WorldWideScience

Sample records for accreting millisecond x-ray

  1. The accreting millisecond X-ray pulsar IGR J00291+5934: evidence for a long timescale spin evolution

    A. Patruno

    2010-01-01

    Accreting millisecond X-ray pulsars like IGR J00291+5934 are important because they can be used to test theories of pulsar formation and evolution. They give also the possibility of constraining gravitational wave emission theories and the equation of state of ultra-dense matter. Particularly crucia

  2. Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar

    Wijnands, R; Homan, J; Chakraborty, D; Markwardt, C B; Morgan, E H; Wijnands, Rudy; Klis, Michiel van der; Homan, Jeroen; Chakrabarty, Deepto; Markwardt, Craig B.; Morgan, Ed H.

    2003-01-01

    The relativistic plasma flows onto neutron stars that are accreting material from stellar companions can be used to probe strong-field gravity as well as the physical conditions in the supranuclear-density interiors of neutron stars. Plasma inhomogeneities orbiting a few kilometres above the stars are observable as X-ray brightness fluctuations on the millisecond dynamical timescale of the flows. Two frequencies in the kilohertz range dominate these fluctuations: the twin kilohertz quasi-periodic oscillations (kHz QPOs). Competing models for the origins of these oscillations (based on orbital motions) all predict that they should be related to the stellar spin frequency, but tests have been difficult because the spins were not unambiguously known. Here we report the detection of kHz QPOs from a pulsar whose spin frequency is known. Our measurements establish a clear link between kHz QPOs and stellar spin, but one not predicted by any current model. A new approach to understanding kHz QPOs is now required. We ...

  3. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  4. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    Pintore, Fabio; Di Salvo, Tiziana; Del Santo, Melania; Riggio, Alessandro; D'Aì, Antonino; Burderi, Luciano; Scarano, Fabiana; Iaria, Rosario

    2016-01-01

    We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high energy tail is still under debate. In addition, a number of broad (~0.1-0.4 keV) emission features likely associated to reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity ...

  5. The Accreting Millisecond X-ray Pulsar IGR J00291+5934: Evidence for a Long Timescale Spin Evolution

    Patruno, Alessandro

    2010-01-01

    Accreting Millisecond X-ray Pulsars like IGR J00291+5934 are important because it is possible to test theories of pulsar formation and evolution. They give also the possibility to constrain gravitational wave emission theories and the equation of state of ultra dense matter. Particularly crucial to our understanding is the measurement of the long term spin evolution of the accreting neutron star. An open question is whether these accreting pulsars are spinning up during an outburst and spinning down in quiescence as predicted by the recycling scenario. Until now it has been very difficult to measure torques, due to the presence of fluctuations in the pulse phases that compromise their measurements with standard coherent timing techniques. By applying a new method, I am now able to measure a spin up during an outburst and a spin down during quiescence. I ascribe the spin up (Fdot=5.1(3)x10^{-13}\\Hz/s) to accretion torques and the spin down (Fdot=-3.0(8)x10^{-15} Hz/s) to magneto dipole torques, as those observ...

  6. Application of the relativistic precession model to the accreting millisecond X-ray pulsar IGR J17511-3057

    Stefanov, I. Zh.

    2016-03-01

    The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass-angular-momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper, the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X-ray pulsar IGR J17511-3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO.

  7. Application of the relativistic precession model to the accreting millisecond X-ray pulsar IGR J17511-3057

    Stefanov, Ivan Zh

    2015-01-01

    The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass-angular-momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X-ray pulsar IGR J17511-3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO.

  8. Orbital Evolution Measurement of the Accreting Millisecond X-ray Pulsar SAX J1808.4–3658

    Chetana Jain; Anjan Dutta; Biswajit Paul

    2007-12-01

    We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10-12 s s-1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4–3658 will help us to resolve this.

  9. X-ray coherent pulsations during a sub-luminous accretion disk state of the transitional millisecond pulsar XSS J12270-4859

    Papitto, A; Belloni, T M; Burgay, M; Pellizzoni, A; Possenti, A; Torres, D F

    2014-01-01

    Radio millisecond pulsars in binary systems are spun up to their present period by a Gyr-long phase of accretion of the mass transferred from a low-mass companion star. Recently, three such systems have been observed to switch between an accretion disk state and a radio pulsar regime over time-scales ranging from weeks to years, and were dubbed transitional millisecond pulsars. These sources have been often found in a sub-luminous accretion disk state, characterized by a lower X-ray luminosity (~1E33-1E34 erg/s) than the level usually attained by similar sources during X-ray outbursts (~1E36 erg/s), and by a bright radio and gamma-ray emission. The physical mechanism acting in this enigmatic state is still unclear. Here, we present the first detection of X-ray pulsations from the transitional millisecond pulsar XSS J12270-4859. Pulsations were detected by XMM-Newton during an observation performed while the source was in a sub-luminous accretion disk state. They had an rms amplitude of (7.7+/-0.5)% with a sec...

  10. The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

    Papitto, A; Di Salvo, T; Burderi, L; D'Aì, A; Iaria, R; Bozzo, E; Menna, M T

    2010-01-01

    We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron temperature, kT_e=51(+6,-4) keV, is rather high, while the optical depth (tau=1.34(+0.03,-0.06)) is moderate. The energy dependence of the pulsed fraction supports the interpretation of the cooler thermal component as coming from the accretion disc, and indicates that the Comptonizing plasma surrounds the hot spots on the NS sur...

  11. On Low Mass X-ray Binaries and Millisecond Pulsar

    Burderi, Luciano

    2013-01-01

    The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular momentum, the neutron star accumulates an extraordinary amount of mechanical rotational energy, up to one percent of its whole rest-mass energy. These millisecond spinning neutron stars are truly extreme physical objects: General and Special Relativity are fully in action, since their surfaces, attaining speeds close to one ...

  12. Millisecond Oscillations During Thermonuclear X-ray Bursts

    Muno, M P

    2004-01-01

    I review the basic phenomenology and theory of the millisecond brightness oscillations observed during thermonuclear X-ray bursts from 13 of approximately 70 accreting neutron stars in low-mass X-ray binaries. Compelling observations indicate that the oscillations are produced by surface brightness patterns on the rapidly rotating neutron stars. However, it remains to be understood (1) why the brightness patterns producing them persist for up to 15 s during an X-ray burst, whereas the burning should cover the entire surface in less than 1 s, and (2) why the frequencies drift upward by about 5 Hz during the course of the burst. These peculiarities can probably be explained by taking into account the expansion of the surface layers caused by the burning, zonal flows that form due to pressure gradients between the equator and poles, and Rossby-Alfven modes that are excited in the surface ocean. Further progress toward understanding how burning progresses on the surface of the neutron star can be made with a next...

  13. X-ray bounds on the r-mode amplitude in millisecond pulsars

    Schwenzer, Kai; Güver, Tolga; Vurgun, Eda

    2016-01-01

    r-mode astroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for astroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars we derive bounds on the r-mode amplitude as low as $\\alpha\\lesssim10^{-8}$ and discuss the impact on scenarios for their internal composition.

  14. Investigation of the emission radii of kHz QPOs for the accreting millisecond X-Ray pulsars, Atoll and Z sources

    Wang, D H; Zhang, C M; Lei, Y J; Qu, J L; Song, L M

    2015-01-01

    We infer the emission positions of twin kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (NS-LMXBs) based on the Alfven wave oscillation model (AWOM). For most sources, the emission radii of kHz QPOs cluster around a region of 16-19 km with the assumed NS radii of 15 km. Cir X-1 has the larger emission radii of 23-38 km than those of the other sources, which may be ascribed to its large magnetosphere-disk radius or strong NS surface magnetic field. SAX J1808.4-3658 is also a particular source with the relative large emission radii of kHz QPOs of 20 - 23 km, which may be due to its large inferred NS radius of 18 - 19 km. The emission radii of kHz QPOs for all the sources are larger than the NS radii, and the possible explanations of which are presented. The similarity of the emission radii of kHz QPOs (16-19 km) for both the low/high luminosity Atoll/Z sources is found, which indicates that both sources share the similar magnetosphere- disk radii.

  15. Timing and spectral properties of the accreting millisecond pulsar SWIFT J1756.9-2508

    M. Linares; R. Wijnands; M. van der Klis; H. Krimm; C.B. Markwardt; D. Chakrabarty

    2008-01-01

    SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-Ray Timing Explorer during the 2007 outburst of the source. We detect strong (~35%) flat-topped br

  16. Polarized X-rays from accreting neutron stars

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  17. Do we see accreting magnetars in X-ray pulsars?

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  18. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.;

    2014-01-01

    donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...... assuming solar composition likely biases several of the best-fitting parameters. In order to describe the X-ray reflection spectra self-consistently, we modify the currently available xillver reflection model. We present initial grids that can be used to model X-ray reflection spectra in UCXBs with carbon-oxygen......-rich (and hydrogen- and helium-poor) accretion disc. We find that the new reflection model provides a better overall description of the reflection spectra of 4U 0614+091 and 4U 1543-624 than the reflection models that assume solar abundances....

  19. Gravitational Radiation from Accreting Millisecond Pulsars

    Vigelius, Matthias; Melatos, Andrew

    2008-01-01

    It is widely assumed that the observed reduction of the magnetic field of millisecond pulsars can be connected to the accretion phase during which the pulsar is spun up by mass accretion from a companion. A wide variety of reduction mechanisms have been proposed, including the burial of the field by a magnetic mountain, formed when the accreted matter is confined to the poles by the tension of the stellar magnetic field. A magnetic mountain effectively screens the magnetic dipole moment. On the other hand, observational data suggests that accreting neutron stars are sources of gravitational waves, and magnetic mountains are a natural source of a time-dependent quadrupole moment. We show that the emission is sufficiently strong to be detectable by current and next generation long-baseline interferometers. Preliminary results from fully three-dimensional magnetohydrodynamic (MHD) simulations are presented. We find that the initial axisymmetric state relaxes into a nearly axisymmetric configuration via toroidal ...

  20. Relativistic reflection X-ray spectra of accretion disks

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  1. Accretion disk dynamics in X-ray binaries

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  2. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  3. Quasi-spherical accretion in X-ray pulsars

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    Quasi-spherical accretion in wind-fed X-ray pulsars is discussed. At X-ray luminosities <4 10^{36} erg/s, a hot convective shell is formed around the neutron star magnetosphere, and subsonic settling accretion regime sets in. In this regime, accretion rate onto neutron star is determined by the ability of plasma to enter magnetosphere via Rayleigh-Taylor instability. A gas-dynamic theory of settling accretion is constructed taking into account anisotropic turbulence. The angular momentum can be transferred through the quasi-static shell via large-scale convective motions initiating turbulence cascade. The angular velocity distribution in the shell is found depending on the turbulent viscosity prescription. Comparison with observations of long-period X-ray wind-fed pulsars shows that an almost iso-angular-momentum distribution is most likely realized in their shells. The theory explains long-term spin-down in wind- fed accreting pulsars (e.g. GX 1+4) and properties of short-term torque-luminosity correlatio...

  4. Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

    2007-01-01

    With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.

  5. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over ~17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the Hα flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The Hα emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the Hα and Hβ lines is followed by He I (λ5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of ~2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows ~2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  6. X-ray reverberation around accreting black holes

    Uttley, P; Fabian, A C; Kara, E; Wilkins, D R

    2014-01-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We cons...

  7. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    Dupree, A K; Cranmer, S R; Luna, G J M; Schneider, E E; Bessell, M S; Bonanos, A; Crause, L A; Lawson, W A; Mallik, S V; Schuler, S C

    2012-01-01

    The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follow...

  8. Swinging between rotation and accretion power in a binary millisecond pulsar

    Papitto, A; Bozzo, E; Rea, N

    2013-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state (Papitto et al. 2013, Nature, 501, 517). This transitional source represents the most convincing proof of the evolutionary link shared by accreting neutron stars in low mass X-ray binaries, and radio millisecond pulsars. It demonstrates that swings between these two states take place on the same time-scales of luminosity variations of X-ray transients, and are therefore most easily interpreted in terms of changes in the rate of mass in-flow. While accreting mass, the X-ray emission of IGR J18245-2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of th...

  9. Quasispherical subsonic accretion in X-ray pulsars

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  10. Quasispherical subsonic accretion in X-ray pulsars

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum ω∼1/R2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates .M∼*≅4×1016 g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or

  11. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares

    Aschwanden, Markus J.; Guedel, Manuel

    1992-01-01

    Results are presented of an analysis of a comprehensive data set of 27 solar flares with decimetric millisecond spikes between 1980 and 1989, simultaneously observed with the Zuerich radio spectrometers and the Hard X-ray Burst Spectrometer on the SMM spacecraft. Two contradictory relationships of the coevolution of hard X-ray and spiky radio emissions during flares are found: the temporal evolution of both emissions reveals a close functional dependence, but there is a substantial time delay between the two emissions. Five possible scenarios for the hard-X-ray-associated radio spike emission which may account for both their detailed coevolution and their substantial intervening time delay are discussed. All five scenarios are able to explain both the close coevolution of hard X-ray and radio emission as well as their mutual delay to some degree, but none of them can explain all observational aspects in a simple way.

  12. Settling accretion onto slowly rotating X-ray pulsars

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    Quasi-spherical subsonic accretion onto slowly rotating magnetized NS is considered, when the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum transfer to/from the rotating NS magnetosphere by large-scale convective motions, which lead to an almost iso-angular-momentum rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability while taking cooling into account. The settling regime of accretion is possible for moderate X-ray luminosities L <4 10^36 erg/s. At higher luminosities a free-fall gap above the NS magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of spin-up/spin-down rates of wind accreting equilibrium XPSRs with known orbital periods (GX 301-2, Vela X-1), the main dimensionless parameters of the model and be determin...

  13. Bimodality of Wind-fed Accretion in High Mass X-ray Binaries

    Karino, S.

    2014-01-01

    We study an influence of X-ray photo-ionization from an accreting neutron star in a high mass X-ray binary. Our aim is to unveil a new principle governing X-ray luminosities of X-ray binaries, with a simple analysis of fluid equations simulating line-driven wind flow under influence of X-ray irradiation. In this study, we solve equation of motion of the accretion flow taking into account the line-driven acceleration and X-ray photo-ionization. Under the influence of X-ray irradiation, we find...

  14. The Rapid Burster and its X-ray bursts: extremes of accretion and thermonuclear burning

    Klis, van der, M.; Zand, in 't, J.J.M.; Watts, A.; Bagnoli, T.

    2015-01-01

    X-ray bursts originate from accreting neutron stars (NSs) in X-ray binaries (XRBs). They come in two flavours: thermonuclear bursts are due to the sudden runaway burning of the material accreted on the surface; accretion bursts signal a sudden change in the mass accretion rate, leading to enhanced emission in the innermost regions of the accretion flow. While thermonuclear bursts have been observed from 105 NSs as of writing, accretion bursts remain enigmatically confined to only two sources....

  15. Accretion in supergiant High Mass X-ray Binaries

    Manousakis, A; Blondin, J

    2013-01-01

    Supergiant High Mass X-ray Binary systems (sgHMXBs) consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i) A heavily obscured sgHMXB (IGR J17252-3616) discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density) we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii) A classical sgHMXB (Vela X-1) has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism) we propose that self-organized criticality of the accretion st...

  16. Accretion in supergiant High Mass X-ray Binaries

    Manousakis Antonios

    2014-01-01

    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  17. Wind accretion in symbiotic X-ray binaries

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  18. CHANDRA X-RAY OBSERVATIONS OF 12 MILLISECOND PULSARS IN THE GLOBULAR CLUSTER M28

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 1030-1031 erg s-1 (0.3-8 keV), similar to most recycledpulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index Γ = 1.23 and luminosity 1.4 x 1033Θ(D/5.5 kpc)2 erg s-1 (0.3-8 keV), where Θ is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements in instrument calibration. The X-ray spectrum and pulse profile of PSR B1821-24 suggest that the bulk of unpulsed emission from this pulsar is not of thermal origin, and is likely due to low-level non-thermal magnetospheric radiation, an unresolved pulsar wind nebula, and/or small-angle scattering of the pulsed X-rays by interstellar dust grains. The peculiar binary PSR J1824-2452H shows a relatively hard X-ray spectrum and possible variability at the binary period, indicative of an intrabinary shock formed by interaction between the relativistic pulsar wind and matter from its non-degenerate companion star.

