, receptor activation and signal transduction, gene transcription and molecular expression, neuronal plasticity and changes in behavior help us understand the mechanism of drug addiction in the central nervous system, and provide us with basic principles for clinical treatment of drug withdrawal syndrome.%伏核是脑奖赏中枢的重要组成部分,参与成瘾药物的强化、耐受、成瘾过程及药物戒断综合征的表达.对伏核功能解剖、受体激动与信号转导、基因转录与分子表达、神经元可塑性与行为变化等方面的深入研究,将帮助我们揭示药物成瘾的中枢机制,进而为临床戒毒治疗提供理论依据.

  18. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    Abbas Alimoradian; Javad Sajedianfard; Faegheh Baha-aldini Beigy; Mohammad Reza Panjehshahin; Ali Akbar Owji

    2013-01-01

      Objective(s): The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control) of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle w...

  19. Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users

    Gilman, Jodi M.; Kuster, John K.; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J.; Breiter, Hans C.

    2014-01-01

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on y...

  20. Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings

    Thomas F Münte

    2008-03-01

    Full Text Available The Nucleus accumbens (Nacc has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD, we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be signifi cantly increased compared to a large (n= 83 normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, crosscorrelation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior.

  1. Activin-receptor signaling regulates cocaine-primed behavioral and morphological plasticity

    Gancarz, Amy M.; Wang, Zi-Jun; Schroeder, Gabrielle L.; Damez-Werno, Diane; Braunscheidel, Kevin; Mueller, Lauren E.; Monica S Humby; Caccamise, Aaron; Martin, Jennifer A.; Dietz, Karen C.; Neve, Rachael L; Dietz, David M.

    2015-01-01

    Cocaine addiction is a life-long relapsing disorder that results from long-term adaptations within the brain. We find that Activin-receptor signaling, including the transcription factor Smad3, is upregulated in the rat nucleus accumbens shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally alter cocaine seeking, while governing morphological plasticity in nucleus accumbens neurons. These findings reveal that Activin/Smad3 sig...

  2. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Nicholas A Donnelly

    Full Text Available Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC and nucleus accumbens (NAcb and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT, which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.

  3. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala.

    Jonathan P Fadok

    Full Text Available The neurotransmitter dopamine (DA is essential for learning in a pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS. Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA and nucleus accumbens (NAc is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.

  4. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  5. Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action.

    Chandra, Ramesh; Francis, T Chase; Konkalmatt, Prasad; Amgalan, Ariunzaya; Gancarz, Amy M; Dietz, David M; Lobo, Mary Kay

    2015-05-20

    An imbalance in molecular signaling cascades and transcriptional regulation in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine D1 versus D2 receptors, is implicated in the behavioral responses to psychostimulants. To provide further insight into the molecular mechanisms occurring in MSN subtypes by cocaine, we examined the transcription factor early growth response 3 (Egr3). We evaluated Egr3 because it is a target of critical cocaine-mediated signaling pathways and because Egr3-binding sites are found on promoters of key cocaine-associated molecules. We first used a RiboTag approach to obtain ribosome-associated transcriptomes from each MSN subtype and found that repeated cocaine administration induced Egr3 ribosome-associated mRNA in NAc D1-MSNs while reducing Egr3 in D2-MSNs. Using Cre-inducible adeno-associated viruses combined with D1-Cre and D2-Cre mouse lines, we observed that Egr3 overexpression in D1-MSNs enhances rewarding and locomotor responses to cocaine, whereas overexpression in D2-MSNs blunts these behaviors. miRNA knock-down of Egr3 in MSN subtypes produced opposite behavioral responses from those observed with overexpression. Finally, we found that repeated cocaine administration altered Egr3 binding to promoters of genes that are important for cocaine-mediated cellular and behavioral plasticity. Genes with increased Egr3 binding to promoters, Camk2α, CREB, FosB, Nr4a2, and Sirt1, displayed increased mRNA in D1-MSNs and, in some cases, a reduction in D2-MSNs. Histone and the DNA methylation enzymes G9a and Dnmt3a displayed reduced Egr3 binding to their promoters and reduced mRNA in D1-MSNs. Our study provides novel insight into an opposing role of Egr3 in select NAc MSN subtypes in cocaine action. PMID:25995477

  6. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan

    2016-07-22

    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. PMID:27126557

  7. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. PMID:25828702

  8. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    Abbas Alimoradian

    2013-06-01

    Full Text Available   Objective(s: The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g.   Materials and Methods: The rats were divided into two groups (apomorphine and control of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle was microinjected into the infralimbic in apomorphine and control groups respectively. Then, changes in dopamine levels in the nucleus accumbens shell were monitored. The concentration of dopamine was measured by High-Performance Liquid Chromatography-Electochemical (HPLC-ECD. Finally, the stereotyped behaviors were recorded. Results: The mean of dopamine levels for all of after microinjection period in control and drug groups were 450% and 150% respectively compared to those of before microinjection period. However, there was no significant difference between groups of apomorphine and control. In addition, the return of dopamine level to the baseline was faster in apomorphine group than the control group. Conclusion: The intra infralimbic apomorphine -induced climbing at dose of 5 μg/0.5 μl was not modulated via the increase of dopamine level in the nucleus accumbens area.

  9. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  10. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.

    Salamone, J D

    1994-04-18

    In recent years, considerable emphasis has been placed upon the putative role of nucleus accumbens dopamine systems in appetitive motivation and positive reinforcement. However, considerable evidence indicates that brain dopamine in general, and nucleus accumbens dopamine in particular, is involved in aspects of aversive motivation. Administration of dopamine antagonists or localized interference with nucleus accumbens dopamine systems has been shown to disrupt active avoidance behavior. In addition, accumbens dopamine release and metabolism is activated by a wide variety of stressful conditions. A review of the literature indicates that there are substantial similarities between the characteristics of dopaminergic involvement in appetitive and aversive motivation. There is conflicting evidence about the role of dopamine in emotion, and little evidence to suggest that the profound and consistent changes in instrumental behavior produced by interference with DA systems are due to direct dopaminergic mediation of positive affective responses such as hedonia. It is suggested that nucleus accumbens dopamine is involved in aspects of sensorimotor functions that are involved in both appetitive and aversive motivation. PMID:8037860

  11. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  12. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  13. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further e...

  14. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  15. Effect of morphine applied by intrapallidal microdialysis on the release of dopamine in the nucleus accumbens.

    Anagnostakis, Y; Spyraki, C

    1994-01-01

    The effect of morphine, administered intrapallidally, on extracellular concentrations of DA, DOPAC, and HVA in the nucleus accumbens and striatum was studied in the behaving rat using the in vivo microdialysis technique. Unilateral application of morphine hydrochloride was performed through microdialysis probes into the rat ventral pallidum (10 microliters of 0, 2.6, 4.0, 13.0, and 26.0 mM) or globus pallidus (10 microliters of 0 and 26.0 mM). The levels of DA, DOPAC, and HVA were measured using the HPLC with EC detection in dialysates collected from the nucleus accumbens, anteromedial, and anterolateral striatum. Samples were taken every 45 min over 3 h before and over 5 h after morphine or vehicle administration. Administration of morphine into the ventral pallidum resulted in increased DOPAC and HVA concentrations in the nucleus accumbens. Pretreatment with naloxone (1 mg/kg, SC) abolished this effect of morphine. Administration of morphine into the globus pallidus resulted in increased DA, DOPAC, and HVA concentrations in the nucleus accumbens and DA in the anteromedial striatum. The levels of DA and metabolites in anterolateral striatum remained rather unchanged following morphine administered into the ventral pallidum or the globus pallidus. The changes in DA neurotransmission into the nucleus accumbens induced by morphine application into the ventral pallidum and globus pallidus are reminiscent of a phasic and tonic release of DA respectively. The results show that intrapallidal morphine increases DA neurotransmission in nucleus accumbens and suggest that the effect of morphine is mediated by ventral pallidum/mesolimbic and globus pallidus/thalamocortical pathways, depending on the site of injection. PMID:8055351

  16. Nucleus accumbens cocaine-amphetamine regulated transcript mediates food intake during novelty conflict.

    Burghardt, P R; Krolewski, D M; Dykhuis, K E; Ching, J; Pinawin, A M; Britton, S L; Koch, L G; Watson, S J; Akil, H

    2016-05-01

    Obesity is a persistent and pervasive problem, particularly in industrialized nations. It has come to be appreciated that the metabolic health of an individual can influence brain function and subsequent behavioral patterns. To examine the relationship between metabolic phenotype and central systems that regulate behavior, we tested rats with divergent metabolic phenotypes (Low Capacity Runner: LCR vs. High Capacity Runner: HCR) for behavioral responses to the conflict between hunger and environmental novelty using the novelty suppressed feeding (NSF) paradigm. Additionally, we measured expression of mRNA, for peptides involved in energy management, in response to fasting. Following a 24-h fast, LCR rats showed lower latencies to begin eating in a novel environment compared to HCR rats. A 48-h fast equilibrated the latency to begin eating in the novel environment. A 24-h fast differentially affected expression of cocaine-amphetamine regulated transcript (CART) mRNA in the nucleus accumbens (NAc), where 24-h of fasting reduced CART mRNA in LCR rats. Bilateral microinjections of CART 55-102 peptide into the NAc increased the latency to begin eating in the NSF paradigm following a 24-h fast in LCR rats. These results indicate that metabolic phenotype influences how animals cope with the conflict between hunger and novelty, and that these differences are at least partially mediated by CART signaling in the NAc. For individuals with poor metabolic health who have to navigate food-rich and stressful environments, changes in central systems that mediate conflicting drives may feed into the rates of obesity and exacerbate the difficulty individuals have in maintaining weight loss. PMID:26926827

  17. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens.

    Gangarossa, Giuseppe; Espallergues, Julie; de Kerchove d'Exaerde, Alban; El Mestikawy, Salah; Gerfen, Charles R; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2013-01-01

    The nucleus accumbens (NAc) is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs) constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP) or the Cre-recombinase (Cre) under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific extracellular signal-regulated kinase (ERK) phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist), quinpirole (a D2 receptors (D2R)-like agonist), apomorphine (a non-selective DA receptor agonist), raclopride (a D2R-like antagonist), and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study. PMID:23423476

  18. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens

    de Rover, Mischa; Lodder, Johannes C.; Smidt, Marten P.; Brussaard, Arjen B.

    2006-01-01

    Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens. J Neurophysiol 96: 2034-2041, 2006. First published July 12, 2006; doi:10.1152/jn.00333.2006. We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus

  19. Resting state functional connectivity of the nucleus accumbens in youth with a family history of alcoholism

    Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien; Nagel, Bonnie

    2013-01-01

    Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth.

  20. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  1. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality. PMID:24564471

  2. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  3. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. PMID:25787124

  4. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X.

    Neuhofer, Daniela; Henstridge, Christopher M; Dudok, Barna; Sepers, Marja; Lassalle, Olivier; Katona, István; Manzoni, Olivier J

    2015-01-01

    Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings

  5. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  6. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  7. Changes in nucleus accumbens dopamine transmission associated with fixed- and variable-time schedule-induced feeding.

    Richardson, Nicole R; Gratton, Alain

    2008-05-01

    We examined the changes in nucleus accumbens (NAcc) dopamine (DA) transmission associated with non-contingent meal presentations under conditions of high (fixed time-, FT-schedule) and low (variable time-, VT-schedule) predictability. Of interest were the changes in NAcc DA transmission associated with discrepancies between the time food is expected and when it is actually presented. We used in vivo voltammetry to monitor NAcc DA levels as rats received, on the first and second test days, 30-s meals of condensed milk on a VT-52 schedule (inter-meal intervals of 32, 35, 40, 45, 52, 64, and 95 s). On the third and subsequent days meals were presented first on a VT-52 s schedule and then on an FT-52 s schedule. On day 1, monotonic increases in NAcc DA signals were observed during both meal consumption and the intervals between VT meal presentations. By day 2, however, meal presentations on the VT schedule elicited biphasic DA signal fluctuations; DA signals increased prior to each meal presentation but then started to decline during the feeding bout that followed. Fixed-time meal presentations on day 3 disrupted this pattern, resulting in a concurrent escalation of DA signal fluctuations upon subsequent VT meal presentations. These findings provide further evidence that, in trained animals, NAcc DA transmission is activated by conditioned incentive cues rather than by primary rewards. They also suggest that the increases in NAcc DA transmission associated with reward expectancy are sensitive to temporal cues (e.g. interval timing) and to discrepancies between expected and actual outcomes. PMID:18513317

  8. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. PMID:26738968

  9. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling. PMID:26044640

  10. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  11. Reduced Nucleus Accumbens Reactivity and Adolescent Depression following Early-life Stress

    Goff, Bonnie; Gee, Dylan G.; Telzer, Eva H.; Humphreys, Kathryn L.; Gabard-Durnam, Laurel; Flannery, Jessica; Tottenham, Nim

    2012-01-01

    Depression is a common outcome for those having experienced early life stress (ELS). For those individuals, depression typically increases during adolescence and appears to endure into adulthood, suggesting alterations in the development of brain systems involved in depression. Developmentally, the nucleus accumbens (NAcc), a limbic structure associated with reward learning and motivation, typically undergoes dramatic functional change during adolescence; therefore, age-related changes in NAc...

  12. Glucagon-Like Peptide 1 Receptors in Nucleus Accumbens Affect Food Intake

    Dossat, Amanda M.; Lilly, Nicole; Kay, Kristen; Williams, Diana L.

    2011-01-01

    Central glucagon-like peptide 1 receptor (GLP-1R) stimulation suppresses food intake, and hindbrain GLP-1 neurons project to numerous feeding-relevant brain regions. One such region is the nucleus accumbens (NAc), which plays a role in reward and motivated behavior. Using immunohistochemical and retrograde tracing techniques in rats, we identified a robust projection from GLP-1 neurons in the nucleus of the solitary tract to the NAc. We hypothesized that activation of NAc GLP-1Rs suppresses f...

  13. Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

    Sharp, B M; H Chen; S. Gong; Wu, X; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.

    2011-01-01

    Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavio...

  14. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  15. Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses

    Ikegami, Aiko; Olsen, Christopher M; D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2007-01-01

    Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associ...

  16. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit

    Ramaekers, J.; Evers, E.; Theunissen, E.; Kuypers, K.; Goulas, A.; Stiers, P.

    2013-01-01

    Release of dopamine in the nucleus accumbens (NAcc) is essential for acute drug reward. The present study was designed to trace the reinforcing effect of dopamine release by measuring the functional connectivity (FC) between the NAcc and brain regions involved in a limbic cortical–subcortical circuit during a dopaminergic challenge. Twenty healthy volunteers received single doses of methylphenidate (40 mg) and placebo on separate test days according to a double-blind, cross-over study design....

  17. Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens

    Tukey, David S.; Lee, Michelle; Xu, Duo; Eberle, Sarah E.; Goffer, Yossef; Manders, Toby R.; Ziff, Edward B.; Wang, Jing

    2013-01-01

    Background Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical an...

  18. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis

    Carlezon, William A; Thomas, Mark J.

    2008-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating t...

  19. The Addicted Synapse: Mechanisms of Synaptic and Structural Plasticity in Nucleus Accumbens

    Russo, Scott J.; Dietz, David M.; Dumitriu, Dani; Malenka, Robert C.; Nestler, Eric J.

    2010-01-01

    Addictive drugs cause persistent restructuring of several neuronal cell types in the brain’s limbic regions thought to be responsible for long-term behavioral plasticity driving addiction. Although these structural changes are well documented in nucleus accumbens medium spiny neurons, little is known regarding the underlying molecular mechanisms. Additionally, it remains unclear whether structural plasticity and its synaptic concomitants drive addictive behaviors, or whether they reflect home...

  20. Nucleus Accumbens D2/3 Receptors Predict Trait Impulsivity and Cocaine Reinforcement

    Dalley, Jeffrey W.; Fryer, Tim D; Brichard, Laurent; Robinson, Emma S J; Theobald, David E. H.; Lääne, Kristjan; Peña, Yolanda; Murphy, Emily R.; Shah, Yasmene; Probst, Katrin; Abakumova, Irina; Aigbirhio, Franklin I.; Richards, Hugh K.; Hong, Young; Baron, Jean-Claude

    2007-01-01

    Stimulant addiction is often linked to excessive risk taking, sensation seeking, and impulsivity, but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts high rates of intravenous cocaine self-administration and is associated with changes in dopamine (DA) function before drug exposure. Using positron emission tomography, we demonstrated that D2/3 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that were never...

  1. Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    Münte, Thomas F.; Marcus Heldmann; Hermann Hinrichs; Josep Marco-Pallares; Krämer, Ulrike M.; Volker Sturm; Hans-Jochen Heinze

    2008-01-01

    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic mid...

  2. Dysregulation of AMPA receptor transmission in the nucleus accumbens in animal models of cocaine addiction

    Wolf, Marina E.

    2010-01-01

    Plasticity of glutamate transmission in neuronal circuits involving the nucleus accumbens (NAc) is now recognized to play a critical role in cocaine addiction. NAc neurons are excited primarily by AMPA-type glutamate receptors (AMPAR) and this is required for cocaine seeking. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that ...

  3. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin

    ALBERTSON, DAWN N.; Pruetz, Barb; Schmidt, Carl J.; KUHN, DONALD M.; Kapatos, Gregory; Bannon, Michael J.

    2004-01-01

    Chronic cocaine abuse induces long-term neural adaptations as a consequence of alterations in gene expression. This study was undertaken to identify those transcripts differentially regulated in the nucleus accumbens of human cocaine abusers. Affymetrix microarrays were used to measure transcript abundance in 10 cocaine abusers and 10 control subjects matched for age, race, sex, and brain pH. As expected, gene expression of cocaine- and amphetamine-regulated transcript (CART) was increased in...

  4. Distinctive Profiles of Gene Expression in the Human Nucleus Accumbens Associated with Cocaine and Heroin Abuse

    ALBERTSON, DAWN N.; Schmidt, Carl J.; Kapatos, Gregory; Bannon, Michael J.

    2006-01-01

    Drug abuse is thought to induce long-term cellular and behavioral adaptations as a result of alterations in gene expression. Understanding the molecular consequences of addiction may contribute to the development of better treatment strategies. This study utilized highthroughput Affymetrix microarrays to identify gene expression changes in the post-mortem nucleus accumbens of chronic heroin abusers. These data were analyzed independently and in relation to our previously reported data involvi...

  5. SIRT1-FOXO3a Regulate Cocaine Actions in the Nucleus Accumbens

    Ferguson, Deveroux; Shao, NingYi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J.

    2015-01-01

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline in...

  6. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Wakabayashi, Ken T.; Kiyatkin, Eugene A

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within...

  7. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-01-01

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal’s neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effe...

  8. Nucleus accumbens shell, but not core, tracks motivational value of salt

    Loriaux, Amy L.; Roitman, Jamie D.; Roitman, Mitchell F.

    2011-01-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neu...

  9. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relat...

  10. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  11. Intra-accumbens injections of the adenosine A(2A) agonist CGS 21680 affect effort-related choice behavior in rats

    Stopper, Colin M.; WORDEN, LILA T.; Mingote, Susana; Port, Russell G.; Salamone, John D.; Font Hurtado, Laura; Pereira, Mariana; Farrar, Andrew M.

    2008-01-01

    Rationale: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements, and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating eff...

  12. Framework for developing a hierarchical model of reward focusing on the nucleus accumbens.

    Smith, Wesley; Nair, Satish S; Xu, Dong; Nair, Jyotsna; Beitman, Bernard

    2004-01-01

    Computational modeling using GENESIS platform has led to advances in fabricating a model to test the influence of molecular/proteomic adaptations on behavior due to reward. The nucleus accumbens is an area of the brain that processes information from other parts of the brain and is an integral element of the 'reward pathway' in the brain. A simplified model of the accumbens using one neuron is developed as part of a larger effort to study reward and chemical dependency with a focus on cocaine addiction. A preliminary model of a biologically realistic neuron was developed with inhibitory and excitatory afferents as well as intrasynapse dynamics. The neuron displayed characteristic behavior of a neuron found in the nucleus accumbens including bistability. The neuron has afferents from other neurons via dendrites which carry the inputs relating to behavioral aspects and to learning. To add behavioral aspects to the model, a methodology is developed to model contexts and their reinforcing effects on behavior, similar to cocaine addiction. Results using both the biological and behavioral modeling are encouraging for this preliminary model. PMID:17271623

  13. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  14. TRH injected into the nucleus accumbens shell releases dopamine and reduces feeding motivation in rats.

    Puga, L; Alcántara-Alonso, V; Coffeen, U; Jaimes, O; de Gortari, P

    2016-06-01

    The thyrotropin-releasing hormone (TRH), an anorexigenic factor that reduces food intake in food-restricted animals, may be involved in motivation for food. Injected centrally, TRH impairs acquisition of food-rewarded behavior. Through the TRH-R1 receptors, TRH injected in the nucleus accumbens increases dopamine content-perhaps the mechanism by which the peptide modulates food motivation. This, however, is still to be demonstrated. We sought to evaluate dopamine release by microdialysis after a TRH injection into the nucleus accumbens shell in free-moving fasted rats. In addition, we assessed dopamine content and turnover by HPLC and the relationship with the motivation for food by analyzing the performance of rats during a progressive-ratio (PR) operant-conditioning test. Finally, we determined serum leptin and triiodothyronine (T3) levels in order to evaluate the animals' metabolic response to food restriction and the impact of intra-accumbal TRH administration on circulating hormones. Intra-accumbal injections of TRH reduced food intake in food-restricted rats-compared to counterparts treated with saline-, without further decreasing T3 or leptin levels, which dropped due to their dietary regime. TRH-injected rats had lower breaking points on the PR schedule, which indicated lower motivation to eat. Accordingly, compared to saline-treated animals, dopamine release and turnover increased in the nucleus accumbens of TRH-injected rats, a finding that suggests a relationship between motivation for food and TRH-induced release of dopamine. PMID:27006143

  15. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  16. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  17. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.

    2009-01-01

    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of an...

  18. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    Maier, Esther Y.; Ledesma, Ramon T.; Seiwell, Andrew P.; Duvauchelle, Christine L.

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  19. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H

    2009-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg...

  20. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  1. Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens

    Lichti, Cheryl F.; Fan, Xiuzhen; English, Robert D.; Zhang, Yafang; Li, Dingge; Kong, Fanping; Sinha, Mala; Andersen, Clark R.; Spratt, Heidi; Luxon, Bruce A.; Green, Thomas A.

    2014-01-01

    Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntington's and Alzheimer's diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via

  2. Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene.

    Beckley, Jacob T; Randall, Patrick K; Smith, Rachel J; Hughes, Benjamin A; Kalivas, Peter W; Woodward, John J

    2016-05-01

    Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes. PMID:25752326

  3. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants

  4. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  5. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents

    Hollis C. Karoly

    2015-12-01

    Full Text Available Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol. Due to the role of the nucleus accumbens (NAcc in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID task. Adolescents (ages 14–18; 66% male were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n = 14, tobacco-only (n = 34, alcohol-only (n = 12, cannabis + tobacco (n = 17, cannabis + tobacco + alcohol (n = 17, and non-using controls (n = 38. All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  6. No Evidence for Sex Differences in the Electrophysiological Properties and Excitatory Synaptic Input onto Nucleus Accumbens Shell Medium Spiny Neurons.

    Willett, Jaime A; Will, Tyler; Hauser, Caitlin A; Dorris, David M; Cao, Jinyan; Meitzen, John

    2016-01-01

    Sex differences exist in how the brain regulates motivated behavior and reward, both in normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the dorsal striatum and nucleus accumbens core and shell. These investigations yield accumulating evidence of sexually different electrophysiological properties, excitatory synaptic input, and sensitivity to neuromodulator/hormone action in select striatal regions both before and after puberty. It is unknown whether the electrical properties of neurons in the nucleus accumbens shell differ by sex, and whether sex differences in excitatory synaptic input are present before puberty. To test the hypothesis that these properties differ by sex, we performed whole-cell patch-clamp recordings on male and female medium spiny neurons (MSNs) in acute brain slices obtained from prepubertal rat nucleus accumbens shell. We analyzed passive and active electrophysiological properties, and miniature EPSCs (mEPSCs). No sex differences were detected; this includes those properties, such as intrinsic excitability, action potential afterhyperpolarization, threshold, and mEPSC frequency, that have been found to differ by sex in other striatal regions and/or developmental periods. These findings indicate that, unlike other striatal brain regions, the electrophysiological properties of nucleus accumbens shell MSNs do not differ by sex. Overall, it appears that sex differences in striatal function, including motivated behavior and reward, are likely mediated by other factors and striatal regions. PMID:27022621

  7. The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing effects of cocaine through a serial connection

    Veeneman, Maartje M J; Damsteegt, Ruth; Vanderschuren, Louk J M J

    2015-01-01

    The reinforcing and addictive properties of cocaine are thought to rely on the dopaminergic innervation of the striatum. The ventromedial [i.e. nucleus accumbens shell (NAcc) shell] and dorsolateral [dorsolateral striatum (DLS)] regions of the striatum are serially connected, and it is thought that

  8. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics.

