WorldWideScience

Sample records for accreting young stars

  1. Accretion, winds and outflows in young stars

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  2. Accretion funnels onto weakly magnetized young stars

    Bessolaz, N.; Zanni, C.; Ferreira, J.; Keppens, R.; Bouvier, J.

    2007-01-01

    Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipo...

  3. Winds and Accretion in Young Stars

    Edwards, Suzan

    2008-01-01

    Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stel...

  4. Accretion, winds and outflows in young stars

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  5. Winds and Accretion in Young Stars

    Edwards, Suzan

    2008-01-01

    Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stellar spindown. Although spectroscopic indicators of high velocity T Tauri winds have been known for decades, the line of He I 10830 offers a promising new diagnostic to probe the magnetically controlled star-disk interaction and wind-launching region. The high opacity and resonance scattering properties of this line offer a powerful probe of the geometry of both the funnel flow and the inner wind that, together with other atomic and molecular spectral lines covering a wide range of excitation and ionization states, suggest...

  6. Accretion bursts in young stars driven by cluster environment

    Pfalzner, S; Tackenberg, J.; Steinhausen, M.

    2008-01-01

    The standard picture of accretion is a steady flow of matter from the disc onto the young star - a concept which assumes the star-disc system to be completely isolated. However, in a dense cluster environment star-disc systems do interact gravitationally. The aim here is to estimate the encounter-induced accretion rate in an ONC-like environment. Combining simulations of the cluster dynamics with simulations of the effect of encounters on star-disc systems we determine the likelihood and degr...

  7. Multi-dimensional structure of accreting young stars

    Geroux, C; Viallet, M; Goffrey, T; Pratt, J; Constantino, T; Folini, D; Popov, M V; Walder, R

    2016-01-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \\& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive ...

  8. Multi-dimensional structure of accreting young stars

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  9. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  10. Fossil magnetic field of accretion disks of young stars

    Dudorov, A. E.; Khaibrakhmanov, S. A.

    2014-01-01

    We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative r...

  11. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  12. Vertical Structure of Magnetized Accretion Disks around Young Stars

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  13. Circumstellar disks of the most vigorously accreting young stars.

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  14. Accretion Disks around Young Stars: An Observational Perspective

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  15. Discovery of an Accretion-Fed Corona in an Accreting Young Star

    Wolk, Scott J.; Brickhouse, N.; Cranmer, S.; Dupree, A.; Luna, G. J. M.

    2010-01-01

    A deep (489 ks) Chandra High Energy Transmission Grating spectrum of the classical T Tauri star TW Hydrae shows a new type of coronal structure that is produced by the accretion process. In the standard model for a stellar dipole, the magnetic field truncates the disk and channels the accreting material onto the star. The He-like diagnostic lines of Ne IX provide excellent agreement with the shock conditions predicted by this model, with an electron temperature of 2.5 MK and electron density of 3 times 1012 cm-3 (see also Kastner et al. 2002). However, the standard model completely fails to predict the post-shock conditions, significantly overpredicting both the density and absorption observed at O VII. Instead the observations require a second "post-shock" component with 30 times more mass and 1000 times larger volume than found at the shock itself. We note that in the standard model, the shocked plasma is conveniently located near both closed (coronal) and open (stellar wind) magnetic structures, as the magnetic field connecting the star and disk also separates the open and closed field regions on the stellar surface. The shocked plasma thus can provide the energy to heat not only the post-shock plasma, but also adjacent regions (i.e. an "accretion-fed corona") and drive stellar material into surrounding coronal structures. These observations provide new clues to the puzzling soft X-ray excess found in accreting systems, which depends on both the presence of accretion and the level of coronal activity (Guedel and Telleschi 2007). This work is partially supported by CXO grant G07-8018X.

  16. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  17. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  18. Accretion onto Planetary Mass Companions of Low-Mass Young Stars

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle

    2014-01-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use \\HST/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates...

  19. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  20. Formation of new stellar populations from gas accreted by massive young star clusters.

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters. PMID:26819043

  1. Formation of new stellar populations from gas accreted by massive young star clusters

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M.; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-01

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old ‘globular’ clusters—those with ages greater than ten billion years and masses several hundred thousand times that of the Sun—often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies’ gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  2. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  3. An X-ray Outburst from the Rapidly Accreting Young Star That Illuminates McNeil's Nebula

    Kästner, J H; Grosso, N; Weintraub, D A; Simon, T; Franck, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-01-01

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of such emission is uncertain. Although many or perhaps most recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor ~50 increase in the X-ray flux from a young star that is presently undergoing a spectacular optical/IR outburst. The outburst is thought to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/IR eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion- enhanced X-ray emission from erupting young stars may be short-lived, because intense star-di...

  4. ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214–00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10–9-10–11 M ☉ yr–1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets

  5. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    Manara, C F; Testi, L; Natta, A; Alcalá, J M; Williams, J P; Ansdell, M; Miotello, A; van der Marel, N; Tazzari, M; Carpenter, J; Guidi, G; Mathews, G S; Oliveira, I; Prusti, T; van Dishoeck, E F

    2016-01-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, the mass accretion rate, and the disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an ISM gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rate...

  6. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  7. CSI 2264: Characterizing Accretion-Burst Dominated Light Curves for Young Stars in NGC 2264

    Stauffer, John; Baglin, Annie; Alencar, Silvia H P; Rebull, Luisa; Hillenbrand, Lynne A; Venuti, Laura; Turner, Neal J; Carpenter, John; Plavchan, Peter; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee; Calvet, Nuria; Whitney, Barbara; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Furesz, Gabor; Aigrain, Suzanne

    2014-01-01

    Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission...

  8. Non-LTE Modelling of the Structure and Spectra of the Hot Accretion Spots on the Surface of Young Stars

    Dodin, A V

    2014-01-01

    The paper describes the modelling of the structure and spectra of the hot accretion spots on the surface of young stars with taking into account departures from LTE for hydrogen and helium. It has been found that the existence of the ram pressure of the in-falling gas at the outer boundary of the hot spot leads to the Stark broadening of the hydrogen line profiles up to FWHM of about 1000 km/s at the considered accretion parameters. It is shown that taking into account departures from LTE for atoms and ions of carbon and oxygen does not lead to noticeable changes in the structure of the hot spot.

  9. Chemical signatures of rocky accretion in a young solar-type star

    Spina, Lorenzo

    2015-12-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or proto-planetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently large and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. Recently, the Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled the identification of a star significantly enriched in iron with respect to other cluster members. In this seminar I will present a further investigation of the abundance pattern of this star, showing that its chemical anomaly is not limited to iron, but is also present in all the refractory elements whose abundances are correlated with the condensation temperature. This finding strongly supports the hypothesis of a recent accretion of rocky material.

  10. Variable accretion processes in the young binary-star system UY Aur

    We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H2 emission in the spectrum of UY Aur A and the first to spectrally resolve the Brγ line in the spectrum of UY Aur B. We see an increase in the strength of the Brγ line in UY Aur A and a decrease in Brγ and H2 line luminosity for UY Aur B compared to previous studies. Converting Brγ line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by 2 × 10–9 M ☉ yr–1 per year since a rate of zero was observed in 1994. The Brγ line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mag since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Brγ luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Brγ emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph.

  11. Formation of new stellar populations from gas accreted by massive young star clusters

    Li, Chengyuan; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguere, Claude-Andre

    2016-01-01

    Stars in star clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old globular clusters -- with ages greater than 10 billion years and masses of several hundred thousand solar masses -- often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often invoked as second-generation star-formation trigger. The initial cluster masses should be at least 10 times more massive than they are today for this to work. However, large populations of clusters with masses greater than a few million solar masses are not found in the local Universe. Here we report on three 1-2 billion-year-old, massive star clusters in the Magellanic Clouds, which show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could accrete sufficient gas ...

  12. Population synthesis of young isolated neutron stars: the effect of fallback disk accretion and magnetic field evolution

    Fu, Lei

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominatd by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out Monte-Carlo simulation of the evolution of young NSs, and show that most of the pulsars have the braking indices ranging from -1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  13. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    Spina, L; Randich, S; Sacco, G G; Jeffries, R; Magrini, L; Franciosini, E; Meyer, M R; Tautvaišienė, G; Gilmore, G; Alfaro, E J; Prieto, C Allende; Bensby, T; Bragaglia, A; Flaccomio, E; Koposov, S E; Lanzafame, A C; Costado, M T; Hourihane, A; Lardo, C; Lewis, J; Monaco, L; Morbidelli, L; Sousa, S G; Worley, C C; Zaggia, S

    2015-01-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypot...

  14. Accretion disks in luminous young stellar objects

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  15. Massive Star Formation: Accreting from Companion

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  16. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    Spina, L.; Palla, F.; Randich, S.; Sacco, G.; Jeffries, R.; Magrini, L.; Franciosini, E.; Meyer, M. R.; Tautvaišienė, G.; Gilmore, G.; Alfaro, E. J.; Allende Prieto, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Lanzafame, A. C.; Costado, M. T.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-10-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypothesis of a recent accretion of rocky material. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).

  17. Accretion properties of T Tauri stars in sigma Ori

    Gatti, T.; Natta, A.; Randich, S.; Testi, L.; Sacco, G.

    2008-01-01

    Accretion disks around young stars evolve in time with time scales of few million years. We present here a study of the accretion properties of a sample of 35 stars in the ~3 million year old star-forming region sigma Ori. Of these, 31 are objects with evidence of disks, based on their IR excess emission. We use near-IR hydrogen recombination lines (Pa_gamma) to measure their mass accretion rate. We find that the accretion rates are significantly lower in sigma Ori than in younger regions, su...

  18. Accretion torque on magnetized neutron stars

    Dai, Hai-Lang; Li, Xiang-Dong

    2006-01-01

    The conventional picture of disk accretion onto magnetized neutron stars has been challenged by the spin changes observed in a few X-ray pulsars, and by theoretical results from numerical simulations of disk-magnetized star interactions. These indicate possible accretion during the propeller regime and the spin-down torque increasing with the accretion rate. Here we present a model for the accretion torque exerted by the disk on a magnetized neutron star, assuming accretion continues even for...

  19. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  20. Massive star formation by accretion. I. Disc accretion

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  1. Massive star formation by accretion I. Disc accretion

    Haemmerlé, Lionel; Meynet, Georges; Maeder, André; Charbonnel, Corinne

    2016-01-01

    Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the HR diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the Hertzsprung-Russell (HR) diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the acc...

  2. Theory of Disk Accretion onto Magnetic Stars

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  3. Embedded, Accreting Disks in Massive Star Formation

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our approach enables us to sample a wide parameter space of stellar mass and environmental variables, providing a means to make predictions for a variety of sources that next generation telescopes like ALMA and the EVLA will observe. Moreover we include, at least approximately, multiple mechanisms for angular momentum transport, a comprehensive model for disk heating and cooling, and a realistic estimate for the angular momentum in the gas reservoir. We make predictions for the typical sizes, masses, and temperatures of the disks, and describe the role of gravitational instabilities in determining the binarity fraction and upper mass cut-off.

  4. Probing thermonuclear burning on accreting neutron stars

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  5. Accreting neutron stars by QFT

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  6. Probing neutron star physics using accreting neutron stars

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  7. Young massive star clusters

    Zwart, Simon Portegies; Gieles, Mark

    2010-01-01

    Young massive clusters are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few young massive clusters that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. Young massive clusters are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in young massive clusters, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review we focus on star clusters younger than $\\sim100$\\,Myr, m...

  8. The Final Fates of Accreting Supermassive Stars

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  9. Accretion, Outflows, and Winds of Magnetized Stars

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  10. Studies of accreting and non-accreting neutron stars

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  11. X-Shooter spectroscopy of young stellar objects: IV -- Accretion in low-mass stars and sub-stellar objects in Lupus

    Alcalá, J M; Manara, C F; Spezzi, L; Stelzer, B; Frasca, A; Biazzo, K; Covino, E; Randich, S; Rigliaco, E; Testi, L; Comerón, F; Cupani, G; D'Elia, V

    2013-01-01

    We present X-Shooter/VLT observations of a sample of 36 accreting low-mass stellar and sub-stellar objects (YSOs) in the Lupus star forming region, spanning a range in mass from ~0.03 to ~1.2Msun, but mostly with 0.1Msun < Mstar < 0.5Msun. Our aim is twofold: firstly, analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and from it the accretion rate (Macc), is derived by modelling the excess emission, from the UV to the near-IR, as the continuum emission of a slab of hydrogen. The flux and luminosity (Ll) of a large number of emission lines of H, He, CaII, etc., observed simultaneously in the range from ~330nm to 2500nm, were computed. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion as comp...

  12. Gravitational waves from accreting neutron stars

    Bonazzola, S.; Gourgoulhon, E.

    1996-01-01

    We show that accreting neutron stars in binary systems or in Landau-Thorne-Zytkow objects are good candidates for continuous gravitational wave emission. Their gravitational radiation is strong enough to be detected by the next generation of detectors having a typical noise of 10^{-23} Hz^{-1/2}.

  13. Magnetically Accreting Isolated Old Neutron Stars

    Rutledge, R E

    2001-01-01

    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic p...

  14. HIGHLY VARIABLE EXTINCTION AND ACCRETION IN THE JET-DRIVING CLASS I-TYPE YOUNG STAR PTF 10nvg (V2492 Cyg, IRAS 20496+4354)

    We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg (also known as IRAS 20496+4354 and V2492 Cyg), including optical and near-infrared time-series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise to RPTF ∼m5 and subsequent fade, during 2011 and 2012 the source underwent additional episodes of brightening, followed by several magnitude dimming events including prolonged faint states at RPTF ∼> 20m. The observed high-amplitude variations are largely consistent with extinction changes (ΔAV up to 30 mag) having a ∼220 day quasi-periodic signal. However, photometry measured when the source was near maximum brightness in mid-2010 as well as in late-2012 does not phase well to this period. Spectral evolution includes not only changes in the spectral slope but also correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anti-correlated variation in forbidden line emission which, along with H2, dominates optical and infrared spectra at faint epochs. Notably, night-to-night variations in several forbidden doublet strengths and ratios are observed. High-dispersion spectra were obtained in a variety of photometric states and reveal time-variable line profiles. Neutral and singly ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic Li I λ6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. Blueshifted absorption components of the Na I D doublet, K I λλ7665, 7669 doublet, and the O I 7774 triplet, as well as blueshifted absorption components seen against the broad Hα and Ca II triplet emission lines, similarly are formed in the

  15. Accreting Neutron Stars and Radioactive Beam Experiments

    The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)

  16. The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star

    Romanova, M M; Koldoba, A V; Lovelace, R V E; Romanova, Marina M; Ustyugova, Galina V; Koldoba, Alexander V; Lovelace, Richard V E

    2004-01-01

    The propeller regime of disk accretion to a rapidly rotating magnetized star is investigated here for the first time by axisymmetric 2.5D magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in which the magnetic field is predominantly toroidal. A smaller fraction of the star's poloidal magnetic flux inflates vertically, forming a magnetically dominated tower. Matter accumulates in the equatorial region outside magnetosphere and accretes to the star quasi-periodically through elongated funnel streams which cause the magnetic field to reconnect. The star spins-down owing to the interaction of the closed magnetosphere with the disk. For the considered conditions, the spin-down torque varies with the angular velocity of the star omega* as omega*^1.3 for fixed mass accretion rate. The propeller stage may be important in the evolution of X-ray pulsars, cataclysmic variables and young stars. In particular, it may explain the present slow rotation of the classical T Tauri stars.

  17. K2 observations of young star clusters

    Cody, Ann Marie

    2016-01-01

    In operation since 2014, the K2 mission is now acquiring high cadence, high precision, long time baseline on thousands of stars in the ecliptic plane. Unlike its predecessor the Kepler mission, K2 is observing a number of young to intermediate age star clusters. This provides the chance to not only look for relatively young planets, but to also study starspot evolution, accretion, and inner circumstellar disk dynamics on several month timescales. I will provide an overview of our K2 cluster photometry pipeline and highlight the variable processes evident in the first few campaigns.

  18. Episodic accretion, protostellar radiative feedback, and their role in low-mass star formation

    Stamatellos, Dimitris; Hubber, David A

    2012-01-01

    Protostars grow in mass by accreting material through their discs, and this accretion is initially their main source of luminosity. The resulting radiative feedback heats the environments of young protostars, and may thereby suppress further fragmentation and star formation. There is growing evidence that the accretion of material onto protostars is episodic rather than continuous; most of it happens in short bursts that last up to a few hundred years, whereas the intervals between these outbursts of accretion could be thousands of years. We have developed a model to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in episodic radiative feedback, which heats and temporarily stabilises the disc, suppressing the growth of gravitational instabilities. However, once an outburst has been terminated, the luminosity of the protostar is low, and the disc cools rapidly. Provided that there is enough time between successive outbursts, the disc may become gravitation...

  19. Magnetic field evolution of accreting neutron stars

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  20. GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS

    Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 E. California Blvd., M/C 350-17, Pasadena, CA 91125 (United States); Thrane, Eric, E-mail: piro@caltech.edu, E-mail: eric.thrane@ligo.org [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2012-12-10

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of {approx}700-2400 Hz for {approx}30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to Almost-Equal-To 17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be {approx}1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  1. X-Shooter spectroscopy of young stellar objects: II. Impact of chromospheric emission on accretion rate estimates

    Manara, C F; Rigliaco, E; Alcala, J M; Natta, A; Stelzer, B; Biazzo, K; Covino, E; Covino, S; Cupani, G; D'Elia, V; Randich, S

    2013-01-01

    Context. The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) Young Stellar Objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Aims. Our goal is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of accretion luminosity (Lacc) and mass accretion rate (Macc) in young stellar objects with disks. Methods. Using VLT/X-Shooter spectra we have analyzed a sample of 24 non-accreting young stellar objects of spectral type between K5 and M9.5. We identify the main emission lines normally used as tracers of accretion in Class II objects, and we determine their fluxes in order to estimate the contribution of ...

  2. Thin accretion disks around cold Bose–Einstein condensate stars

    Dănilă, Bogdan; Harko, Tiberiu; Kovács, Zoltán

    2015-01-01

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein Condensate. Observationally distinguishing between neutron/quark stars and Bose-Einstein Condensate stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing Bose-Einstein Condensate stars from neutron/quark stars is through the study of the thin accretion ...

  3. FORMING AN O STAR VIA DISK ACCRETION?

    We present a study of outflow, infall, and rotation in a ∼105 L☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M☉. The outflow has a gas mass of 54 M☉ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10–3 M☉ yr–1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  4. Formation of primordial supermassive stars by rapid mass accretion

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot ∗≳0.1 M⊙ yr−1) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 104–5 M ☉. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M * ≳ 104 M ☉, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 104 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M * ≳ 105 M ☉ can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 105 M ☉. An extremely massive black hole should form after the collapse of the inner core.

  5. Binary interactions with high accretion rates onto main sequence stars

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  6. Star Formation and Gas Accretion in Nearby Galaxies

    Yim, Kijeong

    2016-01-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 {\\mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  7. High energy gamma rays from old accreting neutron stars

    P. Blasi(INAF Arcetri)

    1996-01-01

    We consider a magnetized neutron star with accretion from a companion star or a gas cloud around it, as a possible source of gamma rays with energy between $100$ $MeV$ and $10^{14}-10^{16}~eV$. The flow of the accreting plasma is terminated by a shock at the Alfv\\'en surface. Such a shock is the site for the acceleration of particles up to energies of $\\sim 10^{15}-10^{17}~eV$; gamma photons are produced in the inelastic $pp$ collisions between shock-accelerated particles and accreting matter...

  8. Search for planets around young stars with the radial velocity technique

    Weise, Patrick

    2010-01-01

    Giant planets form in circumstellar disks around young stars. Two alternative theoretical formation concepts, disk instability and core accretion, may both apply under certain conditions, but core accretion is believed to be the main mechanism. No observational proof of the dominant process has been found thus far. Therefore, this thesis aims to detect sub-stellar companions orbiting young stars (1–100 Myr), because characteristics of young planets give input on formation processes involved. ...

  9. Accretion to a Magnetized Neutron Star in the "Propeller" Regime

    Toropina, O D; Lovelace, R V E

    2006-01-01

    We investigate spherical accretion to a rotating magnetized star in the "propeller" regime using axisymmetric resistive magnetohydrodynamic simulations. The regime is predicted to occur if the magnetospheric radius is larger than the corotation radius and smaller than the light cylinder radius. The simulations show that accreting matter is expelled from the equatorial region of the magnetosphere and that it moves away from the star in a supersonic, disk-shaped outflow. At larger radial distances the outflow slows down and becomes subsonic. The equatorial matter outflow is initially driven by the centrifugal force, but at larger distances the pressure gradient force becomes significant. We find the fraction of the Bondi accretion rate which accretes to the surface of the star.

  10. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  11. UV variability and accretion dynamics in the young open cluster NGC 2264

    Venuti, L.; Bouvier, J.; Irwin, J.; Stauffer, J. R.; Hillenbrand, L. A.; Rebull, L. M.; Cody, A. M.; Alencar, S. H. P.; Micela, G.; Flaccomio, E.; Peres, G.

    2015-09-01

    Context. Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. Aims: We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3 Myr). Methods: We performed simultaneous monitoring of u- and r-band variability for the cluster population with CFHT/MegaCam. The survey extended over two full weeks, with several flux measurements per observing night. A sample of about 750 young stars is probed in our study, homogeneously calibrated and reduced, with internally consistently derived stellar parameters. Objects span the mass range 0.1-2 M⊙; about 40% of them show evidence for active accretion based on various diagnostics (Hα, UV, and IR excesses). Results: Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, in the optical and especially in the UV. The amount of u-band variability is found to correlate statistically with the median amount of UV excess in disk-bearing objects, which suggests that mass accretion and star-disk interaction are the main sources of variability in the u band. Spot models are applied to account for the amplitudes of variability of accreting and non-accreting members, which yields different results for each group. Cool magnetic spots, several hundred degrees colder than the stellar photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots with a temperature a few thousand degrees higher than the photospheric temperature and that extend over a few percent of the stellar surface best reproduce the variability of accreting objects

  12. Formation of Primordial Supermassive Stars by Rapid Mass Accretion

    Hosokawa, Takashi; Inayoshi, Kohei; Omukai, Kazuyuki; Yoshida, Naoki

    2013-01-01

    Supermassive stars (SMSs) forming via very rapid mass accretion (Mdot >~ 0.1 Msun/yr) could be precursors of supermassive black holes observed beyond redshift of about 6. Extending our previous work, we here study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10^{4 - 5} Msun. Our stellar evolution calculations show that a star becomes supermassive while passing through the "supergiant protostar'' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass, until =~ 100 AU for M_* >~ 10^4 Msun, after which the star begins to slowly contract. Because of the large radius the effective temperature is always less than 10^4 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M_* >~ 10^5 Msun can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of a...

  13. UV variability and accretion dynamics in the young open cluster NGC 2264

    Venuti, Laura; Irwin, Jonathan; Stauffer, John; Hillenbrand, Lynne; Rebull, Luisa; Cody, Ann Marie; Alencar, Silvia; Micela, Giuseppina; Flaccomio, Ettore; Peres, Giovanni

    2015-01-01

    We explore UV and optical variability signatures for several hundred members of NGC 2264 (3 Myr). We performed simultaneous u- and r-band monitoring over two full weeks with CFHT/MegaCam. About 750 young stars are probed; 40% of them are accreting. Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, especially in the UV. The amount of u-band variability correlates statistically with UV excess in disk-bearing objects, which suggests that accretion and star-disk interaction are the main sources of variability. Cool magnetic spots, several hundred degrees colder than the photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots, a few thousand degrees hotter than the photosphere and covering a few percent of the stellar surface, best reproduce the variability o...

  14. Polarized X-rays from accreting neutron stars

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  15. Surface magnetic fields on two accreting T Tauri stars: CV Cha and CR Cha

    Hussain, G. A. J.; Cameron, A. Collier; Jardine, M. M.; Dunstone, N.; Velez, J. Ramirez; Stempels, H.C.; Donati, J.-F; Semel, M.; Aulanier, G.; Harries, T.; Bouvier, J.; Dougados, C.; Ferreira, J; Carter, B. D.; Lawson, W. A.

    2009-01-01

    We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3-5 Myr. Our magnetic field maps show evidence for strong, complex multi-polar fields similar to those obtained for young rapidly rotating main sequence stars. Brightness maps indicate the presence of dark polar caps and low latitude spots -- these brightness maps are very similar to those obtained for o...

  16. The physics of the accretion process in the formation and evolution of Young Stellar Objects

    Manara, C. F.

    2014-07-01

    The formation of planets is thought to happen in protoplanetary disks surrounding young stars during the first few Myrs of their pre-main-sequence evolution. In order to understand planet formation a detailed knowledge of the disk evolution process is needed. By studying the interaction of the disk with the central star, which includes accretion of matter due to viscous processes in the disk, we can constrain the physical conditions of the inner gaseous disk in which planet formation takes place. With the recent advent of the X-Shooter spectrograph, a second generation instrument of the ESO/VLT, the excess emission due to accretion in the ultraviolet can be studied simultaneously with the accretion signatures in the visible and in the near-infrared, finally giving a complete view of this phenomenon. In this Thesis I have studied various X-Shooter datasets of young stars to determine the intensity and the properties of the accretion process at various phases of disk evolution and as a function of the central star mass and age. To fully exploit the potential of the X-Shooter spectra, I have developed an innovative method of analysis to derive accretion and stellar parameters with an automatic algorithm. This is based on a set of models, composed of a set of photospheric templates of young stars that I gathered and characterized, a set of slab models, that I have coded, to reproduce the emission due to the accretion shock, and a reddening law to take into account extinction effects. This method allows to accurately determine for the first time the stellar and accretion parameters of the targets self-consistently and with no prior assumptions, a significant improvement with respect to previous studies. I have applied this methodology to determine the correct stellar parameters of two objects in the Orion Nebula Cluster that were reported in the literature to have an anomalous old age. My analysis has shown why previous investigations could not resolve the degeneracy

  17. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ∼100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  18. Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission

    Ushomirsky, Greg; Cutler, Curt; Bildsten, Lars

    2000-01-01

    Motivated by the narrow range of spin frequencies of nearly 20 accreting neutron stars, Bildsten (1998) conjectured that their spin-up had been halted by the emission of gravitational waves. He also pointed out that small nonaxisymmetric temperature variations in the accreted crust will lead to "wavy" electron capture layers, whose horizontal density variations naturally create a mass quadrupole moment. We present a full calculation of the crust's elastic adjustment to these density perturbat...

  19. Evolution of Disk Accretion

    Calvet, Nuria; Hartmann, Lee; Strom, Stephen E.

    1999-01-01

    We review the present knowledge of disk accretion in young low mass stars, and in particular, the mass accretion rate and its evolution with time. The methods used to obtain mass accretion rates from ultraviolet excesses and emission lines are described, and the current best estimates of mass accretion rate for Classical T Tauri stars and for objects still surrounded by infalling envelopes are given. We argue that the low mass accretion rates of the latter objects require episodes of high mas...

  20. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    Perez, M. R.; Grady, C. A.; The, P. S.

    1994-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 has revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I and C IV emission lines, which are correlated with the UV excess luminosity. We also observe variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M equal to or greater than 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as +300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, upsilon sin i = 180 plus or minus 20 km/s) for this system also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  1. Electrodynamics of disk-accreting magnetic neutron stars

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  2. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  3. Formation of primordial supermassive stars by burst accretion

    Sakurai, Y; Yoshida, N; Yorke, H W

    2015-01-01

    A promising formation channel of SMBHs at redshift 6 is the so-called DC model, which posits that a massive seed BH forms through gravitational collapse of a $\\sim 10^5~M_\\odot$ SMS. We study the evolution of such a SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases that are expected to occur with a self-gravitating circumstellar disk. We show that the stellar evolution with such episodic accretion differs qualitatively from that expected with a constant accretion rate, even if the mean accretion rate is the same. Unlike the case of constant mass accretion, whereby the star expands roughly following $R_* \\simeq 2.6 \\times 10^3 R_\\odot (M_*/100~M_\\odot)^{1/2}$, the protostar can substantially contract during the quiescent phases between accretion bursts. The stellar effective temperature and ionizing photon emissivity increase accordingly as the star contracts, which can cause strong ionizing feedback and halt the m...

  4. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  5. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    Khaibrakhmanov, Sergey A; Parfenov, Sergey Yu; Sobolev, Andrey M

    2016-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations onto dust grains, and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the re...

  6. Gravitational Wave Heating of Stars and Accretion Disks

    Li, Gongjie; Loeb, Abraham

    2012-01-01

    We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs) emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation of the GW energy in an accretion disk and stars surrounding the SMBHB. We account for the suppression of the heating rate if the forcing period is shorter than the turnover time of the largest turbulent eddies. We find that the viscous heating luminosity in 0.1 solar mass stars can be significantly higher than their intrinsic luminosity. The relative brightening is small for accretion disks.

  7. Variability in the Thermal Emission from Accreting Neutron Star Transients

    Brown, Edward F.; Bildsten, Lars; Chang, Philip

    2002-01-01

    The composition of the outer 100 m of a neutron star sets the heat flux that flows outwards from the core. For an accreting neutron star in an X-ray transient, the thermal quiescent flux depends sensitively on the amount of hydrogen and helium remaining on the surface after an accretion outburst and on the composition of the underlying ashes of previous H/He burning. Because H/He has a higher thermal conductivity, a larger mass of H/He implies a shallower thermal gradient through the low dens...

  8. Thin accretion disks around cold Bose–Einstein condensate stars

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  9. Thin accretion disks around cold Bose-Einstein condensate stars

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  10. Thin accretion disks around cold Bose–Einstein condensate stars

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars

  11. Thin accretion disks around cold Bose-Einstein condensate stars

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  12. Star Formation in Massive Clusters via Bondi Accretion

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  13. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    Baraffe, I; Vorobyov, E I; Chabrier, G

    2016-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages $\\sim$ 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst a...

  14. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  15. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    Scaringi, S; Koerding, E; Knigge, C; Vaughan, S; Marsh, T R; Aranzana, E; Dhillon, V; Barros, S C C

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  16. Asymmetric MHD Outflows/Jets from Accreting T Tauri Stars

    Dyda, Sergei; Ustyugova, Galina V; Lii, Patrick S; Romanova, Marina M; Koldoba, Alexander V

    2015-01-01

    A large set of 2.5D MHD simulations has been carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows or jets are asymmetric relative to the equatorial plane. Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. The considered initial magnetic fields are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc-field) and a stellar dipole field. (1). For pure disc-fields the symmetry or asymmetry of the outflows is affected by the midplane plasma $\\beta$ of the disc. For the low density discs with small plasma $\\beta$ values, outflows are observed to be symmetric about the equatorial plane to within 10% over timescales of hundreds of inner disc orbits. For the denser higher $\\beta$ discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion in the two hemispheres becomes different....

  17. Accretion rates and accretion tracers of Herbig Ae/Be stars

    Mendigutía, I; Montesinos, B; Mora, A; Muzerolle, J; Eiroa, C; Oudmaijer, R D; Merín, B

    2011-01-01

    This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, and Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretio...

  18. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dotacc, as a function of the stellar parameters finding that log M-dotacc≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity

  19. Studying Young Stars with Large Spectroscopic Surveys

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  20. Studying Young Stars with Large Spectroscopic Surveys

    Martell, Sarah L

    2015-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  1. Neutron drip transition in accreting and nonaccreting neutron star crusts

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  2. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    Elmegreen, Debra Meloy; Almeida, Jorge Sanchez; Munoz-Tunon, Casiana; Mendez-Abreu, Jairo; Gallagher, John S; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-01-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength HST WFC3 images of UV through I band plus Halpha to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ~10^6 Mo and an ionization rate of 6.4x10^51 s^{-1}, equivalent to ~2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ~1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73+-0.51. Fourteen young clusters in the head are more massive than 10^4 Mo, suggesting a clustering fraction of 30%-45%. Wispy filaments of Halpha emission and young stars extend away from the galaxy. Shells and holes in the head HII region could be from winds and supernovae. Gravity from the disk should limit the expansion of the HII region, altho...