  19. Thermal X-rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars

    Bogdanov, Slavko; Rybicki, George B

    2008-01-01

    (Abridged) We model the X-ray properties of millisecond pulsars (MSPs) by considering hot spot emission from a weakly magnetized rotating neutron star (NS) covered by an optically-thick hydrogen atmosphere. We investigate the limitations of using the thermal X-ray pulse profiles of MSPs to constrain the mass-to-radius ($M/R$) ratio of the underlying NS. The accuracy is strongly dependent on the viewing angle and magnetic inclination. For certain systems, the accuracy is ultimately limited only by photon statistics implying that future X-ray observatories could, in principle, achieve constraints on $M/R$ and hence the NS equation of state to better than $\\sim$5%. We demonstrate that valuable information regarding the basic properties of the NS can be extracted even from X-ray data of fairly limited photon statistics through modeling of archival spectroscopic and timing observations of the nearby isolated PSRs J0030+0451 and J2124--3358. The X-ray emission from these pulsars is consistent with the presence of a...

  20. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  1. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4–112820

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4‑112820, which is associated with the high-energy γ-ray source 3FGL J1544.6‑1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4‑112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270‑4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4‑112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  2. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    Middleton, M.J.; Walton, D.J.; Fabian, A.; Roberts, T. P.; Heil, L.; Pinto, C.; Anderson, G; Sutton, A.

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen i...

  3. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  4. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Hailang, Dai

    2009-01-01

    We investigate the birthrate problem for low-mass X-ray binaries (LMXBs) and millisecond radio pulsars (MRPs) in this paper. We consider intermediate-mass and low-mss X-ray binaries (I/LMXBs) as the progenitors of MRPs, and calculate their evolutionary response to the cosmic star formation rate (SFR) both semi-analytically and numerically. With typical value (~1 Gyr) of the LMXB lifetime, one may expect comparable birthrates of LMXBs and MRPs, but the calculated number of LMXBs is an order of magnitude higher than observed in the Galaxy. Instead, we suggest that the birthrate problem could be solved if most MRPs have evolved from faint rather bright LMXBs. The former may have a population of ~ 104 in the Galaxy.

  5. A NuSTAR Observation of the Gamma-Ray-Emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    Bogdanov, Slavko

    2015-01-01

    I present a 40 kilosecond Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy gamma-ray source 3FGL J1544.6--1125. The system is detected up to ~30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosities. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and $\\gamma$-ray light curves covering the past $\\sim$decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that ...

  6. Accretion disc atmospheres and winds in low-mass X-ray binaries

    Díaz Trigo, M.; Boirin, L.

    2016-05-01

    In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.

  7. Accretion disc atmospheres and winds in low-mass X-ray binaries

    Trigo, M Díaz

    2015-01-01

    In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.

  8. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  9. X-ray spectra of hot accretion flows

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    We study radiative properties of hot accretion flows in a general relativistic model with an exact treatment of global Comptonization, developed in our recent works. We note a strong dependence of electron temperature on the strength of magnetic field and we clarify that the underlying mechanism involves the change of the flow structure, with more strongly magnetised flows approaching the slab geometry more closely. We find that the model with thermal synchrotron radiation being the main source of seed photons agrees with the spectral index vs Eddington ratio relation observed in black hole transients below 1 per cent of the Eddington luminosity, LEdd, and models with a weak direct heating of electrons (small delta) are more consistent with observations. Models with large delta predict slightly too soft spectra, furthermore, they strongly overpredict electron temperatures at ~0.01 LEdd. The low-luminosity spectra, at <0.001 LEdd, deviate from a power-law shape in the soft X-ray range and we note that the f...

  10. Possible Fermi Detection of the Accreting Millisecond Pulsar Binary SAX J1808.4-3658

    Xing, Yi; Wang, Zhongxiang; Jithesh, V.

    2015-01-01

    We report the Fermi Large Area Telescope (LAT) detection of a $\\gamma$-ray source at the position of SAX J1808.4$-$3658. This transient low-mass X-ray binary contains an accreting millisecond puslar, which is only seen during its month-long outbursts and likely switches to be rotation powered during its quiescent state. Emission from the $\\gamma$-ray source can be described by a power law with an exponential cutoff, the characteristic form for pulsar emission. Folding the source's 2.0--300 Ge...

  11. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    Postnov, K A; Klochkov, D; Laplace, E; Lukin, V V; Shakura, N I

    2015-01-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as $F_{5-12\\mathrm{keV}}/ F_{1.33-3\\mathrm{keV}}$ increases with the ASM flux (1.33--12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range $\\sim(3-7)\\times10^{37}$~erg~s$^{-1}$. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates $\\dot M$ ranging from $10^{17}$ to 1.2$\\times 10^{18}$~g s$^{-1}$. The observed spectral behaviour in the transient X-ray pulsars with increasing $\\dot M$ can be reproduced by a Compton saturated sidewall emission from optically thick magnetized accretion columns with taking into a...

  12. Evidence of Fast Magnetic Field Evolution in an Accreting Millisecond Pulsar

    Patruno, A

    2012-01-01

    The large majority of neutron stars (NSs) in low mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1--2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first 2 months and then turned in a non-pulsating source. Understanding why this happened might help to understand why most LMXBs do not pulsate. We present a 7 year long coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180...

  13. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    Shahbaz, T; Nevado, S P; Rodríguez-Gil, P; Casares, J; Dhillon, V S; Marsh, T R; Littlefair, S; Leckngam, A; Poshyachinda, S

    2015-01-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingr...

  14. Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems

    Kiel, P D

    2013-01-01

    A model for the formation and evolution of binary millisecond radio pulsars in systems with low mass companions (< 0.1 Msun) is investigated using a binary population synthesis technique. Taking into account the non conservative evolution of the system due to mass loss from an accretion disk as a result of propeller action and from the companion via ablation by the pulsar, the transition from the accretion powered to rotation powered phase is investigated. It is shown that the operation of the propeller and ablation mechanisms can be responsible for the formation and evolution of black widow millisecond pulsar systems from the low mass X-ray binary phase at an orbital period of ~0.1 day. For a range of population synthesis input parameters, the results reveal that a population of black widow millisecond pulsars characterized by orbital periods as long as ~0.4 days and companion masses as low as ~0.005 Msun can be produced. The orbital periods and minimum companion mass of this radio millisecond pulsar popu...

  15. X-ray deficiency on strong accreting T Tauri stars - Comparing Orion with Taurus

    Bustamante, Ignacio; Bouy, Hervé; Manara, Carlo; Ribas, Álvaro; Riviere-Marichalar, Pablo

    2015-01-01

    Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster, we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. We provide a catalog with X-ray lumin...

  16. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  17. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    Postnov, K. A.; Gornostaev, M. I.; Klochkov, D.; Laplace, E.; Lukin, V. V.; Shakura, N. I.

    2015-09-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as F5-12 keV/F1.33-3 keV increases with the ASM flux (1.33-12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range ˜(3-7) × 1037 erg s-1. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates dot{M} ranging from 1017 to 1.2 × 1018 g s-1. The observed spectral behaviour in the transient X-ray pulsars with increasing dot{M} can be reproduced by a Compton-saturated sidewall emission from optically thick magnetized accretion columns with taking into account the emission reflected from the neutron star atmosphere. At dot{M} above some critical value dot{M}_cr˜ (6-8)× 10^{17} g s-1, the height of the column becomes such that the contribution of the reflected component to the total emission starts decreasing, which leads to the saturation and even slight decrease of the spectral hardness. Hollow-cylinder columns have a smaller height than the filled-cylinder ones, and the contribution of the reflected component in the total emission does not virtually change with dot{M} (and hence the hardness of the continuum monotonically increases) up to higher mass accretion rates than dot{M}_cr for the filled columns.

  18. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  19. Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate

    Koerding, Elmar; Fender, Rob; Migliari, Simone

    2006-01-01

    We present a novel method to measure the accretion rate of radio emitting X-ray binaries (XRBs) and active galactic nuclei (AGN) independently of the X-ray luminosity. The radio emission of the jet is used as a tracer for the accretion rate and is normalised using sources of known accretion rates: island state neutron stars and efficiently radiating black holes close to a state transition. We show that the radio power in black holes and neutron stars is comparable for a given mass accretion r...

  20. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  1. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Orosz, Jerome A. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1221 (United States); Buxton, Michelle M.; Bailyn, Charles D. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Kara, Erin, E-mail: jsteiner@cfa.harvard.edu [Department of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  2. The X-ray Softening of Accreting Black Holes Toward Quiescence

    Plotkin, Richard; Gallo, E.; Jonker, P. G.

    2013-04-01

    There is strong motivation to better understand accretion of matter onto black holes. Black hole accretion is at the heart of phenomena like stellar mass black hole X-ray binaries (BHXBs), Active Galactic Nuclei (AGN), and black hole feedback. In addition, studying black hole accretion can provide broad insight into many other classes of objects where similar physics is at play (e.g., young stars, white dwarfs, neutrons stars, gamma-ray bursts). Unfortunately, we know surprisingly little about black hole accretion at extremely low accretion rates, even though the most common type of black hole accretes very weakly. For example, most transient BHXBs spend the bulk of their time in a quiescent state with mass accretion rates 10^-9 -- 10^-6 L/L_Edd, and many supermassive black holes in the local Universe accrete just as weakly. Here, we present Chandra X-ray spectroscopy for nine quiescent BHXB systems, including multiple observations for several systems as they fade back into quiescence following an outburst. Our systems show softer X-ray spectra in quiescence compared to the canonical "low-hard state". With our dataset, we are in a unique position to track how BHXB X-ray spectra evolve as they return to quiescence following an outburst, both for individual sources and also for the ensemble average. We thus place new constraints on how quickly BHXB X-ray spectra soften as they fade, and we propose a physically meaningful definition for quiescence. Finally, we will discuss implications for the X-ray emission mechanism(s) and accretion flow (and outflow) geometries in quiescence, and we will make comparisons to AGN and neutron star X-ray binaries.

  3. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  4. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  5. Seeing to the Event Horizon: Probing Accretion Physics with X-ray Reflection

    Wilkins, Dan

    2015-09-01

    Accretion onto supermassive black holes in active galactic nuclei is known to power some of the most luminous objects we see in the Universe, which through their vast energy outputs must have played an important role in shaping the large scale structure of the Universe we see today. Much remains unknown, however, about the fine details of this process; exactly how energy is liberated from accretion flows onto black holes, how the 'corona' that produces the intense X-ray continuum is formed and what governs this process over time. I will outline how the detection of X-rays reflected from the discs of accreting material around black holes by the present generation of large X-ray observatories, shifted in energy and blurred by relativistic effects in the strong gravitational field close to the black hole, has enabled measurements of the inner regions of the accretion flow in unprecedented detail. In particular, exploiting the shift in energy of atomic emission lines by relativistic effects as a function of location on the disc has enabled the measurement of the illumination pattern of the accretion flow by the X-ray continuum from which the geometry of the emitting region can be inferred and how the detection of time lags between the primary and reflected X-rays owing to the additional path the reflected rays must travel between the corona and the disc places further constraints on the nature of the emitting corona. These techniques allow the evolution of the corona that accompanies transitions from high to low X-ray flux to be studied, giving clues to the physical process that forms and powers the intense X-ray source and uncovering evidence for the potential launching of jets. I will discuss the great steps forward in understanding accretion physics that can be made with the Athena X-ray observatory, combining detailed analysis of observations with predictions and models from general relativistic ray tracing simulations. In particular, I will discuss how high

  6. Settling accretion onto slowly rotating X-ray pulsars

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2013-01-01

    Quasi-spherical subsonic accretion onto slowly rotating magnetized NS is considered, when the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum transfer to/from the rotating NS magnetosphere by large-scale convective motions, which lead to an almost iso-angular-momentum rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter ...

  7. X-ray Outflows and Super-Eddington Accretion in the Ultraluminous X-ray Source Holmberg IX X-1

    Walton, D J; Harrison, F A; Fabian, A C; Roberts, T P; Middleton, M J; Reis, R C

    2013-01-01

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultra-luminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with Lx > 1e40 erg/s). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ~10 Msun, or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive dataset in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the >150 eV lines expected if observed tre...

  8. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Graceffa, Rita; Nobrega, R. Paul; Barrea, Raul A.; Kathuria, Sagar V.; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C.

    2013-01-01

    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub...

  9. X-ray reflection in oxygen-rich accretion discs of ultra-compact X-ray binaries

    Madej, O K; Jonker, P G; Parker, M L; Ross, R; Fabian, A C; Chenevez, J

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultra-compact X-ray binaries: 4U~0614+091 and 4U~1543$-$624. We confirm the presence of a broad O VIII Ly$\\alpha$ reflection line (at $\\approx18\\ \\AA$) using {\\it XMM-Newton} and {\\it Chandra} observations obtained in 2012 and 2013. The donor star in these sources is carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O VIII Ly$\\alpha$ line particularly strong. We also confirm the presence of a strong absorption edge at $\\approx14$ \\AA\\ so far interpreted in the literature as due to absorption by neutral neon in the circumstellar and interstellar medium. However, the abundance required to obtain a good fit to this edge is $\\approx3-4$ times solar, posing a problem for this interpretation. Furthermore, modeling the X-ray reflection off a carbon and oxygen enriched, hydrogen and helium poor disc with models assuming solar composition likely biases several of the best-fit parameters. In order to...

  10. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    Fukumura, Keigo; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-01-01

    We propose a novel theoretical model to describe a physical identity of the soft X-ray excess, ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit (ISCO) around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic (GRMHD) accretion which has implied that the accreting plasma can develop into a standing shock for suitable physical conditions causing the downstream flow to be sufficiently hot due to shock compression. We numerically calculate to examine, for sets of fiducial plasma parameters, a physical nature of fast MHD shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-paramet...

  11. Free-fall accretion and emitting caustics in wind-fed X-ray sources

    Illarionov, Andrei F.; Beloborodov, Andrei M.

    2001-05-01

    In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l>(GMR*)1/2 (where M and R* are the mass and radius of the compact object) intersect outside R* and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, langular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a `Moon-like' X-ray source.

  12. Ultraluminous X-ray sources as super-Eddington accretion disks

    Fabrika, Sergei; Atapin, Kirill

    2016-01-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate a presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS 433, the only known supercritical accretor in our Galaxy.

  13. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  14. On the observability of T Tauri accretion shocks in the X-ray band

    Sacco, G G; Argiroffi, C; Maggio, A; Peres, G; Reale, F; Curran, R L

    2010-01-01

    Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We explore the space of relevant parameters and synthesize from the model results the X-ray emission in the [0.5-8.0] keV band and in the resonance lines of O VII (21.60 Ang) and Ne IX (13.45 Ang), taking into account the absorption from the chromosphere. Results. The accretion stream properties influence the temperature and the s...

  15. X-ray optical depth diagnostics of T Tauri accretion shocks

    Argiroffi, C; Peres, G; Drake, J J; Santiago, J Lopez; Sciortino, S; Stelzer, B

    2009-01-01

    In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line fluxes. We analyze X-ray spectra of the classical T Tauri star MP Muscae and TW Hydrae. Our aim is to evaluate line ratios to search for optical depth effects, which are expected in the accretion-driven scenario. We also derive the plasma emission measure distributions EMD, to investigate whether and how the EMD of accreting...

  16. A statistical study of the relation between soft X-ray excess and accretion disk

    2010-01-01

    To study the origin of the soft X-ray excess,we compile a sample of 94 unobscured,radio-quiet QSOs and Seyfert galaxies with available data from GALEX and ROSAT.We find that 50 sources show strong soft X-ray excess and the other 44 show weak/no soft X-ray excess.Systematic analyses of the data indicate that the difference in soft X-rays is mainly but not only resulting from different accretion rates(in units of Eddington rate).The statistical study of the sources with soft X-ray excess shows that the strength of soft X-ray excess weakly and positively correlates with the Eddington ratio and increases with the increase of the strength of UV radiations relative to the X-rays.Provided that the UV emissions are from the thin disk,the correlations imply that the origin of soft X-ray excess is associated with the thin disk,either by means of Comptonization of the disk photons or in some other ways.