    Tupala, E; Hall, H; Bergström, K; Särkioja, T; Räsänen, P; Mantere, T; Callaway, J; Hiltunen, J; Tiihonen, J

    2001-05-01

    Alcohol acts through mechanisms involving the brain neurotransmitter dopamine (DA) with the nucleus accumbens as the key zone for mediating these effects. We evaluated the densities of DA D(2)/D(3) receptors and transporters in the nucleus accumbens and amygdala of post-mortem human brains by using [(125)l]epidepride and [(125)I]PE2I as radioligands in whole hemispheric autoradiography of Cloninger type 1 and 2 alcoholics and healthy controls. When compared with controls, the mean binding of [(125)I]epidepride to DA D(2)/D(3) receptors was 20% lower in the nucleus accumbens and 41% lower in the amygdala, and [(125)I]PE2I binding to DA transporters in the nucleus accumbens was 39% lower in type 1 alcoholics. These data indicate that dopaminergic functions in these limbic areas may be impaired among type 1 alcoholics, due to the substantially lower number of receptor sites. Our results suggest that such a reduction may result in the chronic overuse of alcohol as an attempt to stimulate DA function. PMID:11326293

  9. Regulation of 3H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain

  10. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  11. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  12. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  13. The hypomotility elicited by small doses of apomorphine seems exclusively mediated by dopaminergic systems in the nucleus accumbens

    Radhakishun, F.S.; Ree, J.M. van

    1987-01-01

    The reduction of motor activity elicited in rats by a subcutaneous injection of a small dose of apomorphine was reversed by pretreatment of the nucleus accumbens with haloperidol (10 pg), sulpride (10 pg) or desenkephalin-γ-endorphin (DEγE) (100 pg or 10 ng). These doses of the compounds did not cha

  14. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use.

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior. PMID:24009567

  15. Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles.

    Bosch, Oliver J; Dabrowska, Joanna; Modi, Meera E; Johnson, Zachary V; Keebaugh, Alaine C; Barrett, Catherine E; Ahern, Todd H; Guo, JiDong; Grinevich, Valery; Rainnie, Donald G; Neumann, Inga D; Young, Larry J

    2016-02-01

    Loss of a partner can have severe effects on mental health. Here we explore the neural mechanisms underlying increased passive stress-coping, indicative of depressive-like behavior, following the loss of the female partner in the monogamous male prairie vole. We demonstrate that corticotropin-releasing factor receptor 2 (CRFR2) in the nucleus accumbens shell mediates social loss-induced passive coping. Further, we show that partner loss compromises the oxytocin system through multiple mechanisms. Finally, we provide evidence for an interaction of the CRFR2 and oxytocin systems in mediating the emotional consequences of partner loss. Our results suggest that chronic activation of CRFR2 and suppression of striatal oxytocin signaling following partner loss result in an aversive emotional state that may share underlying mechanisms with bereavement. We propose that the suppression of oxytocin signaling is likely adaptive during short separations to encourage reunion with the partner and may have evolved to maintain long-term partnerships. Additionally, therapeutic strategies targeting these systems should be considered for treatment of social loss-mediated depression. PMID:26615473

  16. Increased extracellular dopamine in the nucleus accumbens of the rat during associative learning of neutral stimuli.

    Young, A M; Ahier, R G; Upton, R L; Joseph, M H; Gray, J A

    1998-04-01

    Brain microdialysis was used to study changes in dopamine in the nucleus accumbens and the dorsal striatum during associative learning between two neutral stimuli, flashing light and tone, presented on a paired schedule during stage 1 of a sensory preconditioning paradigm. The tone was subsequently paired with mild footshock using standard aversive conditioning procedures and the formation of a conditioned association between the flashing light and the tone in stage 1 was assessed by measuring the ability of the flashing light to elicit the same conditioned response as the tone when presented at test. The first experiment used behavioural monitoring only, to establish stimulus parameters for subsequent microdialysis experiments. Animals receiving paired presentation of the light and tone in stage 1 showed a conditioned suppression of licking to the light as well as to the tone, indicating that associative learning between the flashing light and the tone had occurred during stage 1, whilst in a separate group of animals given the same stimuli over the same time period but on an explicitly non-paired schedule, the conditioned emotional response was seen to the tone, but not to the light, showing that no association had been formed between the two stimuli during stage 1. In dialysis experiments using the same procedure, we measured a two-fold rise in dopamine in the nucleus accumbens during paired presentation of flashing light and tone, but not during non-paired presentation of the two stimuli. On subsequent test presentation of the two stimuli, we saw increases in accumbal dopamine on presentation of the tone in both groups, reflecting the formation of an association with the footshock in both. However the flashing light elicited an increase in dopamine only in the group which had received paired presentation at stage 1. Thus accumbal dopamine release at test is correlated to the ability of the stimulus to evoke a conditioned response measured behaviourally

  17. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  18. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. PMID:26471420

  19. Familiar companions diminish cocaine conditioning and attenuate cocaine-stimulated dopamine release in the nucleus accumbens.

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Wang, Shyi-Wu; Yu, Lung

    2016-06-01

    This study aimed to assess the impact of companions on the rewarding effects of cocaine. Three cage mates, serving as companions, were housed with each experimental mouse throughout cocaine-place conditioning in a cocaine-induced conditioned place preference (CPP) paradigm using conditioning doses of 10 and 20mg/kg. The presence of companions decreased the magnitude of the CPP. At 20mg/kg, cocaine stimulated dopamine (DA) release in the nucleus accumbens as evidenced by a significant decrease in total (spontaneous and electrical stimulation-provoked) DA release in accumbal superfusate samples. The presence of companions prevented this cocaine-stimulated DA release; such a reduction in cocaine-induced DA release may account for the reduction in the magnitude of the CPP in the presence of the companions. Furthermore, cocaine pretreatment (2.5mg/kg) was found to prevent the companion-produced decreases in cocaine (10mg/kg/conditioning)-induced CPP as well as the cocaine (10mg/kg)-stimulated DA release. Moreover, the presence of methamphetamine (MA) (1mg/kg)-treated companions decreased cocaine (20mg/kg/conditioning)-induced CPP and prevented the cocaine (20mg/kg)-stimulated DA release. Finally, the presence of companions decreased the magnitude of the CPP could not seem to be accounted for by cocaine-stimulated corticosterone (CORT) release. Taken together, these results indicate that familiar companions, regardless of their pharmacological status, may exert dampening effects on CPP induced by moderate to high conditioning doses of cocaine, at least in part, by preventing cocaine-stimulated DA release in the nucleus accumbens. PMID:27001454

  20. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  1. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Gilles Erwann Martin; Xincai eJi; Sucharita eSaha

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus), each region providing different informatio...

  2. Matrix-assisted laser desorption/ionization tissue profiling of secretoneurin in the nucleus accumbens shell from cocaine-sensitized rats

    Uys, Joachim D.; Grey, Angus C.; Wiggins, Armina; Schwacke, John H.; Schey, Kevin L.; Peter W Kalivas

    2010-01-01

    Proteins in the nucleus accumbens mediate many cocaine-induced behaviors. In an effort to measure changes in nucleus accumbens protein expression as potential biomarkers for addiction, coronal tissue sections were obtained from rats that developed behavioral sensitization after daily administration of cocaine, or from daily saline-treated controls. The tissue sections were subjected to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) profiling and tissue imaging. For...

  3. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Hoebel, Bartley G.; Barson, Jessica R.; Pedro Rada; Leibowitz, Sarah F.; Avena, Nicole M.

    2012-01-01

    Evidence links dopamine (DA) in the nucleus accumbens (NAc) shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG), which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related t...

  4. Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior

    D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2008-01-01

    Uncertainty and errors in predicting natural rewards influence associative learning and dopamine activity. The present study was conducted to determine the influence of cue-induced cocaine uncertainty, certainty and prediction error on nucleus accumbens dopamine (NAcc DA) in rats. For Certainty training, distinctive sensory cues were present during cocaine availability and alternate cues were paired with non-reinforced (saline) operant sessions. For Uncertainty training, all cues were equally...

  5. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate

    Frolov, Alexander; Reyes-Vasquez, Cruz; Dafny, Nachum

    2014-01-01

    The nucleus accumbens (NAc) has been shown to play a key role in the brain's response to methylphenidate (MPD). The present study focuses on neuronal recording from this structure. The study postulates that repetitive exposure to the same dose of MPD will elicit in some rats behavioral sensitization and in others tolerance. Furthermore, the study postulates that NAc neuronal activity recorded from animals expressing behavioral tolerance after repetitive MPD exposure will be significantly diff...

  6. The Effects of Nucleus Accumbens μ-opioid and Adenosine 2A Receptor Stimulation and Blockade on Instrumental Learning

    Clissold, Kara A.; Pratt, Wayne E.

    2014-01-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained ...

  7. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation

    Beyene, Manna; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior and is transiently activated upon presentation of reward-predictive cues. It has previously been shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These dopamine transients ...

  8. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine.

    Hope, B.; Kosofsky, B.; Hyman, S E; Nestler, E J

    1992-01-01

    Chronic treatment of rats with cocaine leads to long-term biochemical changes in the nucleus accumbens (NAc), a brain region implicated in mediating the reinforcing effects of cocaine and other drugs of abuse. Immediate early genes (IEGs) and their protein products appear to play an important role in transducing extracellular stimuli into altered patterns of cellular gene expression and, therefore, into long-term changes in cellular functioning. We therefore examined changes in the mRNA level...

  9. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine- mediated regulation of Tiam1

    Gancarz, Amy M.; Dipesh Chaudhury; Mary Kay Lobo

    2013-01-01

    Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs). These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin cytoskeleton, such as Tiam1. Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1)-containing striatal MSNs in mediating psychostimulant induced plasticity changes. These D1-MSNs in the nucleus accumbens (NAc) positively regulate drug s...

  10. Arginine Vasopressin gene expression changes within the nucleus accumbens during environment elicited cocaine-conditioned response in rats

    Rodríguez-Borrero, E.; Rivera-Escalera, F.; Candelas, F.; Montalvo, J; Muñoz-Miranda, W.J.; Walker, J. R.; Maldonado-Vlaar, C.S.

    2009-01-01

    It is known that changes in gene expression within the nucleus accumbens (NAc) occur during cocaine dependence development. However, identification of specific genes involved in cocaine conditioning awaits further investigation. We conducted a high throughput gene expression profile analysis of the NAc, during different stages of the environment-elicited cocaine conditioning. Rats were assigned to two different environmental conditions. Cocaine conditioned group received a cocaine injection (...

  11. CaMKII Activity in the Ventral Tegmental Area Gates Cocaine-Induced Synaptic Plasticity in the Nucleus Accumbens

    Liu, Xiaojie; Liu, Yong; Zhong, Peng; Wilkinson, Brianna; Qi, Jinshun; Olsen, Christopher M; Bayer, K. Ulrich; Liu, Qing-song

    2013-01-01

    Addictive drugs such as cocaine induce synaptic plasticity in discrete regions of the reward circuit. The aim of the present study is to investigate whether cocaine-evoked synaptic plasticity in the ventral tegmental area (VTA) and nucleus accumbens (NAc) is causally linked. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of long-term synaptic plasticity, learning, and drug addiction. We examined whether blocking CaMKII activity in the VTA affected cocaine conditio...

  12. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use

    Dar Meshi

    2013-08-01

    Full Text Available Our reputation is important to us; we’ve experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one’s character has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others’ behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one’s degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior.

  13. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E.

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different informatio...

  14. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats

    Spiga, S.; Talani, G; Mulas, G.; Licheri, V; Fois, GR; Muggironi, G; Masala, N; Cannizzaro, C; Biggio, G; E. Sanna; Diana, M.

    2014-01-01

    This paper examines the intimate neuroarchitecture of the nucleus accumbens shell region and how it affects synaptic plasticity in alcohol-dependent rats. To do so, a simultaneous morphometrical/immunofluorescence method was applied to visualize various types of dendritic spines and patch-clamp techniques to detect changes in synaptic currents. Using these tools, we show a selective loss of “long thin” spines accompanied by an impaired long-term depression (LTD) in alcohol-dependent rats. Dop...

  15. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    Ikeda, H.; KAMEI, J.; N. Koshikawa; Cools, A R

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because modifying accumbal dopamine has far-reaching consequences for the treatment of diseases in which accumbal dopamine is involved. This review provides a summary of these interactions, and our current knowl...

  16. Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats

    Muschamp, John W.; Van’t Veer, Ashlee; Parsegian, Aram; Gallo, Miranda S.; Chen, Melissa; Neve, Rachael L; Meloni, Edward G.; Carlezon, William A.

    2011-01-01

    Stress triggers psychiatric conditions including depressive and anxiety disorders. The mechanisms by which stress produces persistent changes in behavior are not fully understood. Here we show in rats that stress (footshock) activates the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens shell (NAS), a brain area involved in encoding reward and aversion. To examine the behavioral significance of altered CREB function in the NAS, we used viral vecto...

  17. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Usin...

  18. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  19. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  20. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  1. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress.

    Warren, Brandon L; Sial, Omar K; Alcantara, Lyonna F; Greenwood, Maria A; Brewer, Jacob S; Rozofsky, John P; Parise, Eric M; Bolaños-Guzmán, Carlos A

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional stress (ES) or physical stress (PS) on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day 35) or adult (8-week-old) mice were exposed to ES or PS using a witness social defeat paradigm. Then, 24 h after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted extracellular signal-related kinase 2 (ERK2), reduced transcription of ΔFosB and had no effect on cAMP response element-binding protein (CREB) mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc. PMID:24943326

  2. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior

    du Hoffmann, Johann; Nicola, Saleem M.

    2016-01-01

    Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety. PMID:27471453

  3. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  4. Nucleus accumbens mediates relative motivation for rewards in the absence of choice

    John A Clithero

    2011-08-01

    Full Text Available To dissociate a choice from its antecedent neural states, motivation associated with the expected outcome must be captured in the absence of choice. Yet, the neural mechanisms that mediate behavioral idiosyncrasies in motivation, particularly with regard to complex economic preferences, are rarely examined in situations without overt decisions. We employed functional magnetic resonance imaging (fMRI in a large sample of participants while they anticipated earning rewards from two different modalities: monetary and candy rewards. An index for relative motivation toward different reward types was constructed using reaction times to the target for earning rewards. Activation in the nucleus accumbens (NAcc and anterior insula (aINS predicted individual variation in relative motivation between our reward modalities. NAcc activation, however, mediated the effects of aINS, indicating the NAcc is the likely source of this relative weighting. These results demonstrate that neural idiosyncrasies in reward efficacy exist even in the absence of explicit choices, and extend the role of NAcc as a critical brain region for such choice-free motivation.

  5. Nucleus accumbens shell, but not core, tracks motivational value of salt.

    Loriaux, Amy L; Roitman, Jamie D; Roitman, Mitchell F

    2011-09-01

    To appropriately respond to an affective stimulus, we must be able to track its value across changes in both the external and internal environment. The nucleus accumbens (NAc) is a critical component of reward circuitry, but recent work suggests that the NAc encodes aversion as well as reward. It remains unknown whether differential NAc activity reflects flexible changes in stimulus value when it is altered due to a change in physiological state. We measured the activity of individual NAc neurons when rats were given intraoral infusions of a hypertonic salt solution (0.45 M NaCl) across multiple sessions in which motivational state was manipulated. This normally nonpreferred taste was made rewarding via sodium depletion, which resulted in a strong motivation to seek out and consume salt. Recordings were made in three conditions: while sodium replete (REP), during acute sodium depletion (DEP), and following replenishment of salt to normal sodium balance (POST). We found that NAc neurons in the shell and core subregions responded differently across the three conditions. In the shell, we observed overall increases in NAc activity when the salt solution was nonpreferred (REP) but decreases when the salt solution was preferred (DEP). In the core, overall activity was significantly altered only after sodium balance was restored (POST). The results lend further support to the selective encoding of affective stimuli by the NAc and suggest that NAc shell is particularly involved in flexibly encoding stimulus value based on motivational state. PMID:21697439

  6. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of [3H]sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems

  7. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Geoffrey Schoenbaum

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  8. Hyperammonaemia alters the mechanisms by which metabotropic glutamate receptors in nucleus accumbens modulate motor function.

    Cauli, Omar; Mlili, Nisrin; Rodrigo, Regina; Felipo, Vicente

    2007-10-01

    Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors. PMID:17587309

  9. Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning.

    Hikida, Takatoshi; Morita, Makiko; Macpherson, Tom

    2016-07-01

    The basal ganglia are key neural substrates not only for motor function, but also cognitive functions including reward and aversive learning. Critical for these processes are the functional role played by two projection neurons within nucleus accumbens (NAc); the D1- and D2-expressing neurons. Recently, we have developed a novel reversible neurotransmission blocking technique that specifically blocks neurotransmission from NAc D1- and D2-expressing neurons, allowing for in vivo analysis. In this review, we outline the functional dissociation of NAc D1- and D2-expressing neurons of the basal ganglia in reward and aversive learning, as well as drug addiction. These studies have revealed the importance of activation of NAc D1 receptors for reward learning and drug addiction, and inactivation of NAc D2 receptors for aversive learning and flexibility. Based on these findings, we propose a neural mechanism, in which dopamine neurons in the ventral tegmental area that send inputs to the NAc work as a switch between D1- and D2-expressing neurons. These basal ganglia neural mechanisms will give us new insights into the pathophysiology of neuropsychiatric diseases. PMID:26827817

  10. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior. PMID:27238893

  11. Sensitization of Rapid Dopamine Signaling in the Nucleus Accumbens Core and Shell After Repeated Cocaine in Rats

    Addy, Nii A.; Daberkow, David P.; Ford, Jeremy N.; Garris, Paul A.; Wightman, R. Mark

    2010-01-01

    Repeated cocaine exposure and withdrawal leads to long-term changes, including behavioral and dopamine sensitization to an acute cocaine challenge, that are most pronounced after long withdrawal periods. However, the changes in dopamine neurotransmission after short withdrawal periods are less well defined. To study dopamine neurotransmission after 1-day withdrawal, we used fast-scan cyclic voltammetry (FSCV) to determine whether repeated cocaine alters rapid dopamine release and uptake in th...

  12. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations. PMID:25592253

  13. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  14. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  15. Dysregulation of AMPA receptor transmission in the nucleus accumbens in animal models of cocaine addiction

    Wolf, Marina E.

    2014-01-01

    Plasticity of glutamate transmission in neuronal circuits involving the nucleus accumbens (NAc) is now recognized to play a critical role in cocaine addiction. NAc neurons are excited primarily by AMPA-type glutamate receptors (AMPAR) and this is required for cocaine seeking. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of DA levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class receptors primes AMPAR for synaptic insertion, creating a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction. PMID:20361291

  16. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens.

    Ferguson, Deveroux; Shao, Ningyi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J

    2015-02-18

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action. PMID:25698746

  17. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.

    Massart, Renaud; Barnea, Royi; Dikshtein, Yahav; Suderman, Matthew; Meir, Oren; Hallett, Michael; Kennedy, Pamela; Nestler, Eric J; Szyf, Moshe; Yadid, Gal

    2015-05-27

    One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving. PMID:26019323

  18. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  19. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  20. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration.

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-03-10

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal's neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 min baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to ED9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration. PMID:22248440

  1. Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats.

    Manduca, Antonia; Servadio, Michela; Damsteegt, Ruth; Campolongo, Patrizia; Vanderschuren, Louk Jmj; Trezza, Viviana

    2016-08-01

    Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia. PMID:26860202

  2. Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine.

    Lo Iacono, Luisa; Valzania, Alessandro; Visco-Comandini, Federica; Viscomi, Maria Teresa; Felsani, Armando; Puglisi-Allegra, Stefano; Carola, Valeria

    2016-04-01

    Much interest has been piqued regarding the quality of one's environment at early ages in modulating the susceptibility to drug addiction in adulthood. However, the molecular mechanisms that are engaged during early trauma and mediate the risk for drug addiction are poorly understood. In rodents, exposure to early-life stress alters the rewarding effects of cocaine, amphetamine, and morphine in adulthood. Recently, we demonstrated that the exposure of juvenile mice to social threat (Social Stress, S-S) promoted cocaine-seeking behavior and relapse of cocaine-seeking after periods of withdrawal, compared with unhandled controls (UN) and with juvenile mice that experienced only daily isolation in a novel environment (no social stress, NS-S). Interestingly, while the exposure to NS-S slightly increased cocaine-seeking behavior compared with UN, the same was not sufficient to promote cocaine reinstatement. In this study, we examined the long-term transcriptional changes that are induced by S-S compared to NS-S and linked the increased susceptibility of S-S mice to cocaine reinstatement. To this end, we performed genome-wide RNA sequencing analysis in the nucleus accumbens (NAC), which revealed that 89 transcripts were differentially expressed between S-S and NS-S mice. By Gene Ontology classification, these hits were enriched in genes that mediate cell proliferation, neuronal differentiation, and neuron/forebrain development. Eleven of these genes have been reported to be involved in substance use disorders, and the remaining genes are novel candidates in this area. We characterized 4 candidates with regard to their significant neurobiological relevance (ZIC1, ZIC2, FABP7, and PRDM12) and measured their expression in the NAC by immunohistochemistry. These findings provide insights into novel molecular mechanisms in NAC that might be associated with the risk of relapse in cocaine-dependent individuals. PMID:26706499

  3. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  4. Associations between personality changes and nucleus accumbens ablation in opioid addicts

    Hai-kang ZHAO; Chong-wang CHANG; Ning GENG; Li GAO; Jing WANG; Xin WANG; Ya-rong WANG; Xue-lian WANG; Guo-dong GAO

    2012-01-01

    It has been reported that nucleus accumbens (NAc) lesions can help to prevent relapse in opioid addicts.This article aimed to investigate associations between personality changes and NAc lesions.Methods:The surgery group consisted of 78 patients who had received bilateral stereotactic lesions of the NAc to treat opioid addiction.Seventy two non-surgery opioid addicts were appropriately paired with the patients of the surgery group as the non-surgery group.All participants were interviewed in person and received urine tests,naloxone provocative tests and hair tests to determine the prevalence of relapse.Eysenck personality questionnaire (EPQ) and the health survey questionnaire (SF-36) were employed to assess personality and functional health,respectively.Results:In the surgery group,30 participants relapsed,and the non-relapse rate was 61.5% (48/78).Compared with the Chinese normative data,the neuroticism (N) and psychoticism (P) dimensions of the EPQ in the non-surgery group were significantly higher,whereas the lie (L) dimension was significantly lower.There was no significant difference in all dimensions of the EPQ between the surgery group and the Chinese normative data.The N dimension in the relapse group and the L dimension in the surgery group were significantly lower than those of the non-surgery group.The P dimension in the relapse group was significantly higher than that of the non-relapse group.The extraversion (E) dimension was relatively stable between these groups.Conclusion:Although the influence of other factors cannot be excluded,it is apparent that surgically induced NAc lesions are associated with lower P and N dimensions for opioid addicts,and a higher P dimension is associated with a tendency to relapse.

  5. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  6. Postnatal development of excitatory postsynaptic currents in nucleus accumbens medium spiny neurons.

    Zhang, L; Warren, R A

    2008-07-17

    We have recorded excitatory postsynaptic currents (EPSCs) evoked by local electrical stimulation in 243 nucleus accumbens (nAcb) neurons in vitro during postnatal development from the day of birth (postnatal day 0; P0) to P27 and in young adults rats (P59-P71). An EPSC sensitive to glutamatergic antagonists was found in all neurons. In the majority of cases (189/243), the EPSC had two distinct components: an early one sensitive to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and a late one that was sensitive to D-2-amino-5-phosphonovaleric acid (APV) showing that early and late components of the EPSC were mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors respectively. During the first four postnatal days, the amplitudes of both the AMPA/KA and NMDA components of the EPSC were relatively small and then began to increase until the end of the second postnatal week. Whereas the amplitude of the early component appeared to stabilize from that point on, the late component began to decrease and became virtually undetectable in preparations from animals older than 3 weeks unless the AMPA/KA response was blocked with CNQX. In addition, the ratio between the amplitude of the NMDA and AMPA/KA receptor-mediated components of the EPSC followed a developmental pattern parallel to that of the NMDA receptor component showing an increase during the first two postnatal weeks followed by a decrease. Together, these results show that, during postnatal development, there is a period when NMDA receptor-mediated EPSC are preeminent and that time frame might represent a period during which the development of the nAcb might be sensitive to environmental manipulation. PMID:18554817

  7. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress.

    Segev, Amir; Akirav, Irit

    2016-03-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  8. Neonatal Masculinization Blocks Increased Excitatory Synaptic Input in Female Rat Nucleus Accumbens Core.

    Cao, Jinyan; Dorris, David M; Meitzen, John

    2016-08-01

    Steroid sex hormones and genetic sex regulate the phenotypes of motivated behaviors and relevant disorders. Most studies seeking to elucidate the underlying neuroendocrine mechanisms have focused on how 17β-estradiol modulates the role of dopamine in striatal brain regions, which express membrane-associated estrogen receptors. Dopamine action is an important component of striatal function, but excitatory synaptic neurotransmission has also emerged as a key striatal substrate and target of estradiol action. Here, we focus on excitatory synaptic input onto medium spiny neurons (MSNs) in the striatal region nucleus accumbens core (AcbC). In adult AcbC, miniature excitatory postsynaptic current (mEPSC) frequency is increased in female compared with male MSNs. We tested whether increased mEPSC frequency in female MSNs exists before puberty, whether this increased excitability is due to the absence of estradiol or testosterone during the early developmental critical period, and whether it is accompanied by stable neuron intrinsic membrane properties. We found that mEPSC frequency is increased in female compared with male MSNs before puberty. Increased mEPSC frequency in female MSNs is abolished after neonatal estradiol or testosterone exposure. MSN intrinsic membrane properties did not differ by sex. These data indicate that neonatal masculinization via estradiol and/or testosterone action is sufficient for down-regulating excitatory synaptic input onto MSNs. We conclude that excitatory synaptic input onto AcbC MSNs is organized long before adulthood via steroid sex hormone action, providing new insight into a mechanism by which sex differences in motivated behavior and other AbcC functions may be generated or compromised. PMID:27285859

  9. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference.