  3. Detecting gravitational waves from accreting neutron stars

    A.L. Watts; B. Krishnan

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the k

  4. Profiling Young Massive Stars

    Hill, T; Cunningham, M R; Minier, V

    2007-01-01

    We present the results of spectral energy distribution analysis for 162 of the 405 sources reported in the SIMBA survey of Hill et al. (2005). The fits reveal source specific parameters including: the luminosity, mass, temperature, H$_2$ number density, the surface density and the luminosity-to-mass ratio. Each of these parameters are examined with respect to the four classes of source present in the sample. Obvious luminosity and temperature distinctions exist between the mm-only cores and those cores with methanol maser and/or radio continuum emission, with the former cooler and less luminous than the latter. The evidence suggests that the mm-only cores are a precursor to the methanol maser in the formation of massive stars. The mm-only cores comprise two distinct populations distinguished by temperature. Analysis and conclusions about the nature of the cool-mm and warm-mm cores comprising the mm-only population are drawn.

  5. Evolution of Young Neutron Star Envelopes

    Chang, P

    2004-01-01

    We extend our initial study of diffusive nuclear burning (DNB) for neutron stars (NSs) with Hydrogen atmospheres and an underlying layer of proton capturing nuclei. Our initial study showed that DNB can alter the photospheric abundance of Hydrogen on surprisingly short timescales ($10^{2-4}\\yrs$). Significant composition evolution impacts the radiated thermal spectrum from the NS as well as its overall cooling rate. In this paper, we consider the case when the rate limiting step for the H consumption is diffusion to the burning layer, rather than the local nuclear timescale. This is relevant for NSs with surface temperatures in excess of $10^6 {\\rm K}$, such as young ($<10^5$ yr) radio pulsars and accreting NSs in quiescence. When downward diffusion is the limiting rate in DNB, the rate of H consumption is suppressed by 1-2 orders of magnitude compared to a DNB estimate that assumes diffusive equilibrium. In order to apply our ongoing study to young neutron stars, we also include the important effects of s...

  6. Evidence for high accretion-rates in Weak-Line T Tauri stars?

    Littlefair, S P; Harries, T J; Retter, A; O'Toole, S J; Naylor, Tim; Harries, Tim J.; Retter, Alon

    2004-01-01

    We have discovered T Tauri stars which show startling spectral variability between observations seperated by 20 years. In spectra published by Bouvier & Appenzeller (1992) these objects showed very weak H-alpha emission, broad CaII absorption and so called ``composite spectra'', where the spectral type inferred from the blue region is earlier than that inferred from the red. We present here new spectroscopy which shows that all four stars now exhibit strong H-alpha emission, narrow CaII emission and a spectral type which is consistent at all wavelengths. We propose a scheme to understand these changes whereby the composite spectra of these stars can be explained by a period of active accretion onto the central, young star. In this scheme the composite spectrum consists of a contribution from the stellar photosphere and a contribution from a hot, optically thick, accretion component. The optically thick nature of the accretion flow explains the weakness of the H-alpha emission during this phase. Within thi...

  7. Tidally distorted accretion discs in binary stars

    Ogilvie, G. I.

    2002-03-01

    The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc. In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The m=2 inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.

  8. MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations

    Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.

    2011-01-01

    We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary...

  9. MHD instabilities in accretion mounds on neutron star binaries

    Mukherjee, Dipanjan; Mignone, Andrea

    2013-01-01

    We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined at the polar cap of neutron stars. From the equilibrium solutions we explore the stability of the accretion mounds using the PLUTO MHD code. We find that pressure driven modes disrupt the equilibria beyond a threshold mound mass. This results in formation of dynamic structures inside the mound, as matter spreads over the neutron star surface. Our results show that local variation of magnetic field will significantly affect the shape and nature of the cyclotron features observed in the spectra of High Mass X-ray Binaries.

  10. Accretion, jets and winds: High-energy emission from young stellar objects

    Guenther, Hans Moritz

    2011-01-01

    This article summarizes the processes of high-energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high-resolution X-ray and UV spectroscopy and modeling. Three mechanisms contribute to the high-energy emission from CTTS: 1) CTTS have active coronae similar to main-sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X-ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X-ra...

  11. Accretion Disc Evolution in Single and Binary T Tauri Stars

    Armitage, P J; Tout, C A; Armitage, Philip J.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation first dominates over internal viscous dissipation. Applying the models to close binaries, we find that because the initial conditions for discs in binaries are uncertain, studies of extreme mass ratio systems are required to provide a stringent test of theoretical disc evolution models. We also note that no correlation of the infra-red colours of T Tauri stars with their rotation rate is observed, in apparent contradiction to the predictions of simple magnetospheric accretion models.

  12. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    Bernal, Cristian G.; Page, Dany; Lee, William H.

    2012-01-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes con...

  13. Magnetospheric accretion on the T Tauri star BP Tauri

    Donati, J F; Gregory, S G; Petit, P; Paletou, F; Bouvier, J; Dougados, C; Ménard, F; Cameron, A C; Harries, T J; Hussain, G A J; Unruh, Y; Morin, J; Marsden, S C; Manset, N; Aurière, M; Catala, C; Alecian, E

    2008-01-01

    From observations collected with the ESPaDOnS and NARVAL spectropolarimeters, we report the detection of Zeeman signatures on the classical T Tauri star BP Tau. Circular polarisation signatures in photospheric lines and in narrow emission lines tracing magnetospheric accretion are monitored throughout most of the rotation cycle of BP Tau at two different epochs in 2006. We observe that rotational modulation dominates the temporal variations of both unpolarised and circularly polarised spectral proxies tracing the photosphere and the footpoints of accretion funnels. From the complete data sets at each epoch, we reconstruct the large-scale magnetic topology and the location of accretion spots at the surface of BP Tau using tomographic imaging. We find that the field of BP Tau involves a 1.2 kG dipole and 1.6 kG octupole, both slightly tilted with respect to the rotation axis. Accretion spots coincide with the two main magnetic poles at high latitudes and overlap with dark photospheric spots; they cover about 2%...

  14. Compression of matter in the center of accreting neutron stars

    Bejger, M; Haensel, P; Fortin, M

    2011-01-01

    In order to estimate the feasibility of dense-matter phase transition, we study the evolution of central density and baryon chemical potential of accreting neutron stars. The thin-disk accretion with and without the magnetic field torque is compared with the spin-down scenario for a selection of recent equations of state. We compare the prevalent (in the recycled-pulsar context) Keplerian thin-disk model, in which the matter is accreted from the marginally-stable circular orbit, with the recent magnetic-torque model that takes into account the influence of stellar magnetic field on the effective inner boundary of the disk. Calculations are performed using a multi-domain spectral methods code in the framework of General Relativity. We consider three equations of state consistent with recently measured mass of PSR J1614-2230, 1.97+-0.04 Msun (one of them softened by the appearance of hyperons). In the case of no magnetic torque and efficient angular momentum transfer from the disk to the star, substantial centr...

  15. Comptonization and QPO Origins in Accreting Neutron Star Systems

    Lee, H C; Lee, Hyong C.; Miller, Guy S.

    1997-01-01

    We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...

  16. Interactions between exoplanets and the winds of young stars

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  17. Photometric determination of the mass accretion rate of pre-main sequence stars. IV. Recent star formation in NGC 602

    De Marchi, Guido; Panagia, Nino

    2013-01-01

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Halpha bands. We have identified about 300 pre-main sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognise at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100 arcsec north of the centre of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of th...

  18. The frequency of accretion disks around single stars: Chamaeleon I

    Daemgen, Sebastian; Jayawardhana, Ray; Petr-Gotzens, Monika G

    2016-01-01

    It is well known that stellar companions can influence the evolution of a protoplanetary disk. Nevertheless, previous disk surveys did not - and could not - consistently exclude binaries from their samples. We present a study dedicated to investigating the frequency of ongoing disk accretion around single stars in a star-forming region. We obtained near-infrared spectroscopy of 54 low-mass stars selected from a high-angular resolution survey in the 2-3 Myr-old Chamaeleon I region to determine the presence of Brackett-$\\gamma$ emission, taking the residual chance of undetected multiplicity into account, which we estimate to be on the order of 30%. The result is compared with previous surveys of the same feature in binary stars of the same region to provide a robust estimate of the difference between the accretor fractions of single stars and individual components of binary systems. We find Br$\\gamma$ emission among $39.5^{+14.0}_{-9.9}$% of single stars, which is a significantly higher fraction than for binary...

  19. Doppler Probe of Accretion onto a T Tauri star

    Petrov, Peter P; Herczeg, Gregory J; Stempels, Henricus C; Walter, Frederick M

    2014-01-01

    The YY Ori stars are T Tauri stars with prominent time-variable redshifted absorption components that flank certain emission lines. One of the brightest in this class is S CrA, a visual double star. We have obtained a series of high-resolution spectra of the two components during four nights with the UVES spectrograph at the Very Large Telescope. We followed the spectral changes occurring in S CrA to derive the physical structure of the accreting gas. We found that both stars are very similar with regard to surface temperature, radius, and mass. Variable redshifted absorption components are particularly prominent in the SE component. During one night, this star developed a spectrum unique among the T Tauri stars: extremely strong and broad redshifted absorption components appeared in many lines of neutral and ionized metals, in addition to those of hydrogen and helium. The absorption depths of cooler, low ionization lines peak at low velocities - while more highly ionized lines have peak absorption depths at ...

  20. Young and Waltzing Binary Stars

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  1. A multiwavelength study of young stars in the Elephant Trunk

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  2. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    Kennedy, Gareth F; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-01-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterised by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical cap...

  3. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  4. Young star clusters in starburst environments

    Ho, L C

    1996-01-01

    Recent high-resolution observations with the Hubble Space Telescope (HST) reveal that young star clusters of extraordinary luminosity and compactness ("super star clusters") are commonly found in starburst systems. Cluster formation appears to be a dominant mode of star formation in starbursts. The principal properties of the young clusters are summarized. A new ultraviolet HST imaging survey of the central regions of nearby galaxies indicates that young clusters form in a wide range of environments. Circumnuclear star-forming rings, in particular, are richly populated with clusters, and several examples from recent imaging studies are discussed. There has been much speculation that super star clusters represent present-day analogs of young globular clusters. I will present evidence suggesting that at least some super star clusters indeed have masses and mass densities comparable to those of evolved globular clusters in the Milky Way.

  5. "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    Ustyugova, G V; Lovelace, R V E; Romanova, M M

    2006-01-01

    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function ...

  6. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  7. Removing a Major Uncertainty in Mass and Age Determinations of Young Stars

    Huerta, Marcos; Hartigan, Patrick

    2005-08-01

    Mass and age measurements of young stars rely on the stars' placement in an HR diagram relative to pre-main-sequence evolutionary tracks. Uncertainties in T_eff include a systematic error introduced by converting spectral types to T_eff according to a conversion scale derived from main-sequence stars. The advent of sophisticated synthetic spectra and modern molecular opacities offers us an opportunity to determine a new T_eff scale designed for young stars. We propose to measure T_eff for a large sample of non- accreting (weak-lined) T Tauri stars using low resolution red spectra on Goldcam. The resulting spectra will make it possible to estimate T_eff for any young star by simply finding the best spectral match with a star in our sample. This procedure will also work for accreting (classical) T Tauri stars, where weak-lined T Tauri stars are used as photospheric templates to distinguish stellar features from accretion signatures.

  8. Growth of a Protostar and a Young Circumstellar Disk with High Mass Accretion Rate onto the Disk

    Ohtani, Takuya

    2013-01-01

    The growing process of both a young protostar and a circumstellar disk is investigated. Viscous evolution of a disk around a single star is considered with a model where a disk increases its mass by dynamically accreting envelope and simultaneously loses its mass via viscous accretion onto the central star. We focus on the circumstellar disk with high mass accretion rate onto the disk $\\dot{M}=8.512c_{\\rm s}^3/G$ as a result of dynamical collapse of rotating molecular cloud core. We study the origin of the surface density distribution and the origin of the disk-to-star mass ratio by means of numerical calculations of unsteady viscous accretion disk in one-dimensional axisymmetric model. It is shown that the radial profiles of the surface density $\\Sigma$, azimuthal velocity $v_{\\phi}$, and mass accretion rate $\\dot{M}$ in the inner region approach to the quasi-steady state. Profile of the surface density distribution in the quasi-steady state is determined as a result of angular momentum transport rather than...

  9. The Eruption of the Candidate Young Star ASASSN-15qi

    Herczeg, Gregory J; Shappee, Benjamin J; Chen, Ping; Hillenbrand, Lynne A; Jose, Jessy; Kochanek, Christopher S; Prieto, Jose L; Stanek, K Z; Kaplan, Kyle; Holoein, Thomas W -S; Mairs, Steve; Johnstone, Doug; Gully-Santiago, Michael; Zhu, Zhaohuan; Smith, Martin C; Bersier, David; Mulders, Gijs D; Filippenko, Alexei V; Ayani, Kazuya; Brimacombe, Joseph; Brown, Jonathan S; Connelley, Michael; Harmanen, Jussi; Ito, Ryosuke; Kawabata, Koji S; Maehara, Hiroyuki; Takata, Koji; Yuk, Heechan; Zheng, WeiKang

    2016-01-01

    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The $\\sim 3.5$ mag brightening in the $V$ band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from $\\sim10,000$ K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitati...

  10. He-Accreting WDs: AM CVn stars with WD Donors

    Piersanti, Luciano; Tornambe', Amedeo

    2015-01-01

    We study the physical and evolutionary properties of the "WD family" of AM CVn stars by computing realistic models of IDD systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by GW emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of \\mdot\\, after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (M_don,M_acc), is high enough, the accretors experience several He-flashes of decreasing s...

  11. Impact of accretion on the statistics of neutron star masses

    Cheng, Z; Zhao, Y H; 10.1017/S1743921312019588

    2013-01-01

    We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly mass distribution of the NS that obtained from observation. We also applied the Monte-Carlo simulation and introduce the characteristic spin period 20 ms, in order to distinguish between millisecond pulsars (MSPs) and less recycled pulsars. The mass distributions of MSPs and the less recycled pulsars could be fitted by a Gaussian function as $\\rm 1.45\\pm0.42 M_{\\odot}$ and $\\rm 1.31\\pm0.17 M_{\\odot} (\\rm with ~ 1\\sigma)$ respectively. As such, the MSP masses are heavier than those in less recycled systems by factor of $\\rm \\sim 0.13M_{\\odot}$, since the accretion effect during the recycling process.

  12. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: Teff = 6550 ± 100 K, log g = 3.75 ± 0.10, L*/L☉ = 16.3 ± 4.5, M*/M☉ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M☉. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10–7 M☉ yr–1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  13. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    Ingleby, Laura; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra Association. For each source we calculate the accretion rate by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high density, low filling factor accretion spots co-exist with low density, high filling factor spots. By fitting the UV and optical spectra wi...

  14. The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties

    Biazzo, K; Covino, E; Frasca, A; Getman, F; Spezzi, L

    2012-01-01

    Radial velocities, elemental abundances, and accretion properties of members of star-forming regions (SFRs) are important for understanding star and planet formation. While infrared observations reveal the evolutionary status of the disk, optical spectroscopy is fundamental to acquire information on the properties of the central star and on the accretion characteristics. 2MASS archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have provided disk properties of a large number of young stars. We complement these data with spectroscopy with the aim of providing physical stellar parameters and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members of Cha II to measure radial velocities through cross-correlation technique, Li abundances by means of curves of growth, and for a suitable star elemental abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom emission lines, we estimate ...

  15. Supercritical accretion in the evolution of neutron star binaries and its implications

    Recently ∼2M⊙ neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M⊙. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M⊙. In this article we suggest that 2M⊙ neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors

  16. A Survey of Chemical Separation in Accreting Neutron Stars

    Mckinven, Ryan; Medin, Zach; Schatz, Hendrik

    2016-01-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al. (2007), but extends that result to a much larger range of compositions. We also find an alternate phase separation regime for the lightest ash mixtures which does not demonstrate this generic behaviour. With a few exceptions, we find that chemical separation reduces the expected $Q_{\\rm imp}$ in the outer crust compared to the initial rp-process ash, where $Q_{\\rm imp}$ measures the mean-square dispersion in atomic number $Z$ of the nuclei in the mixtu...

  17. Two-phase model of star formation with variable accretion rate

    The influence of a variation of the accretion rate on the bursts of star formation is considered in the framework of two-phase model of star formation including interaction of stars and molecular clouds. The star formation is induced by binary cloud collisions and by interaction of clouds and already existing stars. The estimation of parameters of the model is based on the data on the masses of stars and clouds in Galaxy. If trigger mechanism of star formation dominates the regime of damped oscillations occurs in the system with variable accretion rate. Three types of variations of the accretion rate are considered: rapid increase during the time less than the period of oscillations, slow increase during the time of two oscillations and a short burst. In all cases the oscillatory behaviour occurs

  18. Orbital elements of barium stars formed through a wind accretion scenario

    Liu, J H; Liang, Y C; Peng, Q H

    2000-01-01

    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.

  19. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature

  20. The GALEX Nearby Young-Star Survey

    Rodriguez, David R; Kastner, Joel H; Bessel, M S; Faherty, Jacqueline K; Murphy, Simon J

    2013-01-01

    We describe a method that exploits data from the GALEX ultraviolet and WISE and 2MASS infrared source catalogs, combined with proper motions and empirical pre-main sequence isochrones, to identify candidate nearby, young, low-mass stars. Applying our method across the full GALEX- covered sky, we identify 2031 mostly M-type stars that, for an assumed age of 10 (100) Myr, all lie within ~150 (~90) pc of Earth. The distribution of M spectral subclasses among these ~2000 candidate young stars peaks sharply in the range M3-M4; these subtypes constitute 50% of the sample, consistent with studies of the M star population in the immediate solar neighborhood. We focus on a subset of 58 of these candidate young M stars in the vicinity of the Tucana-Horologium Association. Only 20 of these 58 candidates were detected in the ROSAT All-Sky X-ray Survey -- reflecting the greater sensitivity of GALEX for purposes of identifying active nearby, young stars, particularly for stars of type M4 and later. Based on statistical ana...

  1. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; Brittain, S.; Troutmann, M.; Donehew, B.; Hines, D.; Wisniewski, J. P.; Lynch, D. K.; Russell, R. W.; Rudy, R. J.; Day, A. M.; Shenoy, A.; Wilner, D.; Silverston, M.; Bouret, J.-C.; Clampin, M.; Petre, R.

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  2. Captured older stars as the reason for apparently prolonged star formation in young star clusters

    Pflamm-Altenburg, Jan; Kroupa, Pavel

    2006-01-01

    The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time scales longer than a free-fall time of a pre-cluster cloud core. Here the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: The focussing of stellar orbits leads to an enhancement of the d...

  3. The effect of rotation on the stability of nuclear burning in accreting neutron stars

    Keek, L.; Langer, N.; in 't Zand, J.J.M.

    2009-01-01

    Hydrogen and/or helium accreted by a neutron star from a binary companion may undergo thermonuclear fusion. Different burning regimes are discerned at different mass accretion rates. Theoretical models predict helium fusion to proceed as a thermonuclear runaway for accretion rates below the Eddington limit and as stable burning above this limit. Observations, however, place the boundary close to 10% of the Eddington limit. We study the effect of rotationally induced transport processes on the...

  4. Accretion by a Neutron Star Moving at a High Kick Velocity in the Supernova Ejecta

    Xu Zhang; Ye Lu; Yong-Heng Zhao

    2007-01-01

    We suggest a two-dimensional time dependent analytic model to describe the accretion of matter onto a neutron star moving at a high speed across the ejecta left in the aftermath of a supernova explosion. The formation of a strange star resulting from the accretion is also addressed. The newborn neutron star is assumed to move outward at a kick velocity of vns ~ 103 km s-1, and the accretion flow is treated as a dust flow. When the neutron star travels across the ejecta with high speed, it sweeps up material, and when the accreted mass has reached a critical value, the neutron star will undergo a phase transition,for instance, to become a strange star. Our results show that the accretion rate decreases in a complicated way in time, not just a power law dependence: it drops much faster than the power law derived by Colpi et al. We also found that the total accreted mass and the phase transition of the neutron star depend sensitively on the velocity of supernova ejecta.

  5. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  6. The structure of young star clusters

    Gladwin, P. P.; Kitsionas, S.; H. M. J. Boffin; Whitworth, A. P.

    1998-01-01

    We analyse and compare the clustering of young stars in Chamaeleon I and Taurus. We compute the mean surface-density of companion stars \\bar{N} as a function of angular displacement \\theta from each star. We then fit \\bar{N}(\\theta) with two simultaneous power laws. For Chamaeleon I, the exponents of the power laws are 1.97 and 0.28, with the elbow at ~0.011 degrees. For Taurus, we obtain 2.02 and 0.87, with the elbow at ~0.013 deg. For both star clusters the observational data make quite lar...

  7. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica]. E-mail: herman@das.inpe.br; jcarlos@das.inpe.br; odylio@das.inpe.br; Horvath, J.E. [Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico]. E-mail: foton@orion.iagusp.usp.br

    2000-07-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  8. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra As...

  9. Are some of the luminous high-latitude stars accretion-powered runaways?

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s-1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  10. Energetic outflows from young stars

    In our galaxy, stars are born in clouds of gas, bodies so cold they do not emit any radiation at the visible wavelengths. Moreover, the clouds are permeated by cosmic dust, so that the visible radiation emitted by new stars is absorbed. Radiation at the wavelengths of infrared waves and the shortest radio waves penetrate these clouds. With the development of new telescopes and equipment for the detection of radiation at those wavelengths, astronomers are now able to explore the dark clouds where stars are born. A prime probe of the conditions within star-forming clouds has turned out to be the molecule carbon monoxide (CO). In interstellar molecular clouds, CO molecules emit radiation at a wavelength of 2.6 mm. The study of such radiation has recently revealed a new and intriguing phenomena closely associated with the birth and early evolution of stars. When certain stars are in the earliest stages of their life, they appear to be associated with violent outflows of mass. In a number of instances, molecular gas is found to be flowing outward from around newly formed stars in two supersonic streams 1800 apart. The origin and nature of these energetic outflows is a mystery. (SC)

  11. TRANSITIONAL DISKS AROUND YOUNG LOW MASS STARS

    P. D'Alessio

    2009-01-01

    have been interpreted as produced by disks with inner holes, which have been classi ed as \\Transitional Disks". These disks are considered the evolutionary link between the full disks typically found around the young T Tauri and Herbig Ae stars, and the debris disks, found around some main sequence stars. In this contribution we summarize the observed/inferred characteristics of these transitional disks and also some of the models proposed to explain their peculiar geometry.

  12. The role of accretion disks in the formation of massive stars

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2010-01-01

    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 10^5 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presum...

  13. Accretion onto Stars with Octupole Magnetic Fields: Matter Flow, Hot Spots and Phase Shifts

    Long, Min; Lamb, Frederick K

    2009-01-01

    Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. The magnetic field associated with the octupole moment may dominate the magnetic field associated with other moments in some stars, such as the CTTS V2129 Oph. Previously, we studied disc accretion onto stars with magnetic fields described by a superposition of aligned or misaligned dipole and quadrupole moments. In this paper, we present results of the first simulations of disc accretion onto stars with an \\textit {octupole} field. As examples, we consider stars with a superposition of octupole and dipole fields of different strengths and investigate matter flow around them, the shapes of hot spots on their surfaces, and the light curves produced by their rotation. We investigate two possible mechanisms for producing phase shifts in the light curves of stars with complex fields: (1) change of the star's intrinsic magnetic field and ...

  14. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  15. Super-Eddington accretion in ultra-luminous neutron star binary

    Lyutikov, Maxim

    2014-01-01

    We discuss properties of the ultra-luminous $X$-ray source in the galaxy M82, NuSTAR J095551+6940.8, containing an accreting neutron star. The neutron star has surface magnetic field $ B_{NS} \\approx 1.4 \\times 10^{13 } \\, {\\rm G}$ and experiences accretion rate of $9 \\times 10^{-7} M_\\odot {\\rm \\, yr}^{-1} $. The magnetospheric radius, close to the corotation radius, is $\\sim 2 \\times 10^8$ cm. The accretion torque on the neutron star is reduce well below what is expected in a simple magnetospheric accretion due to effective penetration of the stellar magnetic field into the disk beyond the corotation radius. As a result, the radiative force of the surface emission does not lead to strong coronal wind, but pushes plasma along magnetic field lines towards the equatorial disk. The neutron star is nearly an orthogonal rotator, with the angle between the rotation axis and the magnetic moment $\\geq 80$ degrees. Accretion occurs through optically thick -- geometrically thin and flat accretion "curtain", which cuts...

  16. 2-D MHD Configurations for Accretion Disks Around Magnetized Stars

    Benini, Riccardo; Montani, Giovanni

    2009-01-01

    We discuss basic features of steady accretion disk morphology around magnetized compact astrophysical objects. A comparison between the standard model of accretion based on visco-resistive MHD and the plasma instabilities, like ballooning modes, triggered by very low value of resistivity, is proposed.

  17. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/σ seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot*>120 Modot yr-1 galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales ∝σ, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z ∼ 2, we find a space density 10-4 Mpc-3 in star-forming galaxies with M-dot*>120 Modot yr-1, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot* and M * is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  18. The Early History of Stellar Spin: the Theory of Accretion onto Young Stellar Objects

    Pudritz Ralph E.

    2014-01-01

    Full Text Available The interaction of the magnetospheres of forming stars with their surrounding protostellar disks results in magnetospheric accretion flow onto the star. How is the associated angular momentum of accreting material channelled? The resolution of this issue is crucial for understanding the origin of the spins of pre main sequence stars. A significant fraction of these rotate very slowly, which indicates that an efficient angular momentum transport mechanism is at work to counteract the strong accretion spin up torques. We review the observational, theoretical, and computational advances in the field and argue that an accretion powered stellar winds together with highly time variable mass ejections from the disk/magnetosphere interface is a likely solution.

  19. A strong shallow heat source in the accreting neutron star MAXI J0556-332

    Deibel, Alex; Brown, Edward F; Page, Dany

    2015-01-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star's crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is $\\approx 4\\textrm{-}10\\,\\mathrm{MeV}$ per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to $\\approx 6\\textrm{-}16\\,\\mathrm{MeV}$. This shallow heating is still required to fit the lightcurve even after taking into account a second accretion episode, uncer...

  20. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    Bernal, Cristian G; Lee, William H

    2012-01-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes convectively stable the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulatio...

  1. HYPERCRITICAL ACCRETION ONTO A NEWBORN NEUTRON STAR AND MAGNETIC FIELD SUBMERGENCE

    Bernal, Cristian G.; Page, Dany; Lee, William H., E-mail: bernalcg@astro.unam.mx, E-mail: page@astro.unam.mx, E-mail: wlee@astro.unam.mx [Departamento de Astrofisica Teorica, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico)

    2013-06-20

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the newborn neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non-magnetized, and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly, and once it becomes convectively stable, the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulations we find the transition from total to partial submergence to occur around M-dot {approx}10 M{sub sun} yr{sup -1}. Back-diffusion of the submerged magnetic field toward the surface, and the resulting growth of the dipolar component, may result in a delayed switch-on of a pulsar on timescales of centuries to millennia.

  2. On the existence of accretion-driven bursts in massive star formation

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Accretion-driven luminosity outbursts are a vivid manifestation of variable mass accretion onto protostars. They are known as the so-called FU Orionis phenomenon in the context of low-mass protostars. More recently, this process has been found in models of primordial star formation. Using numerical radiation hydrodynamics simulations, we stress that present-day forming massive stars also experience variable accretion and show that this process is accompanied by luminous outbursts induced by the episodic accretion of gaseous clumps falling from the circumstellar disk onto the protostar. Consequently, the process of accretion-induced luminous flares is also conceivable in the high-mass regime of star formation and we propose to regard this phenomenon as a general mechanism that can affect protostars regardless of their mass and/or the chemical properties of the parent environment in which they form. In addition to the commonness of accretion-driven outbursts in the star formation machinery, we conjecture that l...

  3. Finding Young Stars in IC417

    Odden, Caroline; Rebull, Luisa M.; Sanchez, Richard; Hall, Garrison; Dear, AnnaMaria; Hengel, Cassie; LaRocca, Mia; Lin, Samantha; Nix, Sabine; Sweckard, Teaghan; Wilhelm, Katie

    2016-01-01

    IC 417 is a young cluster in the constellation Auriga, towards the Galactic anti-center in the Perseus arm, at a distance of ~2.3 kpc. Previous studies suggested that there are young stars in this region; Camargo et al. (2012) identified several few-Myr-old clusters in this region from 2MASS clustering, and Jose et al. (2008) identified H-alpha excess sources. Since stars form from clouds of interstellar dust and gas, a signature of star formation is excess infrared (IR) emission, which is interpreted as evidence for circumstellar dust around young stars. We identified new candidate young stellar objects (YSOs) in IC 417 by incorporating near- and mid-infrared observations from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Infrared excess sources were identified by using a series of color cuts in various 2MASS/WISE color-magnitude and color-color diagrams following Koenig & Leisawitz (2014). We also assembled a list of OB and H-alpha stars from the literature, including those from Jose et al. (2008), and H-alpha bright stars from the IPHAS survey (Witham et al. 2008). Starting with this compiled list of approximately 200 interesting objects in the region, we then set about checking their reliability in three ways. We inspected the POSS, 2MASS, and WISE images of the sources. We assembled and inspected spectral energy distributions (SEDs) from archival data ranging from wavelengths of 0.7 to 22 um. Finally, we created and inspected color-color and color-magnitude diagrams. We find enough new YSO candidates to more than double the number yet identified in the IC 417 region. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  4. The Accretion Disk of the Lithium-Depleted Young Binary St 34

    Hartmann, Lee; Calvet, Nuria; Watson, Dan M.; D'Alessio, P.; Furlan, E.; Sargent, B.; Forrest, W. J.; Uchida, K. I.; Green, J. D.; Sloan, G. C.; Chen, C. H.; Najita, J.; Kemper, F.; Herter, T. L.; Morris, P.; Barry, D. J.; Hall, P.

    2005-01-01

    We presented the infrared spectrum of the young binary system St 34 obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The IRS spectrum clearly shows excess dust emission, consistent with the suggestion of White & Hillenbrand that St 34 is accreting from a circumbinary disk. The disk emission of St 34 is low in comparison with the levels observed in typical T Tauri stars; silicate features at 10 and 20 microns are much weaker than typically seen in T Tauri stars; and excess emission is nearly absent at the shortest wavelengths observed. These features of the infrared spectrum suggest substantial grain growth (to eliminate silicate features) and possible settling of dust to the disk midplane (to reduce the continuum excess emission levels), along with a relatively evacuated inner disk, as expected due to gravitational perturbations by the binary system. Although the position of St 34 in the H-R diagram suggests an age of 8f Myr, assuming that it lies at the distance of the Taurus-Auriga molecular clouds, White & Hillenbrand could not detect any Li I absorption, which would indicate a Li depletion age of roughly 25 Myr or more. We suggest that St 34 is closer than the Taurus clouds by about 30-40 pc and has an age roughly consistent with Li depletion models. Such an advanced age would make St 34 the oldest known low-mass pre-main-sequence object with a dusty accretion disk. The persistence of optically thick dust emission well outside the binary orbit may indicate a failure to make giant planets that could effectively remove dust particles.

  5. Supercritical accretion in the evolution of neutron star binaries and its implications

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  6. X-Shooter study of accretion in $\\rho$-Ophiucus: very low-mass stars and brown dwarfs

    Manara, C F; Natta, A; Alcalá, J M

    2015-01-01

    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This l...

  7. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  8. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  9. X-ray deficiency on strong accreting T Tauri stars - Comparing Orion with Taurus

    Bustamante, Ignacio; Bouy, Hervé; Manara, Carlo; Ribas, Álvaro; Riviere-Marichalar, Pablo

    2015-01-01

    Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster, we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. We provide a catalog with X-ray lumin...

  10. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    Sakurai, Y.; Vorobyov, E. I.; Hosokawa, T.; Yoshida, N.; Omukai, K.; Yorke, H. W.

    2016-06-01

    The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 104 M⊙. The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature at Teff ≃ 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, ≲103 yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches ≳105 M⊙.

  11. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  12. Modeling The Star Forming Universe at z=2: Impact of Cold Accretion Flows

    Khochfar, S.; ~Silk, J.

    2008-01-01

    We present results of a semi-analytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low $V/\\sigma$ seen in various massive disk or disk-like galaxies, if we allow 18 % of the accretion energy from cold flows to drive turbulence in gaseous disks at $z=2$. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the numb...

  13. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 2 Boötes multi-wavelength survey field. The SFR is estimated using 250 μm observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M☉ yr–1) and the SFR (in M☉ yr–1) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (– 3.72 ± 0.52) + (1.05 ± 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales

  14. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  15. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  16. Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime

    Kurosawa Ryuichi

    2014-01-01

    Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.