  17. Understanding X-ray Reflection as a Probe of Accreting Black Holes

    Wilkins, Dan

    2014-01-01

    Active galactic nuclei (AGN) are some of the most luminous objects we see in the Universe, powered by the accretion of matter onto a supermassive black hole in the centre of a galaxy, yet many of the physical processes by which the energy is released and injected into the surroundings remain a mystery. X-rays are emitted from a ‘corona’ of energetic particles surrounding the black hole and as well as being observed directly, they are seen to be reflected from the accreting disc, producing a number of spectral features including emission lines that are broadened by relativistic effects in the proximity of the black hole. In my thesis, I develop methods through which detailed measurement of the reflected X-rays from the accretion disc can be used to probe the innermost regions of accretion flow and corona, right down to the innermost stable orbit and the event horizon. Novel spectral analysis techniques allow us to reconstruct, from the observed relativistic X-ray reflection spectrum the spatially resolved illumination pattern of the accretion disc and will discuss how comparing this to the results of systematic general relativistic ray tracing simulations I have developed, we are able to constrain the location and geometry of the X-ray emitting corona and understand the dramatic change of the narrow line Seyfert 1 galaxy 1H 0707-495 into an extremely low flux state in terms of a collapse in the corona. I will discuss how measurements of the X-ray variability, specifically the reverberation time lags that are observed between variability in the directly observed X-rays from the corona and those reflected from the accretion disc add a further dimension to the study of accreting black holes, letting us not only build up a three dimensional image of the immediate vicinity of the black hole but also to probe mechanisms by which the energy is released from the accretion flow; techniques that will let us exploit not just current instrumentation but future proposed X-ray

  18. Irradiated, colour-temperature-corrected accretion discs in ultraluminous X-ray sources

    Sutton, Andrew D.; Done, Chris; Roberts, Timothy P.

    2014-11-01

    Although attempts have been made to constrain the stellar types of optical counterparts to ultraluminous X-ray sources (ULXs), the detection of optical variability instead suggests that they may be dominated by reprocessed emission from X-rays which irradiate the outer accretion disc. Here, we report results from a combined X-ray and optical spectral study of a sample of ULXs, which were selected for having broadened disc-like X-ray spectra and known optical counterparts. We simultaneously fit optical and X-ray data from ULXs with a new spectral model of emission from an irradiated, colour-temperature-corrected accretion disc around a black hole, with a central Comptonizing corona. We find that the ULXs require reprocessing fractions of ˜10-3, which is similar to sub-Eddington thermal dominant state black hole binaries (BHBs), but less than has been reported for ULXs with soft ultraluminous X-ray spectra. We suggest that the reprocessing fraction may be due to the opposing effects of self-shielding in a geometrically thick supercritical accretion disc and reflection from far above the central black hole by optically thin material ejected in a natal super-Eddington wind. Then, the higher reprocessing fractions reported for ULXs with wind-dominated X-ray spectra may be due to enhanced scattering on to the outer disc via the stronger wind in these objects. Alternatively, the accretion discs in these ULXs may not be particularly geometrically thick, rather they may be similar in this regard to the thermal dominant state BHBs.

  19. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  20. Accretion mode of the Ultra-Luminous X-ray source M82 X-2

    Karino, S

    2016-01-01

    Periodic pulsations have been found in emission from the ultra-luminous X-ray source (ULX) M82 X-2, strongly suggesting that the emitter is a rotating neutron star rather than a black hole. However, the radiation mechanisms and accretion mode involved have not yet been clearly established. In this paper, we examine the applicability to this object of standard accretion modes for high mass X-ray binaries (HMXBs). We find that spherical wind accretion, which drives OB-type HMXBs, cannot apply here but that there is a natural explanation in terms of an extension of the picture for standard Be-type HMXBs. We show that a neutron star with a moderately strong magnetic field, accreting from a disc-shaped wind emitted by a Be-companion, could be compatible with the observed relation between spin and orbital period. A Roche lobe overflow picture is also possible under certain conditions.

  1. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Dexter, Jason; Quataert, Eliot

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nucl...

  2. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and de...

  3. A new model for the X-ray continuum of the magnetized accreting pulsars

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  4. Irradiated, colour-temperature-corrected accretion discs in ultraluminous X-ray sources

    Sutton, Andrew D; Roberts, Timothy P

    2014-01-01

    Although attempts have been made to constrain the stellar types of optical counterparts to ULXs, the detection of optical variability instead suggests that they may be dominated by reprocessed emission from X-rays which irradiate the outer accretion disc. Here, we report results from a combined X-ray and optical spectral study of a sample of ULXs, which were selected for having broadened disc-like X-ray spectra, and known optical counterparts. We simultaneously fit optical and X-ray data from ULXs with a new spectral model of emission from an irradiated, colour-temperature-corrected accretion disc around a black hole, with a central Comptonising corona. We find that the ULXs require reprocessing fractions of $\\sim 10^{-3}$, which is similar to sub-Eddington thermal dominant state BHBs, but less than has been reported for ULXs with soft ultraluminous X-ray spectra. We suggest that the reprocessing fraction may be due to the opposing effects of self-shielding in a geometrically thick super-critical accretion di...

  5. Time-dependent X-ray emission from unstable accretion disks around black holes

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  6. Accretion regimes in the X-ray pulsar 4U 1901+03

    Reig, P

    2016-01-01

    The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical re...

  7. Probing the Birth of Post-merger Millisecond Magnetars with X-Ray and Gamma-Ray Emission

    Wang, Ling-Jun; Dai, Zi-Gao; Liu, Liang-Duan; Wu, Xue-Feng

    2016-05-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper, we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the synchrotron self-Compton (SSC) emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at 1 {GeV} in the spectral energy distribution and extends to ≳ 10 {TeV} for typical parameters. These energy bands are quite suitable for Fermi Large Area Telescope and Cherenkov Telescope Array (CTA), which, with their current observational sensitivities, can detect the SSC emission powered by post-merger magnetars up to 1 {Gpc}. NuSTAR, which is sensitive in X-ray bands, can detect the formation of post-merger millisecond magnetars at redshift z∼ 1. Future improvements in the sensitivity of CTA can also allow us to probe the birth of post-merger millisecond magnetars at redshift z∼ 1. However, because of the γ‑γ collisions, strong high-energy emission is clearly predicted only for ejecta masses lower than {10}-3 {M}ȯ .

  8. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  9. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    Middleton, Matthew J; Fabian, Andrew; Roberts, Timothy P; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad), studying the evolution of t...

  10. A new model for the X-ray continuum of the magnetized accreting pulsars

    Farinelli, R; Bozzo, E; Becker, P A

    2016-01-01

    Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high statistical quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models, rather than models linked to the physics of accretion. In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku+NuStar data, together with an advanced version of the compmag model. The latter provides a physical description of the high energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been impr...

  11. A new look at spherical accretion in High Mass X-ray Binaries

    Ikhsanov, N R; Beskrovnaya, N G; 10.1063/1.3701365

    2012-01-01

    Currently used model of spherical accretion onto a magnetized rotating neutron star encounters major difficulties in explaining the entry rate of accreting material into the stellar field and spin evolution of long-period X-ray pulsars. These difficulties can be, however, avoided if the magnetic field of the material captured by the neutron star is incorporated into the model. The magnetic field of the flow itself under certain conditions controls the accretion process and significantly affects the parameters of the accreting material. The mode by which the accretion flow enters the stellar magnetosphere in that case can be associated with Bohm (or turbulent) diffusion and the torque applied to the neutron star appears to be substantially higher than that evaluated in the non-magnetized accretion scenario.

  12. Understanding X-ray reflection as a probe of accreting black holes

    Wilkins, Daniel Richard

    2013-01-01

    The reflection of the X-rays emitted from a corona of energetic particles surrounding an accreting black hole from the accretion disc is investigated in the context of probing the structure of the central regions as well as the physical processes that power some of the brightest objects seen in the Universe. A method is devised to measure the emissivity profile of the accretion disc, that is the reflected flux as a function of radius in the disc. This method exploits the variation in the D...

  13. X-ray reflected spectra from accretion disk models.II. Diagnostic tools for X-ray observations

    Garcia, J; Mushotzky, R F

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2-10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe K$\\alpha$ with the ionization parameter. The maximum value of the EW is $\\sim 800$ eV for models with log $\\xi\\sim 1.5$, and decreases monotonically as $\\xi$ increases. For lower values of $\\xi$ the Fe K$\\alpha$ EW decreases to a minimum near log $\\xi\\sim 0.8$. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2-10 keV...

  14. Evidence for Magneto-Levitation Accretion in Long-Period X-ray Pulsars

    Ikhsanov, Nazar; Likh, Yury

    2014-01-01

    Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfven radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.

  15. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; Kaaret, P.; Morgan, E.H.; Tueller, J

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  16. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    Sanna, A; Riggio, A; Pintore, F; Di Salvo, T; Gambino, A F; Iaria, R; Matranga, M; Scarano, F

    2016-01-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with $\\dot{P}_{orb}=(1.1\\pm0.3)\\times 10^{-10}$ s/s. We note that this value is significant at 3.5 sigma confidence level, ...

  17. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  18. Free-fall accretion and emitting caustics in wind-fed X-ray sources

    Illarionov, A F; Illarionov, Andrei F.; Beloborodov, Andrei M.

    2000-01-01

    In wind-fed X-ray binaries, the accreting matter is Compton cooled and falls freely onto the compact object. The matter has a modest angular momentum, $l$, and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with $l>(GMR_*)^{1/2}$ (where $M$ and $R_*$ are the mass and radius of the compact object) intersect outside $R_*$ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, $l<(GMR_*)^{1/2}$, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then...

  19. X-ray iron line variability constraints on the inner accretion disk

    Reynolds, C S

    2000-01-01

    After reviewing the basic physics of X-ray reflection in AGN, we present three case studies which illustrate the current state of X-ray reflection studies. For the low-luminosity AGN NGC4258, we find that the iron line is much narrower than is typically found in higher luminosity AGN. We argue that this is evidence for either a truncated cold accretion disk (possibly due to a transition to an advection dominate accretion flow at r ~ 100GM/c^2) or a large r ~ 100GM/c^2 X-ray emitting corona surrounding the accretion disk. We also present results for the higher luminosity Seyfert nuclei in NGC5548 and MCG-6-30-15. In both of these sources, RXTE shows that the iron line equivalent width decreases with increasing luminosity. Furthermore, the iron line equivalent width is found to be anticorrelated with the relative strength of the reflection continuum, contrary to all simple reflection models. It is proposed that continuum-flux correlated changes in the ionization of the accretion disk surface can explain this sp...

  20. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  1. Identification of the High-Energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    Bogdanov, Slavko

    2015-01-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-ray data exhibit large-amplitude flux variations in the form of fast switching (within ~10 s) between two distinct flux levels that differ by a factor of $\\approx$10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with $\\gamma$-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto a millisecond pulsar and the $\\gamma$-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth $\\gamma$-ray emi...

  2. Improved methods for modeling pulse shapes of accreting millisecond pulsars

    Leahy, D; Cadeau, C

    2006-01-01

    Raytracing computations for light emitted from the surface of a rapidly rotating neutron star are carried out in order to construct light curves for accreting millisecond pulsars. These calculations are for realistic models of rapidly rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect, comparing the full raytracing computations with simpler approximations currently in use, arises from the oblate shape of the rotating star. Approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, for lower rotation rates acceptable mass and radius values can be obtained using the spherical approximation.

  3. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  4. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...

  5. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  6. The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    Coriat, M; Buxton, M M; Bailyn, C D; Tomsick, J A; Koerding, E; Kalemci, E

    2009-01-01

    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origi...

  7. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    Metzger, Brian D

    2013-01-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. This has the potential for creating a bright transient that could be useful for determining whether a NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of electron/positron pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV t...

  8. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  9. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm−3 associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M⊙ suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼1035 erg s−1. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering

  10. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  11. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  12. Pulse-to-pulse variations in accreting X-ray pulsars

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  13. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  14. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  15. X-ray accretion signatures in the close CTTS binary V4046 Sgr

    Günther, H; Schmitt, J H M M; Robrade, J; Ness, J U

    2006-01-01

    We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ne IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additional stellar corona. V4046 Sgr is the first close binary exhibiting these features. Together with previous high-resolution X-ray data on TW Hya and BP Tau, and in contrast to T Tau, now three out of four CTTS show evidence of accretion funnels.

  16. Constraints on Compact Star Parameters from Burst Oscillation Light Curves of the Accreting Millisecond Pulsar XTE J1814-338

    Bhattacharya, S; Miller, M C; Markwardt, C B; Bhattacharyya, Sudip; Strohmayer, Tod E.; Markwardt, Craig B.

    2004-01-01

    Detailed modeling of the millisecond brightness oscillations from low mass X-ray binaries during thermonuclear bursts can provide us with important information about compact star parameters. Until now the implementation of this idea has not been entirely successful, largely because of the negligible amount of harmonic content in burst oscillation lightcurves. However, the recent discovery of unique, non-sinusoidal burst oscillation lightcurves from the accreting millisecond pulsar XTE J1814-338 has changed this situation. We, therefore, for the first time, make use of this opportunity to constrain compact star structure parameters effectively. In our detailed study of the lightcurves of 22 bursts we fit the burst oscillation lightcurves with fully general relativistic models that include light-bending and frame-dragging for lightcurve calculation, and compute numerically the structure of compact stars using realistic equations of state. We find that the 90% confidence interval of the dimensionless radius to m...

  17. X-rays from T Tau: A test case for accreting T Tauri stars

    Güdel, M; Mel'nikov, S Y; Audard, M; Telleschi, A; Briggs, K R

    2006-01-01

    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio ...

  18. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  19. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Graceffa, Rita, E-mail: rita.graceffa@gmail.com [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Nobrega, R. Paul [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Barrea, Raul A. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Kathuria, Sagar V. [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Chakravarthy, Srinivas [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Bilsel, Osman [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Irving, Thomas C. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States)

    2013-11-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  20. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

  1. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars

    Metzger, Brian D.; Piro, Anthony L.

    2014-04-01

    The coalescence of binary neutron stars (NSs) may in some cases produce a stable massive NS remnant rather than a black hole. Due to the substantial angular momentum from the binary, such a remnant is born rapidly rotating and likely acquires a strong magnetic field (a `millisecond magnetar'). Magnetic spin-down deposits a large fraction of the rotational energy from the magnetar behind the small quantity of mass ejected during the merger. If the magnetar outflow is indeed trapped behind the ejecta (instead of placing most of its energy into a collimated jet), this has the potential for creating a bright transient that could be useful for determining whether an NS or black hole was formed in the merger. We investigate the expected signature of such an event, including for the first time the important impact of e± pairs injected by the millisecond magnetar into the surrounding nebula. These pairs cool via synchrotron and inverse Compton emission, producing a pair cascade and hard X-ray spectrum. A fraction of these X-rays are absorbed by the ejecta walls and re-emitted as thermal radiation, leading to an optical/UV transient peaking at a luminosity of ˜1043-1044 erg s-1 on a time-scale of several hours to days. This is dimmer than predicted by simpler analytic models because the large optical depth of e± pairs across the nebula suppresses the efficiency with which the magnetar spin-down luminosity is thermalized. Nevertheless, the optical/UV emission is more than two orders of magnitude brighter than a radioactively powered `kilonova'. In some cases, nebular X-rays are sufficiently luminous to re-ionize the ejecta, in which case non-thermal X-rays escape the ejecta unattenuated with a similar peak luminosity and time-scale as the optical radiation. We discuss the implications of our results for the temporally extended X-ray emission that is observed to follow some short gamma-ray bursts (GRBs), including the kilonova candidates GRB 080503 and GRB 130603B.

  2. Thermonuclear Burning on the Accreting X-Ray Pulsar GRO J1744-28

    Bildsten, L; Bildsten, Lars; Brown, Edward F.

    1996-01-01

    We investigate the thermal stability of nuclear burning on the accreting X-ray pulsar GRO J1744-28. The neutron star's dipolar magnetic field is 50 years. We also discuss the nature of the binary and point out that a velocity measurement of the stellar companion (most likely a Roche-lobe filling giant with m_K>17) will constrain the neutron star mass.

  3. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  4. Free-fall accretion and emitting caustics in wind-fed X-ray sources

    Illarionov, Andrei F.; Beloborodov, Andrei M.

    2000-01-01

    In wind-fed X-ray binaries the accreting matter is Compton cooled and falls freely onto the compact object. The matter has a modest angular momentum $l$ and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with $l>(GMR_*)^{1/2}$ (where $M$ and $R_*$ are the mass and radius of the compact object) intersect outside $R_*$ and...

