WorldWideScience

Sample records for accretion stars

  1. Winds and Accretion in Young Stars

    Edwards, Suzan

    2008-01-01

    Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stel...

  2. Accretion torque on magnetized neutron stars

    Dai, Hai-Lang; Li, Xiang-Dong

    2006-01-01

    The conventional picture of disk accretion onto magnetized neutron stars has been challenged by the spin changes observed in a few X-ray pulsars, and by theoretical results from numerical simulations of disk-magnetized star interactions. These indicate possible accretion during the propeller regime and the spin-down torque increasing with the accretion rate. Here we present a model for the accretion torque exerted by the disk on a magnetized neutron star, assuming accretion continues even for...

  3. Massive star formation by accretion. I. Disc accretion

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  4. Massive star formation by accretion I. Disc accretion

    Haemmerlé, Lionel; Meynet, Georges; Maeder, André; Charbonnel, Corinne

    2016-01-01

    Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the HR diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the Hertzsprung-Russell (HR) diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the acc...

  5. Theory of Disk Accretion onto Magnetic Stars

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  6. Probing thermonuclear burning on accreting neutron stars

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  7. Accretion, winds and outflows in young stars

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  8. Winds and Accretion in Young Stars

    Edwards, Suzan

    2008-01-01

    Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stellar spindown. Although spectroscopic indicators of high velocity T Tauri winds have been known for decades, the line of He I 10830 offers a promising new diagnostic to probe the magnetically controlled star-disk interaction and wind-launching region. The high opacity and resonance scattering properties of this line offer a powerful probe of the geometry of both the funnel flow and the inner wind that, together with other atomic and molecular spectral lines covering a wide range of excitation and ionization states, suggest...

  9. Accreting neutron stars by QFT

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  10. Probing neutron star physics using accreting neutron stars

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  11. Accretion funnels onto weakly magnetized young stars

    Bessolaz, N.; Zanni, C.; Ferreira, J.; Keppens, R.; Bouvier, J.

    2007-01-01

    Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipo...

  12. Accretion, winds and outflows in young stars

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  13. The Final Fates of Accreting Supermassive Stars

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  14. Massive Star Formation: Accreting from Companion

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  15. Accretion, Outflows, and Winds of Magnetized Stars

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  16. Studies of accreting and non-accreting neutron stars

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  17. Gravitational waves from accreting neutron stars

    Bonazzola, S.; Gourgoulhon, E.

    1996-01-01

    We show that accreting neutron stars in binary systems or in Landau-Thorne-Zytkow objects are good candidates for continuous gravitational wave emission. Their gravitational radiation is strong enough to be detected by the next generation of detectors having a typical noise of 10^{-23} Hz^{-1/2}.

  18. Magnetically Accreting Isolated Old Neutron Stars

    Rutledge, R E

    2001-01-01

    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic p...

  19. Accreting Neutron Stars and Radioactive Beam Experiments

    The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)

  20. Embedded, Accreting Disks in Massive Star Formation

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our approach enables us to sample a wide parameter space of stellar mass and environmental variables, providing a means to make predictions for a variety of sources that next generation telescopes like ALMA and the EVLA will observe. Moreover we include, at least approximately, multiple mechanisms for angular momentum transport, a comprehensive model for disk heating and cooling, and a realistic estimate for the angular momentum in the gas reservoir. We make predictions for the typical sizes, masses, and temperatures of the disks, and describe the role of gravitational instabilities in determining the binarity fraction and upper mass cut-off.

  1. Magnetic field evolution of accreting neutron stars

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  2. Accretion properties of T Tauri stars in sigma Ori

    Gatti, T.; Natta, A.; Randich, S.; Testi, L.; Sacco, G.

    2008-01-01

    Accretion disks around young stars evolve in time with time scales of few million years. We present here a study of the accretion properties of a sample of 35 stars in the ~3 million year old star-forming region sigma Ori. Of these, 31 are objects with evidence of disks, based on their IR excess emission. We use near-IR hydrogen recombination lines (Pa_gamma) to measure their mass accretion rate. We find that the accretion rates are significantly lower in sigma Ori than in younger regions, su...

  3. Thin accretion disks around cold Bose–Einstein condensate stars

    Dănilă, Bogdan; Harko, Tiberiu; Kovács, Zoltán

    2015-01-01

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein Condensate. Observationally distinguishing between neutron/quark stars and Bose-Einstein Condensate stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing Bose-Einstein Condensate stars from neutron/quark stars is through the study of the thin accretion ...

  4. FORMING AN O STAR VIA DISK ACCRETION?

    We present a study of outflow, infall, and rotation in a ∼105 L☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M☉. The outflow has a gas mass of 54 M☉ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10–3 M☉ yr–1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  5. Formation of primordial supermassive stars by rapid mass accretion

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot ∗≳0.1 M⊙ yr−1) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 104–5 M ☉. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M * ≳ 104 M ☉, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 104 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M * ≳ 105 M ☉ can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 105 M ☉. An extremely massive black hole should form after the collapse of the inner core.

  6. Accretion bursts in young stars driven by cluster environment

    Pfalzner, S; Tackenberg, J.; Steinhausen, M.

    2008-01-01

    The standard picture of accretion is a steady flow of matter from the disc onto the young star - a concept which assumes the star-disc system to be completely isolated. However, in a dense cluster environment star-disc systems do interact gravitationally. The aim here is to estimate the encounter-induced accretion rate in an ONC-like environment. Combining simulations of the cluster dynamics with simulations of the effect of encounters on star-disc systems we determine the likelihood and degr...

  7. Binary interactions with high accretion rates onto main sequence stars

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  8. Star Formation and Gas Accretion in Nearby Galaxies

    Yim, Kijeong

    2016-01-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 {\\mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  9. High energy gamma rays from old accreting neutron stars

    P. Blasi(INAF Arcetri)

    1996-01-01

    We consider a magnetized neutron star with accretion from a companion star or a gas cloud around it, as a possible source of gamma rays with energy between $100$ $MeV$ and $10^{14}-10^{16}~eV$. The flow of the accreting plasma is terminated by a shock at the Alfv\\'en surface. Such a shock is the site for the acceleration of particles up to energies of $\\sim 10^{15}-10^{17}~eV$; gamma photons are produced in the inelastic $pp$ collisions between shock-accelerated particles and accreting matter...

  10. Accretion to a Magnetized Neutron Star in the "Propeller" Regime

    Toropina, O D; Lovelace, R V E

    2006-01-01

    We investigate spherical accretion to a rotating magnetized star in the "propeller" regime using axisymmetric resistive magnetohydrodynamic simulations. The regime is predicted to occur if the magnetospheric radius is larger than the corotation radius and smaller than the light cylinder radius. The simulations show that accreting matter is expelled from the equatorial region of the magnetosphere and that it moves away from the star in a supersonic, disk-shaped outflow. At larger radial distances the outflow slows down and becomes subsonic. The equatorial matter outflow is initially driven by the centrifugal force, but at larger distances the pressure gradient force becomes significant. We find the fraction of the Bondi accretion rate which accretes to the surface of the star.

  11. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  12. Formation of Primordial Supermassive Stars by Rapid Mass Accretion

    Hosokawa, Takashi; Inayoshi, Kohei; Omukai, Kazuyuki; Yoshida, Naoki

    2013-01-01

    Supermassive stars (SMSs) forming via very rapid mass accretion (Mdot >~ 0.1 Msun/yr) could be precursors of supermassive black holes observed beyond redshift of about 6. Extending our previous work, we here study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10^{4 - 5} Msun. Our stellar evolution calculations show that a star becomes supermassive while passing through the "supergiant protostar'' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass, until =~ 100 AU for M_* >~ 10^4 Msun, after which the star begins to slowly contract. Because of the large radius the effective temperature is always less than 10^4 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M_* >~ 10^5 Msun can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of a...

  13. Multi-dimensional structure of accreting young stars

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  14. Polarized X-rays from accreting neutron stars

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  15. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ∼100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  16. Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission

    Ushomirsky, Greg; Cutler, Curt; Bildsten, Lars

    2000-01-01

    Motivated by the narrow range of spin frequencies of nearly 20 accreting neutron stars, Bildsten (1998) conjectured that their spin-up had been halted by the emission of gravitational waves. He also pointed out that small nonaxisymmetric temperature variations in the accreted crust will lead to "wavy" electron capture layers, whose horizontal density variations naturally create a mass quadrupole moment. We present a full calculation of the crust's elastic adjustment to these density perturbat...

  17. Electrodynamics of disk-accreting magnetic neutron stars

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  18. Formation of primordial supermassive stars by burst accretion

    Sakurai, Y; Yoshida, N; Yorke, H W

    2015-01-01

    A promising formation channel of SMBHs at redshift 6 is the so-called DC model, which posits that a massive seed BH forms through gravitational collapse of a $\\sim 10^5~M_\\odot$ SMS. We study the evolution of such a SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases that are expected to occur with a self-gravitating circumstellar disk. We show that the stellar evolution with such episodic accretion differs qualitatively from that expected with a constant accretion rate, even if the mean accretion rate is the same. Unlike the case of constant mass accretion, whereby the star expands roughly following $R_* \\simeq 2.6 \\times 10^3 R_\\odot (M_*/100~M_\\odot)^{1/2}$, the protostar can substantially contract during the quiescent phases between accretion bursts. The stellar effective temperature and ionizing photon emissivity increase accordingly as the star contracts, which can cause strong ionizing feedback and halt the m...

  19. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  20. Gravitational Wave Heating of Stars and Accretion Disks

    Li, Gongjie; Loeb, Abraham

    2012-01-01

    We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs) emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation of the GW energy in an accretion disk and stars surrounding the SMBHB. We account for the suppression of the heating rate if the forcing period is shorter than the turnover time of the largest turbulent eddies. We find that the viscous heating luminosity in 0.1 solar mass stars can be significantly higher than their intrinsic luminosity. The relative brightening is small for accretion disks.

  1. Variability in the Thermal Emission from Accreting Neutron Star Transients

    Brown, Edward F.; Bildsten, Lars; Chang, Philip

    2002-01-01

    The composition of the outer 100 m of a neutron star sets the heat flux that flows outwards from the core. For an accreting neutron star in an X-ray transient, the thermal quiescent flux depends sensitively on the amount of hydrogen and helium remaining on the surface after an accretion outburst and on the composition of the underlying ashes of previous H/He burning. Because H/He has a higher thermal conductivity, a larger mass of H/He implies a shallower thermal gradient through the low dens...

  2. Multi-dimensional structure of accreting young stars

    Geroux, C; Viallet, M; Goffrey, T; Pratt, J; Constantino, T; Folini, D; Popov, M V; Walder, R

    2016-01-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \\& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive ...

  3. Thin accretion disks around cold Bose–Einstein condensate stars

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  4. Thin accretion disks around cold Bose-Einstein condensate stars

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  5. Thin accretion disks around cold Bose–Einstein condensate stars

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars

  6. Thin accretion disks around cold Bose-Einstein condensate stars

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  7. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  8. Star Formation in Massive Clusters via Bondi Accretion

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  9. Accretion rates and accretion tracers of Herbig Ae/Be stars

    Mendigutía, I; Montesinos, B; Mora, A; Muzerolle, J; Eiroa, C; Oudmaijer, R D; Merín, B

    2011-01-01

    This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, and Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretio...

  10. Neutron drip transition in accreting and nonaccreting neutron star crusts

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  11. Vertical Structure of Magnetized Accretion Disks around Young Stars

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  12. Detecting gravitational waves from accreting neutron stars

    A.L. Watts; B. Krishnan

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the k

  13. Discovery of an Accretion-Fed Corona in an Accreting Young Star

    Wolk, Scott J.; Brickhouse, N.; Cranmer, S.; Dupree, A.; Luna, G. J. M.

    2010-01-01

    A deep (489 ks) Chandra High Energy Transmission Grating spectrum of the classical T Tauri star TW Hydrae shows a new type of coronal structure that is produced by the accretion process. In the standard model for a stellar dipole, the magnetic field truncates the disk and channels the accreting material onto the star. The He-like diagnostic lines of Ne IX provide excellent agreement with the shock conditions predicted by this model, with an electron temperature of 2.5 MK and electron density of 3 times 1012 cm-3 (see also Kastner et al. 2002). However, the standard model completely fails to predict the post-shock conditions, significantly overpredicting both the density and absorption observed at O VII. Instead the observations require a second "post-shock" component with 30 times more mass and 1000 times larger volume than found at the shock itself. We note that in the standard model, the shocked plasma is conveniently located near both closed (coronal) and open (stellar wind) magnetic structures, as the magnetic field connecting the star and disk also separates the open and closed field regions on the stellar surface. The shocked plasma thus can provide the energy to heat not only the post-shock plasma, but also adjacent regions (i.e. an "accretion-fed corona") and drive stellar material into surrounding coronal structures. These observations provide new clues to the puzzling soft X-ray excess found in accreting systems, which depends on both the presence of accretion and the level of coronal activity (Guedel and Telleschi 2007). This work is partially supported by CXO grant G07-8018X.

  14. Accretion onto Planetary Mass Companions of Low-Mass Young Stars

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle

    2014-01-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use \\HST/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates...

  15. Tidally distorted accretion discs in binary stars

    Ogilvie, G. I.

    2002-03-01

    The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc. In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The m=2 inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.

  16. Fossil magnetic field of accretion disks of young stars

    Dudorov, A. E.; Khaibrakhmanov, S. A.

    2014-01-01

    We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative r...

  17. MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations

    Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.

    2011-01-01

    We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary...

  18. MHD instabilities in accretion mounds on neutron star binaries

    Mukherjee, Dipanjan; Mignone, Andrea

    2013-01-01

    We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined at the polar cap of neutron stars. From the equilibrium solutions we explore the stability of the accretion mounds using the PLUTO MHD code. We find that pressure driven modes disrupt the equilibria beyond a threshold mound mass. This results in formation of dynamic structures inside the mound, as matter spreads over the neutron star surface. Our results show that local variation of magnetic field will significantly affect the shape and nature of the cyclotron features observed in the spectra of High Mass X-ray Binaries.

  19. Accretion Disc Evolution in Single and Binary T Tauri Stars

    Armitage, P J; Tout, C A; Armitage, Philip J.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation first dominates over internal viscous dissipation. Applying the models to close binaries, we find that because the initial conditions for discs in binaries are uncertain, studies of extreme mass ratio systems are required to provide a stringent test of theoretical disc evolution models. We also note that no correlation of the infra-red colours of T Tauri stars with their rotation rate is observed, in apparent contradiction to the predictions of simple magnetospheric accretion models.

  20. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    Bernal, Cristian G.; Page, Dany; Lee, William H.

    2012-01-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes con...

  1. Magnetospheric accretion on the T Tauri star BP Tauri

    Donati, J F; Gregory, S G; Petit, P; Paletou, F; Bouvier, J; Dougados, C; Ménard, F; Cameron, A C; Harries, T J; Hussain, G A J; Unruh, Y; Morin, J; Marsden, S C; Manset, N; Aurière, M; Catala, C; Alecian, E

    2008-01-01

    From observations collected with the ESPaDOnS and NARVAL spectropolarimeters, we report the detection of Zeeman signatures on the classical T Tauri star BP Tau. Circular polarisation signatures in photospheric lines and in narrow emission lines tracing magnetospheric accretion are monitored throughout most of the rotation cycle of BP Tau at two different epochs in 2006. We observe that rotational modulation dominates the temporal variations of both unpolarised and circularly polarised spectral proxies tracing the photosphere and the footpoints of accretion funnels. From the complete data sets at each epoch, we reconstruct the large-scale magnetic topology and the location of accretion spots at the surface of BP Tau using tomographic imaging. We find that the field of BP Tau involves a 1.2 kG dipole and 1.6 kG octupole, both slightly tilted with respect to the rotation axis. Accretion spots coincide with the two main magnetic poles at high latitudes and overlap with dark photospheric spots; they cover about 2%...

  2. Compression of matter in the center of accreting neutron stars

    Bejger, M; Haensel, P; Fortin, M

    2011-01-01

    In order to estimate the feasibility of dense-matter phase transition, we study the evolution of central density and baryon chemical potential of accreting neutron stars. The thin-disk accretion with and without the magnetic field torque is compared with the spin-down scenario for a selection of recent equations of state. We compare the prevalent (in the recycled-pulsar context) Keplerian thin-disk model, in which the matter is accreted from the marginally-stable circular orbit, with the recent magnetic-torque model that takes into account the influence of stellar magnetic field on the effective inner boundary of the disk. Calculations are performed using a multi-domain spectral methods code in the framework of General Relativity. We consider three equations of state consistent with recently measured mass of PSR J1614-2230, 1.97+-0.04 Msun (one of them softened by the appearance of hyperons). In the case of no magnetic torque and efficient angular momentum transfer from the disk to the star, substantial centr...

  3. Comptonization and QPO Origins in Accreting Neutron Star Systems

    Lee, H C; Lee, Hyong C.; Miller, Guy S.

    1997-01-01

    We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...

  4. The frequency of accretion disks around single stars: Chamaeleon I

    Daemgen, Sebastian; Jayawardhana, Ray; Petr-Gotzens, Monika G

    2016-01-01

    It is well known that stellar companions can influence the evolution of a protoplanetary disk. Nevertheless, previous disk surveys did not - and could not - consistently exclude binaries from their samples. We present a study dedicated to investigating the frequency of ongoing disk accretion around single stars in a star-forming region. We obtained near-infrared spectroscopy of 54 low-mass stars selected from a high-angular resolution survey in the 2-3 Myr-old Chamaeleon I region to determine the presence of Brackett-$\\gamma$ emission, taking the residual chance of undetected multiplicity into account, which we estimate to be on the order of 30%. The result is compared with previous surveys of the same feature in binary stars of the same region to provide a robust estimate of the difference between the accretor fractions of single stars and individual components of binary systems. We find Br$\\gamma$ emission among $39.5^{+14.0}_{-9.9}$% of single stars, which is a significantly higher fraction than for binary...

  5. Doppler Probe of Accretion onto a T Tauri star

    Petrov, Peter P; Herczeg, Gregory J; Stempels, Henricus C; Walter, Frederick M

    2014-01-01

    The YY Ori stars are T Tauri stars with prominent time-variable redshifted absorption components that flank certain emission lines. One of the brightest in this class is S CrA, a visual double star. We have obtained a series of high-resolution spectra of the two components during four nights with the UVES spectrograph at the Very Large Telescope. We followed the spectral changes occurring in S CrA to derive the physical structure of the accreting gas. We found that both stars are very similar with regard to surface temperature, radius, and mass. Variable redshifted absorption components are particularly prominent in the SE component. During one night, this star developed a spectrum unique among the T Tauri stars: extremely strong and broad redshifted absorption components appeared in many lines of neutral and ionized metals, in addition to those of hydrogen and helium. The absorption depths of cooler, low ionization lines peak at low velocities - while more highly ionized lines have peak absorption depths at ...

  6. GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS

    Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 E. California Blvd., M/C 350-17, Pasadena, CA 91125 (United States); Thrane, Eric, E-mail: piro@caltech.edu, E-mail: eric.thrane@ligo.org [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2012-12-10

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of {approx}700-2400 Hz for {approx}30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to Almost-Equal-To 17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be {approx}1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  7. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    Kennedy, Gareth F; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-01-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterised by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical cap...

  8. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  9. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  10. "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    Ustyugova, G V; Lovelace, R V E; Romanova, M M

    2006-01-01

    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function ...

  11. Accretion Disks around Young Stars: An Observational Perspective

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  12. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  13. ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214–00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10–9-10–11 M ☉ yr–1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets

  14. He-Accreting WDs: AM CVn stars with WD Donors

    Piersanti, Luciano; Tornambe', Amedeo

    2015-01-01

    We study the physical and evolutionary properties of the "WD family" of AM CVn stars by computing realistic models of IDD systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by GW emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of \\mdot\\, after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (M_don,M_acc), is high enough, the accretors experience several He-flashes of decreasing s...

  15. Impact of accretion on the statistics of neutron star masses

    Cheng, Z; Zhao, Y H; 10.1017/S1743921312019588

    2013-01-01

    We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly mass distribution of the NS that obtained from observation. We also applied the Monte-Carlo simulation and introduce the characteristic spin period 20 ms, in order to distinguish between millisecond pulsars (MSPs) and less recycled pulsars. The mass distributions of MSPs and the less recycled pulsars could be fitted by a Gaussian function as $\\rm 1.45\\pm0.42 M_{\\odot}$ and $\\rm 1.31\\pm0.17 M_{\\odot} (\\rm with ~ 1\\sigma)$ respectively. As such, the MSP masses are heavier than those in less recycled systems by factor of $\\rm \\sim 0.13M_{\\odot}$, since the accretion effect during the recycling process.

  16. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    Ingleby, Laura; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra Association. For each source we calculate the accretion rate by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high density, low filling factor accretion spots co-exist with low density, high filling factor spots. By fitting the UV and optical spectra wi...

  17. Supercritical accretion in the evolution of neutron star binaries and its implications

    Recently ∼2M⊙ neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M⊙. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M⊙. In this article we suggest that 2M⊙ neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors

  18. A Survey of Chemical Separation in Accreting Neutron Stars

    Mckinven, Ryan; Medin, Zach; Schatz, Hendrik

    2016-01-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al. (2007), but extends that result to a much larger range of compositions. We also find an alternate phase separation regime for the lightest ash mixtures which does not demonstrate this generic behaviour. With a few exceptions, we find that chemical separation reduces the expected $Q_{\\rm imp}$ in the outer crust compared to the initial rp-process ash, where $Q_{\\rm imp}$ measures the mean-square dispersion in atomic number $Z$ of the nuclei in the mixtu...

  19. Two-phase model of star formation with variable accretion rate

    The influence of a variation of the accretion rate on the bursts of star formation is considered in the framework of two-phase model of star formation including interaction of stars and molecular clouds. The star formation is induced by binary cloud collisions and by interaction of clouds and already existing stars. The estimation of parameters of the model is based on the data on the masses of stars and clouds in Galaxy. If trigger mechanism of star formation dominates the regime of damped oscillations occurs in the system with variable accretion rate. Three types of variations of the accretion rate are considered: rapid increase during the time less than the period of oscillations, slow increase during the time of two oscillations and a short burst. In all cases the oscillatory behaviour occurs

  20. The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star

    Romanova, M M; Koldoba, A V; Lovelace, R V E; Romanova, Marina M; Ustyugova, Galina V; Koldoba, Alexander V; Lovelace, Richard V E

    2004-01-01

    The propeller regime of disk accretion to a rapidly rotating magnetized star is investigated here for the first time by axisymmetric 2.5D magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in which the magnetic field is predominantly toroidal. A smaller fraction of the star's poloidal magnetic flux inflates vertically, forming a magnetically dominated tower. Matter accumulates in the equatorial region outside magnetosphere and accretes to the star quasi-periodically through elongated funnel streams which cause the magnetic field to reconnect. The star spins-down owing to the interaction of the closed magnetosphere with the disk. For the considered conditions, the spin-down torque varies with the angular velocity of the star omega* as omega*^1.3 for fixed mass accretion rate. The propeller stage may be important in the evolution of X-ray pulsars, cataclysmic variables and young stars. In particular, it may explain the present slow rotation of the classical T Tauri stars.

  1. Orbital elements of barium stars formed through a wind accretion scenario

    Liu, J H; Liang, Y C; Peng, Q H

    2000-01-01

    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.

  2. Episodic accretion, protostellar radiative feedback, and their role in low-mass star formation

    Stamatellos, Dimitris; Hubber, David A

    2012-01-01

    Protostars grow in mass by accreting material through their discs, and this accretion is initially their main source of luminosity. The resulting radiative feedback heats the environments of young protostars, and may thereby suppress further fragmentation and star formation. There is growing evidence that the accretion of material onto protostars is episodic rather than continuous; most of it happens in short bursts that last up to a few hundred years, whereas the intervals between these outbursts of accretion could be thousands of years. We have developed a model to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in episodic radiative feedback, which heats and temporarily stabilises the disc, suppressing the growth of gravitational instabilities. However, once an outburst has been terminated, the luminosity of the protostar is low, and the disc cools rapidly. Provided that there is enough time between successive outbursts, the disc may become gravitation...

  3. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; Brittain, S.; Troutmann, M.; Donehew, B.; Hines, D.; Wisniewski, J. P.; Lynch, D. K.; Russell, R. W.; Rudy, R. J.; Day, A. M.; Shenoy, A.; Wilner, D.; Silverston, M.; Bouret, J.-C.; Clampin, M.; Petre, R.

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  4. The effect of rotation on the stability of nuclear burning in accreting neutron stars

    Keek, L.; Langer, N.; in 't Zand, J.J.M.

    2009-01-01

    Hydrogen and/or helium accreted by a neutron star from a binary companion may undergo thermonuclear fusion. Different burning regimes are discerned at different mass accretion rates. Theoretical models predict helium fusion to proceed as a thermonuclear runaway for accretion rates below the Eddington limit and as stable burning above this limit. Observations, however, place the boundary close to 10% of the Eddington limit. We study the effect of rotationally induced transport processes on the...

  5. Accretion by a Neutron Star Moving at a High Kick Velocity in the Supernova Ejecta

    Xu Zhang; Ye Lu; Yong-Heng Zhao

    2007-01-01

    We suggest a two-dimensional time dependent analytic model to describe the accretion of matter onto a neutron star moving at a high speed across the ejecta left in the aftermath of a supernova explosion. The formation of a strange star resulting from the accretion is also addressed. The newborn neutron star is assumed to move outward at a kick velocity of vns ~ 103 km s-1, and the accretion flow is treated as a dust flow. When the neutron star travels across the ejecta with high speed, it sweeps up material, and when the accreted mass has reached a critical value, the neutron star will undergo a phase transition,for instance, to become a strange star. Our results show that the accretion rate decreases in a complicated way in time, not just a power law dependence: it drops much faster than the power law derived by Colpi et al. We also found that the total accreted mass and the phase transition of the neutron star depend sensitively on the velocity of supernova ejecta.

  6. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  7. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica]. E-mail: herman@das.inpe.br; jcarlos@das.inpe.br; odylio@das.inpe.br; Horvath, J.E. [Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico]. E-mail: foton@orion.iagusp.usp.br

    2000-07-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  8. Asymmetric MHD Outflows/Jets from Accreting T Tauri Stars

    Dyda, Sergei; Ustyugova, Galina V; Lii, Patrick S; Romanova, Marina M; Koldoba, Alexander V

    2015-01-01

    A large set of 2.5D MHD simulations has been carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows or jets are asymmetric relative to the equatorial plane. Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. The considered initial magnetic fields are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc-field) and a stellar dipole field. (1). For pure disc-fields the symmetry or asymmetry of the outflows is affected by the midplane plasma $\\beta$ of the disc. For the low density discs with small plasma $\\beta$ values, outflows are observed to be symmetric about the equatorial plane to within 10% over timescales of hundreds of inner disc orbits. For the denser higher $\\beta$ discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion in the two hemispheres becomes different....