    Pelkonen, Anssi; Hiltunen, Mikko; Kiianmaa, Kalervo; Yavich, Leonid

    2010-08-01

    The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats. PMID:20533994

  10. The hypomotility elicited by small doses of apomorphine seems exclusively mediated by dopaminergic systems in the nucleus accumbens

    Radhakishun, F.S.; de Ree, J M

    1987-01-01

    The reduction of motor activity elicited in rats by a subcutaneous injection of a small dose of apomorphine was reversed by pretreatment of the nucleus accumbens with haloperidol (10 pg), sulpride (10 pg) or desenkephalin-γ-endorphin (DEγE) (100 pg or 10 ng). These doses of the compounds did not change motor activity in placebo-treated rats. Pretreatment of the nucleus caudatus with the same neuroleptics or DEγE did not diminish the effect of subcutaneously administered low doses of apomorphi...

  11. In Vivo Chronic Intermittent Ethanol Exposure Reverses the Polarity of Synaptic Plasticity in the Nucleus Accumbens Shell

    Jeanes, Zachary M.; Buske, Tavanna R.; Morrisett, Richard A.

    2011-01-01

    Glutamatergic synaptic plasticity in the nucleus accumbens (NAc) is implicated in response to sensitization to psychomotor-stimulating agents, yet ethanol effects here are undefined. We studied the acute in vitro and in vivo effects of ethanol in medium spiny neurons from the shell NAc subregion of slices of C57BL/6 mice by using whole-cell voltage-clamp recordings of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) excitatory postsynaptic current (EPSCs). Synaptic conditioning (l...

  12. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  13. Basolateral amygdala opioids contribute to increased high-fat intake following intra-accumbens opioid administration, but not following 24-hr food deprivation

    Parker, Kyle E.; McCall, Jordan G.; Will, Matthew J.

    2010-01-01

    Previous research has demonstrated that administration of μ-opioid receptor agonists into the nucleus accumbens increases high-fat diet consumption in sated rats and has shown a role of basolateral amygdala (BLA) activity in mediating this response. The present experiments were conducted to examine the role of BLA opioid transmission in mediating high-fat feeding driven by either intra-accumbens opioid activation or 24-hr home cage food deprivation. Injection of the μ-opioid agonist, D-Ala2-N...

  14. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence.

    Mohammed Mamdani

    Full Text Available Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA on genome-wide mRNA and microRNA (miRNA expression in Nucleus Accumbens (NAc of subjects with alcohol dependence (AD; N = 18 and of matched controls (N = 18, six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05. Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05. In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001. Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA. In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL analysis provides novel insights into the etiological mechanisms of AD.

  15. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence.

    Mamdani, Mohammed; Williamson, Vernell; McMichael, Gowon O; Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; van der Vaart, Andrew D; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S; Miles, Michael F; Dick, Danielle; Riley, Brien P; Dumur, Catherine; Vladimirov, Vladimir I

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263

  16. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  17. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats.

    Yi Zhang

    Full Text Available OBJECTIVE: In this study, the effect of maternal deprivation (MD and chronic unpredictable stress (CUS in inducing depressive behaviors and associated molecular mechanism were investigated in rats. METHODS: Maternal deprivation was established by separating pups from their mothers for 6 hours daily from postnatal day 1 to day 14. Chronic unpredictable stress was established by water deprivation, elevated open platform, food deprivation, restraint stress and electric foot shock. The depressive behaviors were determined by use of sucrose preference test and forced swim test. RESULTS: Rats in MD/CUS group exhibited lower sucrose preference rate, longer immobility time, and lighter body weights than rats in other groups (MD/control, non-MD/CUS and non-MD/control group. Meanwhile, higher miR-504 expression and lower dopamine receptor D1 (DRD1 and D2 (DRD2 expression were observed in the nucleus accumbens of rats in the MD/CUS group than in the other three groups. MiR-504 expression correlated negatively with DRD1 gene expression and sucrose preference rate in the sucrose preference test, but correlated positively with immobility time in forced swim test. Both DRD2 mRNA and protein expression correlated negatively with immobility time in forced swim test. CONCLUSION: These results suggest that MD enhances behavioral vulnerability to stress during adulthood, which is associated with the upregulation of miR-504 and downregulation of DRD2 expression in the nucleus accumbens.

  18. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking. PMID:25399704

  19. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  20. Matrix-assisted laser desorption/ionization tissue profiling of secretoneurin in the nucleus accumbens shell from cocaine-sensitized rats.

    Uys, Joachim D; Grey, Angus C; Wiggins, Armina; Schwacke, John H; Schey, Kevin L; Kalivas, Peter W

    2010-01-01

    Proteins in the nucleus accumbens mediate many cocaine-induced behaviors. In an effort to measure changes in nucleus accumbens protein expression as potential biomarkers for addiction, coronal tissue sections were obtained from rats that developed behavioral sensitization after daily administration of cocaine, or from daily saline-treated controls. The tissue sections were subjected to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) profiling and tissue imaging. For profiling experiments, brain sections were manually spotted with matrix over the nucleus accumbens, a brain region known to regulate cocaine sensitization. Summed mass spectra (10,000 laser shots, grid) were acquired and spectra were aligned to reference peaks. Using bioinformatics tools, eight spectral features were found to be altered by cocaine treatment. Based on additional sequencing experiments with MALDI tandem MS and database searches of measured masses, secretoneurin (m/z 3653) was identified as having an increased expression. In addition, the distribution of m/z 3653 in the nucleus accumbens was determined by MALDI tissue imaging, and the increased expression of its precursor protein, secretogranin II, was verified by immunoblotting. PMID:19918966

  1. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  2. Mesolimbic dopamine signals the value of work.

    Hamid, Arif A; Pettibone, Jeffrey R; Mabrouk, Omar S; Hetrick, Vaughn L; Schmidt, Robert; Vander Weele, Caitlin M; Kennedy, Robert T; Aragona, Brandon J; Berke, Joshua D

    2016-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the available reward for investment of effort, which is employed for both learning and motivational functions. PMID:26595651

  3. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-01

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. PMID:27461790

  4. Dorsal Periaqueductal gray simultaneously modulates ventral Subiculum induced-plasticity in the Basolateral Amygdala and the Nucleus Accumbens

    Omer eHorovitz

    2015-03-01

    Full Text Available The ventral subiculum of the hippocampus projects both to the basolateral amygdala, which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens, which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g. medial prefrontal cortex to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g. periaqueductal grey - PAG to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub ability to induce plasticity in the basolateral amygdala (BLA and nucleus accumbens (NAcc simultaneously in rats. Further, dorsal PAG (dPAG priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.

  5. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning.

    Clissold, Kara A; Pratt, Wayne E

    2014-11-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer. PMID:25101542

  6. Repeated cocaine administration decreases calcineurin (PP2B) but enhances DARPP-32 modulation of sodium currents in rat nucleus accumbens neurons.

    Hu, Xiu-Ti; Ford, Kerstin; White, Francis J

    2005-05-01

    Our previous studies have demonstrated that repeated cocaine (COC) administration reduces voltage-sensitive sodium and calcium currents (I(Na) or VSSCs and I(Ca) or VSCCs, respectively) in medium spiny nucleus accumbens (NAc) neurons of rats. The present findings further indicate that chronic COC-induced I(Na) reduction in NAc neurons is regulated by decreased dephosphorylation and enhanced phosphorylation of Na(+) channels. Whole-cell voltage-clamp recordings revealed that dephosphorylation of Na(+) channels by calcineurin (CaN) enhanced I(Na), while inhibition of protein phosphatase 1 (PP1) by phosphorylated dopamine- and cAMP-regulated phosphoprotein (M(r)=32 kDa) (DARPP-32) at the site of threonine 34 (p-Thr.34-DARPP-32) suppressed I(Na), in freshly dissociated NAc neurons of saline-pretreated rats. However, the effects of CaN on enhancing I(Na) were significantly attenuated, and the action of p-Thr.34-DARPP-32 to decrease I(Na) was mimicked, although not potentiated, by repeated COC pretreatment. Dephosphorylation of Na(+) channels by PP1 also enhanced I(Na), but this effect of PP1 on I(Na) was not apparently affected by repeated COC administration. Western blot analysis indicates that the protein levels of CaN and DARPP-32 were significantly decreased and increased, respectively, while the PP1 levels were unchanged, in the COC-withdrawn NAc as compared to saline-pretreated controls. Combined with previous findings, our results indicate that both CaN and PP1 modulate the increase in I(Na) via enhancing dephosphorylation, while p-Thr.34-DARPP-32 reduces I(Na) by inhibiting PP1-induced dephosphorylation, thereby stabilizing the phosphorylation state, of Na(+) channels in NAc neurons. They also suggest that chronic COC-induced I(Na) reduction may be attributed to a reduction in Ca(2+) signaling, which disrupts the physiological balance of phosphorylation and dephosphorylation of Na(+) channels. PMID:15726118

  7. Drug-related cue induced craving and the correlation between the activation in nucleus accumbens and drug craving: a fMRI study on heroin addicts

    Objective: To explore the neural mechanism underlying the craving of heroin addicts induced by picture-cue and the correlation between the brain activation degree in nucleus accumbens (NAc)/ the ventral striatum and the scores of patients self-report craving. Methods: Twelve active heroin addicts and 12 matched healthy controls underwent fMRI scan while viewing drug-related pictures and neutral pictures presented in a block design paradigm after anatomical scanning in GE 3.0 T scanner. The fMRI data were analyzed with SPM 5. The change of craving scores was tested by Wilcoxon signed rank test. The Pearson correlation between the activation of NAc/the ventral striatum and the heroin craving score was tested by SPSS 13.0. Results: The craving scores of heroin addicts ranged from 0 to 3.70 (median 0.15) before exposed to drug cue and 0 to 5.10 (median 3.25) after viewing drug-related pictures and showed statistical significance (Z=-2.666, P<0.05). There were 16 activated brain areas when heroin dependent patients exposed to visual drug-related cue vs. neutral visual stimuli. The activation brain regions belonged to two parts, one was limbic system (amygdale, hippocampus, putamen, anterior cingulate cortex and caudate), another was brain cortex (middle frontal cortex, inferior frontal cortex, precentral gyrus, middle temporal cortex, inferior temporal cortex, fusiform gyrus, precuneus and middle occipital gyrus). The MR signal activation magnitude of heroin addicts ranged from 0.19 to 3.50. The result displayed a significant positive correlation between the cue-induced fMRI activation in NAc/the ventral striatum and heroin craving severity (r=0.829, P<0.05). Conclusion: Heroin shared the same neural circuitry in part with other drugs of abuse for cue-induced craving, including brain reward circuitry, visualspatial attention circuit and working memory region. In addition, the dysfunction of NAc/the ventral striatum may attribute to heroin-related cue induced craving

  8. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka; McGinty, Jacqueline F.

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine pri...

  9. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation.

    Collins, Anne L; Greenfield, Venuz Y; Bye, Jeffrey K; Linker, Kay E; Wang, Alice S; Wassum, Kate M

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  10. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration

    Parker, Kyle E.; Johns, Howard W.; Floros, Ted G.; Will, Matthew J.

    2013-01-01

    Previous research has demonstrated a dissociation of certain neural mediators that contribute to the increased consumption of a high-fat diet that follows intra-accumbens (Acb) administration of µ-opioid receptor agonists vs. 24-h food deprivation. These two models, both which induce rapid consumption of the diet, have been shown to involve a distributed corticolimbic circuitry, including the amygdala. Specifically, the central amygdala (CeA) has been shown to be involved in high-fat feeding ...

  11. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is due to a direct increase in phasic dopamine release events

    Aragona, Brandon J.; Cleaveland, Nathan A.; Stuber, Garret D.; Day, Jeremy J.; Carelli, Regina M.; Wightman, R. Mark

    2008-01-01

    Preferential enhancement of dopamine transmission within the nucleus accumbens (NAc) shell is a fundamental aspect of the neural regulation of cocaine reward. Despite its importance, the nature of this effect is poorly understood. Here, we used fast-scan cyclic voltammetry to examine specific transmission processes underlying cocaine-evoked increases in dopamine transmission within the NAc core and shell. Initially, we examined altered terminal dopamine concentrations following global autorec...

  12. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  13. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction

    D’Ascenzo, Marcello; Podda, Maria Vittoria; Grassi, Claudio

    2014-01-01

    Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expr...

  14. Differential Effects of Blockade of Dopamine D1-Family Receptors in Nucleus Accumbens Core or Shell on Reinstatement of Heroin Seeking Induced by Contextual and Discrete Cues

    Bossert, Jennifer M.; Poles, Gabriela C.; Wihbey, Kristina A.; Koya, Eisuke; Shaham, Yavin

    2007-01-01

    In humans, exposure to environmental contexts previously associated with heroin intake can provoke drug relapse, but the neuronal mechanisms mediating this relapse are unknown. Using a drug relapse model, we found previously that reexposing rats to heroin-associated contexts, after extinction of drug-reinforced responding in different contexts, reinstates heroin seeking. This effect is attenuated by inhibition of glutamate transmission in the ventral tegmental area and medial accumbens shell,...

  15. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor

    Janine Maria Prast

    2014-09-01

    Full Text Available We investigated if counterconditioning with dyadic (i.e., one-to-one social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP, differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1 region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268 in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs, with D2-MSNs (immunolabeled with an anti-DRD2 antibody being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.

  16. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions

    LaLumiere, Ryan T; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats (∼300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h la...

  17. Biphasic effects of intra-accumbens histamine administration on spontaneous motor activity in the rat; a role for central histamine receptors.

    Bristow, L. J.; Bennett, G. W.

    1988-01-01

    1. The effect of intra-accumbens injection of histamine and related compounds on the spontaneous motor activity of the rat has been investigated. 2. Microinjections of histamine (1-200 micrograms) induced dose-dependent, biphasic changes in rat activity consisting of an initial brief hypoactivity response followed by a marked hyperactivity phase. The histamine metabolite, n-tele-methylhistamine was without effect. 3. Pretreatment with the H1-receptor antagonist mepyramine (10 micrograms) bloc...

  18. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    SusanneEla Fleur; Geoffreyvan der Plasse; MatthijsFeenstra; AndriesKalsbeek

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation...

  19. Signal Words

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  20. NMDA and Muscarinic Receptors of the Nucleus Accumbens Have Differential Effects on Taste Memory Formation

    Bermudez-Rattoni, Federico; Ramirez-Lugo, Leticia; Zavala-Vega, Sergio

    2006-01-01

    Animals recognize a taste cue as aversive when it has been associated with post-ingestive malaise; this associative learning is known as conditioned taste aversion (CTA). When an animal consumes a new taste and no negative consequences follow, it becomes recognized as a safe signal, leading to an increase in its consumption in subsequent…

  1. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  2. Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior

    Roitman, Jamie D.; Loriaux, Amy L.

    2013-01-01

    Our behavior is powerfully driven by environmental cues that signal the availability of rewarding stimuli. We frequently encounter stimuli—a bowl of candy or an alert from our smartphone—that trigger actions to obtain those rewards, even though there may be positive outcomes associated with not acting. The inability to restrain one's action in the presence of reward-associated cues is one type of impulsive behavior and a component of such maladaptive behaviors as overeating, gambling, and sub...

  3. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats.

    Pultorak, Joshua D; Kelm-Nelson, Cynthia A; Holt, Lauren R; Blue, Katherine V; Ciucci, Michelle R; Johnson, Aaron M

    2016-08-01

    Many individuals with Parkinson disease (PD) have difficulty producing normal speech and voice, resulting in problems with interpersonal communication and reduced quality of life. Translational animal models of communicative dysfunction have been developed to assess disease pathology. However, it is unknown whether acoustic feature changes associated with vocal production deficits in these animal models lead to compromised communication. In rodents, male ultrasonic vocalizations (USVs) have a well-established role in functional inter-sexual communication. To test whether acoustic deficits in USVs observed in a PTEN-induced putative kinase 1 (PINK1) knockout (KO) PD rat model compromise communication, we presented recordings of male PINK1 KO USVs and normal wild-type (WT) USVs to female rat listeners. We measured approached behavior and immediate early gene expression (c-Fos) in brain regions implicated in auditory processing and sexual motivation. Our results suggest that females show reduced approach in response to PINK1 KO USVs compared with WT. Moreover, females exposed to PINK1 KO USVs had lower c-Fos immunolabeling in the nucleus accumbens, a region implicated in sexual motivation. These results are the first to demonstrate that vocalization deficits in a rat PD model result in compromised communication. Thus, the PINK1 KO PD model may be valuable for assessing treatments aimed at restoring vocal communicative function. PMID:26313334

  4. Administration of the Glial Condition Medium in the Nucleus Accumbens Prolong Maintenance and Intensify Reinstatement of Morphine-Seeking Behavior.

    Arezoomandan, Reza; Khodagholi, Fariba; Haghparast, Abbas

    2016-04-01

    Accumulating evidence suggested that glial cells are involved in synaptic plasticity and behavioral changes induced by drugs abuse. The role of these cells in maintenance and reinstatement of morphine (MRP) conditioned place preference (CPP) remains poorly characterized. The aim of present study was to investigate the direct role of glial cells in nucleus accumbens (NAc) in the maintenance and reinstatement of MRP-seeking behavior. CPP induced with injection of MRP (5 mg/kg, s.c. for 3 days), lasted for 7 days after cessation of MRP treatment and priming dose of MRP (1 mg/kg, s.c.) reinstated the extinguished MRP-induced CPP. The astrocyte-conditioned medium (ACM) and neuroglia conditioned medium (NCM) exposed to MRP (10 and 100 µM) have been microinjected into the NAc. Intra-NAc administration of ACM during extinction period failed to change the maintenance of MRP-CPP, but MRP 100-treated ACM could slightly increase the magnitude of reinstatement. In contrast to ACM, intra-NAc administration of MRP 100-treated NCM caused slower extinction by 3 days and significantly increased the magnitude of reinstatement. Our findings suggest the involvement of glial cells activation in the maintenance and reinstatement of MRP-seeking behaviors, and provides new evidence that these cells might be a potential target for the treatment of MRP addiction. PMID:26547198

  5. Social Stress and Escalated Drug Self-administration in Mice II. Cocaine and Dopamine in Nucleus Accumbens

    Han, Xiao; Albrechet-Souza, Lucas; Doyle, Michelle R.; Shimamoto, Akiko; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Rationale Social defeat stress results in escalation of cocaine taking and long-term neural adaptations in rats. How the intensity and timing of social defeat stress determine these effects, particularly in mice, have not been well characterized. Objective This study investigated the effects of mild vs. moderate intensities and durations of social stress on intravenous cocaine self-administration as well as on dopamine (DA) release in nucleus accumbens shell (NAcSh) by using in vivo microdialysis. Methods Adult male CFW mice experienced 10 days of social defeat stress, either mild (15 attack bites in ca. 1.8 min) or moderate (30 attack bites in ca. 3.6 min), and compared to controls that were handled daily. Subsequently, the socially stressed mice were assessed for either (1) intravenous cocaine self-administration, using several unit doses (0, 0.3, 0.6, 1.0 mg/kg/infusion) under limited access conditions, or (2) neural sensitization, as determined by in vivo microdialysis of DA in the NAcSh in response to acute d-amphetamine challenge. Results Social defeat stress resulted in escalated cocaine self-administration in both mild and moderate socially stressed groups. In addition, social defeat stress led to increased DA release after d-amphetamine challenge. Conclusions These data suggest that both mild and moderate socially stressed mice exhibit increased cocaine taking compared to controls, and this increase is associated with escalated dopaminergic responses in the NAcSh. PMID:25216798

  6. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level. PMID:25971857

  7. Violence as a source of pleasure or displeasure is associated with specific functional connectivity with the nucleus accumbens

    Jean Decety

    2013-08-01

    Full Text Available The appraisal of violent stimuli is dependent on the social context and the perceiver’s individual characteristics. To identify the specific neural circuits involved in the perception of violent videos, forty-nine male participants were scanned with functional MRI while watching video-clips depicting Mixed Martial Arts (MMA and Capoeira as a baseline. Prior to scanning, a self-report measure of pleasure or displeasure when watching MMA was collected. Watching MMA was associated with activation of the anterior insula, brainstem, ventral tegmental area, striatum, medial and lateral prefrontal cortex, orbitofrontal cortex, somatosensory cortex, and supramarginal gyrus. While this pattern of brain activation was not related to participants’ reported experience of pleasure or displeasure, pleasurable ratings of MMA predicted increased functional connectivity seeded in the nucleus accumbens (a structure known to be responsive to anticipating both positive and negative outcomes with the subgenual anterior cingulate cortex and anterior insular cortex (regions involved in positive feelings and visceral somatic representations. Displeasure ratings of MMA were related to increased functional connectivity with regions of the prefrontal cortex and superior parietal lobule, structures implicated in cognitive control and executive attention. These data suggest that functional connectivity is an effective approach to investigate the relationship between subjective feelings of pleasure and pain of neural structures known to respond to both the anticipation of positive and negative outcomes.

  8. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  9. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens.

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  10. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control.

  11. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580

  12. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.

    Piray, Payam; Keramati, Mohammad Mahdi; Dezfouli, Amir; Lucas, Caro; Mokri, Azarakhsh

    2010-09-01

    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive--but not aversive--stimuli in the critic--but not the actor--we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We hypothesize that an imbalance in this learning parameter used by appetitive and aversive learning systems can result in addiction. We elucidate that the interaction between the degree of individual vulnerability and the duration of exposure to drug has two progressive consequences: deterioration of the imbalance and establishment of an abnormal habitual response in the actor. Using computational language, the proposed model describes how development of compulsive behavior can be a function of both degree of drug exposure and individual vulnerability. Moreover, the model describes how involvement of the dorsal striatum in addiction can be augmented progressively. The model also interprets other forms of addiction, such as obesity and pathological gambling, in a common mechanism with drug addiction. Finally, the model provides an answer for the question of why behavioral addictions are triggered in Parkinson's disease patients by D2 dopamine agonist treatments. PMID:20569176

  13. Effects of tetra hydro cannabinol to the dendritc tree and synapses of the accumbens nucleus of wistar rats

    Dimitrijević I.

    2013-01-01

    Full Text Available Cannabis is one of the most widely used intoxicants; almost half of all 18 year olds in the USA and in most European countries admit to having tried it at least once, and ~10% of that age group are regular users. Δ9-Tetrahydrocannabinol (THC, the principal psychoactive ingredient in marijuana, produces euphoria and relaxation and impairs motor coordination, time sense, and short term memory. In the hippocampus, CBs inhibit GABA release from a subset of interneurons and inhibit glutamate release from principal neurons. Cannabinoids are reported to produce both rapid and long-term changes in synaptic transmission. Our study was carried out on ten male rats out of which brains of six of them were used as the representative sample for electron microscope analysis, while 4 were used for light microspcopy performed by Golgi method. Three were exposed to THC and 3 were controls. Axodendric synapses in the core and shell of the accumbens nucleus (AN were studied under electron microscope. The results have shown widening of the synaptic cleft in the shell of AN. This result is a leading point to our further investigations which are going to involve a behavioral component, and different aspects of morphological studies. [Projekat Ministarstva nauke Republike Srbije, br. III 41020

  14. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  15. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. PMID:27139934

  16. Low Impulsive Action, but not Impulsive Choice, Predicts Greater Conditioned Reinforcer Salience and Augmented Nucleus Accumbens Dopamine Release.

    Zeeb, Fiona D; Soko, Ashlie D; Ji, Xiaodong; Fletcher, Paul J

    2016-07-01

    Poor impulse control is associated with an increased propensity to develop an addiction and may contribute to relapse as high impulsive subjects appear to attribute greater salience toward drug-paired stimuli. In these studies, we determined whether trait impulsivity also predicts the desire to obtain natural reward-paired stimuli. Rats trained on the 5-choice serial reaction time task to measure impulsive action (Experiment 1) or a delay-discounting task to measure impulsive choice (Experiment 2) were separated into low, intermediate, or high impulsive action (L-IA, I-IA, H-IA) or choice (L-IC, I-IC, H-IC) groups. The motivation to obtain a conditioned stimulus (CS) paired with water-reward was subsequently determined by measuring responding for the CS as a conditioned reinforcer (CRf). Dopamine release in the nucleus accumbens was also measured using in vivo microdialysis. The effects of amphetamine were assessed on all tests. In Experiment 1, amphetamine increased impulsive action in all groups. L-IA rats initially demonstrated the highest responding for the CRf. Amphetamine increased responding for the CRf and this effect was augmented in L-IA rats. Dopamine release following amphetamine was greatest in L-IA subjects. In Experiment 2, amphetamine increased impulsive choice for L-IC and I-IC rats. However, all groups responded similarly for the CRf and dopamine release was moderately greater in L-IC rats. In conclusion, impulsive choice was unrelated to responding for a CRf. L-IA subjects initially attributed enhanced salience to a CS and exhibited greater dopamine release. Lower dopamine release in H-IA rats could result in reduced reinforcing properties of the CRf. PMID:26781518

  17. Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats.