  5. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  6. Exploring the X-ray and gamma-ray properties of the redback millisecond pulsar PSR J1723-2837

    Hui, C Y; Takata, J; Kong, A K H; Cheng, K S; Wu, J H K; Lin, L C C; Wu, E M H

    2013-01-01

    We have investigated the X-ray and $\\gamma$-ray properties of the redback millisecond pulsar PSR J1723-2837 with XMM-Newton, Chandra and Fermi. We have discovered the X-ray orbital modulation of this binary system with the minimum that coincides with the phases of radio eclipse. The X-ray emission is clearly non-thermal in nature which can be well described by a simple power-law with a photon index of $\\sim1.2$. The phase-averaged luminosity is $\\sim9\\times10^{31}$ erg/s in 0.3-10 keV which consumes $\\sim0.2\\%$ of the spin-down power. We have detected the $\\gamma-$ray emission in $0.1-300$ GeV from this system at a significance of $\\sim6\\sigma$ for the first time. The $\\gamma-$rays in this energy range consumes $\\sim2\\%$ of the spin-down power and can be modeled by a power-law with a photon index of $\\sim2.6$. We discuss the high energy properties of the new redback in the context of a intrabinary shock model.

  7. Probing the Birth of Post-merger Millisecond Magnetars by X-ray and Gamma-ray Emission

    Wang, L J; Liu, L D; Wu, X F

    2016-01-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the SSC emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at $1\\,{\\rm GeV}$ in the spectral energy distribution and extends to $\\gtrsim 10\\,{\\rm T...

  8. Hard X-ray emitting black hole fed by accretion of low angular momentum matter

    Igumenshchev, I V; Abramowicz, M A; Igumenshchev, Igor V.; Illarionov, Andrei F.; Abramowicz, Marek Artur

    1999-01-01

    Observed spectra of Active Galactic Nuclei (AGN) and luminous X-ray binaries in our Galaxy suggest that both hot (~10^9 K) and cold (~10^6 K) plasma components exist close to the central accreting black hole. Hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one due to some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model the hot component forms first and afterward it cools down to form the cold component. In our model, accretion flow ha...

  9. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  10. Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    Chen, Hai-Liang; Yungelson, L R; Gilfanov, M; Han, Zhanwen

    2015-01-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \\textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \\textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at $\\sim 1$ Gyr and decline by $\\sim 1-3$ orders of magnitude by the age of 10 Gyr. For stellar ages of $\\sim$~10 Gyr, predict...

  11. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  12. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates $\\dot M< \\dot M_*\\simeq 4\\times 10^{16}$ g/s. At higher accretion rates a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative $\\dot \\omega^*$, and $\\partial\\dot\\omega^*/\\partial\\dot M$ near the torque reversal) of X-ray pulsars with known orbital perio...

  13. The Luminosity and Energy Dependence of Pulse Phase Lags in the Accretion-powered Millisecond Pulsar SAX J1808.4-3658

    Hartman, Jacob M; Chakrabarty, Deepto

    2008-01-01

    Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. In a study of the 2.5 ms accretion-powered pulsar SAX J1808.4-3658, we report that the magnitude of these lags is strongly dependent on the accretion rate. During the brightest stage of the outbursts from this source, the lags increase in magnitude as the accretion rate drops; when the outbursts enter their dimmer flaring-tail stage, the relationship reverses. We evaluate this complex dependence in the context of two theoretical models for the lags, one relying on the scattering of photons by the accretion disk and the other invoking a two-component model for the photon emission. In both cases, the turnover suggests that we are observing the source transitioning into the "propeller" accretion regime.

  14. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy.

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å(-1) have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements. PMID:26429455

  15. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å-1 have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements.

  16. Quasi-spherical accretion in low-luminosity X-ray pulsars: Theory vs. observations

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2012-01-01

    Quasi-spherical subsonic accretion can be realized in slowly rotating wind-fed X-ray pulsars (XPSRs) at X-ray luminosities <4 10^{36} erg/s. In this regime the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum removal from the rotating NS magnetosphere by shear turbulent viscosity in the boundary layer or via large-scale convective motions. In the last case the differential rotation law in the shell is close to iso-angular-momentum rotation. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities while taking cooling into account. Measurements of spin-up/spin-down rates of quasi-spherically wind accreting XPSRs in equilibrium with known orbital periods (like e.g. GX 301-2 and Vela X-1) enable determination of the main dimensionless parameters of the model and the NS magnetic field. For equilibrium pulsars with indep...

  17. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Dexter, Jason; Quataert, Eliot

    2012-10-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal (TD) state to the higher variability, non-thermal steep power law (SPL) state. The disc component in all states is typically modelled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogues of BHBs. An inhomogeneous disc (ID) model with large (≃0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation-dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction and rms variability amplitude in BHBs are reproduced with temperature fluctuations similar to those inferred in AGNs, suggesting a unified picture of luminous accretion discs across orders of magnitude in black hole mass. This picture can be tested with spectral fitting of ID models, X-ray polarization observations and radiation magnetohydrodynamic simulations. If BHB accretion discs are indeed inhomogeneous, only the most disc-dominated states (disc fraction ≳0.95) can be used to robustly infer black hole spin using current continuum fitting methods.

  18. An X-ray Outburst from the Rapidly Accreting Young Star That Illuminates McNeil's Nebula

    Kästner, J H; Grosso, N; Weintraub, D A; Simon, T; Franck, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-01-01

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of such emission is uncertain. Although many or perhaps most recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor ~50 increase in the X-ray flux from a young star that is presently undergoing a spectacular optical/IR outburst. The outburst is thought to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/IR eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion- enhanced X-ray emission from erupting young stars may be short-lived, because intense star-di...

  19. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  20. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein–DNA footprinting

    Henn, Arnon; Halfon, Jacob; Kela, Itai; Orion, Itzhak; Sagi, Irit

    2001-01-01

    Nucleic acid fragmentation (footprinting) by ·OH radicals is used often as a tool to probe nucleic acid structure and nucleic acid–protein interactions. This method has proven valuable because it provides structural information with single base pair resolution. Recent developments in the field introduced the ‘synchrotron X-ray footprinting’ method, which uses a high-flux X-ray source to produce single base pair fragmentation of nucleic acid in tens of milliseconds. We developed a complementar...

  1. Spectral formation in accreting X-ray pulsars: bimodal variation of the cyclotron energy with luminosity

    Becker, P. A.; Klochkov, D.; Schönherr, G.; Nishimura, O.; Ferrigno, C.; Caballero, I.; Kretschmar, P.; Wolff, M. T.; Wilms, J.; Staubert, R.

    2012-08-01

    Context. Accretion-powered X-ray pulsars exhibit significant variability of the cyclotron resonance scattering feature (CRSF) centroid energy on pulse-to-pulse timescales, and also on much longer timescales. Two types of spectral variability are observed. For sources in group 1, the CRSF energy is negatively correlated with the variable source luminosity, and for sources in group 2, the opposite behavior is observed. The physical basis for this bimodal behavior is currently not well understood. Aims: We explore the hypothesis that the accretion dynamics in the group 1 sources is dominated by radiation pressure near the stellar surface, and that Coulomb interactions decelerate the gas to rest in the group 2 sources. Methods: We derive a new expression for the critical luminosity, Lcrit, such that radiation pressure decelerates the matter to rest in sources with X-ray luminosity LX > Lcrit. The formula for Lcrit is based on a simple physical model for the structure of the accretion column in luminous X-ray pulsars that takes into account radiative deceleration, the energy dependence of the cyclotron cross section, the thermodynamics of the accreting gas, the dipole structure of the pulsar magnetosphere, and the diffusive escape of radiation through the column walls. We show that for typical neutron star parameters, Lcrit = 1.5 × 1037 B1216/15 erg s-1, where B12 is the surface magnetic field strength in units of 1012 G. Results: The formula for the critical luminosity is evaluated for five sources, using the maximum value of the CRSF centroid energy to estimate the surface magnetic field strength B12. The results confirm that the group 1 sources are supercritical (LX > Lcrit) and the group 2 sources are subcritical (LX function of LX for both the group 1 (supercritical) and the group 2 (subcritical) sources as a result of the variation of the emission height in the column.

  2. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  3. Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    Ikhsanov, N R

    2012-01-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar ca...

  4. The Radio/X-Ray Correlation and Black Hole Fundamental Plane for Young Radio Sources: Implications for X-Ray Origin and Accretion Mode

    Fan, Xu-Liang; Bai, Jin-Ming

    2016-02-01

    We find that the young radio sources (gigahertz-peaked spectrum and compact steep spectrum radio sources) follow in the radio/X-ray correlation with b=0.61+/- 0.07 ({L}R\\propto {L}Xb), and the fundamental plane of black hole activity with the form {log}{L}R={0.58}-0.03+0.03{log}{L}X+{0.42}-0.07+0.09{log}{M}{BH}+{13.83}-0.97+0.91 and the intrinsic scatter σ =0.29. The flatter coefficient between radio and X-ray bands denies the jet origin of the X-ray emission in these types of sources. Meanwhile, the higher ratio of X-ray luminosity to Eddington luminosity ({L}X/{L}{Edd}) suggests that the X-ray emission is produced by the hot corona coupling with the standard thin disk. The deviation with the radiative efficient fundamental plane proposed by Dong et al. is mainly due to the extended radio emission in young radio sources. This fundamental plane manifests that even the kiloparsec-scaled radio emission has a tight connection with the accretion process, and could be suitable for the radio-loud active galactic nuclei whose radio and X-ray emission are dominated by the extended jets and the radiative efficient accretion flow, respectively. Otherwise, the high-excitation galaxies and low-excitation galaxies do not have obvious distinctions in the radio/X-ray correlation and the fundamental plane.

  5. High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    Cottam, J; Kahn, S M; Paerels, F B S; Liedahl, D A; Cottam, Jean; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2001-01-01

    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.

  6. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  7. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  8. REVISITING PUTATIVE COOL ACCRETION DISKS IN ULTRALUMINOUS X-RAY SOURCES

    Soft, potentially thermal spectral components observed in some ultra-luminous X-ray sources (ULXs) can be fit with models for emission from cool, optically thick accretion disks. If that description is correct, the low temperatures that are observed imply accretion onto 'intermediate-mass' black holes. Subsequent work has found that these components may follow an inverse relationship between luminosity and temperature, implying a non-blackbody origin for this emission. We have re-analyzed numerous XMM-Newton spectra of extreme ULXs. Crucially, observations wherein the source fell on a chip gap were excluded owing to their uncertain flux calibration, and the neutral column density along the line of sight to a given source was jointly determined by multiple spectra. The luminosity of the soft component is found to be positively correlated with temperature, and to be broadly consistent with L∝T 4 in the measured band pass, as per blackbody emission from a standard thin disk. These results are nominally consistent with accretion onto black holes with masses above the range currently known in Galactic X-ray binaries, though there are important caveats. Emission from inhomogeneous or super-Eddington disks may also be consistent with the data

  9. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  10. The Effect of X-ray Irradiation on the Time Dependent Behaviour of Accretion Disks with Stochastic Perturbations

    Maqbool, Bari; Iqbal, Naseer; Ahmad, Naveel

    2015-01-01

    The UV emission from X-ray binaries, is more likely to be produced by reprocessing of X-rays by the outer regions of an accretion disk. The structure of the outer disk may be altered due to the presence of X-ray irradiation and we discuss the physical regimes where this may occur and point out certain X-ray binaries where this effect may be important. The long term X-ray variability of these sources is believed to be due to stochastic fluctuations in the outer disk, which propagate inwards giving rise to accretion rate variation in the X-ray producing inner regions. The X-ray variability will induce structural variations in the outer disk which in turn may affect the inner accretion rate. To understand the qualitative behaviour of the disk in such a scenario, we adopt simplistic assumptions that the disk is fully ionised and is not warped. We develop and use a time dependent global hydrodynamical code to study the effect of a sinusoidal accretion rate perturbation introduced at a specific radius. The response...

  11. Hard X-ray Detection and Timing of Accretion-Powered Pulsars with BATSE

    Chakrabarty, Deepto; Prince, Thomas A.

    1996-01-01

    The BATSE all-sky monitor on the Compton Gamma Ray Observatory is a superb tool for the study of accretion-powered pulsars. In the first part of this thesis, I describe its capabilities for hard X-ray observations above 20 keV, present techniques for timing analysis of the BATSE data, and discuss general statistical issues for the detection of pulsed periodic signals in both the time and frequency domains. BATSE’s 1-day pulsed sensitivity in the 20–60 keV ...

  12. Testing theories for longterm accretion variability in black hole X-ray binaries

    Cambier, Hal J.

    Many X-ray sources are now understood to be "black hole X-ray binaries'' in which a stellar remnant black hole either tidally "squeezes'' gas off a companion star, or pulls in some fraction the companion's wind. This gas can drain inward through a dense, thin disk characterized by thermalized radiation, or a sparse and radiatively-inefficient flow, or some combination of the two. Observations at other energies often provide crucial information, but our primary tools to study accretion, especially closest to the black hole, are X-ray spectra and their time evolution. This evolution includes numerous behaviors spanning orders of magnitude in timescale and luminosity, and also hints at spatial structure since draining is generally faster at smaller radii. This includes variability at time-scales of weeks to months which remains difficult to explain despite an abundance of possible variability mechanisms since direct simulations covering the full spatial and temporal range remain impractical. After reviewing general aspects of accretion, I present both more and less familiar forms of longterm variability. Based on these, I argue the problem involves finding a physical process (or combination) that can generate repeatable yet adjustable cycles in luminosity and evolution of low and high energy spectral components, while letting the ionization instability dominate conventional outbursts. Specific models examined include: disks embedded in, and interacting with, hot, sparse flows, and another instability that quenches viscous-draining of the disk at more fundamental level. Testing these theories, alone and in combination, motivates building a very general and simplified numerical model presented here. I find that two-phase flow models still predict excessive recondensation in LMC X-3 among other problems, while the viscosity-quenching instability may account for rapid drops and slow recoveries in disk accretion rate but also likely requires diffusivity orders of magnitude

  13. X-ray accretion signatures in the close CTTS binary V4046 Sgr

    Günther, H. M.; Liefke, C.; Schmitt, J. H. M. M.; Robrade, J.; Ness, J. -U.

    2006-01-01

    We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ne IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additio...

  14. A radiation-hydrodynamic model of accretion columns for ultra-luminous X-ray pulsars

    Kawashima, Tomohisa; Ohsuga, Ken; Ogawa, Takumi

    2016-01-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamic simulation of a super-critical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with density of $10^{-4} {\\rm g}~ {\\rm cm}^{-3}$ above a neutron star and solve the two dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, while gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, thereby a shock being generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as was noted by Basko \\& Sunyaev (1976). The average accretion rate is very high; ${\\dot M}\\sim 10^{2-3} L_{\\rm E}/c^2$ (with $L_{\\rm E}$ being the Eddington luminosity), and s...

  15. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Dexter, Jason

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogs of BHBs. An inhomogeneous disc (ID) model with large (~0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction, and rms variability amplitude in BHBs ...

  16. The Hard X-ray Spectral Slope as an Accretion-Rate Indicator in Radio-Quiet Active Galactic Nuclei

    Shemmer, Ohad; Brandt, W. N.; Netzer, Hagai; Maiolino, Roberto; Kaspi, Shai

    2006-01-01

    We present new XMM-Newton observations of two luminous and high accretion-rate radio-quiet active galactic nuclei (AGNs) at z~2. Together with archival X-ray and rest-frame optical spectra of three sources with similar properties as well as 25 moderate-luminosity radio-quiet AGNs at z~2 keV) X-ray power-law photon index on the broad H_beta emission-line width and on the accretion rate across ~3 orders of magnitude in AGN luminosity. Provided the accretion rates of the five luminous sources ca...

  17. An ultraluminous X-ray source powered by an accreting neutron star

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    .5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second(3). Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems(1,2). The most challenging sources to explain are those at...... the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the......-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 x 10(39) ergs per second. The pulsating source is spatially coincident with a variable source(4) that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 x 10(40) ergs per second(1). This association implies a luminosity of about 100...