  9. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra As...

  10. Are some of the luminous high-latitude stars accretion-powered runaways?

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s-1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  11. The role of accretion disks in the formation of massive stars

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2010-01-01

    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 10^5 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presum...

  12. Accretion onto Stars with Octupole Magnetic Fields: Matter Flow, Hot Spots and Phase Shifts

    Long, Min; Lamb, Frederick K

    2009-01-01

    Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. The magnetic field associated with the octupole moment may dominate the magnetic field associated with other moments in some stars, such as the CTTS V2129 Oph. Previously, we studied disc accretion onto stars with magnetic fields described by a superposition of aligned or misaligned dipole and quadrupole moments. In this paper, we present results of the first simulations of disc accretion onto stars with an \\textit {octupole} field. As examples, we consider stars with a superposition of octupole and dipole fields of different strengths and investigate matter flow around them, the shapes of hot spots on their surfaces, and the light curves produced by their rotation. We investigate two possible mechanisms for producing phase shifts in the light curves of stars with complex fields: (1) change of the star's intrinsic magnetic field and ...

  13. Super-Eddington accretion in ultra-luminous neutron star binary

    Lyutikov, Maxim

    2014-01-01

    We discuss properties of the ultra-luminous $X$-ray source in the galaxy M82, NuSTAR J095551+6940.8, containing an accreting neutron star. The neutron star has surface magnetic field $ B_{NS} \\approx 1.4 \\times 10^{13 } \\, {\\rm G}$ and experiences accretion rate of $9 \\times 10^{-7} M_\\odot {\\rm \\, yr}^{-1} $. The magnetospheric radius, close to the corotation radius, is $\\sim 2 \\times 10^8$ cm. The accretion torque on the neutron star is reduce well below what is expected in a simple magnetospheric accretion due to effective penetration of the stellar magnetic field into the disk beyond the corotation radius. As a result, the radiative force of the surface emission does not lead to strong coronal wind, but pushes plasma along magnetic field lines towards the equatorial disk. The neutron star is nearly an orthogonal rotator, with the angle between the rotation axis and the magnetic moment $\\geq 80$ degrees. Accretion occurs through optically thick -- geometrically thin and flat accretion "curtain", which cuts...

  14. 2-D MHD Configurations for Accretion Disks Around Magnetized Stars

    Benini, Riccardo; Montani, Giovanni

    2009-01-01

    We discuss basic features of steady accretion disk morphology around magnetized compact astrophysical objects. A comparison between the standard model of accretion based on visco-resistive MHD and the plasma instabilities, like ballooning modes, triggered by very low value of resistivity, is proposed.

  15. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/σ seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot*>120 Modot yr-1 galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales ∝σ, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z ∼ 2, we find a space density 10-4 Mpc-3 in star-forming galaxies with M-dot*>120 Modot yr-1, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot* and M * is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  16. A strong shallow heat source in the accreting neutron star MAXI J0556-332

    Deibel, Alex; Brown, Edward F; Page, Dany

    2015-01-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star's crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is $\\approx 4\\textrm{-}10\\,\\mathrm{MeV}$ per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to $\\approx 6\\textrm{-}16\\,\\mathrm{MeV}$. This shallow heating is still required to fit the lightcurve even after taking into account a second accretion episode, uncer...

  17. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    Bernal, Cristian G; Lee, William H

    2012-01-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes convectively stable the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulatio...

  18. HYPERCRITICAL ACCRETION ONTO A NEWBORN NEUTRON STAR AND MAGNETIC FIELD SUBMERGENCE

    Bernal, Cristian G.; Page, Dany; Lee, William H., E-mail: bernalcg@astro.unam.mx, E-mail: page@astro.unam.mx, E-mail: wlee@astro.unam.mx [Departamento de Astrofisica Teorica, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico)

    2013-06-20

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the newborn neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non-magnetized, and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly, and once it becomes convectively stable, the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulations we find the transition from total to partial submergence to occur around M-dot {approx}10 M{sub sun} yr{sup -1}. Back-diffusion of the submerged magnetic field toward the surface, and the resulting growth of the dipolar component, may result in a delayed switch-on of a pulsar on timescales of centuries to millennia.

  19. On the existence of accretion-driven bursts in massive star formation

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Accretion-driven luminosity outbursts are a vivid manifestation of variable mass accretion onto protostars. They are known as the so-called FU Orionis phenomenon in the context of low-mass protostars. More recently, this process has been found in models of primordial star formation. Using numerical radiation hydrodynamics simulations, we stress that present-day forming massive stars also experience variable accretion and show that this process is accompanied by luminous outbursts induced by the episodic accretion of gaseous clumps falling from the circumstellar disk onto the protostar. Consequently, the process of accretion-induced luminous flares is also conceivable in the high-mass regime of star formation and we propose to regard this phenomenon as a general mechanism that can affect protostars regardless of their mass and/or the chemical properties of the parent environment in which they form. In addition to the commonness of accretion-driven outbursts in the star formation machinery, we conjecture that l...

  20. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  1. Supercritical accretion in the evolution of neutron star binaries and its implications

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  2. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  3. X-ray deficiency on strong accreting T Tauri stars - Comparing Orion with Taurus

    Bustamante, Ignacio; Bouy, Hervé; Manara, Carlo; Ribas, Álvaro; Riviere-Marichalar, Pablo

    2015-01-01

    Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster, we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. We provide a catalog with X-ray lumin...

  4. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    Sakurai, Y.; Vorobyov, E. I.; Hosokawa, T.; Yoshida, N.; Omukai, K.; Yorke, H. W.

    2016-06-01

    The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 104 M⊙. The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature at Teff ≃ 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, ≲103 yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches ≳105 M⊙.

  5. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  6. Modeling The Star Forming Universe at z=2: Impact of Cold Accretion Flows

    Khochfar, S.; ~Silk, J.

    2008-01-01

    We present results of a semi-analytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low $V/\\sigma$ seen in various massive disk or disk-like galaxies, if we allow 18 % of the accretion energy from cold flows to drive turbulence in gaseous disks at $z=2$. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the numb...

  7. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 2 Boötes multi-wavelength survey field. The SFR is estimated using 250 μm observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M☉ yr–1) and the SFR (in M☉ yr–1) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (– 3.72 ± 0.52) + (1.05 ± 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales

  8. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  9. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  10. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    Perez, M. R.; Grady, C. A.; The, P. S.

    1994-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 has revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I and C IV emission lines, which are correlated with the UV excess luminosity. We also observe variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M equal to or greater than 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as +300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, upsilon sin i = 180 plus or minus 20 km/s) for this system also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  11. Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime

    Kurosawa Ryuichi

    2014-01-01

    Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.

  12. Accretion-powered pulsations in an apparently quiescent neutron star binary

    Archibald, Anne M; Patruno, Alessandro; Hessels, Jason W T; Deller, Adam T; Bassa, Cees; Janssen, Gemma H; Kaspi, Vicky M; Lyne, Andrew G; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

    2014-01-01

    Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_X\\sim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron star's magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_X\\lesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.

  13. Thermal conductivity and phase separation of the crust of accreting neutron stars

    Horowitz, C. J.; Caballero, O L; Berry, D. K.

    2008-01-01

    Recently, crust cooling times have been measured for neutron stars after extended outbursts. These observations are very sensitive to the thermal conductivity $\\kappa$ of the crust and strongly suggest that $\\kappa$ is large. We perform molecular dynamics simulations of the structure of the crust of an accreting neutron star using a complex composition that includes many impurities. The composition comes from simulations of rapid proton capture nucleosynthesys followed by electron captures. W...

  14. Symbiotic Stars as Laboratories for the Study of Accretion and Jets: A Call for Optical Monitoring

    Sokoloski, J.L.

    2004-01-01

    Symbiotic binary stars typically consist of a white dwarf (WD) that accretes material from the wind of a companion red giant. Orbital periods for these binaries are on the order of years, and their relatively small optical outbursts tend to occur every few years to decades. In some symbiotics, material that is transferred from the red giant to the WD forms a disk around the WD. Thus, symbiotic stars are a bit like overgrown cataclysmic variables (CVs), but with less violent eruptions. Symbiot...

  15. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dotacc, as a function of the stellar parameters finding that log M-dotacc≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity

  16. The effect of rotation on the stability of nuclear burning in accreting neutron stars

    Keek, L; Zand, J J M in 't

    2009-01-01

    Hydrogen and/or helium accreted by a neutron star from a binary companion may undergo thermonuclear fusion. At different mass accretion rates different burning regimes are discerned. Theoretical models predict helium fusion to proceed as a thermonuclear runaway for accretion rates below the Eddington limit and as stable burning above this limit. Observations, however, place the boundary close to 10% of the Eddington limit. We study the effect of rotationally induced transport processes on the stability of helium burning. For the first time detailed calculations of thin helium shell burning on neutron stars are performed using a hydrodynamic stellar evolution code including rotation and rotationally induced magnetic fields. We find that in most cases the instabilities from the magnetic field provide the dominant contribution to the chemical mixing, while Eddington-Sweet circulations become important at high rotation rates. As helium is diffused to greater depths, the stability of the burning is increased, such...

  17. An ultra-relativistic outflow from a neutron star accreting gas from a companion

    R.P. Fender; K. Wu; H. Johnston; T. Tzioumis; P.G. Jonker; R. Spencer; M. van der Klis

    2004-01-01

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible

  18. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  19. Chemical signatures of rocky accretion in a young solar-type star

    Spina, Lorenzo

    2015-12-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or proto-planetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently large and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. Recently, the Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled the identification of a star significantly enriched in iron with respect to other cluster members. In this seminar I will present a further investigation of the abundance pattern of this star, showing that its chemical anomaly is not limited to iron, but is also present in all the refractory elements whose abundances are correlated with the condensation temperature. This finding strongly supports the hypothesis of a recent accretion of rocky material.

  20. Circumstellar disks of the most vigorously accreting young stars.

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  1. Accretion Disc Evolution in Single and Binary T Tauri Stars

    Armitage, Philip J.; C.J. Clarke; Tout, C.A.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation firs...

  2. Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution

    Mirabel, Igor Felix

    2016-07-01

    Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.

  3. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; ...

  4. Surface magnetic fields on two accreting T Tauri stars: CV Cha and CR Cha

    Hussain, G. A. J.; Cameron, A. Collier; Jardine, M. M.; Dunstone, N.; Velez, J. Ramirez; Stempels, H.C.; Donati, J.-F; Semel, M.; Aulanier, G.; Harries, T.; Bouvier, J.; Dougados, C.; Ferreira, J; Carter, B. D.; Lawson, W. A.

    2009-01-01

    We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3-5 Myr. Our magnetic field maps show evidence for strong, complex multi-polar fields similar to those obtained for young rapidly rotating main sequence stars. Brightness maps indicate the presence of dark polar caps and low latitude spots -- these brightness maps are very similar to those obtained for o...

  5. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  6. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  7. Quasar feedback: accelerated star formation and chaotic accretion

    Nayakshin, Sergei

    2012-01-01

    Growing Supermassive Black Holes (SMBH) are believed to influence their parent galaxies in a negative way, terminating their growth by ejecting gas out before it could turn into stars. Here we present some of the most sophisticated SMBH feedback simulations to date showing that quasar's effects on galaxies are not always negative. We find that when the ambient shocked gas cools rapidly, the shocked gas is compressed into thin cold dense shells, filaments and clumps. Driving these high density features out is much more difficult than analytical models predict since dense filaments are resilient to the feedback. However, in this regime quasars have another way of affecting the host -- by triggering a massive star formation burst in the cold gas by over-pressurising it. Under these conditions SMBHs actually accelerate star formation in the host, having a positive rather than negative effect on their host galaxies. The relationship between SMBH and galaxies is thus even more complex and symbiotic than currently b...

  8. The complex accretion geometry of GX339-4 as seen by NuSTAR

    Fuerst, F.; NuSTAR binaries working Group

    2015-07-01

    We present an in-depth spectral analysis of a failed outburst of GX 339-4 in 2013, as observed by NuSTAR and Swift. During this outburst, the source never left the low-hard state and our observations cover Eddington luminosity fractions between 0.9% and 6%. The high quality NuSTAR data allow us to study the weak reflection component in this state. We show that the source very likely has a complex coronal geometry, in which the parts illuminating the accretion disk have a significantly harder spectrum than the observed primary continuum. While we observe a relativistically broadened iron line, the complex corona makes it challenging to put stringent limits on the inner accretion disk radius. The measured values depend strongly on assumptions for the emissivity profile of the accretion disk and we discuss various scenarios. All models, however, clearly require inner disk radii smaller than 100 r_{g}. We compare these spectra to NuSTAR observations of a subsequent full outburst in 2015. We discuss differences in the continuum parameters possibly related to luminosity, which indicate changes in the accretion geometry.

  9. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    Hosokawa, Takashi; Kuiper, Rolf; Yorke, Harold W; Omukai, Kazuyuki; Yoshida, Naoki

    2015-01-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE-RHD calculations result in a wide diversity of final stellar masses covering $10~M_\\odot \\lesssim M_* \\lesssim 10^3~M_\\odot$. The formation of very massive ($\\gtrsim 250~M_\\odot$) stars is possible under weak UV feedback, whereas ordinary massive (a few $\\times 10~M_\\odot$) stars form when UV feedback can efficiently halt the accretion. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed $0.01~M_\\odot~{\\rm yr}^{-1}$, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an HII region. If the delay time betwe...

  10. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10-3 Msun yr-1 or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  11. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    Sakurai, Yuya; Hosokawa, Takashi; Yoshida, Naoki; Omukai, Kazuyuki; Yorke, Harold W

    2015-01-01

    The formation of SMSs is a potential pathway to seed SMBHs in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper we study the evolution of an accreting SMS and its UV emissivity under conditions of realistic variable accretion from a self-gravitating circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the long-term protostellar accretion until the stellar mass exceeds $10^4~M_\\odot$. The disc fragments due to gravitational instability, creating a number of small clumps that rapidly migrate inward to fall onto the star. The resulting accretion history is thus highly time-dependent: short episodic accretion bursts are followed by longer, relative quiescent phases. We show that the circumstellar disc for the so-called direct collapse model is more unstable and generates greater variability over shorter timescales than normal Pop III cases. We conduct a post-process stellar evolution calculati...

  12. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    Baraffe, I; Vorobyov, E I; Chabrier, G

    2016-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages $\\sim$ 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst a...

  13. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  14. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  15. Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback.

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-09-10

    We investigate the merger of a neutron star in orbit about a spinning black hole in full general relativity with a mass ratio of 5:1, allowing the star to have an initial magnetization of 10(12)  G. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. We see no significant dynamical effects in the simulations or changes in the gravitational waveform resulting from the initial magnetization. We find that only a negligible amount of matter becomes unbound; 99% of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that 99.99% of the star will interact with the central disk and black hole within 3 hours. PMID:20867561

  16. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    Chawla, Sarvnipun; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; $99\\%$ of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that $99.99\\%$ of the star will interact with the central disk and black hole within 3 hours.

  17. The Role for the Inner Disk in Mass Accretion to the Star in the Early Phase of Star Formation

    Ohtani, Takuya; Tsuribe, Toru; Vorobyov, Eduard I

    2014-01-01

    A physical mechanism that drives FU Orionis-type outbursts is reconsidered. We study the effect of inner part of a circumstellar disk covering a region from near the central star to the radius of approximately $5$ AU (hereafter, the inner disk). Using the fluctuated mass accretion rate onto the inner disk $\\dot{M}_{\\rm out}$, we consider the viscous evolution of the inner disk and the time variability of the mass accretion rate onto the central star $\\dot{M}_{\\rm in}$ by means of numerical calculation of an unsteady viscous accretion disk in a one-dimensional axisymmetric model. First, we calculate the evolution of the inner disk assuming an oscillating $\\dot{M}_{\\rm out}$. It is shown that the time variability of $\\dot{M}_{\\rm in}$ does not coincide with $\\dot{M}_{\\rm out}$ due to viscous diffusion. Second, we investigate the properties of spontaneous outbursts with temporally constant $\\dot{M}_{\\rm out}$. Outburst occur only in a limited range of mass accretion rates onto the inner disk $10^{-10}<\\dot{M}...

  18. Evidence for high accretion-rates in Weak-Line T Tauri stars?

    Littlefair, S P; Harries, T J; Retter, A; O'Toole, S J; Naylor, Tim; Harries, Tim J.; Retter, Alon

    2004-01-01

    We have discovered T Tauri stars which show startling spectral variability between observations seperated by 20 years. In spectra published by Bouvier & Appenzeller (1992) these objects showed very weak H-alpha emission, broad CaII absorption and so called ``composite spectra'', where the spectral type inferred from the blue region is earlier than that inferred from the red. We present here new spectroscopy which shows that all four stars now exhibit strong H-alpha emission, narrow CaII emission and a spectral type which is consistent at all wavelengths. We propose a scheme to understand these changes whereby the composite spectra of these stars can be explained by a period of active accretion onto the central, young star. In this scheme the composite spectrum consists of a contribution from the stellar photosphere and a contribution from a hot, optically thick, accretion component. The optically thick nature of the accretion flow explains the weakness of the H-alpha emission during this phase. Within thi...

  19. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in...... the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability...... (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics...

  20. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  1. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  2. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  3. Time-dependent, compositionally driven convection in the oceans of accreting neutron stars

    Medin, Zach

    2014-01-01

    We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and the subsequent enrichment of the ocean in light elements and inward transport of heat through convective mixing. We extend the steady-state results of Medin & Cumming 2011 to transiently accreting neutron stars, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. Convective mixing is extremely efficient, flattening the composition profile in about one convective turnover time (weeks to months at the base of the ocean). During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layers hot. We find that this leads to a sharp drop in surface emission...

  4. Hypercritical accretion onto a magnetized neutron star surface: a numerical approach

    Bernal, Cristian Giovanny; Page, Dany

    2010-01-01

    The properties of a new-born neutron star, produced in a core-collapse supernova, can be strongly affected by the possible late fallback which occurs several hours after the explosion. This accretion occurs in the regime dominated by neutrino cooling, explored initially in this context by Chevalier (1989). Here we revisit this approach in a 1D spherically symmetric model and carry out numerical simulations in 2D in an accretion column onto a neutron star considering detailed microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD. We compare our numerical results to the analytic solutions and explore how the purely hydrodynamical as well as the MHD solutions differ from them, and begin to explore how this may affect the appearance of the remnant as a typical radio pulsar.

  5. Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR

    Sbarrato, T; Tagliaferri, G; Perri, M; Madejski, G M; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Zhang, W W

    2015-01-01

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z>2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z=3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively the most luminous accretion disk and the most powerful jet among known blazars. They are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars.

  6. Thermal conductivity and impurity scattering in the accreting neutron star crust

    Roggero, Alessandro

    2016-01-01

    We calculate the thermal conductivity of electrons for the strongly correlated multi-component ion plasma expected in the outer layers of neutron star's crust employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This findings directly impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  7. Thermal conductivity and impurity scattering in the accreting neutron star crust

    Roggero, Alessandro; Reddy, Sanjay

    2016-07-01

    We calculate the thermal conductivity of electrons for the strongly correlated multicomponent ion plasma expected in the outer layers of a neutron star's crust, employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This finding impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars, and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  8. Magnetospheric accretion and spin-down of the prototypical classical T Tauri star AATau

    Donati, JF; Bouvier, J; Gregory, SG; Grankin, KN; Jardine, MM; Hussain, GAJ; Menard, F; Dougados, C; Unruh, Y; Mohanty, S; Auriere, M; Morin, J; Fares, R

    2010-01-01

    From observations collected with the ESPaDOnS & NARVAL spectropolarimeters at CFHT and TBL, we report the detection of Zeeman signatures on the prototypical classical TTauri star AATau, both in photospheric lines and accretion-powered emission lines. Using time series of unpolarized and circularly polarized spectra, we reconstruct at two epochs maps of the magnetic field, surface brightness and accretion-powered emission of AATau. We find that AATau hosts a 2-3kG magnetic dipole tilted at ~20deg to the rotation axis, and of presumably dynamo origin. We also show that the magnetic poles of AATau host large cool spots at photospheric level and accretion regions at chromospheric level. The logarithmic accretion rate at the surface of AATau at the time of our observations is strongly variable, ranging from -9.6 to -8.5 and equal to -9.2 in average (in Msun/yr); this is an order of magnitude smaller than the disc accretion rate at which the magnetic truncation radius (below which the disc is disrupted by the s...

  9. Spectral variability of classical T Tauri stars accreting in an unstable regime

    Kurosawa, Ryuichi

    2013-01-01

    Classical T Tauri stars (CTTSs) are variable in different time-scales. One type of variability is possibly connected with the accretion of matter through the Rayleigh-Taylor instability that occurs at the interface between an accretion disc and a stellar magnetosphere. In this regime, matter accretes in a several temporarily formed accretion streams or `tongues' which appear in random locations, and produce stochastic photometric and line variability. We use the results of global three-dimensional magnetohydrodynamic simulations of matter flows in both stable and unstable accretion regimes to calculate time-dependent hydrogen line profiles and study their variability behaviours. In the stable regime, some hydrogen lines (e.g. H-beta, H-gamma, H-delta, Pa-beta and Br-gamma) show a redshifted absorption component only during a fraction of a stellar rotation period, and its occurrence is periodic. However, in the unstable regime, the redshifted absorption component is present rather persistently during a whole s...

  10. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow type...

  11. Magnetic Field Effect on β+ Decay in the Crusts of Accreting Neutron Stars

    ZHANG Jie; LIU Men-Quan; LUO Zhi-Quan

    2007-01-01

    Based on shell model of nuclei,the influence of a high magnetic field on ββ+ decay in the crusts of accreting neutron stars is analyzed.The magnetic field effect on 54Mn is discussed.The results show that a weak magnetic field makes little effect on β+ decay but a strong magnetic field (B > 1011 G) improves β+ decay rates obviously.The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.

  12. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ ...

  13. Galactic Halo Stars in Phase Space A Hint of Satellite Accretion?

    Brook, C B; Gibson, B K; Flynn, C; Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Flynn, Chris

    2003-01-01

    The present day chemical and dynamical properties of the Milky Way bear the imprint of the Galaxy's formation and evolutionary history. One of the most enduring and critical debates surrounding Galactic evolution is that regarding the competition between ``satellite accretion'' and ``monolithic collapse''; the apparent strong correlation between orbital eccentricity and metallicity of halo stars was originally used as supporting evidence for the latter. While modern-day unbiased samples no longer support the claims for a significant correlation, recent evidence has been presented by Chiba & Beers (2000,AJ,119,2843) for the existence of a minor population of high-eccentricity metal-deficient halo stars. It has been suggested that these stars represent the signature of a rapid (if minor) collapse phase in the Galaxy's history. Employing velocity- and integrals of motion-phase space projections of these stars, coupled with a series of N-body/Smoothed Particle Hydrodynamic (SPH) chemodynamical simulations, we...

  14. Generation of magnetic field on the accretion disk around a proto-first-star

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10–9 G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10–14-10–13 G at n H = 103 cm–3, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  15. Mass accretion flows in the high-mass star forming complex NGC 6334

    Sánchez-Monge, Á.; Schilke, P.; Zernickel, A.; Schmiedeke, A.; Möller, Th.; Qin, S.-L.

    2016-05-01

    The formation of high-mass stars is one of the major topics of astrophysical research, in particular the process of accretion from large-scale clouds down to small-scale cores. We have selected the nearby, filamentary, high-mass star forming complex NGC 6334 to study the gas velocity at different scales and probe the infall rates onto the protostellar cores embedded in the NGC 6334-I and I(N) clusters. This study makes use of single-dish and interferometric submillimeter observations, complemented with 3D numerical non-LTE radiative transfer modeling. We measure a mass accretion rate of 10-5 M⊙ yr-1 throughout the filament increasing up to 10-3 M⊙ yr-1 towards the densest regions where high-mass stars are forming. At smaller scales, our 3D model is consistent with accretion rates of 10-3 M⊙ yr-1 towards the clusters, and 10-4 M⊙ yr-1 onto the protostars.

  16. The role of magnetic damping in the r-mode evolution of accreting neutron stars

    Cao, GuoJie; Zhou, Xia; Wang, Na

    2015-03-01

    The magnetic damping rate was introduced in the evolution equations of r-modes, which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differential rotation. With consideration of the coupling evolution of r-modes, spin and thermal evolution, we investigated the influence of the magnetic damping on the differential rotation of nonlinear r-modes of accreting neutron stars. We derived the coupling evolution equations of the star involving the magnetic damping rate in the framework of second-order r-mode theory. The numerical results show that the magnetic damping suppressed the nonlinear evolution of r-modes since the saturation amplitude is reduced to a great extent. In particular, because of the presence of the generated toroidal magnetic field, the spin-down of the stars is terminated and the viscous heating effects are also weakened. Moreover, we could obtain a stronger generated toroidal magnetic field in the second-order r-mode theory. The gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation is small when the r-mode instability becomes active and the accretion rate is not very high.

  17. Is Main Sequence Galaxy Star Formation Controlled by Halo Mass Accretion?

    Rodriguez-Puebla, Aldo; Behroozi, Peter; Faber, S M

    2015-01-01

    It is known that the galaxy stellar-to-halo mass ratio (SHMR) is nearly independent of redshift from z=0-4. This motivates us to construct a toy model in which we assume that the SMHR for central galaxies measured at redshift z~0 is independent of redshift, which implies that the star formation rate (SFR) is determined by the halo mass accretion rate, a phenomenon we call Stellar-Halo Accretion Rate Coevolution (SHARC). Moreover, we show here that the ~0.3 dex dispersion of the halo mass accretion rate (MAR) is similar to the observed dispersion of the SFR on the main sequence. In the context of bathtub-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. The SHARC assumption is no doubt over-simplified, but we expect it to be possibly valid for central galaxies with stellar masses of 10^9 - 10^10.5 M_sol that are on the star formation main sequence. Such galaxies represent most of the life history of M_* galaxies, and therefore most of the star forma...

  18. Photometric determination of the mass accretion rate of pre-main sequence stars. IV. Recent star formation in NGC 602

    De Marchi, Guido; Panagia, Nino

    2013-01-01

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Halpha bands. We have identified about 300 pre-main sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognise at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100 arcsec north of the centre of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of th...

  19. Formation of new stellar populations from gas accreted by massive young star clusters.

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters. PMID:26819043

  20. Formation of new stellar populations from gas accreted by massive young star clusters

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M.; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-01

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old ‘globular’ clusters—those with ages greater than ten billion years and masses several hundred thousand times that of the Sun—often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies’ gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  1. Variable accretion processes in the young binary-star system UY Aur

    We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H2 emission in the spectrum of UY Aur A and the first to spectrally resolve the Brγ line in the spectrum of UY Aur B. We see an increase in the strength of the Brγ line in UY Aur A and a decrease in Brγ and H2 line luminosity for UY Aur B compared to previous studies. Converting Brγ line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by 2 × 10–9 M ☉ yr–1 per year since a rate of zero was observed in 1994. The Brγ line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mag since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Brγ luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Brγ emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph.