  17. The structure of young star clusters

    Gladwin, P P; Boffin, H M J; Whitworth, A P

    1998-01-01

    We analyse and compare the clustering of young stars in Chamaeleon I and Taurus. We compute the mean surface-density of companion stars \\bar{N} as a function of angular displacement \\theta from each star. We then fit exponents of the power laws are 1.97 and 0.28, with the elbow at ~0.011 degrees. For Taurus, we obtain 2.02 and 0.87, with the elbow at ~0.013 deg. For both star clusters the observational data make quite large systematic excursions from the best fitting curve in the binary regime. These excursions may be attributable to evolutionary effects of the types discussed recently by Nakajima et al. and Bate et al. In the clustering regime the data conform to the best fitting curve very well. We also calculate the box-dimensions for the two star clusters. However, the limited dynamic range makes these estimates simply descriptors of the large-scale clustering, and not admissible evidence for fractality. We also propose two algorithms for objectively generating maps of constant stellar surface-density in ...

  18. Accretion-powered pulsations in an apparently quiescent neutron star binary

    Archibald, Anne M; Patruno, Alessandro; Hessels, Jason W T; Deller, Adam T; Bassa, Cees; Janssen, Gemma H; Kaspi, Vicky M; Lyne, Andrew G; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

    2014-01-01

    Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_X\\sim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron star's magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_X\\lesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.

  19. Thermal conductivity and phase separation of the crust of accreting neutron stars

    Horowitz, C. J.; Caballero, O L; Berry, D. K.

    2008-01-01

    Recently, crust cooling times have been measured for neutron stars after extended outbursts. These observations are very sensitive to the thermal conductivity $\\kappa$ of the crust and strongly suggest that $\\kappa$ is large. We perform molecular dynamics simulations of the structure of the crust of an accreting neutron star using a complex composition that includes many impurities. The composition comes from simulations of rapid proton capture nucleosynthesys followed by electron captures. W...

  20. Symbiotic Stars as Laboratories for the Study of Accretion and Jets: A Call for Optical Monitoring

    Sokoloski, J.L.

    2004-01-01

    Symbiotic binary stars typically consist of a white dwarf (WD) that accretes material from the wind of a companion red giant. Orbital periods for these binaries are on the order of years, and their relatively small optical outbursts tend to occur every few years to decades. In some symbiotics, material that is transferred from the red giant to the WD forms a disk around the WD. Thus, symbiotic stars are a bit like overgrown cataclysmic variables (CVs), but with less violent eruptions. Symbiot...

  1. On the accretion properties of young stellar objects in the L1615/L1616 cometary cloud

    Biazzo, K; Frasca, A; Zusi, M; Getman, F; Covino, E; Gandolfi, D

    2014-01-01

    We present the results of FLAMES/UVES and FLAMES/GIRAFFE spectroscopic observations of 23 low-mass stars in the L1615/L1616 cometary cloud, complemented with FORS2 and VIMOS spectroscopy of 31 additional stars in the same cloud. L1615/L1616 is a cometary cloud where the star formation was triggered by the impact of the massive stars in the Orion OB association. From the measurements of the lithium abundance and radial velocity, we confirm the membership of our sample to the cloud. We use the equivalent widths of the H$\\alpha$, H$\\beta$, and the HeI $\\lambda$5876, $\\lambda$6678, $\\lambda$7065 \\AA$ $emission lines to calculate the accretion luminosities, $L_{\\rm acc}$, and the mass accretion rates, $\\dot M_{\\rm acc}$. We find in L1615/L1616 a fraction of accreting objects ($\\sim 30\\%$), which is consistent with the typical fraction of accretors in T associations of similar age ($\\sim 3$ Myr). The mass accretion rate for these stars shows a trend with the mass of the central object similar to that found for othe...

  2. The structure of young star clusters

    Gladwin, P. P.; Kitsionas, S.; Boffin, H. M. J.; Whitworth, A. P.

    1999-01-01

    In this paper we analyse and compare the clustering of young stars in Chamaeleon I and Taurus. We compute the mean surface density of companion stars N as a function of angular displacement theta from each star. We then fit N theta) with two simultaneous power laws, i.e. N(theta) ~ K_bintheta^-beta_bin + K_clutheta^-beta_clu. For Chamaeleon I, we obtain beta_bin= 1.97 +/- and beta_clu= 0.28 +/- 0.06, with the elbow at theta_elb~ 0 011 +/- 0 004. For Taurus, we obtain beta_bin= 2.02 +/- 0.04 and beta _clu= 0.87 +/- 0.01, with the elbow at theta _elb~ 0 013 +/- 0 003. For both star clusters the observational data make large (~ 5 sigma) systematic excursions from the best-fitting curve in the binary regime (theta theta_elb) the data conform to the best-fitting curve very well, but the beta_clu values we obtain differ significantly from those obtained by other workers. These differences are due partly to the use of different samples, and partly to different methods of analysis. We also calculate the box dimensions for the two star clusters: for Chamaeleon I we obtain D_box~=1.51+/-0.12, and for Taurus D_box~=1.39+/-0.01. However, the limited dynamic range makes these estimates simply descriptors of the large-scale clustering, and not admissible evidence for fractality. We propose two algorithms for objectively generating maps of constant stellar surface density in young star clusters. Such maps are useful for comparison with molecular-line and dust-continuum maps of star-forming clouds, and with the results of numerical simulations of star formation. They are also useful because they retain information that is suppressed in the evaluation of N(theta). Algorithm I (SCATTER) uses a universal smoothing length, and therefore has a restricted dynamic range, but it is implicitly normalized. Algorithm II (GATHER) uses a local smoothing length, which gives it much greater dynamic range, but it has to be normalized explicitly. Both algorithms appear to capture well the features

  3. The effect of rotation on the stability of nuclear burning in accreting neutron stars

    Keek, L; Zand, J J M in 't

    2009-01-01

    Hydrogen and/or helium accreted by a neutron star from a binary companion may undergo thermonuclear fusion. At different mass accretion rates different burning regimes are discerned. Theoretical models predict helium fusion to proceed as a thermonuclear runaway for accretion rates below the Eddington limit and as stable burning above this limit. Observations, however, place the boundary close to 10% of the Eddington limit. We study the effect of rotationally induced transport processes on the stability of helium burning. For the first time detailed calculations of thin helium shell burning on neutron stars are performed using a hydrodynamic stellar evolution code including rotation and rotationally induced magnetic fields. We find that in most cases the instabilities from the magnetic field provide the dominant contribution to the chemical mixing, while Eddington-Sweet circulations become important at high rotation rates. As helium is diffused to greater depths, the stability of the burning is increased, such...

  4. An ultra-relativistic outflow from a neutron star accreting gas from a companion

    R.P. Fender; K. Wu; H. Johnston; T. Tzioumis; P.G. Jonker; R. Spencer; M. van der Klis

    2004-01-01

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible

  5. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  6. Disks and Outflows Around Young Stars

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  7. Accretion Disc Evolution in Single and Binary T Tauri Stars

    Armitage, Philip J.; C.J. Clarke; Tout, C.A.

    1998-01-01

    We present theoretical models for the evolution of T Tauri stars surrounded by circumstellar discs. The models include the effects of pre-main-sequence stellar and time dependent disc evolution, and incorporate the effects of stellar magnetic fields acting on the inner disc. For single stars, consistency with observations in Taurus-Auriga demands that disc dispersal occurs rapidly, on much less than the viscous timescale of the disc, at roughly the epoch when heating by stellar radiation firs...

  8. Magnetospheric accretion in EX Lupi

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  9. Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution

    Mirabel, Igor Felix

    2016-07-01

    Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.

  10. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; ...

  11. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  12. Shock Waves in Outflows from Young Stars

    Hartigan, Patrick

    This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.

  13. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  14. Quasar feedback: accelerated star formation and chaotic accretion

    Nayakshin, Sergei

    2012-01-01

    Growing Supermassive Black Holes (SMBH) are believed to influence their parent galaxies in a negative way, terminating their growth by ejecting gas out before it could turn into stars. Here we present some of the most sophisticated SMBH feedback simulations to date showing that quasar's effects on galaxies are not always negative. We find that when the ambient shocked gas cools rapidly, the shocked gas is compressed into thin cold dense shells, filaments and clumps. Driving these high density features out is much more difficult than analytical models predict since dense filaments are resilient to the feedback. However, in this regime quasars have another way of affecting the host -- by triggering a massive star formation burst in the cold gas by over-pressurising it. Under these conditions SMBHs actually accelerate star formation in the host, having a positive rather than negative effect on their host galaxies. The relationship between SMBH and galaxies is thus even more complex and symbiotic than currently b...

  15. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1 - 20 AU from Sun-like stars

    Heller, René

    2015-01-01

    Exomoon detections might be feasible with NASA's Kepler or ESA's upcoming PLATO mission or the ground-based E-ELT. To use observational resources most efficiently we need to know where the largest, most easily detected moons can form. We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how different heating sources in those disks affect the H2O ice lines. We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical model -- (1) viscous heating, (2) planetary illumination, (3) accretional heating, and (4) stellar illumination -- are fed by precomputed planet evolution tracks. We consider planets accreting 1 to 12 Jupiter masses at distances between 1 and 20 AU to a Sun-like star. Accretion disks around Jupiter-mass planets closer than ~4.5 AU to Sun-like stars do not feature H2O ice lines, but the most m...

  16. THE SIZES OF THE NEAREST YOUNG STARS

    We present moderate resolution (R ∼ 3575) optical spectra of 19 known or suspected members of the AB Doradus and β Pictoris Moving Groups, obtained with the DeVeny Spectrograph on the 72 inch Perkins telescope at Lowell Observatory. For four of five recently proposed members, signatures of youth such as Li I 6708 Å absorption and Hα emission further strengthen the case for youth and membership. The lack of detected lithium in the proposed β Pic member TYC 2211-1309-1 implies that it is older than all other K-type members and weakens the case for membership. Effective temperatures are determined via line ratio analyses for the 11 F, G, and early-K stars observed, and via spectral comparisons for the eight late-K and M stars observed. We assemble updated candidate membership lists for these moving groups that account for known binarity. Currently, the AB Dor Moving Group contains 127 proposed members and the β Pic Moving Group holds 77 proposed members. We then use temperature, luminosity, and distance estimates to predict angular diameters for these stars; the motivation is to identify stars that can be spatially resolved with long-baseline optical/infrared interferometers in order to improve age estimates for these groups and to constrain evolutionary models at young ages. Considering the portion of the sky accessible to northern hemisphere facilities (decl. > – 30), six stars have diameters large enough to be spatially resolved (θ > 0.4 mas) with the CHARA Array, which currently has the world's longest baseline of 331 m; this subsample includes the low-mass M2.5 member of AB Dor, GJ 393, which is likely to still be pre-main sequence. For southern hemisphere facilities (decl. < + 30), 18 stars have diameters larger than this limiting size, including the low-mass debris disk star AU Mic (0.72 mas). However, the longest baselines of southern hemisphere interferometers (160 m) are only able to resolve the largest of these, the B6 star α Gru (1.17 mas

  17. The complex accretion geometry of GX339-4 as seen by NuSTAR

    Fuerst, F.; NuSTAR binaries working Group

    2015-07-01

    We present an in-depth spectral analysis of a failed outburst of GX 339-4 in 2013, as observed by NuSTAR and Swift. During this outburst, the source never left the low-hard state and our observations cover Eddington luminosity fractions between 0.9% and 6%. The high quality NuSTAR data allow us to study the weak reflection component in this state. We show that the source very likely has a complex coronal geometry, in which the parts illuminating the accretion disk have a significantly harder spectrum than the observed primary continuum. While we observe a relativistically broadened iron line, the complex corona makes it challenging to put stringent limits on the inner accretion disk radius. The measured values depend strongly on assumptions for the emissivity profile of the accretion disk and we discuss various scenarios. All models, however, clearly require inner disk radii smaller than 100 r_{g}. We compare these spectra to NuSTAR observations of a subsequent full outburst in 2015. We discuss differences in the continuum parameters possibly related to luminosity, which indicate changes in the accretion geometry.

  18. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    Hosokawa, Takashi; Kuiper, Rolf; Yorke, Harold W; Omukai, Kazuyuki; Yoshida, Naoki

    2015-01-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE-RHD calculations result in a wide diversity of final stellar masses covering $10~M_\\odot \\lesssim M_* \\lesssim 10^3~M_\\odot$. The formation of very massive ($\\gtrsim 250~M_\\odot$) stars is possible under weak UV feedback, whereas ordinary massive (a few $\\times 10~M_\\odot$) stars form when UV feedback can efficiently halt the accretion. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed $0.01~M_\\odot~{\\rm yr}^{-1}$, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an HII region. If the delay time betwe...

  19. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10-3 Msun yr-1 or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  20. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    Sakurai, Yuya; Hosokawa, Takashi; Yoshida, Naoki; Omukai, Kazuyuki; Yorke, Harold W

    2015-01-01

    The formation of SMSs is a potential pathway to seed SMBHs in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper we study the evolution of an accreting SMS and its UV emissivity under conditions of realistic variable accretion from a self-gravitating circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the long-term protostellar accretion until the stellar mass exceeds $10^4~M_\\odot$. The disc fragments due to gravitational instability, creating a number of small clumps that rapidly migrate inward to fall onto the star. The resulting accretion history is thus highly time-dependent: short episodic accretion bursts are followed by longer, relative quiescent phases. We show that the circumstellar disc for the so-called direct collapse model is more unstable and generates greater variability over shorter timescales than normal Pop III cases. We conduct a post-process stellar evolution calculati...

  1. Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback.

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-09-10

    We investigate the merger of a neutron star in orbit about a spinning black hole in full general relativity with a mass ratio of 5:1, allowing the star to have an initial magnetization of 10(12)  G. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. We see no significant dynamical effects in the simulations or changes in the gravitational waveform resulting from the initial magnetization. We find that only a negligible amount of matter becomes unbound; 99% of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that 99.99% of the star will interact with the central disk and black hole within 3 hours. PMID:20867561

  2. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    Chawla, Sarvnipun; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; $99\\%$ of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that $99.99\\%$ of the star will interact with the central disk and black hole within 3 hours.

  3. The Role for the Inner Disk in Mass Accretion to the Star in the Early Phase of Star Formation

    Ohtani, Takuya; Tsuribe, Toru; Vorobyov, Eduard I

    2014-01-01

    A physical mechanism that drives FU Orionis-type outbursts is reconsidered. We study the effect of inner part of a circumstellar disk covering a region from near the central star to the radius of approximately $5$ AU (hereafter, the inner disk). Using the fluctuated mass accretion rate onto the inner disk $\\dot{M}_{\\rm out}$, we consider the viscous evolution of the inner disk and the time variability of the mass accretion rate onto the central star $\\dot{M}_{\\rm in}$ by means of numerical calculation of an unsteady viscous accretion disk in a one-dimensional axisymmetric model. First, we calculate the evolution of the inner disk assuming an oscillating $\\dot{M}_{\\rm out}$. It is shown that the time variability of $\\dot{M}_{\\rm in}$ does not coincide with $\\dot{M}_{\\rm out}$ due to viscous diffusion. Second, we investigate the properties of spontaneous outbursts with temporally constant $\\dot{M}_{\\rm out}$. Outburst occur only in a limited range of mass accretion rates onto the inner disk $10^{-10}<\\dot{M}...

  4. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in...... the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability...... (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics...

  5. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  6. Interplay between diffusion, accretion and nuclear reactions in the atmospheres of Sirius and Przybylski's star

    Yushchenko, A; Goriely, S; Shavrina, A; Kang, Y W; Rostopchin, S; Valyavin, G; Mkrtichian, D; Hatzes, A; Lee, B C; Kim, C; Yushchenko, Alexander; Gopka, Vera; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon; Rostopchin, Sergey; Valyavin, Gennady; Mkrtichian, David; Hatzes, Artie; Lee, Byeong-Cheol; Kim, Chulhee

    2006-01-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that Cp stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. We report the result of determination of abundances of elements in the atmosphere of hot Am star: Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with the abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of investigation on the stratification of chemical elements in the atmosphere of Przybylski's star ...

  7. SPATIALLY EXTENDED BRACKETT GAMMA EMISSION IN THE ENVIRONMENTS OF YOUNG STARS

    The majority of atomic hydrogen Brγ emission detected in the spectra of young stellar objects is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band integral field unit spectroscopic study of Brγ emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau, and XZ Tau. We spatially resolve Brγ emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Brγ line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Brγ is typically less than ∼10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the mass outflow rate using simple assumptions about the hydrogen emission region and compare this to the derived mass accretion rate. We detect extended Brγ in the vicinity of the more obscured targets in our sample and conclude that spatially extended Brγ emission may exist toward other stars, but unattenuated photospheric flux probably limits its detectability.

  8. Time-dependent, compositionally driven convection in the oceans of accreting neutron stars

    Medin, Zach

    2014-01-01

    We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and the subsequent enrichment of the ocean in light elements and inward transport of heat through convective mixing. We extend the steady-state results of Medin & Cumming 2011 to transiently accreting neutron stars, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. Convective mixing is extremely efficient, flattening the composition profile in about one convective turnover time (weeks to months at the base of the ocean). During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layers hot. We find that this leads to a sharp drop in surface emission...

  9. K-band spectroscopy of deeply embedded, young OB stars

    Bik, A.; Kaper, L.; Hanson, M.M.; Waters, L. B. F. M.

    2006-01-01

    We have obtained high resolution (R = 10,000) K-band spectra of candidate young massive stars deeply embedded in high-mass star-forming regions. These objects were selected from a near-infrared survey of 44 regions of high-mass star-formation (Kaper et al, 2006). In these clusters, 38 OB stars are identified whose K-band spectra are dominated by photospheric emission. In almost all those stars, the K-band spectra are indistinguishable from field stars. However, in some stars the profile of th...

  10. Hypercritical accretion onto a magnetized neutron star surface: a numerical approach

    Bernal, Cristian Giovanny; Page, Dany

    2010-01-01

    The properties of a new-born neutron star, produced in a core-collapse supernova, can be strongly affected by the possible late fallback which occurs several hours after the explosion. This accretion occurs in the regime dominated by neutrino cooling, explored initially in this context by Chevalier (1989). Here we revisit this approach in a 1D spherically symmetric model and carry out numerical simulations in 2D in an accretion column onto a neutron star considering detailed microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD. We compare our numerical results to the analytic solutions and explore how the purely hydrodynamical as well as the MHD solutions differ from them, and begin to explore how this may affect the appearance of the remnant as a typical radio pulsar.

  11. Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR

    Sbarrato, T; Tagliaferri, G; Perri, M; Madejski, G M; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Zhang, W W

    2015-01-01

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z>2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z=3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively the most luminous accretion disk and the most powerful jet among known blazars. They are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars.

  12. Thermal conductivity and impurity scattering in the accreting neutron star crust

    Roggero, Alessandro

    2016-01-01

    We calculate the thermal conductivity of electrons for the strongly correlated multi-component ion plasma expected in the outer layers of neutron star's crust employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This findings directly impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  13. Thermal conductivity and impurity scattering in the accreting neutron star crust

    Roggero, Alessandro; Reddy, Sanjay

    2016-07-01

    We calculate the thermal conductivity of electrons for the strongly correlated multicomponent ion plasma expected in the outer layers of a neutron star's crust, employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This finding impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars, and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  14. Magnetospheric accretion and spin-down of the prototypical classical T Tauri star AATau

    Donati, JF; Bouvier, J; Gregory, SG; Grankin, KN; Jardine, MM; Hussain, GAJ; Menard, F; Dougados, C; Unruh, Y; Mohanty, S; Auriere, M; Morin, J; Fares, R

    2010-01-01

    From observations collected with the ESPaDOnS & NARVAL spectropolarimeters at CFHT and TBL, we report the detection of Zeeman signatures on the prototypical classical TTauri star AATau, both in photospheric lines and accretion-powered emission lines. Using time series of unpolarized and circularly polarized spectra, we reconstruct at two epochs maps of the magnetic field, surface brightness and accretion-powered emission of AATau. We find that AATau hosts a 2-3kG magnetic dipole tilted at ~20deg to the rotation axis, and of presumably dynamo origin. We also show that the magnetic poles of AATau host large cool spots at photospheric level and accretion regions at chromospheric level. The logarithmic accretion rate at the surface of AATau at the time of our observations is strongly variable, ranging from -9.6 to -8.5 and equal to -9.2 in average (in Msun/yr); this is an order of magnitude smaller than the disc accretion rate at which the magnetic truncation radius (below which the disc is disrupted by the s...

  15. Spectral variability of classical T Tauri stars accreting in an unstable regime

    Kurosawa, Ryuichi

    2013-01-01

    Classical T Tauri stars (CTTSs) are variable in different time-scales. One type of variability is possibly connected with the accretion of matter through the Rayleigh-Taylor instability that occurs at the interface between an accretion disc and a stellar magnetosphere. In this regime, matter accretes in a several temporarily formed accretion streams or `tongues' which appear in random locations, and produce stochastic photometric and line variability. We use the results of global three-dimensional magnetohydrodynamic simulations of matter flows in both stable and unstable accretion regimes to calculate time-dependent hydrogen line profiles and study their variability behaviours. In the stable regime, some hydrogen lines (e.g. H-beta, H-gamma, H-delta, Pa-beta and Br-gamma) show a redshifted absorption component only during a fraction of a stellar rotation period, and its occurrence is periodic. However, in the unstable regime, the redshifted absorption component is present rather persistently during a whole s...

  16. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow type...

  17. Magnetic Field Effect on β+ Decay in the Crusts of Accreting Neutron Stars

    ZHANG Jie; LIU Men-Quan; LUO Zhi-Quan

    2007-01-01

    Based on shell model of nuclei,the influence of a high magnetic field on ββ+ decay in the crusts of accreting neutron stars is analyzed.The magnetic field effect on 54Mn is discussed.The results show that a weak magnetic field makes little effect on β+ decay but a strong magnetic field (B > 1011 G) improves β+ decay rates obviously.The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.

  18. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ ...

  19. Galactic Halo Stars in Phase Space A Hint of Satellite Accretion?

    Brook, C B; Gibson, B K; Flynn, C; Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Flynn, Chris

    2003-01-01

    The present day chemical and dynamical properties of the Milky Way bear the imprint of the Galaxy's formation and evolutionary history. One of the most enduring and critical debates surrounding Galactic evolution is that regarding the competition between ``satellite accretion'' and ``monolithic collapse''; the apparent strong correlation between orbital eccentricity and metallicity of halo stars was originally used as supporting evidence for the latter. While modern-day unbiased samples no longer support the claims for a significant correlation, recent evidence has been presented by Chiba & Beers (2000,AJ,119,2843) for the existence of a minor population of high-eccentricity metal-deficient halo stars. It has been suggested that these stars represent the signature of a rapid (if minor) collapse phase in the Galaxy's history. Employing velocity- and integrals of motion-phase space projections of these stars, coupled with a series of N-body/Smoothed Particle Hydrodynamic (SPH) chemodynamical simulations, we...

  20. The First X-shooter Observations of Jets from Young Stars

    Bacciotti, Francesca; Alcala', Juan M; Nisini, Brunella; Podio, Linda; Randich, Sofia; Stelzer, Beate; Cupani, Guido

    2011-01-01

    We present the first pilot study of jets from young stars conducted with X-shooter, on ESO/VLT. As it offers simultaneous, high quality spectra in the range 300-2500 nm X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well resolved continuous jets lying on the plane of the sky, ESO-HA 574 in Chamaleon I, and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (Mstar=0.13 Msun). A large number of emission lines probing regions of different excitation are identified, position-velocity diagrams are presented and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log(\\dot{Macc}) = -10.8 \\pm 0.5 (in Msun/yr), yet it drives a powerful jet with \\dot{Mout} ~ 1.5-2.7 10^-9 Msun/yr. These values can be reconciled with a magneto-centrifugal ...

  1. Generation of magnetic field on the accretion disk around a proto-first-star

    The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10–9 G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10–14-10–13 G at n H = 103 cm–3, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

  2. Mass accretion flows in the high-mass star forming complex NGC 6334

    Sánchez-Monge, Á.; Schilke, P.; Zernickel, A.; Schmiedeke, A.; Möller, Th.; Qin, S.-L.

    2016-05-01

    The formation of high-mass stars is one of the major topics of astrophysical research, in particular the process of accretion from large-scale clouds down to small-scale cores. We have selected the nearby, filamentary, high-mass star forming complex NGC 6334 to study the gas velocity at different scales and probe the infall rates onto the protostellar cores embedded in the NGC 6334-I and I(N) clusters. This study makes use of single-dish and interferometric submillimeter observations, complemented with 3D numerical non-LTE radiative transfer modeling. We measure a mass accretion rate of 10-5 M⊙ yr-1 throughout the filament increasing up to 10-3 M⊙ yr-1 towards the densest regions where high-mass stars are forming. At smaller scales, our 3D model is consistent with accretion rates of 10-3 M⊙ yr-1 towards the clusters, and 10-4 M⊙ yr-1 onto the protostars.

  3. The role of magnetic damping in the r-mode evolution of accreting neutron stars

    Cao, GuoJie; Zhou, Xia; Wang, Na

    2015-03-01

    The magnetic damping rate was introduced in the evolution equations of r-modes, which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differential rotation. With consideration of the coupling evolution of r-modes, spin and thermal evolution, we investigated the influence of the magnetic damping on the differential rotation of nonlinear r-modes of accreting neutron stars. We derived the coupling evolution equations of the star involving the magnetic damping rate in the framework of second-order r-mode theory. The numerical results show that the magnetic damping suppressed the nonlinear evolution of r-modes since the saturation amplitude is reduced to a great extent. In particular, because of the presence of the generated toroidal magnetic field, the spin-down of the stars is terminated and the viscous heating effects are also weakened. Moreover, we could obtain a stronger generated toroidal magnetic field in the second-order r-mode theory. The gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation is small when the r-mode instability becomes active and the accretion rate is not very high.

  4. Is Main Sequence Galaxy Star Formation Controlled by Halo Mass Accretion?

    Rodriguez-Puebla, Aldo; Behroozi, Peter; Faber, S M

    2015-01-01

    It is known that the galaxy stellar-to-halo mass ratio (SHMR) is nearly independent of redshift from z=0-4. This motivates us to construct a toy model in which we assume that the SMHR for central galaxies measured at redshift z~0 is independent of redshift, which implies that the star formation rate (SFR) is determined by the halo mass accretion rate, a phenomenon we call Stellar-Halo Accretion Rate Coevolution (SHARC). Moreover, we show here that the ~0.3 dex dispersion of the halo mass accretion rate (MAR) is similar to the observed dispersion of the SFR on the main sequence. In the context of bathtub-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. The SHARC assumption is no doubt over-simplified, but we expect it to be possibly valid for central galaxies with stellar masses of 10^9 - 10^10.5 M_sol that are on the star formation main sequence. Such galaxies represent most of the life history of M_* galaxies, and therefore most of the star forma...

  5. Differential Radial Velocities and Stellar Parameters of Nearby Young Stars

    Yelda, D P S

    2006-01-01

    Radial velocity searches for substellar mass companions have focused primarily on stars older than 1 Gyr. Increased levels of stellar activity in young stars hinders the detection of solar system analogs and therefore there has been a prejudice against inclusion of young stars in radial velocity surveys until recently. Adaptive optics surveys of young stars have given us insight into the multiplicity of young stars but only for massive, distant companions. Understanding the limit of the radial velocity technique, restricted to high-mass, close-orbiting planets and brown dwarfs, we began a survey of young stars of various ages. While the number of stars needed to carry out full analysis of the problems of planetary and brown dwarf population and evolution is large, the beginning of such a sample is included here. We report on 61 young stars ranging in age from beta Pic association (~12 Myr) to the Ursa Majoris association (~300 Myr). This initial search resulted in no stars showing evidence for companions grea...

  6. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernández, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomía (CIDA), Mérida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: cce@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  7. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10–8 M☉ yr–1. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  8. Photometry and Polarization of the UXor Type Young Star GM Cep

    Huang, Po-Chieh; Chen, Chang-Yao; Hu, Chia-Ling; Chen, Wen-Ping

    2015-08-01

    UX Orionis stars, or UXORs, are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such a UXOR in the young (~4 Myr) open cluster Trumper 37 at ~900 pc, showing prominent infrared access, H-alpha emission, and abrupt brightness variation. Here we present intense multi-color photometric monitoring from 2009 to 2015, together with the century-long photometric behavior reported in the literature, to add to the study by Chen et al. (2012) that GM Cep showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual “blueing” phenomena near the brightness minima when the star appeared bluer when dimmer. The occultation events may be caused by a dust clump, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. We present evidence of possible radial drift of the clump toward the star, stretching longer along the orbit and thinner in the line of sight. GM Cep is moderately polarized, from 4% to 9% in g, r, and i bands, with the level of polarization anticorrelated with the brightness in the bright state, during which the dust clump is back-scattering stellar light.

  9. The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations

    Sirk, Martin M.; Steve B. Howell

    1998-01-01

    We have developed a model of the high-energy accretion region for magnetic cataclysmic variables and applied it to {\\it Extreme Ultraviolet Explorer} observations of 10 AM Herculis type systems. The major features of the EUV light curves are well described by the model. The light curves exhibit a large variety of features such as eclipses of the accretion region by the secondary star and the accretion stream, and dips caused by material very close to the accretion region. While all the observ...

  10. Discovery and Observations of ASASSN-13db, an EXor Accretion Event on a Low-Mass T Tauri Star

    Holoien, Thomas W -S; Stanek, Krzysztof Z; Kochanek, Christopher S; Shappee, B J; Zhu, Z; Sicilia-Aguilar, A; Grupe, D; Croxall, K; Adams, J; Simon, J D; McGraw, N Morell S M; Wagner, R M; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Jencson, J; Pojmanski, G; Starrfield, S G; Szczygieł, D M; Woodward, C E

    2014-01-01

    We discuss ASASSN-13db, an EXor accretion event on the young stellar object (YSO) SDSS J051011.01$-$032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region ($d \\sim 420$ pc). We present follow-up photometric and spectroscopic observations of the source after the $\\Delta V \\sim-$3.7 mag outburst that began in September 2013. These data indicate an increase in temperature and luminosity consistent with an accretion rate of $\\sim10^{-7}$ $\\rm{M}_\\odot$ yr$^{-1}$, three-to-five orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX~Lupi in late 2008 during its st...

  11. EVIDENCE OF HOT HIGH VELOCITY PHOTOIONIZED PLASMA FALLING ON ACTIVELY ACCRETING T TAURI STARS

    Gómez de Castro, Ana Ines [Grupo de Investigación Complutense AEGORA and S.D. Astronomía y Geodesia, Fac. de CC Matemáticas, Universidad Complutense, E-28040 Madrid (Spain)

    2013-10-01

    The He II (1640 Å) line and the resonance doublet of N V (UV1) provide a good diagnostic tool to constrain the excitation mechanism of hot (T{sub e} > 40,000 K) atmospheric/magnetospheric plasmas in T Tauri stars (TTSs). Making use of the data available in the Hubble Space Telescope archive, this work shows that there are at least two distinct physical components contributing to the radiation in these tracers: the accretion flow sliding on the magnetosphere and the atmosphere. The N V profiles in most sources are symmetric and at rest with respect to the star. The velocity dispersion of the profile increases from non-accreting (σ = 40 km s{sup –1}) to accreting (σ = 120 km s{sup –1}) TTSs, suggesting that the macroturbulence field in the line formation region decreases as the stars approach the main sequence. Evidence of the N V line being formed in a hot solar-like wind has been found in RW Aur, HN Tau, and AA Tau. The He II profile has a strong narrow component that dominates the line flux; the dispersion of this component ranges from 20 to 60 km s{sup –1}. Current data suggest that both accretion shocks and atmospheric emission might contribute to the line flux. In some sources, the He II line shows a broad and redward-shifted emission component often accompanied by semiforbidden O III] emission that has a critical electron density of ∼3.4 × 10{sup 10} cm{sup 3}. In spite of their different origins (inferred from the kinematics of the line formation region), N V and He II fluxes are strongly correlated, with only the possible exception of some of the heaviest accretors.