  18. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  19. X-ray variability of SS 433: effects of the supercritical accretion disc

    Atapin, Kirill; Fabrika, Sergei; Medvedev, Aleksei; Vinokurov, Alexander

    2015-01-01

    We study a stochastic variability of SS 433 in the 10-4-5 × 10-2 Hz frequency range based on RXTE data, and on simultaneous observations with RXTE and optical telescopes. We find that the cross-correlation functions and power spectra depend drastically on the precession phase of the supercritical accretion disc. When the wind funnel of the disc is maximally open to the observer, a flat part emerges in the power spectrum; a break is observed at the frequency 1.7 × 10-3 Hz, with a power-law index β ≈ 1.67 at higher frequencies. The soft emission forming mostly in the jets lags behind the hard and optical emission. When the observer does not see the funnel and jets (the `edge-on' disc), the power spectrum is described by a single power-law with β ≈ 1.34 and no correlations between X-ray ranges are detected. We investigated two mechanisms to explain the observed variability at the open disc phase: (1) reflection of radiation at the funnel wall (X-rays and optical) and (2) the gas cooling in the jets (X-rays only). The X-ray variability is determined by the contribution of both mechanisms; however, the contribution of the jets is much higher. We found that the funnel size is (2-2.5) × 1012 cm, and the opening angle is ϑf ˜ 50°. X-ray jets may consist of three fractions with different densities: 8 × 1013, 3 × 1013 and 5 × 1011 cm-3, with most of the jet's mass falling within the latter fraction. We suppose that revealed flat part in the power spectrum may be related to an abrupt change in the disc structure and viscous time-scale at the spherization radius, because the accretion disc becomes thick at this radius, h/r ˜ 1. The extent of the flat spectrum depends on the variation of viscosity at the spherization radius.

  20. The rotation of accretion-disks and the power spectra of X-rays 'flickering'

    The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs

  1. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  2. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma

  3. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29...

  4. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    Keek, L.; Ballantyne, D. R.

    2016-03-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe Kα emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ˜10 per cent of the Eddington limit, the compact and optically thick corona is located close to the inner disc, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disc surface. Furthermore, we find a soft excess that consists of two components. In addition to a contribution from reflection in low ionization states, a second component is present that traces the overall flux.

  5. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  6. Relation between the X-ray and Optical Luminosities in Binary Systems with Accreting Nonmagnetic White Dwarfs

    Revnivtsev, M G; Suleimanov, V F

    2014-01-01

    We investigate the relation between the optical (g-band) and X-ray (0.5-10 keV) luminosities of accreting nonmagnetic white dwarfs. According to the present-day counts of the populations of star systems in our Galaxy, these systems have the highest space density among the close binary systems with white dwarfs. We show that the dependence of the optical luminosity of accreting white dwarfs on their X-ray luminosity forms a fairly narrow one-parameter curve. The typical half-width of this curve does not exceed 0.2-0.3 dex in optical and X-ray luminosities, which is essentially consistent with the amplitude of the aperiodic flux variability for these objects. At X-ray luminosities Lx~1e32 erg/sec or lower, the optical g-band luminosity of the accretion flow is shown to be related to its X-ray luminosity by a factor ~2-3. At even lower X-ray luminosities (Lx~1e30 erg/sec), the contribution from the photosphere of the white dwarf begins to dominate in the optical spectrum of the binary system and its optical brig...

  7. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    Keek, L

    2015-01-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe K$\\alpha$ emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this beha...

  8. Massive elliptical galaxies in X-rays: the role of late gas accretion

    Pipino, A; Gibson, B K; Matteucci, F; Pipino, Antonio; Kawata, Daisuke; Gibson, Brad K.; Matteucci, Francesca

    2005-01-01

    We present a new chemical evolution model meant to be a first step in the self-consistent study of both optical and X-ray properties of elliptical galaxies. Detailed cooling and heating processes in the interstellar medium are taken into account using a mono-phase one-zone treatment which allows a more reliable modelling of the galactic wind regime with respect to previous work. The model successfully reproduces simultaneously the mass-metallicity, colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. We found that a late secondary accretion of gas from the environment plays a fundamental role in driving the L_X - L_B and L_X - T relations and can explain their large observational scatter. The iron discrepancy, namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, still pe...

  9. MHD Accretion-Disk Winds as X-ray Absorbers in AGNs

    Fukumura, Keigo; Contopoulos, Ioannis; Behar, Ehud

    2009-01-01

    We present two-dimensional (2D), self-similar solutions of magnetohydrodynamic (MHD) winds blowing off accretion disks around black holes and compute their 2D ionization structure due to a central X-ray point source. We focus our attention on winds with a specific density function of the spherical radial coordinate r, i.e. n(r)~1/r. We employ the photoionization code XSTAR to compute the line-of-sight (LOS) absorption of these magnetocentrifugally accelerated winds. We discuss the distribution of the local column density of various ions as a function of the ionization parameter \\xi (or equivalently r) and their corresponding absorption line profiles for different LOS angles. Particular attention is paid to the absorption measure distribution (AMD), dN_H/dlog(\\xi), which for the n(r)~1/r density profile is found to be independent of \\xi, in good agreement with AMD properties inferred from X-ray spectra of several active galactic nuclei (AGNs) outflows. We compute detailed absorption line profiles, demonstratin...

  10. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    Xie, Fu-Guo

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) of black hole sources has been found. For the traditional type of sources, the correlation can be described by a single power-law. For the other type of sources, while the correlation can still be described by power-law forms, it consists three branches according to the X-ray luminosity, with different power-law indexes. In this paper, we try to explain these correlations in the framework of the coupled accretion-jet model. We attribute the difference between these two types of sources to the difference in the value of viscous parameter $\\alpha$. For the "single power-law" sources, their $\\alpha$ is high; so their accretion is always in the mode of ADAF (advection-dominated accretion flow) for the whole range of X-ray luminosity. For those "hybrid power-law" sources, the value of $\\alpha$ is small so their accretion modes change from ADAF to LHAF (luminous hot accretion flow) to two-phase accretion as the accretion rate incre...

  11. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    Vito, Fabio; Vignali, Cristian; Brandt, William N; Comastri, Andrea; Yang, Guang; Lehmer, Bret D; Luo, Bin; Basu-Zych, Antara; Bauer, Franz E; Cappelluti, Nico; Koekemoer, Anton; Mainieri, Vincenzo; Paolillo, Maurizio; Ranalli, Piero; Shemmer, Ohad; Trump, Jonathan; Wang, Junxian; Xue, Yongquan

    2016-01-01

    We exploit the 7 Ms \\textit{Chandra} observations in the \\chandra\\,Deep Field-South (\\mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5\\leq z 3.7\\sigma$) X-ray emission from massive galaxies at $z\\approx4$. We also report the detection of massive galaxies at $z\\approx5$ at a $99.7\\%$ confidence level ($2.7\\sigma$), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies i...

  12. Swinging between rotation and accretion power in a binary millisecond pulsar

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  13. Spin Measurements of Accreting Black Holes: A Foundation for X-ray Continuum Fitting

    Steiner, James Francis

    Remarkably, an astrophysical black hole has only two attributes: its mass and its spin angular momentum. Spin is often associated with the exotic behavior that black holes manifest such as the production of relativistic and energetic jets. In this thesis, we advance one of the two primary methods of measuring black hole spin, namely, the continuum-fitting method by (1) improving the methodology; (2) testing two foundational assumptions; and (3) measuring the spins of two stellar-mass black holes in X-ray binary systems. Methodology: We present an empirical model of Comptonization that self-consistently generates a hard power-law component by upscattering thermal accretion disk photons as they traverse a hot corona. We show that this model enables reliable measurements of spin for far more X-ray spectral data and for more sources than previously thought possible. Testing the foundations: First, by an exhaustive study of the X-ray spectra of LMC X-3, we show that the inner radius of its accretion disk is constant over decades and unaffected by source variability. Identifying this fixed inner radius with the radius of the innermost stable circular orbit in general relativity, our findings establish a firm foundation for the measurement of black hole spin. Secondly, we test the customary assumption that the inclination angles of the black-hole's spin axis and the binary's orbital axis are the same; for XTE J1550-564 we show that they are aligned to within 12 degrees by modeling the kinematics of the large-scale jets of this microquasar. Measuring spins: We have made the first accurate continuum-fitting spin measurements of the black hole primaries in H1743-322 and XTE J1550-564. For this latter black hole, we have also measured its spin using the other leading method, namely, modeling the broad red wing of the Fe K-alpha; line. As we show, these two independent measurements of spin are in agreement.

  14. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray

  15. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  16. An accretion model for the anomalous X-ray pulsar 4U 0142+61

    Truemper, J E; Kylafis, N D; Ertan, Ü; Zezas, A

    2012-01-01

    We propose that the quiescent emission of AXPs/SGRs is powered by accretion from a fallback disk, requiring magnetic dipole fields in the range 10^{12}-10^{13} G, and that the luminous hard tails of their X-ray spectra are produced by bulk-motion Comptonization in the radiative shock near the bottom of the accretion column. This radiation escapes as a fan beam, which is partly absorbed by the polar cap photosphere, heating it up to relatively high temperatures. The scattered component and the thermal emission from the polar cap form a polar beam. We test our model on the well-studied AXP 4U 0142+61, whose energy-dependent pulse profiles show double peaks, which we ascribe to the fan and polar beams. The temperature of the photosphere (kT~0.4 keV) is explained by the heating effect. The scattered part forms a hard component in the polar beam. We suggest that the observed high temperatures of the polar caps of AXPs/SGRs, compared with other young neutron stars, are due to the heating by the fan beam. Using beam...

  17. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows II

    Sim, S A; Long, K S; Turner, T J; Reeves, J N

    2010-01-01

    Highly-ionized fast accretion-disk winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of Active Galactic Nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disk wind models than possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now abl...

  18. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  19. Characterising anomalous transport in accretion disks from X-ray observations

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  20. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  1. X-ray and ultraviolet radiation from accreting white dwarfs. IV - Two-temperature treatment with electron thermal conduction

    Imamura, J. N.; Durisen, R. H.; Lamb, D. Q.; Weast, G. J.

    1987-01-01

    Results are reported from two-temperature calculations of the structures and X-ray spectra of radiation shocks generated by accretion onto nonmagnetic white dwarfs. The approach was necessitated by the domination of bremsstrahlung in the emission region by Compton cooling. Features of the shock model, which includes steady, spherical infall of fully ionized plasma and dominance of the stand-off shock by collisional processes, are summarized. A maximum hard X-ray temperature of about 50 keV and a maximum hard X-ray luminosity of 2 x 10 to the 36th ergs/sec were obtained. The results prove that the bulk of accretion energy cannot be transported to the star by electron thermal conduction, provided that bremsstrahlung cooling is dominant over cyclotron cooling.

  2. Super-Eddington Accretion in the Ultraluminous X-ray Source NGC1313 X-2: An Ephemeral Feast

    Weng, Shan-Shan; Zhao, Hai-Hui

    2013-01-01

    We investigate the X-ray spectrum, variability and the surrounding ionized bubble of NGC1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC1313 X-2 is truncated at a large radius ($\\sim$ 50 times of innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries. In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be over ionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission {\\it Astro-H}. If the NGC1313 X-2 is a massive stellar X-ray binary, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over $\\sim 10^{4}-10^{5}$ yr. The expansion of the surrounding bubble nebula with a velocity of $\\si...

  3. Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Colombo, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-01-01

    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\\AA}) and OVIII (18.97 {\\AA}) line profiles. Results. The impacts of accreting blob...

  4. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    Suková, Petra; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral states. The specific kind of quasi-periodic flares is expected, when the global structure of the accretion flow, governed by the nonlinear hydrodynamics, induces fluctuations around a fixed point solution. These conditions, which occur at high accretion rates, lead to the variability in the sense of deterministic chaos. We study the nonlinear behaviour of X-ray sources using the recurrence analysis method. We estimate quantitatively the indications for deterministic chaos, such as the Renyi's entropy, for the observed time...

  5. Dependence of the orbital modulation of X-rays from 4U 1820-303 on the accretion rate

    Zdziarski, A A; Wen, L

    2007-01-01

    We report the discovery, using XTE data, of a dependence of the X-ray orbital modulation depth on the X-ray spectral state in the ultracompact atoll binary 4U 1820-303. This state (measured by us by the position on the X-ray colour-colour diagram) is tightly coupled to the accretion rate, which, in turn, is coupled to the phase of the 170-d superorbital cycle of this source. The modulation depth is much stronger in the high-luminosity, so-called banana, state than in the low-luminosity, island, state. We find the X-ray modulation is independent of energy, which rules out bound-free X-ray absorption in an optically thin medium as the cause of the modulation. We also find a significant dependence of the offset phase of the orbital modulation on the spectral state, which favours the model in which the modulation is caused by scattering in hot gas around a bulge at the disc edge, which both size and the position vary with the accretion rate. Estimates of the source inclination appear to rule out a model in which ...

  6. Can the Subsonic Accretion Model Explain the Spin Period Distribution of Wind-fed X-ray Pulsars?

    Li, Tao; Li, Xiang-Dong

    2016-01-01

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently Shakura et al. (2012) suggested a subsonic accretion model for low-luminosity ($<4\\times 10^{36}$ ergs$^{-1}$), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period - orbital period diagram is consistent with observations provided that the winds from the donor stars have relatively low terminal velocities ($\\lesssim 1000$ kms$^{-1}$). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities higher and lower than $4\\times 10^{36}$ ergs$^{-1}$ is about $1:10$.

  7. INTEGRAL results on Supergiant Fast X-ray Transients and accretion mechanism interpretation: ionization effect and formation of transient accretion disks

    Ducci, L; Paizis, A

    2010-01-01

    We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 Supergiant Fast X-ray Transients (SFXTs), implying a net exposure time of about 30Ms. For each source we obtained lightcurves and spectra (3-100keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind accretion mechanism we proposed (Ducci et al. 2009). We discuss the effect of X-ray photoionization on accretion in close binary systems like IGRJ16479-4514 and IGRJ17544-2619. We show that, because of X-ray photoionization, there is a high probability of formation of an accretion disk from capture of angular momentum in IGRJ16479-4514, and we suggest that the formation of transient accretion disks could be responsible of part of the flaring activity in SFXTs with narrow orbits. We also propose an alternative way to explain the origin of flares with peculiar shapes observed in our analysis applying the model of Lamb et al. (1977), which is ...

  8. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  9. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    Kong, A. K. H.; Hu, C. -P.; Lin, L. C. -C.; Li, K. L.; Jin, R.; Liu, C.Y.; Yen, D. C. -C.

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the...

  10. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    Xie, Fu-Guo; Yuan, Feng(Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA)

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power-law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion--jet mod...

  11. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: a short review

    Ingram, Adam

    2015-01-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  12. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  13. X-ray Signatures of Non-Equilibrium Ionization Effects in Galaxy Cluster Accretion Shock Regions

    Wong, Ka-Wah; Ji, Li

    2010-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the LambdaCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The rat...

  14. High-Density Effects in X-ray Reflection Models from Accretion Disks

    García, Javier A; Kallman, Timothy R; Dauser, Thomas; Parker, Michael L; McClintock, Jeffrey E; Steiner, James F; Wilms, Jörn

    2016-01-01

    The current models for the X-ray reflected spectrum from accretion disks around compact objects are commonly calculated for a constant density along a few Thomson depths from in the direction normal to the irradiated surface. In this models an important simplification is adopted, that is that the ionization structure of the material is completely governed by the the ratio of the incident flux to the gas density (i.e., the ionization parameter $\\xi$. In this setup the value of the density is is typically fixed at $n=10^{15}$ cm$^{-3}$, as it is assumed that the ionization state of the gas is the same for equal values of $\\xi$. In this paper we explore the limitations of this assumption by computing the reflected spectra for various values of the gas density. We show that for large values ($n \\gtrsim 10^{17}$ cm$^{-3}$) the high-density effects become important, significantly modifying the reflected spectrum. The main observed effect is a large increase of thermal emission at soft energies (below $\\sim2$ keV), ...

  15. Simulations of the magnetospheres of accreting millisecond pulsars

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  16. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    Kong, A K H; Lin, L C -C; Li, K L; Jin, R; Liu, C Y; Yen, D C -C

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-day periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we confirmed that the 62-day period is not stable, suggesting that it is not the orbital period of M82 X-1 in agreement with previous work.

  17. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    Bernardini F.

    2014-01-01

    Full Text Available We conducted the first long-term (60 days, multiwavelength (optical, ultraviolet, and X-ray simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index γ about 0.2–0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 − 80 eV and a power law (with spectral index Γ = 1.4 − 2.0, with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  18. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  19. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral s...

  20. X-ray Variability as a Probe of Advection-Dominated Accretion in Low-Luminosity AGN

    Ptak, A.; Yaqoob, T.; Mushotzky, R.; Serlemitsos, P.; Griffiths, R.