  2. The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations

    Sirk, Martin M.; Steve B. Howell

    1998-01-01

    We have developed a model of the high-energy accretion region for magnetic cataclysmic variables and applied it to {\\it Extreme Ultraviolet Explorer} observations of 10 AM Herculis type systems. The major features of the EUV light curves are well described by the model. The light curves exhibit a large variety of features such as eclipses of the accretion region by the secondary star and the accretion stream, and dips caused by material very close to the accretion region. While all the observ...

  3. EVIDENCE OF HOT HIGH VELOCITY PHOTOIONIZED PLASMA FALLING ON ACTIVELY ACCRETING T TAURI STARS

    Gómez de Castro, Ana Ines [Grupo de Investigación Complutense AEGORA and S.D. Astronomía y Geodesia, Fac. de CC Matemáticas, Universidad Complutense, E-28040 Madrid (Spain)

    2013-10-01

    The He II (1640 Å) line and the resonance doublet of N V (UV1) provide a good diagnostic tool to constrain the excitation mechanism of hot (T{sub e} > 40,000 K) atmospheric/magnetospheric plasmas in T Tauri stars (TTSs). Making use of the data available in the Hubble Space Telescope archive, this work shows that there are at least two distinct physical components contributing to the radiation in these tracers: the accretion flow sliding on the magnetosphere and the atmosphere. The N V profiles in most sources are symmetric and at rest with respect to the star. The velocity dispersion of the profile increases from non-accreting (σ = 40 km s{sup –1}) to accreting (σ = 120 km s{sup –1}) TTSs, suggesting that the macroturbulence field in the line formation region decreases as the stars approach the main sequence. Evidence of the N V line being formed in a hot solar-like wind has been found in RW Aur, HN Tau, and AA Tau. The He II profile has a strong narrow component that dominates the line flux; the dispersion of this component ranges from 20 to 60 km s{sup –1}. Current data suggest that both accretion shocks and atmospheric emission might contribute to the line flux. In some sources, the He II line shows a broad and redward-shifted emission component often accompanied by semiforbidden O III] emission that has a critical electron density of ∼3.4 × 10{sup 10} cm{sup 3}. In spite of their different origins (inferred from the kinematics of the line formation region), N V and He II fluxes are strongly correlated, with only the possible exception of some of the heaviest accretors.

  4. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    Mendigutía, I.; Brittain, S. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States); Eiroa, C.; Meeus, G. [Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, P.O. Box 78, E-28049, Cantoblanco, Madrid (Spain); Montesinos, B. [Centro de Astrobiología, Departamento de Astrofísica (CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Mora, A. [GAIA Science Operations Centre, ESA, European Space Astronomy Centre, P.O. Box 78, E-28691, Villanueva de la Cañada, Madrid (Spain); Muzerolle, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oudmaijer, R. D. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Rigliaco, E., E-mail: imendig@clemson.edu [Department of Planetary Science, Lunar and Planetary Lab, University of Arizona, 1629, E. University Boulevard, 85719, Tucson, AZ (United States)

    2013-10-10

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.

  5. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10–7 and 4.50 × 10–7 M☉ yr–1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability

  6. The Ocean and Crust of a Rapidly Accreting Neutron Star Implications for Magnetic Field Evolution and Thermonuclear Flashes

    Brown, E F; Brown, Edward F.; Bildsten, Lars

    1998-01-01

    We investigate the atmosphere, ocean, and crust of neutron stars accreting at rates sufficiently high (typically in excess of the local Eddington limit) to stabilize the burning of accreted hydrogen and helium. For hydrogen-rich accretion at global rates in excess of 10^-8 solar masses per year (typical of a few neutron stars), we discuss the thermal state of the deep ocean and crust and their coupling to the neutron star core, which is heated by conduction (from the crust) and cooled by neutrino emission. We estimate the Ohmic diffusion time in the hot, deep crust and find that it is noticeably shortened (to less than 10^8 yr) from the values characteristic of the colder crusts in slowly accreting neutron stars. We speculate on the implications of these calculations for magnetic field evolution in the bright accreting X-ray sources. We also explore the consequences of rapid compression at local accretion rates exceeding ten times the Eddington rate. This rapid accretion heats the atmosphere/ocean to temperat...

  7. Formation of new stellar populations from gas accreted by massive young star clusters

    Li, Chengyuan; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguere, Claude-Andre

    2016-01-01

    Stars in star clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old globular clusters -- with ages greater than 10 billion years and masses of several hundred thousand solar masses -- often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often invoked as second-generation star-formation trigger. The initial cluster masses should be at least 10 times more massive than they are today for this to work. However, large populations of clusters with masses greater than a few million solar masses are not found in the local Universe. Here we report on three 1-2 billion-year-old, massive star clusters in the Magellanic Clouds, which show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could accrete sufficient gas ...

  8. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    Elmegreen, Debra Meloy; Almeida, Jorge Sanchez; Munoz-Tunon, Casiana; Mendez-Abreu, Jairo; Gallagher, John S; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-01-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength HST WFC3 images of UV through I band plus Halpha to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ~10^6 Mo and an ionization rate of 6.4x10^51 s^{-1}, equivalent to ~2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ~1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73+-0.51. Fourteen young clusters in the head are more massive than 10^4 Mo, suggesting a clustering fraction of 30%-45%. Wispy filaments of Halpha emission and young stars extend away from the galaxy. Shells and holes in the head HII region could be from winds and supernovae. Gravity from the disk should limit the expansion of the HII region, altho...

  9. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Fadda, Dario

    2016-01-01

    We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$\\sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy @ 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations ($\\sim$ 3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star forming members of the two clusters present star formation rates comparable with those measured in coeval field galaxies. The analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with re...

  10. Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TW Hydrae

    Johns-Krull, C M; Valenti, J A; Jeffers, S V; Piskunov, N E; Kuchukhov, O; Makaganiuk, V; Stempels, H C; Snik, F; Keller, C; Rodenhuis, M

    2013-01-01

    We present high spectral resolution ($R\\approx108,000$) Stokes $V$ polarimetry of the Classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the \\ion{He}{1} emission lines at 5876 \\AA\\ and 6678 \\AA. The \\ion{He}{1} lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two \\ion{He}{1} emission lines in both stars. We observe a maximum implied field strength of $6.05 \\pm 0.24$ kG in the 5876 \\AA\\ line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two \\ion{He}{1} lines that are c...

  11. A Correlation between Star Formation Rate and Average Black Hole Accretion in Star-forming Galaxies (Proceeding of IAUS304: Multiwavelength AGN Surveys and Studies)

    Chen, Chien-Ting J

    2014-01-01

    We present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Bo\\"otes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.

  12. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    Medin, Zach [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  13. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma

  14. ASTRO-H White Paper - Stars -- Accretion, Shocks, Charge Exchanges and Magnetic Phenomena

    Tsuboi, Y; Audard, M; Hamaguchi, K; Leutenegger, M A; Maeda, Y; Mori, K; H,; Murakami,; Sugawara, Y; Tsujimoto, M

    2014-01-01

    X-ray emission from stars has origins as diverse as the stars themselves: accretion shocks, shocks generated in wind-wind collisions, or release of magnetic energy. Although the scenarios responsible for X-ray emission are thought to be known, the physical mechanisms operating are in many cases not yet fully understood. Full testing of many of these mechanisms requires high energy resolution, large effective area, and coverage of broad energy bands. The loss of the X-ray calorimeter spectrometer on board ASTRO-E2 was a huge blow to the field; it would have provided a large sample of high resolution spectra of stars with high signal-to-noise ratio. Now, with the advent of the ASTRO-H Soft X-ray Spectrometer and Hard X-ray Imager, we will be able to examine some of the hot topics in stellar astrophysics and solve outstanding mysteries.

  15. A signature of chemical separation in the cooling curves of transiently accreting neutron stars

    Medin, Zach

    2013-01-01

    We show that convection driven by chemical separation can significantly affect the cooling curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  16. Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

    Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 109 g cm–3) and temperatures (T > 109 K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the 14O(α, p)17F reaction rate introduces by far the largest uncertainties in the 12C yield.

  17. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  18. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  19. The dynamical evolution of accreted star clusters in the Milky Way

    Miholics, Meghan; Webb, Jeremy J.; Sills, Alison

    2016-02-01

    We perform N-body simulations of star clusters in time-dependant galactic potentials. Since the Milky Way was built up through mergers with dwarf galaxies, its globular cluster population is made up of clusters formed both during the initial collapse of the Galaxy and in dwarf galaxies that were later accreted. Throughout a dwarf Milky Way merger, dwarf galaxy clusters are subject to a changing galactic potential. Building on our previous work, we investigate how this changing galactic potential affects the evolution of a cluster's half-mass radius. In particular, we simulate clusters on circular orbits around a dwarf galaxy that either falls into the Milky Way or evaporates as it orbits the Milky Way. We find that the dynamical evolution of a star cluster is determined by whichever galaxy has the strongest tidal field at the position of the cluster. Thus, clusters entering the Milky Way undergo changes in size as the Milky Way tidal field becomes stronger and that of the dwarf diminishes. We find that ultimately accreted clusters quickly become the same size as a cluster born in the Milky Way on the same orbit. Assuming their initial sizes are similar, clusters born in the Galaxy and those that are accreted cannot be separated based on their current size alone.

  20. Spectroscopic signatures of magnetospheric accretion in Herbig Ae/Be stars. I. The case of HD101412

    Schöller, M; Cahuasqui, J A; Drake, N A; Hubrig, S; Petr-Gotzens, M G; Savanov, I S; Wolff, B; Gonzalez, J F; Mysore, S; Ilyin, I; Jarvinen, S P; Stelzer, B

    2016-01-01

    Models of magnetically-driven accretion and outflows reproduce many observational properties of T Tauri stars. This concept is not well established for the more massive Herbig Ae/Be stars. We intend to examine the magnetospheric accretion in Herbig Ae/Be stars and search for rotational modulation using spectroscopic signatures, in this first paper concentrating on the well-studied Herbig Ae star HD101412. We used near-infrared spectroscopic observations of the magnetic Herbig Ae star HD101412 to test the magnetospheric character of its accretion disk/star interaction. We reduced and analyzed 30 spectra of HD101412, acquired with the CRIRES and X-shooter spectrographs installed at the VLT (ESO, Chile). The spectroscopic analysis was based on the He I lambda 10,830 and Pa gamma lines, formed in the accretion region. We found that the temporal behavior of these diagnostic lines in the near-infrared spectra of HD101412 can be explained by rotational modulation of line profiles generated by accreting gas with a pe...

  1. Production of 56Ni in black hole-neutron star merger accretion disc outflows

    The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disc of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disc outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disc model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disc on the element synthesis. While the neutrino fluxes from the early-time disc snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of 56Ni in the outflows. (paper)

  2. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    Spina, L; Randich, S; Sacco, G G; Jeffries, R; Magrini, L; Franciosini, E; Meyer, M R; Tautvaišienė, G; Gilmore, G; Alfaro, E J; Prieto, C Allende; Bensby, T; Bragaglia, A; Flaccomio, E; Koposov, S E; Lanzafame, A C; Costado, M T; Hourihane, A; Lardo, C; Lewis, J; Monaco, L; Morbidelli, L; Sousa, S G; Worley, C C; Zaggia, S

    2015-01-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypot...

  3. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    Manara, C F; Testi, L; Natta, A; Alcalá, J M; Williams, J P; Ansdell, M; Miotello, A; van der Marel, N; Tazzari, M; Carpenter, J; Guidi, G; Mathews, G S; Oliveira, I; Prusti, T; van Dishoeck, E F

    2016-01-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, the mass accretion rate, and the disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an ISM gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rate...

  4. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  5. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    Horowitz, C J; Berry, D K

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with $Z=8$ or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase sep...

  6. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    Brooks, Jared; Schwab, Josiah; Paxton, Bill

    2016-01-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable Helium burning that is a concern for many Type Ia supernovae scenarios. We study binaries with helium stars of mass $1.25 M_\\odot\\le M_{\\rm{He}} \\le 1.8 M_\\odot$, which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ($P_{\\rm orb}$) of several hours with non-rotating $0.84$ and $1.0 M_\\odot$ C/O WDs. The helium stars fill their Roche lobes (RLs) after exhaustion of central helium and donate helium on their thermal timescales (${\\sim}10^5$yr). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ($M_{\\rm Ch}$) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explo...

  7. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: Teff = 6550 ± 100 K, log g = 3.75 ± 0.10, L*/L☉ = 16.3 ± 4.5, M*/M☉ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M☉. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10–7 M☉ yr–1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  8. An X-ray Outburst from the Rapidly Accreting Young Star That Illuminates McNeil's Nebula

    Kästner, J H; Grosso, N; Weintraub, D A; Simon, T; Franck, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-01-01

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of such emission is uncertain. Although many or perhaps most recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor ~50 increase in the X-ray flux from a young star that is presently undergoing a spectacular optical/IR outburst. The outburst is thought to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/IR eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion- enhanced X-ray emission from erupting young stars may be short-lived, because intense star-di...

  9. Accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity

    Staykov, Kalin V; Yazadjiev, Stoytcho S

    2016-01-01

    We study the electromagnetic spectrum of accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity. Both static and rapidly rotating models are investigated. The results are compared with the General Relativistic results. We found difference between the results in both theories of about 50\\% for the electromagnetic flux and about 20\\% in the luminosity for models with equal mass and angular velocity in both theories. The observed differences are much lower for models rotating with Kelperian velocity and with equal masses.

  10. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis

  11. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    Pessah Martin E.

    2013-04-01

    Full Text Available The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  12. ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE

    This paper models the orbital inspiral of a neutron star (NS) through the envelope of its giant-branch companion during a common envelope (CE) episode. These CE episodes are necessary to produce close pairs of NSs that can inspiral and merge due to gravitational wave losses in less than a Hubble time. Because cooling by neutrinos can be very efficient, NSs have been predicted to accumulate significant mass during CE events, perhaps enough to lead them to collapse to black holes. We revisit this conclusion with the additional consideration of CE structure, particularly density gradients across the embedded NS's accretion radius. This work is informed by our recent numerical simulations that find that the presence of a density gradient strongly limits accretion by imposing a net angular momentum to the flow around the NS. Our calculations suggest that NSs should survive CE encounters. They accrete only modest amounts of envelope material, ≲ 0.1 M ☉, which is broadly consistent with mass determinations of double NS binaries. With less mass gain, NSs must spiral deeper to eject their CE, leading to a potential increase in mergers. The survival of NSs in CE events has implications for the formation mechanism of observed double NS binaries, as well as for predicted rates of NS binary gravitational wave inspirals and their electromagnetic counterparts

  13. On the possible turbulence mechanism in accretion disks in nonmagnetic binary stars

    One of the major challenges in modern astrophysics is the unexplained turbulence of gas-dynamic (nonmagnetic) accretion disks. Since they are stable, such disks should not theoretically be turbulent, but observations show they are. The search for instabilities that can develop into turbulence is one of the most intriguing problems in modern astrophysics. In 2004, we pointed to the formation of the so-called 'precessional' density wave in accretion disks of binary stars, which produces additional density and velocity gradients in the disk. A linear hydrodynamics stability analysis of an accretion disk in a binary shows that the presence in the disk of a precessional wave produced by the tidal influence of the second binary component gives rise to the instability of radial modes, whose characteristic growth times are about one tenth or one hundredth of the binary's orbital period. The immediate reason for the instability is the radial velocity gradient in the precessional wave, the destabilizing perturbations being those in which the radial velocity variation on the wavelength scale is near or greater than the speed of sound. Unstable perturbations occur in the interior of the disk and make the gas turbulent as they propagate outward. The characteristic turbulence parameters are in agreement with observations (the Shakura–Sunyaev parameter (α≲0.01). (physics of our days)

  14. Hoyle-Lyttleton Accretion onto Accretion Disks

    Fukue, Jun; Ioroi, Masayuki

    1999-01-01

    We investigate Hoyle-Lyttleton accretion for the case where the central source is a luminous accretion disk. %In classical Hoyle-Lyttleton accretion onto a ``spherical'' source, accretion takes place in an axially symmetric manner around a so-called accretion axis. The accretion rate of the classical Hoyle-Lyttleton accretion onto a non-luminous object and $\\Gamma$ the luminosity of the central object normalized by the Eddington luminosity. %If the central object is a compact star with a lumi...

  15. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  16. Coronal geometry at low mass-accretion rates from XMM and NuSTAR spectra

    Fuerst, F.; NuSTAR Binaries Team; NuSTAR AGN Team

    2016-06-01

    At very low Eddington luminosities the structure and physics of the accretion flow around a black hole are still debated, in particular in the inner most regions. By making sensitive measurements of the relativistic blurring of the X-ray reflection spectrum we investigate these physics, a task for which XMM-Newton, in combination with hard X-ray coverage provided by NuSTAR or Hitomi, is ideally suited and will continue to be unique for years to come. I will present results from XMM and NuSTAR observations of the radio-galaxy Cen A and of the X-ray binary GRS 1739-278 during the decline of its outburst. While Cen A shows a prominent iron line, the broad-band spectrum shows no evidence of reflection. This lack of reflection can best be explained by a jet origin of the hard X-rays or a significantly truncated accretion disk. The iron line can be self-consistently explained when assuming an optically thick torus surrounding the super-massive black-hole. The broad-band X-ray spectrum of GRS 1739-278 can be well described by a simple power-law or Comptonization continuum. A weak relativistic reflection model results in a small but significant improvement of the statistical quality of the fit. This relativistic model indicates a strongly truncated disk.

  17. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  18. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  19. Evolution of Very Massive Population III Stars with Mass Accretion from Pre-Main Sequence to Collapse

    Ohkubo, Takuya; Umeda, Hideyuki; Yoshida, Naoki; Tsuruta, Sachiko

    2009-01-01

    We calculate the evolution of zero-metallicity Population III (Pop III) stars whose mass grows from the initial mass of $\\sim 1M_{\\odot}$ by accreting the surrounding gases. Our calculations cover a whole evolutionary stages from the pre-main sequence, via various nuclear burning stages, through the final core collapse or pair-creation instability phases. We adopt the following stellar mass-dependent accretion rates which are derived from cosmological simulations of early structure formation based on the low mass dark matter halos at redshifts $z \\sim 20$: (1) the accretion rates for the first generation (Pop III.1) stars and (2) the rates for zero-metallicity but the second generation (Pop III.2) stars which are affected by radiation from the Pop III.1 stars. For comparison, we also study the evolution with the mass-dependent accretion rates which are affected by radiatibe feedback. We show that the final mass of Pop III.1 stars can be as large as $\\sim 1000M_{\\odot}$, beyond the mass range ($140 - 300M_{\\od...

  20. Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296

    Mendigutía, I; Eiroa, C; Meeus, G; Montesinos, B; Mora, A; Muzerolle, J; Oudmaijer, R D; Rigliaco, E

    2013-01-01

    This work presents X-Shooter/VLT spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of twelve ultraviolet, optical and near infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 x 10^-7 and 4.50 x 10^-7 Msun yr^-1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ~ 15 years. Averaged accretion luminosities derived fro...

  1. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Deason, Alis J; Wechsler, Risa H

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW) mass M_vir ~ 10^12.1 M_sun) halos using a suite of 45 zoom-in, dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z=0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M_star ~ 10^8-10^10 M_sun. Halos with more quiescent accretion histories tend to have lower mass progenitors (10^8-10^9 M_sun), and lower overall accreted stellar masses. Ultra-faint mass (M_star 10^8 M_sun can contribute a considerable fraction (~20-60 %) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surv...

  2. Magnetically Controlled Spasmodic Accretion During Star Formation. I. Formulation of the Problem and Method of Solution

    Tassis, K; Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2004-01-01

    We formulate the problem of the late accretion phase of the evolution of an isothermal magnetic disk surrounding a forming star. The evolution is described by the six-fluid MHD equations, accounting for the presence of neutrals, atomic and molecular ions, electrons, and neutral, positively, and negatively charged grains. Only the electron fluid is assumed to be attached to the magnetic field, in order to investigate the effect of the detachment of the ions from the magnetic field lines that begins at densities as low as 10^8 cm^-3. The "central sink approximation" is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 10^11 cm^-3. In this way, the structure and evolution of the isothermal disk surrounding the forming star can be studied at late times without having to implement the numerically costly radiative transfer required by the physics of the opaque core. The mass and magnetic flux accumulating in the forming star arecalculated , as are...

  3. The Relationship between black hole accretion and host star formation in dusty AGNs

    Dai, Y Sophia; Bergeron, Jacqueline; Omont, Alain; Kuraszkiewicz, Joanna; Teplitz, Harry I

    2015-01-01

    We study the relationship between the X-ray luminosity and star formation rate (SFR) in an unbiased sample of dusty active galactic nuclei (AGNs), detected in both the hard X-ray and far-infrared (IR) bands in the XMM-LSS field. The sample consists of 451 AGNs with spectroscopic redshifts of 0.04 < z <3.3, and spans an X-ray luminosity range of L(2-10keV)=10^41-45 erg/s. We find a positive correlation between the X-ray luminosity and SFR derived from AGN-removed IR luminosity. We find that binning the sample by SFR instead of LX results in a more positive correlation. This is consistent with the scenario in which the shorter variability time scale of AGN than star formation flattens the observed correlation between AGN and star formation. We do not find significant diversity in the observed correlation when considering subsets selected based on supermassive black hole mass or Eddington ratio, indicating that AGN accretion has at most a limited effect on the SFR-Lx relation. Comparing to results in the l...

  4. Magnetic fields during the early stages of massive star formation I: Accretion and disk evolution

    Seifried, D; Klessen, R S; Duffin, D; Pudritz, R E

    2011-01-01

    We present simulations of collapsing 100 M_\\sun mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian disks can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian disks in the very early stages is suppressed for a mass-to-flux ratio normalised to the critical value \\mu below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disk. For weak magnetic fields, corresponding to \\mu > 10, large-scale, cent...

  5. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales ∼> (M./Md )P(Rd ), where M. and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  6. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    Spina, L.; Palla, F.; Randich, S.; Sacco, G.; Jeffries, R.; Magrini, L.; Franciosini, E.; Meyer, M. R.; Tautvaišienė, G.; Gilmore, G.; Alfaro, E. J.; Allende Prieto, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Lanzafame, A. C.; Costado, M. T.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-10-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypothesis of a recent accretion of rocky material. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).

  7. The Neutrino Signal from Protoneutron Star Accretion and Black Hole Formation

    We discuss the formation of stellar mass black holes via protoneutron star (PNS) collapse. In the absence of an earlier explosion, the PNS collapses to a black hole due to the continued mass accretion onto the PNS. We present an analysis of the emitted neutrino spectra of all three flavors during the PNS contraction. Special attention is given to the physical conditions which depend on the input physics, e.g. the equation of state (EoS) and the progenitor model. The PNSs are modeled as the central object in core collapse simulations using general relativistic three-flavor Boltzmann neutrino transport in spherical symmetry. The simulations are launched from several massive progenitors of 40 Mο and 50 Mο. We analyze the electron-neutrino luminosity dependencies and construct a simple approximation for the electron-neutrino luminosity, which depends only on the physical conditions at the electron-neutrinosphere. In addition, we analyze different (μ, τ)-neutrino pair-reactions separately and compare the differences during the post-bounce phases of failed core collapse supernova explosions of massive progenitors. We also investigate the connection between the increasing μ,τ-neutrino luminosity and the PNS contraction during the accretion phase before black hole formation. Comparing the different post bounce phases of the progenitor models under investigation, we find large differences in the emitted neutrino spectra. These differences and the analysis of the electron-neutrino luminosity indicate a strong progenitor model dependency of the emitted neutrino signal.

  8. X-rays from T Tau: A test case for accreting T Tauri stars

    Güdel, M; Mel'nikov, S Y; Audard, M; Telleschi, A; Briggs, K R

    2006-01-01

    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio ...

  9. Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph

    Donati, JF; Gregory, SG; Petit, P; Bouvier, J; Dougados, C; Ménard, F; Cameron, AC; Harries, TJ; Jeffers, SV; Paletou, F

    2007-01-01

    From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. T...

  10. SKA studies of nearby galaxies: star-formation, accretion processes and molecular gas across all environments

    Beswick, R J; Perez-Torres, M A; Richards, A M S; Aalto, S; Alberdi, A; Argo, M K; van Bemmel, I; Conway, J E; Dickinson, C; Fenech, D M; Gray, M D; Klockner, H-R; Murphy, E J; Muxlow, T W B; Peel, M; Rushton, A P; Schinnerer, E

    2014-01-01

    The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with $\\mu$Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.

  11. Phase dependent view of Cyclotron lines from model accretion mounds on Neutron Stars

    Dipanjan, Mukherjee

    2011-01-01

    In this paper we make a phase dependent study of the effect of the distortion of local magnetic field due to confinement of accreted matter in X-ray binaries on the cyclotron spectra emitted from the hotspot . We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined at the polar cap of neutron stars. From our solutions we model the cyclotron spectra that will be emitted from the region by integrating the emission from all parts of the mound to get the resultant spectra. We perform a phase dependent analysis of the spectra to study the effect of the viewing geometry on the resultant emission from the local mound with distorted magnetic field.

  12. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature

  13. The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties

    Biazzo, K; Covino, E; Frasca, A; Getman, F; Spezzi, L

    2012-01-01

    Radial velocities, elemental abundances, and accretion properties of members of star-forming regions (SFRs) are important for understanding star and planet formation. While infrared observations reveal the evolutionary status of the disk, optical spectroscopy is fundamental to acquire information on the properties of the central star and on the accretion characteristics. 2MASS archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have provided disk properties of a large number of young stars. We complement these data with spectroscopy with the aim of providing physical stellar parameters and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members of Cha II to measure radial velocities through cross-correlation technique, Li abundances by means of curves of growth, and for a suitable star elemental abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom emission lines, we estimate ...

  14. Long orbital period pre-polars containing an early K-type donor stars. Bottleneck accretion mechanism in action

    Tovmassian, G; Zharikov, S; Reichart, D E; Haislip, J B; Ivarsen, K M; LaCluyze, A P; Moore, J P; Miroshnichenko, A S

    2016-01-01

    We studied two objects identified as a Cataclysmic Variables (CVs) with periods exceeding the natural boundary for Roche lobe filling ZAMS secondary stars. We present observational results for V1082 Sgr with 20.82 h orbital period, an object that shows low luminosity state, when its flux is totally dominated by a chromospherically active K- star with no signs of ongoing accretion. Frequent accretion shut-offs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 h binary system. They both have early K-type stars as a donor star. We argue, that similar to the shorter period pre-polars containing M-dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar ...