    Waselus, M; Flagel, S B; Jedynak, J P; Akil, H; Robinson, T E; Watson, S J

    2013-09-17

    Repeated exposure to drugs of abuse is associated with structural plasticity in brain reward pathways. Rats selectively bred for locomotor response to novelty differ on a number of neurobehavioral dimensions relevant to addiction. This unique genetic animal model was used here to examine both pre-existing differences and long-term consequences of repeated cocaine treatment on structural plasticity. Selectively bred high-responder (bHR) and low-responder (bLR) rats received repeated saline or cocaine injections for 9 consecutive days. Escalating doses of cocaine (7.5, 15 and 30 mg/kg) were administered on the first (day 1) and last (day 9) days of treatment and a single injection of the intermediate dose (15 mg/kg) was given on days 2-8. Motor activity in response to escalating doses of cocaine was compared on the first and last days of treatment to assess the acute and sensitized response to the drug. Following prolonged cocaine abstinence (28 days), spine density was examined on terminal dendrites of medium spiny neurons in the nucleus accumbens core. Relative to bLRs, bHRs exhibited increased psychomotor activation in response to both the acute and repeated effects of cocaine. There were no differences in spine density between bHR and bLR rats under basal conditions or following repeated saline treatment. However, spine density differed markedly between these two lines following prolonged cocaine abstinence. All spine types were decreased in cocaine-treated bHRs, while only mushroom spines were decreased in bLRs that received cocaine. Changes in spine density occurred specifically near the branch point of terminal dendrites. These findings indicate that structural plasticity associated with prolonged cocaine abstinence varies markedly in two selected strains of rats that vary on numerous traits relevant to addiction. Thus, genetic factors that contribute to individual variation in the behavioral response to cocaine also influence cocaine-induced structural

  18. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine- mediated regulation of Tiam1

    Amy M Gancarz

    2013-05-01

    Full Text Available Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs. These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin cytoskeleton, such as Tiam1. Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1-containing striatal MSNs in mediating psychostimulant induced plasticity changes. These D1-MSNs in the nucleus accumbens (NAc positively regulate drug seeking, reward, and locomotor behavioral effects as well as the morphological adaptations of psychostimulant drugs. Here, we demonstrate that rats that actively self-administer cocaine display reduced levels of Tiam1 in the NAc. To further examine the cell type specific contribution to these changes in Tiam1 we used optogenetics to selectively manipulate NAc D1-MSNs or dopamine receptor 2 (D2 expressing MSNs. We find that repeated ChR2 activation of D1-MSNs but not D2-MSNs caused a down-regulation of Tiam1 levels similar to the effects of cocaine. Further, activation of D2-MSNs, which caused a late blunted cocaine-mediated locomotor behavioral response, did not alter Tiam1 levels. We then examined the contribution of D1-MSNs to the cocaine-mediated decrease of Tiam1. Using the light activated chloride pump, eNpHR3.0, we selectively inhibited D1-MSNs during cocaine exposure, which resulted in a behavioral blockade of cocaine-induced locomotor sensitization. Moreover, inhibiting these NAc D1-MSNs during cocaine exposure reversed the down-regulation of Tiam1 gene expression and protein levels. These data demonstrate that altering activity in specific neural circuits with optogenetics can impact the underlying molecular substrates of psychostimulant mediated behavior and function.

  19. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice.

    Mitsuhiro Edamura

    Full Text Available Major histocompatibility complex class I (MHCI molecules were recently identified as novel regulators of synaptic plasticity. These molecules are expressed in various brain areas, especially in regions undergoing activity-dependent synaptic plasticity, but their role in the nucleus accumbens (NAc is unknown. In this study, we investigated the effects of genetic disruption of MHCI function, through deletion of β2-microblobulin, which causes lack of cell surface expression of MHCI. First, we confirmed that MHCI molecules are expressed in the NAc core in wild-type mice. Second, we performed electrophysiological recordings with NAc core slices from wild-type and β2-microglobulin knock-out mice lacking cell surface expression of MHCI. We found that low frequency stimulation induced long-term depression in wild-type but not knock-out mice, whereas high frequency stimulation induced long-term potentiation in both genotypes, with a larger magnitude in knock-out mice. Furthermore, we demonstrated that knock-out mice showed more persistent behavioral sensitization to cocaine, which is a NAc-related behavior. Using this model, we analyzed the density of total AMPA receptors and their subunits GluR1 and GluR2 in the NAc core, by SDS-digested freeze-fracture replica labeling. After repeated cocaine exposure, the density of GluR1 was increased, but there was no change in total AMPA receptors and GluR2 levels in wild-type mice. In contrast, following repeated cocaine exposure, increased densities of total AMPA receptors, GluR1 and GluR2 were observed in knock-out mice. These results indicate that functional deficiency of MHCI enhances synaptic potentiation, induced by electrical and pharmacological stimulation.

  20. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey.

    Landgraf, Dominic; Long, Jaimie E; Welsh, David K

    2016-05-01

    An association between circadian rhythms and mood regulation is well established, and disturbed circadian clocks are believed to contribute to the development of mood disorders, including major depressive disorder. The circadian system is coordinated by the suprachiasmatic nucleus (SCN), the master pacemaker in the hypothalamus that receives light input from the retina and synchronizes circadian oscillators in other brain regions and peripheral tissues. Lacking the tight neuronal network that couples single-cell oscillators in the SCN, circadian clocks outside the SCN may be less stable and more susceptible to disturbances, for example by clock gene mutations or uncontrollable stress. However, non-SCN circadian clocks have not been studied extensively in rodent models of mood disorders. In the present study, it was hypothesized that disturbances of local circadian clocks in mood-regulating brain areas are associated with depression-like behaviour in mice. Using the learned helplessness procedure, depression-like behaviour was evoked in mice bearing the PER2::LUC circadian reporter, and then circadian rhythms of PER2 expression were examined in brain slices from these mice using luminometry and bioluminescence imaging. It was found that helplessness is associated with absence of circadian rhythms in the nucleus accumbens and the periaqueductal grey, two of the most critical brain regions within the reward circuit. The current study provides evidence that susceptibility of mice to depression-like behaviour is associated with disturbed local circadian clocks in a subset of mood-regulating brain areas, but the direction of causality remains to be determined. PMID:26414405

  1. Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

    Alaux-Cantin, Stéphanie; Warnault, Vincent; Legastelois, Rémi; Botia, Béatrice; Pierrefiche, Olivier; Vilpoux, Catherine; Naassila, Mickaël

    2013-04-01

    Adolescent alcohol binge drinking constitutes a major vulnerability factor to develop alcoholism. However, mechanisms underlying this susceptibility remain unknown. We evaluated the effect of adolescent binge-like ethanol intoxication on vulnerability to alcohol abuse in Sprague-Dawley rats. To model binge-like ethanol intoxication, every 2 days, rats received an ethanol injection (3.0 g/kg) for 2 consecutive days across 14 days either from postnatal day 30 (PND30) to 43 (early adolescence) or from PND 45 to PND 58 (late adolescence). In young adult animals, we measured free ethanol consumption in the two-bottle choice paradigm, motivation for ethanol in the operant self-administration task and both ethanol's rewarding and aversive properties in the conditioned place preference (CPP) and taste aversion (CTA) paradigms. While intermittent ethanol intoxications (IEI) during late adolescence had no effect on free-choice 10% ethanol consumption, we found that IEI during early adolescence promoted free-choice 10% ethanol consumption, enhanced motivation for ethanol in the self-administration paradigm and induced a loss of both ethanol-induced CPP and CTA in young adults. No modification in either sucrose self-administration or amphetamine-induced CPP was observed. As the nucleus accumbens (Nac) is particularly involved in addictive behavior, we analyzed IEI-induced long-term neuroadaptations in the Nac using c-Fos immunohistochemistry and an array of neurotransmission-related genes. This vulnerability to ethanol abuse was associated with a lower c-Fos immunoreactivity in the Nac and enduring alterations of the expression of Penk and Slc6a4, 2 neurotransmission-related genes that have been shown to play critical roles in the behavioral effects of ethanol and alcoholism. PMID:23287538

  2. Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain.

    Kato, Takahiro; Ide, Soichiro; Minami, Masabumi

    2016-08-26

    Comorbidity of chronic pain and depression has long been recognized in the clinic, and preclinical studies have reported depression-like behaviors in animal models of chronic pain. These findings suggest a common neuronal basis for chronic pain and depression. The neuronal pathway from the ventral tegmental area to the nucleus accumbens (NAc) is critical in the mesolimbic dopamine (DA) reward circuit, and dysfunction of this pathway has been implicated in depression. Although time-dependent development of depression-related behaviors has been reported in chronic pain animals, time-dependent functional changes in this pathway remain to be examined. To address this issue, we examined the effects of two types of rewards, pain relief by intrathecal injection of pregabalin (100μg in 10μL phosphate buffered saline) and 30% sucrose solution intake, on intra-NAc DA release in rats subjected to spinal nerve ligation (SNL). Specifically, the effects were investigated during the early (17-20days after ligation) and late (31-34days after ligation) phases of neuropathic pain. Pain relief increased the intra-NAc DA levels in the SNL rats during the early but not late phase of neuropathic pain. Intake of the sucrose solution increased the intra-NAc DA levels both in the SNL and sham animals during the early phase of neuropathic pain, while it induced DA release in the sham but not SNL animals during the late phase. These results suggest that dysfunction of the mesolimbic DA reward circuit develops in a time-dependent manner. Mesolimbic DA reward circuit dysfunction might be a common neuronal mechanism underlying chronic pain and depression, and a potential target for novel analgesic and antidepressant medications. PMID:27369326

  3. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats.

    Sun, Ji Y; Yang, Jing Y; Wang, Fang; Wang, Jian Y; Song, Wu; Su, Guang Y; Dong, Ying X; Wu, Chun F

    2011-10-01

    Our previous studies have shown that local perfusion of morphine causes an increase of extracellular ascorbic acid (AA) levels in nucleus accumbens (NAc) of freely moving rats. Lines of evidence showed that glutamatergic and GABAergic were associated with morphine-induced effects on the neurotransmission of the brain, especially on the release of AA. In the present study, the effects of morphine on the release of extracellular AA, γ-aminobutyric acid (GABA) and glutamate (Glu) in the NAc following bilateral NAc lesions induced by kainic acid (KA) were studied by using the microdialysis technique, coupled to high performance liquid chromatography with electrochemical detection (HPLC-ECD) and fluorescent detection (HPLC-FD). The results showed that local perfusion of morphine (100 µM, 1 mM) in NAc dose-dependently increased AA and GABA release, while attenuated Glu release in the NAc. Naloxone (0.4 mM) pretreated by local perfusion to the NAc, significantly blocked the effects of morphine. After NAc lesion by KA (1 µg), morphine-induced increase in AA and GABA were markedly eliminated, while decrease in Glu was not affected. The loss effect of morphine on AA and GABA release after KA lesion could be recovered by GABA agonist, musimol. These results indicate that morphine-induced AA release may be mediated at least by µ-opioid receptor. Moreover, this effect of morphine possibly depend less on the glutamatergic afferents, but more on the GABAergic circuits within this nucleus. Finally, AA release induced by local perfusion of morphine may be GABA-receptor mediated and synaptically localized in the NAc. PMID:20731632

  4. In vivo chronic intermittent ethanol exposure reverses the polarity of synaptic plasticity in the nucleus accumbens shell.

    Jeanes, Zachary M; Buske, Tavanna R; Morrisett, Richard A

    2011-01-01

    Glutamatergic synaptic plasticity in the nucleus accumbens (NAc) is implicated in response to sensitization to psychomotor-stimulating agents, yet ethanol effects here are undefined. We studied the acute in vitro and in vivo effects of ethanol in medium spiny neurons from the shell NAc subregion of slices of C57BL/6 mice by using whole-cell voltage-clamp recordings of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) excitatory postsynaptic current (EPSCs). Synaptic conditioning (low-frequency stimulation with concurrent postsynaptic depolarization) reliably depressed AMPA EPSCs by nearly 30%; this accumbal long-term depression (LTD) was blocked by a nonselective N-methyl-D-aspartate (NMDA) receptor antagonist (DL-2-amino-5-phosphonovaleric acid) and a selective NMDA receptor 2B antagonist [R-(R*,S*)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidine propanol]. Acute ethanol exposure inhibited the depression of AMPA EPSCs differentially with increasing concentrations, but this inhibitory action of ethanol was occluded by a D1-selective dopamine receptor agonist. Ethanol dependence was elicited in C57BL/6 mice by two separate 4-day bouts of chronic intermittent ethanol (CIE) vapor exposure. When assessed 24 h after a single bout of in vivo CIE vapor exposure, NAc LTD was absent, and instead NMDA receptor-dependent synaptic potentiation [long-term potentiation (LTP)] was reliably observed. It is noteworthy that both LTP and LTD were completely absent after an extended withdrawal (72 h) after a single 3-day CIE vapor bout. These observations demonstrate that 1) accumbal synaptic depression is mediated by NR2B receptors, 2) accumbal synaptic depression is highly sensitive to both acute and chronic ethanol exposure, and 3) alterations in this synaptic process may constitute a neural adaptation that contributes to the induction and/or expression of ethanol dependence. PMID:20947635

  5. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.

    Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R

    2016-10-01

    Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. PMID:27036890

  6. Dissociable Control of Impulsivity in Rats by Dopamine D2/3 Receptors in the Core and Shell Subregions of the Nucleus Accumbens

    Besson, Morgane; Belin, David; McNamara, Ruth; Theobald, David EH; Castel, Aude; Beckett, Victoria L.; Crittenden, Ben M.; Newman, Amy H.; Everitt, Barry J; Robbins, Trevor W.; Dalley, Jeffrey W.

    2010-01-01

    Previous research has identified the nucleus accumbens (NAcb) as an important brain region underlying inter-individual variation in impulsive behavior. Such variation has been linked to decreased dopamine (DA) D2/3 receptor availability in the ventral striatum of rats exhibiting spontaneously high levels of impulsivity on a 5-choice serial reaction time (5-CSRT) test of sustained visual attention. This study investigated the involvement of DA D2/3 receptors in the NAcb core (NAcbC) and the NA...

  7. Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats

    Bahi, Amine; Boyer, Frederic; Vijay, Chandrasekar; Dreyer, Jean-Luc

    2008-01-01

    Background Brain-derived neurotrophic factor (BDNF) is involved in the survival and function of midbrain DA neurons. BDNF action is mediated by the TrkB receptor–tyrosine kinase, and both BDNF and TrkB transcripts are widely expressed in the rat mesolimbic pathway, including the nucleus accumbens (NAc) and the ventral tegmentum area (VTA). Objective BDNF was previously shown to be involved in cocaine reward and relapse, as assessed in rat models. The goal of this study is to explore the role ...

  8. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the μ-opioid receptor (μ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the ...

  9. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence

    Mohammed Mamdani; Vernell Williamson; McMichael, Gowon O.; Tana Blevins; Fazil Aliev; Amy Adkins; Laura Hack; Tim Bigdeli; Andrew D van der Vaart; Bradley Todd Web; Silviu-Alin Bacanu; Gursharan Kalsi; Kendler, Kenneth S.; Miles, Michael F.; Danielle Dick

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to b...

  10. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Qiang Fu

    Full Text Available The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART peptides, particularly with respect to the function of the D3 dopamine receptor (D3R, which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα in the nucleus accumbens (NAc. After repeated oral administration of caffeine (30 mg/kg for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.

  11. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Fu, Qiang; Zhou, Xiaoyan; Dong, Yun; Huang, Yonghong; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2016-01-01

    The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats. PMID:27404570

  12. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior.

    Stefanik, Michael T; Kupchik, Yonatan M; Kalivas, Peter W

    2016-04-01

    Animal models of relapse reveal that the motivation to seek drug is regulated by enduring morphological and physiological changes in the nucleus accumbens, as well as transient synaptic potentiation in the accumbens core (NAcore) that parallels drug-seeking behavior. The current study sought to examine the link between the behavioral and synaptic consequences of cue-induced cocaine seeking by optically silencing glutamatergic afferents to the NAcore from the prelimbic cortex (PL). Adeno-associated virus coding for the inhibitory opsin archaerhodopsin was microinjected into PL, and optical fibers were targeted to NAcore. Animals were trained to self-administer cocaine followed by extinction training, and then underwent cue-induced reinstatement in the presence or absence of 15 min of optically induced inhibition of PL fibers in NAcore. Inhibiting the PL-to-NAcore projection blocked reinstated behavior and was paralleled by decreased dendritic spine head diameter and AMPA/NMDA ratio relative to sham-laser control rats. Interestingly, while spine density was elevated after extinction training, no further effects were observed by cued reinstatement or optical inhibition. These findings validate the critical role for PL afferents to the NAcore in simultaneously regulating both reinstated behavior and the associated transient synaptic potentiation. PMID:25663648

  13. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  14. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  15. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With Cross-Generational Effects of Adolescent THC Exposure.

    Watson, Corey T; Szutorisz, Henrietta; Garg, Paras; Martin, Qammarah; Landry, Joseph A; Sharp, Andrew J; Hurd, Yasmin L

    2015-12-01

    Drug exposure during critical periods of development is known to have lasting effects, increasing one's risk for developing mental health disorders. Emerging evidence has also indicated the possibility for drug exposure to even impact subsequent generations. Our previous work demonstrated that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of marijuana (Cannabis sativa), in a Long-Evans rat model affects reward-related behavior and gene regulation in the subsequent (F1) generation unexposed to the drug. Questions, however, remained regarding potential epigenetic consequences. In the current study, using the same rat model, we employed Enhanced Reduced Representation Bisulfite Sequencing to interrogate the epigenome of the nucleus accumbens, a key brain area involved in reward processing. This analysis compared 16 animals with parental THC exposure and 16 without to characterize relevant systems-level changes in DNA methylation. We identified 1027 differentially methylated regions (DMRs) associated with parental THC exposure in F1 adults, each represented by multiple CpGs. These DMRs fell predominantly within introns, exons, and intergenic intervals, while showing a significant depletion in gene promoters. From these, we identified a network of DMR-associated genes involved in glutamatergic synaptic regulation, which also exhibited altered mRNA expression in the nucleus accumbens. These data provide novel insight into drug-related cross-generational epigenetic effects, and serve as a useful resource for investigators to explore novel neurobiological systems underlying drug abuse vulnerability. PMID:26044905

  16. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens.

    Caputi, Francesca Felicia; Di Benedetto, Manuela; Carretta, Donatella; Bastias del Carmen Candia, Sussy; D'Addario, Claudio; Cavina, Chiara; Candeletti, Sanzio; Romualdi, Patrizia

    2014-03-01

    Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity. PMID:24184686

  17. Dissociable contribution of nucleus accumbens and dorsolateral striatum to the acquisition of risk choice behavior in the rat.

    Yang, Jen-Hau; Liao, Ruey-Ming

    2015-12-01

    While a growing body of research has suggested that the mesocorticolimbic dopamine systems play a key role in decision making under risk, how the nucleus accumbens (NAC) is involved in the acquisition of risk choice behavior remains unclear. This study used a T-maze task to assess risk-based decision making in which the rat was required to assess the risk by choosing to enter either a small and certain reward arm or a large but uncertain reward arm of the maze. The latter option, when chosen, resulted in provision of 2, 4, or 8 sweeten pellets with a probability (p) of 0.5, 0.25, or 0.125, respectively. Thus the latter arm provided three different conditions of reward ratio, compared to the choice of former arm, which always provided 1 pellet with p=1. This risk choice task was then run with the expected value being equality between the binary choice options. The experimental rats first received an excitoneurotoxic lesion affecting either the NAC or the dorsolateral striatum (DLS) and this was followed by post-lesion behavioral examination. The sham lesion control rats acquired a stable risk choice with regard to each reward ratio over a 10-day test. The pattern of choice behavior appeared in risk-seeking when p=0.5 to obtain 2 pellets, and was risk-averse when larger reward resulted in lower p. The NAC lesion significantly disrupted the acquisition of the aforementioned risk choice behavior and apparently shifted the choice into a risk-averse style for all three reward ratios. No such effect was observed in the rats with DLS lesions. Neither the gross motor action nor the discrimination of different reward magnitudes was impaired by the lesions affecting either the NAC or DLS as assessed by an additional experiment. These findings suggest that firstly there is heterogeneity between NAC and DLS with respect to risk-based decision making, and that secondly the NAC is involved and critical to the acquisition of behavioral choice under risk, specially when the

  18. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats

    Howes Nathan J

    2005-05-01

    Full Text Available Abstract Background Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively. The nucleus accumbens core (AcbC is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Results Rats chose between a single food pellet delivered with certainty (p = 1 and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625 in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated or at p = 0.70 (AcbC-lesioned by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly

  19. Histamine H3 receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens.

    Aquino-Miranda, Guillermo; Escamilla-Sánchez, Juan; González-Pantoja, Raúl; Bueno-Nava, Antonio; Arias-Montaño, José-Antonio

    2016-07-01

    We studied the effect of activating histamine H3 receptors (H3Rs) on rat nucleus accumbens (rNAcc) dopaminergic transmission by analyzing [(3)H]-dopamine uptake by synaptosomes, and dopamine synthesis and depolarization-evoked [(3)H]-dopamine release in slices. The uptake of [(3)H]-dopamine by rNAcc synaptosomes was not affected by the H3R agonist RAMH (10(-10)-10(-6) M). In rNAcc slices perfusion with RAMH (1 μM) had no significant effect on [(3)H]-dopamine release evoked by depolarization with 30 mM K(+) (91.4 ± 4.5% of controls). The blockade of dopamine D2 autoreceptors with sulpiride (1 μM) enhanced K(+)-evoked [(3)H]-dopamine release (168.8 ± 15.5% of controls), but under this condition RAMH (1 μM) also failed to affect [(3)H]-dopamine release. Dopamine synthesis was evaluated in rNAcc slices incubated with the l-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor NSD-1015 (1 mM). Forskolin-induced DOPA accumulation (220.1 ± 10.4% of controls) was significantly reduced by RAMH (41.1 ± 6.5% and 43.5 ± 9.1% inhibition at 100 nM and 1 μM, respectively), and this effect was prevented by the H3R antagonist ciproxifan (10 μM). DOPA accumulation induced by preventing cAMP degradation with IBMX (iso-butyl-methylxantine, 1 mM) or by activating receptors for the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) with PACAP-27 (1 μM) was reduced (IBMX) or prevented (PACAP-27) by RAMH (100 nM). In contrast, DOPA accumulation induced by 8-Bromo-cAMP (1 mM) was not affected by RAMH (100 nM). These results indicate that in rNAcc H3Rs do not modulate dopamine uptake or release, but regulate dopamine synthesis by inhibiting cAMP formation and thus PKA activation. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26169221

  20. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine

    Yi-Xiao Luo; Hua Han; Juan Shao; Yuan Gao; Xi Yin; Wei-Li Zhu; Ying Han; Hai-Shui Shi

    2016-01-01

    Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) a...

  1. mTORC1 inhibition in the nucleus accumbens 'protects' against the expression of drug seeking and 'relapse' and is associated with reductions in GluA1 AMPAR and CAMKIIα levels.

    James, Morgan H; Quinn, Rikki K; Ong, Lin Kooi; Levi, Emily M; Charnley, Janine L; Smith, Doug W; Dickson, Phillip W; Dayas, Christopher V

    2014-06-01

    The mechanistic target of rapamycin complex 1 (mTORC1) is necessary for synaptic plasticity, as it is critically involved in the translation of synaptic transmission-related proteins, such as Ca(2+)/Calmodulin-dependent kinase II alpha (CAMKIIα) and AMPA receptor subunits (GluAs). Although recent studies have implicated mTORC1 signaling in drug-motivated behavior, the ineffectiveness of rapamycin, an mTORC1 inhibitor, in suppressing cocaine self-administration has raised questions regarding the specific role of mTORC1 in drug-related behaviors. Here, we examined mTORC1's role in three drug-related behaviors: cocaine taking, withdrawal, and reinstatement of cocaine seeking, by measuring indices of mTORC1 activity and assessing the effect of intra-cerebroventricular rapamycin on these behaviors in rats. We found that withdrawal from cocaine self-administration increased indices of mTORC1 activity in the nucleus accumbens (NAC). Intra-cerebroventricular rapamycin attenuated progressive ratio (PR) break points and reduced phospho-p70 ribosomal S6 kinase, GluA1 AMPAR, and CAMKIIα levels in the NAC shell (NACsh) and core (NACc). In a subsequent study, we treated rats with intra-NACsh infusions of rapamycin (2.5 μg/side/day for 5 days) during cocaine self-administration and then tracked the expression of addiction-relevant behaviors through to withdrawal and extinction. Rapamycin reduced drug seeking in signaled non-drug-available periods, PR responding, and cue-induced reinstatement, with these effects linked to reduced mTORC1 activity, total CAMKIIα, and GluA1 AMPAR levels in the NACsh. Together, these data highlight a role for mTORC1 in the neural processes that control the expression and maintenance of drug reward, including protracted relapse vulnerability. These effects appear to involve a role for mTORC1 in the regulation of GluA1 AMPARs and CAMKIIα in the NACsh. PMID:24469593

  2. Leptin signaling

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, glucose and lipid metabolism, immune function, and other systems. The binding of leptin to its specific receptor activates various intracellular signaling pathways, including Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K), SH2-containing protein tyrosine phosphatase 2 (SHP2)/mitogen-activated protein kinase (MAPK), and...

  3. Synaptosomal uptake and release of dopamine and 5-hydroxy-tryptamine in the nucleus accumbens in vitro following in vivo administration of lysergic acid diethylamide in rats

    The uptake and the depolarisation-induced release of dopamine (DA) and serotonin (5-HT) were investigated after systemic application of LSD on synaptosomes of the nucleus accumbens of rats. For the release experiments synaptosomes were prelabelled with [14C]-DA and [3H]-5-HT, respectively, and superfused with physiological and potassium-enriched (50 mM) solutions. Low doses of LSD (0.1 and 0.5 mg/kg i.p.) induced a dose-dependent inhibition of the DA release and an increase of the DA uptake, respectively. LSD inhibited both the release and the uptake of 5-HT significantly. The results are discussed with respect to a reliable characterization of the in vivo induced effects of LSD on the isolated synaptosomes. (author)

  4. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model.