  12. SPITZER INFRARED SPECTROGRAPH SURVEY OF YOUNG STARS IN THE CHAMAELEON I STAR-FORMING REGION

    We present 5-36 μm mid-infrared spectra of 82 young stars in the ∼2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on their spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Cha I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes/gaps appear to have relatively unprocessed grains. We further find the crystalline dust content in the inner (∼<1-2 AU) and the intermediate (∼<10 AU) regions of the protoplanetary disks to be tightly correlated. We also investigate the effects of accretion and stellar multiplicity on the disk structure and dust properties. Finally, we compare the observed properties of protoplanetary disks in Cha I with those in slightly younger Taurus and Ophiuchus regions and discuss the effects of disk evolution in the first 1-2 Myr.

  13. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    Mendigutía, I.; Brittain, S. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States); Eiroa, C.; Meeus, G. [Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, P.O. Box 78, E-28049, Cantoblanco, Madrid (Spain); Montesinos, B. [Centro de Astrobiología, Departamento de Astrofísica (CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Mora, A. [GAIA Science Operations Centre, ESA, European Space Astronomy Centre, P.O. Box 78, E-28691, Villanueva de la Cañada, Madrid (Spain); Muzerolle, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oudmaijer, R. D. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Rigliaco, E., E-mail: imendig@clemson.edu [Department of Planetary Science, Lunar and Planetary Lab, University of Arizona, 1629, E. University Boulevard, 85719, Tucson, AZ (United States)

    2013-10-10

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.

  14. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10–7 and 4.50 × 10–7 M☉ yr–1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability

  15. The Ocean and Crust of a Rapidly Accreting Neutron Star Implications for Magnetic Field Evolution and Thermonuclear Flashes

    Brown, E F; Brown, Edward F.; Bildsten, Lars

    1998-01-01

    We investigate the atmosphere, ocean, and crust of neutron stars accreting at rates sufficiently high (typically in excess of the local Eddington limit) to stabilize the burning of accreted hydrogen and helium. For hydrogen-rich accretion at global rates in excess of 10^-8 solar masses per year (typical of a few neutron stars), we discuss the thermal state of the deep ocean and crust and their coupling to the neutron star core, which is heated by conduction (from the crust) and cooled by neutrino emission. We estimate the Ohmic diffusion time in the hot, deep crust and find that it is noticeably shortened (to less than 10^8 yr) from the values characteristic of the colder crusts in slowly accreting neutron stars. We speculate on the implications of these calculations for magnetic field evolution in the bright accreting X-ray sources. We also explore the consequences of rapid compression at local accretion rates exceeding ten times the Eddington rate. This rapid accretion heats the atmosphere/ocean to temperat...

  16. Star formation and black hole accretion activity in rich local clusters of galaxies

    Bianconi, Matteo; Fadda, Dario

    2016-01-01

    We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$\\sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy @ 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations ($\\sim$ 3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star forming members of the two clusters present star formation rates comparable with those measured in coeval field galaxies. The analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with re...

  17. Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TW Hydrae

    Johns-Krull, C M; Valenti, J A; Jeffers, S V; Piskunov, N E; Kuchukhov, O; Makaganiuk, V; Stempels, H C; Snik, F; Keller, C; Rodenhuis, M

    2013-01-01

    We present high spectral resolution ($R\\approx108,000$) Stokes $V$ polarimetry of the Classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the \\ion{He}{1} emission lines at 5876 \\AA\\ and 6678 \\AA. The \\ion{He}{1} lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two \\ion{He}{1} emission lines in both stars. We observe a maximum implied field strength of $6.05 \\pm 0.24$ kG in the 5876 \\AA\\ line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two \\ion{He}{1} lines that are c...

  18. 30 Doradus - Relating Young Stars Imaged by Spitzer and Hubble to the CO Molecular Gas Observed with ALMA

    Nayak, Omnarayani; Meixner, Margaret; Indebetouw, Remy; Sabbi, Elena; De Marchi, Guido; Panagia, Nino

    2016-01-01

    The majority of star have masses less than 8 solar mass and form in clumps that are less than 1 pc in size. The sub-parsec scales in which star formation takes place makes it difficult to resolve the effects star formation and the surrounding dense gas have on each other. The Magellanic Clouds are more active in forming high mass stars as compared to the Milky Way. The SAGE and Heritage surveys combined with the Hubble Tarantula Treasury Project provide us the opportunity to study high-mass (>15 solar masses) and low-mass (<1 solar mass) star formation. ALMA observations cover a 60 pc x 30 pc region of CO gas slightly north of the R136 cluster in 30 Doradus. We find 16 young stellar objects and about a 100 pre-main-sequence stars within the ALMA footprint. We define young stellar objects to be very early stage stars that are about 10,000 years old and whose SEDs peak in the infrared, and we use pre-main-sequence-stars to refer to slightly older stars that can be seen in the optical. I will use dendrograms to analyze both the high- and low-mass star properties with respect to the CO gas structure observed with ALMA. Preliminary results show that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars and are more likely to have multiple young stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: monolithic collapse or competitive accretion.

  19. Young ``Dipper" Stars in Upper Sco and Oph Observed by K2

    Ansdell, M.; Gaidos, E.; Rappaport, S. A.; Jacobs, T. L.; LaCourse, D. M.; Jek, K. J.; Mann, A. W.; Wyatt, M. C.; Kennedy, G.; Williams, J. P.; Boyajian, T. S.

    2016-01-01

    We present ten young (≲10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ˜10-20 dips in flux over the 80-day observing campaign with durations of ˜0.5-2 days and depths of up to ˜40%. These stars are all members of the ρ Ophiuchus (˜1 Myr) or Upper Scorpius (˜10 Myr) star-forming regions. To investigate the nature of these “dippers” we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li i absorption and Hα emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ˜10 stellar radii in most cases; however, the sub-millimeter observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 (Wide-field Infrared Survey Explorer-2) excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.

  20. Mapping the circumstellar environment of a young very low mass star

    Bozhinova, Inna; Scholz, Alexander; Wood, Kenneth; Starkey, David; Horne, Keith

    2015-10-01

    Young stellar objects exhibit variability due to surface features on the star, star-disk interaction, and inhomogenities in the inner disk. Over recent years, multi-band monitoring campaigns have proven to be an effective tool to map the complex environment of young stars and to investigate the physical processes associated with the formation of planets. Here we propose to use Spitzer, combined with ground-based telescopes, to monitor a young very low mass star simultaneous in the mid-infrared and optical. Our target has shown persistent high-level variability over more than a decade of optical monitoring. Our aim is to map the geometry of the inner disk and the accretion flow, for the first time for an object with a mass of only 0.1 Msol. There are clear indications that accretion and disk evolution are dependent on the mass of the central object. By targeting a very low mass star we can explore the physical processes in the inner disk in an extreme parameter regime. We plan to apply two different strategies to obtain spatial constraints. We will monitor over the rotational timescale of several days, to obtain azimuthal information about hot spots on the stellar surface and structures in the inner disk material. In addition, we will derive the inner radius of the disk by measuring the delay between optical and mid-infrared variations ('light echos') over timescales of one hour. In total, we ask for 10 hours of Spitzer/IRAC 4.5mu observing, spread over ten days. Guaranteed time at ground-based telescope will provide the simultaneous optical data. Our team combines the expertise for monitoring campaigns, radiative transfer modeling, and light echo modeling.

  1. A Correlation between Star Formation Rate and Average Black Hole Accretion in Star-forming Galaxies (Proceeding of IAUS304: Multiwavelength AGN Surveys and Studies)

    Chen, Chien-Ting J

    2014-01-01

    We present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Bo\\"otes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.

  2. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    Medin, Zach [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  3. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma

  4. ASTRO-H White Paper - Stars -- Accretion, Shocks, Charge Exchanges and Magnetic Phenomena

    Tsuboi, Y; Audard, M; Hamaguchi, K; Leutenegger, M A; Maeda, Y; Mori, K; H,; Murakami,; Sugawara, Y; Tsujimoto, M

    2014-01-01

    X-ray emission from stars has origins as diverse as the stars themselves: accretion shocks, shocks generated in wind-wind collisions, or release of magnetic energy. Although the scenarios responsible for X-ray emission are thought to be known, the physical mechanisms operating are in many cases not yet fully understood. Full testing of many of these mechanisms requires high energy resolution, large effective area, and coverage of broad energy bands. The loss of the X-ray calorimeter spectrometer on board ASTRO-E2 was a huge blow to the field; it would have provided a large sample of high resolution spectra of stars with high signal-to-noise ratio. Now, with the advent of the ASTRO-H Soft X-ray Spectrometer and Hard X-ray Imager, we will be able to examine some of the hot topics in stellar astrophysics and solve outstanding mysteries.

  5. A signature of chemical separation in the cooling curves of transiently accreting neutron stars

    Medin, Zach

    2013-01-01

    We show that convection driven by chemical separation can significantly affect the cooling curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  6. Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

    Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 109 g cm–3) and temperatures (T > 109 K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the 14O(α, p)17F reaction rate introduces by far the largest uncertainties in the 12C yield.

  7. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  8. The dynamical evolution of accreted star clusters in the Milky Way

    Miholics, Meghan; Webb, Jeremy J.; Sills, Alison

    2016-02-01

    We perform N-body simulations of star clusters in time-dependant galactic potentials. Since the Milky Way was built up through mergers with dwarf galaxies, its globular cluster population is made up of clusters formed both during the initial collapse of the Galaxy and in dwarf galaxies that were later accreted. Throughout a dwarf Milky Way merger, dwarf galaxy clusters are subject to a changing galactic potential. Building on our previous work, we investigate how this changing galactic potential affects the evolution of a cluster's half-mass radius. In particular, we simulate clusters on circular orbits around a dwarf galaxy that either falls into the Milky Way or evaporates as it orbits the Milky Way. We find that the dynamical evolution of a star cluster is determined by whichever galaxy has the strongest tidal field at the position of the cluster. Thus, clusters entering the Milky Way undergo changes in size as the Milky Way tidal field becomes stronger and that of the dwarf diminishes. We find that ultimately accreted clusters quickly become the same size as a cluster born in the Milky Way on the same orbit. Assuming their initial sizes are similar, clusters born in the Galaxy and those that are accreted cannot be separated based on their current size alone.

  9. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy. PMID:25788096

  10. Spectroscopic signatures of magnetospheric accretion in Herbig Ae/Be stars. I. The case of HD101412

    Schöller, M; Cahuasqui, J A; Drake, N A; Hubrig, S; Petr-Gotzens, M G; Savanov, I S; Wolff, B; Gonzalez, J F; Mysore, S; Ilyin, I; Jarvinen, S P; Stelzer, B

    2016-01-01

    Models of magnetically-driven accretion and outflows reproduce many observational properties of T Tauri stars. This concept is not well established for the more massive Herbig Ae/Be stars. We intend to examine the magnetospheric accretion in Herbig Ae/Be stars and search for rotational modulation using spectroscopic signatures, in this first paper concentrating on the well-studied Herbig Ae star HD101412. We used near-infrared spectroscopic observations of the magnetic Herbig Ae star HD101412 to test the magnetospheric character of its accretion disk/star interaction. We reduced and analyzed 30 spectra of HD101412, acquired with the CRIRES and X-shooter spectrographs installed at the VLT (ESO, Chile). The spectroscopic analysis was based on the He I lambda 10,830 and Pa gamma lines, formed in the accretion region. We found that the temporal behavior of these diagnostic lines in the near-infrared spectra of HD101412 can be explained by rotational modulation of line profiles generated by accreting gas with a pe...

  11. Production of 56Ni in black hole-neutron star merger accretion disc outflows

    The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disc of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disc outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disc model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disc on the element synthesis. While the neutrino fluxes from the early-time disc snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of 56Ni in the outflows. (paper)

  12. Young "Dipper" Stars in Upper Sco and $\\rho$ Oph Observed by K2

    Ansdell, M; Rappaport, S A; Jacobs, T L; LaCourse, D M; Jek, K J; Mann, A W; Wyatt, M C; Kennedy, G; Williams, J P; Boyajian, T S

    2015-01-01

    We present ten young ($\\lesssim$10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show $\\sim$10-20 dips in flux over the 80-day observing campaign with durations of $\\sim$0.5-2 days and depths of up to $\\sim$40%. These stars are all members of the $\\rho$ Ophiuchus ($\\sim$1 Myr) or Upper Scorpius ($\\sim$10 Myr) star-forming regions. To investigate the nature of these "dippers" we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and H$\\alpha$ emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are ...

  13. X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Natta, A; Alcalá, J M; Rigliaco, E; Covino, E; Stelzer, B; D'Elia, V

    2014-01-01

    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and $\\sigma$-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both L$_{star}$ and the accretion luminosity (or the mass-accretion rate) over a large interval of values (L$_{star}$ $\\sim 10^{-2} - 1$ L$_\\odot$; L$_{acc}$ $\\sim 10^{-5} ...

  14. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    Horowitz, C J; Berry, D K

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with $Z=8$ or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase sep...

  15. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    Brooks, Jared; Schwab, Josiah; Paxton, Bill

    2016-01-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable Helium burning that is a concern for many Type Ia supernovae scenarios. We study binaries with helium stars of mass $1.25 M_\\odot\\le M_{\\rm{He}} \\le 1.8 M_\\odot$, which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ($P_{\\rm orb}$) of several hours with non-rotating $0.84$ and $1.0 M_\\odot$ C/O WDs. The helium stars fill their Roche lobes (RLs) after exhaustion of central helium and donate helium on their thermal timescales (${\\sim}10^5$yr). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ($M_{\\rm Ch}$) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explo...

  16. The gravitational wave signature of young and dense star clusters

    Zwart, Simon Portegies

    2004-01-01

    Young star clusters are often born with such high stellar densities that stellar collisions play an important role in their further evolution. In such environments the same star may participate in several tens to hundreds of collisions ultimately leading to the collapse of the star to a black hole of intermediate mass. At later time the black hole may acquire a companion star by tidal capture or by dynamical --3-body-- capture. When this companion star evolves it will fill its Roche-lobe and ...

  17. Young stellar clusters and star formation throughout the Galaxy

    Feigelson, Eric; Allen, Lori; Bergin, Edwin; Bally, John; Balog, Zoltan; Bourke, Tyler; Brogan, Crystal; Chu, You-Hua; Churchwell, Edward; Gagne, Marc; Getman, Konstantin; Hunter, Todd; Morgan, Larry; Massey, Philip; Mac Low, Mordecai-Mark; Mamajek, Eric; Megeath, S Thomas; O'Dell, C Robert; Rathborne, Jill; Rebull, Luisa; Stahler, Steven; Townsley, Leisa; Wang, Junfeng; Williams, Jonathan

    2009-01-01

    Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbles, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of...

  18. Probing the Early Evolution of Young High-Mass Stars

    Puga, E; Waters, L B M F; Henning, T; Kaper, L; Ancker, M van den; Lenorzer, A; Churchwell, E; Kurtz, S; Rodon, J A; Vasyunina, T; Kouwenhoven, M B N; Beuther, H; Linz, H; Horrobin, M; Stolte, A; De Koter, A; Thi, W F; Martin-Hernandez, N L; Acke, B; Comeron, F; van der Plas, G; Waelkens, Ch; Dominik, C; Feldt, M

    2008-01-01

    Near-infrared imaging surveys of high-mass star-forming regions reveal an amazingly complex interplay between star formation and the environment (Churchwell et al. 2006; Alvarez et al. 2004). By means of near-IR spectroscopy the embedded massive young stars can be characterized and placed in the context of their birth site. However, so far spectroscopic surveys have been hopelessly incomplete, hampering any systematic study of these very young massive stars. New integral field instrumentation available at ESO has opened the possibility to take a huge step forward by obtaining a full spectral inventory of the youngest massive stellar populations in star-forming regions currently accessible. Simultaneously, the analysis of the extended emission allows the characterization of the environmental conditions. The Formation and Early Evolution of Massive Stars (FEMS) collaboration aims at setting up a large observing campaign to obtain a full census of the stellar content, ionized material, outflows and PDR's over a ...

  19. Accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity

    Staykov, Kalin V; Yazadjiev, Stoytcho S

    2016-01-01

    We study the electromagnetic spectrum of accretion disks around neutron and strange stars in $\\mathcal{R}^2$ gravity. Both static and rapidly rotating models are investigated. The results are compared with the General Relativistic results. We found difference between the results in both theories of about 50\\% for the electromagnetic flux and about 20\\% in the luminosity for models with equal mass and angular velocity in both theories. The observed differences are much lower for models rotating with Kelperian velocity and with equal masses.

  20. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis

  1. Young stars and protostellar cores near NGC 2023

    Mookerjea, B.; Sandell, G.; Jarrett, T H; McMullin, J. P.

    2009-01-01

    Context. We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the H II region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims. We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the H II region has triggered star formation, and whether d...

  2. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  3. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    Pessah Martin E.

    2013-04-01

    Full Text Available The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  4. ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE

    This paper models the orbital inspiral of a neutron star (NS) through the envelope of its giant-branch companion during a common envelope (CE) episode. These CE episodes are necessary to produce close pairs of NSs that can inspiral and merge due to gravitational wave losses in less than a Hubble time. Because cooling by neutrinos can be very efficient, NSs have been predicted to accumulate significant mass during CE events, perhaps enough to lead them to collapse to black holes. We revisit this conclusion with the additional consideration of CE structure, particularly density gradients across the embedded NS's accretion radius. This work is informed by our recent numerical simulations that find that the presence of a density gradient strongly limits accretion by imposing a net angular momentum to the flow around the NS. Our calculations suggest that NSs should survive CE encounters. They accrete only modest amounts of envelope material, ≲ 0.1 M ☉, which is broadly consistent with mass determinations of double NS binaries. With less mass gain, NSs must spiral deeper to eject their CE, leading to a potential increase in mergers. The survival of NSs in CE events has implications for the formation mechanism of observed double NS binaries, as well as for predicted rates of NS binary gravitational wave inspirals and their electromagnetic counterparts

  5. On the possible turbulence mechanism in accretion disks in nonmagnetic binary stars

    One of the major challenges in modern astrophysics is the unexplained turbulence of gas-dynamic (nonmagnetic) accretion disks. Since they are stable, such disks should not theoretically be turbulent, but observations show they are. The search for instabilities that can develop into turbulence is one of the most intriguing problems in modern astrophysics. In 2004, we pointed to the formation of the so-called 'precessional' density wave in accretion disks of binary stars, which produces additional density and velocity gradients in the disk. A linear hydrodynamics stability analysis of an accretion disk in a binary shows that the presence in the disk of a precessional wave produced by the tidal influence of the second binary component gives rise to the instability of radial modes, whose characteristic growth times are about one tenth or one hundredth of the binary's orbital period. The immediate reason for the instability is the radial velocity gradient in the precessional wave, the destabilizing perturbations being those in which the radial velocity variation on the wavelength scale is near or greater than the speed of sound. Unstable perturbations occur in the interior of the disk and make the gas turbulent as they propagate outward. The characteristic turbulence parameters are in agreement with observations (the Shakura–Sunyaev parameter (α≲0.01). (physics of our days)

  6. A dusty torus around the luminous young star LkHa 101

    Tuthill, P G; Danchi, W C; Tuthill, Peter G.; Monnier, John D.; Danchi, William C.

    2001-01-01

    A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the center of the disk. When the temperature and density at the center of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. Unfortunately this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present resolved images of a young star, LkHa 101 in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the...

  7. Hoyle-Lyttleton Accretion onto Accretion Disks

    Fukue, Jun; Ioroi, Masayuki

    1999-01-01

    We investigate Hoyle-Lyttleton accretion for the case where the central source is a luminous accretion disk. %In classical Hoyle-Lyttleton accretion onto a ``spherical'' source, accretion takes place in an axially symmetric manner around a so-called accretion axis. The accretion rate of the classical Hoyle-Lyttleton accretion onto a non-luminous object and $\\Gamma$ the luminosity of the central object normalized by the Eddington luminosity. %If the central object is a compact star with a lumi...

  8. Identifying Young Stars in Massive Star-Forming Regions for the MYStIX Project

    Broos, Patrick S; Povich, Matthew S; Feigelson, Eric D; Townsley, Leisa K; Naylor, Tim; Kuhn, Michael A; King, R R; Busk, Heather A

    2013-01-01

    The Massive Young star-forming Complex Study in Infrared and X-rays (MYStIX) project requires samples of young stars that are likely members of 20 nearby Galactic massive star-forming regions. Membership is inferred from statistical classification of X-ray sources, from detection of a robust infrared excess that is best explained by circumstellar dust in a disk or infalling envelope, and from published spectral types that are unlikely to be found among field stars. We present the MYStIX membership lists here, and describe in detail the statistical classification of X-ray sources via a \\Naive Bayes Classi

  9. Evolution of the binary population in young dense star clusters

    Kaczmarek, Thomas; Pfalzner, Susanne

    2011-01-01

    Context: Field stars are not always single stars, but can often be found in bound double systems. Since binary frequencies in the birth places of stars, young embedded clusters, are sometimes even higher than on average the question arises of how binary stars form in young dense star clusters and how their properties evolve to those observed in the field population. Aims: We assess, the influence of stellar dynamical interactions on the primordial binary population in young dense cluster environments. Methods: We perform numerical N-body simulations of the Orion Nebula Cluster like star cluster models including primordial binary populations using the simulation code nbody6++. Results: We find two remarkable results that have yet not been reported: The first is that the evolution of the binary frequency in young dense star clusters is independent predictably of its initial value. The time evolution of the normalized number of binary systems has a fundamental shape. The second main result is that the mass of th...

  10. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  11. Coronal geometry at low mass-accretion rates from XMM and NuSTAR spectra

    Fuerst, F.; NuSTAR Binaries Team; NuSTAR AGN Team

    2016-06-01

    At very low Eddington luminosities the structure and physics of the accretion flow around a black hole are still debated, in particular in the inner most regions. By making sensitive measurements of the relativistic blurring of the X-ray reflection spectrum we investigate these physics, a task for which XMM-Newton, in combination with hard X-ray coverage provided by NuSTAR or Hitomi, is ideally suited and will continue to be unique for years to come. I will present results from XMM and NuSTAR observations of the radio-galaxy Cen A and of the X-ray binary GRS 1739-278 during the decline of its outburst. While Cen A shows a prominent iron line, the broad-band spectrum shows no evidence of reflection. This lack of reflection can best be explained by a jet origin of the hard X-rays or a significantly truncated accretion disk. The iron line can be self-consistently explained when assuming an optically thick torus surrounding the super-massive black-hole. The broad-band X-ray spectrum of GRS 1739-278 can be well described by a simple power-law or Comptonization continuum. A weak relativistic reflection model results in a small but significant improvement of the statistical quality of the fit. This relativistic model indicates a strongly truncated disk.

  12. Young low mass stars in the vicinity of Sigma Scorpii

    Meyer, Michael R.; Wilking, Bruce A.; Zinnecker, Hans

    1993-01-01

    The region near Sigma Scorpii, a member of the Sco-Cen OB association, is examined for signs of recent star formation. Thirteen candidate young stellar objects are identified over an 80 x 80 arcmin region centered on Sigma Sco using the Point source Catalog and a recent survey for H-alpha emission-line stars. Near-infrared photometry, improved IRAS fluxes, and optical spectra are used to determine the nature of these objects. Four definite young stars are revealed, as well as one additional such object that fell just outside of the present target region. These stars, all of spectral type K or M, are argued to have formed in the vicinity of the B1 giant star Sigma Scorpii and to represent a subsample of the low-mass members of the association.

  13. Massive young disks around Herbig Ae stars

    Boissier, Jeremie; Alonso-Albi, Tomas; Fuente, Asuncion; Berne, Olivier; Bachiller, Rafael; Neri, Roberto; Ginard, David

    2011-01-01

    Herbig Ae stars (HAe) are the precursors of Vega-type systems and, therefore, crucial objects in planet formation studies. Thus far, only a few disks associated with HAe stars have been studied using millimetre interferometers. Our aim is to determine the dust evolution and the lifetime of the disks associated with Herbig Ae stars. We imaged the continuum emission at 3 mm and 1.3 mm of the Herbig Ae/Be stars BD+61154, RR Tau, VY Mon and LkHa 198 using the Plateau de Bure Interferometer (PdBI)...

  14. Escaping stars from young low-N clusters

    Weidner, Carsten; Bonnell, Ian A.; Moeckel, Nickolas

    2010-01-01

    With the use of N-body calculations the amount and properties of escaping stars from low-N (N = 100 and 1000) young embedded star clusters prior to gas expulsion are studied over the first 5 Myr of their existence. Besides the number of stars also different initial radii and binary populations are examined as well as virialised and collapsing clusters. It is found that these clusters can loose substantial amounts (up to 20%) of stars within 5 Myr with considerable velocities up to more than 1...

  15. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  16. GG Tau: the ringworld and beyond. Mass accretion and planetary formation in young multiple stellar systems

    Dutrey, Anne; Di Folco, Emmanuel; Beck, Tracy; Guilloteau, Stéphane

    2016-01-01

    In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.

  17. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  18. Progressive star formation in the young galactic super star cluster NGC 3603

    Beccari, Giacomo; De Marchi, Guido; Paresce, Francesco; Young, Erick; Andersen, Morten; Panagia, Nino; Balick, Bruce; Bond, Howard; Calzetti, Daniela; Carollo, C Marcella; Disney, Michael J; Dopita, Michael A; Frogel, Jay A; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Whitmore, Bradley C; Windhorst, Rogier A

    2010-01-01

    Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  19. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  20. A sparse population of young stars in Cepheus

    Klutsch, A; Guillout, P; Frasca, A; Pineau, F -X; Grosso, N; Marilli, E; López-Santiago, J

    2010-01-01

    Once mixed in the ambient galactic plane stellar population, young stars are virtually indiscernible because neither their global photometric properties nor the presence of nearby gas can help to disentangle them from older ones. Nevertheless, the study of the RasTyc sample revealed 4 lithium-rich field stars displaying the same space motion, which are located within a few degrees from each other on the celestial sphere near the Cepheus-Cassiopeia complex and at a similar distance from the Sun. Both physical and kinematical indicators show that all these stars are young, with ages in the range 10-30 Myr. Using multivariate analysis methods, we selected optical counterparts of ROSAT All-Sky Survey / XMM-Newton X-ray sources cross-identified with late-type stars around these 4 young stars. Recent spectroscopic observations of this sample allowed us to discover additional lithium-rich sources. Our preliminary results showed that some of them share the same space motion as the 4 young comoving stars. They have pr...

  1. Evolution of Very Massive Population III Stars with Mass Accretion from Pre-Main Sequence to Collapse

    Ohkubo, Takuya; Umeda, Hideyuki; Yoshida, Naoki; Tsuruta, Sachiko

    2009-01-01

    We calculate the evolution of zero-metallicity Population III (Pop III) stars whose mass grows from the initial mass of $\\sim 1M_{\\odot}$ by accreting the surrounding gases. Our calculations cover a whole evolutionary stages from the pre-main sequence, via various nuclear burning stages, through the final core collapse or pair-creation instability phases. We adopt the following stellar mass-dependent accretion rates which are derived from cosmological simulations of early structure formation based on the low mass dark matter halos at redshifts $z \\sim 20$: (1) the accretion rates for the first generation (Pop III.1) stars and (2) the rates for zero-metallicity but the second generation (Pop III.2) stars which are affected by radiation from the Pop III.1 stars. For comparison, we also study the evolution with the mass-dependent accretion rates which are affected by radiatibe feedback. We show that the final mass of Pop III.1 stars can be as large as $\\sim 1000M_{\\odot}$, beyond the mass range ($140 - 300M_{\\od...

  2. Young stars and protostellar cores near NGC 2023

    Mookerjea, B.; Sandell, G.; Jarrett, T. H.; McMullin, J. P.

    2009-12-01

    Context: We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the h ii region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims: We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the h ii region has triggered star formation, and whether dense cold cores have already formed stars. Methods: We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'×26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 μm SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH2D. Results: We find that HD 37903 is the most massive member of a cluster with 20-30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. Star formation is also occurring in the dark lane seen in IRAC images and in the sub-millimeter continuum. We refine the spectral classification of HD 37903 to B2 Ve. We find that the star has a clear IR excess, and therefore it is a young Herbig Be star. Conclusions: Our study shows that the expansion of the IC 434 h ii region has triggered star formation in some of the dense elephant trunk structures and compressed gas

  3. Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296

    Mendigutía, I; Eiroa, C; Meeus, G; Montesinos, B; Mora, A; Muzerolle, J; Oudmaijer, R D; Rigliaco, E

    2013-01-01

    This work presents X-Shooter/VLT spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of twelve ultraviolet, optical and near infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 x 10^-7 and 4.50 x 10^-7 Msun yr^-1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ~ 15 years. Averaged accretion luminosities derived fro...

  4. SACY - a Search for Associations Containing Young stars

    Torres, C A O; De la Reza, R; Silva, L; Melo, C H F; Sterzik, M; Melo, Claudio H. F.; Quast, Germano R.; Reza, Ramiro de la; Silva, Licio da; Sterzik, Michael; Torres, Carlos A. O.

    2003-01-01

    The scientific goal of the SACY (Search for Associations Containing Young-stars) was to identify possible associations of stars younger than the Pleiades Association among optical counterparts of the ROSAT X-ray bright sources. High-resolution spectra for possible optical counterparts later than G0 belonging to HIPPARCOS and/or TYCHO-2 catalogs were obtained in order to assess both the youth and the spatial motion of each target. More than 1000 ROSAT sources were observed, covering a large area in the Southern Hemisphere. The newly identified young stars present a patchy distribution in UVW and XYZ, revealing the existence of huge nearby young associations. Here we present the associations identified in this survey.

  5. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Deason, Alis J; Wechsler, Risa H

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW) mass M_vir ~ 10^12.1 M_sun) halos using a suite of 45 zoom-in, dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z=0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M_star ~ 10^8-10^10 M_sun. Halos with more quiescent accretion histories tend to have lower mass progenitors (10^8-10^9 M_sun), and lower overall accreted stellar masses. Ultra-faint mass (M_star 10^8 M_sun can contribute a considerable fraction (~20-60 %) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surv...

  6. A young massive planet in a star-disk system.

    Setiawan, J; Henning, Th; Launhardt, R; Müller, A; Weise, P; Kürster, M

    2008-01-01

    There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation. PMID:18172492

  7. Magnetically Controlled Spasmodic Accretion During Star Formation. I. Formulation of the Problem and Method of Solution

    Tassis, K; Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2004-01-01

    We formulate the problem of the late accretion phase of the evolution of an isothermal magnetic disk surrounding a forming star. The evolution is described by the six-fluid MHD equations, accounting for the presence of neutrals, atomic and molecular ions, electrons, and neutral, positively, and negatively charged grains. Only the electron fluid is assumed to be attached to the magnetic field, in order to investigate the effect of the detachment of the ions from the magnetic field lines that begins at densities as low as 10^8 cm^-3. The "central sink approximation" is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 10^11 cm^-3. In this way, the structure and evolution of the isothermal disk surrounding the forming star can be studied at late times without having to implement the numerically costly radiative transfer required by the physics of the opaque core. The mass and magnetic flux accumulating in the forming star arecalculated , as are...

  8. The Relationship between black hole accretion and host star formation in dusty AGNs

    Dai, Y Sophia; Bergeron, Jacqueline; Omont, Alain; Kuraszkiewicz, Joanna; Teplitz, Harry I

    2015-01-01

    We study the relationship between the X-ray luminosity and star formation rate (SFR) in an unbiased sample of dusty active galactic nuclei (AGNs), detected in both the hard X-ray and far-infrared (IR) bands in the XMM-LSS field. The sample consists of 451 AGNs with spectroscopic redshifts of 0.04 < z <3.3, and spans an X-ray luminosity range of L(2-10keV)=10^41-45 erg/s. We find a positive correlation between the X-ray luminosity and SFR derived from AGN-removed IR luminosity. We find that binning the sample by SFR instead of LX results in a more positive correlation. This is consistent with the scenario in which the shorter variability time scale of AGN than star formation flattens the observed correlation between AGN and star formation. We do not find significant diversity in the observed correlation when considering subsets selected based on supermassive black hole mass or Eddington ratio, indicating that AGN accretion has at most a limited effect on the SFR-Lx relation. Comparing to results in the l...

  9. Magnetic fields during the early stages of massive star formation I: Accretion and disk evolution

    Seifried, D; Klessen, R S; Duffin, D; Pudritz, R E

    2011-01-01

    We present simulations of collapsing 100 M_\\sun mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian disks can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian disks in the very early stages is suppressed for a mass-to-flux ratio normalised to the critical value \\mu below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disk. For weak magnetic fields, corresponding to \\mu > 10, large-scale, cent...

  10. Star formation in hosts of young radio galaxies

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; W. H. De Vries; Baum, S. A.