    1998-01-01

    As a class, LINERs and Low-Luminosity AGN tend to show little or no significant short-term variability (i.e., with time-scales less than a day). This is a marked break for the trend of increased variability in Seyfert 1 galaxies with decreased luminosity. We propose that this difference is due to the lower accretion rate in LINERs and LLAGN which is probably causing the accretion flow to be advection-dominated. This results in a larger characteristic size for the X-ray producing region than i...

  1. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  2. Observation of enhanced X-ray emission from the CTTS AA Tau during a transit of an accretion funnel

    Grosso, Nicolas; Montmerle, Thierry; Fernández, Matilde; Grankin, Konstantin; Osorio, Maria Rosa Zapatero

    2007-01-01

    AA Tau was observed for about 5h per XMM orbit (2 days) over 8 successive orbits, which covers two optical eclipse periods (8.2 days). The XMM optical/UV monitor simultaneously provided UV photometry with a ~15 min sampling rate. Some V-band photometry was also obtained from the ground during this period in order to determine the dates of the eclipses. Two X-ray and UV measurements were secured close to the center of the eclipse. The UV flux is the highest just before the eclipse starts and the lowest towards the end of it. We model the UV flux variations with a weekly modulation (inner disk eclipse), plus a daily modulation, which suggests a non-steady accretion. No eclipses are detected in X-rays. For one measurement, the X-ray count rate was nearly 50 times stronger than the minimum observed level, and the plasma temperature reached 60 MK, i.e., a factor of 2-3 higher than in the other observations. This X-ray event, observed close to the center of the optical eclipse, is interpreted as an X-ray flare. We ...

  3. The accretion-ejection coupling in the black hole candidate X-ray binary MAXI J1836-194

    Russell, T D; Miller-Jones, J C A; Curran, P A; Markoff, S; Russell, D M; Sivakoff, G R

    2013-01-01

    We present the results of our quasi-simultaneous radio, sub-mm, infrared, optical and X-ray study of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We consider the full multi-wavelength spectral evolution of the outburst, investigating whether the evolution of the jet spectral break (the transition between optically-thick and optically-thin synchrotron emission) is caused by any specific properties of the accretion flow. Our observations show that the break does not scale with the X-ray luminosity or with the inner radius of the accretion disk, and is instead likely to be set by much more complex processes. We find that the radius of the acceleration zone at the base of the jet decreases from ~10$^6$ gravitational radii during the hard intermediate state to ~10$^3$ gravitational radii as the outburst fades (assuming a black hole mass of 8 M$_{\\odot}$), demonstrating that the electrons are accelerated on much larger scales than the radius of the inner accretion disk and...

  4. Super-eddington accretion in the ultraluminous x-ray source NGC 1313 X-2: An ephemeral feast

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (∼50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ∼104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ∼100 km s–1 might indicate that it has existed over ∼106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ∼ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  5. Magnetohydrodynamic modeling of the accretion shocks in classical T Tauri stars: the role of local absorption on the X-ray emission

    Bonito, R; Argiroffi, C; Miceli, M; Peres, G; Matsakos, T; Stehle, C; Ibgui, L

    2014-01-01

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthe...

  6. Testing the "no-hair" property of black holes with X-ray observations of accretion disks

    Moore, Christopher J

    2015-01-01

    Accretion disks around black holes radiate a significant fraction of the rest mass of the accreting material in the form of thermal radiation from within a few gravitational radii of the black hole ($ r \\lesssim 20 G M / c^{2}$). In addition, the accreting matter may also be illuminated by hard X-rays from the surrounding plasma which adds fluorescent transition lines to the emission. This radiation is emitted by matter moving along geodesics in the metric, therefore the strong Doppler and gravitational redshifts observed in the emission encode information about the strong gravitational field around the black hole. In this paper the possibility of using the X-ray emission as a strong field test of General Relativity is explored by calculating the spectra for both the transition line and thermal emission from a thin accretion disk in a series of parametrically deformed Kerr metrics. In addition the possibility of constraining a number of known black hole spacetimes in alternative theories of gravity is conside...

  7. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Farinelli, R; Romano, P; Titarchuk, L

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. To this aim, we have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system tau using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar...

  8. Ordinary X-Rays from Three Extraordinary Millisecond Pulsars: XMM-Newton Observations of PSRs J0337+1715, J0636+5129, and J0645+5158

    Spiewak, Renée; Kaplan, David L.; Archibald, Anne; Gentile, Peter; Hessels, Jason; Lorimer, Duncan; Lynch, Ryan; McLaughlin, Maura; Ransom, Scott; Stairs, Ingrid; Stovall, Kevin

    2016-05-01

    We present the first X-ray observations of three recently discovered millisecond pulsars (MSPs) with interesting characteristics: PSR J0337+1715, PSR J0636+5129, and PSR J0645+5158. PSR J0337+1715 is a fast-spinning, bright, and so-far unique MSP in a hierarchical triple system with two white dwarf companions. PSR J0636+5129 is an MSP in a very tight 96-minute orbit with a low-mass, 8 M J companion. PSR J0645+5158 is a nearby, isolated MSP with a very small duty cycle (1%-2%), which has led to its inclusion in high-precision pulsar timing programs. Using data from XMM-Newton, we have analyzed X-ray spectroscopy for these three objects, as well as optical/ultraviolet photometry for PSR J0337+1715. The X-ray data for each are largely consistent with expectations for most MSPs with regards to the ratios of thermal and non-thermal emission. We discuss the implications of these data on the pulsar population, and prospects for future observations of these pulsars.

  9. Ordinary X-rays from Three Extraordinary Millisecond Pulsars: XMM-Newton Observations of PSRs J0337+1715, J0636+5129, and J0645+5158

    Spiewak, Renée; Archibald, Anne; Gentile, Peter; Hessels, Jason; Lorimer, Duncan; Lynch, Ryan; McLaughlin, Maura; Ransom, Scott; Stairs, Ingrid; Stovall, Kevin

    2016-01-01

    We present the first X-ray observations of three recently discovered millisecond pulsars (MSPs) with interesting characteristics: PSR J0337+1715, PSR J0636+5129, and PSR J0645+5158. PSR J0337+1715 is a fast-spinning, bright, and so-far unique MSP in a hierarchical triple system with two white dwarf (WD) companions. PSR J0636+5129 is a MSP in a very tight 96-min orbit with a low-mass, 8 $M_J$ companion. PSR J0645+5158 is a nearby, isolated MSP with a very small duty cycle (1-2%), which has led to its inclusion in high-precision pulsar timing programs. Using data from XMM-Newton, we have analyzed X-ray spectroscopy for these three objects, as well as optical/ultraviolet photometry for PSR J0337+1715. The X-ray data for each are largely consistent with expectations for most MSPs with regards to the ratios of thermal and non-thermal emission. We discuss the implications of these data on the pulsar population, and prospects for future observations of these pulsars.

  10. An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    Dovciak, M; Yaqoob, T

    2003-01-01

    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings,...

  11. Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: accretion from a transient disc?

    Romano, P; Mangano, V; Esposito, P; Israel, G; Tiengo, A; Campana, S; Ducci, L; Ferrigno, C; Kennea, J A

    2015-01-01

    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries associated with OB supergiant companions and characterised by an X-ray flaring behaviour whose dynamical range reaches 5 orders of magnitude on timescales of a few hundred to thousands of seconds. Current investigations concentrate on finding possible mechanisms to inhibit accretion in SFXTs and explain their unusually low average X-ray luminosity. We present the Swift observations of an exceptionally bright outburst displayed by the SFXT IGR J17544-2619 on 2014 October 10 when the source achieved a peak luminosity of $3\\times10^{38}$ erg s$^{-1}$. This extends the total source dynamic range to $\\gtrsim$10$^6$, the largest (by a factor of 10) recorded so far from an SFXT. Tentative evidence for pulsations at a period of 11.6 s is also reported. We show that these observations challenge, for the first time, the maximum theoretical luminosity achievable by an SFXT and propose that this giant outburst was due to the formation of a transient ac...

  12. X-ray Sources in Galactic Globular Clusters

    Heinke, Craig O

    2011-01-01

    I review recent work on X-ray sources in Galactic globular clusters, identified with low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), millisecond pulsars (MSPs) and coronally active binaries by Chandra. Faint transient LMXBs have been identified in several clusters, challenging our understanding of accretion disk instabilities. Spectral fitting of X-rays from quiescent LMXBs offers the potential to constrain the interior structure of neutron stars. The numbers of quiescent LMXBs scale with the dynamical interaction rates of their host clusters, indicating their dynamical formation. Large numbers of CVs have been discovered, including a very faint population in NGC 6397 that may be at or beyond the CV period minimum. Most CVs in dense clusters seem to be formed in dynamical interactions, but there is evidence that some are primordial binaries. Radio millisecond pulsars show thermal X-rays from their polar caps, and often nonthermal X-rays, either from magnetospheric emission, or from a shock betwe...

  13. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  14. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks

  15. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  16. Comptonization in the accretion column of the X-ray pulsar GX~1+4

    Galloway, D. K.

    2000-01-01

    X-ray observations of the binary pulsar GX 1+4 made using the Rossi X-ray Timing Explorer (RXTE) satellite between February 1996 and May 1997 were analysed to quantify source spectral variation with luminosity. Mean Proportional Counter Array (PCA) spectra over the range 2-40 keV are best fitted with a Comptonization model, with source spectrum temperature T_0 approx 1-1.3 keV, plasma temperature T_e approx 6-10 keV, and optical depth tau approx 2-6. The range of fitted T_0 was consistent wit...

  17. Light-bending Scenario for Accreting Black Holes in X-ray Polarimetry

    Dovčiak, Michal; Muleri, F.; Goosmann, René; Karas, Vladimír; Matt, G.

    2011-01-01

    Roč. 731, č. 1 (2011), 75/1-75/15. ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014; GA ČR GA205/07/0052 Grant ostatní: ESA(XE) ESA-PECS project No.98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarization * relativistic processes * X-rays: binaries * X-rays: galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  18. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter...

  19. Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    Tauris, Thomas M; Kramer, Michael

    2012-01-01

    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companion...

  20. Studies of the Origin of High-frequency Quasi-periodic Oscillations of Mass-accreting Black Holes in X-Ray Binaries with Next-generation X-Ray Telescopes

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric

    2016-08-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), PolSTAR (Polarization Spectroscopic Telescope Array), PRAXyS(Polarimetry of Relativistic X-ray Sources), or XIPE (X-ray Imaging Polarimetry Explorer). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT-type mission.

  1. Quasi-periodic oscillations in accreting magnetic white dwarfs I. Observational constraints in X-ray and optical

    Bonnet-Bidaud, J M; Busschaert, C; Falize, E; Michaut, C

    2015-01-01

    Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 sec resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none sh...

  2. The impact of accretion disk winds on the X-ray spectrum of AGN: Part 1 - XSCORT

    Schurch, N J

    2007-01-01

    (abridged) The accretion disk in AGN is expected to produce strong outflows, in particular a UV-line driven wind. Despite providing a good fit to the data, current spectral models of the X-ray spectrum of AGN observed through an accretion disk wind are ad-hoc in their treatment of the properties of the wind material. In order to address these limitations we adopt a numerical computation method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner (XSCORT). We present a series of example spectra from the XSCORT code that allow us to examine the shape of AGN X-ray spectra seen through a wind, for a range of velocity and density distributions, total column densities and initial ionization parameters. These detailed spectral models clearly show considerable complexity and structure that is strongly affected by all these factors. The presence of sharp features in the XSCORT spectra contrasts strongly with both the previous models and...

  3. Revealing accretion onto black holes: X-ray reflection throughout three outbursts of GX 339-4

    Plant, D S; Ponti, G; Muñoz-Darias, T; Coriat, M

    2014-01-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source deca...

  4. X-ray constraints on ionizing photons from accreting black holes at Z~6

    Moustakas, Leonidas A.; Immler, Stefan

    2004-01-01

    Using an X-ray stacking procedure, we provide a robust upper limit to the X-ray luminosity per object of a set of 54 z~5.8 galaxy candidates in the Hubble Ultra Deep Field, which is within the 1 Ms-exposure Chandra Deep Field-South (CDF-S). With an effective total exposure of 44 Ms for the stack, the 3-sigma flux-density limit of 2.1E-17 erg/cm^2/s (soft-band) gives a 3-sigma upper-limit luminosity of L_X = 8E42 erg/s per object at a rest-frame hard energy range of 3-14 keV at z~5.8 for a pho...

  5. Spin frequency distributions of binary millisecond pulsars

    A. Papitto; D.F. Torres; N. Rea; T.M. Tauris

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  6. The XMM-Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties

    Ballo, L; Della Ceca, R; Caccianiga, A; Vignali, C; Carrera, F J; Corral, A; Mateos, S

    2014-01-01

    Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH>4x10^21 cm-2 and X-ray luminosity L(2-10 keV)>10^44 ergs/s; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, lambda_Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, ...

  7. X-RAYING AN ACCRETION DISK IN REALTIME: THE EVOLUTION OF IONIZED REFLECTION DURING A SUPERBURST FROM 4U 1636-536

    When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, provide the best opportunity to study these processes and to probe accretion physics. Using detailed models of X-ray reflection, we perform time resolved spectroscopy of the superburst observed from 4U 1636-536 in 2001 with the Rossi X-Ray Timing Explorer. The spectra are consistent with a blackbody reflecting off a photoionized accretion disk, with the ionization state dropping with time. The evolution of the reflection fraction indicates that the initial reflection occurs from a part of the disk at larger radius, subsequently transitioning to reflection from an inner region of the disk. Even though this superburst did not reach the Eddington limit, we find that a strong local absorber develops during the superburst. Including this event, only two superbursts have been observed by an instrument with sufficient collecting area to allow for this analysis. It highlights the exciting opportunity for future X-ray observatories to investigate the processes in accretion disks when illuminated by superbursts

  8. X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae

    Brickhouse, N S; Dupree, A K; Günther, H M; Luna, G J M; Wolk, S J

    2012-01-01

    Diagnostics of electron temperature (T_e), electron density (n_e), and hydrogen column density (N_H) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 x 10^{-9} M_{\\odot} yr^{-1}, for a stellar magnetic field strength of 600 Gauss and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to subs...

  9. Electromagnetic spin down of a transient accreting millisecond pulsar during quiescence

    Melatos, Andrew

    2015-01-01

    The measured spin-down rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate, if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration, through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spin-down formula and calculate the residual accretion rates where the formula is applicable. As a demonstration, we apply the alternative spin-down formula to produce updated magnetic moment estimates for the four objects above. We note that, based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because ...

  10. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  11. Studies of the Origin of High-Frequency Quasi-Periodic Oscillations of Mass Accreting Black Holes in X-ray Binaries with Next-Generation X-ray Telescopes

    Beheshtipour, Banafsheh; Krawczynski, Henric

    2016-01-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of High Frequency Quasi-Periodic Oscillations (HFQPOs) of the X-ray flux from several accreting stellar mass Black Holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the strong gravity regime. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general relativistic ray-tracing code to investigate X-ray timing-spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment like the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), P...

  12. The ultraluminous X-ray source NGC 5643 ULX1 : a large stellar mass black hole accreting at super-Eddington rates?

    Pintore, F.; Zampieri, L.; Sutton, A. D.; Roberts, T. P.; Middleton, M. J.; Gladstone, J. C.

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s−1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ∼10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we...

  13. X-ray Probes of Black Hole Accretion Disks for Testing the No-Hair Theorem

    Johannsen, Tim

    2015-01-01

    The spins of a number of supermassive and stellar-mass black holes have been measured based on detections of thermal continuum emission and relativistically broadened iron lines in their x-ray spectra. Likewise, quasiperiodic variability has been observed in several sources. Such measurements commonly make the assumption that black holes are described by the Kerr metric, which according to the no-hair theorem characterizes black holes uniquely in terms of their masses and spins. This fundamental property of black holes can be tested observationally by measuring potential deviations from the Kerr metric introduced by a parametrically deformed Kerr-like spacetime. Thermal spectra, iron lines, and variability have already been studied extensively in several such metrics, which usually depend on only one particular type of deviation or contain unphysical regions outside of the compact object. In this paper, I study these x-ray probes in the background of a new Kerr-like metric which depends on four independent de...

  14. Black hole accretion rings revealed by future X-ray spectroscopy

    Sochora, Vjačeslav; Karas, Vladimír; Svoboda, Jiří; Dovčiak, Michal

    2011-01-01

    Roč. 418, č. 1 (2011), s. 276-283. ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052; GA MŠk ME09036 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  15. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  16. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  17. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-ray Binaries from Swift BAT Observations

    Corbet, Robin H D

    2013-01-01

    We report the discovery using data from the Swift Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients (SFXTs) and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, RXTE PCA, and INTEGRAL light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency mo...