  15. CSI 2264: Characterizing Accretion-Burst Dominated Light Curves for Young Stars in NGC 2264

    Stauffer, John; Baglin, Annie; Alencar, Silvia H P; Rebull, Luisa; Hillenbrand, Lynne A; Venuti, Laura; Turner, Neal J; Carpenter, John; Plavchan, Peter; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee; Calvet, Nuria; Whitney, Barbara; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Furesz, Gabor; Aigrain, Suzanne

    2014-01-01

    Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission...

  16. Accretion dynamics in the classical T Tauri star V2129 Oph

    Alencar, S H P; Walter, F M; Dougados, C; Donati, J -F; Kurosawa, R; Romanova, M; Bonfils, X; Lima, G H R A; Massaro, S; Ibrahimov, M; Poretti, E

    2012-01-01

    We analyze the photometric and spectroscopic variability of the classical T Tauri star V2129 Oph over several rotational cycles to test the dynamical predictions of magnetospheric accretion models. The photometric variability and the radial velocity variations in the photospheric lines can be explained by rotational modulation due to cold spots, while the radial velocity variations of the He I (5876 \\AA) line and the veiling variability are due to hot spot rotational modulation. The hot and cold spots are located at high latitudes and about the same phase, but the hot spot is expected to sit at the chromospheric level, while the cold spot is at the photospheric level. Using the dipole+octupole magnetic-field configuration previously proposed in the literature for the system, we compute 3D MHD magnetospheric simulations of the star-disk system. We use the simulation's density, velocity and scaled temperature structures as input to a radiative transfer code, from which we calculate theoretical line profiles at ...

  17. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Esquej, P; González-Martín, O; Hönig, S F; Caballero, A Hernán; Roche, P F; Almeida, C Ramos; Mason, R E; Díaz-Santos, T; Levenson, N A; Aretxaga, I; Espinosa, J M Rodríguez; Packham, C

    2013-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star formation rate (SFR) and the active galactic nuclei (AGN) luminosity (and, therefore, the black hole accretion rate) of Seyfert galaxies. This suggests a physical connection between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (0.4-0.8 arcsec) mid-infrared (8-13 micron) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalogue. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of 65 pc (median value). We found no general evidence of suppression of the 11.3 micron polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and used this feature as a proxy for the SFR. We detected the 11.3 micron PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are...

  18. The Star Formation and Nuclear Accretion Histories of Normal Galaxies in the AGES Survey

    Watson, Casey R; Forman, William R; Hickox, Ryan C; Jones, Christine J; Brown, Michael J I; Brand, Kate; Dey, Arjun; Jannuzi, Buell T; Kenter, Almus T; Murray, Steve S; Vikhlinin, Alexey; Eisenstein, Daniel J; Fazio, Giovani G; Green, Paul J; McNamara, Brian R; Rieke, Marcia; Shields, Joseph C

    2009-01-01

    We combine IR, optical and X-ray data from the overlapping, 9.3 square degree NOAO Deep Wide-Field Survey (NDWFS), AGN and Galaxy Evolution Survey (AGES), and XBootes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 < z < 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and AGN emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like (1+z)^3, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stack...

  19. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  20. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ∼ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ∼ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar 108 M⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  1. Non-LTE Modelling of the Structure and Spectra of the Hot Accretion Spots on the Surface of Young Stars

    Dodin, A V

    2014-01-01

    The paper describes the modelling of the structure and spectra of the hot accretion spots on the surface of young stars with taking into account departures from LTE for hydrogen and helium. It has been found that the existence of the ram pressure of the in-falling gas at the outer boundary of the hot spot leads to the Stark broadening of the hydrogen line profiles up to FWHM of about 1000 km/s at the considered accretion parameters. It is shown that taking into account departures from LTE for atoms and ions of carbon and oxygen does not lead to noticeable changes in the structure of the hot spot.

  2. No evidence for intense, cold accretion onto YSOs from measurements of Li in T-Tauri stars

    Sergison, Darryl J; Naylor, Tim; Jeffries, R D; Bell, Cameron P M

    2013-01-01

    We have used medium resolution spectra to search for evidence that proto-stellar objects accrete at high rates during their early 'assembly phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri stars are key signatures of 'cold' high-rate accretion occurring early in a star's evolution. We found no evidence in 168 stars in NGC 2264 and the Orion Nebula Cluster for strong lithium depletion through analysis of veiling corrected 6708 angstrom lithium spectral line strengths. This suggests that 'cold' accretion at high rates (M_dot > 5 x 10-4 M_sol yr-1) occurs in the assembly phase of fewer than 0.5 per cent of 0.3 < M < 1.9 M_sol stars. We also find that the dispersion in the strength of the 6708 angstrom lithium line might imply an age spread that is similar in magnitude to the apparent age spread implied by the luminosity dispersion seen in colour magnitude diagrams. Evidence for weak lithium depletion (< 10 per cent in equivalent width) that is correlated with luminosity is ...

  3. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  4. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

    Rodriguez-Gomez, Vicente; Sales, Laura V; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, Paul; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2015-01-01

    We use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses ($M_{\\ast} = 10^9-10^{12} \\, {\\rm M_{\\odot}}$), galaxy types, environments, and assembly histories. We find that the `two-phase' picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation -- namely, the stellar mass growth of galaxies below a few times $10^{11} \\, {\\rm M_{\\odot}}$ is dominated by in situ star formation at all redshifts, while galaxies above this mass at $z \\lesssim 1$ grow primarily by accretion of stars via mergers. The fraction of the total stellar mass of galaxies at $z=0$ contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10% for Milky Way-sized galaxies to over 80% for $M_{\\ast} \\approx 10^{12} \\, {\\rm M_{\\odot}}$ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar...

  5. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Farinelli, R; Romano, P; Titarchuk, L

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. To this aim, we have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system tau using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar...

  6. Evolution of Disk Accretion

    Calvet, Nuria; Hartmann, Lee; Strom, Stephen E.

    1999-01-01

    We review the present knowledge of disk accretion in young low mass stars, and in particular, the mass accretion rate and its evolution with time. The methods used to obtain mass accretion rates from ultraviolet excesses and emission lines are described, and the current best estimates of mass accretion rate for Classical T Tauri stars and for objects still surrounded by infalling envelopes are given. We argue that the low mass accretion rates of the latter objects require episodes of high mas...

  7. Inner disk radius, accretion and the propeller effect in the spin-down phase of neutron stars

    Ertan, Unal

    2015-01-01

    We have investigated the critical conditions required for an efficient steady propeller mechanism in the spin-down phases of magnetized neutron stars with optically thick accretion disks. We have shown through simple analytical calculations that: (1) the strength of the dipole field at the Alfven radius is not sufficient to sustain an efficient mass-outflow even when the magnetic dipole field lines rotate much faster than the escape speed, (2) in the spin-down phase, mass accretion onto the star could persist above a minimum disk mass-flow rate that is orders of magnitude lower than the rate corresponding to the transition between the spin-up and the spin-down states, (3) below this critical mass-flow rate, a steady propeller state could be established with a maximum inner disk radius about 25 times smaller than the Alfven radius. Our results indicate that only for spherical accretion, the inner disk radius is likely to approach the Alfven radius, and for all realistic cases, the accretion-propeller transitio...

  8. The accretion regimes of a highly magnetised NS: the unique case of NuSTAR J095551+6940.8

    Dall'Osso, Simone; Papitto, Alessandro; Bozzo, Enrico; Stella, Luigi

    2015-01-01

    We analyze archival Chandra HRC observations of the ultra luminous accreting pulsar M82-X2 (NuSTAR J095551+6940.8), and determine an upper limit of $ r_{co}, and the source luminosity is expected to drop by a large factor. We conclude that a magnetically threaded, radiation pressure-dominated disk, around a highly magnetized NS (B~10^{13} G) offers the best intepretation for all the currently observed properties of NuSTAR J095551+6940.8. This source offers an unprecedented opportunity to study the disk-magnetosphere interaction in a new regime of supercritical accretion, and across the transition between-radiation pressure and gas-pressure dominance inside the disk.

  9. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ☉ yr–1 kpc–2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot BH and showed that numerical simulations reproduce our observed relation fairly well.

  10. Classical T Tauri stars with VPHAS+ - I. H α and u-band accretion rates in the Lagoon Nebula M8

    Kalari, V. M.; Vink, J. S.; Drew, J. E.; Barentsen, G.; Drake, J. J.; Eislöffel, J.; Martín, E. L.; Parker, Q. A.; Unruh, Y. C.; Walton, N. A.; Wright, N. J.

    2015-10-01

    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugri H α photometry from the VST Photometric H α survey+. Our sample consists of stars displaying H α excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the u-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H α and u-band intensities to be ˜0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star-forming processes suggested in the literature.

  11. Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Colombo, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-01-01

    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\\AA}) and OVIII (18.97 {\\AA}) line profiles. Results. The impacts of accreting blob...

  12. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29...

  13. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    Feldmeier, A; Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow types result, depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far downstream, a single critical point forms in the flow, which is a barrier for Abbott waves, and the solution tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical point, mass overloading results, and the critical point is shifted inwards. This wind exhibits a broad, stationary region of decelerating flow and its velocity law has kinks. Third, for perturbations eve...

  14. Numerical Experiments for Nuclear Flashes toward Superbursts in an Accreting Neutron Star

    Masa-aki Hashimoto

    2014-01-01

    Full Text Available We show that the superburst would be originated from thermonuclear burning ignited by accumulated fuels in the deep layers compared to normal X-ray bursts. Two cases are investigated for models related to superbursts by following thermal evolution of a realistic neutron star: helium flash and carbon flash accompanied with many normal bursts. For a helium flash, the burst shows the long duration when the accretion rate is low compared with the observation. The flash could become a superburst if the burning develops to the deflagration and/or detonation. For a carbon flash accompanied with many normal bursts, after successive 2786 normal bursts during 1.81 × 109 s, the temperature reaches the deflagration temperature. This is due to the produced carbon which amount reaches to ≈0.1 in the mass fraction. The flash will develop to dynamical phenomena of the deflagration and/or detonation, which may lead to a superburst.

  15. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  16. The burst mode of accretion and disk fragmentation in the early embedded stages of star formation

    Vorobyov, Eduard I

    2010-01-01

    We revisit our original papers on the burst mode of accretion by incorporating a detailed energy balance equation into a thin-disk model for the formation and evolution of circumstellar disks around low-mass protostars.Our model includes the effect of radiative cooling, viscous and shock heating, and heating due to stellar and background irradiation. Following the collapse from the prestellar phase allows us to model the early embedded phase of disk formation and evolution. During this time, the disk is susceptible to fragmentation, depending upon the properties of the initial prestellar core. Globally, we find that higher initial core angular momentum and mass content favors more fragmentation, but higher levels of background radiation can moderate the tendency to fragment. A higher rate of mass infall onto the disk than that onto the star is a necessary but not sufficient condition for disk fragmentation. More locally, both the Toomre Q-parameter needs to be below a critical value _and_ the local cooling ti...

  17. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    Fernández, Rodrigo

    2013-01-01

    Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Numerical simulations of NS-NS coalescence find, however, a wide range in the quantity of prompt dynamically-ejected mass. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the prope...

  18. An ultraluminous X-ray source powered by an accreting neutron star

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    .5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second(3). Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems(1,2). The most challenging sources to explain are those at...... the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the......-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 x 10(39) ergs per second. The pulsating source is spatially coincident with a variable source(4) that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 x 10(40) ergs per second(1). This association implies a luminosity of about 100...

  19. 3D-MHD simulations of an accretion disk with star-disk boundary layer

    Steinacker, A; Steinacker, Adriane; Papaloizou, John C.B.

    2002-01-01

    We present global 3D MHD simulations of geometrically thin but unstratified accretion disks in which a near Keplerian disk rotates between two bounding regions with initial rotation profiles that are stable to the MRI. The inner region models the boundary layer between the disk and an assumed more slowly rotating central, non magnetic star. We investigate the dynamical evolution of this system in response to initial vertical and toroidal fields imposed in a variety of domains contained within the near Keplerian disk. Cases with both non zero and zero net magnetic flux are considered and sustained dynamo activity found in runs for up to fifty orbital periods at the outer boundary of the near Keplerian disk. Simulations starting from fields with small radial scale and with zero net flux lead to the lowest levels of turbulence and smoothest variation of disk mean state variables. For our computational set up, average values of the Shakura & Sunyaev (1973) $\\alpha$ parameter in the Keplerian disk are typicall...

  20. The de-excited energy of electron capture in accreting neutron star crusts

    When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, thermal energy will be released and heat the crust, increasing crust temperature and changing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evolution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theoretical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is ∼0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts. (paper)

  1. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  2. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the Λ cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass ∼10 Msun with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 ∼ [Fe/H] ∼> -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be compatible with the observed lack of their nucleosynthetic signatures when some positive feedback on gas cooling works and changes the IMF from being very massive to being high mass.

  3. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

    Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Sales, Laura V.; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, Paul; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2016-05-01

    We use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses (M* = 109-1012 M⊙), galaxy types, environments, and assembly histories. We find that the `two-phase' picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation - namely, the stellar mass growth of galaxies below a few times 1011 M⊙ is dominated by in situ star formation at all redshifts. The fraction of the total stellar mass of galaxies at z = 0 contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10 per cent for Milky Way-sized galaxies to over 80 per cent for M* ≈ 1012 M⊙ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar mass, elliptical galaxies and those formed at the centres of younger haloes exhibit larger fractions of ex situ stars than disc-like galaxies and those formed in older haloes. On average, ˜50 per cent of the ex situ stellar mass comes from major mergers (stellar mass ratio μ > 1/4), ˜20 per cent from minor mergers (1/10 < μ < 1/4), ˜20 per cent from very minor mergers (μ < 1/10), and ˜10 per cent from stars that were stripped from surviving galaxies (e.g. flybys or ongoing mergers). These components are spatially segregated, with in situ stars dominating the innermost regions of galaxies, and ex situ stars being deposited at larger galactocentric distances in order of decreasing merger mass ratio.

  4. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  5. Constraints on Compact Star Parameters from Burst Oscillation Light Curves of the Accreting Millisecond Pulsar XTE J1814-338

    Bhattacharya, S; Miller, M C; Markwardt, C B; Bhattacharyya, Sudip; Strohmayer, Tod E.; Markwardt, Craig B.

    2004-01-01

    Detailed modeling of the millisecond brightness oscillations from low mass X-ray binaries during thermonuclear bursts can provide us with important information about compact star parameters. Until now the implementation of this idea has not been entirely successful, largely because of the negligible amount of harmonic content in burst oscillation lightcurves. However, the recent discovery of unique, non-sinusoidal burst oscillation lightcurves from the accreting millisecond pulsar XTE J1814-338 has changed this situation. We, therefore, for the first time, make use of this opportunity to constrain compact star structure parameters effectively. In our detailed study of the lightcurves of 22 bursts we fit the burst oscillation lightcurves with fully general relativistic models that include light-bending and frame-dragging for lightcurve calculation, and compute numerically the structure of compact stars using realistic equations of state. We find that the 90% confidence interval of the dimensionless radius to m...

  6. Hydrodynamic Modeling of Accretion Impacts in Classical T Tauri Stars: Radiative Heating of the Pre-shock Plasma

    Costa, G; Peres, G; Argiroffi, C; Bonito, R

    2016-01-01

    Context. It is generally accepted that, in Classical T Tauri Stars, the plasma from the circumstellar disc accretes onto the stellar surface with free fall velocity, and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a 1D hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray ...

  7. X-Shooter study of accretion in $\\rho$-Ophiucus: very low-mass stars and brown dwarfs

    Manara, C F; Natta, A; Alcalá, J M

    2015-01-01

    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This l...

  8. Magnetohydrodynamic modeling of the accretion shocks in classical T Tauri stars: the role of local absorption on the X-ray emission

    Bonito, R; Argiroffi, C; Miceli, M; Peres, G; Matsakos, T; Stehle, C; Ibgui, L

    2014-01-01

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthe...

  9. Theory of wind accretion

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  10. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of HII regions

    Haemmerlé, Lionel

    2016-01-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at $2\\,M_\\odot$ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on timescales as short as 100 - 1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in ...

  11. A nova re-accretion model for J-type carbon stars

    S. Sengupta; Izzard, R.G.; Lau, H. H. B.

    2013-01-01

    The J-type carbon (J)-stars constitute 10-15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong 13C absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make 13C only in a narrow range of masses. We investigate a binary-star formati...

  12. Membership, binarity and accretion among very low-mass stars and brown dwarfs of the σ Orionis cluster

    Kenyon, M. J.; Jeffries, R. D.; Naylor, Tim; Oliveira, J. M.; Maxted, P. F. L.

    2005-01-01

    Intermediate-resolution (R~ 7000) spectroscopy is presented for 76 photometrically selected very low-mass (0.04 consistent with the cluster mean. Photometric selection alone therefore appears to be very effective in identifying cluster members in this mass range. Only six objects appear to be certain non-members; however, a substantial subset of 13 candidates have ambiguous or contradictory indications of membership and lack Li absorption. Together with an observed spread in the equivalent width of the Li absorption feature in the cooler stars of our sample, this indicates that there may be deficiencies in our understanding of the formation of this line in cool, low-gravity objects. Four candidate binary cluster members are identified. Consideration of sampling and radial velocity measurement precision leads us to conclude that either the fraction of very low-mass stars and brown dwarfs in small separation (a < 1 au) binary systems is larger than in field M-dwarfs, or the distribution of separations is much less skewed towards large separations. This conclusion hinges critically on the correct identification of the small number of binary candidates, although it remains significant even when only the candidate members displaying Li absorption are considered. Broadened Hα emission, indicative of circum(sub)stellar accretion discs is found in five or six of the candidate cluster members, three of which probably have substellar masses. The fraction of accretors (10 +/- 5 per cent) is similar to that found in stars of higher mass in the σ Ori cluster using Hα emission as a diagnostic, but much lower than found for very low-mass stars and brown dwarfs of younger clusters. The time-scale for accretion rates to drop to <~10-11 Msolar yr-1 is hence less than the age of the σ Ori cluster (3-7 Myr) for most low-mass objects.

  13. NuSTAR J095551+6940.8: a highly magnetised neutron star with super-Eddington mass accretion

    Dall'Osso, Simone; Stella, Luigi

    2014-01-01

    The identification of the Ultraluminous X-ray source (ULX) X-2 in M82 as an accreting pulsar has shed new light on the nature of a subset of ULXs, while rising new questions on the nature of the super-Eddington accretion. Here, by numerically solving the torque equation of the accreting pulsar within the framework of the magnetically threaded-disk scenario, we show that three classes of solutions, corresponding to different values of the magnetic field for the same accretion rate, are mathematically allowed. We argue that the highest magnetic field one, corresponding to B $\\sim 10^{13}$ G, is favoured based on physical considerations and the observed properties of the source. In particular, that is the only solution which can account for the observed variations in $\\dot{P}$ (over four time intervals) without requiring major changes in $\\dot{M}$, which would be at odds with the approximately constant X-ray emission of the source during the same time. For this solution, we find that the source can only accomoda...

  14. Time-dependent two-dimensional radiation hydrodynamics of accreting matter onto highly magnetized neutron stars

    We present for the first time, the self-consistent solution of the two-dimensional, time-dependent equations of radiation-hydrodynamics governing the accretion of matter onto the highly magnetized polar caps of luminous x-ray pulsars. The calculations show a structure in the accretion column very different from previous one-zone uniform models. We have included all the relevant magnetic field corrections to both the hydrodynamics and the radiative transport. We include a new theory for the diffusion and advection of both radiation energy density and photon number density. For initially uniformly accreting models with super-Eddington flows, we have uncovered evidence of strong radiation-driven outflowing optically thin radiation filled regions of the accretion column embedded in optically-thick inflowing plasma. The development of these photon ''bubbles'' have growth times on the order of a millisecond and show fluctuations on sub-millisecond timescales. The photon bubbles are likely to be a consequence of convective over-stability and may result in observable fluctuations in the emitted luminosity leading to luminosity dependent changes in the pulse profile. This may provide important new diagnostics for conditions in accreting x-ray pulsars. 13 refs., 18 figs

  15. The chemical composition of ρ puppis and the signs of accretion in the atmospheres of B–F-type stars

    Yushchenko, Alexander V.; Kang, Young-Woon; Kim, Sungeun; Lee, Jae-Woo; Rittipruk, Pakakaew [Department of Astronomy and Space Science, Sejong University, Seoul, 143-747 (Korea, Republic of); Gopka, Vira F.; Yushchenko, Volodymyr A.; Dorokhova, Tatyana N. [Astronomical observatory, Odessa National University, Odessa, 65014 (Ukraine); Kim, Chulhee [Division of Science Education, Institute of Science Education, and Institute of Fusion Science, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Lee, Byeong-Cheol; Hong, Kyeongsoo [Korea Astronomy and Space Science Institute, Daejon 305-348 (Korea, Republic of); Doikov, Dmytry N. [Department of physics, Odessa National Maritime University, 65029, Odessa (Ukraine); Pikhitsa, Petro V., E-mail: avyuschenko@gmail.com [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-02-01

    We investigated the chemical composition of ρ Pup using high-resolution spectral observations taken from the Very Large Telescope and the IUE archives and also spectra obtained at the 1.8 m telescope of the Bohyunsan observatory in Korea. The abundances of 56 chemical elements and the upper limits of Li and Be abundances were determined. The abundance pattern of ρ Pup was found to be similar to that of Am-type stars. The possibility of the influence of the accretion of interstellar gas and dust on the abundance patterns of B–F-type stars is discussed. The plots of the relative abundances of chemical elements in the atmospheres of ρ Pup and δ Sct versus the second ionization potentials of these elements show the correlations. The discontinuities at 13.6 and 24.6 eV—the ionization potentials of hydrogen and helium, respectively, are also exhibited in these plots. These discontinuities can be explained by interaction of the atoms of interstellar gas, mainly hydrogen and helium atoms, with the atoms of stellar photospheres (so-called charge-exchange reactions). Note that only the jumps near 13.6 and 24.6 eV were pointed out in previous investigations of relative abundances versus the second ionization potentials for Am-type stars. The dependencies of the relative abundances of chemical elements on the second ionization potentials of these elements were investigated using the published abundance patterns of B–F-type stars. The correlations of relative and absolute abundances of chemical elements, second ionization potentials, and projected rotational velocities are clearly detected for stars with effective temperatures between 7,000 and 12,000 K. If the correlation of relative abundances and second ionization potentials can be explained by the accretion of interstellar gas on the stellar surfaces, the investigation of these correlations can provide valuable information on the density and velocities of interstellar gas in different regions of the Galaxy and

  16. Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models

    Valle, G D; Galli, D

    2005-01-01

    This paper reports simulations allowing for stochastic accretion and mass loss within closed and open systems modeled using a previously developed multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star formation rate is computed as a function of time directly from the model equations and all chemical evolution is followed without instantaneous recycling. Several types of simulations are presented here: (1) a closed system with bursty mass loss from the halo to the thick disk, and from the thick to the thin disk, in separate events to the thin disk; (2) open systems with random environmental (extragalactic) accretion, e.g. by infall of high velocity clouds directly to the thin disk; (3) schematic open system single and multiple collision events and intracluster stripping. For the open models, the mass of the Galaxy has been explicitly tracked with time. We present the evolution of the star formation rate, metallicity histories, and concentrate on the light elements. We find a wide range...

  17. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  18. Pre-main sequence accretion in the low metallicity Galactic star-forming region Sh 2-284

    Kalari, V M

    2014-01-01

    We present optical spectra of pre-main sequence (PMS) candidates around the H$\\alpha$ region taken with the Southern African Large Telescope, SALT, in the low metallicity ($Z$) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of $Z$ $\\sim$ 1/5 $Z_{\\odot}$. It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, $\\dot M_{\\rm{acc}}$, are a function of $Z$. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-$Z$ star-forming region. Our data-set was enlarged with literature data of H$\\alpha$ emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 - 2 $M_{\\odot}$ and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of 2MASS and Spitzer infrared photometry. We find $\\dot M_{\\rm{acc}}$ in the 1 - 2 $M_{\\odot}$ interval to d...

  19. Neutron star crust cooling in KS 1731-260: the influence of accretion outburst variability on the crustal temperature evolution

    Ootes, Laura S; Wijnands, Rudy; Degenaar, Nathalie

    2016-01-01

    Using a theoretical model, we track the thermal evolution of a cooling neutron star crust after an accretion induced heating period with the goal of constraining the crustal parameters. We present for the first time a crust cooling model $-\\text{ } NSCool\\text{ } -$ that takes into account detailed variability during the full outburst based on the observed light curve. We apply our model to KS 1731-260. The source was in outburst for $\\sim$12 years during which it was observed to undergo variations on both long (years) and short (days-weeks) timescales. Our results show that KS 1731-260 does not reach a steady state profile during the outburst due to fluctuations in the derived accretion rate. Additionally, long time-scale outburst variability mildly affects the complete crust cooling phase, while variations in the final months of the outburst strongly influence the first $\\sim$40 days of the calculated cooling curve. We discuss the consequences for estimates of the neutron star crust parameters, and argue th...

  20. NuSTAR reveals the extreme properties of the super-Eddington accreting SMBH in PG 1247+267

    Lanzuisi, G; Comastri, A; Cappi, M; Dadina, M; Marinucci, A; Masini, A; Matt, G; Vagnetti, F; Vignali, C; Ballantyne, D R; Bauer, F E; Boggs, S E; Brandt, W N; Brusa, M; Christensen, F E; Craig, W W; Fabian, A C; Farrah, D; Hailey, C J; Harrison, F A; Luo, B; Piconcelli, E; Puccetti, S; Ricci, C; Saez, C; Stern, D; Walton, D J; Zhang, W W

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at $z\\sim2$ and is a strongly super-Eddington accreting SMBH candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law ($\\Gamma=2.3\\pm0.1$); the weak ionized Fe emission line and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Comp...

  1. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Orlando, S; Argiroffi, C; Reale, F; Peres, G; Miceli, M; Matsakos, T; Stehle', C; Ibgui, L; de Sa, L; Chie`ze, J P; Lanz, T

    2013-01-01

    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, th...

  2. Accretion Disks

    Spruit, H.C.

    1995-01-01

    This is an introduction to accretion disk theory, with emphasis on aspects relevant for X-ray Binaries and Cataclysmic Variables. The text corrects some mistakes in an earlier version, which appeared in 'Lives of Neutron Stars', A. Alpar, \\"U. Kizilo\\u glu and J. van Paradijs (eds.), Kluwer, Dordrecht (NATO ASI series, 1994).