    2005-01-01

    We present near ultraviolet imaging with the Hubble Space Telescope Advanced Camera for Surveys, targeting young radio galaxies (Gigahertz Peaked Spectrum and Compact Steep Spectrum sources), in search of star formation regions in their hosts. We find near UV light which could be the product of recent star formation in eight of the nine observed sources. However, observations at other wavelengths and colors are needed to definitively establish the nature of the observed UV light. In the CSS s...

  11. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales ∼> (M./Md )P(Rd ), where M. and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  12. Accretion/Jet Activity and Narrow [O III] Kinematics in Young Radio Galaxies

    Wu, Qingwen; Humphrey, Andrew

    2009-01-01

    We estimate black hole masses and Eddington ratios for a sample of 81 young radio galaxies (42 CSS +39 GPS). We find that the average black hole (BH) mass of these young radio galaxies is ~8.3, which is less than that of radio loud QSOs and low redshift radio galaxies. The CSS/GPS sources have relatively high Eddington ratios, with an average value of =-0.75, which are similar to those of narrow line Seyfert 1 galaxies (NLS1s). This suggests that young radio galaxies may not only be in the early stages of their radio activity, but also in the early stage of their accretion activity. We find that the young radio galaxies as a class deviate systematically from M_bh-\\sigma relation defined by nearby inactive galaxies, when using [O III] as a surrogate for stellar velocity dispersion, \\sigma_* . We also find that the deviation of the [O III] line width is correlated with the Eddington ratio and sources with Lbol/LEdd~1 have the largest deviations, which are similar to those of radio quiet QSOs/NLS1s (radio jets i...

  13. The Neutrino Signal from Protoneutron Star Accretion and Black Hole Formation

    We discuss the formation of stellar mass black holes via protoneutron star (PNS) collapse. In the absence of an earlier explosion, the PNS collapses to a black hole due to the continued mass accretion onto the PNS. We present an analysis of the emitted neutrino spectra of all three flavors during the PNS contraction. Special attention is given to the physical conditions which depend on the input physics, e.g. the equation of state (EoS) and the progenitor model. The PNSs are modeled as the central object in core collapse simulations using general relativistic three-flavor Boltzmann neutrino transport in spherical symmetry. The simulations are launched from several massive progenitors of 40 Mο and 50 Mο. We analyze the electron-neutrino luminosity dependencies and construct a simple approximation for the electron-neutrino luminosity, which depends only on the physical conditions at the electron-neutrinosphere. In addition, we analyze different (μ, τ)-neutrino pair-reactions separately and compare the differences during the post-bounce phases of failed core collapse supernova explosions of massive progenitors. We also investigate the connection between the increasing μ,τ-neutrino luminosity and the PNS contraction during the accretion phase before black hole formation. Comparing the different post bounce phases of the progenitor models under investigation, we find large differences in the emitted neutrino spectra. These differences and the analysis of the electron-neutrino luminosity indicate a strong progenitor model dependency of the emitted neutrino signal.

  14. X-rays from T Tau: A test case for accreting T Tauri stars

    Güdel, M; Mel'nikov, S Y; Audard, M; Telleschi, A; Briggs, K R

    2006-01-01

    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio ...

  15. Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph

    Donati, JF; Gregory, SG; Petit, P; Bouvier, J; Dougados, C; Ménard, F; Cameron, AC; Harries, TJ; Jeffers, SV; Paletou, F

    2007-01-01

    From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. T...

  16. SKA studies of nearby galaxies: star-formation, accretion processes and molecular gas across all environments

    Beswick, R J; Perez-Torres, M A; Richards, A M S; Aalto, S; Alberdi, A; Argo, M K; van Bemmel, I; Conway, J E; Dickinson, C; Fenech, D M; Gray, M D; Klockner, H-R; Murphy, E J; Muxlow, T W B; Peel, M; Rushton, A P; Schinnerer, E

    2014-01-01

    The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with $\\mu$Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.

  17. Phase dependent view of Cyclotron lines from model accretion mounds on Neutron Stars

    Dipanjan, Mukherjee

    2011-01-01

    In this paper we make a phase dependent study of the effect of the distortion of local magnetic field due to confinement of accreted matter in X-ray binaries on the cyclotron spectra emitted from the hotspot . We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined at the polar cap of neutron stars. From our solutions we model the cyclotron spectra that will be emitted from the region by integrating the emission from all parts of the mound to get the resultant spectra. We perform a phase dependent analysis of the spectra to study the effect of the viewing geometry on the resultant emission from the local mound with distorted magnetic field.

  18. GRACES observations of young [α/Fe]-rich stars

    Yong, David; Casagrande, Luca; Venn, Kim A.; Chené, André-Nicolas; Keown, Jared; Malo, Lison; Martioli, Eder; Alves-Brito, Alan; Asplund, Martin; Dotter, Aaron; Martell, Sarah L.; Meléndez, Jorge; Schlesinger, Katharine J.

    2016-06-01

    We measure chemical abundance ratios and radial velocities in four massive (i.e. young) [α/Fe]-rich red giant stars using high-resolution high-S/N spectra from ESPaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin, and thick disc red giants. We confirm that the program stars have enhanced [α/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binaries. In addition, we find that two (possibly three) stars show evidence for an infrared excess, indicative of a debris disc. This is consistent with these young [α/Fe]-rich stars being evolved blue stragglers, suggesting their apparent young age is a consequence of a merger or mass transfer. We would expect a binary fraction of ˜50 per cent or greater for the entire sample of these stars, but the signs of the circumbinary disc may have been lost since these features can have short time-scales. Radial velocity monitoring is needed to confirm the blue straggler origin.

  19. Young star clusters: Clues to galaxy formation and evolution

    Anders, P.; Alvensleben, U. Fritze--v.; de Grijs, R.

    2003-01-01

    Young clusters are observed to form in a variety of interacting galaxies and violent starbursts, a substantial number resembling the progenitors of the well-studied globular clusters in mass and size. By studying young clusters in merger remnants and peculiar galaxies, we can therefore learn about the violent star formation history of these galaxies. We present a new set of evolutionary synthesis models of our GALEV code specifically developed to include the gaseous emission of presently form...

  20. The enigma of jets and outflows from young stars

    Coffey, Deirdre

    2011-01-01

    Research in recent decades has seen many important advances in understanding the role of jets and outflows in the star formation process. Although, many open issues still remain, multi-wavelength high resolution observations have provided unprecedented insights into these bizarre phenomena. An overview of some of the current research is given, in which great strides have been made in addressing fundamental questions such as: how are jets generated? what is the jet acceleration mechanism? how are jets collimated? what is the relationship between accretion and ejection? how does mass accretion proceed? do jets somehow extract angular momentum? and finally, is there a universal mechanism for jet generation on all scales from brown dwarfs to AGNs?

  1. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-01-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young (several Myr) Galactic cluste...

  2. The outburst and nature of young eruptive low mass stars in dark clouds

    Ninan, J P; Bhatt, B C; Mallick, K K; Tej, A; Sahu, D K; Ghosh, S K; Mohan, V

    2012-01-01

    The FU Orionis (FUor) or EX Orionis (EXor) phenomenon has attracted increasing attention in recent years and is now accepted as a crucial element in the early evolution of low-mass stars. FUor and EXor eruptions of young stellar objects (YSOs) are caused by strongly enhanced accretion from the surrounding disk. FUors display optical outbursts of $\\sim$ 4 mag or more and last for several decades, whereas EXors show smaller outbursts ($\\Delta$m $\\sim$ 2 - 3 mag) that last from a few months to a few years and may occur repeatedly. Therefore, FUor/EXor eruptions represent a rare but very important phenomenon in early stellar evolution, during which a young low-mass YSO brightens by up to several optical magnitudes. Hence, long-term observations of this class of eruptive variable are important to design theoretical models of low-mass star formation. In this paper, we present recent results from our long-term monitoring observations of three rare types of eruptive young variables with the 2-m Himalayan {\\it Chandra...

  3. Young stars in the Galactic Centre: a potential intermediate-mass star origin

    Dray, L. M.; King, A. R.; Davies, M. B.

    2006-01-01

    There has been recent speculation (Davies & King 2005) that the cores of intermediate-mass stars stripped of their envelopes by tidal interaction with the supermassive black hole in the Galactic centre could form a population observationally similar to the so-called Sgr A* cluster or `S' stars, which have close eccentric orbits around the hole. We model the evolution of such stars, and show that the more luminous end of the population may indeed appear similar to young B stars within the obse...

  4. Southern near-infrared photometric monitoring of Galactic young star clusters (NIP of Stars)

    Barbá, R.; Morrell, N; Gunthardt, G.; Robledo, S. Torres; Jaque, M.; Soto, M.; Ferrero, G.; Arias, J.; Román-Lópes, A.; Gamen, R.; Hormazabal, J. Astudillo

    2012-01-01

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as {\\em NIP of Stars}, between the years 2009--2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera. The primary objective of the campaign is to perform a census of photometric variability of such clusters and to discover massive eclipsing binary stars. In this work, we describe the general idea, the implementation of the survey, an...

  5. Exploring the circumstellar environment of the young eruptive star V2492 Cygni

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Arévalo Morales, M. J.; Balog, Z.; Carnerero, M. I.; Szegedi-Elek, E.; Farkas, A.; Henning, Th.; Kelemen, J.; Kovács, T.; Kun, M.; Marton, G.; Mészáros, Sz.; Moór, A.; Pál, A.; Sárneczky, K.; Szakáts, R.; Szalai, N.; Szing, A.; Tóth, I.; Turner, N. J.; Vida, K.

    2013-03-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims: In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods: We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results: We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions: The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation. This work is based on observations made with the Herschel Space Observatory and with the Spitzer Space Telescope. Herschel is an ESA space observatory with science instruments

  6. Stellar Evolution Models of Young Stars: Progress and Limitations

    Feiden, Gregory A

    2015-01-01

    Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrophysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.

  7. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1-20 AU from Sun-like stars

    Heller, R.; Pudritz, R.

    2015-06-01

    Context. The first detection of a moon around an extrasolar planet (an "exomoon") might be feasible with NASA's Kepler or ESA's upcoming PLATO space telescopes or with the future ground-based European Extremely Large Telescope. To guide observers and to use observational resources most efficiently, we need to know where the largest, most easily detected moons can form. Aims: We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how the different heating sources in those disks affect the location of the H2O ice lines as a function of stellar and planetary distance. Methods: We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical framework - (1) viscous heating; (2) planetary illumination; (3) accretional heating of the disk; and (4) stellar illumination - are fed by precomputed planet evolution models. We consider accreting planets with final masses between 1 and 12 Jupiter masses at distances between 1 and 20 AU to a solar type star. Results: Accretion disks around Jupiter-mass planets closer than about 4.5 AU to Sun-like stars do not feature H2O ice lines, whereas the most massive super-Jovians can form icy satellites as close as 3 AU to Sun-like stars. We derive an empirical formula for the total moon mass as a function of planetary mass and stellar distance and predict that super-Jovian planets forming beyond about 5 AU can host Mars-mass moons. Planetary illumination is the major heat source in the final stages of accretion around Jupiter-mass planets, whereas disks around the most massive super-Jovians are similarly heated by planetary illumination and viscous heating. This indicates a transition towards circumstellar accretion disks, where viscous heating dominates in the stellar vicinity. We also study a broad range of circumplanetary disk

  8. Long orbital period pre-polars containing an early K-type donor stars. Bottleneck accretion mechanism in action

    Tovmassian, G; Zharikov, S; Reichart, D E; Haislip, J B; Ivarsen, K M; LaCluyze, A P; Moore, J P; Miroshnichenko, A S

    2016-01-01

    We studied two objects identified as a Cataclysmic Variables (CVs) with periods exceeding the natural boundary for Roche lobe filling ZAMS secondary stars. We present observational results for V1082 Sgr with 20.82 h orbital period, an object that shows low luminosity state, when its flux is totally dominated by a chromospherically active K- star with no signs of ongoing accretion. Frequent accretion shut-offs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 h binary system. They both have early K-type stars as a donor star. We argue, that similar to the shorter period pre-polars containing M-dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar ...

  9. STAR FORMATION IN DENSE CLUSTERS

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  10. Substantial reservoirs of molecular hydrogen in the debris disks around young stars

    Thi, W. F.; Blake, G. A.; van Dishoeck, E. F.; van Zadelhoff, G. J.; Horn, J. M.; Becklin, E. E.; Mannings, V.; Sargent, A. I.; van Den Ancker, M. E.; Natta, A.

    2001-01-01

    Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.

  11. On the new braking index of PSR B0540-69: further support for magnetic field growth of neutron stars following submergence by fallback accretion

    Ekşi, K Yavuz

    2016-01-01

    The magnetic fields of the nascent neutron stars could be submerged to the crust by rapid fallback accretion and could diffuse to the surface later in life. According to this field burial scenario young pulsars may have growing magnetic fields which is known to result in less-than-three braking indices; larger braking indices implying longer field-growth time-scales. A nascent neutron star with a larger kick velocity would accrete less amount of matter and would have a rapidly growing magnetic field, leading to a larger discrepancy with the braking index expected from a constant field. Such an inverse relation between the field growth time-scale inferred from the braking indices and space velocity of pulsars was claimed in the past as a prediction of the field-burial scenario. With a braking index of $n\\sim 2$ and large space velocity PSR B0540-69 was then an outlier in the claimed relation. The recently measured small braking index of the object as $n \\sim 0.03$ implies a much shorter time-scale for the fiel...

  12. Accretion dynamics in the classical T Tauri star V2129 Oph

    Alencar, S H P; Walter, F M; Dougados, C; Donati, J -F; Kurosawa, R; Romanova, M; Bonfils, X; Lima, G H R A; Massaro, S; Ibrahimov, M; Poretti, E

    2012-01-01

    We analyze the photometric and spectroscopic variability of the classical T Tauri star V2129 Oph over several rotational cycles to test the dynamical predictions of magnetospheric accretion models. The photometric variability and the radial velocity variations in the photospheric lines can be explained by rotational modulation due to cold spots, while the radial velocity variations of the He I (5876 \\AA) line and the veiling variability are due to hot spot rotational modulation. The hot and cold spots are located at high latitudes and about the same phase, but the hot spot is expected to sit at the chromospheric level, while the cold spot is at the photospheric level. Using the dipole+octupole magnetic-field configuration previously proposed in the literature for the system, we compute 3D MHD magnetospheric simulations of the star-disk system. We use the simulation's density, velocity and scaled temperature structures as input to a radiative transfer code, from which we calculate theoretical line profiles at ...

  13. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Esquej, P; González-Martín, O; Hönig, S F; Caballero, A Hernán; Roche, P F; Almeida, C Ramos; Mason, R E; Díaz-Santos, T; Levenson, N A; Aretxaga, I; Espinosa, J M Rodríguez; Packham, C

    2013-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star formation rate (SFR) and the active galactic nuclei (AGN) luminosity (and, therefore, the black hole accretion rate) of Seyfert galaxies. This suggests a physical connection between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (0.4-0.8 arcsec) mid-infrared (8-13 micron) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalogue. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of 65 pc (median value). We found no general evidence of suppression of the 11.3 micron polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and used this feature as a proxy for the SFR. We detected the 11.3 micron PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are...

  14. The Star Formation and Nuclear Accretion Histories of Normal Galaxies in the AGES Survey

    Watson, Casey R; Forman, William R; Hickox, Ryan C; Jones, Christine J; Brown, Michael J I; Brand, Kate; Dey, Arjun; Jannuzi, Buell T; Kenter, Almus T; Murray, Steve S; Vikhlinin, Alexey; Eisenstein, Daniel J; Fazio, Giovani G; Green, Paul J; McNamara, Brian R; Rieke, Marcia; Shields, Joseph C

    2009-01-01

    We combine IR, optical and X-ray data from the overlapping, 9.3 square degree NOAO Deep Wide-Field Survey (NDWFS), AGN and Galaxy Evolution Survey (AGES), and XBootes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 < z < 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and AGN emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like (1+z)^3, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stack...

  15. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  16. Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217

    Whelan, E T; Bacciotti, F; Nisini, B; Bonito, R; Antoniucci, S; Stelzer, B; Biazzo, K; D'Elia, V; Ray, T P

    2014-01-01

    As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates ($\\dot{M}_{out}$/$\\dot{M}_{acc}$). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of $\\sim$ 20$^{\\circ}$. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain ($\\dot{M}_{out}$/$\\dot{M}_{acc}$). The outflow is spatially resolved in the $[SII]\\lambda \\lambda 6716,6731$ lines and is detected out to $\\sim$ 1\\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity as...

  17. Candidates for Young Super Star Clusters in the Milky Way

    Rahman, Mubdi; Matzner, C. D.; Moon, D.

    2011-01-01

    Massive Star Clusters (M > 104 M⊙) have been known to exist throughout the local Universe, but few such objects have been found within our own Galaxy. These clusters the majority of the galactic OB star formation, and thus dramatically alter their surroundings through winds, ionizing flux and radiation pressure, and supernovae, eventually destroying their natal clouds and inflating superbubbles which will erupt from the Galactic plane. We search for the young stellar clusters within the star forming complexes identified by Rahman & Murray (2010) using the WMAP free-free and Spitzer GLIMPSE 8 micron observations. Located far across the Galactic plane, these clusters are highly extinguished and crowded by field stars. Using the 2MASS catalogue, we have developed a method of identifying overdensities of sources with colours consistent with the extinguished upper main sequence coincident with the star forming complexes. The difficulty in this method comes from the large number of overlapping foreground sources in comparison to the expected number of cluster sources in any given candidate cluster. We identify a candidate for the most massive young cluster in the Galaxy (M 105 M⊙), which we have dubbed the Dragonfish Cluster. The candidate cluster is at a distance of 9.7 kpc and has a total ionizing luminosity of 7×1051 photons s-1. We identify nearly 400 OB star candidates associated with the cluster, to be confirmed with near-infrared spectroscopy.

  18. Anomalous Spectral Types and Intrinsic Colors of Young Stars

    Pecaut, Mark J

    2016-01-01

    We highlight differences in spectral types and intrinsic colors observed in pre-main sequence (pre-MS) stars. Spectral types of pre-MS stars are wavelength-dependent, with near-infrared spectra being 3-5 spectral sub-classes later than the spectral types determined from optical spectra. In addition, the intrinsic colors of young stars differ from that of main-sequence stars at a given spectral type. We caution observers to adopt optical spectral types over near-infrared types, since Hertzsprung-Russell (H-R) diagram positions derived from optical spectral types provide consistency between dynamical masses and theoretical evolutionary tracks. We also urge observers to deredden pre-MS stars with tabulations of intrinsic colors specifically constructed for young stars, since their unreddened colors differ from that of main sequence dwarfs. Otherwise, V-band extinctions as much as ~0.6 mag erroneously higher than the true extinction may result, which would introduce systematic errors in the H-R diagram positions ...

  19. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    Meng, Huan Y A; Rieke, George H; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C; Gutermuth, Robert A; Morales-Calderón, María; Rebull, Luisa M; Watson, Alan M

    2016-01-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the {\\rho} Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 {\\mu}m) and K (2.2 {\\mu}m) bands were synchronized while the 4.5 {\\mu}m emission lagged by 74.5 +/- 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 AU from the protostar on average, with an error of order 0.01 AU. This size is likel...

  20. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  1. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ∼ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ∼ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar 108 M⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  2. IDENTIFYING YOUNG STARS IN MASSIVE STAR-FORMING REGIONS FOR THE MYStIX PROJECT

    The Massive Young star-forming Complex Study in Infrared and X-rays (MYStIX) project requires samples of young stars that are likely members of 20 nearby Galactic massive star-forming regions. Membership is inferred from statistical classification of X-ray sources, from detection of a robust infrared excess that is best explained by circumstellar dust in a disk or infalling envelope and from published spectral types that are unlikely to be found among field stars. We present the MYStIX membership lists here, and describe in detail the statistical classification of X-ray sources via a 'Naive Bayes Classifier'. These membership lists provide the empirical foundation for later MYStIX science studies

  3. No evidence for intense, cold accretion onto YSOs from measurements of Li in T-Tauri stars

    Sergison, Darryl J; Naylor, Tim; Jeffries, R D; Bell, Cameron P M

    2013-01-01

    We have used medium resolution spectra to search for evidence that proto-stellar objects accrete at high rates during their early 'assembly phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri stars are key signatures of 'cold' high-rate accretion occurring early in a star's evolution. We found no evidence in 168 stars in NGC 2264 and the Orion Nebula Cluster for strong lithium depletion through analysis of veiling corrected 6708 angstrom lithium spectral line strengths. This suggests that 'cold' accretion at high rates (M_dot > 5 x 10-4 M_sol yr-1) occurs in the assembly phase of fewer than 0.5 per cent of 0.3 < M < 1.9 M_sol stars. We also find that the dispersion in the strength of the 6708 angstrom lithium line might imply an age spread that is similar in magnitude to the apparent age spread implied by the luminosity dispersion seen in colour magnitude diagrams. Evidence for weak lithium depletion (< 10 per cent in equivalent width) that is correlated with luminosity is ...

  4. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  5. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

    Rodriguez-Gomez, Vicente; Sales, Laura V; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, Paul; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2015-01-01

    We use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses ($M_{\\ast} = 10^9-10^{12} \\, {\\rm M_{\\odot}}$), galaxy types, environments, and assembly histories. We find that the `two-phase' picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation -- namely, the stellar mass growth of galaxies below a few times $10^{11} \\, {\\rm M_{\\odot}}$ is dominated by in situ star formation at all redshifts, while galaxies above this mass at $z \\lesssim 1$ grow primarily by accretion of stars via mergers. The fraction of the total stellar mass of galaxies at $z=0$ contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10% for Milky Way-sized galaxies to over 80% for $M_{\\ast} \\approx 10^{12} \\, {\\rm M_{\\odot}}$ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar...

  6. X-ray Properties of Young Stars and Stellar Clusters

    Feigelson, E; Güdel, M; Stassun, K G; Feigelson, Eric; Townsley, Leisa; Gudel, Manuel

    2006-01-01

    Although the environments of star and planet formation are thermodynamically cold, substantial X-ray emission from 10-100 MK plasmas is present. In low mass pre-main sequence stars, X-rays are produced by violent magnetic reconnection flares. In high mass O stars, they are produced by wind shocks on both stellar and parsec scales. The recent Chandra Orion Ultradeep Project, XMM-Newton Extended Survey of Taurus, and Chandra studies of more distant high-mass star forming regions reveal a wealth of X-ray phenomenology and astrophysics. X-ray flares mostly resemble solar-like magnetic activity from multipolar surface fields, although extreme flares may arise in field lines extending to the protoplanetary disk. Accretion plays a secondary role. Fluorescent iron line emission and absorption in inclined disks demonstrate that X-rays can efficiently illuminate disk material. The consequent ionization of disk gas and irradiation of disk solids addresses a variety of important astrophysical issues of disk dynamics, pla...

  7. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Farinelli, R; Romano, P; Titarchuk, L

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. To this aim, we have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system tau using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar...

  8. Protoplanetary disk shadowing by gas infalling onto the young star AK Sco

    de Castro, Ana I Gomez; France, Kevin; Sytov, Alexey; Bisikalo, Dmitry

    2016-01-01

    Young solar-type stars grow through the accretion of material from the circumstellar disk during pre-main sequence (PMS) evolution. The ultraviolet radiation generated in this process plays a key role in the chemistry and evolution of young planetary disks. In particular, the hydrogen Lyman-alpha line (Lya) etches the disk surface by driving photoevaporative flows that control disk evolution. Using the Hubble Space Telescope, we have monitored the PMS binary star AK Sco during the periastron passage and have detected a drop of the H2 flux by up to 10% lasting 5.9 hours. We show that the decrease of the H2 flux can be produced by the occultation of the stellar Lya photons by a gas stream in free fall from 3 R*. Given the high optical depth of the Lya line, a very low gas column of NH > 5e17 cm-2 suffices to block the Lya radiation without producing noticeable effects in the rest of the stellar spectral tracers.

  9. Exploring the circumstellar environment of the young eruptive star V2492 Cyg

    Kóspál, Á; Acosta-Pulido, J A; Morales, M J Arévalo; Balog, Z; Carnerero, M I; Szegedi-Elek, E; Farkas, A; Henning, Th; Kelemen, J; Kovács, T; Kun, M; Marton, G; Mészáros, Sz; Moór, A; Pál, A; Sárneczky, K; Szakáts, R; Szalai, N; Szing, A; Tóth, I; Turner, N J; Vida, K

    2013-01-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims. In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 \\mu m and 2.2 \\mu m from the ground, and between 3.6 \\mu m and 160 \\mu m from space. Methods. We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results. We find that the shapes of the light curves at different wavelengths are strictly self-similar, and the observed variabil...

  10. eROSITA - Nearby Young Stars in X-rays

    Robrade, Jan

    2015-01-01

    X-ray surveys are well suited to detect, identify and study young stars based on their high levels of magnetic activity and thus X-ray brightness. The eROSITA instrument onboard the Spectrum-Roentgen-Gamma (SRG) satellite will perform an X-ray all-sky survey that surpasses existing data by a sensitivity increase of more than an order of magnitude. The 4 yr survey is expected to detect more than half a million stars and stellar systems in X-rays.

  11. Southern near-infrared photometric monitoring of Galactic young star clusters (NIP of Stars)

    Barbá, R; Gunthardt, G; Robledo, S Torres; Jaque, M; Soto, M; Ferrero, G; Arias, J; Román-Lópes, A; Gamen, R; Hormazabal, J Astudillo

    2012-01-01

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as {\\em NIP of Stars}, between the years 2009--2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera. The primary objective of the campaign is to perform a census of photometric variability of such clusters and to discover massive eclipsing binary stars. In this work, we describe the general idea, the implementation of the survey, and the first preliminary results of some of the observed clusters. This monitoring program is complementary to the Vista Variables in the V\\'ia L\\'actea (VVV), as the brightest sources observed in NIP of Stars are saturated in VVV.

  12. Southern near-infrared photometric monitoring of Galactic young star clusters (NIP of Stars)

    Barbá, R.; Morrell, N. I.; Gunthardt, G.; Torres Robledo, S.; Jaque, M.; Soto, M.; Ferrero, G.; Arias, J. I.; Roman-Lopes, A.; Gamen, R. C.; Astudillo Hormazabal, J.

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as NIP of Stars, be- tween the years 2009-2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera. The primary objective of the campaign is to perform a census of photometric variability of such clus- ters and to discover massive eclipsing binary stars. In this work, we describe the general idea, the implementation of the survey, and the first preliminary results of some of the observed clusters. This monitoring program is com- plementary to the Vista Variables in the Vía Láctea (VVV), as the brightest sources observed in NIP of Stars are saturated in VVV.

  13. Panchromatic Hubble Andromeda Treasury XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    Johnson, L Clifton; Dalcanton, Julianne J; Beerman, Lori C; Fouesneau, Morgan; Lewis, Alexia R; Weisz, Daniel R; Williams, Benjamin F; Bell, Eric F; Dolphin, Andrew E; Larsen, Søren S; Sandstrom, Karin; Skillman, Evan D

    2016-01-01

    We use the Panchromatic Hubble Andromeda Treasury (PHAT) survey dataset to perform spatially resolved measurements of star cluster formation efficiency ($\\Gamma$), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda's cluster and field populations over the last $\\sim$300 Myr. We measure $\\Gamma$ of 4-8% for young, 10-100 Myr old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These $\\Gamma$ measurements expand the range of well-studied galactic environments, providing precise constraints in an HI-dominated, low intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where $\\Gamma$ increases with increasing star formation r...

  14. Inner disk radius, accretion and the propeller effect in the spin-down phase of neutron stars

    Ertan, Unal

    2015-01-01

    We have investigated the critical conditions required for an efficient steady propeller mechanism in the spin-down phases of magnetized neutron stars with optically thick accretion disks. We have shown through simple analytical calculations that: (1) the strength of the dipole field at the Alfven radius is not sufficient to sustain an efficient mass-outflow even when the magnetic dipole field lines rotate much faster than the escape speed, (2) in the spin-down phase, mass accretion onto the star could persist above a minimum disk mass-flow rate that is orders of magnitude lower than the rate corresponding to the transition between the spin-up and the spin-down states, (3) below this critical mass-flow rate, a steady propeller state could be established with a maximum inner disk radius about 25 times smaller than the Alfven radius. Our results indicate that only for spherical accretion, the inner disk radius is likely to approach the Alfven radius, and for all realistic cases, the accretion-propeller transitio...

  15. The accretion regimes of a highly magnetised NS: the unique case of NuSTAR J095551+6940.8

    Dall'Osso, Simone; Papitto, Alessandro; Bozzo, Enrico; Stella, Luigi

    2015-01-01

    We analyze archival Chandra HRC observations of the ultra luminous accreting pulsar M82-X2 (NuSTAR J095551+6940.8), and determine an upper limit of $ r_{co}, and the source luminosity is expected to drop by a large factor. We conclude that a magnetically threaded, radiation pressure-dominated disk, around a highly magnetized NS (B~10^{13} G) offers the best intepretation for all the currently observed properties of NuSTAR J095551+6940.8. This source offers an unprecedented opportunity to study the disk-magnetosphere interaction in a new regime of supercritical accretion, and across the transition between-radiation pressure and gas-pressure dominance inside the disk.

  16. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ☉ yr–1 kpc–2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot BH and showed that numerical simulations reproduce our observed relation fairly well.

  17. Targeting Young Stars with Kepler: Planet Formation, Migration Mechanisms and the Early History of Planetary Systems

    Lloyd, James P; Mamajek, Eric; Spiegel, David S; Covey, Kevin R; Shkolnik, Evgenya L; Walkowicz, Lucianne; Chavez, Miguel; Bertone, Emanuele; Aguilar, Jose Manuel Olmedo

    2013-01-01

    This white paper discusses a repurposed mission for the Kepler spacecraft that focusses on solving outstanding problems in planet formation and evolution by targeting the study of the hot Jupiter population of young stars. This mission can solve the question of the mode of migration of hot Jupiters, address the problem of whether Jupiters form by hot-start (gravitational instability) or cold-start (core accretion) mechanisms, and provide a wealth of data on the early stages of planetary system evolution during the active phases of stars which impact planetary habitability. In one year of observations of three weeks dwell time per field, Kepler would increase by more than an order of magnitude the number of known hot Jupiters, which can be followed up with fast cadence observations to to search for transit timing variations and to perform asteroseismological characterization of the host stars. This mission scenario continues to operate Kepler in the photometric monitoring mode for which it was designed, and is...

  18. Classical T Tauri stars with VPHAS+ - I. H α and u-band accretion rates in the Lagoon Nebula M8

    Kalari, V. M.; Vink, J. S.; Drew, J. E.; Barentsen, G.; Drake, J. J.; Eislöffel, J.; Martín, E. L.; Parker, Q. A.; Unruh, Y. C.; Walton, N. A.; Wright, N. J.

    2015-10-01

    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugri H α photometry from the VST Photometric H α survey+. Our sample consists of stars displaying H α excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the u-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H α and u-band intensities to be ˜0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star-forming processes suggested in the literature.

  19. Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Colombo, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-01-01

    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\\AA}) and OVIII (18.97 {\\AA}) line profiles. Results. The impacts of accreting blob...

  20. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29...

  1. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    Feldmeier, A; Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow types result, depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far downstream, a single critical point forms in the flow, which is a barrier for Abbott waves, and the solution tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical point, mass overloading results, and the critical point is shifted inwards. This wind exhibits a broad, stationary region of decelerating flow and its velocity law has kinks. Third, for perturbations eve...

  2. Numerical Experiments for Nuclear Flashes toward Superbursts in an Accreting Neutron Star

    Masa-aki Hashimoto

    2014-01-01

    Full Text Available We show that the superburst would be originated from thermonuclear burning ignited by accumulated fuels in the deep layers compared to normal X-ray bursts. Two cases are investigated for models related to superbursts by following thermal evolution of a realistic neutron star: helium flash and carbon flash accompanied with many normal bursts. For a helium flash, the burst shows the long duration when the accretion rate is low compared with the observation. The flash could become a superburst if the burning develops to the deflagration and/or detonation. For a carbon flash accompanied with many normal bursts, after successive 2786 normal bursts during 1.81 × 109 s, the temperature reaches the deflagration temperature. This is due to the produced carbon which amount reaches to ≈0.1 in the mass fraction. The flash will develop to dynamical phenomena of the deflagration and/or detonation, which may lead to a superburst.