  18. X-ray Pulsation Searches with NICER

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  19. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  20. X-ray Variability of SS 433: Evidence for Supercritical Accretion

    Atapin, Kirill

    2016-01-01

    We study the X-ray variability of SS433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS433 in the frequency range from $10^{-6}$ to 0.1 Hz, which confirms the presence of a flat portion (flat-topped noise) in the spectrum at frequencies $3\\times 10^{-5}$ - $10^{-3}$ Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The best agreement with the observations is reached by the model with the flat portion extending to $9.5\\times10^{-6}$ Hz and a power-law spectrum with index of 2.6 below that frequency. The jet nutation with a period of about three days suggests that the time for the passage of material through the disk is less than this value. Therefore, at frequencies below $4\\times10^{-6}$ Hz, the power spectrum probably does not reflect...

  1. Constraints on the inner accretion flow of 4U/MXB 1636-53 (V 801 Arae) from a comparison of X-ray burst and persistent emission

    E. Damen; R.A.M.J. Wijers; J. van Paradijs; W. Penninx; T. Oosterbroek; W.H.G. Lewin; F. Jansen

    1990-01-01

    A detailed analysis is presented of the importance of Comptonization in burst and persistent spectra of the low-mass X-ray binary 4U/MXB 1636-53, and from this analysis it is inferred that the inner accretion flow is geometrically thin. It is found that burst spectra of 1636-53 are very nearly Planc

  2. A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705-44: looking at the inner accretion disc with X-ray spectroscopy

    Di Salvo, C.; D'Aí, A.; Iaria, R.; Burderi, L.; Dovčiak, Michal; Karas, Vladimír; Matt, G.; Papitto, A.; Piraino, S.; Riggio, A.; Robba, N.R.; Santangelo, A.

    2009-01-01

    Roč. 398, č. 4 (2009), s. 2022-2027. ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : line formation * individual stars4U 1705−44 * X-ray binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.103, year: 2009

  3. Accretion disk dynamo as the trigger for X-ray binary state transitions

    Begelman, Mitchell C; Reynolds, Christopher S

    2015-01-01

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a "dead zone" where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the sp...

  4. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Mauche, C W; Mathiesen, B F; Jiménez-Garate, M A; Raymond, J C; Mauche, Christopher W.; Liedahl, Duane A.; Mathiesen, Benjamin F.; Jimenez-Garat, Mario A.; Raymond, John C.

    2004-01-01

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly alpha, He alpha, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly alpha and He alpha emission lines of H- and He-like C and O escaping the disk atmosphere.

  5. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.;

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more......-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or...... than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20...

  6. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.;

    2015-01-01

    profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the......We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by...... applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...

  7. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  8. Stronger Reflection from Black Hole Accretion Disks in Soft X-ray States

    Steiner, James F; Garcia, Javier A; McClintock, Jeffrey E

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole candidates collected over the 16-year mission lifetime of RXTE using a simple phenomenological model. As these black holes vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: The Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely the Compton power law. We find that reflection is several times more pronounced (~3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which ...

  9. The Transient Accreting X-Ray Pulsar XTE J1946+274: Stability of X-Ray Properties at Low Flux and Updated Orbital Solution

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Caballero, Isabel; Finger, Mark H.; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E.; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Wolff, Michael T.; Becker, Peter A.; Wood, Kent S.; Wilms, Jörn

    2015-12-01

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ˜35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (˜5 × 1037 erg s-1) and lowest (˜5 × 1036 erg s-1) observed 3-60 keV luminosities.

  10. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation

    Sim, S. A.; Proga, D.; Miller, L.; Long, K. S.; Turner, T. J.

    2010-11-01

    We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Kα line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations.

  11. X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations

    Garcia, J; Reynolds, C S; Kallman, T R; McClintock, J E; Wilms, J; Eikmann, W

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index \\Gamma of the illuminating radiation, the ionization parameter \\xi at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A_{Fe} relative to the solar value. The ranges of the parameters covered are: 1.2 \\leq \\Gamma \\leq 3.4, 1 \\leq \\xi \\leq 10^4, and 0.5 \\leq A_{Fe} \\leq 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compa...

  12. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries

    Giménez-García, A.; Shenar, T.; Torrejón, J. M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.-R.; Rodes-Roca, J. J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; Bernabeu, G.; Sander, A.

    2016-06-01

    two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions: The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

  13. SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

    Wilhelmi, E de Ona; Li, J; Rea, N; Torres, D F; Burderi, L; Di Salvo, T; Iaria, R; Riggio, A; Sanna, A

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertainties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, ...

  14. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries

    Giménez-García, A.; Shenar, T.; Torrejón, J. M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.-R.; Rodes-Roca, J. J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; Bernabeu, G.; Sander, A.

    2016-06-01

    orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

  15. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  16. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu [School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, VA 22030-4444 (United States)

    2014-04-20

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources.

  17. Swift X-ray Telescope study of the Black Hole Binary MAXI J1659-152: Variability from a two component accretion flow

    Kalamkar, M; Heil, L; Homan, J

    2015-01-01

    We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659-152 with the Swift X-ray Telescope (XRT). The broad-band noise components and the quasi periodic oscillations (QPO) observed in the power spectra show a strong and varied energy dependence. Combining Swift XRT data with data from the Rossi X-ray Timing Explorer, we report, for the first time, an rms spectrum (fractional rms amplitude as a function of energy) of these components in the 0.5-30 keV energy range. We find that the strength of the low-frequency component ( 0.1 Hz) whose strengths increase with energy. In the context of the propagating fluctuations model for X-ray variability, we suggest that the low-frequency component originates in the accretion disk (which dominates emission below ~ 2 keV) and the higher frequency components are formed in the hot flow (which dominates emission above ~ 2 keV). As the properties of the QPO suggest that it may have a different driving mechanism, we i...

  18. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    F. Bernardini; E.M. Cackett; E.F. Brown; C. D'Angelo; N. Degenaar; J.M. Miller; M. Reynolds; R. Wijnands

    2013-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in

  19. Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk?

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.

  20. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  1. Stochastic Resonance of Accretion Disk and the Persistent Low-Frequency Quasi-Periodic Oscillations in Black Hole X-ray Binaries

    Z. Y. Wang; P. J. Chen; D. X. Wang; L. Y. Zhang

    2013-03-01

    In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance (SR) phenomenon in PSD curves for different parameter values of viscosity coefficient, accretion rate, mass of black hole and outer radius of the disk. The results show that our simulated PSD curves of luminosity for disk oscillation have the same profile as the observed PSD of black hole X-ray binaries (BHXBs) in the lowhard state, and the SR of accretion disk oscillation may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (LFQPOs).

  2. X-ray Pulsars

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  3. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  4. DISCOVERY OF BURST OSCILLATIONS IN THE INTERMITTENT ACCRETION-POWERED MILLISECOND PULSAR HETE J1900.1-2455

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ∼1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP with a far lower duty cycle), than those of the AMPs SAX J1808.4-3658 and XTE J1814-338. We discuss the implications for models of the burst oscillation and intermittency mechanisms.

  5. Probing neutron star physics using accreting neutron stars

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  6. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  7. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  8. A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries

    Bhattacharyya, Sudip

    2002-02-01

    We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.

  9. Birth and evolution of neutron stars: Issues raised by millisecond pulsars; Proceedings of the eighth workshop, Green Bank, WV, June 6-8, 1984

    Observations of millisecond pulsars are discussed, taking into account a review of millisecond pulsars, arrival time observations of the 1.6 millisecond pulsar 1937 + 214, a 6.1 millisecond binary pulsar, polarimetry of the two fastest pulsars, an optical synchrotron nebula around the X-ray pulsar 0540-693, optical observations of the millisecond pulsars PSR 1937 + 214 and PSR 1935 + 29, and a single pulse study of the millisecond pulsar 1937 + 214. The life history of millisecond pulsars is examined, giving attention to the origin of neutron stars, models for the formation of binary and millisecond radio pulsars, isolated and binary millisecond pulsars and accretion spun-up neutron stars, the period distribution of fast pulsars, the origin of pulsar velocities, a model of radio emission of the millisecond pulsar 1937 + 214, and a study of pulsar luminosities. Other subjects investigated are related to the physics of rapidly rotating neutron stars, a summary of general theoretical issues, and searches

  10. The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    Kajava, Jari J E; Latvala, Outi-Marja; Pursiainen, Miika; Poutanen, Juri; Suleimanov, Valery F; Revnivtsev, Mikhail G; Kuulkers, Erik; Galloway, Duncan K

    2014-01-01

    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, 'island' spectral states, but rarely during soft, high-luminosity, 'banana' states. The observed behaviour may...

  11. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    Pintore, F; Sutton, A D; Roberts, T P; Middleton, M J; Gladstone, J C

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above $10^{40}$ erg s$^{-1}$, typically have energy spectra which can be well described as hard power-laws, and short-term variability in excess of $\\sim10\\%$. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1$-$440939, located in NGC 5643. We report that its high quality EPIC spectra can be better described by a broad, thermal component, such as an advection dominated disc or an optically thick Comptonising corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We ...

  12. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  13. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale

    Mellah, I El

    2016-01-01

    Classical Supergiant X-ray Binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 10$^{35}$ to 10$^{37}$ erg/s. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to characterize the structure of the wind at the orbital scale as it accelerates, from the stellar surface to the vicinity of the accretor. Thanks to the parametrization we retained and the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the $\\alpha$-force multiplier which drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rat...

  14. Revealing the Evolving Accretion Disk Corona in AGNs with Multi-Epoch X-ray Spectroscopy: the case of Mrk 335

    Ballantyne, David R.; Keek, Laurens

    2016-04-01

    Active galactic nuclei host an accretion disk with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disk has been observed. Reflection produces numerous spectral features, such as the Fe Kα emission line and absorption edge, which allow various properties of the inner accretion disk and corona to be constrained. We perform a multi-epoch spectral analysis of a dozen XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and optimize the fitting procedure to unveil correlations between the Eddington ratio and multiple spectral parameters. We find that the ionization parameter of the accretion disk correlates strongly with the Eddington ratio: the inner disk is more strongly ionized at higher flux. Interestingly, the slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ~10% of the Eddington limit, the compact and optically thick corona is located close to the inner disk, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disk surface. Compared to previous work that considered individual spectra, we find that multi-epoch spectroscopy is essential for breaking degeneracies in the spectral fits and for obtaining accurate spectral parameters. Furthermore, we show that this method provides a powerful tool to study coronal evolution. The rich archives of XMM-Newton, Suzaku, and NuSTAR provide the opportunity to extend this investigation to include several other bright AGN, which will reveal whether the behaviour that we found is common or unique to Mrk 335.

  15. The origin of planets orbiting millisecond pulsars

    Tavani, Marco; Brookshaw, Leigh

    1992-01-01

    A model for the formation of planets around millisecond pulsar which no longer have stellar companions is suggested. Detailed hydrodynamical models are presented which suggest that planet formation can occur either in a low-mass X-ray binary progenitor to a progenitor of a star-vaporizing millisecond pulsar when the neutron star is accreting material driven off its companion by X-ray irradiation or after a pulsar has formed and is vaporizing its companion. In both cases a circumbinary disk is created in which planets can form on a timescale of 10 exp 5 to 10 exp 6 yrs and the planets can survive a second phase in which the companion star moves toward the pulsar and is completely vaporized.

  16. YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission

    Matsakos, T; Stehlé, C; González, M; Ibgui, L; de Sá, L; Lanz, T; Orlando, S; Bonito, R; Argiroffi, C; Reale, F; Peres, G

    2013-01-01

    Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of several perturbation types, such as clumps in the accretion stream or chromospheric fluctuations, and also explored a wide range of plasma-\\beta values. Results. In the case of a weak magnetic field, the post-shock region shows chaotic motion and mixing, smoothing out the perturbations and retaining a global periodic signature....

  17. The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    Degenaar, N; Reynolds, M T; Miller, J M; Altamirano, D; Kennea, J; Gehrels, N; Haggard, D; Ponti, G

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary / radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst...

  18. A 16 Millisecond X-Ray Pulsar in the Crab-Like SNR N157B Fast Times at 30 Doradus

    Gotthelf, E V; Marshall, F E; Middleditch, J; Wang, Q D

    1998-01-01

    The supernova remnant N157B (30 Dor B, SNR 0539-69.1, NGC 2060), located in the Tarantula Nebula of the Large Magellanic Cloud, has long been considered a possible Crab-like remnant. This hypothesis has been confirmed, quite spectacularly, with the discovery of PSR J0537-6910, the remarkable 16 ms X-ray pulsar in N157B. PSR J0537-6910 is the most rapidly spinning pulsar found to be associated with a supernova remnant. Here we report our discovery and summarize the properties of this pulsar and its supernova remnant.

  19. Accretion-powered pulsations in an apparently quiescent neutron star binary

    Archibald, Anne M; Patruno, Alessandro; Hessels, Jason W T; Deller, Adam T; Bassa, Cees; Janssen, Gemma H; Kaspi, Vicky M; Lyne, Andrew G; Stappers, Ben W; Tendulkar, Shriharsh P; D'Angelo, Caroline R; Wijnands, Rudy

    2014-01-01

    Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_X\\sim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron star's magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_X\\lesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.

  20. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona; Fürst, Felix; Barret, Didier; Bellm, Eric C.; Boggs, Steven E.; Chakrabarty, Deepto; Chenevez, Jérôme; Christensen, Finn Erland; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Natalucci, Lorenzo; Pottschmidt, Katja; Stern, Daniel; Tomsick, John A.; Walton, Dominic J.; Wilms, Jörn; Zhang, William

    2014-01-01

    consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ∼ 12.29 s in all energy bands. The...

  1. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.; Fu¨rst, Felix; Barret, Didier; Bellm, Eric C.; Boggs, Steven E.; Chakrabarty, Deepto; Chenevez, Jérôme; Christensen, Finn Erland; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Natalucci, Lorenzo; Pottschmidt, Katja; Stern, Daniel; Tomsick, John A.; Walton, Dominic J.; Wilms, Jo¨rn; Zhang, William

    2013-01-01

    V with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or...

  2. An Integrated Model for the Production of X-Ray Time Lags and Quiescent Spectra from Homogeneous and Inhomogeneous Black Hole Accretion Coronae

    Kroon, John J

    2016-01-01

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green's function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photo...

  3. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    Mushtukov, Alexander A; Serber, Alexander V; Suleimanov, Valery F; Poutanen, Juri

    2015-01-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so called critical luminosity these variations are established to be connected with the appearance of the high accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity onto the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid ene...

  4. An Integrated Model for the Production of X-Ray Time Lags and Quiescent Spectra from Homogeneous and Inhomogeneous Black Hole Accretion Coronae

    Kroon, John J.; Becker, Peter A.

    2016-04-01

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  5. Interpreting the large amplitude X-ray variation of GRS 1915+105 and IGR J17091-3624 as modulations of an accretion disc

    Pahari, Mayukh; Mukherjee, Arunava; Yadav, J S; Pandey, S K

    2013-01-01

    Using the flux resolved spectroscopy for the first time, we analyse the RXTE/PCA data of the black hole X-ray binaries GRS 1915+105 and IGR J17091-3624, when both sources show large amplitude, quasi-regular oscillations in 2.0-60.0 keV X-ray light curves. For different observations, we extract spectra during the peak (spectrally soft) and dip (spectrally hard) intervals of the oscillation, and find that their spectra are phenomenologically complex, requiring at least two distinct spectral components. Besides a thermal Comptonization component, we find that the disc emission is better modelled by an index-free multicolour disc blackbody component (p-free disc model) rather than that from a standard accretion disc. While the peak and dip spectra are complex, remarkably, their difference spectra constructed by treating dip spectra as the background spectra of the peak spectra, can be modelled as a single p-free disc component. Moreover, the variability at different time-scales and energy bands of the peak flux l...

  6. X-ray pulsar rush in 1998

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B ∼ 1015 G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  7. X-ray pulsars: a review

    Caballero, I

    2012-01-01

    Accreting X-ray pulsars are among the most luminous objects in the X-ray sky. In highly magnetized neutron stars (B~10^12 G), the flow of matter is dominated by the strong magnetic field. The general properties of accreting X-ray binaries are presented, focusing on the spectral characteristics of the systems. The use of cyclotron lines as a tool to directly measure a neutron star's magnetic field and to test the theory of accretion are discussed. We conclude with the current and future prospects for accreting X-ray binary studies.