    Flagel, Shelly B; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M; Thompson, Robert C; Watson, Stanley J; Akil, Huda

    2016-05-17

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with "temperament," including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor. PMID:27114539

  5. Alcohol-preferring (P) rats are more sensitive than Wistar rats to the reinforcing effects of cocaine self-administered directly into the nucleus accumbens shell.

    Katner, Simon N; Oster, Scott M; Ding, Zheng-Ming; Deehan, Gerald A; Toalston, Jamie E; Hauser, Sheketha R; McBride, William J; Rodd, Zachary A

    2011-10-01

    Wistar rats will self-administer cocaine directly into the nucleus accumbens shell (AcbSh), but not into the nucleus accumbens core. In human and animal literature, there is a genetic association between alcoholism and cocaine dependency. The current experiment examined whether selective breeding for high alcohol preference is also associated with greater sensitivity of the AcbSh to the reinforcing properties of cocaine. P and Wistar rats were given cocaine (0, 100, 200, 400, or 800 pmol/100 nl) to self-infuse into the AcbSh. Rats were given cocaine for the first 4 sessions (acquisition), artificial CSF for sessions 5 and 6 (extinction), and cocaine again in session 7 (reinstatement). During acquisition, P rats self-infused 200-800 pmol cocaine (59 infusions/session), whereas Wistar rats only reliably self-infused 800 pmol cocaine (38 infusions/session). Furthermore, P rats received a greater number of cocaine infusions in the 200, 400 and 800 pmol cocaine groups compared to respective Wistar groups during acquisition. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for cocaine, and reinstated responding in session 7 when cocaine was restored. However, P rats had significantly greater infusions during session 7 compared to session 4 at all concentrations of cocaine tested, whereas Wistar rats only displayed greater infusions during session 7 compared to session 4 at the 400 and 800 pmol cocaine concentrations. The present results suggest that, compared to Wistar rats, the AcbSh of P rats was more sensitive to the reinforcing effects of cocaine. The reinstatement data suggest that the AcbSh of P rats may have become sensitized to the reinforcing effects of cocaine. Overall, the findings from this study support a genetic association between high alcohol preference and greater sensitivity to the reinforcing effects of cocaine. PMID:21723879

  6. The nucleus accumbens as a nexus between values and goals in goal-directed behaviour: a review and a new hypothesis

    Francesco eMannella

    2013-10-01

    Full Text Available Goal-directed behaviour is a fundamental means by which animals can flexibly solve the challenges posed by variable external and internal conditions. Recently, the processes and brain mechanisms underlying such behaviour have been extensively studied from behavioural, neuroscientific and computational perspectives. This research has highlighted the processes underlying goal-directed behaviour and associated brain systems including prefrontal cortex, basal ganglia and, in particular therein, the nucleus accumbens. This paper focusses on one particular process at the core of goal-directed behaviour: how motivational value is assigned to goals on the basis of internal states and environmental stimuli, and how this supports goal selection processes. Various biological and computational accounts have been given of this problem and of related multiple neural and behaviour phenomena, but we still lack an integrated hypothesis on the generation and use of value for goal selection. This paper proposes an hypothesis that aims to solve this problem and is based on this key elements: (a amygdala and hippocampus establish the motivational value of stimuli and goals; (b prefrontal cortex encodes various types of action outcomes; (c nucleus accumbens integrates different sources of value, representing them in terms of a common currency with the aid of dopamine, and thereby plays a major role in selecting action outcomes within prefrontal cortex. The ‘goals’ pursued by the organism are the outcomes selected by these processes. The hypothesis is developed in the context of a critical review of relevant biological and computational literature which offer it support. The paper shows how the hypothesis has the potential to integrate existing interpretations of motivational value and goal selection.

  7. Increased conditioned place preference for cocaine in high anxiety-related behavior (HAB mice is associated with an increased activation in the accumbens corridor

    Janine Maria Prast

    2014-12-01

    Full Text Available Anxiety disorders and substance use disorders are strongly associated in humans. Accordingly, a widely held but controversial concept in the addiction field, the so-called "self-medication hypothesis", posits that anxious individuals are more vulnerable for drug dependence because they use drugs of abuse to alleviate their anxiety. We tested this hypothesis under controlled experimental conditions by quantifying the conditioned place preference (CPP to 15 mg/kg i.p. cocaine given contingently (COCAINE in CD1 mice selectively bred for high anxiety-related behavior (HAB vs normal anxiety-related behavior (NAB. Cocaine was conditioned to the initially nonpreferred compartment in an alternate day design (cocaine vs saline, 4 pairings each. HAB and NAB mice were also tested for the effects of noncontingent (NONCONT cocaine administration. HAB mice showed a slightly higher bias for one of the conditioning compartments during the pretest than NAB mice that became statistically significant (p=0.045 only after pooling COCAINE and NONCONT groups. Cocaine CPP was higher (p=0.0035 in HAB compared to NAB mice. The increased cocaine CPP was associated with an increased expression of the immediate early genes c-Fos and Early Growth Related Protein 1 (EGR1 in the accumbens corridor, i.e., a region stretching from the anterior commissure to the interhemispheric border and comprising the medial nucleus accumbens core and shell, the major island of Calleja and intermediate part of the lateral septum, as well as the vertical limb of the diagonal band and medial septum. The cocaine CPP-induced EGR1 expression was only observed in D1- and D2-medium spiny neurons, whereas other types of neurons or glial cells were not involved. With respect to the activation by contingent vs noncontingent cocaine EGR1 seemed to be a more sensitive marker than c-Fos. Our findings suggest that cocaine may be more rewarding in high anxiety individuals, plausibly due to an anxiolytic

  8. A decrease in the addition of new cells in the nucleus accumbens and prefrontal cortex between puberty and adulthood in male rats.

    Staffend, Nancy A; Mohr, Margaret A; DonCarlos, Lydia L; Sisk, Cheryl L

    2014-06-01

    Adolescence involves shifts in social behaviors, behavioral flexibility, and adaptive risk-taking that coincide with structural remodeling of the brain. We previously showed that new cells are added to brain regions associated with sexual behaviors, suggesting that cytogenesis may be a mechanism for acquiring adult-typical behaviors during adolescence. Whether pubertal cell addition occurs in brain regions associated with behavioral flexibility or motivation and whether these patterns differ between pubertal and adult animals had not been determined. Therefore, we assessed patterns of cell proliferation or survival in the prefrontal cortex and nucleus accumbens. Pubertal and adult male rats were given injections of bromo-deoxyuridine (BrdU). To assess cell proliferation, half of the animals from each group were sacrificed 24 h following the last injection. The remaining animals were sacrificed at Day 30 following the last injection to evaluate cell survival. Adult animals had significantly lower densities of BrdU-immunoreactive (ir) cells in the prefrontal cortex, irrespective of post-BrdU survival time, whereas in the nucleus accumbens, adult animals had a lower density of BrdU-ir cells at the short survival time; however, the density of BrdU-ir cells was equivalent in pubertal and adult animals at the longer survival time. These data provide evidence that cell addition during puberty may contribute to the remodeling of brain regions associated with behavioral flexibility and motivation, and this cell addition continues into adulthood, albeit at lower levels. Higher levels of cell proliferation or survival in younger animals may reflect a higher level of plasticity, possibly contributing to the dynamic remodeling of the pubertal brain. PMID:24339170

  9. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model

    Flagel, Shelly B.; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M.; Thompson, Robert C.; Watson, Stanley J.; Akil, Huda

    2016-01-01

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with “temperament,” including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor. PMID:27114539

  10. Signal Processing

    Signal processing techniques, extensively used nowadays to maximize the performance of audio and video equipment, have been a key part in the design of hardware and software for high energy physics detectors since pioneering applications in the UA1 experiment at CERN in 1979

  11. Prosocial Signalling

    Kahsay, Goytom Abraha

    suggested that consumers pay price premium because this sends the signal that the consumer has prosocial preferences and a few empirical studies have documented that reputation plays a key role when consumers choose products containing prosocial components. However, little is known about consumers...... consumer goods and presents empirical evidences from a natural consumption data. This thesis also investigates consumers’ behaviour under a newly introduced pricing system called Pay-What-You-Want (PWYW) and investigates empirically whether reputation signalling can be used as a policy instrument in other...... role of social network in facilitating factor input transactions and the role of reputation in reducing enforcement. Finally, the third part consists of one paper which is concerned with investigating the effect of climate change and adaptation policy on agricultural production in Eastern Africa. The...

  12. Auxin signaling

    Quint, Marcel; Gray, William M.

    2006-01-01

    Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) pro...

  13. Inventory Signals

    Lai, Richard

    2006-01-01

    Among practitioners, inventory is often thought to be the root of all evil in operations management. The stock market hates it, the media abhors it, and managers have come to fear it. But high inventory levels can also be the result of strategic buying and high-availability strategies. The problem is that when the market sees lots of inventory, it cannot tell whether it is because of poor or smart operations. We hypothesize that inventory has a signaling role. In our model, publicly- traded f...

  14. Control of cocaine-seeking behavior by drug-associated stimuli in rats: Effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens

    Weiss, Friedbert; Maldonado-Vlaar, Carmen S.; Parsons, Loren H; Kerr, Tony M.; Smith, Diana L.; Ben-Shahar, Osnat

    2000-01-01

    The conditioning of the pharmacological actions of cocaine with environmental stimuli is thought to be a critical factor in the long-term addictive potential of this drug. Cocaine-related stimuli may increase the likelihood of relapse by evoking drug craving, and brain-imaging studies have identified the amygdala and nucleus accumbens (NAcc) as putative neuroanatomical substrates for these effects of cocaine cues. To study the significance of environmental stimuli in the recovery of extinguis...

  15. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  16. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration.

    Myal, S; O'Donnell, P; Counotte, D S

    2015-10-01

    Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in

  17. Functional connectivity of nucleus accumbens in heroin addicts: a resting-state fMRI study%静息状态下海洛因成瘾者伏核功能连接的fMRI研究

    黄敏; 钱若兵; 傅先明; 魏祥品; 王昌新; 刘影; 牛朝诗; 汪业汉

    2010-01-01

    Objective To investigate the brain areas having functional connectivity with nucleus accumbens in heroin addicts with resting-state functional magnetic resonance imaging (fMRI), and explore the reward system of heroin addiction. Methods Fifteen participants with heroin addiction,voluntarily admitted to our drug rehabilitation center from June 2009 to March 2010, and 15 healthy controls at the same period were chosen in our study. Resting-state fMRI was performed on these patients; and then, the resting-state brain functional connectivity was also concluded by analyzing the left and right nucleus accumbens selected as regions of interests (ROIs). The corresponding brain areas having functional connections with ROIs were defined in the resting-state and the changes of functional connectivity were observed in heroin addicts. Results In the addiction group, the areas having functional connectivity with double nucleus accumbens included bilateral thalamus, the basal ganglia, the hippocampus, the midbrain and contralateral nucleus accumbens; and anterior cingulate cortex was also significantly correlated with left nucleus accumbens. However, in the control group, only the hippocampus and contralateral nucleus accumbens had these connection and their activity was much weaker than that in the addiction group. Conclusion In the resting-state, reward system of heroin addiction is constituted by the brain areas having functional connectivity with nucleus accumbens. And fMRI can be used to study the functional connections between the brain areas related to the heroin addiction from neuroimaging perspectives.%目的 利用静息态功能磁共振成像(fMRI)技术分析海洛因成瘾者静息状态下与伏核有功能连接的脑区,以探讨海洛因成瘾者"奖赏系统"的组成.方法 选择安徽省戒毒所自2009年6月至2010年3月收治的自愿接受戒毒的海洛因成瘾患者15例作为成瘾组,同期健康体检者15例为对照组,进行静息态fMRI扫描

  18. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

    Mei-Hong Qiu

    Full Text Available BACKGROUND: We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1 and D(2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. CONCLUSIONS/SIGNIFICANCE: These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.

  19. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  20. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016. PMID:26539755

  1. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens.

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Hosseinmardi, Narges; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Khoshbouei, Habibeh

    2016-08-01

    Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc. PMID:27029021

  2. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  3. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction.

    D'Ascenzo, Marcello; Podda, Maria Vittoria; Grassi, Claudio

    2014-01-01

    Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine-treated animals, impaired N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state. PMID:25076900

  4. Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats

    ZHOU Lian-fang; ZHU Yong-ping

    2006-01-01

    Objective: To investigate the changes in CREB (cAMP response element binding protein) in hippocampus, PFC(prefrontal cortex) and NAc (nucleus accumbens) during three phases of morphine induced CPP (conditioned place preference) in rats, and to elucidate the role of CREB during the progress of conditioned place preference. Methods: Morphine induced CPP acquisition, extinction and drug primed reinstatement model was established, and CREB expression in each brain area was measured by Western Blot methods. Results: Eight alternating injections of morphine (10 mg/kg) induced CPP, and 8 d saline extinction training that extinguished CPP. CPP was reinstated following a priming injection of morphine (2.5 mg/kg). During the phases of CPP acquisition and reinstatement, the level of CREB expression was significantly changed in different brain areas.Conclusion: It was proved that CPP model can be used as an effective tool to investigate the mechanisms underlying drug-induced reinstatement of drug seeking after extinction, and that morphine induced CPP and drug primed reinstatement may involve activation of the transcription factor CREB in several brain areas, suggesting that the CREB and its target gene regulation pathway may mediate the basic mechanism underlying opioid dependence and its drug seeking behavior.

  5. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction

    Marcello eD'Ascenzo

    2014-07-01

    Full Text Available Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc, has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine–treated animals, impaired N-methyl-D-aspartate receptor (NMDAR-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state.

  6. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity.

    David, Hélène N; Abraini, Jacques H

    2002-03-01

    Evidence for functional interactions between metabotropic glutamate (mGlu) receptors and dopamine (DA) neurotransmission is now clearly established. In the present study, we investigated interactions between group III mGlu receptors and D1- and D2-like receptors in the nucleus accumbens (NAcc). Administration, into the NAcc, of the selective group III mGlu receptor agonist, AP4, resulted in an increase in locomotor activity, which was blocked by pretreatment with the group III mGlu receptor antagonist, MPPG. In addition, pretreatment with AP4 further blocked the increase in motor activity induced by the D1-like receptor agonist, SKF 38393, but potentiated the locomotor responses induced by either the D2-like receptor agonist, quinpirole, or coinfusion of SKF 38393 and quinpirole. MPPG reversed the effects of AP4 on the motor responses induced by D1-like and/or D2-like receptor activation. These results confirm that glutamate transmission may control DA-dependent locomotor function through mGlu receptors and further indicate that group III mGlu receptors oppose the behavioural response produced by D1-like receptor activation and favour those produced by D2-like receptor activation. PMID:11906529

  7. Modulation of synaptic potentials and cell excitability by dendritic KIR and KAS channels in nucleus accumbens medium spiny neurons: A computational study

    Jessy John; Rohit Manchanda

    2011-06-01

    The nucleus accumbens (NAc), a critical structure of the brain reward circuit, is implicated in normal goal-directed behaviour and learning as well as pathological conditions like schizophrenia and addiction. Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, incorporating all the known active conductances. We find that, of all the active channels, inward rectifying K+ (KIR) channels play the primary role in modulating the resting membrane potential (RMP) and EPSPs in the down-state of the neuron. Reduction in the conductance of KIR channels evokes facilitatory effects on EPSPs accompanied by rises in local input resistance and membrane time constant. At depolarized membrane potentials closer to up-state levels, the slowly inactivating A-type potassium channel (KAs) conductance also plays a strong role in determining synaptic potential parameters and cell excitability. We discuss the implications of our results for the regulation of accumbal MS neuron biophysics and synaptic integration by intrinsic factors and extrinsic agents such as dopamine.

  8. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  9. Active stimulation site of nucleus accumbens deep brain stimulation in obsessive-compulsive disorder is localized in the ventral internal capsule.

    van den Munckhof, Pepijn; Bosch, D Andries; Mantione, Mariska H M; Figee, Martijn; Denys, Damiaan A J P; Schuurman, P Richard

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder characterized by persistent thoughts and repetitive ritualistic behaviours. Despite optimal cognitive-behavioral and pharmacological therapy, approximately 10 % of patients remain treatment-resistant. Deep brain stimulation (DBS) is being investigated as experimental therapy for treatment-refractory OCD. In the current study, we determined the relationship between anatomical location of active electrode contacts and clinical outcome in 16 OCD patients undergoing bilateral nucleus accumbens (NAc) DBS. We found that most patients actually do not receive active stimulation in the NAc but in the more laterally, anteriorly and dorsally located ventral part of the anterior limb of the internal capsule, ventral ALIC (vALIC). Our nine patients receiving bilateral vALIC DBS improved on average 73 % on their Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores, whereas the six patients with their centers of stimulation located otherwise improved on average only 42 %. We therefore propose bilateral vALIC as a promising new DBS target for patients with treatment-refractory OCD. Future studies employing a direct vALIC targeting approach in larger patient numbers are needed to test whether this proposal holds true. PMID:23652657

  10. Cocaine-induced loss of white matter proteins in the adult mouse nucleus accumbens is attenuated by administration of a β-lactam antibiotic during cocaine withdrawal.

    Kovalevich, Jane; Corley, Gladys; Yen, William; Rawls, Scott M; Langford, Dianne

    2012-12-01

    We report significantly decreased white matter protein levels in the nucleus accumbens in an adult mouse model of chronic cocaine abuse. Previous studies from human cocaine abuse patients show disruption of white matter and myelin loss, thus supporting our observations. Understanding the neuropathological mechanisms for white matter disruption in cocaine abuse patients is complicated by polydrug use and other comorbid factors, hindering the development of effective therapeutic strategies to ameliorate damage or compliment rehabilitation programs. In this context, our data further demonstrate that cocaine-induced loss of white matter proteins is absent in mice treated with the β-lactam antibiotic, ceftriaxone, during cocaine withdrawal. Other studies report that ceftriaxone, a glutamate transporter subtype-1 activator, is neuroprotective in murine models of multiple sclerosis, thereby demonstrating potential therapeutic properties for diseases with white matter loss. Cocaine-induced white matter abnormalities likely contribute to the cognitive, motor, and psychological deficits commonly afflicting cocaine abusers, yet the underlying mechanisms responsible for these changes remain unknown. Our observations describe an adult animal model for the study of cocaine-induced myelin loss for the first time, and highlight a potential pharmacological intervention to ameliorate cocaine-induced white matter loss. PMID:23031254

  11. Transplantation of human retinal pigment epithelial cells in the nucleus accumbens of cocaine self-administering rats provides protection from seeking.

    Venkiteswaran, Kala; Alexander, Danielle N; Puhl, Matthew D; Rao, Anand; Piquet, Amanda L; Nyland, Jennifer E; Subramanian, Megha P; Iyer, Puja; Boisvert, Matthew M; Handly, Erin; Subramanian, Thyagarajan; Grigson, Patricia Sue

    2016-05-01

    Chronic exposure to drugs and alcohol leads to damage to dopaminergic neurons and their projections in the 'reward pathway' that originate in the ventral tegmental area (VTA) and terminate in the nucleus accumbens (NAc). This damage is thought to contribute to the signature symptom of addiction: chronic relapse. In this study we show that bilateral transplants of human retinal pigment epithelial cells (RPECs), a cell mediated dopaminergic and trophic neuromodulator, into the medial shell of the NAc, rescue rats with a history of high rates of cocaine self-administration from drug-seeking when returned, after 2 weeks of abstinence, to the drug-associated chamber under extinction conditions (i.e., with no drug available). Excellent survival was noted for the transplant of RPECs in the shell and/or the core of the NAc bilaterally in all rats that showed behavioral recovery from cocaine seeking. Design based unbiased stereology of tyrosine hydroxylase (TH) positive cell bodies in the VTA showed better preservation (pdrug addiction via its effects directly on the NAc and its neural network with the VTA. PMID:26562520

  12. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement.

    Anderson, S M; Pierce, R C

    2005-06-01

    The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine. PMID:15922019

  13. Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration

    Morgan Drake

    2010-02-01

    Full Text Available Abstract Background Many studies of cocaine-responsive gene expression have focused on changes occurring during cocaine exposure, but few studies have examined the persistence of these changes with cocaine abstinence. Persistent changes in gene expression, as well as alterations induced during abstinence may underlie long-lasting drug craving and relapse liability. Results Whole-genome expression analysis was conducted on a rat cocaine binge-abstinence model that has previously been demonstrated to engender increased drug seeking and taking with abstinence. Gene expression changes in two mesolimbic terminal fields (mPFC and NAc were identified in a comparison of cocaine-naïve rats with rats after 10 days of cocaine self-administration followed by 1, 10, or 100 days of enforced abstinence (n = 6-11 per group. A total of 1,461 genes in the mPFC and 414 genes in the NAc were altered between at least two time points (ANOVA, p Conclusions Together, these changes help to illuminate processes and networks involved in abstinence-induced behaviors, including synaptic plasticity, MAPK signaling, and TNF signaling.

  14. The effects of morphine treatment on the NCAM and its signaling in the MLDS of rats.

    Cao, Jun Ping; Wang, Hong Jun; Li, Li; Zhang, Su Ming

    2016-10-01

    Prolonged exposure to opiates induces a constellation of neuroadaptations, especially in the mesolimbic dopamine system (MLDS), which leads to alteration in the function of motivational circuitry. The neural cell adhesion molecule (NCAM) mediates cell-cell interactions and plays an important role in processes associated with neural plasticity. Moreover, it has been shown that NCAM were related to risk of alcoholism in human populations. Here, coimmunoprecipitation and western blotting were used to investigate whether morphine treatment induced alteration of the expression of NCAM or its signaling level in MLDS. The rats receiving escalating dose of morphine treatment were divided into three groups: morphine 1d, 3d and 5d group, which were injected subcutaneously with morphine hydrochloride for 1 day, 3 days and 5 days, respectively. Twelve hours after the last injection, animals were sacrificed and the tissues of ventral tegmental area (VTA), prefrontal cortex (PFC) and nucleus accumbens (NAc) were punched out to examine the expression of NCAM or its signaling level. The results showed that morphine treatment had no significant effect on the expression of NCAM, but downregulated the phosphorylation of NCAM-associated focal adhesion kinase (FAK) in the VTA and PFC of rats. In the NAc of rats, however, the expression of NCAM and its signaling were not altered significantly by morphine treatment. These results indicated that the downregulation of NCAM signaling in the VTA and PFC might be involved in the formation of morphine addiction. PMID:26821693

  15. Digital Signal Processing Foundations

    Dorran, David

    2015-01-01

    Signals are all around us and come in a wide variety of shapes and forms. When we speak we create pressure variations in the air which generate audio signals; earthquakes produce large seismic signals; healthcare professionals monitor ECG signals which capture the electrical activity of the heart; radio, internet and telephone signals are being transmitted across the world; the list of signals is endless! (see 2 minute video at pzdsp.com/vid1 for some examples) Digital signal processing (DSP)...

  16. Role of orexin-2 receptors in the nucleus accumbens in antinociception induced by carbachol stimulation of the lateral hypothalamus in formalin test.

    Yazdi, Fatemeh; Jahangirvand, Mahboubeh; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-08-01

    Orexins, which are mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), play an important role in pain modulation. Previously, it has been established that the nucleus accumbens (NAc) is involved in the modulation of formalin-induced nociceptive responses, a model of tonic pain. In this study, the role of intra-accumbal orexin-2 receptors (OX2rs) in the mediation of formalin-induced pain was investigated. A volume of 0.5 μl of 10, 20, and 40 nmol/l solutions of TCS OX2 29, an OX2r antagonist, were unilaterally microinjected into the NAc 5 min before an intra-LH carbachol microinjection (0.5 μl of 250 nmol/l solution). After 5 min, animals received a subcutaneous injection of formalin 2.5% (50 μl) into the hind paw. Pain-related behaviors were assessed at 5 min intervals during a 60-min test period. The findings showed that TCS OX2 29 administration dose dependently blocked carbachol-induced antinociception during both phases of formalin-induced pain. The antianalgesic effect of TCS OX2 29 was greater during the late phase compared with the early phase. These observations suggest that the NAc, as a part of a descending pain-modulatory circuitry, partially mediates LH-induced analgesia in the formalin test through recruitment of OX2rs. This makes the orexinergic system a good potential therapeutic target in the control of persistent inflammatory pain. PMID:26871404

  17. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    Barr, Jeffrey L; Deliu, Elena; Brailoiu, G Cristina; Zhao, Pingwei; Yan, Guang; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-08-01

    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway

  18. Injection of Cocaine-Amphetamine Regulated Transcript (CART) peptide into the nucleus accumbens does not inhibit caffeine-induced locomotor activity: Implications for CART peptide mechanism.

    Job, Martin O

    2016-09-01

    Much evidence suggests that intra-nucleus accumbens (NAc) CART peptide (CART 55-102) injection inhibits locomotor activity (LMA) when there is an increase in the release and activity of dopamine (DA) in the NAc. However, this hypothesis has not been fully tested. One way to examine this is to determine if there is a lack of effect of intra-NAc CART peptide on LMA that does not involve increases in DA release in the NAc. Several studies have suggested that caffeine-induced LMA does not involve extracellular DA release in the NAc core. Therefore, in this study, we have examined the effect of injections of CART peptide (2.5μg) into the NAc core on the locomotor effects of caffeine in male Sprague-Dawley rats. Several LMA relevant doses of caffeine were used (0, 10, 20mg/kg i.p.), and an inverted U response curve was found as expected. We determined, in the same animals, that intra-NAc CART peptide had no effect on caffeine-induced LMA whereas it blunted cocaine-mediated LMA, as shown by other reports. We also extended a previous observation in mice by showing that at a LMA activating dose of caffeine there is no alteration of CART peptide levels in the NAc of rats. Our study supports the hypothesis that the inhibitory effects of CART peptide in the NAc may be exerted only under conditions of increased extracellular DA release and activity in this region. Our results also suggest that intra-NAc CART 55-102 does not generally inhibit increases in LMA due to all drugs, but has a more specific inhibitory effect on dopaminergic neurotransmission. PMID:27168116

  19. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    IgorSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  20. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  1. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  2. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  3. High and abnormal forms of aggression in rats with extremes in trait anxiety--involvement of the dopamine system in the nucleus accumbens.