  3. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  4. The burst mode of accretion and disk fragmentation in the early embedded stages of star formation

    Vorobyov, Eduard I

    2010-01-01

    We revisit our original papers on the burst mode of accretion by incorporating a detailed energy balance equation into a thin-disk model for the formation and evolution of circumstellar disks around low-mass protostars.Our model includes the effect of radiative cooling, viscous and shock heating, and heating due to stellar and background irradiation. Following the collapse from the prestellar phase allows us to model the early embedded phase of disk formation and evolution. During this time, the disk is susceptible to fragmentation, depending upon the properties of the initial prestellar core. Globally, we find that higher initial core angular momentum and mass content favors more fragmentation, but higher levels of background radiation can moderate the tendency to fragment. A higher rate of mass infall onto the disk than that onto the star is a necessary but not sufficient condition for disk fragmentation. More locally, both the Toomre Q-parameter needs to be below a critical value _and_ the local cooling ti...

  5. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    Fernández, Rodrigo

    2013-01-01

    Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Numerical simulations of NS-NS coalescence find, however, a wide range in the quantity of prompt dynamically-ejected mass. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the prope...

  6. An ultraluminous X-ray source powered by an accreting neutron star

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    .5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second(3). Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems(1,2). The most challenging sources to explain are those at...... the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the......-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 x 10(39) ergs per second. The pulsating source is spatially coincident with a variable source(4) that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 x 10(40) ergs per second(1). This association implies a luminosity of about 100...

  7. 3D-MHD simulations of an accretion disk with star-disk boundary layer

    Steinacker, A; Steinacker, Adriane; Papaloizou, John C.B.

    2002-01-01

    We present global 3D MHD simulations of geometrically thin but unstratified accretion disks in which a near Keplerian disk rotates between two bounding regions with initial rotation profiles that are stable to the MRI. The inner region models the boundary layer between the disk and an assumed more slowly rotating central, non magnetic star. We investigate the dynamical evolution of this system in response to initial vertical and toroidal fields imposed in a variety of domains contained within the near Keplerian disk. Cases with both non zero and zero net magnetic flux are considered and sustained dynamo activity found in runs for up to fifty orbital periods at the outer boundary of the near Keplerian disk. Simulations starting from fields with small radial scale and with zero net flux lead to the lowest levels of turbulence and smoothest variation of disk mean state variables. For our computational set up, average values of the Shakura & Sunyaev (1973) $\\alpha$ parameter in the Keplerian disk are typicall...

  8. The de-excited energy of electron capture in accreting neutron star crusts

    When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, thermal energy will be released and heat the crust, increasing crust temperature and changing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evolution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theoretical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is ∼0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts. (paper)

  9. GRACES observations of young [alpha/Fe]-rich stars

    Yong, David; Venn, Kim A; Chene, Andre-Nicolas; Keown, Jared; Malo, Lison; Martioli, Eder; Alves-Brito, Alan; Asplund, Martin; Dotter, Aaron; Martell, Sarah L; Melendez, Jorge; Schlesinger, Katharine J

    2016-01-01

    We measure chemical abundance ratios and radial velocities in four massive (i.e., young) [alpha/Fe]-rich red giant stars using high-resolution high-S/N spectra from ESPaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin and thick disk red giants. We confirm that the program stars have enhanced [alpha/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binarie...

  10. The galactocentric radius dependent upper mass limit of young star clusters: stochastic star formation ruled out

    Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the masses of the most-massive objects are exclusively determined by the size of the sample. Here we show, with very high confidence, that the masses of the most-massive young star clusters in M33 decrease with increasing galactocentric radius in contradiction to the expectations from a model of a randomly sampled constant cluster mass function with a constant upper mass limit. Pure stochastic star formation is thereby ruled out. We use this example to elucidate how naive analysis of data can lead to unphysical conclusions.

  11. A Method to Search for Associations of Young Stars

    Quast, G R; Melo, C H F; Sterzik, M; De la Reza, R; Silva, L; Quast, Germano R.; Torres, Carlos A. O.; Melo, Claudio H. F.; Sterzik, Michael; Reza, Ramiro de la; Silva, Licio da

    2003-01-01

    In the SACY (Search for Associations Containing Young-stars) project we try to identify associations of stars younger than the Local Association among HIPPARCOS and/or TYCHO-2 stars later than G0 which are counterparts of the ROSAT X-ray bright sources. High-resolution spectra for the possible optical counterparts were obtained in order to assess both the youth and the spatial motion of each target. More than 1000 ROSAT sources were observed, covering a large area in the Southern Hemisphere. Associations are characterized mainly by the similarity in UVW velocity space of their proposed member, but other parameters, as evolutionary age, Li abundance and distribution in space must also be taken into account. We proposed a method to identify associations when proper motions and radial velocities are available, but no parallaxes. Using the method we found eleven associations in the SACY data.

  12. Supersaturation and Activity-Rotation Relation in PMS stars: the case of the Young Cluster h Per

    Argiroffi, C; Micela, G; Sciortino, S; Moraux, E; Bouvier, J; Flaccomio, E

    2016-01-01

    The magnetic activity of late-type MS stars is characterized by different regimes, and their activity levels are well described by Ro, the ratio between P_rot and the convective turnover time. Very young PMS stars show, similarly to MS stars, intense magnetic activity. However they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Per, a ~13 Myr old cluster, that contains both fast and slow rotators, whose members have ended their accretion phase and have already developed a radiative core. It offers us the opportunity to study the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. We constrained the magnetic activity levels of h Per members measuring their X-ray emission from a Chandra observation, while P_rot were obtained by ...

  13. Multi-wavelength study of the low-luminosity outbursting young star HBC 722

    Kóspál, Á; Acosta-Pulido, J A; Dunham, M M; García-Álvarez, D; Hogerheijde, M R; Kun, M; Moór, A; Farkas, A; Hajdu, G; Hodosán, G; Kovács, T; Kriskovics, L; Marton, G; Molnár, L; Pál, A; Sárneczky, K; Sódor, Á; Szakáts, R; Szalai, T; Szegedi-Elek, E; Szing, A; Tóth, I; Vida, K; Vinkó, J

    2016-01-01

    HBC 722 (V2493 Cyg) is a young eruptive star in outburst since 2010. It is an FU Orionis-type object with an atypically low outburst luminosity. Because it was well characterized in the pre-outburst phase, HBC 722 is one of the few FUors where we can learn about the physical changes and processes associated with the eruption. We monitored the source in the BVRIJHKs bands from the ground, and at 3.6 and 4.5 $\\mu$m from space with the Spitzer Space Telescope. We analyzed the light curves and the spectral energy distribution by fitting a series of steady accretion disk models at many epochs. We also analyzed the spectral properties of the source based on new optical and infrared spectra. We also mapped HBC 722 and its surroundings at millimeter wavelengths. From the light curve analysis we concluded that the first peak of the outburst in 2010 September was due to an abrupt increase of the accretion rate in the innermost part of the system. This was followed by a long term process, when the brightening was mainly...

  14. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the Λ cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass ∼10 Msun with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 ∼ [Fe/H] ∼> -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be compatible with the observed lack of their nucleosynthetic signatures when some positive feedback on gas cooling works and changes the IMF from being very massive to being high mass.

  15. DISCOVERY AND OBSERVATIONS OF ASASSN-13db, AN EX LUPI-TYPE ACCRETION EVENT ON A LOW-MASS T TAURI STAR

    We discuss ASASSN-13db, an EX Lupi-type (EXor) accretion event on the young stellar object (YSO) SDSS J051011.01–032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d ∼ 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV ∼ –5.4 mag outburst that began in 2013 September and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of ∼10–7 M ☉ yr–1, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008

  16. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

    Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Sales, Laura V.; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, Paul; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2016-05-01

    We use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses (M* = 109-1012 M⊙), galaxy types, environments, and assembly histories. We find that the `two-phase' picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation - namely, the stellar mass growth of galaxies below a few times 1011 M⊙ is dominated by in situ star formation at all redshifts. The fraction of the total stellar mass of galaxies at z = 0 contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10 per cent for Milky Way-sized galaxies to over 80 per cent for M* ≈ 1012 M⊙ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar mass, elliptical galaxies and those formed at the centres of younger haloes exhibit larger fractions of ex situ stars than disc-like galaxies and those formed in older haloes. On average, ˜50 per cent of the ex situ stellar mass comes from major mergers (stellar mass ratio μ > 1/4), ˜20 per cent from minor mergers (1/10 < μ < 1/4), ˜20 per cent from very minor mergers (μ < 1/10), and ˜10 per cent from stars that were stripped from surviving galaxies (e.g. flybys or ongoing mergers). These components are spatially segregated, with in situ stars dominating the innermost regions of galaxies, and ex situ stars being deposited at larger galactocentric distances in order of decreasing merger mass ratio.

  17. Star Formation & Young Stellar Content in the W3 GMC

    Rivera-Ingraham, A; Polychroni, D; Moore, T J T

    2011-01-01

    In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star format...

  18. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr–1. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

  19. Fast Star, Slow Star; Old Star, Young Star: Subgiant Rotation as a Population and Stellar Physics Diagnostic

    van Saders, Jennifer L

    2013-01-01

    Stellar rotation is a strong function of both mass and evolutionary state. Missions such as Kepler and CoRoT provide tens of thousands of rotation periods, drawn from stellar populations that contain objects at a range of masses, ages, and evolutionary states. Given a set of reasonable starting conditions and a prescription for angular momentum loss, we address the expected range of rotation periods for cool field stellar populations. We find that cool stars fall into three distinct regimes in rotation. Rapid rotators with surface periods less than 10 days are either young low-mass main sequence (MS) stars, or higher mass subgiants which leave the MS with high rotation rates. Intermediate rotators (10-40 days) can be either cool MS dwarfs, suitable for gyrochronology, or crossing subgiants at a range of masses. Gyrochronology relations must therefore be applied cautiously, since there is an abundant population of subgiant contaminants. The slowest rotators, at periods greater than 40 days, are lower mass subg...

  20. Young accreted globular clusters in the outer halo of M31

    Mackey, A D; Ferguson, A M N; Irwin, M J; Veljanoski, J; McConnachie, A W; Ibata, R A; Lewis, G F; Tanvir, N R

    2012-01-01

    We report on Gemini/GMOS observations of two newly discovered globular clusters in the outskirts of M31. These objects, PAndAS-7 and PAndAS-8, lie at a galactocentric radius of ~87 kpc and are projected, with separation ~19 kpc, onto a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 +/- 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent wit...

  1. FAST STAR, SLOW STAR; OLD STAR, YOUNG STAR: SUBGIANT ROTATION AS A POPULATION AND STELLAR PHYSICS DIAGNOSTIC

    Stellar rotation is a strong function of both mass and evolutionary state. Missions such as Kepler and CoRoT provide tens of thousands of rotation periods, drawn from stellar populations that contain objects at a range of masses, ages, and evolutionary states. Given a set of reasonable starting conditions and a prescription for angular momentum loss, we address the expected range of rotation periods for cool field stellar populations (∼0.4-2.0 M☉). We find that cool stars fall into three distinct regimes in rotation. Rapid rotators with surface periods less than 10 days are either young low-mass main sequence (MS) stars, or higher mass subgiants which leave the MS with high rotation rates. Intermediate rotators (10-40 days) can be either cool MS dwarfs, suitable for gyrochronology, or crossing subgiants at a range of masses. Gyrochronology relations must therefore be applied cautiously, since there is an abundant population of subgiant contaminants. The slowest rotators, at periods greater than 40 days, are lower mass subgiants undergoing envelope expansion. We identify additional diagnostic uses of rotation periods. There exists a period-age relation for subgiants distinct from the MS period-age relations. There is also a period-radius relation that can be used as a constraint on the stellar radius, particularly in the interesting case of planet host stars. The high-mass/low-mass break in the rotation distribution on the MS persists onto the subgiant branch, and has potential as a diagnostic of stellar mass. Finally, this set of theoretical predictions can be compared to extensive datasets to motivate improved modeling

  2. Spectral Energy Distributions of Young Stars in IC 348: The Role of Disks in Angular Momentum Evolution of Young, Low-Mass Stars

    Blanc, Thompson S. Le; Covey, Kevin R.; Stassun, Keivan G.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' (DL) theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk. These theories have also been interpreted to suggest a correlation between young stars' rotation periods and the structural properties of their disks, suc...

  3. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  4. Constraints on Compact Star Parameters from Burst Oscillation Light Curves of the Accreting Millisecond Pulsar XTE J1814-338

    Bhattacharya, S; Miller, M C; Markwardt, C B; Bhattacharyya, Sudip; Strohmayer, Tod E.; Markwardt, Craig B.

    2004-01-01

    Detailed modeling of the millisecond brightness oscillations from low mass X-ray binaries during thermonuclear bursts can provide us with important information about compact star parameters. Until now the implementation of this idea has not been entirely successful, largely because of the negligible amount of harmonic content in burst oscillation lightcurves. However, the recent discovery of unique, non-sinusoidal burst oscillation lightcurves from the accreting millisecond pulsar XTE J1814-338 has changed this situation. We, therefore, for the first time, make use of this opportunity to constrain compact star structure parameters effectively. In our detailed study of the lightcurves of 22 bursts we fit the burst oscillation lightcurves with fully general relativistic models that include light-bending and frame-dragging for lightcurve calculation, and compute numerically the structure of compact stars using realistic equations of state. We find that the 90% confidence interval of the dimensionless radius to m...

  5. Hydrodynamic Modeling of Accretion Impacts in Classical T Tauri Stars: Radiative Heating of the Pre-shock Plasma

    Costa, G; Peres, G; Argiroffi, C; Bonito, R

    2016-01-01

    Context. It is generally accepted that, in Classical T Tauri Stars, the plasma from the circumstellar disc accretes onto the stellar surface with free fall velocity, and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a 1D hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray ...

  6. Magnetohydrodynamic modeling of the accretion shocks in classical T Tauri stars: the role of local absorption on the X-ray emission

    Bonito, R; Argiroffi, C; Miceli, M; Peres, G; Matsakos, T; Stehle, C; Ibgui, L

    2014-01-01

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthe...

  7. Zeeman-Doppler imaging of active young solar type stars

    Hackman, Thomas; Rosén, Lisa; Kochukhov, Oleg; Käpylä, Maarit J

    2015-01-01

    By studying young magnetically active late-type stars, i.e. analogues to the young Sun, one can draw conclusions on the evolution of the solar dynamo. We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. High-resolution spectropolarimetry of the targets were obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratio of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. All the three targets show clear signs of both magnetic fields and cool spots. Only one of the targets, namely V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indic...

  8. Growth of the Magnetic Field in Young Neutron Stars

    Negreiros, Rodrigo

    2015-01-01

    Rotation Powered-Pulsars are subjected to long-term changes in their period of rotation, which are measured by timing observations of their rotation frequency and its derivatives ($\\Omega$, $\\dot{\\Omega}$, $\\ddot{\\Omega}$). If the spin-down is solely due to dipolar radiation, the braking index should be $n=3$. To date, only a handful of braking indices have been estimated for young pulsars, and in all cases one observes that $n<3$. These observations suggest that there are complex spin-down processes taking place in the pulsar that are not fully well understood. In the present work we revisit the spin-down of young pulsars by considering a possible magnetic field growth due ohmic diffusion. In order to perform such study we perform calculations with phenomenological growth functions for the magnetic field. With that we are able to calculate the spin evolution of the neutron star with all relevant quantities. We show that such approach could explain the low values of $n$ in very young neutron stars and may ...

  9. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  10. Galactic Kinematics from a Sample of Young Massive Stars

    Bobylev, V V

    2013-01-01

    Based on published sources, we have created a kinematic database on 220 massive (>10 solar masses) young Galactic star systems located within <3 kpc of the Sun. Out of them, approximately 100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10 percent. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at Ro=8 kpc, Vo=259+-16 km/s, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f_R=-10.8+/-1.2 km/s, and f_\\theta=7.9+/-1.3 km/s, respectively; the pitch angle for a two-armed spiral pattern i=-6.0+/-0.4 deg., with the wavelength of the spiral density wave near the Sun being 2.6+/-0.2 kpc; and the radial phase of the Sun in the spiral density wave -120+/-4 deg. We show that such ...

  11. Evolutionary Synthesis Modelling of Young Star Clusters in Merging Galaxies

    Anders, P; De Grijs, R; Anders, Peter; Alvensleben, Uta Fritze - v.; Grijs, Richard de

    2003-01-01

    The observational properties of globular cluster systems (GCSs) are vital tools to investigate the violent star formation histories of their host galaxies. This violence is thought to have been triggered by galaxy interactions or mergers. The most basic properties of a GCS are its luminosity function (number of clusters per luminosity bin) and color distributions. A large number of observed GCS show bimodal color distributions, which can be translated into a bimodality in either metallicity and/or age. An additional uncertainty comes into play when one considers extinction. These effects can be disentangled either by obtaining spectroscopic data for the clusters or by imaging observations in at least four passbands. This allows us then to discriminate between various formation scenarios of GCSs, e.g. the merger scenario by Ashman & Zepf, and the multi-phase collapse model by Forbes et. al.. Young and metal-rich star cluster populations are seen to form in interacting and merging galaxies. We analyse multi...

  12. Activity trends in young solar-type stars

    Lehtinen, Jyri; Hackman, Thomas; Kajatkari, Perttu; Henry, Gregory W

    2015-01-01

    We apply the Continuous Period Search (CPS) time series analysis method on Johnson B and V band photometry of 21 young and active solar-type, collected over 16 to 27 years and characterize the behaviour of their activity. Using the CPS method, differential rotation could be estimated from the observed variations of the photometric rotation period. Active longitudes were retrieved by applying a non-parametric period search on the light curve minimum epochs, and activity cycles by applying a secondary period search on the modelled light curve mean and amplitude values. We supplemented the time series results by calculating new $\\log{R'_{\\rm HK}}$ emission indices for the stars from high resolution spectroscopy. The measurements of the photometric rotation period variations point to a trend of increasing differential rotation coefficients towards longer rotation periods but do not reveal any dependence from the effective temperature of the stars. The secondary period searches revealed activity cycles in 18 of th...

  13. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  14. Dynamical star-disk interaction in the young stellar system V354 Mon

    Fonseca, N N J; Bouvier, J; Favata, F; Flaccomio, E

    2014-01-01

    The main goal of this work is to characterize the mass accretion and ejection processes of the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. In March 2008, photometric and spectroscopic observations of V354 Mon were obtained simultaneously with the CoRoT satellite, the 60 cm telescope at the Observat\\'orio Pico dos Dias (LNA - Brazil) equipped with a CCD camera and Johnson/Cousins BVRI filters, and the SOPHIE \\'echelle spectrograph at the Observatoire de Haute-Provence (CNRS - France). The light curve of V354 Mon shows periodical minima (P = 5.26 +/- 0.50 days) that vary in depth and width at each rotational cycle. From the analysis of the photometric and spectroscopic data, it is possible to identify correlations between the emission line variability and the light-curve modulation of the young system, such as the occurrence of pronounced redshifted absorption in the H_alpha line at the epoch of minimum flux. This is evidence that during photometric minima we see the accreti...

  15. Star Formation & Young Stellar Content in the W3 GMC

    Rivera-Ingraham, A.; Martin, P. G.; Polychroni, D.; Moore, T. J. T.

    2011-01-01

    In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-ma...

  16. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the observed patterns are compatible with the hypothesis of centrifugal stripping. In this scenario we inferred that coronae can produce structures as large as ~2 R⋆ above the stellar surface. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A113

  17. Theory of wind accretion

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  18. The young active star SAO 51891 (V383 Lac)

    Biazzo, Katia; Marilli, Ettore; Covino, Elvira; Alcala', Juan M; Cakirli, Omur; Klutsch, Alexis; Meyer, Michael R

    2009-01-01

    Our aim is investigating surface inhomogeneities of the young late-type star SAO51891, from photosphere to upper chromosphere, analyzing contemporaneous high-resolution spectra and broad-band photometry. The FOCES@CAHA spectral range is used to determine spectral classification and derive vsini and Vrad. The Li abundance is measured to estimate the age. The BVRIJHKs bands are used to construct the SED. The variations of our BV fluxes and Teff are used to infer the presence of photospheric spots and observe their behavior over time. The chromospheric activity is studied applying the spectral subtraction technique to Halpha, CaII H&K, Heps, and CaII IRT lines. We find SAO51891 to be a young K0-1V star with Li abundance close to the Pleiades upper envelope, confirming its youth (~100 Myr), also inferred from its kinematical membership to the Local Association. We detect no IR excess from SED analysis, and rotational modulation of luminosity, Teff, CaII, and Heps total fluxes. A spot model with two active reg...

  19. The Brightest Young Star Clusters in NGC 5253

    Calzetti, D; Adamo, A; Gallagher, J S; Andrews, J E; Smith, L J; Clayton, G C; Lee, J C; Sabbi, E; Ubeda, L; Kim, H; Ryon, J E; Thilker, D; Bright, S N; Zackrisson, E; Kennicutt, R C; de Mink, S E; Whitmore, B C; Aloisi, A; Chandar, R; Cignoni, M; Cook, D; Dale, D A; Elmegreen, B G; Elmegreen, D M; Evans, A S; Fumagalli, M; Gouliermis, D A; Grasha, K; Grebel, E K; Krumholz, M R; Walterbos, R; Wofford, A; Brown, T M; Christian, C; Dobbs, C; Herrero, A; Kahre, L; Messa, M; Nair, P; Nota, A; Oestlin, G; Pellerin, A; Sacchi, E; Schaerer, D; Tosi, M

    2015-01-01

    The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula'). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC5253 with wavelength coverage from 1500 Ang to 1.9 micron in 13 filters. These include H-alpha, P-beta, and P-alpha, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the 9 optically brightest clusters (M_V < -8.8) and the two young radio nebula clusters. The clusters have ages ~1-15 Myr and masses ~1x10^4 - 2.5x10^5 M_sun. The clusters' spatial location and ages indicate that star formation has become more concentrated towards the radio nebula over the last ~15 Myr. The most massive cluster ...

  20. NEW YOUNG STAR CANDIDATES IN BRC 27 AND BRC 34

    Rebull, L. M.; Laher, R.; Legassie, M. [Spitzer Science Center/Caltech, M/S 220-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Johnson, C. H.; Carlson, S.; Clark, M.; Killingstad, N.; Koop, S. [Breck School, 123 Ottawa Avenue N., Golden Valley, MN 55422 (United States); Gibbs, J. C.; Aryal, S.; Canakapalli, T. S. [Glencoe High School, 2700 NW Glencoe Rd., Hillsboro, OR 97124 (United States); Linahan, M.; Ezyk, N.; Fagan, J. [Carmel Catholic High School, One Carmel Parkway, Mundelein, IL 60060 (United States); Sartore, D.; Badura, K. S. [Pine Ridge High School, 926 Howland Blvd., Deltona, FL 32738 (United States); Armstrong, J. D. [Las Cumbres Observatory Global Telescope (LCOGT) Network, Inc., 6740 Cortona Dr. Suite 102, Goleta, CA 93117 (United States); Allen, L. E. [National Optical Astronomy Observatory (NOAO), Tucson, AZ 85719 (United States); McGehee, P. [Infrared Processing and Analysis Center (IPAC), M/S 220-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Padgett, D. L., E-mail: rebull@ipac.caltech.edu [NASA' s Goddard Space Flight Center (GSFC), 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); and others

    2013-01-01

    We used archival Spitzer Space Telescope mid-infrared data to search for young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These regions both appear to be actively forming young stars, perhaps triggered by the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of the 26 YSOs or YSO candidates identified in the literature, and identify 16 new YSO candidates that appear to have IR excesses. In BRC 34, the one literature-identified YSO has an IR excess, and we suggest 13 new YSO candidates in this region, including a new Class I object. Considering the entire ensemble, both BRCs are likely of comparable ages, within the uncertainties of small number statistics and without spectroscopy to confirm or refute the YSO candidates. Similarly, no clear conclusions can yet be drawn about any possible age gradients that may be present across the BRCs.

  1. Young Stars and Protostellar Cores near NGC 2023

    Mookerjea, B; Jarrett, T H; McMullin, J P

    2009-01-01

    We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM1. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'x26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 micron SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in...

  2. Star Cluster Ecology: VII The evolution of young dense star clusters containing primordial binaries

    Zwart, S P; Makino, J; Zwart, Simon Portegies; Millan, Steve Mc; Makino, Jun

    2006-01-01

    We study the first 100Myr of the evolution of isolated star clusters initially containing 144179 stars, including 13107 (10%) primordial hard binaries. Our calculations include the effects of both stellar and binary evolution. Gravitational interactions among the stars are computed by direct N-body integration using high precision GRAPE-6 hardware. The evolution of the core radii and central concentrations of our simulated clusters are compared with the observed sample of young (about 100Myr) star clusters in the large Magellanic cloud. Even though our simulations start with a rich population of primordial binaries, core collapse during the early phase of the cluster evolution is not prevented. Throughout the simulations, the fraction of binaries remains roughly constant (about 10%). Due to the effects of mass segregation the mass function of intermediate-mass main-sequence stars becomes as flat as $\\alpha=-1.8$ in the central part of the cluster (where the initial Salpeter mass function had $\\alpha=-2.35$). ...

  3. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of HII regions

    Haemmerlé, Lionel

    2016-01-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at $2\\,M_\\odot$ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on timescales as short as 100 - 1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in ...

  4. A nova re-accretion model for J-type carbon stars

    S. Sengupta; Izzard, R.G.; Lau, H. H. B.

    2013-01-01

    The J-type carbon (J)-stars constitute 10-15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong 13C absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make 13C only in a narrow range of masses. We investigate a binary-star formati...

  5. Membership, binarity and accretion among very low-mass stars and brown dwarfs of the σ Orionis cluster

    Kenyon, M. J.; Jeffries, R. D.; Naylor, Tim; Oliveira, J. M.; Maxted, P. F. L.

    2005-01-01

    Intermediate-resolution (R~ 7000) spectroscopy is presented for 76 photometrically selected very low-mass (0.04 consistent with the cluster mean. Photometric selection alone therefore appears to be very effective in identifying cluster members in this mass range. Only six objects appear to be certain non-members; however, a substantial subset of 13 candidates have ambiguous or contradictory indications of membership and lack Li absorption. Together with an observed spread in the equivalent width of the Li absorption feature in the cooler stars of our sample, this indicates that there may be deficiencies in our understanding of the formation of this line in cool, low-gravity objects. Four candidate binary cluster members are identified. Consideration of sampling and radial velocity measurement precision leads us to conclude that either the fraction of very low-mass stars and brown dwarfs in small separation (a < 1 au) binary systems is larger than in field M-dwarfs, or the distribution of separations is much less skewed towards large separations. This conclusion hinges critically on the correct identification of the small number of binary candidates, although it remains significant even when only the candidate members displaying Li absorption are considered. Broadened Hα emission, indicative of circum(sub)stellar accretion discs is found in five or six of the candidate cluster members, three of which probably have substellar masses. The fraction of accretors (10 +/- 5 per cent) is similar to that found in stars of higher mass in the σ Ori cluster using Hα emission as a diagnostic, but much lower than found for very low-mass stars and brown dwarfs of younger clusters. The time-scale for accretion rates to drop to <~10-11 Msolar yr-1 is hence less than the age of the σ Ori cluster (3-7 Myr) for most low-mass objects.

  6. NuSTAR J095551+6940.8: a highly magnetised neutron star with super-Eddington mass accretion

    Dall'Osso, Simone; Stella, Luigi

    2014-01-01

    The identification of the Ultraluminous X-ray source (ULX) X-2 in M82 as an accreting pulsar has shed new light on the nature of a subset of ULXs, while rising new questions on the nature of the super-Eddington accretion. Here, by numerically solving the torque equation of the accreting pulsar within the framework of the magnetically threaded-disk scenario, we show that three classes of solutions, corresponding to different values of the magnetic field for the same accretion rate, are mathematically allowed. We argue that the highest magnetic field one, corresponding to B $\\sim 10^{13}$ G, is favoured based on physical considerations and the observed properties of the source. In particular, that is the only solution which can account for the observed variations in $\\dot{P}$ (over four time intervals) without requiring major changes in $\\dot{M}$, which would be at odds with the approximately constant X-ray emission of the source during the same time. For this solution, we find that the source can only accomoda...

  7. Time-dependent two-dimensional radiation hydrodynamics of accreting matter onto highly magnetized neutron stars

    We present for the first time, the self-consistent solution of the two-dimensional, time-dependent equations of radiation-hydrodynamics governing the accretion of matter onto the highly magnetized polar caps of luminous x-ray pulsars. The calculations show a structure in the accretion column very different from previous one-zone uniform models. We have included all the relevant magnetic field corrections to both the hydrodynamics and the radiative transport. We include a new theory for the diffusion and advection of both radiation energy density and photon number density. For initially uniformly accreting models with super-Eddington flows, we have uncovered evidence of strong radiation-driven outflowing optically thin radiation filled regions of the accretion column embedded in optically-thick inflowing plasma. The development of these photon ''bubbles'' have growth times on the order of a millisecond and show fluctuations on sub-millisecond timescales. The photon bubbles are likely to be a consequence of convective over-stability and may result in observable fluctuations in the emitted luminosity leading to luminosity dependent changes in the pulse profile. This may provide important new diagnostics for conditions in accreting x-ray pulsars. 13 refs., 18 figs

  8. The chemical composition of ρ puppis and the signs of accretion in the atmospheres of B–F-type stars

    Yushchenko, Alexander V.; Kang, Young-Woon; Kim, Sungeun; Lee, Jae-Woo; Rittipruk, Pakakaew [Department of Astronomy and Space Science, Sejong University, Seoul, 143-747 (Korea, Republic of); Gopka, Vira F.; Yushchenko, Volodymyr A.; Dorokhova, Tatyana N. [Astronomical observatory, Odessa National University, Odessa, 65014 (Ukraine); Kim, Chulhee [Division of Science Education, Institute of Science Education, and Institute of Fusion Science, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Lee, Byeong-Cheol; Hong, Kyeongsoo [Korea Astronomy and Space Science Institute, Daejon 305-348 (Korea, Republic of); Doikov, Dmytry N. [Department of physics, Odessa National Maritime University, 65029, Odessa (Ukraine); Pikhitsa, Petro V., E-mail: avyuschenko@gmail.com [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-02-01

    We investigated the chemical composition of ρ Pup using high-resolution spectral observations taken from the Very Large Telescope and the IUE archives and also spectra obtained at the 1.8 m telescope of the Bohyunsan observatory in Korea. The abundances of 56 chemical elements and the upper limits of Li and Be abundances were determined. The abundance pattern of ρ Pup was found to be similar to that of Am-type stars. The possibility of the influence of the accretion of interstellar gas and dust on the abundance patterns of B–F-type stars is discussed. The plots of the relative abundances of chemical elements in the atmospheres of ρ Pup and δ Sct versus the second ionization potentials of these elements show the correlations. The discontinuities at 13.6 and 24.6 eV—the ionization potentials of hydrogen and helium, respectively, are also exhibited in these plots. These discontinuities can be explained by interaction of the atoms of interstellar gas, mainly hydrogen and helium atoms, with the atoms of stellar photospheres (so-called charge-exchange reactions). Note that only the jumps near 13.6 and 24.6 eV were pointed out in previous investigations of relative abundances versus the second ionization potentials for Am-type stars. The dependencies of the relative abundances of chemical elements on the second ionization potentials of these elements were investigated using the published abundance patterns of B–F-type stars. The correlations of relative and absolute abundances of chemical elements, second ionization potentials, and projected rotational velocities are clearly detected for stars with effective temperatures between 7,000 and 12,000 K. If the correlation of relative abundances and second ionization potentials can be explained by the accretion of interstellar gas on the stellar surfaces, the investigation of these correlations can provide valuable information on the density and velocities of interstellar gas in different regions of the Galaxy and

  9. Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models

    Valle, G D; Galli, D

    2005-01-01

    This paper reports simulations allowing for stochastic accretion and mass loss within closed and open systems modeled using a previously developed multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star formation rate is computed as a function of time directly from the model equations and all chemical evolution is followed without instantaneous recycling. Several types of simulations are presented here: (1) a closed system with bursty mass loss from the halo to the thick disk, and from the thick to the thin disk, in separate events to the thin disk; (2) open systems with random environmental (extragalactic) accretion, e.g. by infall of high velocity clouds directly to the thin disk; (3) schematic open system single and multiple collision events and intracluster stripping. For the open models, the mass of the Galaxy has been explicitly tracked with time. We present the evolution of the star formation rate, metallicity histories, and concentrate on the light elements. We find a wide range...