  3. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy. PMID:25788096

  4. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations rp –170 kpc and velocity offsets –1 from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] λ5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger Hδ absorption and smaller 4000 Å break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for rp ∼–170 kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  5. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 107 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr–1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  6. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    Appleton, P. N.; Bitsakis, T.; Alatalo, K. [NASAHerschel Science Center, Infrared Processing and Analysis Center, Caltech, 770S Wilson Avenue, Pasadena, CA 91125 (United States); Mundell, C. [Astrophysics Research Institute, John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Lacy, M. [NRAO, Charlottesville, VA (United States); Armus, L. [Spitzer NASAHerschel Science Center, 1200 East California Boulevard, Caltech, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Duc, P.-A. [Service d' Astrophysique, Laboratoire AIM, CEA-Saclay, Orme des Merisiers, Bat 709, F-91191 Gif sur Yvette (France); Lisenfeld, U. [Dept. Fisica Teorica y del Cosmos, University of Granada, Edifica Mecenas, Granada (Spain); Ogle, P., E-mail: apple@ipac.caltech.edu [NASA Extragalactic Database, IPAC, Caltech, 1200 East California Boulevard, Caltech, Pasadena, CA 91125 (United States)

    2014-12-20

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10{sup 7} M {sub ☉} detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H{sub 2} is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M {sub ☉} yr{sup –1} averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation.

  7. AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS

    We report on an accounting of the star-formation- and accretion-driven energetics of 24 μm-detected sources in the Great Observatories Origins Deep Survey-North field. For sources having infrared (IR; 8-1000 μm) luminosities ∼>3 x 1012 Lsun when derived by fitting local spectral energy distributions (SEDs) to 24 μm photometry alone, we find these IR luminosity estimates to be a factor of ∼4 times larger than those estimated when the SED fitting includes additional 16 and 70 μm data (and in some cases mid-IR spectroscopy and 850 μm data). This discrepancy arises from the fact that high-luminosity sources at z >> 0 appear to have far- to mid-IR ratios, as well as aromatic feature equivalent widths, typical of lower luminosity galaxies in the local universe. Using our improved estimates for IR luminosity and active galactic nucleus (AGN) contributions, we investigate the evolution of the IR luminosity density versus redshift arising from star formation and AGN processes alone. We find that, within the uncertainties, the total star-formation-driven IR luminosity density is constant between 1.15 ∼ 2. AGNs appear to account for ∼11 Lsun ≤ LIR 12 Lsun) appear to dominate the star formation rate density along with normal star-forming galaxies (LIR 11 Lsun) between 0.6 ∼ 2, the contribution from ultraluminous infrared galaxies (LIR ≥ 1012 Lsun) becomes comparable with that of LIRGs. Using our improved IR luminosity estimates, we find existing calibrations for UV extinction corrections based on measurements of the UV spectral slope typically overcorrect UV luminosities by a factor of ∼2, on average, for our sample of 24 μm-selected sources; accordingly we have derived a new UV extinction correction more appropriate for our sample.

  8. Silicon and Nickel Enrichment in Planet-Host Stars: Observations and Implications for the Core-Accretion Theory of Planet Formation

    Robinson, Sarah E.; Laughlin, Gregory; Bodenheimer, Peter; Fischer, Debra

    2006-01-01

    We present evidence that stars with planets exhibit statistically significant silicon and nickel enrichment over the general metal-rich population. We also present simulations which predict silicon enhancement of planet hosts within the context of the core-accretion hypothesis for giant planet formation. Because silicon and oxygen are both alpha elements, [Si/Fe] traces [O/Fe], so the silicon enhancement in planet hosts predicts that these stars are oxygen-rich as well. We present new numeric...

  9. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using NuSTAR

    Miller, J M; Fuerst, F; Bachetti, M; Barret, D; Grefenstette, B W; Tendulkar, S; Harrison, F A; Boggs, S E; Chakrabarty, D; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Natalucci, L; Paerels, F; Rana, V; Stern, D K; Tomsick, J A; Zhang, W W

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5-sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically-blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z > 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z > 0.22 and R < 12.6 km (assuming M = 1.4 Msun and a=0, where a = cJ/GM^2). If the star ...

  10. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    Lanzuisi, G.; Perna, M.; Comastri, A.;

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z similar to 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad...

  11. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks

  12. Continuous frequency spectrum of the global hydromagnetic oscillations of a magnetically confined mountain on an accreting neutron star

    Vigelius, M

    2009-01-01

    We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies (1979), extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfv\\'{e}n part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum $\\omega_\\mathrm{low}$. For equilibria with accreted mass $1.2 \\times 10^{-6} \\la M_a/M_\\odot \\la 1.7 \\times 10^{-4}$ and surface magnetic fields $10^{11} \\la B_\\ast/\\mathrm{G} \\la 10^{13}$, $\\omega_\\mathrm{low}$ is approximately independent of $B_\\ast$, and increases with $M_a$. The results are consistent with the Alfv\\'{e}n spectrum excited in numerical simulations with the \\textsc{zeus-mp} solver. The spectrum is modified substantially by the Coriolis force in n...

  13. Discovery and Observations of ASASSN-13db, an EXor Accretion Event on a Low-Mass T Tauri Star

    Holoien, Thomas W -S; Stanek, Krzysztof Z; Kochanek, Christopher S; Shappee, B J; Zhu, Z; Sicilia-Aguilar, A; Grupe, D; Croxall, K; Adams, J; Simon, J D; McGraw, N Morell S M; Wagner, R M; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Jencson, J; Pojmanski, G; Starrfield, S G; Szczygieł, D M; Woodward, C E

    2014-01-01

    We discuss ASASSN-13db, an EXor accretion event on the young stellar object (YSO) SDSS J051011.01$-$032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region ($d \\sim 420$ pc). We present follow-up photometric and spectroscopic observations of the source after the $\\Delta V \\sim-$3.7 mag outburst that began in September 2013. These data indicate an increase in temperature and luminosity consistent with an accretion rate of $\\sim10^{-7}$ $\\rm{M}_\\odot$ yr$^{-1}$, three-to-five orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX~Lupi in late 2008 during its st...

  14. Population synthesis of young isolated neutron stars: the effect of fallback disk accretion and magnetic field evolution

    Fu, Lei

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominatd by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out Monte-Carlo simulation of the evolution of young NSs, and show that most of the pulsars have the braking indices ranging from -1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  15. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Siwak, Michal; Ogloza, Waldemar; Rucinski, Slavek M.; Moffat, Anthony F. J.; Matthews, Jaymie M.; Cameron, Chris; Guenther, David B.; Kuschnig, Rainer; Rowe, Jason F.; Sasselov, Dimitar; Weiss, Werner W.

    2016-03-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilized: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the South African Astronomical Observatory in April-May of 2013, (3) archival V-filter All Sky Automated Survey (ASAS) data for nine seasons, 2001-2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 Ultraviolet Visual Echelle Spectrograph spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hotspots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19-7.58 d, which is in accord with ASAS observations showing a well-defined 7.247 ± 0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hotspots created near the stellar magnetic poles during the stable process of accretion. Re-analysis of RU Lup high-resolution spectra with the broadening function approach reveals signs of a large polar coldspot, which is fairly stable over 13 years. As the star rotates, the spot-induced depression of intensity in the broadening function profiles changes cyclically with period 3.710 58 d, which was previously found by the spectral cross-correlation method.

  16. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  17. The SW Sex-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    Khruzina, T; Kjurkchieva, D; 10.1051/0004-6361/201220385

    2013-01-01

    We present new photometric and spectral observations of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188. To obtain a light curve solution we used model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. The high mass accr...

  18. Possible Evidence for Metal Accretion onto the Surfaces of Metal-Poor Main-Sequence Stars

    Hattori, Kohei; Beers, Timothy C; Carollo, Daniela; Lee, Young Sun

    2014-01-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parametrized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the ...

  19. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1 - 20 AU from Sun-like stars

    Heller, René

    2015-01-01

    Exomoon detections might be feasible with NASA's Kepler or ESA's upcoming PLATO mission or the ground-based E-ELT. To use observational resources most efficiently we need to know where the largest, most easily detected moons can form. We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how different heating sources in those disks affect the H2O ice lines. We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical model -- (1) viscous heating, (2) planetary illumination, (3) accretional heating, and (4) stellar illumination -- are fed by precomputed planet evolution tracks. We consider planets accreting 1 to 12 Jupiter masses at distances between 1 and 20 AU to a Sun-like star. Accretion disks around Jupiter-mass planets closer than ~4.5 AU to Sun-like stars do not feature H2O ice lines, but the most m...

  20. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  1. The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636-536

    Keek, L; Wolf, Z; Ballantyne, D R; Suleimanov, V F; Kuulkers, E; Strohmayer, T E

    2015-01-01

    Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the the slope of the temperature profile left behind by the carbon flame. We analyse RXTE/PCA observations of 4U 1636-536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 seconds is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superburs...

  2. A Low-Mass Main-Sequence Star and Accretion Disk in the Very Faint Transient M15 X-3

    Arnason, Robin; Heinke, Craig; Cohn, Haldan; Lugger, Phyllis

    2015-01-01

    We present near-simultaneous Chandra/HST observations of the very faint ($L_{x} < 10^{36}$ erg s$^{-1}$) X-ray transient source M15 X-3, as well as unpublished archival Chandra observations of M15 X-3. The Chandra observations constrain the luminosity of M15 X-3 to be $< 10^{34}$ erg s$^{-1}$ in all observed epochs. The X-ray spectrum shows evidence of curvature, and prefers a fit to a broken power-law with break energy $E_{\\rm break} = 2.7^{+0.4}_{-0.6}$ keV, and power law indices of $\\Gamma_{1} = 1.3^{+0.1}_{-0.2}$ and $\\Gamma_{2} = 1.9^{+0.2}_{-0.2}$ over a single power law. We fit our new F438W ($B$), F606W (broad $V$), and F814W ($I$) HST data on the blue optical counterpart with a model for an accretion disk and a metal-poor main sequence star. From this fit, we determine the companion to be consistent with a main sequence star of mass $0.440^{+0.035}_{-0.060}$ $M_{\\odot}$ in a $\\sim$4-hour orbit. X-ray irradiation of the companion is likely to be a factor in the optical emission from the system, ...

  3. NuSTAR and Suzaku observations of the hard state in Cygnus X-1: locating the inner accretion disk

    Parker, M L; Miller, J M; Yamaoka, K; Lohfink, A; Nowak, M; Fabian, A C; Alston, W N; Boggs, S E; Christensen, F E; Craig, W W; Fuerst, F; Gandhi, P; Grefenstette, B W; Grinberg, V; Hailey, C J; Harrison, F A; Kara, E; King, A L; Stern, D; Walton, D J; Wilms, J; Zhang, W W

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broad-band spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, and instead requires a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of Garcia et al. (2014) to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height, and rule out truncation to greater than three gravitational radii at the 3{\\sigma} confidence le...

  4. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    Meng, Huan Y A; Rieke, George H; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C; Gutermuth, Robert A; Morales-Calderón, María; Rebull, Luisa M; Watson, Alan M

    2016-01-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the {\\rho} Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 {\\mu}m) and K (2.2 {\\mu}m) bands were synchronized while the 4.5 {\\mu}m emission lagged by 74.5 +/- 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 AU from the protostar on average, with an error of order 0.01 AU. This size is likel...

  5. H2O megamasers : Accretion disks, jet interaction, outflows or massive star formation?

    Henkel, C; Braatz, JA; Tarchi, A; Peck, AB; Nagar, NM; Greenhill, LJ; Hagiwara, Y

    2005-01-01

    The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclea

  6. A POPULATION OF ACCRETED SMALL MAGELLANIC CLOUD STARS IN THE LARGE MAGELLANIC CLOUD

    We present an analysis of the stellar kinematics of the Large Magellanic Cloud (LMC) based on ∼5900 new and existing velocities of massive red supergiants, oxygen-rich and carbon-rich asymptotic giant branch (AGB) stars, and other giants. After correcting the line-of-sight velocities for the LMC's space motion and accounting for asymmetric drift in the AGB population, we derive a rotation curve that is consistent with all of the tracers used, as well as that of published H I data. The amplitude of the rotation curve is v0 = 87 ± 5 km s-1 beyond a radius R0 = 2.4 ± 0.1 kpc and has a position angle of the kinematic line of nodes of θ = 142 deg. ± 5 deg. By examining the outliers from our fits, we identify a population of 376 stars, or ∼>5% of our sample, that have line-of-sight velocities that apparently oppose the sense of rotation of the LMC disk. We find that these kinematically distinct stars are either counter-rotating in a plane closely aligned with the LMC disk, or rotating in the same sense as the LMC disk, but in a plane that is inclined by 54 deg. ± 2 deg. to the LMC. Their kinematics clearly link them to two known H I arms, which have previously been interpreted as being pulled out from the LMC. We measure metallicities from the Ca triplet lines of ∼1000 LMC field stars and 30 stars in the kinematically distinct population. For the LMC field, we find a median [Fe/H] = -0.56 ± 0.02 with dispersion of 0.5 dex, while for the kinematically distinct stars the median [Fe/H] is -1.25 ± 0.13 with a dispersion of 0.7 dex. The metallicity differences provide strong evidence that the kinematically distinct population originated in the Small Magellanic Cloud. This interpretation has the consequence that the H I arms kinematically associated with the stars are likely falling into the LMC, instead of being pulled out.

  7. NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES

    It has been claimed that there is a large population of obscured, accreting black holes at high redshift and that the integrated black hole density at z = 6 as inferred from X-ray observations is ∼100 times greater than that inferred from optical quasars. I have performed a stacking analysis of very deep Chandra X-ray data at the positions of photometrically selected z = 6 galaxy candidates. It is found that there is no evidence for a stacked X-ray signal in either the soft (0.5-2 keV) or hard (2-8 keV) X-ray bands. Previous work which reported a significant signal is affected by an incorrect method of background subtraction which underestimates the true background within the target aperture. The puzzle remains as to why the z = 6 black hole mass function has such a flat slope and a low normalization compared to the stellar mass function.

  8. Nucleosynthesis inside accretion disks and outflows formed during core collapse of massive stars

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks and in the outflows launched from these disks mainly in the context of Type II collapsars. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper in the disk. We also confirm the presence of iron-group and alpha-elements in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk and survive in the outflows. While emission lines of several of these elements have been observed in the X-ray afterglows of GRBs by BeppoSAX, Chandra, XMM-Newton etc., Swift seems to have not found these lines yet.

  9. Evolution of Massive Protostars via Disk Accretion

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles ont...

  10. The 35-day cycle in Her X-1 as observational appearance of freely precessing neutron star and forcedly precessing accretion disk

    Ketsaris, N A; Postnov, K A; Prokhorov, M E; Shakura, N I; Staubert, R; Wilms, J

    2000-01-01

    A careful analysis of X-ray light curves and pulse profiles of Her X-1 obtained over more than 20 years strongly evidences for free precession of a magnetized neutron star with rotational axis inclined to the orbital plane as a central clock underlying the observed 35-day period. Strong asymmetric X-ray illumination of the optical star atmosphere leads to the formation of gaseous streams coming out of the orbital plane and forming a tilted accretion disk around the neutron star. Such a disk precesses due to tidal forces and dynamical action of gaseous streams from the secondary companion. The locking of these torques with neutron star precession makes the net disk precession period to be very close to that of the neutron star free precession.

  11. Can the age discrepancies of neutron stars be circumvented by an accretion-assisted torque?

    Shi, Y

    2003-01-01

    It is found that 1E 1207.4-5209 could be a low-mass bare strange star if its smaller radius or low altitude cyclotron formation can be identified. The age problems of five sources could be solved by a fossil-disk-assisted torque. The magnetic dipole radiation dominates the evolution of PSR B1757-24 at present, and the others are in propeller (or tracking) phases.

  12. Gamma ray bursts and neutron star accretion of a solid body

    The sequence of events that would probably take place if a comet or asteroid were to make a direct impact with a neutron star is described. We have in mind an explanation of the 1979 March 5 gamma burst where a 0.1 s bursts of hard X-rays was followed by a protracted 8 s pulsation. We assume a local 100 pc origin, a cold magnetized neutron star, impacted by a comet or asteroid of 1018 g with finite strength (or binding energy) s10 in units of 1010 dynes cm-2. Then tidal breakup occurs at a radius approx.2 x 109s10/sup -1/3/ cm, and the subsequent flow is compressive and elongates the body. Impact with a neutron star without a magnetic field leads to a small efficiency (-3) of high temperature radiation because of rapid reconversion of thermal energy to kinetic energy by radiation-stress induced expansion. Only a strong magnetic field can restrain this expansion. Impact of the gravitationally distorted body on a dipole field leads to diamagnetic penetration to approx.50 R/sub ns/, R/sub ns/ the neutron star radius, where a weak shock compresses the body to rhoroughly-equal10rho0 (rho0 the original density) and heat it to a temperature approx.50 eV by the time it reaches Rroughly-equal27 R/sub ns/. The subsequent flow is adiabatic, with compression in magnetic longitude and expansion in magnetic latitude so that the body impacts the surface with a density approx.106 g cm-3, as a thin (several millimeters) diamagnetic slice in longitude, several kilometers wide in latitude, during a time of a millisecond. The neutron star surface interaction causes a local explosion and expansion of matter onto a fan of flux tubes. The restricted area, the fall back at the conjugate field points, and storage of matter at high L or flux surface radii result in a spectrum and flux that offers a reasonable explanation of the March 5 event

  13. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux ...

  14. The Phase Space of z=1.2 Clusters: Probing Dust Temperature and Star Formation Rate as a Function of Environment and Accretion History

    Noble, Allison; SpARCS Collaboration

    2016-01-01

    Understanding the influence of environment is a fundamental goal in studies of galaxy formation and evolution, and galaxy clusters offer ideal laboratories with which to examine environmental effects on their constituent members. Clusters continually evolve and build up mass through the accumulation of galaxies and groups, resulting in distinct galaxy populations based on their accretion history. In Noble et al. 2013, we presented a novel definition for environment using the phase space of line-of-sight velocity and clustercentric radius, which probes the time-averaged density to which a galaxy has been exposed and traces out accretion histories. Using this dynamical definition of environment reveals a decline in specific star formation towards the cluster core in the earliest accreted galaxies, and was further shown to isolate post-starburst galaxies within clusters (Muzzin et al. 2014). We have now extended this work to higher-redshift clusters at z=1.2 using deep Herschel-PACS and -SPIRE data. With a sample of 120 spectroscopically-confirmed cluster members, we investigate various galaxy properties as a function of phase-space environment. Specifically, we use 5-band Herschel photometry to estimate the dust temperature and star formation rate for dynamically distinct galaxy populations, namely recent infalls and those that were accreted into the cluster at an earlier epoch (Noble et al. submitted). These properties are then compared to a field sample of star-forming galaxies at 1.1 results, focusing on how this accretion-based definition aids our understanding of quenching mechanisms within z=1.2 galaxies.

  15. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    Miller, J. M.; King, A. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tomsick, J. A.; Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bachetti, M. [Universite de Toulouse, UPS-OMP, IRAP, F-31100 Toulouse (France); Wilkins, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS. B3H 3C3 (Canada); Christensen, F. E. [Danish Technical University, DK-2800, Lyngby (Denmark); Craig, W. W. [Lawrence Livermore National Laboratory, Livermore CA (United States); Fabian, A. C.; Kara, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Grefenstette, B. W.; Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, C. J. [Columbia University, New York, NY 10027 (United States); Stern, D. K [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  16. X-Shooter spectroscopy of young stellar objects: IV -- Accretion in low-mass stars and sub-stellar objects in Lupus

    Alcalá, J M; Manara, C F; Spezzi, L; Stelzer, B; Frasca, A; Biazzo, K; Covino, E; Randich, S; Rigliaco, E; Testi, L; Comerón, F; Cupani, G; D'Elia, V

    2013-01-01

    We present X-Shooter/VLT observations of a sample of 36 accreting low-mass stellar and sub-stellar objects (YSOs) in the Lupus star forming region, spanning a range in mass from ~0.03 to ~1.2Msun, but mostly with 0.1Msun < Mstar < 0.5Msun. Our aim is twofold: firstly, analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and from it the accretion rate (Macc), is derived by modelling the excess emission, from the UV to the near-IR, as the continuum emission of a slab of hydrogen. The flux and luminosity (Ll) of a large number of emission lines of H, He, CaII, etc., observed simultaneously in the range from ~330nm to 2500nm, were computed. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion as comp...

  17. The complex accretion geometry of GX 339-4 as seen by NuSTAR and Swift

    Fuerst, F; Tomsick, J A; Miller, J M; Corbel, S; Bachetti, M; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Gandhi, P; Grinberg, V; Hailey, C J; Harrison, F A; Kara, E; Kennea, J A; Madsen, K K; Pottschmidt, K; Stern, D; Walton, D J; Wilms, J; Zhang, W W

    2015-01-01

    We present spectral analysis of five NuSTAR and Swift observations of GX 339-4 taken during a failed outburst in summer 2013. These observations cover Eddington luminosity fractions in the range ~0.9-6%. Throughout this outburst, GX 339-4 stayed in the hard state, and all five observations show similar X-ray spectra with a hard power-law with a photon index near 1.6 and significant contribution from reflection. Using simple reflection models we find unrealistically high iron abundances. Allowing for different photon indices for the continuum incident on the reflector relative to the underlying observed continuum results in a statistically better fit and reduced iron abundances. With a photon index around 1.3, the input power-law on the reflector is significantly harder than that which is directly observed. We study the influence of different emissivity profiles and geometries and consistently find an improvement when using separate photon indices. The inferred inner accretion disk radius is strongly model dep...

  18. Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

    Pintore, F; di Salvo, T; Guainazzi, M; D'Aì, A; Riggio, A; Burderi, L; Iaria, R; Robba, N R

    2014-01-01

    When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints...

  19. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  20. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  1. Interpretation of the Veiling of the Photospheric Spectrum for T Tauri Stars in Terms of an Accretion Model

    Dodin, A V

    2012-01-01

    The problem on heating the atmospheres of T Tauri stars by radiation from an accretion shock has been solved. The structure and radiation spectrum of the emerging so-called hot spot have been calculated in the LTE approximation. The emission not only in continuum but also in lines has been taken into account for the first time when calculating the spot spectrum. Comparison with observations has shown that the strongest of these lines manifest themselves as narrow components of helium and metal emission lines, while the weaker ones decrease significantly the depth of photospheric absorption lines, although until now, this effect has been thought to be due to the emission continuum alone. The veiling by lines changes the depth of different photospheric lines to a very different degree even within a narrow spectral range. Therefore, the nonmonotonic wavelength dependence of the degree of veiling r found for some CTTS does not suggest a nontrivial spectral energy distribution of the veiling continuum. In general,...

  2. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Siwak, Michal; Rucinski, Slavek M; Moffat, Anthony F J; Matthews, Jaymie M; Cameron, Chris; Guenther, David B; Kuschnig, Rainer; Rowe, Jason F; Sasselov, Dimitar; Weiss, Werner W

    2015-01-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April - May of 2013, (3) archival V-filter ASAS data for nine seasons, 2001 - 2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 UVES spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hot spots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19 - 7.58 d, which is in accord with ASAS observations showing a well defined 7.247+/-0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hot spots created near the ste...

  3. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  4. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    Walton, D. J.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Risaliti, G. [INAF-Osservatoria Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Fabian, A. C.; Kara, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Arevalo, P. [Pontificia Universidad Católica de Chile, Instituto de Astrfísica, Casilla 306, Santiago 22 (Chile); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brenneman, L. W.; Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Luo, B. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-06-10

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  5. A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries

    Bhattacharyya, Sudip

    2002-02-01

    We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.

  6. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, Andrew; Macbeth, Jared

    2004-03-01

    Superbursts are very energetic type I X-ray bursts discovered in recent years by long-term monitoring of X-ray bursters and are believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting light curves agree very well with observations for layer masses in the range 1025-1026 g expected from ignition calculations and for an energy release >~1017 ergs g-1 during the flash. We show that at late times the cooling flux from the layer decays as a power law F~t-4/3, giving timescales for quenching of normal type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modeling of superburst light curves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  7. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, A; Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux from the layer decays as a power law in time, giving timescales for quenching of normal Type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modelling of superburst lightcurves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  8. Escape, Accretion or Star Formation? The Competing Depleters of Gas in Markarian 231

    Alatalo, Katherine

    2015-01-01

    We report on high resolution CO(1-0), CS(2-1) and 3mm continuum Combined Array for Research in Millimeter Astronomy (CARMA) observations of the molecular outflow host and nearest quasar Markarian 231. We use the CS(2-1) measurements to derive a dense gas mass within Mrk 231 of $1.8\\pm0.3\\times10^{10}$ $M_\\odot$, quite consistent with previous measurements. The CS(2-1) data also seem to indicate that the molecular disk of Mrk 231 is forming stars at normal efficiency. The high resolution CARMA observations were able to resolve the CO(1-0) outflow into two distinct lobes, allowing for a size estimate to be made and further constraining the molecular outflow dynamical time, further constraining the molecular gas escape rate. We find that 15% of the molecular gas within the Mrk 231 outflow actually exceeds the escape velocity in the central kiloparsec. Assuming that molecular gas is not constantly being accelerated, we find the depletion timescale of molecular gas in Mrk 231 to be 49 Myr, rather than 32 Myr, more...

  9. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1-20 AU from Sun-like stars

    Heller, R.; Pudritz, R.

    2015-06-01

    Context. The first detection of a moon around an extrasolar planet (an "exomoon") might be feasible with NASA's Kepler or ESA's upcoming PLATO space telescopes or with the future ground-based European Extremely Large Telescope. To guide observers and to use observational resources most efficiently, we need to know where the largest, most easily detected moons can form. Aims: We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how the different heating sources in those disks affect the location of the H2O ice lines as a function of stellar and planetary distance. Methods: We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical framework - (1) viscous heating; (2) planetary illumination; (3) accretional heating of the disk; and (4) stellar illumination - are fed by precomputed planet evolution models. We consider accreting planets with final masses between 1 and 12 Jupiter masses at distances between 1 and 20 AU to a solar type star. Results: Accretion disks around Jupiter-mass planets closer than about 4.5 AU to Sun-like stars do not feature H2O ice lines, whereas the most massive super-Jovians can form icy satellites as close as 3 AU to Sun-like stars. We derive an empirical formula for the total moon mass as a function of planetary mass and stellar distance and predict that super-Jovian planets forming beyond about 5 AU can host Mars-mass moons. Planetary illumination is the major heat source in the final stages of accretion around Jupiter-mass planets, whereas disks around the most massive super-Jovians are similarly heated by planetary illumination and viscous heating. This indicates a transition towards circumstellar accretion disks, where viscous heating dominates in the stellar vicinity. We also study a broad range of circumplanetary disk

  10. Star formation in dense clusters

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dyna...