    Beiderbeck, Daniela I; Reber, Stefan O; Havasi, Andrea; Bredewold, Remco; Veenema, Alexa H; Neumann, Inga D

    2012-12-01

    A better neurobiological understanding of high and abnormal aggression based on adequate animal models is essential for novel therapy and prevention. Selective breeding of rats for extremes in anxiety-related behavior resulted in two behavioral phenotypes with high and abnormal forms of aggression. Rats bred for low anxiety-related behavior (LAB) consistently show highest levels of aggression and little social investigation in the resident-intruder (RI) test, compared with non-selected low-aggressive (NAB) rats. High anxiety-related (HAB) rats also show higher levels of aggression than NAB rats, but to a lesser extent than LAB rats. Accordingly, extremes in inborn anxiety in both directions are linked to an increased aggression level. Further, both LAB and HAB, but not NAB males, display abnormal aggression (attacks towards vulnerable body parts, females or narcotized males), which is particularly prominent in LABs. Also, only in LAB rats, the nucleus accumbens (NAc) was found to be strongly activated in response to the RI test as reflected by increased c-fos and zif268 mRNA expression, and higher local dopamine release compared with NAB males, without differences in local dopamine receptor binding. Consequently, local pharmacological manipulation by infusion of an anesthetic (lidocaine, 20 μg/μl) or a dopamine D2 (haloperidol, 10 ng/μl), but not D1 (SCH-23390 10 ng/μl), receptor antagonist significantly reduced high aggression in LAB rats. Thus, LAB rats are an adequate model to study high and abnormal aggression. In LAB males, this is likely to be linked to hyper-activation of the reward system, as found in psychopathic patients. Specifically, activation of the accumbal dopamine system is likely to underlie the high aggression observed in LAB rats. PMID:22608548

  4. The Effects of Maternal Separation on Adult Methamphetamine Self-Administration, Extinction, Reinstatement, and MeCP2 Immunoreactivity in the Nucleus Accumbens

    Candace R. Lewis

    2013-06-01

    Full Text Available The maternal separation (MS paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2 in the nucleus accumbens (NAc core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND 2-14 for either 180 (MS180 or 15 min (MS15. Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.

  5. Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration.

    Purgianto, Anthony; Loweth, Jessica A; Miao, Julia J; Milovanovic, Mike; Wolf, Marina E

    2016-07-01

    It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA 'microcircuit'). Here we investigated whether GABAA receptor surface or total expression is altered following an extended-access cocaine self-administration regimen that produces a time-dependent intensification (incubation) of cue-induced cocaine craving in association with strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered cocaine or saline (control condition) 6h/day for 10 days. NAc tissue was obtained and surface proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 subunit on WD2 from cocaine self-administration, an effect that was no longer observed by WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in GABAA receptor surface or total expression. Our findings suggest that the strengthening of AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory strengthening of GABAergic transmission through insertion of additional GABAA receptors. PMID:27060767

  6. Drug-primed reinstatement of cocaine seeking in mice: increased excitability of medium-sized spiny neurons in the nucleus accumbens

    Carlos Cepeda

    2013-10-01

    Full Text Available To examine the mechanisms of drug relapse, we first established a model for cocaine IVSA (intravenous self-administration in mice, and subsequently examined electrophysiological alterations of MSNs (medium-sized spiny neurons in the NAc (nucleus accumbens before and after acute application of cocaine in slices. Three groups were included: master mice trained by AL (active lever pressings followed by IV (intravenous cocaine delivery, yoked mice that received passive IV cocaine administration initiated by paired master mice, and saline controls. MSNs recorded in the NAc shell in master mice exhibited higher membrane input resistances but lower frequencies and smaller amplitudes of sEPSCs (spontaneous excitatory postsynaptic currents compared with neurons recorded from saline control mice, whereas cells in the NAc core had higher sEPSCs frequencies and larger amplitudes. Furthermore, sEPSCs in MSNs of the shell compartment displayed longer decay times, suggesting that both pre- and postsynaptic mechanisms were involved. After acute re-exposure to a low-dose of cocaine in vitro, an AP (action potential-dependent, persistent increase in sEPSC frequency was observed in both NAc shell and core MSNs from master, but not yoked or saline control mice. Furthermore, re-exposure to cocaine induced membrane hyperpolarization, but concomitantly increased excitability of MSNs from master mice, as evidenced by increased membrane input resistance, decreased depolarizing current to generate APs, and a more negative Thr (threshold for firing. These data demonstrate functional differences in NAc MSNs after chronic contingent versus non-contingent IV cocaine administration in mice, as well as synaptic adaptations of MSNs before and after acute re-exposure to cocaine. Reversing these functional alterations in NAc could represent a rational target for the treatment of some reward-related behaviors, including drug addiction.

  7. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  8. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  9. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  10. Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats

    Eugene A Kiyatkin

    2015-07-01

    Full Text Available Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells.

  11. The effect of forced swim stress on morphine sensitization: Involvement of D1/D2-like dopamine receptors within the nucleus accumbens.

    Charmchi, Elham; Zendehdel, Morteza; Haghparast, Abbas

    2016-10-01

    Nucleus accumbens (NAc) plays an essential role in morphine sensitization and suppression of pain. Repeated exposure to stress and morphine increases dopamine release in the NAc and may lead to morphine sensitization. This study was carried out in order to investigate the effect of forced swim stress (FSS), as a predominantly physical stressor and morphine on the development of morphine sensitization; focusing on the function of D1/D2-like dopamine receptors in the NAc in morphine sensitization. Eighty-five adult male Wistar rats were bilaterally implanted with cannulae in the NAc and various doses of SCH-23390 (0.125, 0.25, 1 and 4μg/0.5μl/NAc) as a D1 receptor antagonist and sulpiride (0.25, 1 and 4μg/0.5μl/NAc) as a D2 receptor antagonist were microinjected into the NAc, during a sensitization period of 3days, 5min before the induction of FSS. After 10min, animals received subcutaneous morphine injection (1mg/kg). The procedure was followed by 5days free of antagonist, morphine and stress; thereafter on the 9th day, the nociceptive response was evaluated by tail-flick test. The results revealed that the microinjection of sulpiride (at 1 and 4μg/0.5μl/NAc) or SCH-23390 (at 0.25, 1 and 4μg/0.5μl/NAc) prior to FSS and morphine disrupts the antinociceptive effects of morphine and morphine sensitization. Our findings suggest that FSS can potentiate the effect of morphine and causes morphine sensitization which induces antinociception. PMID:27235796

  12. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects.

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  13. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    Xuekun eDing

    2014-09-01

    Full Text Available Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum.

  14. Administration of activated glial condition medium in the nucleus accumbens extended extinction and intensified reinstatement of methamphetamine-induced conditioned place preference.

    Arezoomandan, Reza; Moradi, Marzieh; Attarzadeh-Yazdi, Ghassem; Tomaz, Carlos; Haghparast, Abbas

    2016-07-01

    Methamphetamine (METH) is a psychostimulant drug with significant abuse potential and neurotoxic effects. A high percentage of users relapse to use after detoxification and no effective medication has been developed for treatment of METH addiction. Developing evidences indicated the role of glial cells in drugs abused related phenomena. However, little is known about the role of these cells in the maintenance and reinstatement of METH-seeking behaviors. Therefore, the current study was conducted to clarify the role of glial cells in the maintenance and reinstatement of METH-induced conditioned place preference (CPP) in rats. Astrocyte condition medium (ACM) and neuroglia conditioned medium (NCM) are liquid mediums prepared from primary astrocyte and neuroglia cells. These mediums seem to contain many factors that release by glia cells. CPP was induced by systemic administration of METH (1mg/kg for 5days, s.c.). Following the establishment of CPP, the rats were given daily bilateral injections (0.5μl/side) of either vehicle, ACM or NCM into the nucleus accumbens (NAc) and then were tested for the maintenance and reinstatement. Intra-NAc administration of ACM treated with METH, could extend the extinction period and also, intensified the magnitude of METH reinstatement. Furthermore, intra-accumbal administration of NCM treated with METH notably delayed the extinction period by four days and significantly increased the magnitude of CPP score in the reinstatement phase compared to the post-test phase. Collectively, these findings suggested that activation of glial cells may be involved in the maintenance and reinstatement of METH-seeking behaviors. It provides new evidence that glia cells might be considered as a potential target for the treatment of METH addiction. PMID:27346277

  15. Signal Processing of Random Physiological Signals

    Lessard, Charles

    2006-01-01

    Signal Processing of Random Physiological Signals presents the most widely used techniques in signal and system analysis. Specifically, the book is concerned with methods of characterizing signals and systems. Author Charles Lessard provides students and researchers an understanding of the time and frequency domain processes which may be used to evaluate random physiological signals such as brainwave, sleep, respiratory sounds, heart valve sounds, electromyograms, and electro-oculograms.Another aim of the book is to have the students evaluate actual mammalian data without spending most or all

  16. Basic digital signal processing

    Lockhart, Gordon B

    1985-01-01

    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  17. Functional connectivity of nucleus accumbens in internet game addicts: a resting - state fMRI study%网络游戏成瘾者伏核功能连接静息态fMRI的研究

    钱若兵; 傅先明; 翁传波; 林彬; 牛朝诗; 汪业汉

    2012-01-01

    目的 利用静息态功能磁共振(fMRI)分析网络游戏成瘾者与伏核存在功能连接的脑区,了解伏核功能异常在网络游戏成瘾发病机制中的作用.方法 网络游戏成瘾者和健康对照组各17例,扫描前上网玩耍自己喜欢的网络游戏,60 min后突然中止网络使用,对被试的网络游戏渴求程度进行心理学测评;休息30 min后进行静息态fMRI扫描,分别选取左、右侧伏核为感兴趣区进行脑功能连接分析,确定与双侧伏核有功能连接的脑区,并将激活程度与网络游戏渴求程度进行相关分析.结果 网络游戏成瘾青少年对网络游戏内容的渴望程度、喜欢程度、再次上网的渴望程度明显高于健康对照组(P<0.05);网络游戏成瘾组的伏核与前扣带回、中脑、海马功能连接明显高于健康对照组,而与前额叶、颞叶及枕叶功能连接明显低于健康对照组(P<0.05);网络游戏成瘾者伏核与前额叶、前扣带回、中脑及海马的功能连接程度和网络游戏渴求程度存在相关性(r=0.70、0.76、0.65、0.79,P<0.05).结论 网络游戏成瘾者伏核功能异常,提示伏核是网络游戏成瘾“奖赏系统”的重要组成部分,伏核功能异常可能参与了网络游戏成瘾的产生与维持.%Objective To analyze the brain areas having functional connectivity with nucleus accumbens in internet game addicts with resting- state functional magnetic resonance imaging (fMRI),and to find out the role of nucleus accumbens dysfunction in the pathogenesis of internet game addiction.Methods Seventeen participants with internet game addiction(IGA),and seventeen healthy controls took part in this study.First,all subjects took 60 minutes for playing their favorite online games and then stopped immediately to assess degree of wishing to play of online games based on psychological measurement; MR imaging was performed on a Philips Intera 3.0T MR imaging scanner,after that,the left and right

  18. AKAP signaling in reinstated cocaine seeking revealed by iTRAQ proteomic analysis.

    Reissner, Kathryn J; Uys, Joachim D; Schwacke, John H; Comte-Walters, Susanna; Rutherford-Bethard, Jennifer L; Dunn, Thomas E; Blumer, Joe B; Schey, Kevin L; Kalivas, Peter W

    2011-04-13

    To identify candidate proteins in the nucleus accumbens (NAc) as potential pharmacotherapeutic targets for treating cocaine addition, an 8-plex iTRAQ (isobaric tag for relative and absolute quantitation) proteomic screen was performed using NAc tissue obtained from rats trained to self-administer cocaine followed by extinction training. Compared with yoked-saline controls, 42 proteins in a postsynaptic density (PSD)-enriched subfraction of the NAc from cocaine-trained animals were identified as significantly changed. Among proteins of interest whose levels were identified as increased was AKAP79/150, the rat ortholog of human AKAP5, a PSD scaffolding protein that localizes signaling molecules to the synapse. Functional downregulation of AKAP79/150 by microinjecting a cell-permeable synthetic AKAP (A-kinase anchor protein) peptide into the NAc to disrupt AKAP-dependent signaling revealed that inhibition of AKAP signaling impaired the reinstatement of cocaine seeking. Reinstatement of cocaine seeking is thought to require upregulated surface expression of AMPA glutamate receptors, and the inhibitory AKAP peptide reduced the PSD content of protein kinase A (PKA) as well as surface expression of GluR1 in NAc. However, reduced surface expression was not associated with changes in PKA phosphorylation of GluR1. This series of experiments demonstrates that proteomic analysis provides a useful tool for identifying proteins that can regulate cocaine relapse and that AKAP proteins may contribute to relapse vulnerability by promoting increased surface expression of AMPA receptors in the NAc. PMID:21490206

  19. Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters.

    Shannonhouse, John L; DuBois, Dustin W; Fincher, Annette S; Vela, Alejandra M; Henry, Morgan M; Wellman, Paul J; Frye, Gerald D; Morgan, Caurnel

    2016-08-01

    Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetine's effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence. PMID:27068049

  20. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol.

    Marinelli, P W; Quirion, R; Gianoulakis, C

    2004-01-01

    The aim of the present study was to determine the effects of distinct categories of stressors on beta-endorphin (beta-EP) release in the arcuate nucleus (ArcN) and nucleus accumbens (NAcb) using in vivo microdialysis. Adult male rats were implanted with a cannula aimed at either the NAcb or the ArcN. On the day of testing, a 2 mm microdialysis probe was inserted into the cannula, and artificial cerebrospinal fluid was infused at 2.0 microl/min. After three baseline collections, animals either had a clothespin applied to the base of their tail for 20 min (a physical/tactile stressor), were exposed to fox urine odour for 20 min (a psychological stressor/species-specific threat), or were administered 2.4 g ethanol/kg body weight, 16.5% w/v, i.p. (a chemical/pharmacological stressor) with control animals receiving an equivalent volume of saline. Both tail-pinch and fox odour significantly increased beta-EP release from the ArcN (P<0.05), whilst only tail-pinch enhanced beta-EP release from the NAcb (P<0.01). On the other hand, alcohol stimulated beta-EP release in the NAcb as compared with saline-treated controls (P<0.01), but not in the ArcN. Although the increase in extracellular beta-EP produced by the other stressors was relatively rapid, there was a 90-min delay before alcohol administration caused beta-EP levels to exceed that of saline-injected controls. In conclusion, the fact that physical and fear-inducing psychological stressors stimulate beta-EP release in the ArcN and only physical stressors stimulate beta-EP release in the NAcb, indicates that stressors with different properties are processed differently in the brain. Also, an injection of alcohol caused a delayed increase of beta-EP in the NAcb but not the ArcN, indicating that alcohol may recruit a mechanism that is, at least partially, distinct from stress-related pathways. PMID:15283974

  1. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  2. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  3. Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification

    FANG Jun; GU Jian-wen; YANG Wen-tao; QIN Xue-ying; HU Yong-hua

    2012-01-01

    Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the relationship between these nuclei and addiction.Our study aimed to explore the physiological and psychological effects of electrically stimulating the AMY and the NAc in herein addicts after detoxification by observing changes of heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria.Methods A total of 70 heroin addicts after detoxification were recruited,and 61 of them were eligible to be given stereotactic surgery for heroin abstinence.The operation was carried out after determining the coordinates of all target nucleuses,and stimulation was performed at the AMY and the NAc solely or jointly.Heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria were recorded and analyzed.Results The average heat rate was (66±10) beats/min before electric stimulation,and significantly increased to (84±14) beats/min during stimulation,and changed to (73±12) beats/min 10 minutes after stimulation.There was a significant elevation of the average arterial pressure from 83 mmHg before stimulation to 98 mmHg during the stimulation,and it then decreased to 90 mmHg after stimulation.Forty-three of the 61 patients showed intense euphoria similar to heroin induced euphoria.The largest number (118/186) of euphoric responses occurred when the AMY and the NAc were stimulated at the same time.Odds ratio was 5.4 (95% CI: 2.4-11.9,P <0.0001) to quantify the association.Results from a Logistic regression model showed a positive correlation between unilateral stimulation of either the AMY or NAC and induction of euphoria (OR >1 ),especially when the left AMY or left NAc was stimulated (P <0.05).Conclusions Our data are consistent with existing results that the AMY and the NAc are related to addiction

  4. Signal verification can promote reliable signalling.

    Broom, Mark; Ruxton, Graeme D; Schaefer, H Martin

    2013-11-22

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer-resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism. PMID:24068354

  5. Digital signal processing laboratory

    Kumar, B Preetham

    2011-01-01

    INTRODUCTION TO DIGITAL SIGNAL PROCESSING Brief Theory of DSP ConceptsProblem SolvingComputer Laboratory: Introduction to MATLAB®/SIMULINK®Hardware Laboratory: Working with Oscilloscopes, Spectrum Analyzers, Signal SourcesDigital Signal Processors (DSPs)ReferencesDISCRETE-TIME LTI SIGNALS AND SYSTEMS Brief Theory of Discrete-Time Signals and SystemsProblem SolvingComputer Laboratory: Simulation of Continuous Time and Discrete-Time Signals and Systems ReferencesTIME AND FREQUENCY ANALYSIS OF COMMUNICATION SIGNALS Brief Theory of Discrete-Time Fourier Transform (DTFT), Discrete Fourier Transform

  6. Multiplexing oscillatory biochemical signals.

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  7. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids.

    Hryhorczuk, Cecile; Florea, Marc; Rodaros, Demetra; Poirier, Isabelle; Daneault, Caroline; Des Rosiers, Christine; Arvanitogiannis, Andreas; Alquier, Thierry; Fulton, Stephanie

    2016-02-01

    Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes. PMID:26171719

  8. Algebraic Signal Processing Theory

    Pueschel, Markus; Moura, Jose M. F.

    2006-01-01

    This paper presents an algebraic theory of linear signal processing. At the core of algebraic signal processing is the concept of a linear signal model defined as a triple (A, M, phi), where familiar concepts like the filter space and the signal space are cast as an algebra A and a module M, respectively, and phi generalizes the concept of the z-transform to bijective linear mappings from a vector space of, e.g., signal samples, into the module M. A signal model provides the structure for a p...

  9. Retinoid signalling during embryogenesis

    Pijnappel, W.W.M.; Hendriks, H.F.J.; Durston, A.J.

    1996-01-01

    Conclusion: Retinoids are suspected to have multiple functions during embryogenesis, which are carried out via various different signal transduction pathways involving active retinoids and nuclear retinoid receptors. Research focuses on the identification of the retinoid signal transduction componen

  10. Signal sciences workshop proceedings

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  11. Signal sciences workshop. Proceedings

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing

  12. Cell signaling review series

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  13. Yesterday's noise - today's signal

    Noise signals can yield information on both the dynamic and steady-state performance of a system. Application of signal noise presents many challenges which can be met successfully, resulting in significant benefits. The concept and characteristics of signal noise and the benefits that can be obtained through use of signal noise are discussed. Results from practical applications to nuclear systems are given with emphasis on applications to the Gentilly-1 reactor

  14. Biomedical signal processing

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  15. Nonlinear phonocardiographic Signal Processing

    Ahlström, Christer

    2008-01-01

    The aim of this thesis work has been to develop signal analysis methods for a computerized cardiac auscultation system, the intelligent stethoscope. In particular, the work focuses on classification and interpretation of features derived from the phonocardiographic (PCG) signal by using advanced signal processing techniques. The PCG signal is traditionally analyzed and characterized by morphological properties in the time domain, by spectral properties in the frequency domain or by nonstation...

  16. Deep brain stimulation of nucleus accumbens for refractory anorexia nervosa%脑深部电刺激治疗难治性神经性厌食症

    孙伯民; 李殿友; 占世坤; 林国珍; 庞琦

    2012-01-01

    Objective To study the effect of deep brain stimulation (DBS) in bilateral nucleus accumbens (NAc) for patients with refractory anorexia nervosa.Methods Four patients with severe,refractory anorexia nervosa who failed to psychological,medical and behavior therapies underwent DBS of bilateral NAc.DBS electrodes were implanted by MRI guided stereotactic surgery.The body mass index (BMI) and other psychiatrist - rated scales such as Yale - Brown obsessive - compulsive rating scale (YBOCS) and Hamilton anxiety rating scale ( HAMA ) were performed as a double - blind clinical assessment before and after surgery by psychiatrists.Results All patients were followed - up from 9 to 50 months (mean 39 months).Compared with preoperative baseline condition (mean BMI =11.4),the score was gradually increased to normal ( BMI > 17.9) after stimulation for 3 - 12 months.Meanwhile,their eating behavior,OCD,anxiety symptoms were also improved slowly but steadily.The menstrual of all these patients recovered after stimulation of 3 - 12 months.The DBS devices of 2 patients were removed 30 months after the surgery because the battery were worn out and the effects were stable during the follow - up period.There was no severe side effect and complication in these patients.Conclusions NAc stimulation is very effective and safe for the treatment of refractory anorexia nervosa.It is a promising procedure to improve anorexia symptoms as well as its accompanied psychiatric symptoms.%目的 探讨脑深部电刺激(DBS)治疗难治性神经性厌食症.方法 4例经过心理及药物治疗无效的难治性神经性厌食症患者,接受磁共振导向立体定向双侧伏隔核DBS植入,术后给予持续慢性高频电刺激.采用身体质量指数(BMI)及其他精神科量表如Yale - Brown强迫症量表(YBOCS)、汉密尔顿焦虑量表(HAMA)评估DBS治疗难治性神经性厌食症的长期疗效.结果 所有患者随访9-50个月(平均39个月).经过3-12个月的慢性电

  17. Signal verification can promote reliable signalling.

    Broom, M.; Ruxton, G.D; Schaefer, H. M.

    2013-01-01

    The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verificat...

  18. The Signal Distribution System

    Belohrad, D; CERN. Geneva. AB Department

    2005-01-01

    For the purpose of LHC signal observation and high frequency signal distribution, the Signal Distribution System (SDS) was built. The SDS can contain up to 5 switching elements, where each element allows the user to switch between one of the maximum 8 bi-directional signals. The coaxial relays are used to switch the signals. Depending of the coaxial relay type used, the transfer bandwidth can go up to 18GHz. The SDS is controllable via TCP/IP, parallel port, or locally by rotary switch.

  19. Separating signal from noise

    Lev, Nir; Peled, Ron; Peres, Yuval

    2013-01-01

    Suppose that a sequence of numbers $x_n$ (a `signal') is transmitted through a noisy channel. The receiver observes a noisy version of the signal with additive random fluctuations, $x_n + \\xi_n$, where $\\xi_n$ is a sequence of independent standard Gaussian random variables. Suppose further that the signal is known to come from some fixed space of possible signals. Is it possible to fully recover the transmitted signal from its noisy version? Is it possible to at least detect that a non-zero s...

  20. Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test

    Carvalho M.C.

    2005-01-01

    Full Text Available It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM. The present study uses a new approach (HPLC by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance. The study involved two experiments: i saline or midazolam (0.5 mg/kg before the first trial, and ii saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%. Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%, amygdala (78.96%, dorsal hippocampus (70.33%, and nucleus accumbens (73.58% of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM. A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05. These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

  1. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  2. Olfactory Signal Processing

    Varshney, Kush R.; Varshney, Lav R.

    2014-01-01

    Olfaction, the sense of smell, has received scant attention from a signal processing perspective in comparison to audition and vision. In this paper, we develop a signal processing paradigm for olfactory signals based on new scientific discoveries including the psychophysics concept of olfactory white. We describe a framework for predicting the perception of odorant compounds from their physicochemical features and use the prediction as a foundation for several downstream processing tasks. We...

  3. Software Radar signal processing

    T. Grydeland; Lind, F. D.; Erickson, P J; J. M. Holt

    2005-01-01

    Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correla...

  4. Digital signal processing

    O'Shea, Peter; Hussain, Zahir M

    2011-01-01

    In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers sel

  5. Digital signal processing

    The contents of this book are introduction of digital signal processing, continuous time signal and transform with fourier series, Laplace function and impulse function, sampling on sampling theory, restore of continuous signal out of sampling and A/D transform, Discrete time signal and transform about transform of discrete fourier, cutting and leaking a spectrum and transform of fast fourier transform, Z transform on relationship of Z transform and laplace transform, Discrete time system with frequency response and system implementation, Design of finite impulse response filter about characteristic of F/R filter and optimization way, and Design of infinite impulse response filter.