  10. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  11. Pre-main sequence accretion in the low metallicity Galactic star-forming region Sh 2-284

    Kalari, V M

    2014-01-01

    We present optical spectra of pre-main sequence (PMS) candidates around the H$\\alpha$ region taken with the Southern African Large Telescope, SALT, in the low metallicity ($Z$) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of $Z$ $\\sim$ 1/5 $Z_{\\odot}$. It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, $\\dot M_{\\rm{acc}}$, are a function of $Z$. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-$Z$ star-forming region. Our data-set was enlarged with literature data of H$\\alpha$ emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 - 2 $M_{\\odot}$ and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of 2MASS and Spitzer infrared photometry. We find $\\dot M_{\\rm{acc}}$ in the 1 - 2 $M_{\\odot}$ interval to d...

  12. Neutron star crust cooling in KS 1731-260: the influence of accretion outburst variability on the crustal temperature evolution

    Ootes, Laura S; Wijnands, Rudy; Degenaar, Nathalie

    2016-01-01

    Using a theoretical model, we track the thermal evolution of a cooling neutron star crust after an accretion induced heating period with the goal of constraining the crustal parameters. We present for the first time a crust cooling model $-\\text{ } NSCool\\text{ } -$ that takes into account detailed variability during the full outburst based on the observed light curve. We apply our model to KS 1731-260. The source was in outburst for $\\sim$12 years during which it was observed to undergo variations on both long (years) and short (days-weeks) timescales. Our results show that KS 1731-260 does not reach a steady state profile during the outburst due to fluctuations in the derived accretion rate. Additionally, long time-scale outburst variability mildly affects the complete crust cooling phase, while variations in the final months of the outburst strongly influence the first $\\sim$40 days of the calculated cooling curve. We discuss the consequences for estimates of the neutron star crust parameters, and argue th...

  13. NuSTAR reveals the extreme properties of the super-Eddington accreting SMBH in PG 1247+267

    Lanzuisi, G; Comastri, A; Cappi, M; Dadina, M; Marinucci, A; Masini, A; Matt, G; Vagnetti, F; Vignali, C; Ballantyne, D R; Bauer, F E; Boggs, S E; Brandt, W N; Brusa, M; Christensen, F E; Craig, W W; Fabian, A C; Farrah, D; Hailey, C J; Harrison, F A; Luo, B; Piconcelli, E; Puccetti, S; Ricci, C; Saez, C; Stern, D; Walton, D J; Zhang, W W

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at $z\\sim2$ and is a strongly super-Eddington accreting SMBH candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law ($\\Gamma=2.3\\pm0.1$); the weak ionized Fe emission line and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Comp...

  14. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Orlando, S; Argiroffi, C; Reale, F; Peres, G; Miceli, M; Matsakos, T; Stehle', C; Ibgui, L; de Sa, L; Chie`ze, J P; Lanz, T

    2013-01-01

    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, th...

  15. Activity trends in young solar-type stars

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  16. Accretion Disks

    Spruit, H.C.

    1995-01-01

    This is an introduction to accretion disk theory, with emphasis on aspects relevant for X-ray Binaries and Cataclysmic Variables. The text corrects some mistakes in an earlier version, which appeared in 'Lives of Neutron Stars', A. Alpar, \\"U. Kizilo\\u glu and J. van Paradijs (eds.), Kluwer, Dordrecht (NATO ASI series, 1994).

  17. Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki

    2010-12-01

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of gsim3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than thermodynamics of the collapsing gas, at the protostar formation epoch, the first core (or the circumstellar disk) has a mass of ~0.005-0.1 M sun, while the protostar has a mass of ~10-3 M sun. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for ~105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  18. FORMATION PROCESS OF THE CIRCUMSTELLAR DISK: LONG-TERM SIMULATIONS IN THE MAIN ACCRETION PHASE OF STAR FORMATION

    The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of ∼>3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than sun, while the protostar has a mass of ∼10-3 Msun. Thus, just after the protostar formation, the circumstellar disk is about 10-100 times more massive than the protostar. In the main accretion phase that lasts for ∼105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

  19. Dynamical constraints on the origin of the young B-stars in the Galactic center

    Perets, Hagai B.; Gualandris, Alessia

    2010-01-01

    Regular star formation is thought to be inhibited close to the massive black hole (MBH) in the Galactic center. Nevertheless, tens of young main sequence B stars have been observed in an isotropic distribution close to it. Various models have been suggested for the formation of the B-stars closest to the MBH (

  20. Neutron stars from young nearby associations the origin of RXJ1605.3+3249

    Tetzlaff, Nina; Schmidt, Janos G.; Hohle, Markus M.; Neuhaeuser, Ralph

    2012-01-01

    Many neutron stars (NSs) and runaway stars apparently come from the same regions on the sky. This suggests that they share the same birth places, namely associations and clusters of young massive stars. To identify NS birth places, we attempt to and NS-runaway pairs that could be former companions that were disrupted in a supernova (SN). The remains of recent (

  1. X-raying circumstellar material around young stars

    Schneider, P C

    2015-01-01

    Young stars are surrounded by copious amounts of circumstellar material. Its composition, in particular its gas-to-dust ratio, is an important parameter. However, measuring this ratio is challenging, because gas mass estimates are often model dependent. X-ray absorption is sensitive to the gas along the line-of-sight while optical/near-IR extinction depends on the dust content. Therefore, the gas-to-dust ratio of an absorber is given by the ratio between X-ray and optical/near-IR extinction. We present three systems where we used X-ray and optical/near-IR data to constrain the gas-to-dust ratio of circumstellar material; from a dust-rich debris disk to gaseous protoplanetary disks.

  2. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-04-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (20 M⊙), both indicate that the central YSO has already accreted most of its final mass. On the other hand, the nearby W51e2-E, while not showing evidence of rotation, shows signatures of infall in a hot dense core (T ~ 170 K, nH2 ~ 5 × 107 cm-3

  3. MAGNETIC BRAKING AND FIELD DISSIPATION IN THE PROTOSTELLAR ACCRETION PHASE

    D. Galli

    2009-01-01

    Full Text Available We summarize recent theoretical work addressing the role of magnetic elds in the process of star formation. First, we concentrate on the efficiency of magnetic braking during cloud collapse and its consequences on the formation of centrifugally supported disks around young stars. Then, we relate this issue to the well-known magnetic ux problem of star formation, and we show that the introduction of non-ideal MHD e ects is a necessary step toward the development of self-consistent models for the collapse of molecular clouds and the formation and evolution of accretion disks around young stars.

  4. An Infrared Examination of Young Stars in Upper Centaurus Lupus

    Johnson, Chelen H.; Linahan, M.; Barge, J.; Rebull, L. M.; Aranda, D.; Canlas, N. G.; Donahoe, K. E.; Ernst, M. K.; Ford, S.; Fox, M. E.; Gutierrez, E.; Haecker, L. W.; Hibbs, C. A.; Maddaus, M. R.; Martin, T. A.; Ng, E.; Niedbalec, A. P.; O'Bryan, S. E.; Searls, E. F.; Zeidner, A. B.; Zegeye, D.

    2014-01-01

    Optical studies of the Upper Centaurus Lupus (UCL) region of the Scorpius-Centaurus (Sco-Cen) complex have found many young stellar objects. The nearby G/K/M Sco-Cen members have been estimated to be much younger 10 Myr) than similar star associations (Song, et al 2012). We have assembled infrared data for the objects thought to be members of UCL by mining various archives including the 2-Micron All-Sky Survey (2MASS), the Spitzer Heritage Archive (SHA), specifically the Spitzer Enhanced Imaging Products Source List, and the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog. We created spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) with multiple wavelengths to identify infrared excesses and determine what fraction of these stars have circumstellar disks. Students from three high schools collaborated on this project, which is a follow-up project made possible through the NASA/IPAC Teacher Archive Research Project (NITARP; http://nitarp.ipac.caltech.edu).

  5. GETTING TO GRIPS WITH THE UNKNOWN: HOW IMPORTANT ARE MAGNETIC FIELDS IN OUTFLOWS FROM YOUNG STARS?

    T. P. Ray

    2009-01-01

    Full Text Available Out ows are a ubiquitous part of the star formation process and may even be necessary if accretion is to occur onto a protostar or young brown dwarf. While an out ow can take several forms, it is most strikingly seen as a highly collimated supersonic jet that can stretch for several parsecs. Line emission from these jets can be used to derive practically all of their basic physical parameters, such as density, temperature, ionisation fraction, etc. In contrast, their magnetic elds have proven very difficult to measure. Here I review what direct and indirect observational evidence we have that magnetic elds play an important role not only in launching jets but in their subsequent collimation. In the near future, radio observations of any weak non-thermal emission, with instruments such as LOFAR and e-MERLIN, and polarisation studies of the dust component in jets, should help us make estimates of the strength and structure of their B elds.

  6. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations rp –170 kpc and velocity offsets –1 from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] λ5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger Hδ absorption and smaller 4000 Å break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for rp ∼–170 kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  7. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (η). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  8. Self-gravitating disc candidates around massive young stars

    Forgan, D H; Cyganowski, C J; Brogan, C L; Hunter, T R

    2016-01-01

    There have been several recent detections of candidate Keplerian discs around massive young protostars. Given the relatively large disc-to-star mass ratios in these systems, and their young ages, it is worth investigating their propensity to becoming self-gravitating. To this end, we compute self-consistent, semi-analytic models of putative self-gravitating discs for five candidate disc systems. Our aim is not to fit exactly the observations, but to demonstrate that the expected dust continuum emission from marginally unstable self-gravitating discs can be quite weak, due to high optical depth at the midplane even at millimetre wavelengths. In the best cases, the models produce "observable" disc masses within a factor of <1.5 of those observed, with midplane dust temperatures comparable to measured temperatures from molecular line emission. We find in two cases that a self-gravitating disc model compares well with observations. If these discs are self-gravitating, they satisfy the conditions for disc fragm...

  9. Star Formation Ecology: YSO Outflow Feedback in Young Clusters

    Frank, Adam; Bally, John; Blackman, Eric; Gutermuth, Robert; Pipher, Judy; Quillen, Alice

    2007-05-01

    Energetic outflows associated with young stellar objects exert a strong effect on their parent molecular clouds. The dynamics of this interaction is yet to be well understood. In particular the role of jets and outflows in powering cloud turbulence, modifying the star formation efficiency (SFE) and/or disrupting the parent clouds remains unclear. Spitzer images of young clusters have provided new views of jet-cloud interactions that can help resolve these critical issues. In this proposal we seek to continue a highly successful (cycle 2) theory program to explore theoretical issues of jet-cloud interactions, turbulence and cloud disruption. Our research relies on 3-D Adaptive Mesh Refinement hydrodynamic and MHD simulations developed in house, in concert with Spitzer databases and other complementary observations. The team we have assembled includes computational and analytic theorists (Frank, Blackman) as well as observers who have worked closely with existing Spitzer Datasets (Bally, Quillen, Pipher, Gutermuth) The work funded through the previous TR program revealed fundamentally new aspects of YSO outflow feedback on parent cloud cores including the importance of the temporal evolution of outflow power. In this proposal we seek to extend the understanding gained in those studies to address specific questions on the nature and efficacy of outflow feedback in real systems.

  10. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 107 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr–1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  11. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    Appleton, P. N.; Bitsakis, T.; Alatalo, K. [NASAHerschel Science Center, Infrared Processing and Analysis Center, Caltech, 770S Wilson Avenue, Pasadena, CA 91125 (United States); Mundell, C. [Astrophysics Research Institute, John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Lacy, M. [NRAO, Charlottesville, VA (United States); Armus, L. [Spitzer NASAHerschel Science Center, 1200 East California Boulevard, Caltech, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Duc, P.-A. [Service d' Astrophysique, Laboratoire AIM, CEA-Saclay, Orme des Merisiers, Bat 709, F-91191 Gif sur Yvette (France); Lisenfeld, U. [Dept. Fisica Teorica y del Cosmos, University of Granada, Edifica Mecenas, Granada (Spain); Ogle, P., E-mail: apple@ipac.caltech.edu [NASA Extragalactic Database, IPAC, Caltech, 1200 East California Boulevard, Caltech, Pasadena, CA 91125 (United States)

    2014-12-20

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10{sup 7} M {sub ☉} detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H{sub 2} is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M {sub ☉} yr{sup –1} averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation.

  12. AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS

    We report on an accounting of the star-formation- and accretion-driven energetics of 24 μm-detected sources in the Great Observatories Origins Deep Survey-North field. For sources having infrared (IR; 8-1000 μm) luminosities ∼>3 x 1012 Lsun when derived by fitting local spectral energy distributions (SEDs) to 24 μm photometry alone, we find these IR luminosity estimates to be a factor of ∼4 times larger than those estimated when the SED fitting includes additional 16 and 70 μm data (and in some cases mid-IR spectroscopy and 850 μm data). This discrepancy arises from the fact that high-luminosity sources at z >> 0 appear to have far- to mid-IR ratios, as well as aromatic feature equivalent widths, typical of lower luminosity galaxies in the local universe. Using our improved estimates for IR luminosity and active galactic nucleus (AGN) contributions, we investigate the evolution of the IR luminosity density versus redshift arising from star formation and AGN processes alone. We find that, within the uncertainties, the total star-formation-driven IR luminosity density is constant between 1.15 ∼ 2. AGNs appear to account for ∼11 Lsun ≤ LIR 12 Lsun) appear to dominate the star formation rate density along with normal star-forming galaxies (LIR 11 Lsun) between 0.6 ∼ 2, the contribution from ultraluminous infrared galaxies (LIR ≥ 1012 Lsun) becomes comparable with that of LIRGs. Using our improved IR luminosity estimates, we find existing calibrations for UV extinction corrections based on measurements of the UV spectral slope typically overcorrect UV luminosities by a factor of ∼2, on average, for our sample of 24 μm-selected sources; accordingly we have derived a new UV extinction correction more appropriate for our sample.

  13. Silicon and Nickel Enrichment in Planet-Host Stars: Observations and Implications for the Core-Accretion Theory of Planet Formation

    Robinson, Sarah E.; Laughlin, Gregory; Bodenheimer, Peter; Fischer, Debra

    2006-01-01

    We present evidence that stars with planets exhibit statistically significant silicon and nickel enrichment over the general metal-rich population. We also present simulations which predict silicon enhancement of planet hosts within the context of the core-accretion hypothesis for giant planet formation. Because silicon and oxygen are both alpha elements, [Si/Fe] traces [O/Fe], so the silicon enhancement in planet hosts predicts that these stars are oxygen-rich as well. We present new numeric...

  14. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using NuSTAR

    Miller, J M; Fuerst, F; Bachetti, M; Barret, D; Grefenstette, B W; Tendulkar, S; Harrison, F A; Boggs, S E; Chakrabarty, D; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Natalucci, L; Paerels, F; Rana, V; Stern, D K; Tomsick, J A; Zhang, W W

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5-sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically-blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z > 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z > 0.22 and R < 12.6 km (assuming M = 1.4 Msun and a=0, where a = cJ/GM^2). If the star ...

  15. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    Lanzuisi, G.; Perna, M.; Comastri, A.;

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z similar to 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad...

  16. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks

  17. Continuous frequency spectrum of the global hydromagnetic oscillations of a magnetically confined mountain on an accreting neutron star

    Vigelius, M

    2009-01-01

    We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies (1979), extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfv\\'{e}n part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum $\\omega_\\mathrm{low}$. For equilibria with accreted mass $1.2 \\times 10^{-6} \\la M_a/M_\\odot \\la 1.7 \\times 10^{-4}$ and surface magnetic fields $10^{11} \\la B_\\ast/\\mathrm{G} \\la 10^{13}$, $\\omega_\\mathrm{low}$ is approximately independent of $B_\\ast$, and increases with $M_a$. The results are consistent with the Alfv\\'{e}n spectrum excited in numerical simulations with the \\textsc{zeus-mp} solver. The spectrum is modified substantially by the Coriolis force in n...

  18. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Siwak, Michal; Ogloza, Waldemar; Rucinski, Slavek M.; Moffat, Anthony F. J.; Matthews, Jaymie M.; Cameron, Chris; Guenther, David B.; Kuschnig, Rainer; Rowe, Jason F.; Sasselov, Dimitar; Weiss, Werner W.

    2016-03-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilized: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the South African Astronomical Observatory in April-May of 2013, (3) archival V-filter All Sky Automated Survey (ASAS) data for nine seasons, 2001-2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 Ultraviolet Visual Echelle Spectrograph spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hotspots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19-7.58 d, which is in accord with ASAS observations showing a well-defined 7.247 ± 0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hotspots created near the stellar magnetic poles during the stable process of accretion. Re-analysis of RU Lup high-resolution spectra with the broadening function approach reveals signs of a large polar coldspot, which is fairly stable over 13 years. As the star rotates, the spot-induced depression of intensity in the broadening function profiles changes cyclically with period 3.710 58 d, which was previously found by the spectral cross-correlation method.

  19. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  20. Accretion Disk Model of Short-Timescale Intermittent Activity in Young Radio Sources

    Czerny, Bozena; Janiuk, Agnieszka; Nikiel-Wroczynski, Blazej; Stawarz, Lukasz

    2009-01-01

    We associate the existence of short-lived compact radio sources with the intermittent activity of the central engine caused by a radiation pressure instability within an accretion disk. Such objects may constitute a numerous sub-class of Giga-Hertz Peaked Spectrum sources, in accordance with the population studies of radio-loud active galaxies, as well as detailed investigations of their radio morphologies. We perform the model computations assuming the viscosity parametrization as proportional to a geometrical mean of the total and gas pressure. The implied timescales are consistent with the observed ages of the sources. The duration of an active phase for a moderate accretion rate is short enough (< 10^3-10^4 years) that the ejecta are confined within the host galaxy and thus these sources cannot evolve into large size radio galaxies unless they are close to the Eddington limit.

  1. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    Mapelli, Michela

    2014-01-01

    We have run 600 N-body simulations of intermediate-mass (~3500 Msun) young star clusters (SCs) with three different metallicities (Z=0.01, 0.1 and 1 Zsun). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 Msun are allowed to form through direct collapse of very massive metal-poor stars (Z20 per cent of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2 and NGC 5204 X-1 are powered by a MSBH.

  2. The SW Sex-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    Khruzina, T; Kjurkchieva, D; 10.1051/0004-6361/201220385

    2013-01-01

    We present new photometric and spectral observations of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188. To obtain a light curve solution we used model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. The high mass accr...

  3. Possible Evidence for Metal Accretion onto the Surfaces of Metal-Poor Main-Sequence Stars

    Hattori, Kohei; Beers, Timothy C; Carollo, Daniela; Lee, Young Sun

    2014-01-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parametrized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the ...

  4. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): Young, Low-mass Stars in the SW Bar of the SMC

    Johnson, Lent C.; Sandstrom, Karin; SMIDGE Team

    2016-06-01

    We identify young, pre-main sequence stars in the SW Bar region of the Small Magellanic Cloud (SMC) using color magnitude diagrams obtained by the Hubble Space Telescope as part of the SMIDGE survey. Deep, panchromatic, high spatial resolution Hubble imaging provides an excellent dataset for studying young, low-mass (~2-0.5 M⊙) stellar populations. The SW Bar region observed by SMIDGE contains multiple low mass star forming regions in various stages of evolution. These regions provide contrast to massive regions previously surveyed by Hubble in the SMC (e.g., NGC346, NGC602), and allow us to explore the evolution from quiescent clouds to HII regions. We analyze the spatial distribution of these young stars and their association with the local ISM, inferred from observations of molecular gas and dust emission. Additionally, we use Hα imaging to constrain accretion rates for the pre-MS stars. Finally, we analyze the characteristics and multiplicity of Spitzer YSO detections as revealed by high spatial resolution imaging.

  5. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  6. The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636-536

    Keek, L; Wolf, Z; Ballantyne, D R; Suleimanov, V F; Kuulkers, E; Strohmayer, T E

    2015-01-01

    Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the the slope of the temperature profile left behind by the carbon flame. We analyse RXTE/PCA observations of 4U 1636-536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 seconds is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superburs...

  7. A Low-Mass Main-Sequence Star and Accretion Disk in the Very Faint Transient M15 X-3

    Arnason, Robin; Heinke, Craig; Cohn, Haldan; Lugger, Phyllis

    2015-01-01

    We present near-simultaneous Chandra/HST observations of the very faint ($L_{x} < 10^{36}$ erg s$^{-1}$) X-ray transient source M15 X-3, as well as unpublished archival Chandra observations of M15 X-3. The Chandra observations constrain the luminosity of M15 X-3 to be $< 10^{34}$ erg s$^{-1}$ in all observed epochs. The X-ray spectrum shows evidence of curvature, and prefers a fit to a broken power-law with break energy $E_{\\rm break} = 2.7^{+0.4}_{-0.6}$ keV, and power law indices of $\\Gamma_{1} = 1.3^{+0.1}_{-0.2}$ and $\\Gamma_{2} = 1.9^{+0.2}_{-0.2}$ over a single power law. We fit our new F438W ($B$), F606W (broad $V$), and F814W ($I$) HST data on the blue optical counterpart with a model for an accretion disk and a metal-poor main sequence star. From this fit, we determine the companion to be consistent with a main sequence star of mass $0.440^{+0.035}_{-0.060}$ $M_{\\odot}$ in a $\\sim$4-hour orbit. X-ray irradiation of the companion is likely to be a factor in the optical emission from the system, ...

  8. NuSTAR and Suzaku observations of the hard state in Cygnus X-1: locating the inner accretion disk

    Parker, M L; Miller, J M; Yamaoka, K; Lohfink, A; Nowak, M; Fabian, A C; Alston, W N; Boggs, S E; Christensen, F E; Craig, W W; Fuerst, F; Gandhi, P; Grefenstette, B W; Grinberg, V; Hailey, C J; Harrison, F A; Kara, E; King, A L; Stern, D; Walton, D J; Wilms, J; Zhang, W W

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broad-band spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, and instead requires a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of Garcia et al. (2014) to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height, and rule out truncation to greater than three gravitational radii at the 3{\\sigma} confidence le...

  9. Detailed photometric analysis of young star groups in the galaxy NGC 300

    Jimena, Rodríguez María; Carlos, Feinstein

    2016-01-01

    The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The research was conducted using archival point spread function fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope. Using the path linkage criterion, we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color. A stati...

  10. H2O megamasers : Accretion disks, jet interaction, outflows or massive star formation?

    Henkel, C; Braatz, JA; Tarchi, A; Peck, AB; Nagar, NM; Greenhill, LJ; Hagiwara, Y

    2005-01-01

    The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclea

  11. A POPULATION OF ACCRETED SMALL MAGELLANIC CLOUD STARS IN THE LARGE MAGELLANIC CLOUD

    We present an analysis of the stellar kinematics of the Large Magellanic Cloud (LMC) based on ∼5900 new and existing velocities of massive red supergiants, oxygen-rich and carbon-rich asymptotic giant branch (AGB) stars, and other giants. After correcting the line-of-sight velocities for the LMC's space motion and accounting for asymmetric drift in the AGB population, we derive a rotation curve that is consistent with all of the tracers used, as well as that of published H I data. The amplitude of the rotation curve is v0 = 87 ± 5 km s-1 beyond a radius R0 = 2.4 ± 0.1 kpc and has a position angle of the kinematic line of nodes of θ = 142 deg. ± 5 deg. By examining the outliers from our fits, we identify a population of 376 stars, or ∼>5% of our sample, that have line-of-sight velocities that apparently oppose the sense of rotation of the LMC disk. We find that these kinematically distinct stars are either counter-rotating in a plane closely aligned with the LMC disk, or rotating in the same sense as the LMC disk, but in a plane that is inclined by 54 deg. ± 2 deg. to the LMC. Their kinematics clearly link them to two known H I arms, which have previously been interpreted as being pulled out from the LMC. We measure metallicities from the Ca triplet lines of ∼1000 LMC field stars and 30 stars in the kinematically distinct population. For the LMC field, we find a median [Fe/H] = -0.56 ± 0.02 with dispersion of 0.5 dex, while for the kinematically distinct stars the median [Fe/H] is -1.25 ± 0.13 with a dispersion of 0.7 dex. The metallicity differences provide strong evidence that the kinematically distinct population originated in the Small Magellanic Cloud. This interpretation has the consequence that the H I arms kinematically associated with the stars are likely falling into the LMC, instead of being pulled out.

  12. NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES

    It has been claimed that there is a large population of obscured, accreting black holes at high redshift and that the integrated black hole density at z = 6 as inferred from X-ray observations is ∼100 times greater than that inferred from optical quasars. I have performed a stacking analysis of very deep Chandra X-ray data at the positions of photometrically selected z = 6 galaxy candidates. It is found that there is no evidence for a stacked X-ray signal in either the soft (0.5-2 keV) or hard (2-8 keV) X-ray bands. Previous work which reported a significant signal is affected by an incorrect method of background subtraction which underestimates the true background within the target aperture. The puzzle remains as to why the z = 6 black hole mass function has such a flat slope and a low normalization compared to the stellar mass function.

  13. Nucleosynthesis inside accretion disks and outflows formed during core collapse of massive stars

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks and in the outflows launched from these disks mainly in the context of Type II collapsars. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper in the disk. We also confirm the presence of iron-group and alpha-elements in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk and survive in the outflows. While emission lines of several of these elements have been observed in the X-ray afterglows of GRBs by BeppoSAX, Chandra, XMM-Newton etc., Swift seems to have not found these lines yet.

  14. The effect of episodic accretion on the phase transition of CO and CO_2 in low-mass star formation

    Vorobyov, Eduard I.; Baraffe, Isabelle; Harries, Tim; Chabrier, Gilles

    2013-01-01

    We study the evaporation and condensation of CO and CO_2 during the embedded stages of low-mass star formation by using numerical simulations. We focus on the effect of luminosity bursts, similar in magnitude to FUors and EXors, on the gas-phase abundance of CO and CO_2 in the protostellar disk and infalling envelope. The evolution of a young protostar and its environment is followed based on hydrodynamical models using the thin-disk approximation, coupled with a stellar evolution code and ph...

  15. Evolution of Massive Protostars via Disk Accretion

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles ont...

  16. The 35-day cycle in Her X-1 as observational appearance of freely precessing neutron star and forcedly precessing accretion disk

    Ketsaris, N A; Postnov, K A; Prokhorov, M E; Shakura, N I; Staubert, R; Wilms, J

    2000-01-01

    A careful analysis of X-ray light curves and pulse profiles of Her X-1 obtained over more than 20 years strongly evidences for free precession of a magnetized neutron star with rotational axis inclined to the orbital plane as a central clock underlying the observed 35-day period. Strong asymmetric X-ray illumination of the optical star atmosphere leads to the formation of gaseous streams coming out of the orbital plane and forming a tilted accretion disk around the neutron star. Such a disk precesses due to tidal forces and dynamical action of gaseous streams from the secondary companion. The locking of these torques with neutron star precession makes the net disk precession period to be very close to that of the neutron star free precession.

  17. Young star clusters: Metallicity tracers in external galaxies

    Anders, P.; Alvensleben, U. Fritze--v.; de Grijs, R.

    2003-01-01

    Star cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. These newly-formed clusters are built from recycled gas, pre-enriched to various levels within the interacting galaxies. Hence, star clusters of different ages represent a fossil record of the chemical enrichment history of their host galaxy, as well as of the host galaxy's violent star formation history. We present a new set of evolutionary synthesis models of ou...

  18. Can the age discrepancies of neutron stars be circumvented by an accretion-assisted torque?

    Shi, Y

    2003-01-01

    It is found that 1E 1207.4-5209 could be a low-mass bare strange star if its smaller radius or low altitude cyclotron formation can be identified. The age problems of five sources could be solved by a fossil-disk-assisted torque. The magnetic dipole radiation dominates the evolution of PSR B1757-24 at present, and the others are in propeller (or tracking) phases.

  19. Gamma ray bursts and neutron star accretion of a solid body

    The sequence of events that would probably take place if a comet or asteroid were to make a direct impact with a neutron star is described. We have in mind an explanation of the 1979 March 5 gamma burst where a 0.1 s bursts of hard X-rays was followed by a protracted 8 s pulsation. We assume a local 100 pc origin, a cold magnetized neutron star, impacted by a comet or asteroid of 1018 g with finite strength (or binding energy) s10 in units of 1010 dynes cm-2. Then tidal breakup occurs at a radius approx.2 x 109s10/sup -1/3/ cm, and the subsequent flow is compressive and elongates the body. Impact with a neutron star without a magnetic field leads to a small efficiency (-3) of high temperature radiation because of rapid reconversion of thermal energy to kinetic energy by radiation-stress induced expansion. Only a strong magnetic field can restrain this expansion. Impact of the gravitationally distorted body on a dipole field leads to diamagnetic penetration to approx.50 R/sub ns/, R/sub ns/ the neutron star radius, where a weak shock compresses the body to rhoroughly-equal10rho0 (rho0 the original density) and heat it to a temperature approx.50 eV by the time it reaches Rroughly-equal27 R/sub ns/. The subsequent flow is adiabatic, with compression in magnetic longitude and expansion in magnetic latitude so that the body impacts the surface with a density approx.106 g cm-3, as a thin (several millimeters) diamagnetic slice in longitude, several kilometers wide in latitude, during a time of a millisecond. The neutron star surface interaction causes a local explosion and expansion of matter onto a fan of flux tubes. The restricted area, the fall back at the conjugate field points, and storage of matter at high L or flux surface radii result in a spectrum and flux that offers a reasonable explanation of the March 5 event

  20. Periodic light variations of young stars U X Orion and S U Auriga

    The light curves of young variable stars U X Orion and S U Auriga are created from archive data of Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan and other sources. It is established that periodic light variations of young stars U X Orion and S U Auriga occurs to duration of 36.4 and 29.8 years, accordingly. It is supposed that such periodic light variations are connected with existence a planetary system around these stars

  1. Discovery at Young Star Hints Magnetism Common to All Cosmic Jets

    2010-11-01

    Astronomers have found the first evidence of a magnetic field in a jet of material ejected from a young star, a discovery that points toward future breakthroughs in understanding the nature of all types of cosmic jets and of the role of magnetic fields in star formation. Throughout the Universe, jets of subatomic particles are ejected by three phenomena: the supermassive black holes at the cores of galaxies, smaller black holes or neutron stars consuming material from companion stars, and young stars still in the process of gathering mass from their surroundings. Previously, magnetic fields were detected in the jets of the first two, but until now, magnetic fields had not been confirmed in the jets from young stars. "Our discovery gives a strong hint that all three types of jets originate through a common process," said Carlos Carrasco-Gonzalez, of the Astrophysical Institute of Andalucia Spanish National Research Council (IAA-CSIC) and the National Autonomous University of Mexico (UNAM). The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to study a young star some 5,500 light-years from Earth, called IRAS 18162-2048. This star, possibly as massive as 10 Suns, is ejecting a jet 17 light-years long. Observing this object for 12 hours with the VLA, the scientists found that radio waves from the jet have a characteristic indicating they arose when fast-moving electrons interacted with magnetic fields. This characteristic, called polarization, gives a preferential alignment to the electric and magnetic fields of the radio waves. "We see for the first time that a jet from a young star shares this common characteristic with the other types of cosmic jets," said Luis Rodriguez, of UNAM. The discovery, the astronomers say, may allow them to gain an improved understanding of the physics of the jets as well as of the role magnetic fields play in forming new stars. The jets from young stars, unlike the other types, emit radiation

  2. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux ...

  3. Life and Death of Young Dense Star Clusters near the Galactic Center

    Zwart, S P; Baumgardt, H

    2004-01-01

    We discuss the structural change and degree of mass segregation of young dense star clusters within about 100pc of the Galactic center. In our calculations, which are performed with GRAPE-6, the equations of motion of all stars and binaries are calculated accurately but the external potential of the Galaxy is solved (semi)analytically. The simulations are preformed to model the Arches star cluster. We find that star clusters with are less strongly perturbed by the tidal field and dynamical friction are much stronger affected by mass segregation; resulting in a significant pile-up of massive stars in the cluster center. At an age of about 3.5Myr more than 90 per cent of the stars more massive than ~10Msun are concentrated within the half-mass radius of the surviving cluster. Star clusters which are strongly perturbed by the tidal field of the parent Galaxy are much less affected by mass segregation.