  11. RELATIONSHIP BETWEEN STAR FORMATION RATE AND BLACK HOLE ACCRETION AT z = 2: THE DIFFERENT CONTRIBUTIONS IN QUIESCENT, NORMAL, AND STARBURST GALAXIES

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, LX) and stellar mass (M*) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M∗0.43±0.09, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of LX/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively

  12. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  13. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    Rodighiero, G.; Franceschini, A.; Baronchelli, I. [Dipartimento di Fisica e Astronomia “G. Galilei”, Universita’ di Padova, Vicolo dell’Osservatorio 3, I-35122 (Italy); Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Daddi, E.; Strazzullo, V. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, Bât.709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Negrello, M.; Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 2, I-35122 Padova (Italy); Mullaney, J. R. [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom); Lutz, D. [Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Gruppioni, C. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127, Bologna (Italy); Silverman, J., E-mail: giulia.rodighiero@unipd.it [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan)

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, L{sub X}) and stellar mass (M{sub *}) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M{sub ∗}{sup 0.43±0.09}, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of L{sub X}/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  14. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    Pintore, Fabio; Bozzo, Enrico; Sanna, Andrea; Burderi, Luciano; D'Aì, Antonino; Riggio, Alessandro; Scarano, Fabiana; Iaria, Rosario

    2015-01-01

    Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole datasets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ~10 gravitational radii by an accretion disc with...

  15. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    Pintore, F.; Di Salvo, T.; Bozzo, E.; Sanna, A.; Burderi, L.; D'Aì, A.; Riggio, A.; Scarano, F.; Iaria, R.

    2015-06-01

    Broad emission features of abundant chemical elements, such as iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low-mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable Comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc, where Doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole data sets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ˜10 gravitational radii by an accretion disc with an ionization parameter of ξ ˜ 600 erg cm s-1 and viewed under an inclination angle of the system of ˜35°. Furthermore, we detected for the first time for GX 3+1, the presence of a power-law component dominant at energies higher than 20 keV, possibly associated with an optically thin component of non-thermal electrons.

  16. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of hybrid crusts in accreting neutron stars

    Wijnands, Rudy; Page, Dany

    2012-01-01

    It is assumed that accreting neutron stars (NSs) in LMXBs are heated due to the compression of the existing crust by the accreted matter which gives rise to nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements. We discuss if NSs in very-faint X-ray transients (VFXTs; those which have peak X-ray luminosities < 1E36 erg/s) can be used to test this model. Unfortunately we cannot conclusively answer this because of the large uncertainties in our estimates of the accretion rate history of those VFXTs, both the short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is important because it can be so low that the NSs might not have accreted enough matter to become massive enough that enhanced cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processed have been inferred. However, the...

  17. Magnetospheric accretion in EX Lupi

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  18. Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Her X-1: indication of an evolution of the magnetic field?

    Klochkov, D; Postnov, K; Wilms, J; Rothschild, R E; Santangelo, A

    2015-01-01

    Context: The magnetic field is a crucial ingredient of neutron stars. It governs the physics of accretion and of the resulting high-energy emission in accreting pulsars. Studies of the cyclotron resonant scattering features (CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit direct measuremets of the field strength. Aims: From an analysis of a number of pointed observations with different instruments, the energy of CRSF, Ecyc, has recently been found to decay in Her X-1, which is one of the best-studied accreting pulsars. We present our analysis of a homogeneous and almost uninterrupted monitoring of the line energy with Swift/BAT. Methods: We analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The data were used to measure the CRSF energy averaged over several months. Results: The analysis confirms the long-term decay of the line energy. The downward trend is highly significant and consistent with the trend measured with the pointed observations: dEcyc/dt ~-0.3 ...

  19. Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole

    Metzger, Brian D

    2011-01-01

    We construct one dimensional steady-state models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a neutron star (NS) or stellar mass black hole (BH). At radii r 50-80 per cent of the total WD mass is unbound. The ejecta composition is predominantly O, C, Si, Mg, Ne, Fe, and S [He, C, Si, S, Ar, and Fe], in the case of C-O [He] WDs, respectively, along with a small quantity ~1e-3-1e-2 Msun of radioactive Ni56 and, potentially, a trace amount of H. We use our results to evaluate possible EM counterparts of WD-NS/BH mergers, including optical transients powered by the radioactive decay of Ni56 and radio transients powered by the interaction of the ejecta with the interstellar medium. We address whether recently discovered subluminous Type I supernovae result from WD-NS/BH mergers. Our results also have implications for accretion following the core collapse of massive stars in collapsar models for gamma-ray bursts.

  20. On the new braking index of PSR B0540-69: further support for magnetic field growth of neutron stars following submergence by fallback accretion

    Ekşi, K Yavuz

    2016-01-01

    The magnetic fields of the nascent neutron stars could be submerged to the crust by rapid fallback accretion and could diffuse to the surface later in life. According to this field burial scenario young pulsars may have growing magnetic fields which is known to result in less-than-three braking indices; larger braking indices implying longer field-growth time-scales. A nascent neutron star with a larger kick velocity would accrete less amount of matter and would have a rapidly growing magnetic field, leading to a larger discrepancy with the braking index expected from a constant field. Such an inverse relation between the field growth time-scale inferred from the braking indices and space velocity of pulsars was claimed in the past as a prediction of the field-burial scenario. With a braking index of $n\\sim 2$ and large space velocity PSR B0540-69 was then an outlier in the claimed relation. The recently measured small braking index of the object as $n \\sim 0.03$ implies a much shorter time-scale for the fiel...

  1. Time-of-flight mass measurements of neutron-rich chromium isotopes up to N =40 and implications for the accreted neutron star crust

    Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Sieja, K.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.

    2016-03-01

    We present the mass excesses of Cr-6459, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48 (44 ) MeV. We find a significantly different two-neutron separation energy S2 n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N =38 . Additionally, we extend the S2 n trend for chromium to N =40 , revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the f p shell, including the g9 /2 and d5 /2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A =64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1 -MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.

  2. The Rate of Turbulent Spherical Accretion

    Gruzinov, Andrei

    1998-01-01

    The rate of turbulent spherical accretion onto a compact object might be much smaller than the Bondi rate. It is suggested that the rate of accretion onto Sgr A-star is much smaller than the Bondi rate.

  3. Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Hercules X-1: indication of an evolution of the magnetic field?

    Klochkov, D.; Staubert, R.; Postnov, K.; Wilms, J.; Rothschild, R. E.; Santangelo, A.

    2015-06-01

    Context. The magnetic field is a crucial ingredient of neutron stars. It governs the physics of accretion and of the resulting high-energy emission in accreting pulsars. Studies of the cyclotron resonant scattering features (CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit direct measurements of the field strength. Aims: From an analysis of a number of pointed observations with different instruments, the energy of CRSF, Ecyc, has recently been found to decay in Her X-1 , which is one of the best-studied accreting pulsars. We present our analysis of a homogeneous and almost uninterrupted monitoring of the line energy with Swift/BAT. Methods: We analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The data were used to measure the CRSF energy averaged over several months. Results: The analysis confirms the long-term decay of the line energy. The downward trend is highly significant and consistent with the trend measured with the pointed observations: dEcyc/ dt ~ -0.3 keV per year. Conclusions: The decay of Ecyc either indicates a local evolution of the magnetic field structure in the polar regions of the neutron star or a geometrical displacement of the line-forming region due to long-term changes in the structure of the X-ray emitting region. The shortness of the observed timescale of the decay, -Ecyc/Ėcyc ~ 100 yr, suggests that trend reversals and/or jumps of the line energy might be observed in the future.

  4. Mass Measurement of 56Sc Reveals a Small A = 56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust.

    Meisel, Z; George, S; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cole, A L; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-10-16

    We present the mass excesses of (52-57)Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((-54)(+0))  MeV and -21.0(1.3)  MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332. PMID:26550869

  5. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  6. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei, and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    Trump, Jonathan R; Zeimann, Gregory R; Luck, Cuyler; Bridge, Joanna S; Grier, Catherine J; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J; Brandt, W Niel; Ciardullo, Robin; Schneider, Donald P

    2015-01-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that "star formation dilution" by HII regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically-motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent Lbol/L[OIII] bolometric correction, and the observed Mbh-sigma relation. These simulations indicate that, in massive (log(M*/Msun) > 10) galaxies, AGN accretion is correlated with specific star formation rate but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass (log(M*/Msun) < 10) hosts, although o...

  7. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona; Fürst, Felix; Barret, Didier; Bellm, Eric C.; Boggs, Steven E.; Chakrabarty, Deepto; Chenevez, Jérôme; Christensen, Finn Erland; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Natalucci, Lorenzo; Pottschmidt, Katja; Stern, Daniel; Tomsick, John A.; Walton, Dominic J.; Wilms, Jörn; Zhang, William

    2014-01-01

    consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ∼ 12.29 s in all energy bands. The...

  8. Spherical Accretion

    Sari, Re'em; Goldreich, Peter

    2006-01-01

    We compare different examples of spherical accretion onto a gravitating mass. Limiting cases include the accretion of a collisionally dominated fluid and the accretion of collisionless particles. We derive expressions for the accretion rate and density profile for semi-collisional accretion which bridges the gap between these limiting cases. Particle crossing of the Hill sphere during the formation of the outer planets is likely to have taken place in the semi-collisional regime.

  9. Pseudo-Newtonian Potentials to Describe the Temporal Effects on Relativistic Accretion Disks around Rotating Black Holes and Neutron Stars

    Mukhopadhyay, Banibrata; Misra, Ranjeev

    2002-01-01

    Two pseudo-Newtonian potentials, which approximate the angular and epicyclic frequencies of the relativistic accretion disk around rotating (and counter rotating) compact objects, are presented. One of them, the Logarithmically Modified Potential, is a better approximation for the frequencies while the other, the Second-order Expanded potential, also reproduces the specific energy for circular orbits in close agreement with the General Relativistic values. These potentials may be included in ...

  10. Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki

    2010-12-01

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of gsim3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than thermodynamics of the collapsing gas, at the protostar formation epoch, the first core (or the circumstellar disk) has a mass of ~0.005-0.1 M sun, while the protostar has a mass of ~10-3 M sun. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for ~105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  11. FORMATION PROCESS OF THE CIRCUMSTELLAR DISK: LONG-TERM SIMULATIONS IN THE MAIN ACCRETION PHASE OF STAR FORMATION

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of ∼>3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than sun, while the protostar has a mass of ∼10-3 Msun. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for ∼105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  12. DISCOVERY AND OBSERVATIONS OF ASASSN-13db, AN EX LUPI-TYPE ACCRETION EVENT ON A LOW-MASS T TAURI STAR

    We discuss ASASSN-13db, an EX Lupi-type (EXor) accretion event on the young stellar object (YSO) SDSS J051011.01–032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d ∼ 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV ∼ –5.4 mag outburst that began in 2013 September and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of ∼10–7 M ☉ yr–1, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008

  13. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    Margalit, Ben

    2016-01-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...

  14. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brusa, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Luo, B.; Piconcelli, E.; Puccetti, S.; Ricci, C.; Saez, C.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2016-05-01

    PG1247+267 is one of the most luminous known quasars at z ~ 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Γ = 2.3 ± 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of ~100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  15. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk

    Chetana Jain; Biswajit Paul; Kaustubh Joshi; Anjan Dutta; Harsha Raichur

    2007-12-01

    We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3 upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20 lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb–Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.

  16. Evolution of Massive Protostars Via Disk Accretion

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  17. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    Mass accretion onto (proto-)stars at high accretion rates M-dot*> 10-4 Msun yr-1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 Msun yr-1, the radius of a protostar is initially small, R*≅ a few Rsun. After several solar masses have accreted, the protostar begins to bloat up and for M* ≅ 10 Msun the stellar radius attains its maximum of 30-400 Rsun. The large radius ∼100 Rsun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M* ≅ 30 Msun, independent of the accretion geometry. For accretion rates exceeding several 10-3 Msun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds Rsun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  18. Theory of wind accretion

    Shakura N.I.

    2014-01-01

    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  19. Theory of wind accretion

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  20. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2010-01-01

    We investigate the star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {\\Lambda}CDM scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars. We demonstrate that (1) The hierarchical structure formation can explain the characteristics of the observed metallicity distribution function (MDF) including a break around [Fe/H]~-4. ...

  1. Evolution of Massive Protostars via Disk Accretion

    Hosokawa, Takashi; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10^-3 M_sun/yr the radius of a protostar is initially small, about a few R_sun. After several solar masses have accreted, the protostar...

  2. Meta-stable low-level accretion rate states or neutron star crust cooling in the Be/X-ray transients V0332+53 and 4U 0115+63

    Wijnands, Rudy

    2016-01-01

    The Be/X-ray transients V0332+53 and 4U 0115+63 exhibited giant, type-II outbursts in 2015. Here we present Swift/XRT follow-up observations at the end of those outbursts. Surprisingly, the sources did not decay back to their known quiescent levels but stalled at a (slowly decaying) meta-stable state with luminosities ~10 times that observed in quiescence. The spectra in these states are considerably softer than the outburst spectra and appear to soften in time when the luminosity decreases. The physical mechanism behind these meta-stable states is unclear and they could be due to low-level accretion (either direct accretion onto the neutron stars or on to their magnetospheres) or due to cooling of the accretion-heated neutron star crusts. Based on the spectra, the slowly decreasing luminosities, and the spectral softening, we favour the crust cooling hypothesis but we cannot exclude the accretion scenarios. On top of this meta-stable state, weak accretion events were observed that occurred at periastron pass...

  3. On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    Hajigholi, M; Wirström, E S; Black, J H; Bergman, P; Olofsson, A O H; Olberg, M; Wyrowski, F; Coutens, A; Hjalmarson, Å; Menten, K M

    2016-01-01

    [Abridged] Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The $J = 3\\leftarrow2$ lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study...

  4. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  5. Raman Scattered O VI $\\lambda$ 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae

    Lee, Hee-Won

    2007-01-01

    We present the high resolution spectra of the D type symbiotic stars V1016 Cygni and HM Sagittae obtained with the Bohyunsan Optical Echelle Spectrograph (BOES), and investigate the double-peaked asymmetric profiles of the Raman scattered O VI 6825. By adopting a wind accretion disk model, we assume that the O VI emission region is described by a Keplerian thin disk. The Raman scattering occurs in a neutral region near the giant, taking in the form of a slow stellar wind, part of which is ionized by the strong UV radiation from the hot white dwarf. Using a Monte Carlo technique, we compute the line profiles that are modulated by the slow spherical stellar wind from the giant component with the ionization front approximated by a hyperboloid. In order to account for the asymmetry and the existence of a central dip in the profiles, we add an O VI resonance scattering region between the hot white dwarf and the giant star which hinders the incidence of slightly blue O VI photons upon the H I region. Overall good f...

  6. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    Walton, D. J.; Risaliti, G.; Harrison, F. A.;

    2014-01-01

    , partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We...... find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better)....... time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection...

  7. Time-dependent models of accretion discs with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    Margalit, Ben; Metzger, Brian D.

    2016-09-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion discs produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disc mid-plane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disc dynamics. A model for disc outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the mid-plane to a fixed value ≲0. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disc outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disc evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD discs does not exhibit this behaviour, which instead depends sensitively on factors controlling the disc mid-plane density (e.g. the strength of the viscosity, α). By the end of the simulation, a substantial fraction of the WD mass is unbound in outflows at characteristic velocities of ˜109 cm s-1. The outflows from WD-NS merger discs contain 10-4-3 × 10-3 M⊙ of radioactive 56Ni, resulting in fast (˜ week long) dim (˜1040 erg s-1) optical transients; shock heating of the ejecta by late-time outflows may increase the peak luminosity to ˜1043 erg s-1. The accreted mass on to the NS is probably not sufficient to induce gravitational collapse, but may be capable of spinning up the NS to periods of ˜10 ms, illustrating the feasibility of this channel in forming isolated millisecond pulsars.

  8. Launching jets from accretion belts

    Schreier, Ron

    2016-01-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications to a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  9. Theory of wind accretion

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\times10^{36}$ erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the ...

  10. PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star

    Gezari, S; Lawrence, A; Rest, A; Jones, D O; Berger, E; Challis, P M; Narayan, G

    2015-01-01

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with HST/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a $t^{-5/3}$ power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ~ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer H\\delta absorption in the host galaxy strong enough to be indicative of a rare, post-starburst "E+A" galaxy as reported by Arcavi et al. (2014). The light curve of PS1-10jh over a baseline of 3.5 yr is best modeled by fallback accretion of a tidall...

  11. Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

    Machida, Masahiro N; Matsumoto, Tomoaki

    2010-01-01

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing clouds, the first (adiabatic) core with a size of ~10AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure, and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually, and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk. This indicates that the circumstellar disk is formed before the protostar formation with a size of ~10AU, which means that no protoplanetary disk smaller than <10AU exists. Reflecting the thermodynamics of the collapsing gas, at the protostar formation epoch, the circumstellar disk has a mass of ~0.01-0.1 solar mass, while the protostar has a mass of ~10^-3 solar mass. Thus, jus...

  12. The effect of episodic accretion on the phase transition of CO and CO_2 in low-mass star formation

    Vorobyov, Eduard I.; Baraffe, Isabelle; Harries, Tim; Chabrier, Gilles

    2013-01-01

    We study the evaporation and condensation of CO and CO_2 during the embedded stages of low-mass star formation by using numerical simulations. We focus on the effect of luminosity bursts, similar in magnitude to FUors and EXors, on the gas-phase abundance of CO and CO_2 in the protostellar disk and infalling envelope. The evolution of a young protostar and its environment is followed based on hydrodynamical models using the thin-disk approximation, coupled with a stellar evolution code and ph...

  13. Exploring the relationship between black-hole accretion and star-formation with blind mid-/far-infrared spectroscopic surveys

    Bonato, M; Cai, Z -Y; De Zotti, G; Bressan, A; Lapi, A; Pozzi, F; Gruppioni, C; Danese, L

    2014-01-01

    We present new estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI and excited both by star formation and by AGN activity. The new estimates improve over previous work by using updated evolutionary models and dealing in a self consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. New relationships between line and AGN bolometric luminosity have been derived and those between line and IR luminosities of the starburst component have been updated. These ingredients were used to work out predictions for the source counts in 11 mid/far-IR emission lines partially or entirely excited by AGN activity. We find that the statistics of the emission line detection of galaxies as a whole is mainly determined by the star formation rate, because of the rarity of bright AGNs. We also find that the slope of the line integral number counts is flatter than 2 implying that the number of detections at fixed observing time increases more by ...

  14. New Constraints on the Black Hole Low/Hard State Inner Accretion Flow with NuSTAR

    Miller, J M; Bachetti, M; Wilkins, D; Boggs, S E; Chistensen, F E; Craig, W W; Fabian, A C; Grefenstette, B W; Hailey, C J; Harrison, F A; Kara, E; King, A L; Stern, D K; Zhang, W W

    2014-01-01

    We report on an observation of the Galactic black hole candidate GRS 1739-278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising "low/hard" state, at a flux of ~0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray "corona". Two models that explicitly assume a "lamppost" corona find its base to have a vertical height above the black hole of h = 5 (+7, -2) GM/c^2 and h = 18 +/-4 GM/c^2 (90% confidence errors); models that do not assume a "lamppost" return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739-278 f...

  15. Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226

    Appleton, P N; Bitsakis, T; Lacy, M; Alatalo, K; Armus, L; Charmandaris, V; Duc, P -A; Lisenfeld, U; Ogle, P

    2014-01-01

    We present archival Spitzer photometry and spectroscopy, and Herschel photometry, of the peculiar "Green Valley" elliptical galaxy NGC~3226. The galaxy, which contains a low-luminosity AGN, forms a pair with NGC~3227, and is shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and 16$\\mu$m reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy, and coincident with the termination of a 30 kpc-long HI tail. In-situ star formation associated with the IR plume is identified from narrow-band HST imaging. The end of the IR-plume coincides with a warm molecular hydrogen disk and dusty ring, containing 0.7-1.1 $\\times$ 10$^7$ M$_{\\odot}$ detected within the central kpc. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H$_2$ is in a warm state. Photometry, derived from the UV to the far-IR, shows evidence for a low star formation rate of $\\sim$0.04 M$_{\\odot}$ yr$^{-1}$ averaged over the last 100 Myrs. A mid-IR ...

  16. The Complex Accretion Geometry of GX 339-4 as Seen by NuSTAR and Swift

    Fürst, F.; Nowak, M. A.; Tomsick, J. A.; Miller, J. M.; Corbel, S.; Bachetti, M.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Gandhi, P.; Grinberg, V.; Hailey, C. J.; Harrison, F. A.; Kara, E.; Kennea, J. A.; Madsen, K. K.; Pottschmidt, K.; Stern, D.; Walton, D. J.; Wilms, J.; Zhang, W. W.

    2015-08-01

    We present spectral analyses of five Nuclear Spectroscopic Telescope Array and Swift observations of GX 339-4 taken during a failed outburst during the summer of 2013. These observations cover Eddington luminosity fractions in the range ≈0.9%-6%. Throughout this outburst GX 339-4 stayed in the hard state and all five observations show similar X-ray spectra, with a hard power law with a photon index near 1.6, and significant contribution from reflection. Using simple reflection models we find unrealistically high iron abundances. Allowing for different photon indices for the continuum incident on the reflector relative to the underlying observed continuum results in a statistically better fit and reduced iron abundances. With a photon index around 1.3, the input power law on the reflector is significantly harder than that which is directly observed. We study the influence of different emissivity profiles and geometries and consistently find an improvement when using separate photon indices. The inferred inner accretion disk radius is strongly model dependent, but we do not find evidence for a truncation radius larger than 100 {r}g in any model. The data do not allow independent spin constraints, but the results are consistent with the literature (i.e., a\\gt 0). Our best-fit models indicate an inclination angle in the range 40°-60°, consistent with limits on the orbital inclination but higher than reported in the literature using standard reflection models. The iron line around 6.4 keV is clearly broadened, and we detect a superimposed narrow core as well. This core originates from a fluorescent region outside the influence of the strong gravity of the black hole. Additionally, we discuss possible geometries.

  17. Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Sieja, K; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2016-01-01

    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric...

  18. Metal-Poor, Cool Gas in the Circumgalactic Medium of a z = 2.4 Star-Forming Galaxy: Direct Evidence for Cold Accretion?

    Crighton, Neil H M; Prochaska, J Xavier

    2013-01-01

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman-limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R_perp = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen [N(HI) = 10^(19.50 +/- 0.16) cm^-2] we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z / Zsolar) = -2.0 +/- 0.17, or (7-15) x 10^-3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature 0.1 solar, ten times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool,...

  19. Mass measurement of 56Sc reveals a small A=56 odd-even mass staggering, implying a cooler accreted neutron star crust

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cole, A L; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-01-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)(+0 -54) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass-chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We found that, in contrast to prev...

  20. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (NH0=1019.50±0.16 cm-2) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z/Z ☉) = –2.0 ± 0.17, or (7-15) × 10–3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature 0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM

  1. On the accretion process in a high-mass star forming region. A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    Hajigholi, M.; Persson, C. M.; Wirström, E. S.; Black, J. H.; Bergman, P.; Olofsson, A. O. H.; Olberg, M.; Wyrowski, F.; Coutens, A.; Hjalmarson, Å.; Menten, K. M.

    2016-01-01

    Aims: Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. Methods: The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. Results: The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J = 3 ← 2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10-00 ortho-NH3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10-00. An ammonia abundance on the order of 10-9 relative to H2 is needed to fit the profiles. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km s-1, relative to the source systemic velocity. Attempts to model the inward motion with a single gas cloud in free-fall collapse did not succeed. Herschel is an ESA space

  2. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    Mukherjee Dipanjan; Bhattacharya Dipankar; Mignone Andrea

    2013-01-01

    In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local ...

  3. HIGHLY VARIABLE EXTINCTION AND ACCRETION IN THE JET-DRIVING CLASS I-TYPE YOUNG STAR PTF 10nvg (V2492 Cyg, IRAS 20496+4354)

    outflow. CARMA maps resolve on larger scales a spatially extended outflow in millimeter-wavelength CO. We attribute the recently observed photometric and spectroscopic behavior to rotating circumstellar disk material located at separation a ≈ 0.7(M*/M☉)1/3 AU from the continuum source, causing the semi-periodic dimming. Occultation of the central star as well as the bright inner disk and the accretion/outflow zones renders shocked gas in the inner part of the jet amenable to observation at the faint epochs. We discuss PTF 10nvg as a source exhibiting both accretion-driven (perhaps analogous to V1647 Ori) and extinction-driven (perhaps analogous to UX Ori or GM Cep) high-amplitude variability phenomena.

  4. Accretion rates and accretion efficiency in AGNs

    Weihao, Bian; Yongheng, Zhao

    2003-01-01

    We used the standard geometrical thin accretion theory to obtain the accretion rates in Seyfert 1 galaxies and quasars. Combining accretion rates with the bolometric luminosity, we obtained the accretion efficiency. We found most of Seyfert 1 galaxies and radio quiet quasars have lower accretion efficiencies while most of the radio loud quasars possess higher accretion efficiencies. This finding further implies most of radio loud quasars possess Kerr black holes while Seyfert 1 galaxies and r...

  5. Pulsed Accretion onto Eccentric and Circular Binaries

    Muñoz, Diego J

    2016-01-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ~5 times the binary period P_b,accretion onto an eccentric binary is predominantly modulated at the period ~1P_b. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This "symmetry breaking" between the stars, however, alternates over timescales of order 200 P_b, and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the ...

  6. The Rapid Burster and its X-ray bursts: extremes of accretion and thermonuclear burning

    Klis, van der, M.; Zand, in 't, J.J.M.; Watts, A.; Bagnoli, T.

    2015-01-01

    X-ray bursts originate from accreting neutron stars (NSs) in X-ray binaries (XRBs). They come in two flavours: thermonuclear bursts are due to the sudden runaway burning of the material accreted on the surface; accretion bursts signal a sudden change in the mass accretion rate, leading to enhanced emission in the innermost regions of the accretion flow. While thermonuclear bursts have been observed from 105 NSs as of writing, accretion bursts remain enigmatically confined to only two sources....

  7. How Dim Accreting Black Holes Could Be?

    Abramowicz, M A; Abramowicz, Marek Artur; Igumenshchev, Igor V.

    2001-01-01

    Recent hydrodynamical simulations of radiatively inefficient black hole accretion flows with low viscosity have demonstrated that these flows differ significantly from those described by an advection-dominated model. The black hole flows are advection-dominated only in their inner parts, but convectively dominated at radii R>100R_g. In such flows, the radiative output comes mostly from the convection part, and the radiative efficiency is independent of accretion rate and equals ~0.001. This value gives a limit for how dim an accreting black hole could be. It agrees with recent Chandra observations which indicate that accreting black holes in low-mass X-ray binaries are by factor about 100 dimmer that neutron stars accreting with the same accretion rates.

  8. Wind accretion: Theory and observations

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  9. STAR FORMATION IN DENSE CLUSTERS

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  10. Lambda Boo Abundance Patterns: Accretion from Orbiting Sources

    Jura, M

    2015-01-01

    The abundance anomalies in lambda Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically-inferred bounds for interstellar accretion. Therefore, a lambda Boo star's thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt Objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some lambda Boo stars accrete from the winds of hot Jupiters.

  11. Accretion by the Galaxy

    Binney J.