  6. Honest signalling among gametes.

    Pagel, M

    1993-06-10

    The gametes of many lower eukaryotic organisms emit pheromones that attract gametes of the opposite mating type or sex. Gametes move or grow in the direction of the highest pheromone concentration, suggesting that the strength of the pheromonal signal is used to infer proximity, or that the strongest signal is most likely to be notice. Here I offer a new explanation of pheromonal signalling and chemotaxis in gametes. I show that pheromonal signals can be interpreted as sexually selected traits that honestly advertise variation in quality among gametes, given that signals are costly to produce and that gametes compete; by 'quality' I refer to some aspect of a gamete's fitness. A gamete's preference for a mating partner, then, is predicted to vary with the quality of a prospective partner as inferred from the strength of its signal. This view can explain characteristics of the signalling and mate selection behaviours of gametes that are not predicted by models of mate choice based on proximity or 'passive attraction' to the strongest signal. These include repeated partner exchanges, escalated exchanges of mating pheromones, and rejection of gametes that signal at low levels. PMID:8505979

  7. Geolocation of RF signals

    Progri, Ilir

    2011-01-01

    ""Geolocation of RF Signals - Principles and Simulations"" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geoloca

  8. Biomedical signals and systems

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  9. Second-hand signals

    Bergenholtz, Carsten

    2014-01-01

    of signal of firms, which is based on a formalized common practice of external, academic experts referring to firms in their peer reviewed publications. The findings provide qualitative evidence that helps explain why and how this new type of ‘second‐hand’ signal is created, validated and systematically...

  10. SignalR blueprints

    Ingebrigtsen, Einar

    2015-01-01

    This book is designed for software developers, primarily those with knowledge of C#, .NET, and JavaScript. Good knowledge and understanding of SignalR is assumed to allow efficient programming of core elements and applications in SignalR.

  11. Acoustic Signals and Systems

    present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  12. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  13. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  14. Bioelectric Signal Measuring System

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells

  15. Molecular and Cellular Signaling

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  16. Exosomes in developmental signalling.

    McGough, Ian John; Vincent, Jean-Paul

    2016-07-15

    In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes - extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling. PMID:27436038

  17. Neutron signal transfer analysis

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  18. Acoustic Signals and Systems

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will...... present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  19. Biological signals as handicaps.

    Grafen, A

    1990-06-21

    An ESS model of Zahavi's handicap principle is constructed. This allows a formal exposition of how the handicap principle works, and shows that its essential elements are strategic. The handicap model is about signalling, and it is proved under fairly general conditions that if the handicap principle's conditions are met, then an evolutionarily stable signalling equilibrium exists in a biological signalling system, and that any signalling equilibrium satisfies the conditions of the handicap principle. Zahavi's major claims for the handicap principle are thus vindicated. The place of cheating is discussed in view of the honesty that follows from the handicap principle. Parallel signalling models in economics are discussed. Interpretations of the handicap principle are compared. The models are not fully explicit about how females use information about male quality, and, less seriously, have no genetics. A companion paper remedies both defects in a model of the handicap principle at work in sexual selection. PMID:2402153

  20. Adaptive signal processor

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  1. Mitochondrial emitted electromagnetic signals mediate retrograde signaling.

    Bagkos, Georgios; Koufopoulos, Kostas; Piperi, Christina

    2015-12-01

    Recent evidence shows that mitochondria regulate nuclear transcriptional activity both in normal and cell stress conditions, known as retrograde signaling. Under normal mitochondrial function, retrograde signaling is associated with mitochondrial biogenesis, normal cell phenotype and metabolic profile. In contrast, mitochondrial dysfunction leads to abnormal (oncogenic) cell phenotype and altered bio-energetic profile (nucleus reprogramming). Despite intense research efforts, a concrete mechanism through which mitochondria determine the group of genes expressed by the nucleus is still missing. The present paper proposes a novel hypothesis regarding retrograde signaling. More specifically, it reveals the mitochondrial membrane potential (MMP) and the accompanied strong electromagnetic field (EF) as key regulatory factors of nuclear activity. Mitochondrial emitted EFs extend in long distance and affect the function of nuclear membrane receptors. Depending on their frequencies, EFs can directly activate or deactivate different groups of nuclear receptors and so determine nuclear gene expression. One of the key features of the above hypothesis is that nuclear membrane receptors, besides their own endogenous or chemical ligands (hormones, lipids, etc.), can also be activated by electromagnetic signals. Moreover, normal MMP values (about -140 mV) are associated with the production of high ATP quantities and small levels of reactive oxygen species (ROS) while the hyperpolarization observed in all cancer cell types leads to a dramatic fall in ATP production and an analogous increase in ROS. The diminished ATP and increased ROS production negatively affect the function of all cellular systems including nucleus. Restoration of mitochondrial function, which is characterized by the fluctuation of MMP and EF values within a certain (normal) range, is proposed as a necessary condition for normal nuclear function and cancer therapy. PMID:26474928

  2. Signal Reconstruction with Adaptive Multi-Rate Signal Processing Algorithms

    Korhan Cengiz

    2015-01-01

    Multi-rate digital signal processing techniques have been developed in recent years for a wide range of applications, such as speech and image compression, statistical and adaptive signal processing and digital audio. Multi-rate statistical and adaptive signal processing methods provide solution to original signal reconstruction, using observation signals sampled at different rates. In this study, a signal reconstruction process by using the observation signals which are sampled at different ...

  3. Reward devaluation and heroin escalation is associated with differential expression of CRF signaling genes.

    McFalls, Ashley J; Imperio, Caesar G; Bixler, Georgina; Freeman, Willard M; Grigson, Patricia Sue; Vrana, Kent E

    2016-05-01

    One of the most damaging aspects of drug addiction is the degree to which natural rewards (family, friends, employment) are devalued in favor of seeking, obtaining and taking drugs. We have utilized an animal model of reward devaluation and heroin self-administration to explore the role of the coricotropin releasing factor (CRF) pathway. Given access to a saccharin cue followed by the opportunity to self-administer heroin, animals will parse into distinct phenotypes that suppress their saccharin intake (in favor of escalating heroin self-administration) or vice versa. We find that large saccharin suppressors (large heroin takers) demonstrate increased mRNA expression for elements of the CRF signaling pathway (CRF, CRF receptors and CRF binding protein) within the hippocampus, medial prefrontal cortex and the ventral tegmental area. Moreover, there were no gene expression changes of these components in the nucleus accumbens. Use of bisulfite conversion sequencing suggests that changes in CRF binding protein and CRF receptor gene expression may be mediated by differential promoter methylation. PMID:26655889

  4. Hedgehog signaling and steroidogenesis.

    Finco, Isabella; LaPensee, Christopher R; Krill, Kenneth T; Hammer, Gary D

    2015-01-01

    Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues. PMID:25668018

  5. Signal processing for microcalorimeters

    Szymkowiak, A. E.; Kelley, R. L.; Moseley, S. H.; Stahle, C. K.

    1993-11-01

    Most of the power in the signals from microcalorimeters occurs at relatively low frequencies. At these frequencies, typical amplifiers will have significant amounts of 1/f noise. Our laboratory systems can also suffer from pickup at several harmonics of the AC power line, and from microphonic pickup at frequencies that vary with the configuration of the apparatus. We have developed some optimal signal processing techniques in order to construct the best possible estimates of our pulse heights in the presence of these non-ideal effects. In addition to a discussion of our laboratory systems, we present our plans for providing this kind of signal processing in flight experiments.

  6. Signal flow analysis

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  7. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converter via a respective output switch. The output switch of each channel opens for a tracking time period when the track-and-hold circuit is in a tracking mode for sampling the signal, and closes for a ...

  8. Modulation by group I mGLU receptor activation and group III mGLU receptor blockade of locomotor responses induced by D1-like and D2-like receptor agonists in the nucleus accumbens.

    Rouillon, Christophe; Degoulet, Mickael; Chevallier, Karine; Abraini, Jacques H; David, Hélène N

    2008-03-10

    Evidence for functional motor interactions between group I and group III metabotropic glutamatergic (mGlu) receptors and dopamine neurotransmission is now clearly established [David, H.N., Abraini, J.H., 2001a. The group I metabotropic glutamate receptor antagonist S-4-CPG modulates the locomotor response produced by the activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus accumbens. Eur. J. Neurosci. 15, 2157-2164, David, H.N., Abraini, J.H., 2002. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur. J. Neurosci. 15, 869-875]. Nevertheless, whether or not and how, activation of group I and blockade of group III mGlu receptors modulate the motor responses induced by the activation of dopaminergic receptors in the NAcc still remains unknown. Answering this question needs to be assessed since functional interactions between neurotransmitters in the NAcc are well known to depend upon the level of activation of glutamatergic and/or dopaminergic receptors and because the effects of glutamatergic receptor agonists and antagonists on dopaminergic receptor-mediated locomotor responses are not always reciprocal as shown in previous studies. Our results show that activation of group I mGlu receptors by DHPG in the NAcc potentiated the locomotor response induced by intra-NAcc activation of D1-like receptors and blocked those induced by D2-like presynaptic or postsynaptic receptors. Alternatively, blockade of group III mGlu receptors by MPPG in the NAcc potentiated the locomotor responses mediated by D1-like receptors and by D2-like postsynaptic receptors and inhibited that induced by D2-like presynaptic receptors. These results compiled with previous data demonstrate that group I mGlu receptors and group III mGlu receptors can modulate the locomotor responses produced by D1-like and/or D2-like receptor agonists in a complex phasic and tonic

  9. Honest signalling with costly gambles

    Meacham, Frazer; Perlmutter, Aaron; Bergstrom, Carl T.

    2013-01-01

    Costly signalling theory is commonly invoked as an explanation for how honest communication can be stable when interests conflict. However, the signal costs predicted by costly signalling models often turn out to be unrealistically high. These models generally assume that signal cost is determinate. Here, we consider the case where signal cost is instead stochastic. We examine both discrete and continuous signalling games and show that, under reasonable assumptions, stochasticity in signal co...

  10. Foundations of signal processing

    Vetterli, Martin; Goyal, Vivek K

    2014-01-01

    This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression. The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localisation, the limitations of uncertainty and computational costs. Standard engineering notation is used throughout, making mathematical examples easy for students to follow, understand and apply. It includes over 150 homework problems and over 180 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, ...

  11. Modularity in signaling systems

    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications. (paper)

  12. Signals from the Cosmos.

    Lichtman, Jeffrey M.

    1991-01-01

    Introduces the basics of radio astronomy and describes how to assemble several simple systems for receiving radio signals from the cosmos. Includes schematics, parts lists, working drawings, and contact information for radio astronomy suppliers. (11 references) (Author/JJK)

  13. Topological signal processing

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  14. Error-prone signalling.

    Johnstone, R A; Grafen, A

    1992-06-22

    The handicap principle of Zahavi is potentially of great importance to the study of biological communication. Existing models of the handicap principle, however, make the unrealistic assumption that communication is error free. It seems possible, therefore, that Zahavi's arguments do not apply to real signalling systems, in which some degree of error is inevitable. Here, we present a general evolutionarily stable strategy (ESS) model of the handicap principle which incorporates perceptual error. We show that, for a wide range of error functions, error-prone signalling systems must be honest at equilibrium. Perceptual error is thus unlikely to threaten the validity of the handicap principle. Our model represents a step towards greater realism, and also opens up new possibilities for biological signalling theory. Concurrent displays, direct perception of quality, and the evolution of 'amplifiers' and 'attenuators' are all probable features of real signalling systems, yet handicap models based on the assumption of error-free communication cannot accommodate these possibilities. PMID:1354361

  15. Sound Signalling in Orthoptera

    Robinson, David J.; Hall, Marion J.

    2002-01-01

    The sounds produced by orthopteran insects are very diverse. They are widely studied for the insight they give into acoustic behaviour and the biophysical aspects of sound production and hearing, as well as the transduction of sound to neural signals in the ear and the subsequent processing of information in the central nervous system. The study of sound signalling is a multidisciplinary area of research, with a strong physiological contribution. This review considers recent research in physi...

  16. Signal-light nomogram

    Gordon, J. I.; Edgerton, C. F.; Duntley, S. Q.

    1975-01-01

    A nomogram is presented for predicting the sighting range for white, steady-burning signal lights. The theoretical and experimental bases are explained and instructions are provided for its use for a variety of practical problems concerning the visibility of signal lights. The nomogram is appropriate for slant path as well as horizontal sightings, and the gain of range achieved by utilizing binoculars can be predicted by use of it.

  17. Modest Advertising Signals Strength.

    Ram Orzach; Per Baltzer Overgaard; Yair Tauman

    2001-01-01

    This paper presents a signaling model where both price and advertising expenditures are used as signals of the initially unobservable quality of a newly introduced experience good. Consumers can be either "fastidious" or "indifferent". Fastidious individuals place a greater value on a high-quality product and a lesser value on the low-quality product than do indifferent individuals. It is shown that a sensible separating equilibrium exists where both firms set their full information prices. H...

  18. Wnt Signaling in Bone

    Kubota, Takuo; Michigami, Toshimi; Ozono, Keiichi

    2010-01-01

    Wnt signaling is involved not only in embryonic development but also in maintenance of homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding of the roles of Wnt signaling in bone since mutations in the LRP5 gene were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt signaling including sclerostin block bone formation. Regulation of sclerostin appears to be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost exclusively expressed in osteocytes, inhibition of sclerostin is the most promising design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum, but not by directly promoting bone formation. Pharmacological intervention may be considered in many components of the canonical Wnt signaling pathway, although adverse effects and tumorigenicity to other tissues are important. More studies will be needed to fully understand how the Wnt signaling pathway actually influences bone metabolism and to assure the safety of new interventions. PMID:23926379

  19. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo.

    Nagai, Taku; Nakamuta, Shinichi; Kuroda, Keisuke; Nakauchi, Sakura; Nishioka, Tomoki; Takano, Tetsuya; Zhang, Xinjian; Tsuboi, Daisuke; Funahashi, Yasuhiro; Nakano, Takashi; Yoshimoto, Junichiro; Kobayashi, Kenta; Uchigashima, Motokazu; Watanabe, Masahiko; Miura, Masami; Nishi, Akinori; Kobayashi, Kazuto; Yamada, Kiyofumi; Amano, Mutsuki; Kaibuchi, Kozo

    2016-02-01

    Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors. PMID:26804993

  20. Digital Signal Processing applied to Physical Signals

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  1. Selective D3 Receptor Antagonist SB-277011-A Potentiates the Effect of Cocaine on Extracellular Dopamine in the Nucleus Accumbens: a Dual Core-Shell Voltammetry Study in Anesthetized Rats

    Francesca Formenti

    2008-11-01

    Full Text Available Dopamine (DA D3 receptors have been associated with drug intake and abuse and selectively distribute in the brain circuits responding to drug administration. Here we examined the effects of an acute systemic administration of cocaine (15 mg/kg alone or preceded by treatment with the selective D3 receptor antagonist SB-277011-A (10 mg/kg on DA levels concurrently in the rat nucleus accumbens shell and core sub-regions (NAcshell and NAccore, respectively. It is shown that cocaine increases extracellular DA in both compartments and that blocking D3 receptors with SB-277011-A, although the latter is devoid of dopaminergic effects per se, potentiates these effects. No differences in the amplitude of the response were observed between NAcshell and NAccore compartments, though the dopaminergic response in the NAcshell was transient whereas that in the NAccore rose slowly to reach a plateau. These results demonstrate the feasibility to use multiprobe voltammetry to measure discrete monoaminergic responses in discrete areas of the brain and confirm the effect of D3 receptors antagonist at modifying the neurochemical effects of cocaine.

  2. Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats

    Gao, Jun; Li, Yonghui; Zhu, Ning; Brimijoin, Stephen; Sui, Nan

    2013-01-01

    Drug-associated cues can elicit relapse to drug seeking after abstinence. Studies with extinction–reinstatement models implicate dopamine (DA) in the nucleus accumbens shell (NAshell) and dorsolateral caudate-putamen (dlCPu) in cocaine seeking. However, less is known about their roles in cue-induced opiate seeking after prolonged abstinence. Using a morphine self-administration and abstinence–relapse model, we explored the roles of NAshell and dlCPu DA and the D1/D2-like receptor mechanisms underlying morphine rewarding and/or seeking. Acquisition of morphine self-administration was examined following 6-Hydroxydopamine hydrobromide (6-OHDA) lesions of the NAshell and dlCPu. For morphine seeking, rats underwent 3 weeks’ morphine self-administration followed by 3 weeks’ abstinence from morphine and the training environment. Prior to testing, 6-OHDA, D1 antagonist SCH23390, or D2 antagonist eticlopride was locally injected; then rats were exposed to morphine-associated contextual and discrete cues. Results show that acquisition of morphine self-administration was inhibited by NAshell (not dlCPu) lesions, while morphine seeking was attenuated by lesions of either region, by D1 (not D2) receptor blockade in NAshell, or by blockade of either D1 or D2 receptors in dlCPu. These data indicate a critical role of dopaminergic transmission in the NAshell (via D1-like receptors) and dlCPu (via D1- and D2-like receptors) in morphine seeking after prolonged abstinence. PMID:23151613

  3. VLSI signal processing technology

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  4. Signaling cascades modulate the speed of signal propagation through space.

    Christopher C Govern

    Full Text Available BACKGROUND: Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. METHODOLOGY/PRINCIPAL FINDINGS: We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. CONCLUSIONS/SIGNIFICANCE: Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  5. Telemetry Ranging: Signal Processing

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  6. Signal integrity characterization techniques

    Bogatin, Eric

    2009-01-01

    "Signal Integrity Characterization Techniques" addresses the gap between traditional digital and microwave curricula all while focusing on a practical and intuitive understanding of signal integrity effects within the data transmission channel. High-speed interconnects such as connectors, PCBs, cables, IC packages, and backplanes are critical elements of differential channels that must be designed using today's most powerful analysis and characterization tools.Both measurements and simulation must be done on the device under test, and both activities must yield data that correlates with each other. Most of this book focuses on real-world applications of signal integrity measurements - from backplane for design challenges to error correction techniques to jitter measurement technologies. The authors' approach wisely addresses some of these new high-speed technologies, and it also provides valuable insight into its future direction and will teach the reader valuable lessons on the industry.

  7. Purinergic signalling and diabetes

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...... molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic...

  8. Electronic signal conditioning

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  9. Genomic signal processing

    Shmulevich, Ilya

    2014-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  10. Hybrid ECG signal conditioner

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Circuit with high common-mode rejection has ability to filter and amplify accepted analog electrocardiogram (ECG) signals of varying amplitude, shape, and polarity. In addition, low power circuit develops standardized pulses that can be counted and averaged by heart/breath rate processor.

  11. Wnt signaling in osteosarcoma.

    Lin, Carol H; Ji, Tao; Chen, Cheng-Fong; Hoang, Bang H

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies. PMID:24924167

  12. Small Turing universal signal machines

    Jérôme Durand-Lose

    2009-06-01

    Full Text Available This article aims at providing signal machines as small as possible able to perform any computation (in the classical understanding. After presenting signal machines, it is shown how to get universal ones from Turing machines, cellular-automata and cyclic tag systems. Finally a halting universal signal machine with 13 meta-signals and 21 collision rules is presented.

  13. The newest digital signal processing

    Lee, Chae Uk

    2002-08-15

    This book deal with the newest digital signal processing, which contains introduction on conception of digital signal processing, constitution and purpose, signal and system such as signal, continuos signal, discrete signal and discrete system, I/O expression on impress response, convolution, mutual connection of system and frequency character,z transform of definition, range, application of z transform and relationship with laplace transform, Discrete fourier, Fast fourier transform on IDFT algorithm and FFT application, foundation of digital filter of notion, expression, types, frequency characteristic of digital filter and design order of filter, Design order of filter, Design of FIR digital filter, Design of IIR digital filter, Adaptive signal processing, Audio signal processing, video signal processing and application of digital signal processing.

  14. The newest digital signal processing

    This book deal with the newest digital signal processing, which contains introduction on conception of digital signal processing, constitution and purpose, signal and system such as signal, continuos signal, discrete signal and discrete system, I/O expression on impress response, convolution, mutual connection of system and frequency character,z transform of definition, range, application of z transform and relationship with laplace transform, Discrete fourier, Fast fourier transform on IDFT algorithm and FFT application, foundation of digital filter of notion, expression, types, frequency characteristic of digital filter and design order of filter, Design order of filter, Design of FIR digital filter, Design of IIR digital filter, Adaptive signal processing, Audio signal processing, video signal processing and application of digital signal processing.

  15. Financial Signaling and Earnings Forecasts.

    Iuliia Brushko

    2013-01-01

    This paper examines the extent to which financial signaling affects the analysts' and managers' forecast releases. The findings give evidence of heterogeneity of analysts' forecast errors between firms with strong financial indicators (high signal group), weak financial indicators (low signal group), and those with both positive and negative signals (mixed signal group). The paper further indicates that managers' forecast releases also depend on the type of the firm and that managers may try ...

  16. Analog and digital signal processing

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  17. Education - A Job Market Signal?

    Leino, Topias

    2008-01-01

    This paper reviews the theoretical and empirical literature on job market signalling and on education as a job market signal. Possible economic implications of educational job market signalling to an individual and the society are represented based on existing theories. The paper also reviews central methods in empirical testing of the signalling/screening hypothesis. The empirical section of the paper carries out two alternative methods for testing the signalling/sorting hypothesis. The firs...

  18. Plant signalling peptides

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  19. Insulin signaling and addiction

    Lynette C Daws; Avison, Malcolm J.; Robertson, Sabrina D.; Niswender, Kevin D.; Galli, Aurelio; Saunders, Christine

    2011-01-01

    Across species, the brain evolved to respond to natural rewards such as food and sex. These physiological responses are important for survival, reproduction and evolutionary processes. It is no surprise, therefore, that many of the neural circuits and signaling pathways supporting reward processes are conserved from Caenorhabditis elegans to Drosophilae, to rats, monkeys and humans. The central role of dopamine (DA) in encoding reward and in attaching salience to external environmental cues i...

  20. Biomedical signal analysis

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  1. Nonlinear cochlear signal processing

    Allen, Jont

    2001-01-01

    This chapter describes the mechanical function of the cochlea, or inner ear, the organ that converts signals from acoustical to neural. Many cochlear hearing disorders are still not well understood. If systematic progress is to be made in improved diagnostics and treatment of these disorders, a clear understanding of basic principles is essential. Models of the cochlea are useful because they succinctly describe auditory perception principles. Several topics will...

  2. Signal processing for hybridization

    Caceres Duran, Mauricio A.; Closas Gómez, Pau; Falletti, Emanuela; Fernández Prades, Carlos; Nájar Martón, Montserrat; Sottile, Francesco

    2011-01-01

    This chapter presents several signal processing strategies to combine together, in a seamless estimation process, position-related measurements coming from different technologies and/or systems (e.g., TOA and TDOA measurements in terrestrial networks, TOA and RSS measurements, or even satellite and terrestrial systems, or satellite and inertial navigation systems). This approach, generally indicated as “hybridization”, promises to provide better accuracy with respect to its stand-alone counte...

  3. Analog Signal Processing

    Caloz, Christophe; Gupta, Shulabh; Zhang, Qingfeng; Nikfal, Babak

    2013-01-01

    Analog signal processing (ASP) is presented as a systematic approach to address future challenges in high speed and high frequency microwave applications. The general concept of ASP is explained with the help of examples emphasizing basic ASP effects, such as time spreading and compression, chirping and frequency discrimination. Phasers, which represent the core of ASP systems, are explained to be elements exhibiting a frequency-dependent group delay response, and hence a nonlinear phase resp...

  4. Mediation as Signal

    Holler, M.J.; Lindner, I.

    2004-01-01

    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signal” while the interpretation of accepting or proposing mediation is ambiguous and does not necessarily change the prior beliefs of the uninformed party. This asymmetry suggests that, in equilibrium,...

  5. Phytosulfokine peptide signalling.

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  6. Iptkalim inhibits cocaine challenge—induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up—regulating Kir6.1 and Kir6.2 mRNA expression

    HEHai-Rong; DINGJian-Hua; GUBing; WANGHai; HUGang; LIUYun

    2003-01-01

    AIM:To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim (IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) from nucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Glu were assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluorescent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30mg/kg,ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acute cocaine challenge (30mg/kg,ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum. Moreover, the same treatment also increased Gluo levels in PFC and NAc of cocaine-pretreated rats. Repeated IPT injections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increased Kir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocainepretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA was augmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significant change was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION:IPT inhibited cocaine challenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNA expression.

  7. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs. PMID:24559655

  8. Uncertainty product of composite signals

    The well known uncertainty product of communication theory for a signal in the time domain and its Fourier transform in the frequency domain is studied for a 'composite signal', i.e. a 'pure' signal to which a time-delayed replica is added. This uncertainty product shows the appearance of local maxima and minima as a function of the time delay, leading to the following conjecture: the uncertainty product of a non-Gaussian composite signal can be smaller than that of the 'pure' signal. As an example this conjecture will be proven for the derivative of the Gaussian signal and for the Cauchy distribution. The effect on the uncertainty product of adding a delayed scaled replica of a signal to the original signal in the time domain leads to an important possibility for interpretation in the study of the reverberation phenomenon in echo-location signals of dolphins. (author). Letter-to-the-editor

  9. Kappa-opioid receptor signaling and brain reward function

    Bruijnzeel, Adrie W.

    2009-01-01

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administrati...

  10. NFκB Signaling Regulates Neuronal Morphology and Cocaine Reward

    Russo, Scott J.; Wilkinson, Matthew; Mazei-Robison, Michelle; Dietz, David M.; Maze, Ian; Krishnan, Vaishnav; Rentha1, William; Graham, Ami; Birnbaum, Shari G; Green, Thomas A; Robison, Bruce; Lesselyong, Alan; Perrotti, Linda I.; Bolanos, Carlos A.; Kumar, Arvind

    2009-01-01

    While chronic cocaine-induced changes in dendritic spines on nucleus accumbens (NAc) neurons have been correlated with behavioral sensitization, the molecular pathways governing these structural changes, and their resulting behavioral effects, are poorly understood. The transcription factor, nuclear factor kappa B (NFκB), is rapidly activated by diverse stimuli and regulates expression of many genes known to maintain cell structure. Therefore, we evaluated the role of NFκB in regulating cocai...