  4. The Phase Space of z=1.2 Clusters: Probing Dust Temperature and Star Formation Rate as a Function of Environment and Accretion History

    Noble, Allison; SpARCS Collaboration

    2016-01-01

    Understanding the influence of environment is a fundamental goal in studies of galaxy formation and evolution, and galaxy clusters offer ideal laboratories with which to examine environmental effects on their constituent members. Clusters continually evolve and build up mass through the accumulation of galaxies and groups, resulting in distinct galaxy populations based on their accretion history. In Noble et al. 2013, we presented a novel definition for environment using the phase space of line-of-sight velocity and clustercentric radius, which probes the time-averaged density to which a galaxy has been exposed and traces out accretion histories. Using this dynamical definition of environment reveals a decline in specific star formation towards the cluster core in the earliest accreted galaxies, and was further shown to isolate post-starburst galaxies within clusters (Muzzin et al. 2014). We have now extended this work to higher-redshift clusters at z=1.2 using deep Herschel-PACS and -SPIRE data. With a sample of 120 spectroscopically-confirmed cluster members, we investigate various galaxy properties as a function of phase-space environment. Specifically, we use 5-band Herschel photometry to estimate the dust temperature and star formation rate for dynamically distinct galaxy populations, namely recent infalls and those that were accreted into the cluster at an earlier epoch (Noble et al. submitted). These properties are then compared to a field sample of star-forming galaxies at 1.1 results, focusing on how this accretion-based definition aids our understanding of quenching mechanisms within z=1.2 galaxies.

  5. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    Miller, J. M.; King, A. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tomsick, J. A.; Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bachetti, M. [Universite de Toulouse, UPS-OMP, IRAP, F-31100 Toulouse (France); Wilkins, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS. B3H 3C3 (Canada); Christensen, F. E. [Danish Technical University, DK-2800, Lyngby (Denmark); Craig, W. W. [Lawrence Livermore National Laboratory, Livermore CA (United States); Fabian, A. C.; Kara, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Grefenstette, B. W.; Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, C. J. [Columbia University, New York, NY 10027 (United States); Stern, D. K [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  6. X-ray Properties of Young Stars and Stellar Clusters

    Feigelson, Eric; Townsley, Leisa; Gudel, Manuel; Stassun, Keivan

    2006-01-01

    Although the environments of star and planet formation are thermodynamically cold, substantial X-ray emission from 10-100 MK plasmas is present. In low mass pre-main sequence stars, X-rays are produced by violent magnetic reconnection flares. In high mass O stars, they are produced by wind shocks on both stellar and parsec scales. The recent Chandra Orion Ultradeep Project, XMM-Newton Extended Survey of Taurus, and Chandra studies of more distant high-mass star forming regions reveal a wealth...

  7. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio

    2016-03-01

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain

  8. Evidence of Planetesimal infall on to the very young Herbig Be star LkH$_\\alpha$234

    Chakraborty, A; Mahadevan, S

    2004-01-01

    We report here the first evidence for planetesimal infall onto the very young Herbig Be star LkH$_\\alpha$234. These results are based on observations acquired over 31 days using spectroscopy of the sodium D lines, the He I 5876\\AA, and hydrogen H$_\\alpha$ lines. We find Redshifted Absorption Components (RAC) with velocities up to 200 km/s and very mild Blueshifted Absorption Components (BEC) up to 100 km/s in the Na I lines. No correlation is observed between the appearance of the Na I RAC & BEC and the H$_\\alpha$ and He I line variability, which suggests that these (Na I RAC & BEC) are formed in a process unrelated to the circumstellar gas accretion. We interpret the Na I RAC as evidence for an infalling evaporating body, greater than 100 km in diameter, which is able to survive at distances between 2.0 to 0.1 AU from the star. The dramatic appearance of the sodium RAC and mild BEC is readily explained by the dynamics of this infalling body making LkH$_\\alpha$234 the youngest (age $\\sim$ 0.1 Myr) sys...

  9. Evolution of X-ray emission from young massive star clusters

    Oskinova, L. M.

    2005-01-01

    The evolution of X-ray emission from young massive star clusters is modeled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modern X-ray observations of massive stars we show that the correlation between bolometric and X-ray luminosity known for single O stars also holds for O+O and O+Wo...

  10. The complex accretion geometry of GX 339-4 as seen by NuSTAR and Swift

    Fuerst, F; Tomsick, J A; Miller, J M; Corbel, S; Bachetti, M; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Gandhi, P; Grinberg, V; Hailey, C J; Harrison, F A; Kara, E; Kennea, J A; Madsen, K K; Pottschmidt, K; Stern, D; Walton, D J; Wilms, J; Zhang, W W

    2015-01-01

    We present spectral analysis of five NuSTAR and Swift observations of GX 339-4 taken during a failed outburst in summer 2013. These observations cover Eddington luminosity fractions in the range ~0.9-6%. Throughout this outburst, GX 339-4 stayed in the hard state, and all five observations show similar X-ray spectra with a hard power-law with a photon index near 1.6 and significant contribution from reflection. Using simple reflection models we find unrealistically high iron abundances. Allowing for different photon indices for the continuum incident on the reflector relative to the underlying observed continuum results in a statistically better fit and reduced iron abundances. With a photon index around 1.3, the input power-law on the reflector is significantly harder than that which is directly observed. We study the influence of different emissivity profiles and geometries and consistently find an improvement when using separate photon indices. The inferred inner accretion disk radius is strongly model dep...

  11. Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

    Pintore, F; di Salvo, T; Guainazzi, M; D'Aì, A; Riggio, A; Burderi, L; Iaria, R; Robba, N R

    2014-01-01

    When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints...

  12. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  13. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  14. Interpretation of the Veiling of the Photospheric Spectrum for T Tauri Stars in Terms of an Accretion Model

    Dodin, A V

    2012-01-01

    The problem on heating the atmospheres of T Tauri stars by radiation from an accretion shock has been solved. The structure and radiation spectrum of the emerging so-called hot spot have been calculated in the LTE approximation. The emission not only in continuum but also in lines has been taken into account for the first time when calculating the spot spectrum. Comparison with observations has shown that the strongest of these lines manifest themselves as narrow components of helium and metal emission lines, while the weaker ones decrease significantly the depth of photospheric absorption lines, although until now, this effect has been thought to be due to the emission continuum alone. The veiling by lines changes the depth of different photospheric lines to a very different degree even within a narrow spectral range. Therefore, the nonmonotonic wavelength dependence of the degree of veiling r found for some CTTS does not suggest a nontrivial spectral energy distribution of the veiling continuum. In general,...

  15. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Siwak, Michal; Rucinski, Slavek M; Moffat, Anthony F J; Matthews, Jaymie M; Cameron, Chris; Guenther, David B; Kuschnig, Rainer; Rowe, Jason F; Sasselov, Dimitar; Weiss, Werner W

    2015-01-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April - May of 2013, (3) archival V-filter ASAS data for nine seasons, 2001 - 2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 UVES spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hot spots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19 - 7.58 d, which is in accord with ASAS observations showing a well defined 7.247+/-0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hot spots created near the ste...

  16. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  17. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    Walton, D. J.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Risaliti, G. [INAF-Osservatoria Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Fabian, A. C.; Kara, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Arevalo, P. [Pontificia Universidad Católica de Chile, Instituto de Astrfísica, Casilla 306, Santiago 22 (Chile); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brenneman, L. W.; Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Luo, B. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-06-10

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  18. A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries

    Bhattacharyya, Sudip

    2002-02-01

    We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.

  19. Connecting the Dense Gas and Young Stars in the CARMA Large Area Star Formation Survey

    Mundy, Lee G.; Storm, Shaye; Looney, Leslie; Lee, Katherine I.; Fernandez Lopez, Manuel; Ostriker, Eve C.; Chen, Che-Yu; CLASSy Team

    2016-01-01

    The CARMA Large Area Star Formation Survey (CLASSy) imaged the dense gas structure and kinematics in five, roughly 1 pc scale regions in the Serpens and Perseus clouds with 7" angular resolution. The spatial distribution and Class of the young stellar population (YSOs) is available for these regions from the Spitzer c2d and Gould Belt surveys, with added sources from the Herschel 70 micron images. Together, these datasets allow us to compare, for the first time at similar spatial resolutions, the distributions of the dense gas and YSOs over regions containing up to 90 identified YSOs. This enables a detailed look at the separation between YSOs and the nearest dense gas peak and a measure of overall relationship between the YSO and dense gas distributions. We find that most Class 0 YSOs are forming in the highest column density regions: leaves in the dendrogram analysis utilized by CLASSy. In Serpens and Perseus, we find that 29% and 38%, respectively, of the leaves have identified embedded YSOs. Class 1 sources are less confined to leaf locations; Class II sources are distributed throughout regions, mostly away from hierarchical peaks. This trend could be due to a modest (0.1 km/sec) velocity difference between YSOs and their natal cores, or due to the YSOs consuming or dispersing their natal cores.

  20. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, Andrew; Macbeth, Jared

    2004-03-01

    Superbursts are very energetic type I X-ray bursts discovered in recent years by long-term monitoring of X-ray bursters and are believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting light curves agree very well with observations for layer masses in the range 1025-1026 g expected from ignition calculations and for an energy release >~1017 ergs g-1 during the flash. We show that at late times the cooling flux from the layer decays as a power law F~t-4/3, giving timescales for quenching of normal type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modeling of superburst light curves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  1. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Cumming, A; Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux from the layer decays as a power law in time, giving timescales for quenching of normal Type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modelling of superburst lightcurves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  2. Analysis of MOST light curves of five young stars in Taurus-Auriga and Lupus~3 Star Forming Regions

    Siwak, Michal; Matthews, Jaymie M; Kuschnig, Rainer; Guenther, David B; Moffat, Anthony F J; Sasselov, Dimitar; Weiss, Werner W

    2011-01-01

    Continuous photometric observations of five young stars obtained by the MOST satellite in 2009 and 2010 in the Taurus and Lupus star formation regions are presented. Using light curve modelling under the assumption of internal invariability of spots, we obtained small values of the solar-type differential-rotation parameter (k=0.0005-0.009) for three spotted weak-line T Tau stars, V410 Tau, V987 Tau and Lupus 3-14; for another spotted WTTS, Lupus 3-48, the data are consistent with a rigidly rotating surface (k=0). Three flares of similar rise (4 min 30 sec) and decay (1 h 45 min) times were detected in the light curve of Lupus 3-14. The brightness of the classical T Tau star RY Tau continuously decreased over 3 weeks of its observations with a variable modulation not showing any obvious periodic signal.

  3. Accurate determination of accretion and photospheric parameters in Young Stellar Objects: the case of two candidate old disks in the Orion Nebula Cluster

    Manara, C F; Da Rio, N; De Marchi, G; Natta, A; Ricci, L; Robberto, M; Testi, L

    2013-01-01

    Current planet formation models are largely based on the observational constraint that protoplanetary disks have lifetime 3Myr. Recent studies, however, report the existence of PMS stars with signatures of accretion (strictly connected with the presence of circumstellar disks)and photometrically determined ages of 30 Myr, or more. Here we present a spectroscopic study of two major age outliers in the ONC. We use broad band, intermediate resolution VLT/X-Shooter spectra combined with an accurate method to determine the stellar parameters and the related age of the targets to confirm their peculiar age estimates and the presence of ongoing accretion.The analysis is based on a multi-component fitting technique, which derives simultaneously SpT, extinction, and accretion properties of the objects. With this method we confirm and quantify the ongoing accretion. From the photospheric parameters of the stars we derive their position on the HRD, and the age given by evolutionary models. Together with other age indica...

  4. STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS

    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of ∼90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (≤ 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

  5. The Rotation of Young Low-Mass Stars and Brown Dwarfs

    Herbst, W; Mundt, R; Scholz, A

    2006-01-01

    We review the current state of our knowledge concerning the rotation and angular momentum evolution of young stellar objects and brown dwarfs from a primarily observational view point. Periods are typically accurate to 1% and available for about 1700 stars and 30 brown dwarfs in young clusters. Discussion of angular momentum evolution also requires knowledge of stellar radii, which are poorly known for pre-main sequence stars. It is clear that rotation rates at a given age depend strongly on mass; higher mass stars (0.4-1.2 M$_\\odot$) have longer periods than lower mass stars and brown dwarfs. On the other hand, specific angular momentum is approximately independent of mass for low mass pre-main sequence stars and young brown dwarfs. A spread of about a factor of 30 is seen at any given mass and age. The evolution of rotation of solar-like stars during the first 100 Myr is discussed. A broad, bimodal distribution exists at the earliest observable phases ($\\sim$1 Myr) for stars more massive than 0.4 M$_\\odot$....

  6. Escape, Accretion or Star Formation? The Competing Depleters of Gas in Markarian 231

    Alatalo, Katherine

    2015-01-01

    We report on high resolution CO(1-0), CS(2-1) and 3mm continuum Combined Array for Research in Millimeter Astronomy (CARMA) observations of the molecular outflow host and nearest quasar Markarian 231. We use the CS(2-1) measurements to derive a dense gas mass within Mrk 231 of $1.8\\pm0.3\\times10^{10}$ $M_\\odot$, quite consistent with previous measurements. The CS(2-1) data also seem to indicate that the molecular disk of Mrk 231 is forming stars at normal efficiency. The high resolution CARMA observations were able to resolve the CO(1-0) outflow into two distinct lobes, allowing for a size estimate to be made and further constraining the molecular outflow dynamical time, further constraining the molecular gas escape rate. We find that 15% of the molecular gas within the Mrk 231 outflow actually exceeds the escape velocity in the central kiloparsec. Assuming that molecular gas is not constantly being accelerated, we find the depletion timescale of molecular gas in Mrk 231 to be 49 Myr, rather than 32 Myr, more...

  7. Star Formation and Young Stellar Content in the W3 Giant Molecular Cloud

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-01

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the "Class" scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  8. What Sets the Initial Rotation Rates of Massive Stars?

    Rosen, Anna L.; Krumholz, Mark R; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that ...

  9. Buoyancy and g-modes in young superfluid neutron stars

    Passamonti, A; Ho, W C G

    2015-01-01

    We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support fo...

  10. The Mass-Radius Relation of Young Stars from K2

    Kraus, Adam L.; Cody, Ann Marie; Covey, Kevin R.; Rizzuto, Aaron C.; Mann, Andrew; Ireland, Michael; Jensen, Eric L. N.; Muirhead, Philip Steven

    2016-01-01

    Evolutionary models of pre-main sequence stars remain largely uncalibrated, especially for masses below that of the Sun, and dynamical masses and radii pose valuable tests of these theoretical models. Stellar mass dependent features of star formation (such as disk evolution, planet formation, and even the IMF) are fundamentally tied to these models, which implies a systematic uncertainty that can only be improved with precise measurements of calibrator stars. We will describe the discovery and characterization of ten eclipsing binary systems in the Upper Scorpius star-forming region from K2 Campaign 2 data, spanning from B stars to the substellar boundary. We have obtained complementary RV curves, spectral classifications, and high-resolution imaging for these targets; the combination of these data yield high-precision masses and radii for the binary components, and hence a dense sampling of the (nominally coeval) mass-radius relation of 10 Myr old stars. We already reported initial results from this program for the young M4.5 eclipsing binary UScoCTIO 5 (Kraus et al. 2015), demonstrating that theoretically predicted masses are discrepant by ~50% for low-mass stars. K2's unique radius measurements allow us to isolate the source of the discrepancy: models of young stars do not predict luminosities that are too low, as is commonly thought, but rather temperatures that are too warm.

  11. High Energy Matters: Radiation and Plasma in the Environment of Young Stars

    Although stars are born in cold, dark clouds of molecular gas and dust, they are surrounded by high-energy radiation and particles almost from the beginning. Million-degree plasma pervades entire star-forming regions, and more locally, the stars themselves heat part of their immediate environment to extremely high temperatures. So far, we know of at least three responsible heating mechanisms: magnetic energy dissipation, accretion processes, and stellar outflows, although many details remain poorly understood. The resulting X-ray radiation has profound influence on the cooler stellar environment: it ionizes and heats gaseous envelopes and protoplanetary disks, thus driving chemical networks, disk instabilities, and disk evaporation, and therefore ultimately planet formation and the conditions for future habitability of planetary environments. (author)

  12. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  13. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    Stauffer, John; Rebull, Luisa; Hillenbrand, Lynne A; Turner, Neal J; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderon, Maria; Alencar, Silvia H P; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Gillen, Edward; Guimaraes, Marcelo Medeiros; Bouy, Herve; Favata, Fabio

    2016-01-01

    We provide CoRoT and Spitzer light curves, as well as broad-band multi-wavelength photometry and high resolution, multi- and single-epoch spectroscopy for 17 classical T Tauris in NGC 2264 whose CoRoT light curves (LCs) exemplify the "stochastic" LC class as defined in Cody et al. (2014). The most probable physical mechanism to explain the optical variability in this LC class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. As evidence in favor of this hypothesis, multi-epoch high resolution spectra for a subset of these stars shows that their veiling levels also vary in time and that this veiling variability is consistent in both amplitude and timescale with the optical LC morphology. Furthermore, the veiling variability is well-correlated with the strength of the HeI 6678A emission line, a feature predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst LC morphology (Stauffer et al. 2014) are also attributed...

  14. On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields

    Alpar, M A

    2000-01-01

    The similarity of rotation periods of, the anomalous X-ray pulsars (AXPs), the soft gamma ray repeaters (SGRs) and the dim thermal neutron stars (DTNs) suggests a common mechanism with an asymptotic spindown phase through the propeller and early accretion stages. The DTNs are in the propeller stage. Their luminosities arise from frictional heating in the neutron star. If the 8.4 s rotation period of the DTN RXJ 0720.4-3125 is close to its rotational equilibrium period, the propeller torque indicates a magnetic field in the 10$^{12}$ Gauss range. The mass inflow rate onto the propeller is of the order of the AXP accretion rates. The limited range of rotation periods, taken to be close to equilibrium periods, and magnetic fields in the range 5 E11- 5 E12 Gauss correspond to mass inflow rates 3.2 E14 gm/s < \\dot{M} < 4.2 E17 gm/s. Observed spindown rates of the AXPs and SGRs also fit in with these fields rather than magnetar fields periods. The source of the mass inflow is a remnant accretion disk formed a...

  15. Cannibals in the thick disk: the young $\\alpha-$rich stars as evolved blue stragglers

    Jofre, P; Izzard, R G; Van Eck, S; Hawkins, K; Jorissen, A; Gilmore, G; Paladini, C

    2016-01-01

    Spectro-seismic measurements of red giant stars enabled the recent discovery of giant stars in the thick disk that are more massive than 1.4 M_sun (Martig et al 2015, Chiappini et al 2015). While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 of the "young" stars of Martig et al (2015) and 13 "old" stars with similar stellar parameters but with masses below 1 M_sun and found that some stars are in binary systems, contrary to what has been claimed before. Furthermore, with a population synthesis of only low-mass stars but including binary evolution and mass transfer, we can reproduce the masses and the [C/N] ratios of the 26 stars. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study th...

  16. GEMINI near-infrared spectroscopic observations of young massive stars embedded in molecular clouds

    Roman-Lopes, A.; Abraham, Z.; R Ortiz; Rodrigues-Ardila, A.

    2008-01-01

    K-band spectra of young stellar candidates in four southern hemisphere clusters have been obtained with the near-infrared spectrograph GNIRS in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact HII regions. Spectral types were obtained by comparison of the observed spectra with those of a NIR library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of...

  17. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    We have run 600 N-body simulations of intermediate-mass (∼3500 M ☉) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z ☉). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M ☉ are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z ☉). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z ☉), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  18. Young stars in an old bulge: a natural outcome of internal evolution in the Milky Way

    Ness, M; Bensby, T; Feltzing, S; Roskar, R; Cole, D R; Johnson, J A; Freeman, K

    2014-01-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this letter we demonstrate that the presence of young stars that are located predominantly near the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+SPH simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of young metal-rich stars in the bulge. W...

  19. Potential Drivers of Mid-Infrared Variability in Young Stars: testing physical models with multi-epoch near-infrared spectra of YSOs in {\\rho} Oph

    Faesi, Christopher M; Gutermuth, Robert; Morales-Calderón, Maria; Stauffer, John; Plavchan, Peter; Rebull, Luisa; Song, Inseok; Lloyd, James P

    2012-01-01

    Recent studies have identified several young stellar objects (YSOs) which exhibit significant mid-infrared (mid-IR) variability. A wide range of physical mechanisms may be responsible for these variations, including changes in a YSO's accretion rate or in the extinction or emission from the inner disk. We have obtained and analyzed multi-epoch near-infrared (NIR) spectra for five actively accreting YSOs in the $\\rho$ Oph star-forming region along with contemporaneous mid-IR light curves obtained as part of the YSOVAR Spitzer/IRAC survey. Four of the five YSOs exhibit mid-IR light curves with modest ($\\sim 0.2$--0.4 mag) but statistically significant variations over our 40-day observation window. Measuring the strengths of prominent photospheric absorption lines and accretion sensitive \\ion{H}{1} and \\ion{He}{1} lines in each NIR spectrum, we derive estimates of each YSO's spectral type, effective temperature ({\\Teff}), and $H$ band extinction ($A_H$), and analyze the time evolution of their NIR veiling ($r_H$...

  20. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    Oh, Seungkyung

    2016-01-01

    We study the effects of initial conditions of star clusters and their massive star population on dynamical ejections of stars from star clusters up to an age of 3 Myr, particularly focusing on massive systems, using a large set of direct N-body calculations for moderately massive star clusters (Mecl=$10^{3.5}$ Msun). We vary the initial conditions of the calculations such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars remai...

  1. Buoyancy and g-modes in young superfluid neutron stars

    Passamonti, A.; Andersson, N.; Ho, W. C. G.

    2016-01-01

    We consider the local dynamics of a realistic neutron-star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron-star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support for g-modes at lower densities (where there are no muons) is entirely thermal. We confirm the recent suggestion that the g-modes in this region may be unstable, but our results indicate that this instability will be weak and would only be present for a brief period of the star's life. Our analysis accounts for the presence of thermal excitations encoded in entrainment between the entropy and the superfluid component. Finally, we discuss the complete spectrum, including the normal sound waves and, in superfluid regions, the second sound.

  2. Young star clusters in the circumnuclear region of NGC 2110

    Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (He I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.

  3. Completing the census of young stars near the Sun with the FunnelWeb spectroscopic survey

    Lawson, Warrick; Murphy, Simon; Tinney, Christopher G.; Ireland, Michael; Bessell, Michael S.

    2016-06-01

    From late 2016, the Australian FunnelWeb survey will obtain medium-resolution (R~2000) spectra covering the full optical range for 2 million of the brightest stars (Ienvironments of young solar-type stars, how such stars move from their stellar nurseries to their adult lives in the field, and identifying thousands of high-priority targets for follow-up direct imaging (GPI, SPHERE), transit (including TESS) and radial velocity exoplanet studies. In this poster contribution we introduce the FunnelWeb survey, its science goals and input catalogue, as well as provide an update on the status of the fibre positioner and spectrograph commissioning at Siding Spring.

  4. Physical processes in circumstellar disks around young stars

    2011-01-01

    Circumstellar disks are vast expanses of dust that form around new stars in the earliest stages of their birth. Predicted by astronomers as early as the eighteenth century, they weren't observed until the late twentieth century, when interstellar imaging technology enabled us to see nascent stars hundreds of light years away. Since then, circumstellar disks have become an area of intense study among astrophysicists, largely because they are thought to be the forerunners of planetary systems like our own-the possible birthplaces of planets.            This volume brings

  5. Panchromatic Hubble Andromeda Treasury XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-01-01

    We use the Panchromatic Hubble Andromeda Treasury (PHAT) survey dataset to perform spatially resolved measurements of star cluster formation efficiency ($\\Gamma$), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda's cluster and field populations over the last $\\sim$300 Myr. We measure $\\Gamma$ of 4-8% for y...

  6. New Models for Wolf-Rayet and O Star Populations in Young Starbursts

    Schärer, D; Schaerer, Daniel; Vacca, William D.

    1997-01-01

    Using the latest stellar evolution models, theoretical stellar spectra, and a compilation of observed emission line strengths from Wolf-Rayet (WR) stars, we construct evolutionary synthesis models for young starbursts. We explicitly distinguish between the various WR subtypes (WN, WC, WO), and we treat O and Of stars separately. We provide detailed predictions of UV and optical emission line strengths for both the WR stellar lines and the major nebular hydrogen and helium emission lines, as a function of several input parameters related to the starburst episode. We also derive the theoretical frequency of WR-rich starbursts. We then discuss: nebular HeII 4686 emission, the contribution of WR stars to broad Balmer line emission, techniques used to derive the WR and O star content from integrated spectra, and explore the implications of the formation of WR stars through mass transfer in close binary systems in instantaneous bursts. The observational features predicted by our models allow a detailed quantitative...

  7. Magnetic fields on young, moderately rotating Sun-like stars - I: HD~35296 and HD~29615

    Waite, Ian; Carter, Bradley; Petit, Pascal; Donati, Jean-Francois; Jeffers, Sandra; Saikia, Sudeshna Boro

    2015-01-01

    Observations of the magnetic fields of young solar-type stars provide a way to investigate the signatures of their magnetic activity and dynamos. Spectropolarimetry enables the study of these stellar magnetic fields and was thus employed at the T\\'{e}lescope Bernard Lyot and the Anglo-Australian Telescope to investigate two moderately rotating young Sun-like stars, namely HD 35296 (V119 Tau, HIP 25278) and HD 29615 (HIP 21632). The results indicate that both stars display rotational variation in chromospheric indices consistent with their spot activity, with variations indicating a probable long-term cyclic period for HD 35296. Additionally, both stars have complex, and evolving, large-scale surface magnetic fields with a significant toroidal component. High levels of surface differential rotation were measured for both stars. For the F8V star HD 35296 a rotational shear of $\\Delta\\Omega$ = 0.22$^{+0.04}_{-0.02}$ rad/d was derived from the observed magnetic profiles. For the G3V star HD 29615 the magnetic fea...

  8. Infrared Observational Manifestations of Young Dusty Super Star Clusters

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.

  9. Infrared Observational Manifestations of Young Dusty Super Star Clusters

    Martinez-Gonzalez, Sergio; Silich, Sergiy

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed into a hot plasma. Here we address the stochastic injection of dust by supernovae and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which results on the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions which are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind and a time-dependent grain size distribution.

  10. The structure of protoplanetary discs around evolving young stars

    Bitsch, Bertram; Lambrechts, Michiel; Morbidelli, Alessandro

    2014-01-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time-scales of several millions of years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height and density. The commonly used disc structure of the Minimum Mass Solar Nebular (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, as they can act as sweet spots for the formation of planetesimals via the streaming instability and affect the direction...

  11. Young open clusters in the galactic star forming region NGC 6357

    Massi, Fabrizio; di Carlo, Elisa; Brand, Jan; Beltrán, Maria Teresa; Marconi, Gianni

    2014-01-01

    NGC6357 is an active star forming region with very young massive open clusters (OC). These clusters contain some of the most massive stars in the Galaxy and strongly interact with nearby giant molecular clouds (GMC). We study the young stellar populations of the region and of the OC Pismis24, focusing on their relationship with the nearby GMCs. We seek evidence of triggered star formation propagating from the clusters. We used new deep JHKs photometry, along with unpublished deep IRAC/Spitzer MIR photometry, complemented with optical HST/WFPC2 high spatial resolution photometry and X-ray Chandra observations, to constrain age, initial mass function, and star formation modes in progress. We carefully examine and discuss all sources of bias (saturation, confusion, different sensitivities, extinction). NGC6357 hosts three large young stellar clusters, of which Pismis24 is the most prominent. We found that Pismis24 is a very young (~1-3 Myr) OC with a Salpeter-like IMF and a few thousand members. A comparison bet...

  12. Star formation in dense clusters

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dyna...

  13. RELATIONSHIP BETWEEN STAR FORMATION RATE AND BLACK HOLE ACCRETION AT z = 2: THE DIFFERENT CONTRIBUTIONS IN QUIESCENT, NORMAL, AND STARBURST GALAXIES

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, LX) and stellar mass (M*) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M∗0.43±0.09, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of LX/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively

  14. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  15. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    Rodighiero, G.; Franceschini, A.; Baronchelli, I. [Dipartimento di Fisica e Astronomia “G. Galilei”, Universita’ di Padova, Vicolo dell’Osservatorio 3, I-35122 (Italy); Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Daddi, E.; Strazzullo, V. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, Bât.709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Negrello, M.; Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 2, I-35122 Padova (Italy); Mullaney, J. R. [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom); Lutz, D. [Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Gruppioni, C. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127, Bologna (Italy); Silverman, J., E-mail: giulia.rodighiero@unipd.it [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan)

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, L{sub X}) and stellar mass (M{sub *}) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M{sub ∗}{sup 0.43±0.09}, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of L{sub X}/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  16. A NEW SUB-STELLAR COMPANION AROUND THE YOUNG STAR HD 284149

    Even though only a handful of sub-stellar companions have been found via direct imaging, each of these discoveries has had a tremendous impact on our understanding of the star formation process and the physics of cool atmospheres. Young stars are prime targets for direct imaging searches for planets and brown dwarfs due to the favorable brightness contrast expected at such ages and also because it is often possible to derive relatively good age estimates for these primaries. Here we present the direct imaging discovery of HD 284149 b, a 18-50 M Jup companion at a projected separation of 400 AU from a young (2510+25 Myr) F8 star, with which it shares common proper motion

  17. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: β PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the β Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the β Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  18. Buoyancy and g-modes in young superfluid neutron stars

    Passamonti, A.; Andersson, N.; Ho, W.C.G.

    2015-01-01

    We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a num...

  19. Infrared Spectroscopic Studies of Water and Organics in Protoplanetary Disks around Young Stars

    Sargent, Benjamin; Forrest, William; Watson, Dan M.; Calvet, Nuria; Furlan, Elise; Kim, Kyoung-Hee; Green, Joel; Pontoppidan, Klaus Martin; Tayrien, Cyprian

    2015-08-01

    The building blocks of planets in planet-forming ("protoplanetary") disks are assembled early in the lifetime of a young star. The gas disks are relatively short-lived, with a half-life of about 3 million years, as chemical reactions modify the reservoir of material from the natal molecular cloud. 5 - 7.5 μm wavelength Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of about a dozen T Tauri stars in the Taurus-Auriga star-forming region showing emission from water vapor and absorption from other gases in these stars' protoplanetary disks will be presented. Some of these stars' spectra show a strong emission manifold at 6.6 μm due to the nu2 = 1 - 0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K. Other stars' spectra show a strong absorption band, peaking in strength at 5.6 - 5.7 μm, which appears consistent in some cases with gaseous formaldehyde (H2CO) and in other cases with formic acid (HCOOH). Modeling of these stars' spectra suggests these gases are present in the inner few AU -- i.e., in the planet-forming regions -- of their disks. How the gaseous features observed between 5 - 7.5 μm relate to those at other wavelengths will be discussed. Future directions for this research, including both pursuing confirmation of HCOOH and H2CO features at these and other wavelengths and modeling of the gas features at these wavelengths in other Spitzer-IRS spectra of protoplanetary disks around young stars, will also be discussed. This work suggests that water and organic molecules, which are crucial for life as we know it, are present in the habitable zones of stars at a very early age [of 1-3 million years].

  20. The Gaia-ESO Survey: pre-main-sequence stars in the young open cluster NGC 3293

    Delgado, A. J.; Sampedro, L.; Alfaro, E. J.; Costado, M. T.; Yun, J. L.; Frasca, A.; Lanzafame, A. C.; Drew, J. E.; Eislöffel, J.; Blomme, R.; Morel, T.; Lobel, A.; Semaan, T.; Randich, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Kalari, V.; Gilmore, G.; Flaccomio, E.; Carraro, G.; Lardo, C.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Morbidelli, L.; Lewis, J.; Koposov, S.; Hourihane, A.; Worley, C.; Casey, A.; Franciosini, E.; Sacco, G.; Magrini, L.

    2016-08-01

    The young open cluster NGC3293 is included in the observing program of the Gaia-ESO survey (GES). The radial velocity values provided have been used to assign cluster membership probabilities by means of a single-variable parametric analysis. These membership probabilities are compared to the results of the photometric membership assignment of NGC3293, based on UBVRI photometry. The agreement of the photometric and kinematic member samples amounts to 65 per cent, and could increase to 70 per cent as suggested by the analysis of the differences between both samples. A number of photometric PMS candidate members of spectral type F are found, which are confirmed by the results from VPHAS photometry and SED fitting for the stars in common with VPHAS and GES data sets. Excesses at mid- and near-infrared wavelengths, and signs of Hα emission, are investigated for them. Marginal presence of Hα emission or infilling is detected for the candidate members. Several of them exhibit moderate signs of U excess and weak excesses at mid-IR wavelengths. We suggest that these features originate from accretion discs in their last stages of evolution.