    2012-02-01

    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  12. Metal-Poor, Cool Gas in the Circumgalactic Medium of a z = 2.4 Star-Forming Galaxy: Direct Evidence for Cold Accretion?

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-01-01

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman-limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R_perp = 58 kpc fro...

  13. Spiral Waves in Accretion Disks

    Harlaftis, Emilios

    A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.

  14. Disk Accretion and the Stellar Birthline

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  15. Strong C+ emission in galaxies at z~1-2: Evidence for cold flow accretion powered star formation in the early Universe

    Brisbin, Drew; Nikola, Thomas; Parshley, Stephen; Stacey, Gordon J; Spoon, Henrik; Hailey-Dunsheath, Steven; Verma, Aprajita

    2014-01-01

    We have recently detected the [CII] 157.7 micron line in eight star forming galaxies at redshifts 1 to 2 using the redshift(z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [CII] observations during the epoch of peak star formation. We have augmented this survey with observations of the [OI] 63 micron line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [OI]/FIR and [CII]/FIR ~1% or more. The relatively strong [CII] emission is consistent with our sources being dominated by star formation powered PDRs, extending to kpc scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10 to 100 times that of local s...

  16. X-ray diagnostics of chemical composition of the accretion disk and donor star in UCXBs II: XMM-Newton observations

    Koliopanos, Filippos; Trigo, Maria Diaz

    2014-01-01

    We search for the Fe K${\\alpha}$ line in spectra of Ultra Compact X-ray Binaries (UCXBs). For this purpose we have analyzed XMM-Newton observations of five confirmed UCXBs. We find that the object 2S 0918-549 - whose optical spectrum bears tentative signatures of a C/O accretion disk - is devoid of any emission features in the 6-7 keV range, with an upper limit of less than 10 eV for the equivalent width (EW) of the iron line. 4U 1916-05 - whose optical spectrum is consistent with reflection from a He-rich accretion disk - exhibits a bright broad iron emission line. This behavior is in agreement with the theoretical predictions presented in Koliopanos, Gilfanov and Bildsten (2013). Namely, we expect strong suppression of the Fe K${\\alpha}$ emission line in spectra originating in moderately bright (LogLx less than $\\approx$ 37.5) UCXBs with C/O or O/Ne/Mg-rich donors. On the other hand the EW of the iron line in spectra from UCXBs with He-rich donors is expected to retain its nominal value of $\\approx$ 100 eV....

  17. Do we see accreting magnetars in X-ray pulsars?

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  18. STRONG C+ EMISSION IN GALAXIES AT z ∼ 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    We have recently detected the [C II] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ∼1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line

  19. STRONG C{sup +} EMISSION IN GALAXIES AT z ∼ 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    Brisbin, Drew [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen; Spoon, Henrik [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Stacey, Gordon J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Hailey-Dunsheath, Steven [California Institute of Technology, Mail Code 301-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Verma, Aprajita, E-mail: dbrisbin@nrao.edu [University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2015-01-20

    We have recently detected the [C II] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ∼1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line.

  20. Foundations of Black Hole Accretion Disk Theory

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  1. THE HIDDEN 'AGN MAIN SEQUENCE': EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH-M* RELATION

    Using X-ray stacking analyses we estimate the average amounts of supermassive black hole (SMBH) growth taking place in star-forming galaxies at z ∼ 1 and z ∼ 2 as a function of galaxy stellar mass (M*). We find that the average SMBH growth rate follows remarkably similar trends with M* and redshift as the average star formation rates (SFRs) of their host galaxies (i.e., M-dotBH ∝ M*0.86±0.39 for the z ∼ 1 sample and M-dotBH ∝ M*1.05±0.36 for the z ∼ 2 sample). It follows that the ratio of SMBH growth rate to SFR is (1) flat with respect to M*, (2) not evolving with redshift, and (3) close to the ratio required to maintain/establish an SMBH to stellar mass ratio of ≈10–3 as also inferred from today's MBH-MBulge relationship. We interpret this as evidence that SMBHs have, on average, grown in step with their host galaxies since at least z ∼ 2, irrespective of host galaxy mass and active galactic nucleus triggering mechanism. As such, we suggest that the same secular processes that drive the bulk of star formation are also responsible for the majority of SMBH growth. From this, we speculate that it is the availability of gas reservoirs that regulate both cosmological SMBH growth and star formation.

  2. A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705-44: looking at the inner accretion disc with X-ray spectroscopy

    Di Salvo, C.; D'Aí, A.; Iaria, R.; Burderi, L.; Dovčiak, Michal; Karas, Vladimír; Matt, G.; Papitto, A.; Piraino, S.; Riggio, A.; Robba, N.R.; Santangelo, A.

    2009-01-01

    Roč. 398, č. 4 (2009), s. 2022-2027. ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : line formation * individual stars4U 1705−44 * X-ray binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.103, year: 2009

  3. Detection of Strong Millimeter Emission from the Circumstellar Dust Disk Around V1094 Sco: Cold and Massive Disk around a T Tauri Star in a Quiescent Accretion Phase?

    Tsukagoshi, Takashi; Kitamura, Yoshimi; Momose, Munetake; Shimajiri, Yoshito; Hiramatsu, Masaaki; Ikeda, Norio; Kamegai, Kazuhisa; Wilson, Grant; Yun, Min S; Scott, Kimberly; Austermann, Jay; Perera, Thushara; Hughes, David; Aretxaga, Itziar; Mauskopf, Philip; Ezawa, Hajime; Kohno, Kotaro; Kawabe, Ryohei

    2010-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 millimeter continuum observations with AzTEC on ASTE. A compact ($r\\lesssim$320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy which is largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in $^{12}$CO J=3--2 and $^{13}$CO J=3--2. Since our $^{12}$CO and $^{13}$CO observations did not show any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed SED of V1094 Sco shows no distinct turnover from near infrared to millimeter wavelengths, which can be well described by a flattened disk for the dust component, and no clear dip feature around 10 $\\micron$ suggestive of absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The es...

  4. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    R. Wijnands; N. Degenaar

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which r

  5. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    Khaibrakhmanov, Sergey A; Parfenov, Sergey Yu; Sobolev, Andrey M

    2016-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations onto dust grains, and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the re...

  6. Neutrino oscillation above a black hole accretion disk

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere

  7. Neutrino oscillation above a black hole accretion disk

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Surman, R. [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States)

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  8. The Star-formation History and Accretion-Disk Fraction Among the K-Type Members of the Scorpius-Centaurus OB Association

    Pecaut, Mark J

    2016-01-01

    We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (~100-200 pc). Using an X-ray, proper motion and color-magnitude selected sample, we obtained spectra for 361 stars, for which we report spectral classifications and Li and Halpha equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (~0.7-1.3 Msun) members of Sco-Cen. We investigated the star-formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar disks in our sample using WISE infrared data and find a protoplanetary disk fraction for K-type stars of 4.4$^{+1.6}_{-0.9}$% for Upper Centaurus-Lupus and Lower Centaurus-Crux at ~16 Myr and 9.0$^{+4.0}_{-2.2}$% for Upper Scorpius at ~10 Myr. These data are consisten...

  9. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    R. Wijnands(Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands); Degenaar, N.

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which ranged from ∼0.3 to ∼3.8 ks). The upper limits for the non-detections were consistent with the detected luminosities (when fitting a thermal model to the spectrum) of ∼1034 erg s−1 (0.5-10 keV). Thi...

  10. Gravitational Radiation from Accreting Millisecond Pulsars

    Vigelius, Matthias; Melatos, Andrew

    2008-01-01

    It is widely assumed that the observed reduction of the magnetic field of millisecond pulsars can be connected to the accretion phase during which the pulsar is spun up by mass accretion from a companion. A wide variety of reduction mechanisms have been proposed, including the burial of the field by a magnetic mountain, formed when the accreted matter is confined to the poles by the tension of the stellar magnetic field. A magnetic mountain effectively screens the magnetic dipole moment. On the other hand, observational data suggests that accreting neutron stars are sources of gravitational waves, and magnetic mountains are a natural source of a time-dependent quadrupole moment. We show that the emission is sufficiently strong to be detectable by current and next generation long-baseline interferometers. Preliminary results from fully three-dimensional magnetohydrodynamic (MHD) simulations are presented. We find that the initial axisymmetric state relaxes into a nearly axisymmetric configuration via toroidal ...

  11. Accretion disks in luminous young stellar objects

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  12. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  13. Supernova Light Curves Powered by Fallback Accretion

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  14. Astrophysical problems of neutron stars

    Full text: Due to the recent discovery of 2 solar mass neutron stars in a neutron star - white dwarf binary, many soft neutron star equations of states are ruled out. On the other hand, all well-measured neutron star masses in double neutron star binaries are still below 1.5 solar mass. In this review talk, we would like to summarize the current status of neutron star mass observations and discuss the possibility of supercritical accretion during the neutron star binary evolution. We argue that the fate of the supercritical accretion strongly depends on the type of neutron star companion. The first-born neutron star in neutron star-white dwarf binaries can accrete significant amount of matter after its formation. Consequently, neutron star masses in neutron star-white dwarf binaries can be significantly higher than those of fresh neutron stars. On the other hand, neutron stars in double neutron star binaries that are observed don't have enough time to accrete and remain more or less the same as they are born. (author)

  15. Review: Accretion Disk Theory

    Montesinos, Matias

    2012-01-01

    In this paper I review and discuss the basic concepts of accretion disks, focused especially on the case of accretion disks around black holes. The well known alpha-model is revisited, showing the strengths and weaknesses of the model. Other turbulent viscosity prescription, based on the Reynolds number, that may improve our understanding of the accretion paradigm is discussed. A simple but efficient mathematical model of a self-gravitating accretion disk, as well as observational evidence of...

  16. Infall and accretion

    Combes, F.

    2007-01-01

    Gas infall and accretion play a fundamental role in galaxy formation, and several processes of accretion are reviewed. In particular the cold accretion may solve to some extent the angular momentum problem in disk formation, while it is aggravated by mergers. Gas accretion is one of the main actor in secular evolution: it is required to account for recurrent bar formation, and to explain the feedback cycles of formation of bulges and black holes, with correlated masses. Infall is also require...

  17. Rotation and Accretion Powered Pulsars

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  18. Accretion onto the First Stellar Mass Black Holes

    Alvarez, Marcelo A; Abel, Tom

    2008-01-01

    The first stars in the universe, forming at redshifts z>15 in minihalos with masses of order 10^6 Msun, may leave behind black holes as their remnants. These objects could conceivably serve as "seeds" for much larger black holes observed at redshifts z~6. We study the growth of the remnant black holes through accretion including for the first time the emitted accretion radiation with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the accretion flow from large scales, resulting in negligible mass growth of the black hole. We compare cases with the accretion luminosity included and neglected to show that the accretion radiation drastically changes the environment within 100 pc of the black hole, where gas temperatures are increased by an order of magnitude. The gas densities are reduced and further star formation in the same minihalo prevented for the two hundred million years of evolution we followed. These calculation...

  19. Variable protostellar accretion with episodic bursts

    Vorobyov, Eduard I

    2015-01-01

    We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with improved disk thermal balance and star-disk interaction, we computed the evolution of protostellar disks formed from the gravitational collapse of prestellar cores. In agreement with our previous studies, we find that cores of higher initial mass and angular momentum produce disks that are more favorable to gravitational instability and fragmentation, while a higher background irradiation and magnetic fields moderate the disk tendency to fragment. The protostellar accretion in our models is time-variable, thanks to the nonlinear interaction between different spiral modes in the gravitationally unstable disk, and can undergo episodic bursts when fragments migrate onto the star owing to the gravitational interaction with other fragments or spiral arms. Most bursts occur...

  20. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter...

  1. Mineral accretion in seawater

    Bozak, Ronald Richard

    2000-10-01

    By performing electrolysis in seawater a concrete-like accretion of precipitating aragonite (one crystalline form of CaCO3) and brucite (Mg(OH) 2) slowly develops onto the cathode. The accretion forms by high pH conditions caused by the reduction reactions occurring at the cathode. A solid casing of accretions over a preformed cathodic mesh has the potential for many engineering applications such as artificial reefs, sub-surface breakwaters and pipe construction. To investigate using mineral accretion as an alternative means of construction, experiments in the open coast, laboratory and ocean harbor have resulted in tables that can projected into a feasibility study. Inevitable current density variations over the cathodic framework and sensitivity to seawater hydrodynamics make accretion thickness difficult to predict and control in practice. Ideal conditions for growing a large-scale mineral accretion structure are still, clean ocean waters where low DCV power can be delivered on the order of years.

  2. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    Hosokawa, Takashi; Yorke, Harold W

    2012-01-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with Mdot ~ 0.1 - 1 Msun/yr during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 1000 Msun. To this end we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 0.01 Msun/yr, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates the star always has a radius exceeding 100 Rsun, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~ 100 Msun follows the same track with R_* \\propto M_*^0.5 in all cases with accretion rates > 0...

  3. Global Models for Embedded, Accreting Protostellar Disks

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  4. A new look at spherical accretion in High Mass X-ray Binaries

    Ikhsanov, N R; Beskrovnaya, N G; 10.1063/1.3701365

    2012-01-01

    Currently used model of spherical accretion onto a magnetized rotating neutron star encounters major difficulties in explaining the entry rate of accreting material into the stellar field and spin evolution of long-period X-ray pulsars. These difficulties can be, however, avoided if the magnetic field of the material captured by the neutron star is incorporated into the model. The magnetic field of the flow itself under certain conditions controls the accretion process and significantly affects the parameters of the accreting material. The mode by which the accretion flow enters the stellar magnetosphere in that case can be associated with Bohm (or turbulent) diffusion and the torque applied to the neutron star appears to be substantially higher than that evaluated in the non-magnetized accretion scenario.

  5. X-rays from neutron stars

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  6. Progenitors of the Accretion-Induced Collapse of White Dwarfs

    Kwiatkowski, Damian

    2015-01-01

    Recent calculations of accretion-induced collapse of an oxygen-neon-magnesium white dwarf into a neutron star [Piro & Thompson 2014] allow for a potentially detectable transient electromagnetic signal. Motivated by these results, I present theoretical rates and physical properties of binary stars that can produce accretion-induced collapse. The rates are presented for various types of host galaxies (e.g. old ellipticals versus spirals) and are differentiated by the donor star type (e.g. large giant star versus compact helium-rich donor). Results presented in this thesis may help to guide near-future electromagnetic transient search campaigns to find likely candidates for accretion-induced collapse events. My predictions are based on binary evolution calculations that include the most recent updates on mass accretion and secular mass growth of white dwarfs. I find that the most likely systems that undergo accretion-induced collapse consist of an ONeMg white dwarf with a Hertzsprung gap star or a red giant ...

  7. Bondi-Hoyle accretion in an isothermal magnetized plasma

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M ☉ star accretes ∼4 × 10–9 M ☉ yr–1, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by Bondi-Hoyle rates. Our

  8. Bondi-Hoyle accretion in an isothermal magnetized plasma

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J., E-mail: a.t.lee@berkeley.edu [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States)

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  9. Supernova Light Curves Powered by Fallback Accretion

    Dexter, Jason

    2012-01-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (> days) power associated with the accretion of this "fallback" material may significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as Mdot ~ t^-5/3 at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse o...

  10. Pulsars and quark stars

    Xu, R

    2005-01-01

    Members of the family of pulsar-like stars are distinguished by their different manifestations observed, i.e., radio pulsars, accretion-driven X-ray pulsars, X-ray bursts, anomalous X-ray pulsars/soft gamma-ray repeaters, compact center objects, and dim thermal neutron stars. Though one may conventionally think that these stars are normal neutron stars, it is still an open issue whether they are actually neutron stars or quark stars, as no convincing work, either theoretical from first principles or observational, has confirmed Baade-Zwicky's original idea that supernovae produce neutron stars. After introducing briefly the history of pulsars and quark stars, the author summarizes the recent achievements in his pulsar group, including quark matter phenomenology at low temperature, starquakes of solid pulsars, low-mass quark stars, and the pulsar magnetospheric activities.

  11. Variability and Stability in Radiation Hydrodynamic Accretion Flows

    Miller, G S; Miller, Guy S.; Park, Myeong-Gu

    1997-01-01

    In this paper we examine time-dependent and three-dimensional perturbations of spherical accretion flow onto a neutron star close to its Eddington limit. Our treatment assumes a Schwarzschild geometry for the spacetime outside the neutron star and is fully general relativistic. At all the accretion rates studied, the response of the accretion flow to perturbations includes weakly damped oscillatory modes. At sufficiently high luminosities --- but still well below the Eddington limit --- the flows become unstable to aspherical perturbations. These unstable radiation hydrodynamic modes resemble the onset of convection, and allow accretion to occur preferentially through more rapidly descending columns of gas, while the radiation produced escapes through neighboring columns in which the gas descends more slowly.

  12. Relativistic Accretion Mediated by Turbulent Comptonization

    Socrates, Aristotle

    2008-01-01

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in t...

  13. Relativistic Radiation Hydrodynamics of Spherical Accretion

    Park, Myeong-Gu

    2001-12-01

    Radiation hydrodynamics in high velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.

  14. Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate

    Koerding, Elmar; Fender, Rob; Migliari, Simone

    2006-01-01

    We present a novel method to measure the accretion rate of radio emitting X-ray binaries (XRBs) and active galactic nuclei (AGN) independently of the X-ray luminosity. The radio emission of the jet is used as a tracer for the accretion rate and is normalised using sources of known accretion rates: island state neutron stars and efficiently radiating black holes close to a state transition. We show that the radio power in black holes and neutron stars is comparable for a given mass accretion r...

  15. Magnetic fields in primordial accretion disks

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  16. Asymmetric Accretion Flows within a Common Envelope

    MacLeod, Morgan

    2014-01-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). These embedded objects spiral to tighter separations because of drag that is generated when gas collides and shocks as it is gravitationally focused. This flow convergence is expected to lead to gas accretion onto the inspiralling object. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of 3D HLA with an upstream dens...

  17. Generalized Similarity for Accretion/Decretion Disks

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  18. Cold, clumpy accretion onto an active supermassive black hole

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecul...

  19. Protoplanetary Accretion by Collisional Fusion

    Wettlaufer, J S

    2009-01-01

    The formation of a solar system is believed to have followed a multi-stage process around a protostar. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag; there is a ``bottleneck'' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Thus, successful planetary accretion requires rapid planetesimal growth to km scale. A commonly accepted picture is that for collisional velocities $V_c$ above a certain threshold collisional velocity, ${V_{th}} \\sim$ 0.1-10 cm s$^{-1}$, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all collisions the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt explicitly with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter--p...

  20. New evidence for halo gas accretion onto disk galaxies

    Fraternali, Filippo

    2008-01-01

    Studies of the halo gas in the Milky Way and in nearby spiral galaxies show the presence of gas complexes that cannot be reconciled with an internal (galactic fountain) origin and are direct evidence of gas accretion. Estimating gas accretion rates from these features consistently gives values, which are one order of magnitude lower than what is needed to feed the star formation. I show that this problem can be overcome if most of the accretion is in fact "hidden" as it mixes with the galacti...

  1. Glancing through the accretion column of EXO 2030+375

    Ferrigno, C.; Pjanka, P.; Bozzo, E.; Klochkov, D.; Ducci, L.; Zdziarski, A.

    2016-06-01

    The current generation of X-ray instruments is revealing more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion powered pulsars. We took advantage of the large collecting area and timing capabilities of the EPIC cameras to investigate the accretion geometry onto the magnetized neutron star in the high mass X-ray binary EXO 2030+375 during the rise of one of the source outburst. The X-ray luminosity was 2×10^{36} erg/s and the timing analysis revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (>˜2×10^{37} erg/s). The presence of such feature is so far unique among all known high mass X-ray binaries hosting strongly magnetized neutron stars.

  2. Glancing through the accretion column of EXO 2030+375

    Ferrigno, C.; Pjanka, P.; Bozzo, E.; Klochkov, D.; Ducci, L.; Zdziarski, A.

    2016-06-01

    The current generation of X-ray instruments is revealing more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion powered pulsars. We took advantage of the large collecting area and timing capabilities of the EPIC cameras to investigate the accretion geometry onto the magnetized neutron star in the high mass X-ray binary EXO 2030+375 during the rise of one of the source outburst. The X-ray luminosity was 2×10^{36} erg/s and the timing analysis revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (≳2×10^{37} erg/s). The presence of such feature is so far unique among all known high mass X-ray binaries hosting strongly magnetized neutron stars.

  3. The Formation of Very Massive Stars

    Krumholz, Mark R

    2014-01-01

    In this chapter I review theoretical models for the formation of very massive stars. After a brief overview of some relevant observations, I spend the bulk of the chapter describing two possible routes to the formation of very massive stars: formation via gas accretion, and formation via collisions between smaller stars. For direct accretion, I discuss the problems of how interstellar gas may be prevented from fragmenting so that it is available for incorporation into a single very massive st...

  4. Evolutionary tracks of massive stars during formation

    Smith, Michael D

    2013-01-01

    A model for massive stars is constructed by piecing together evolutionary algorithms for the protostellar structure, the environment, the inflow and the radiation feedback. We investigate specified accretion histories of constant, decelerating and accelerating forms and consider both hot and cold accretion, identified with spherical free-fall and disk accretion, respectively. Diagnostic tools for the interpretation of the phases of massive star formation and testing the evolutionary models are then developed. Evolutionary tracks able to fit Herschel Space Telescope data require the generated stars to be three to four times less massive than in previous interpretations, thus being consistent with clump star formation efficiencies of $10 -- 15\\%$. However, for these cold Hershel clumps, the bolometric temperature is not a good diagnostic to differentiate between accretion models. We also find that neither spherical nor disk accretion can explain the high radio luminosities of many protostars. Nevertheless, we d...

  5. MAGNETIC BRAKING AND FIELD DISSIPATION IN THE PROTOSTELLAR ACCRETION PHASE

    D. Galli

    2009-01-01

    Full Text Available We summarize recent theoretical work addressing the role of magnetic elds in the process of star formation. First, we concentrate on the efficiency of magnetic braking during cloud collapse and its consequences on the formation of centrifugally supported disks around young stars. Then, we relate this issue to the well-known magnetic ux problem of star formation, and we show that the introduction of non-ideal MHD e ects is a necessary step toward the development of self-consistent models for the collapse of molecular clouds and the formation and evolution of accretion disks around young stars.

  6. Evidence for Magneto-Levitation Accretion in Long-Period X-ray Pulsars

    Ikhsanov, Nazar; Likh, Yury

    2014-01-01

    Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfven radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.

  7. Quasispherical subsonic accretion in X-ray pulsars

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  8. Quasispherical subsonic accretion in X-ray pulsars

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum ω∼1/R2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates .M∼*≅4×1016 g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or

  9. Magnetohydrodynamics of accretion disks

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  10. The Physics of Star Formation

    Larson, R B

    2003-01-01

    Our current understanding of the physical processes of star formation is reviewed, with emphasis on processes occurring in molecular clouds like those observed nearby. The dense cores of these clouds are predicted to undergo gravitational collapse characterized by the runaway growth of a central density peak that evolves toward a singularity. As long as collapse can occur, rotation and magnetic fields do not change this qualitative behavior. The result is that a very small embryonic star or protostar forms and grows by accretion at a rate that is initially high but declines with time as the surrounding envelope is depleted. Rotation causes some of the remaining matter to form a disk around the protostar, but accretion from protostellar disks is not well understood and may be variable. Most, and possibly all, stars form in binary or multiple systems in which gravitational interactions can play a role in redistributing angular momentum and driving episodes of disk accretion. Variable accretion may account for s...

  11. GLOBAL STAR FORMATION REVISITED

    A general treatment of disk star formation is developed from a dissipative multiphase model, with the dominant dissipation due to cloud collisions. The Schmidt-Kennicutt (SK) law emerges naturally for star-forming disks and starbursts. We predict that there should be an inverse correlation between Tully-Fisher law and SK law residuals. The model is extended to include a multiphase treatment of supernova feedback that leads to a turbulent pressure-regulated generalization of the star formation law and is applicable to gas-rich starbursts. Enhanced pressure, as expected in merger-induced star formation, enhances star formation efficiency. An upper limit is derived for the disk star formation rate in starbursts that depends on the ratio of global ISM to cloud pressures. We extend these considerations to the case where the interstellar gas pressure in the inner galaxy is dominated by outflows from a central active galactic nucleus (AGN). During massive spheroid formation, AGN-driven winds trigger star formation, resulting in enhanced supernova feedback and outflows. The outflows are comparable to the AGN-boosted star formation rate and saturate in the super-Eddington limit. Downsizing of both SMBH and spheroids is a consequence of AGN-driven positive feedback. Bondi accretion feeds the central black hole with a specific accretion rate that is proportional to the black hole mass. AGN-enhanced star formation is mediated by turbulent pressure and relates spheroid star formation rate to black hole accretion rate. The relation between black hole mass and spheroid velocity dispersion has a coefficient (Salpeter time to gas consumption time ratio) that provides an arrow of time. Highly efficient, AGN-boosted star formation can occur at high redshift.

  12. Molecules in star formation.

    Shu, F. H.

    The author reviews current ideas and models in the problem of star formation from molecular cloud cores that are relatively isolated from the influences of other forming stars. He discusses the time scales, flow dynamics, and density and temperature structures applicable to each of the four stages of the entire process: (1) formation of a magnetized cloud core by ambipolar diffusion and evolution to a pivotal state of gravomagneto catastrophe; (2) self-similar collapse of the pivotal configuration and the formation of protostars, disks, and pseudo-disks; (3) onset of a magnetocentrifugally driven, lightly ionized wind from the interaction of an accretion disk and the magnetosphere of the central star, and the driving of bipolar molecular outflows; (4) evolution of pre-main-sequence stars surrounded by dusty accretion disks. For each of these stages and processes, he considers the characteristics of the molecular diagnostics needed to investigate the crucial aspects of the observational problem.

  13. Bondi-like Accretion in Magnetized Supersonic Isothermal Turbulence

    Burleigh, Kaylan J.; McKee, Christopher F.; Klein, Richard I.

    2016-01-01

    The Bondi and Bondi-Hoyle-Lytlleton formulas give the order of magnitude steady-accretion rate onto a point mass at rest or moving, respectively, in a uniform density gas in the limit of negligible gas self-gravity. This applies in star-forming clouds where self-gravity is negligible near protostars and new-born stars, but instead of being uniform the gas is supersonically turbulent and threaded by dynamically important (Alven Mach number ˜ 1) large-scale magnetic fields. To determine the Bondi-like accretion rate in these environments, we used the ORION2 code to carry out grid-based 3D adaptive mesh refinement (AMR) magnetohydrodynamic (MHD) simulations of accretion onto sink particles embedded in an environment of fully developed, magnetized supersonic isothermal turbulence. We evolved the models until the median and mean accretion rates, over particles, became steady. We present a simple semi-analytic model that predicts the median and mean accretion rate from the turbulent properties of the background medium, such as the 3D Mach number and RMS plasma-β, and show that it is highly consistent with our simulations. Numerical codes can use our semi-analytic model as an accurate sub-grid model for accretion in magnetized supersonic isothermal turbulence.