  11. Biomedical signal and image processing

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  12. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats

    Bo Pan

    2016-03-01

    Full Text Available Aripiprazole, a dopamine D2 receptor (D2R partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC, nucleus accumbens (NAc, and caudate putamen (CPu, in comparison with haloperidol (a D2R antagonist and bifeprunox (a D2R partial agonist. Rats were orally administrated aripiprazole (0.75 mg/kg, bifeprunox (0.8 mg/kg, haloperidol (0.1 mg/kg or vehicle three times per day for one week. The levels of protein kinase B (Akt, p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D2Rs.

  13. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats.

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole, a dopamine D₂ receptor (D₂R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D₂R antagonist) and bifeprunox (a D₂R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D₂Rs. PMID:27043526

  14. Biphonation in voice signals

    Herzel, H. [Institute of Theoretical Physics, Technical University, Hardenbergstr. 36, Sekr. PN 7-1, D-10623 Berlin (Germany); Reuter, R. [Institute of Electronics, Technical University, Einsteinufer 17, D-10587 Berlin (Germany)

    1996-06-01

    Irregularities in voiced speech are often observed as a consequence of vocal fold lesions, paralyses, and other pathological conditions. Many of these instabilities are related to the intrinsic nonlinearities in the vibrations of the vocal folds. In this paper, a specific nonlinear phenomenon is discussed: The appearance of two independent fundamental frequencies termed biphonation. Several narrow-band spectrograms are presented showing biphonation in signals from voice patients, a newborn cry, a singer, and excised larynx experiments. Finally, possible physiological mechanisms of instabilities of the voice source are discussed. {copyright} {ital 1996 American Institute of Physics.}

  15. Phonocardiography Signal Processing

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  16. Signal Communication Unit

    Johanssen, Marius; Dasic, Stefan; Nielsen, Eivind; Kamboj, Armaan; Solberg, Dan Filip

    2015-01-01

    SCU er i hovedsak en IO-tester som skal kunne utføre forskjellige tester på Kongsberg Maritime sine moduler, RIO og Stahl. Boksen sin egenskap er i hovedsak at den kan sende og motta både analoge og digitale signaler. De digitale signalene er ganske enkelt kommunikasjon med logisk 1 og logisk 0, de analoge signalene er blant annet 4-20 mA, i tillegg til at boksen kan simulere en PT100 RTD-sensor. Boksen er utstyrt med, en 3.2" berøringsskjerm, to potensiometre, en vribryter og ...

  17. Sphingosine in apoptosis signaling.

    Cuvillier, Olivier

    2002-12-30

    The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed. PMID:12531549

  18. Multiscale Signal Analysis and Modeling

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  19. Signal quality of endovascular electroencephalography

    He, Bryan D.; Ebrahimi, Mosalam; Palafox, Leon; Srinivasan, Lakshminarayan

    2016-02-01

    Objective, Approach. A growing number of prototypes for diagnosing and treating neurological and psychiatric diseases are predicated on access to high-quality brain signals, which typically requires surgically opening the skull. Where endovascular navigation previously transformed the treatment of cerebral vascular malformations, we now show that it can provide access to brain signals with substantially higher signal quality than scalp recordings. Main results. While endovascular signals were known to be larger in amplitude than scalp signals, our analysis in rabbits borrows a standard technique from communication theory to show endovascular signals also have up to 100× better signal-to-noise ratio. Significance. With a viable minimally-invasive path to high-quality brain signals, patients with brain diseases could one day receive potent electroceuticals through the bloodstream, in the course of a brief outpatient procedure.

  20. Biological signals classification and analysis

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  1. Quantum signalling in cavity QED

    Jonsson, Robert H.; Martin-Martinez, Eduardo; Kempf, Achim

    2013-01-01

    We consider quantum signalling between two-level quantum systems in a cavity, in the pertubative regime of the earliest possible arrival times of the signal. We present two main results: First we find that, perhaps surprisingly, the analogue of amplitude modulated signalling (Alice using her energy eigenstates |g>, |e>, as in the Fermi problem) is generally sub-optimal for communication. Namely, e.g., phase modulated signalling (Alice using, e.g., |+>,|e>-states) overcomes the quantum noise a...

  2. Wireless data signal transmission system

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  3. Digital Signal Processing (Second Edition)

    Blackledge (Thesis), Jonathan

    2006-01-01

    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP lib...

  4. Two-dimensional signal analysis

    Garello, René

    2010-01-01

    This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

  5. Endocannabinoid Signaling in Autism.

    Chakrabarti, Bhismadev; Persico, Antonio; Battista, Natalia; Maccarrone, Mauro

    2015-10-01

    Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the "endocannabinoid (eCB) system", a rather complex ensemble of lipid signals ("endocannabinoids"), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD. PMID:26216231

  6. Vertebrate Hedgehog signaling: cilia rule

    Stainier Didier YR; Wilson Christopher W

    2010-01-01

    Abstract The Hedgehog (Hh) signaling pathway differentially utilizes the primary cilium in mammals and fruit flies. Recent work, including a study in BMC Biology, demonstrates that Hh signals through the cilium in zebrafish, clarifying the evolution of Hh signal transduction. See research article: http://www.biomedcentral.com/1741-7007/8/65

  7. Isolated transfer of analog signals

    Bezdek, T.

    1974-01-01

    Technique transfers analog signal levels across high isolation boundary without circuit performance being affected by magnetizing reactance or leakage inductance. Transfers of analog information across isolated boundary are made by interrupting signal flow, with switch, in such a manner as to produce alternating signal which is applied to transformer.

  8. Cellular signalling properties in microcircuits

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter; Svirskis, Gytis; Hounsgaard, Jørn

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at th...... cellular and molecular levels in microcircuits in specific brain regions. This review is part of the TINS Microcircuits Special Feature....

  9. Critical nodes in signalling pathways

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique ro...

  10. Binary-Signal Recovery

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  11. Emerging Trends in Retrograde Signaling.

    Suvarna, Yashasvi; Maity, Nivedita; Shivamurthy, M C

    2016-05-01

    Retrograde signaling is defined as the signaling events leading from the plastids to the nucleus in plants and across the chemical synapse, from the postsynaptic neuron to the presynaptic neuron in animals. The discovery of various retrograde messengers has opened many avenues and clouds of thoughts as to the role of retrograde signaling. They have been implicated particularly in long-term potentiation (LTP) and synaptic plasticity. But the basic assumptions about retrograde signaling have not been studied upon for many years. This review focuses on established facts and hypothesis put forward in retrograde signaling. PMID:26081150

  12. Finding Signals for Plant Promoters

    Weimou Zheng

    2003-01-01

    The strongest signal of plant promoter is searched with the model of single motif with two types. It turns out that the dominant type is the TATA-box. The other type may be called TATA-less signal, and may be used in gene finders for promoter recognition. While the TATA signals are very close for the monocot and the dicot, their TATA-less signals are significantly different. A general and flexible multi-motif model is also proposed for promoter analysis based on dynamic programming. By extending the Gibbs sampler to the dynamic programming and introducing temperature, an efficient algorithm is developed for searching signals in plant promoters.

  13. Detection of signals in noise

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  14. [Signal Processing Suite Design

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  15. Olfactory receptor signaling.

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  16. Machine intelligence and signal processing

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  17. EEG signal analysis: a survey.

    Subha, D Puthankattil; Joseph, Paul K; Acharya U, Rajendra; Lim, Choo Min

    2010-04-01

    The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal. PMID:20433058

  18. Wavelet analysis for nonstationary signals

    Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect

  19. Signal Propagation in Cortical Networks: A Digital Signal Processing Approach

    Rodrigues, Francisco A.

    2009-01-01

    This work reports a digital signal processing approach to representing and modeling transmission and combination of signals in cortical networks. The signal dynamics is modeled in terms of diffusion, which allows the information processing undergone between any pair of nodes to be fully characterized in terms of a finite impulse response (FIR) filter. Diffusion without and with time decay are investigated. All filters underlying the cat and macaque cortical organization are found to be of l...

  20. FPGA Based RADAR Signal Emulator for Signal Processing Test Applications

    S. Yoganand; S. Sundara Babu

    2014-01-01

    The RADARs use complex techniques such as stagger PRI, jitter PRI with frequency agile characteristics. The frequency agile RADARs switch frequencies with in a pulse to get different types of advantages. Today lot of RADAR signal processing takes place on FPGA platform. These signal processing algorithms include pulse parameters estimation, deinterleaving of mixed pulse patterns, processing complex chirp signals etc. All these algorithms need to be tested at various levels bef...

  1. Volcanic signals in oceans

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  2. Angular signal radiography.

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  3. Digitally programmable signal generator

    A digitally programmable signal generator (DPSG) includes a first memory from which data is written into a second memory formed of n banks. Each bank includes four memories and a multiplexer, the banks being read once during each time frame, the read-out bits being multiplexed and fed out serially in synchronism with a plurality of clock pulses occuring during a time frame. The resulting serial bit streams may be fed in parallel to a digital-to-analog converter. The DPSG can be used in applications such as Atomic Vapor Laser Isotope Separation (AVLIS) to create an optimal match between the process laser's spectral profile and that of the vaporized material, optical telecommunications, non-optical telecommunication in the microwave and radio spectrum, radar, electronic countermeasures, high speed computer interconnects, local area networks, high definition video transport and the multiplexing of large quantities of slow digital memory into high speed data streams. This invention extends the operation of DPSGs into the GHz range. (author)

  4. Unmixing binocular signals

    Sidney R Lehky

    2011-08-01

    Full Text Available Incompatible images presented to the two eyes lead to perceptual oscillations in which one image at a time is visible. Early models portrayed this binocular rivalry as involving reciprocal inhibition between monocular representations of images, occurring at an early visual stage prior to binocular mixing. However, psychophysical experiments found conditions where rivalry could also occur at a higher, more abstract level of representation. In those cases, the rivalry was between image representations dissociated from eye-of-origin information, rather than between monocular representations from the two eyes. Moreover, neurophysiological recordings found the strongest rivalry correlate in inferotemporal cortex, a high-level, predominantly binocular visual area involved in object recognition, rather than early visual structures. An unresolved issue is how can the separate identities of the two images be maintained after binocular mixing in order for rivalry to be possible at higher levels? Here we demonstrate that after the two images are mixed, they can be unmixed at any subsequent stage using a physiologically plausible nonlinear signal-processing algorithm, non-negative matrix factorization, previously proposed for parsing object parts during object recognition. The possibility that unmixed left and right images can be regenerated at late stages within the visual system provides a mechanism for creating various binocular representations and interactions de novo in different cortical areas for different purposes, rather than inheriting then from early areas. This is a clear example how nonlinear algorithms can lead to highly non-intuitive behavior in neural information processing.

  5. Purinergic signaling in epilepsy.

    Rassendren, François; Audinat, Etienne

    2016-09-01

    Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc. PMID:27302739

  6. SUMO chains: polymeric signals.

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  7. Ultrasound imaging using coded signals

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... excitation signal. Although a gain in signal-to-noise ratio of about 20 dB is theoretically possible for the time-bandwidth product available in ultrasound, it is shown that the effects of transducer weighting and tissue attenuation reduce the maximum gain at 10 dB for robust compression with low sidelobes...... described. Application of coded excitation in array imaging is evaluated through simulations in Field II. The low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated...

  8. Steganography in arrhythmic electrocardiogram signal.

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2015-08-01

    Security and privacy of patient data is a vital requirement during exchange/storage of medical information over communication network. Steganography method hides patient data into a cover signal to prevent unauthenticated accesses during data transfer. This study evaluates the performance of ECG steganography to ensure secured transmission of patient data where an abnormal ECG signal is used as cover signal. The novelty of this work is to hide patient data into two dimensional matrix of an abnormal ECG signal using Discrete Wavelet Transform and Singular Value Decomposition based steganography method. A 2D ECG is constructed according to Tompkins QRS detection algorithm. The missed R peaks are computed using RR interval during 2D conversion. The abnormal ECG signals are obtained from the MIT-BIH arrhythmia database. Metrics such as Peak Signal to Noise Ratio, Percentage Residual Difference, Kullback-Leibler distance and Bit Error Rate are used to evaluate the performance of the proposed approach. PMID:26736533

  9. Systems theory of Smad signaling

    Clarke, D. C.; Betterton, M D; Liu, X

    2006-01-01

    Transforming Growth Factor-beta (TGF-beta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGF-beta signalling are the Smad proteins, which upon TGF-beta stimulation accumulate in the nucleus and regulate transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experi...

  10. Semi-classical signal analysis

    Laleg-Kirati, Taous-Meriem; Sorine, Michel

    2010-01-01

    This study introduces a new signal analysis method called SCSA, based on a semi-classical approach. The main idea in the SCSA is to interpret a pulse-shaped signal as a potential of a Schr\\"odinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms.

  11. Introduction to digital signal processing

    Kuc, Roman

    2008-01-01

    This book approaches digital Signal Processing and filter design in a Novel way, by presenting the relevant theory and then having the Student apply it by implementing signal processing routines on a computer. This mixture of theory and application has worked successfully. With this approach, the students receive a deeper and intuitive understanding of the theory, its applications and its limitations. This text also includes projects that require students to write Computer programs to accomplish signal processing projects.

  12. Digital Signal Processing in Cosmology

    Jasche, J.; Kitaura, F. S.; Ensslin, T. A.

    2009-01-01

    We address the problem of discretizing continuous cosmological signals such as a galaxy distribution for further processing with Fast Fourier techniques. Discretizing, in particular representing continuous signals by discrete sets of sample points, introduces an enormous loss of information, which has to be understood in detail if one wants to make inference from the discretely sampled signal towards actual natural physical quantities. We therefore review the mathematics of discretizing signa...

  13. An algebra for signal processing

    Thielemann, Henning

    2011-01-01

    Our paper presents an attempt to axiomatise signal processing. Our long-term goal is to formulate signal processing algorithms for an ideal world of exact computation and prove properties about them, then interpret these ideal formulations and apply them without change to real world discrete data. We give models of the axioms that are based on Gaussian functions, that allow for exact computations and automated tests of signal algorithm properties.

  14. Mathematical methods of signal processing

    Sayols Baixeras, Narcís

    2011-01-01

    The aim of this project is to present in a systematic way the more relevant mathematical methods of signal processing, and to explore how they are applied to speech and image precessing. After explaining the more common parts of a standard course in signal processing, we put special emphasis in two new tools that have played a significant role in signal processing in the past few years: pattern theory and wavelet theory. Finally, we use all these techniques to implement an algorit...

  15. Discrete Signal Processing on Graphs

    Sandryhaila, Aliaksei; Moura, Jose M. F.

    2012-01-01

    In social settings, individuals interact through webs of relationships. Each individual is a node in a complex network (or graph) of interdependencies and generates data, lots of data. We label the data by its source, or formally stated, we index the data by the nodes of the graph. The resulting signals (data indexed by the nodes) are far removed from time or image signals indexed by well ordered time samples or pixels. DSP, discrete signal processing, provides a comprehensive, elegant, and e...

  16. Adaptive multiscale biological signal processing

    Testoni, Nicola

    2008-01-01

    Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image rec...

  17. Signal processing in cellular clocks

    Forger, Daniel B.

    2011-01-01

    Many biochemical events within a cell need to be timed properly to occur at specific times of day, after other events have happened within the cell or in response to environmental signals. The cellular biochemical feedback loops that time these events have already received much recent attention in the experimental and modeling communities. Here, we show how ideas from signal processing can be applied to understand the function of these clocks. Consider two signals from the network s(t) and r(...

  18. Image quality. Signals and information

    Among many parameters relating image quality, neutrons and observed signals prior to handle observed signals are considered in this report. A relation between signals and their qualities on neutron images is studied considering on neutron intensity and its statistical character, effective energy, and characteristic of neutron detection systems. Geometrical parameter of neutron beam is discussed as the other importance to characterize image quality.(author)

  19. Fundamentals of statistical signal processing

    Kay, Steven M

    1993-01-01

    A unified presentation of parameter estimation for those involved in the design and implementation of statistical signal processing algorithms. Covers important approaches to obtaining an optimal estimator and analyzing its performance; and includes numerous examples as well as applications to real- world problems. MARKETS: For practicing engineers and scientists who design and analyze signal processing systems, i.e., to extract information from noisy signals — radar engineer, sonar engineer, geophysicist, oceanographer, biomedical engineer, communications engineer, economist, statistician, physicist, etc.

  20. Semi-classical signal analysis

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  1. Gibberellin Signal Transduction in Rice

    Liu-Min Fan; Xiaoyan Feng; Yu Wang; Xing Wang Deng

    2007-01-01

    In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transduction in rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments in the identification of GA signaling pathway components, the discovery of GA-induced destruction of GA signaling represser (DELLA protein), and the possible mechanism underlying the regulation of GA-responsive gene expression in rice.

  2. Pragmatic circuits signals and filters

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  3. Signal transduction by growth factor receptors: signaling in an instant

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy; Andersen, Jens S

    2007-01-01

    mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds of...

  4. Separating equilibria in continuous signalling games.

    Bergstrom, Carl T.; Számadó, Szabolcs; Lachmann, Michael

    2002-01-01

    Much of the literature on costly signalling theory concentrates on separating equilibria of continuous signalling games. At such equilibria, every signaller sends a distinct signal, and signal receivers are able to exactly infer the signaller's condition from the signal sent. In this paper, we introduce a vector-field solution method that simplifies the process of solving for separating equilibria. Using this approach, we show that continuous signalling games can have low-cost separating equi...

  5. Retrograde signaling: Organelles go networking.

    Kleine, Tatjana; Leister, Dario

    2016-08-01

    The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997501

  6. Signals in Communication Engineering History

    Consonni, Denise; Silva, Magno T. M.

    2010-01-01

    This paper is a study of various electric signals, which have been employed throughout the history of communication engineering in its two main landmarks: the telegraph and the telephone. The signals are presented in their time and frequency domain representations. The historical order has been followed in the presentation: wired systems, spark…

  7. Echolocation signals of wild dolphins

    Au, W. W. L.

    2004-07-01

    Most of our understanding of dolphin echolocation has come from studies of captive dolphins performing various echolocation tasks. Recently, measurements of echolocation signals in the wild have expanded our understanding of the characteristics of these signals in a natural setting. Measuring undistorted dolphin echolocation signals with free swimming dolphins in the field can be a challenging task. A four hydrophone array arranged in a symmetrical star pattern was used to measure the echolocation signals of four species of dolphins in the wild. Echolocation signals of the following dolphins have been measured with the symmetrical star array: white-beaked dolphins in Iceland, Atlantic spotted dolphins in the Bahamas, killer whales in British Columbia, and dusky dolphins in New Zealand. There are many common features in the echolocation signals of the different species. Most of the signals had spectra that were bimodal: two peaks, one at low frequencies and another about an octave higher in frequency. The source level of the sonar transmission varies as a function of 20log R, suggesting a form of time-varying gain but on the transmitting end of the sonar process rather than the receiving end. The results of the field work call into question the issue of whether the signals used by captive dolphins may be shaped by the task they are required to perform rather than what they would do more naturally.

  8. Parallel Computers in Signal Processing

    Narsingh Deo

    1985-07-01

    Full Text Available Signal processing often requires a great deal of raw computing power for which it is important to take a look at parallel computers. The paper reviews various types of parallel computer architectures from the viewpoint of signal and image processing.

  9. Signaling a Change of Heart

    Schumacher, Gijs

    2011-01-01

    introduced welfare state retrenchment measures. Social Democrats can win votes and join coalitions by shifting rightwards. In contrast, they can pursue policy objectives by shifting leftwards. To communicate these shifts, in other words, ‘changes of heart’, parties send signals to voters and other parties......, namely after having signalled ‘a change of heart’....

  10. The Pseudomonas Quinolone Signal (PQS)

    Sams, Thomas; Baker, Ysobel; Hodgkinson, James;

    2015-01-01

    is now known to be under the con-trol of the quorum sensing (QS) system. Over the last15 years, the Pseudomonas quinolone signal (PQS) has beenfound to play a crucial role in QS by linking the two seg-ments (las and rhl) of the P. aeruginosa N-acylhomoserinelactone-dependent QS signaling pathways...

  11. Hippo signalling directs intestinal fate

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal...

  12. Signals and systems with MATLAB

    Yang, Won Young; Song, Ik H; Cho, Yong S

    2009-01-01

    Covers some of the theoretical foundations and mathematical derivations that can be used in higher-level related subjects such as signal processing, communication, and control, minimizing the mathematical difficulty and computational burden. This book illustrates the usage of MATLAB and Simulink for signal and system analysis and design.

  13. Signaling equilibria in sensorimotor interactions.

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. PMID:25935748

  14. Recovery of Sparsely Corrupted Signals

    Studer, Christoph; Pope, Graeme; Bölcskei, Helmut

    2011-01-01

    We investigate the recovery of signals exhibiting a sparse representation in a general (i.e., possibly redundant or incomplete) dictionary that are corrupted by additive noise admitting a sparse representation in another general dictionary. This setup covers a wide range of applications, such as image inpainting, super-resolution, signal separation, and recovery of signals that are impaired by, e.g., clipping, impulse noise, or narrowband interference. We present deterministic recovery guarantees based on a novel uncertainty relation for pairs of general dictionaries and we provide corresponding practicable recovery algorithms. The recovery guarantees we find depend on the signal and noise sparsity levels, on the coherence parameters of the involved dictionaries, and on the amount of prior knowledge on the support sets of signal and noise. We finally identify situations under which the recovery guarantees are tight.

  15. Aberrant Signaling Pathways in Glioma

    Nakada, Mitsutoshi, E-mail: nakada@ns.m.kanazawa-u.ac.jp; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Teng, Lei [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Department of Neurosurgery, The First Clinical College of Harbin Medical University, Nangang, Harbin 150001 (China); Pyko, Ilya V.; Hamada, Jun-Ichiro [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan)

    2011-08-10

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

  16. Smoke Signal or Smoke Screen?

    Vergne, Jean-Philippe; Wernicke, Georg; Brenner, Steffen

    This paper explains the amount of disapproval faced by firms that overpay their CEO by integrating signaling and categorization theories. We argue that, in contexts characterized by intense scrutiny, ambivalent signals sent by firms suspend categorization by stakeholders, leading to further...... disapproval, whereas ambiguous signals represent a form of category straddling that attenuates disapproval. We find empirical support for this proposition in the context of CEO overcompensation in the U.S. (1995-2007) after examining two organizational signals that affect perceptions of economic fairness (i.......e. corporate philanthropy) and social fairness (i.e. employee diversity). Our integration of the signaling and categorization literatures adds to extant knowledge on firm’s social evaluations and recasts CEO compensation research within the literature on information intermediaries....

  17. Signal processing devices and networks

    Graveline, S. W.

    1985-02-01

    According to an axiom employed with respect to electronic warfare (EW) behavior, system effectiveness increases directly with the amount of information recovered from an intercepted signal. The evolution in EW signal processing capability has proceeded accordingly. After an initiation of EW systems as broadband receivers, the most significant advance was related to the development of digital instantaneous frequency measurement (DIFM) devices. The use of such devices provides significant improvements regarding signal identification and RF measurement to within a few MHz. An even more accurate processing device, the digital RF memory (DRFM), allows frequency characterization to within a few Hz. This invention was made in response to the need to process coherent pulse signals. Attention is given to the generic EW system, the modern EW system, and the generic receiver function for a modern EW system showing typical output signals.

  18. Fining Signals for Plant Promoters

    WeimouZheng

    2003-01-01

    The strongest signal of plant promoter is searched with the model of single motif with two types.It turns out that the dominant type is the TATA-box.The other type may be called TATA-less signal,and may be used in gene finders for promoter recognition.While the TATA signals are very close for the monocot and the dicot,their TATA-less signals are significantly different.A general and flexible multi-motif model is also proposed for promoter analysis based on dynamic programming.By extending the Gibbs sampler to the dynamic programming and introducing temperature,an efficient algorithm is developed for searching signals in plant promoters.

  19. Perception and Signaling of Strigolactones.

    Marzec, Marek

    2016-01-01

    Strigolactones (SLs), a recently discovered class of phytohormones, are important regulators of plant growth and development. While the biosynthetic pathway of these molecules is well documented, until recently there was not much known about the molecular mechanisms underlying SL perception and signal transduction in plants. Certain aspects of their perception and signaling, including the hormone-mediated interaction between receptor and F-box protein, degradation of suppressor proteins and activation of transcription factors, are also found in other phytohormones. However, some of SL signaling features seem to be specific for the SL signaling pathway. These include the enzymatic activity of the SL receptor and its destabilization caused by SLs. This review summarizes the current knowledge about SL signaling pathway in plants. PMID:27602041

  20. Reinforcement learning in signaling game

    Hu, Yilei; Tarrès, Pierre

    2011-01-01

    We consider a signaling game originally introduced by Skyrms, which models how two interacting players learn to signal each other and thus create a common language. The first rigorous analysis was done by Argiento, Pemantle, Skyrms and Volkov (2009) with 2 states, 2 signals and 2 acts. We study the case of M_1 states, M_2 signals and M_1 acts for general M_1, M_2. We prove that the expected payoff increases in average and thus converges a.s., and that a limit bipartite graph emerges, such that no signal-state correspondence is associated to both a synonym and an informational bottleneck. Finally, we show that any graph correspondence with the above property is a limit configuration with positive probability.