  14. The IMF of stellar clusters: effects of accretion and feedback

    Dib, Sami; Padoan, Paolo; G., Maheswar; Ojha, D K; Khajenabi, Fazeleh

    2009-01-01

    (abridged) We develop a model which describes the coevolution of the mass function of dense cores and of the IMF in a protocluster clump. In the model, cores injected in the clump evolve under the effect of gas accretion. Accretion onto the cores follows a time-dependent accretion rate that describes accretion in a turbulent medium. Once the accretion timescales of cores exceed their contraction timescales, they are turned into stars. We include the effect of feedback by the newly formed massive stars through their stellar winds. A fraction of the wind's energy is assumed to counter gravity and disperse the gas from the protocluster and as a consequence, quench further star formation. The latter effect sets the final IMF of the cluster. We apply our model to a clump that is expected to resemble the progenitor clump of the Orion Nebula Cluster (ONC). Our model is able to reproduce both the shape and normalization of the ONC's IMF and the mass function of dense cores in Orion. The complex features of the ONC's ...

  15. Nucleosynthesis in the accretion disks of Type II collapsars

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star and a mild supernova explosion is driven. However, this supernova ejecta lack momentum and falls back onto the neutron star which gets transformed to a stellar mass black hole. In order to study the hydrodynamics and nucleosynthesis of such an accretion disk formed from the fallback material of the supernova ejecta, we use the well established hydrodynamic models. In such a disk neutrino cooling becomes important in the inner disk where the temperature and density are higher. Higher the accretion rate (dot{M}), higher is the density and temperature in the disks. In this work we deal with accretion disks with relatively low accretion rates: 0.001 M_sun s^{-1} \\lesssim dot{M} \\lesssim 0.01 M_sun s^{-1} and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abu...

  16. The DQ Herculis stars

    Patterson, Joseph

    1994-03-01

    We review the properties of the DQ Herculis stars: cataclysmic variables containing an accreting, magnetic, rapidly rotating white dwarf. These stars are characterized by strong X-ray emission, high-excitation spectra, and very stable optical and X-ray pulsations in their light curves. There is considerable resemblance to their more famous cousins, the AM Herculis stars, but the latter class is additionally characterized by spin-orbit synchronism and the presence of strong circular polarization. We list eighteen stars passing muster as certain or very likely DQ Her stars. The rotational periods range from 33 s to 2.0 hr. Additional periods can result when the rotating searchlight illuminates other structures in the binary. A single hypothesis explains most of the observed properties: magnetically channeled accretion within a truncated disk. Some accretion flow still seems to proceed directly to the magnetosphere, however. The white dwarfs' magnetic moments are in the range 1032 - 1034 G cc, slightly weaker than in AM Her stars but with some probable overlap. The more important reason why DQ Hers have broken synchronism is probably their greater accretion rate and orbital separation. The observed Lx/LV values are surprisingly low for a radially accreting white dwarf, suggesting that most of the accretion energy is not radiated in a strong shock above the magnetic pole. The fluxes can be more satisfactorily explained if most of the radial infall energy manages to bypass the shock and deposit itse lf directly in the white dwarf photosphere, where it should emerge as extreme ultraviolet (EUV) radiation. This also provides an adequate source of ionizing photons to power the high-excitation optical and UV emission lines. This is probably the DQ Her analog to the famous 'soft X-ray excess' in AM Her stars. However, unlike the AM Her case, this radiation has not been directly observed, so the analogy must not (yet) be embraced too firmly. There is some conventional wisdom

  17. Evolution and precession of accretion disk in tidal disruption events

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  18. Evolution and precession of accretion disk in tidal disruption events

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  19. Acoustic horizons in axially symmetric relativistic accretion

    Abraham, H; Das, T K; Abraham, Hrvoje; Bilic, Neven; Das, Tapas K.

    2006-01-01

    Transonic accretion onto astrophysical objects is a unique example of analogue black hole realized in nature. In the framework of acoustic geometry we study axially symmetric accretion and wind of a rotating astrophysical black hole or of a neutron star assuming isentropic flow of a fluid described by a polytropic equation of state. In particular we analyze the causal structure of multitransonic configurations with two sonic points and a shock. Retarded and advanced null curves clearly demonstrate the presence of the acoustic black hole at regular sonic points and of the white hole at the shock. We calculate the analogue surface gravity and the Hawking temperature for the inner and the outer acoustic horizons.

  20. Accretion disk structure in SS Cygni

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  1. Magnetic activity in accretion disc boundary layers

    Armitage, Philip J.

    2002-03-01

    We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle, the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.

  2. Satellites in discs regulating the accretion luminosity

    Syer, D; Syer, Dave; Clarke, Cathie

    1995-01-01

    We demonstrate, using a simple analytic model, that the presence of a massive satellite can globally modify the structure and emission properties of an accretion disc to which it is tidally coupled. We show, using two levels of numerical approximation, that the analytic model gives reasonable results. The results are applicable to two astrophysical situations. In the case of an active galactic nucleus, we consider the case of a \\sim 10^3\\Msun compact companion to the central black-hole and show that it could modulate the emitted spectrum on a timescale of \\sim10^5 years. In the case of a T Tauri accretion disc, a satellite such as a sub-dwarf or giant planet could modify the disc spectral energy distribution over a substantial fraction of the T Tauri star lifetime.

  3. Ringed accretion disks: instabilities

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  4. Ringed Accretion Disks: Instabilities

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  5. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    Liu, Tong; Zhang, Bing; Ma, Ren-Yi; Xue, Li

    2015-01-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/anti-neutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical ...

  6. Fate of accreting white dwarfs: Type I supernovae vs collapse

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  7. Cold, clumpy accretion onto an active supermassive black hole

    Tremblay, Grant R; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen L; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of c...

  8. Accretion Does Not Drive the Turbulence in Galactic Disks

    Hopkins, Philip F; Murray, Norman

    2013-01-01

    Rapid accretion of cold gas plays a crucial role in getting gas into galaxies. It has been suggested that this accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances, and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of accretion from internal instabilities and mergers. Moreover, in most cosmological simulations, the phase structure and turbulence in the ISM arising from stellar feedback are treated in a sub-grid manner, so that feedback cannot generate ISM turbulence. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy disks using detailed models for star formation and feedback; we then include or exclude mock cold flows falling onto the galaxies with accretion rates, velocities and geometry set to maximize their effect on the disk. We find: (1) Turbulent velocity dispersions in gas disks are ...

  9. Fate of accreting white dwarfs: Type I supernovae vs collapse

    Nomoto, Ken' ichi

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs.

  10. MAGNETICALLY REGULATED GAS ACCRETION IN HIGH-REDSHIFT GALACTIC DISKS

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes ∼10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute ∼1/3 of the pressure to distances of ∼3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  11. Gas accretion by planetary cores

    Ayliffe, Ben A.; Bate, Matthew R.

    2009-01-01

    We present accretion rates obtained from three-dimensional self-gravitating radiation hydrodynamical models of giant planet growth. We investigate the dependence of accretion rates upon grain opacity and core/protoplanet mass. The accretion rates found for low mass cores are inline with the results of previous one-dimensional models that include radiative transfer.

  12. Improved methods for modeling pulse shapes of accreting millisecond pulsars

    Leahy, D; Cadeau, C

    2006-01-01

    Raytracing computations for light emitted from the surface of a rapidly rotating neutron star are carried out in order to construct light curves for accreting millisecond pulsars. These calculations are for realistic models of rapidly rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect, comparing the full raytracing computations with simpler approximations currently in use, arises from the oblate shape of the rotating star. Approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, for lower rotation rates acceptable mass and radius values can be obtained using the spherical approximation.

  13. Excavation of the first stars

    Shigeyama, Toshikazu; Tsujimoto, Takuji; Yoshii, Yuzuru

    2003-01-01

    The external pollution of the first stars in the Galaxy is investigated. The first stars were born in clouds composed of the pristine gas without heavy elements. These stars accreted gas polluted with heavy elements while they still remained in the cloud. As a result, it is found that they exhibit a distribution with respect to the surface metallicity. We have derived the actual form of this distribution function. This metallicity distribution function strongly suggests that the recently disc...

  14. Normal Modes of Black Hole Accretion Disks

    Ortega-Rodriguez, Manuel; /Stanford U., Appl. Phys. Dept. /Costa Rica U.; Silbergleit, Alexander S.; /Stanford U., HEPL; Wagoner, Robert V.; /Stanford U., Phys. Dept.

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  15. Helium accreting CO white dwarfs with rotation: helium novae instead of double detonation

    Yoon, S.-C.; Langer, N.

    2004-01-01

    We present evolutionary models of helium accreting carbon-oxygen white dwarfs in which we include the effects of the spin-up of the accreting star induced by angular momentum accretion, rotationally induced chemical mixing and rotational energy dissipation. Initial masses of 0.6 Msun and 0.8 Msun and constant accretion rates of a few times 10^{-8} Msun/yr of helium rich matter have been considered, which is typical for the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. It ...

  16. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geome...

  17. Neutron star crusts

    The formation, structure, composition, and the equation of state of neutron star crusts are described. A scenario of formation of the crust in a newly born neutron star is considered and a model of evolution of the crust composition during the early neutron star cooling is presented. Structure of the ground state of the crust is studied. In the case of the outer crust, recent nuclear data on masses of neutron rich nuclei are used. For the inner crust, results of different many-body calculations are presented, and dependence on the assumed effective nucleon-nucleon interaction is discussed. Uncertainties concerning the bottom layers of the crust and crust-liquid interface are illustrated using results of various many-body calculations based on different effective nucleon-nucleon interactions. A scenario of formation of a crust of matter-accreting neutron star is presented, and evolution of the crust-matter element under the increasing pressure of accreted layer is studied. Within a specific dense matter model, composition of accreted crust is calculated, and is shown to be vastly different from the ground-state one. Non-equilibrium processes in the crust of mass-accreting neutron star are studied, heat release due to them is estimated, and their relevance to the properties of X-ray sources is briefly discussed. Equation of state of the ground-state crust is presented, and compared with that for accreted crust. Elastic properties of the crust are reviewed. Possible deviations from idealized models of one-component plasmas are briefly discussed. (orig.)

  18. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  19. The most iron-deficient stars as the polluted population III stars

    Komiya, Yutaka; Fujimoto, Masayuki Y

    2015-01-01

    We investigate the origin of the most iron-poor stars including SMSS J031300.36-670839.3 with [Fe/H] < -7.52. We compute the change of surface metallicity of stars with the accretion of interstellar matter (ISM) after their birth using the chemical evolution model within the framework of the hierarchical galaxy formation. The predicted metallicity distribution function agrees very well with that observed from extremely metal-poor stars. In particular, the lowest metallicity tail is well reproduced by the Population III stars whose surfaces are polluted with metals through ISM accretion. This suggests that the origin of iron group elements is explained by ISM accretion for the stars with [Fe/H]$\\lesssim -5$. The present results give new insights into the nature of the most metal-poor stars and the search for Population III stars with pristine abundances.

  20. Wind accretion: Theory and Observations

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2014-01-01

    A review of wind accretion in HMXB is presented. We focus on different regimes of quasi-spherical accretion onto a NS: supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when the plasma remains hot until it meets the magnetospheric boundary. The two regimes are separated by a limit in X-ray luminosity at about 4 10^{36} erg/s. In subsonic accretion, wh...

  1. Circular geodesics and thick tori around rotating boson stars

    Meliani, Z; Grandclément, P; Gourgoulhon, E; Monceau-Baroux, R; Straub, O

    2015-01-01

    Accretion disks play an important role in the evolution of their relativistic inner compact objects. The emergence of a new generation of interferometers will allow to resolve these accretion disks and provide more information about the properties of the central gravitating object. Due to this instrumental leap forward it is crucial to investigate the accretion disk physics near various types of inner compact objects now to deduce later constraints on the central objects from observations. A possible candidate for the inner object is the boson star. Here, we will try to analyze the differences between accretion structures surrounding boson stars and black holes. We aim at analysing the physics of circular geodesics around boson stars and study simple thick accretion tori (so-called Polish doughnuts) in the vicinity of these stars. We realize a detailed study of the properties of circular geodesics around boson stars. We then perform a parameter study of thick tori with constant angular momentum surrounding bo...

  2. Building massive compact planetesimal disks from the accretion of pebbles

    Moriarty, John

    2015-01-01

    We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with gian...

  3. Circumnuclear Media and Accretion Rates of Quiescent Supermassive Black Holes

    Generozov, Aleksey; Metzger, Brian D

    2015-01-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting ("quiescent") galactic nuclei for a range of central black hole masses, parameterized gas heating rates, and observationally-motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the black hole accretion rate, as a function of the black hole mass and the gas heating efficiency, the latter being related to the star-formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities from nearby quiesce...

  4. Accretion of southern Alaska

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  5. Quasi-spherical accretion in X-ray pulsars

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    Quasi-spherical accretion in wind-fed X-ray pulsars is discussed. At X-ray luminosities <4 10^{36} erg/s, a hot convective shell is formed around the neutron star magnetosphere, and subsonic settling accretion regime sets in. In this regime, accretion rate onto neutron star is determined by the ability of plasma to enter magnetosphere via Rayleigh-Taylor instability. A gas-dynamic theory of settling accretion is constructed taking into account anisotropic turbulence. The angular momentum can be transferred through the quasi-static shell via large-scale convective motions initiating turbulence cascade. The angular velocity distribution in the shell is found depending on the turbulent viscosity prescription. Comparison with observations of long-period X-ray wind-fed pulsars shows that an almost iso-angular-momentum distribution is most likely realized in their shells. The theory explains long-term spin-down in wind- fed accreting pulsars (e.g. GX 1+4) and properties of short-term torque-luminosity correlatio...

  6. X-Shooter study of accretion in Chamaeleon I

    Manara, C F; Herczeg, G J; Teixeira, P

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to 700 nm. The dependence of accretion with stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter be...

  7. The Early History of Stellar Spin: the Theory of Accretion onto Young Stellar Objects

    Pudritz Ralph E.

    2014-01-01

    Full Text Available The interaction of the magnetospheres of forming stars with their surrounding protostellar disks results in magnetospheric accretion flow onto the star. How is the associated angular momentum of accreting material channelled? The resolution of this issue is crucial for understanding the origin of the spins of pre main sequence stars. A significant fraction of these rotate very slowly, which indicates that an efficient angular momentum transport mechanism is at work to counteract the strong accretion spin up torques. We review the observational, theoretical, and computational advances in the field and argue that an accretion powered stellar winds together with highly time variable mass ejections from the disk/magnetosphere interface is a likely solution.

  8. Accretion disk electrodynamics

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  9. Accretion on to Magnetic White Dwarfs

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  10. Tidal Disruption Flares: The Accretion Disk Phase

    Armijo, Matias Montesinos

    2011-01-01

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically the hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of main results derived from our simulations is that black body fits of X-ray data tend to overestimate the true mean disk temperature. The temperature derived from black body fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous timescale, which fixes also the raising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution o...

  11. Spectral Components in the Optical Emission of the Seyfert Galaxy NGC 5548 and the Comparison of Intrinsic Nuclear Spectra with Accreting Corona Model

    Kuraszkiewicz, J.; Loska, Z.; Czerny, B.

    1997-01-01

    We study the extensively monitored Seyfert galaxy NGC 5548 and compare its nuclear emission with models of accretion disk with accreting corona. To obtain the intrinsic nuclear spectra from the observed spectra we had to estimate and subtract the contribution from circumnuclear components such as stars, the Balmer continuum and blended FeII lines, and the FC2 extended, featureless continuum. The true nuclear spectra were compared with a two parameter model of the accreting disk with an accret...

  12. Chemodynamical analysis of bulge stars for simulated disc galaxies

    A. Rahimi; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2009-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion t...

  13. Star Formation Histories of the Galactic Satellites

    Gilmore, G; Valls-Gabaud, D; Gilmore, Gerard; Hernandez, Xavier; Valls-Gabaud, David

    1999-01-01

    Late accretion models for formation of the Galactic halo require that many Galactic satellite galaxies have been cannibalised into the halo field. Comparison of the metallicity and age distribution function of stars in the surviving satellites with the apparently exclusively old stars in the field halo can constrain the importance of any such process. We have developed a new objective technique to determine star formation histories in dSph galaxies. We apply this technique to the surviving Galactic satellites, deducing an approximately uniform distribution of ages for the constituents, quite unlike the halo field stars. Thus, late accretion did not play a substantial part in Galactic halo formation.

  14. Accretion disk dynamics in X-ray binaries

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  15. Evolution of Pre-Main Sequence Accretion Disks

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  16. Formation of redbacks via accretion induced collapse

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  17. The Physics of Wind-Fed Accretion

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  18. The Physics of Wind-Fed Accretion

    Mauche, Christopher W; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-1. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better c...

  19. A New Parameter In Accretion Disk Model

    Yuan, Feng(Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA)

    2000-01-01

    Taking optically thin accretion flows as an example, we investigate the dynamics and the emergent spectra of accretion flows with different outer boundary conditions (OBCs) and find that OBC plays an important role in accretion disk model. This is because the accretion equations describing the behavior of accretion flows are a set of {\\em differential} equations, therefore, accretion is intrinsically an initial-value problem. We argue that optically thick accretion flow should also show OBC-d...

  20. Mass Accretion Rate of Rotating Viscous Accretion Flow

    Park, Myeong-Gu

    2009-01-01

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate(Mdot_B), which is determined only by the density and the temperature of gas at the outer boundary. But most work on disc accretion has taken the mass flux to be a given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous ho...

  1. Type Ia Supernovae and Accretion Induced Collapse

    Ruiter, A J; Sim, S A; Hillebrandt, W; Fink, M; Kromer, M

    2010-01-01

    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times 800 Myr spanning up to a Hubble time. These find...

  2. Revised Anatomy of Stars

    Dubin, M; Dubin, Maurice; Soberman, Robert K.

    1997-01-01

    Stars accrete near invisible hydrogen dominated agglomerates. This population, the `dark matter,' effects the nature of stars. Measurements show plasma streams impacting Earth, planets, Sun and stars. This mass-energy source contradicts nebula collapse model for stars. The visual derived model, to which later discoveries (e.g., fusion) were appended, is confounded and contradicted by new observations. Discovery of a quantity of beryllium 7 (53 day half-life) in the Earth's upper atmosphere, fusion produced, hence from the solar outer zone, proves core fusion wrong. Magnetically pinched plasmas from aggregates impact stars at hundreds of km/s, create impulsive conditions for nuclear explosions below the surface. Disks with planets aid cluster capture. Planets modulate the influx varying fusion, hence luminosity (e.g., solar cycle). This population, with no assumptions or ad hoc physics, explains mysterious phenomena, e.g., luminosity/wind variation, sunspots, high temperature corona, CMEs, etc. Standard explan...

  3. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over ~17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the Hα flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The Hα emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the Hα and Hβ lines is followed by He I (λ5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of ~2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows ~2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  4. Galactic Centre stellar winds and Sgr A* accretion

    Cuadra, J; Springel, V; Matteo, T D

    2006-01-01

    (ABRIDGED) We present in detail our new 3D numerical models for the accretion of stellar winds on to Sgr A*. In our most sophisticated models, we put stars on realistic orbits around Sgr A*, include `slow' winds (300 km/s), and account for radiative cooling. We first model only one phase `fast' stellar winds (1000 km/s). For wind sources fixed in space, the accretion rate is Mdot ~ 1e-5 Msun/yr, fluctuates by < 10%, and is in a good agreement with previous models. In contrast, Mdot decreases by an order of magnitude for stars following circular orbits, and fluctuates by ~ 50%. Then we allow a fraction of stars to produce slow winds. Much of these winds cool radiatively, forming cold clumps immersed into the X-ray emitting gas. We test two orbital configurations for the stars in this scenario, an isotropic distribution and two rotating discs with perpendicular orientation. The morphology of cold gas is quite sensitive to the orbits. In both cases, however, most of the accreted gas is hot, with an almost con...

  5. Accretion Stream Mapping

    Vrielmann, S; Vrielmann, Sonja; Schwope, Axel D.

    1998-01-01

    We present a new mapping algorithm, the Accretion Stream Mapping, which uses the complete emission-line light curve to derive spatially resolved intensity distributions along the stream on a surface created as a duodecadon shaped tube. We successfully test this method on artificial data and then applied it to emission line light curves in Hbeta, Hgamma and HeII 4686 of the magnetic CV HU Aqr. We find Balmer emission near the threading point in the stream facing the white dwarf and Helium emission all over the magnetic part of the stream.

  6. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates $\\dot M< \\dot M_*\\simeq 4\\times 10^{16}$ g/s. At higher accretion rates a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative $\\dot \\omega^*$, and $\\partial\\dot\\omega^*/\\partial\\dot M$ near the torque reversal) of X-ray pulsars with known orbital perio...

  7. Accretion in supergiant High Mass X-ray Binaries

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  8. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    Mukherjee Dipanjan

    2014-01-01

    Full Text Available In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local field distortion. From simulations of cyclotron resonance scattering features from HMXBs, we conclude that local field distortion will greatly affect the shape and nature of the CRSF. From phase resolved spectral analysis one can infer the local field structure and hence the nature of mass loading of field lines at the accretion disc. We also study the stability of such mounds by performing MHD simulations using the PLUTO MHD code. We find that pressure and gravity driven instabilities depend on the total mass accreted and the nature of mass loading of the field lines.

  9. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    Mukherjee, Dipanjan; Mignone, Andrea

    2013-01-01

    In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local field distortion. From simulations of cyclotron resonance scattering features from HMXBs, we conclude that local field distortion will greatly affect the shape and nature of the CRSF. From phase resolved spectral analysis one can infer the local field structure and hence the nature of mass loading of field lines at the accretion disc. We also study the stability of such mounds by performing MHD simulations using the PLUTO MHD code. We find that pressure and gravity driven instabilities depend on the total mass accreted an...

  10. Time-dependent corona models: coronae with accretion

    Models of stationary extended coronae are presented for various values of the interstellar density. These calculations have been performed with the implicit time-dependent numerical method developed by Korevaar and Van Leer (1988). If the interstellar density is sufficiently low, the coronal gas expands through the Parker critical point to supersonic velocities. An increase in the interstellar density moves the interstellar shock closer to the star. When it comes closer than the critical point, the flow changes to a breeze solution that is subsonic everywhere. A further increase in the interstellar density reverses the flow. First an accretion breeze solution is found and then an inflow with a stationary accretion shock. This is the first numerical calculation of the complete set of stationary stellar wind solutions in spherical symmetry with boundary conditions specified at the stellar surface and at infinity, including the solutions with an interstellar shock or an accretion shock

  11. UV variability and accretion dynamics in the young open cluster NGC 2264

    Venuti, L.; Bouvier, J.; Irwin, J.; Stauffer, J. R.; Hillenbrand, L. A.; Rebull, L. M.; Cody, A. M.; Alencar, S. H. P.; Micela, G.; Flaccomio, E.; Peres, G.

    2015-09-01

    Context. Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. Aims: We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3 Myr). Methods: We performed simultaneous monitoring of u- and r-band variability for the cluster population with CFHT/MegaCam. The survey extended over two full weeks, with several flux measurements per observing night. A sample of about 750 young stars is probed in our study, homogeneously calibrated and reduced, with internally consistently derived stellar parameters. Objects span the mass range 0.1-2 M⊙; about 40% of them show evidence for active accretion based on various diagnostics (Hα, UV, and IR excesses). Results: Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, in the optical and especially in the UV. The amount of u-band variability is found to correlate statistically with the median amount of UV excess in disk-bearing objects, which suggests that mass accretion and star-disk interaction are the main sources of variability in the u band. Spot models are applied to account for the amplitudes of variability of accreting and non-accreting members, which yields different results for each group. Cool magnetic spots, several hundred degrees colder than the stellar photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots with a temperature a few thousand degrees higher than the photospheric temperature and that extend over a few percent of the stellar surface best reproduce the variability of accreting objects

  12. Early Black Hole Formation by Accretion of Gas and Dark Matter

    Umeda, Hideyuki; Yoshida, Naoki; Nomoto, Ken; Tsuruta, Sachiko; Sasaki, Mei; Ohkubo, Takuya

    2009-01-01

    We propose a model in which intermediate-mass black holes (IMBHs) with mass of ~10000 Msun are formed in early dark matter halos. We carry out detailed stellar evolution calculations for accreting primordial stars including annihilation energy of dark matter particles. We follow the stellar core evolution consistently up to gravitational collapse. We show that very massive stars, as massive as 10000 Msun, can be formed in an early dark matter halo. Such stars are extremely bright with Log L/L...

  13. Theoretical Developments in Understanding Massive Star Formation

    Yorke, H. W.; Bodenheimer, P.

    2008-05-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low-mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen-burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors. The evolution of accreting stars depends strongly on the accretion history. We find that for the high accretion rates considered, ˜10^{-3} M_⊙yr^{-1}, stars of ˜5-10 M_⊙ tend to bloat up to radii which may exceed 100 R_⊙. Because of the high rate of binarity among massive stars, we expect that these large radii during short phases of evolution will result in mass transfer, common envelope evolution, and a higher number of tight binaries with periods of a few days.

  14. AGN flickering and chaotic accretion

    King, Andrew; Nixon, Chris

    2015-10-01

    Observational arguments suggest that the growth phases of the supermassive black holes in active galactic nuclei have a characteristic time-scale ˜105 yr. We show that this is the time-scale expected in the chaotic accretion picture of black hole feeding, because of the effect of self-gravity in limiting the mass of any accretion-disc feeding event.

  15. AGN Flickering and Chaotic Accretion

    King, Andrew

    2015-01-01

    Observational arguments suggest that the growth phases of the supermassive black holes in active galactic nuclei have a characteristic timescale $\\sim 10^5$ yr. We show that this is the timescale expected in the chaotic accretion picture of black hole feeding, because of the effect of self-gravity in limiting the mass of any accretion disc feeding event.

  16. Warped accretion disks and the unification of Active Galactic Nuclei

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...

  17. Heating and cooling of magnetars with accreted envelopes

    Kaminker, A D; Yakovlev, D G; Chabrier, G

    2009-01-01

    We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B > 10^{14} G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron star crust and calculate the cooling of magnetars with a dipole magnetic field for various locations of the heat layer, heat rates and magnetic field strengths. Combined effects of strong magnetic fields and light-element composition simplify the interpretation of magnetars in our model: these effects allow one to interpret observations assuming less extreme (therefore, more realistic) heating. Massive magnetars, with fast neutrino cooling in their cores, can have higher thermal surface luminosity.

  18. Active states and structure transformations in accreting white dwarfs

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  19. Dark stars: a review

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼1{{M}ȯ} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}ȯ} and luminosities  >{{10}10}{{L}ȯ} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  20. Dark stars: a review.

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars. PMID:27214049