  8. Quark-Novae in post-accretion Low-Mass X-ray Binaries: A universal model for short-hard Gamma-Ray Bursts

    Ouyed, Rachid; Jaikumar, Prashanth

    2010-01-01

    We show that several features reminiscent of short-hard GRBs arise naturally when Quark-Novae occur in post-accretion low-mass X-ray binaries with a circumbinary disk. Post-accretion conditions in a neutron star-white dwarf binary are just right for the conversion of the neutron star to a quark star (Quark-Nova). In our model, the subsequent interaction of material from the neutron star's ejected crust with the circumbinary disk explains the duration, variability and near-universal nature of the prompt emission in short-hard GRBs. We also describe a statistical approach to ejecta break-up and collision to obtain the photon spectrum in our model, which turns out remarkably similar to the empirical Band function (Band et al. 1993). We apply the model to the fluence and spectrum of GRB 000727, GRB 000218, and GRB980706A obtaining excellent fits. Extended emission (spectrum and duration) is explained by shock-heating and ablation of the white dwarf by the highly energetic ejecta. Depending on the orbital separati...

  9. X-ray diagnostics of chemical composition of the accretion disk and donor star in UCXBs II: XMM-Newton observations

    Koliopanos, Filippos; Trigo, Maria Diaz

    2014-01-01

    We search for the Fe K${\\alpha}$ line in spectra of Ultra Compact X-ray Binaries (UCXBs). For this purpose we have analyzed XMM-Newton observations of five confirmed UCXBs. We find that the object 2S 0918-549 - whose optical spectrum bears tentative signatures of a C/O accretion disk - is devoid of any emission features in the 6-7 keV range, with an upper limit of less than 10 eV for the equivalent width (EW) of the iron line. 4U 1916-05 - whose optical spectrum is consistent with reflection from a He-rich accretion disk - exhibits a bright broad iron emission line. This behavior is in agreement with the theoretical predictions presented in Koliopanos, Gilfanov and Bildsten (2013). Namely, we expect strong suppression of the Fe K${\\alpha}$ emission line in spectra originating in moderately bright (LogLx less than $\\approx$ 37.5) UCXBs with C/O or O/Ne/Mg-rich donors. On the other hand the EW of the iron line in spectra from UCXBs with He-rich donors is expected to retain its nominal value of $\\approx$ 100 eV....

  10. Formation of black widows and redbacks -- two distinct populations of eclipsing binary millisecond pulsars

    Chen, Hai-Liang; Tauris, Thomas M; Han, Zhanwen

    2013-01-01

    Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between $0.1-1.0\\;{\\rm days}$ their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks ...

  11. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri

    2015-12-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.

  12. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    Sim, S A; Miller, L; Long, K S; Turner, T J

    2010-01-01

    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determi...

  13. A propeller model for the sub-luminous disk state of the transitional millisecond pulsar PSR J1023+0038

    Papitto, A

    2015-01-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter, has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk, it emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumption that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk-magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together ...

  14. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-Line Quasars: Unification with a Geometrically Thick Accretion Disk?

    Luo, B; Hall, P B; Wu, Jianfeng; Anderson, S F; Garmire, G P; Gibson, R R; Plotkin, R M; Richards, G T; Schneider, D P; Shemmer, O; Shen, Yue

    2015-01-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ~ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ($\\Gamma=1.16_{-0.32}^{+0.37}$) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how ...

  15. Interpreting the large amplitude X-ray variation of GRS 1915+105 and IGR J17091-3624 as modulations of an accretion disc

    Pahari, Mayukh; Misra, Ranjeev; Mukherjee, Arunava; Yadav, J. S.; Pandey, S. K.

    2013-12-01

    Using the flux resolved spectroscopy for the first time, we analyse the RXTE/PCA data of the black hole X-ray binaries GRS 1915+105 and IGR J17091-3624, when both sources show large-amplitude, quasi-regular oscillations in 2.0-60.0 keV X-ray light curves (similar to the κ and λ classes in GRS 1915+105). For different observations, we extract spectra during the peak (spectrally soft) and dip (spectrally hard) intervals of the oscillation, and find that their spectra are phenomenologically complex, requiring at least two distinct spectral components. Besides a thermal Comptonization component, we find that the disc emission is better modelled by an index-free multicolour disc blackbody component (p-free disc model) rather than that from a standard accretion disc. While the peak and dip spectra are complex, remarkably, their difference spectra, constructed by treating dip spectra as the background spectra of the peak spectra, can be modelled as a single p-free disc component. Moreover, the variability at different time-scales and energy bands of the peak flux level is always greater than or equal to the variability of the dip flux level, which strengthens the possibility that the peak flux level may be due to an independent spectral component added to the dip one. Using joint spectral analysis of peak and dip spectra with a variable emission component, we verify that the variable component is consistent with p-free disc blackbody and its spectral parameters are similar to that found from the difference spectral analysis. In contrast, we show that for oscillations in the θ class where soft dips are observed, the difference spectra cannot be similarly fitted. Our result substantiates the standard hypothesis that the oscillations are due to the limit cycle behaviour of an unstable radiation pressure dominated inner disc. However, in this interpretation, the flux variation of the unstable disc can be several order of magnitudes as expected from some theoretical

  16. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in Supergiant Fast X-ray Transient and classical Supergiant X-ray Binaries

    Gimenez-Garcia, A; Torrejon, J M; Oskinova, L; Martinez-Nunez, S; Hamann, W -R; Rodes-Roca, J J; Gonzalez-Galan, A; Alonso-Santiago, J; Gonzalez-Fernandez, C; Bernabeu, G; Sander, A

    2016-01-01

    Classical Supergiant X-ray Binaries (SGXBs) and Supergiant Fast X-ray Transients (SFXTs) are two types of High-mass X-ray Binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyse the spectra of each star in detail and derive their stellar and wind properties. We compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. We find that the stellar para...

  17. 低质量X射线双星的长期监测和吸积物理%Monitoring Observations of Low Mass X-ray Binary and Accretion Physics

    闫震

    2011-01-01

    In this thesis, we have performed the multi-wavelength monitoring observations of Galactic low-mass X-ray binaries and studied the X-ray spectral evolution and spectral state transitions in bright X-ray binaries, the properties of transient sources during the outbursts and the evolution of multi-wavelength emission during the outburst and the relation between different wavelengths. The large dynamical range of X-ray luminosity is invaluable for studying the accretion physics, since we can watch the evolution of the system through the full range of accretion rates and follow causal sequences between them. The results of our study improve our understanding of accretion physics, especially in some unresolved problems, such as the key role in determining the X-ray spectral transitions, the relation between jet and X-ray spectral states and the origin of emission in different X-ray spectral states.Firstly, we systematically studied the different spectral states and state transitions in the bright Galactic X-ray binaries during the past more than ten years. We could study the long term evolution in different energy bands by using the soft (2-12 keV) and hard (15-50 keV) X-ray monitoring light curves. The hardnessratio of the two energy band can be used to describe the X-ray spectral evolution and define the spectral states and state transitions. We confirmed that the luminosity of hard-to-soft state transition positively correlates with the peak luminosity of following soft state, and also found positively correlation between the luminosity of hard-to-soft state transition and the rate-of-increase of luminosity. These two empirical correlations indicate that the brightest hard state and the hard-to-soft state transition are determined by the non-stationary accretion which is characterised by the rate-of-increase of mass accretion rate. Both correlations do not show any saturation or cut-off in the high luminosity end, which implies that the brighter outbursts and

  18. Millisecond X-ray Star Tracker Project

    National Aeronautics and Space Administration — CrossTrac Engineering, in cooperation with its subcontractors Dr Suneel Sheikh of ASTER Labs, Inc, and Mr Paul Graven of Cateni, Inc, proposes to develop a next...

  19. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    R. Wijnands; N. Degenaar

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which r

  20. A Search for Pulsars in Quiescent Soft X-Ray Transients. I

    Burgay, M; Possenti, A; D'Amico, N; Manchester, R N; Lyne, A G; Camilo, F

    2003-01-01

    We have carried out a deep search at 1.4 GHz for radio pulsed emission from six soft X-ray transient sources observed during their X-ray quiescent phase. The commonly accepted model for the formation of the millisecond radio pulsars predicts the presence of a rapidly rotating, weakly magnetized neutron star in the core of these systems. The sudden drop in accretion rate associated with the end of an X-ray outburst causes the Alfv\\`en surface to move outside the light cylinder, allowing the pulsar emission process to operate. No pulsed signal was detected from the sources in our sample. We discuss several mechanisms that could hamper the detection and suggest that free-free absorption from material ejected from the system by the pulsar radiation pressure could explain our null result.

  1. X-ray transient AGN and galaxies

    Grupe, D.

    2001-01-01

    X-ray transience is the most extreme form of variability observed in AGN or normal in-active galaxies. While factors of 2-3 on timescales of days to years are quite commen among AGN, X-ray transients appear only once and vanish from the X-ray sky years later. The ROSAT All-Sky Survey was the tool to discover these sources. X-ray transience in AGN or galaxies can be caused by dramatic changes in the accretion rate of the central black hole or by changes of the properties of the accretion disk.

  2. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of hybrid crusts in accreting neutron stars

    Wijnands, Rudy; Page, Dany

    2012-01-01

    It is assumed that accreting neutron stars (NSs) in LMXBs are heated due to the compression of the existing crust by the accreted matter which gives rise to nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements. We discuss if NSs in very-faint X-ray transients (VFXTs; those which have peak X-ray luminosities < 1E36 erg/s) can be used to test this model. Unfortunately we cannot conclusively answer this because of the large uncertainties in our estimates of the accretion rate history of those VFXTs, both the short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is important because it can be so low that the NSs might not have accreted enough matter to become massive enough that enhanced cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processed have been inferred. However, the...

  3. Symbiotic stars in X-rays

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K; Nelson, T.

    2012-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbi...

  4. The clustering amplitude of X-ray selected AGN at z=0.8: Evidence for a negative dependence on accretion luminosity

    Mountrichas, G; Menzel, M L; Fanidakis, N; Merloni, A; Liu, Z; Salvato, M; Nandra, K

    2016-01-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray selected AGN [$\\rm log\\, L_X (\\rm 2-10\\,keV)= 43.6^{+0.4}_{-0.4}\\,erg/s$] in the redshift interval $z=0.5-1.2$. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIPERS spectroscopic galaxy survey to determine the cross-correlation signal between X-ray selected AGN (total of 318) and galaxies (about 20,\\,000). We model the large scales (2-25\\,Mpc) of the correlation function to infer a mean dark matter halo mass of $\\log M / (M_{\\odot} \\, h^{-1}) = 12.50 ^{+0.22} _{-0.30}$ for the X-ray selected AGN sample. This measurement is about 0.5\\,dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate luminosity X-ray AGN [$L_X (\\rm 2-10\\,keV)\\approx 10^{42} - 10^{43}\\,erg/s$] at similar redshifts. Our analysis also links the mean clustering properties o...

  5. Formation and evolution of X-ray binaries

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  6. Discovery of a Redback Millisecond Pulsar Candidate: 3FGL J0212.1+5320

    Li, Kwan-Lok; Hou, Xian; Mao, Jirong; Strader, Jay; Chomiuk, Laura; Tremou, Evangelia

    2016-01-01

    We present a multi-wavelength study of the unidentified Fermi object, 3FGL J0212.1+5320. Within the 95% error ellipse, Chandra detects a bright X-ray source, which has a low-mass optical counterpart (M 64% of the Roche-lobe. Spectroscopic data taken in 2015 from the Lijiang observatory show no evidence of strong emission lines, revealing the accretion is currently inactive (the pulsar state). While the X-ray luminosity and the X-ray-to-gamma-ray flux ratio are both high that are comparable to that of the two known gamma-ray transitional millisecond pulsars, 3FGL J0212.1+5320 could be a promising target to search for future transition to the accretion active state.

  7. A new X-ray nova MAXI J1910-057 (= Swift J1910.2-0546) and mass-accretion inflow

    Nakahira, Satoshi; Shidatsu, Megumi; Ueda, Yoshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Matsuoka, Masaru; Onodera, Takuya

    2014-01-01

    We report on a long-term monitoring of a newly discovered X-ray nova, MAXI J1910-057 (= Swift J1910.2-0546), by MAXI and Swift. The new X-ray transient was first detected on 2012 May 31 by MAXI Gas Slit Camera (GSC) and Swift Burst Alert Telescope (BAT) almost simultaneously. We analyzed X-ray and UV data for 270 days since the outburst onset taken by repeated MAXI scans and Swift pointing observations. The obtained X-ray light curve for the inital 90 days is roughly represented by a fast-rise and exponential-decay profile. However, it re-brightened on the ~110 days after the onset and finally went down below both GSC and BAT detec- tion limits on the 240 day. All the X-ray energy spectra are fitted well with a model consisting of a multi-color-disk blackbody and its Comptonized hard tail. During the soft-state periods, the inner-disk radius of the best-fit model were almost constant. If the radius represents the innermost stable circular orbit of a non-spinning black hole and the soft-to-hard transitions occ...

  8. Meta-stable low-level accretion rate states or neutron star crust cooling in the Be/X-ray transients V0332+53 and 4U 0115+63

    Wijnands, Rudy

    2016-01-01

    The Be/X-ray transients V0332+53 and 4U 0115+63 exhibited giant, type-II outbursts in 2015. Here we present Swift/XRT follow-up observations at the end of those outbursts. Surprisingly, the sources did not decay back to their known quiescent levels but stalled at a (slowly decaying) meta-stable state with luminosities ~10 times that observed in quiescence. The spectra in these states are considerably softer than the outburst spectra and appear to soften in time when the luminosity decreases. The physical mechanism behind these meta-stable states is unclear and they could be due to low-level accretion (either direct accretion onto the neutron stars or on to their magnetospheres) or due to cooling of the accretion-heated neutron star crusts. Based on the spectra, the slowly decreasing luminosities, and the spectral softening, we favour the crust cooling hypothesis but we cannot exclude the accretion scenarios. On top of this meta-stable state, weak accretion events were observed that occurred at periastron pass...

  9. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    R. Wijnands(Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands); Degenaar, N.

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which ranged from ∼0.3 to ∼3.8 ks). The upper limits for the non-detections were consistent with the detected luminosities (when fitting a thermal model to the spectrum) of ∼1034 erg s−1 (0.5-10 keV). Thi...

  10. Joint x-ray

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  11. A new gamma-ray loud, eclipsing low-mass X-ray binary

    Strader, Jay; Chomiuk, Laura; Heinke, Craig O; Udalski, Andrzej; Peacock, Mark; Shishkovsky, Laura; Tremou, Evangelia

    2016-01-01

    We report the discovery of an eclipsing low-mass X-ray binary at the center of the 3FGL error ellipse of the unassociated Fermi/Large Area Telescope gamma-ray source 3FGL J0427.9-6704. Photometry from OGLE and the SMARTS 1.3-m telescope and spectroscopy from the SOAR telescope have allowed us to classify the system as an eclipsing low-mass X-ray binary (P = 8.8 hr) with a main sequence donor and a neutron star accretor. Broad double-peaked H and He emission lines suggest the ongoing presence of an accretion disk. Remarkably, the system shows shows separate sets of absorption lines associated with the accretion disk and the secondary, and we use their radial velocities to find evidence for a massive (~ 1.8-1.9 M_sun) neutron star primary. In addition to a total X-ray eclipse of duration ~ 2200 s observed with NuSTAR, the X-ray light curve also shows properties similar to those observed among known transitional millisecond pulsars: short-term variability, a hard power-law spectrum (photon index ~ 1.7), and a co...

  12. Constraints on the mass and radius of neutron stars from X-ray observations

    Li, Zhaosheng

    2015-01-01

    This article gives a very brief introduction about measuring the mass and radius of neutron star from X-ray observations. The masses and radii of neutron stars can be determined from photospheric radius expansion bursts in low-mass X-ray binaries, X-ray pulse profile modeling in accreting X-ray pulsars, gravitational redshift measurement in low-mass X-ray binaries and thermal X-ray spectral fitting in quiescent low-mass X-ray binaries.

  13. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high

  14. X-rays from neutron stars

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  15. The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift and XMM-Newton

    Papitto, A; Sanchez-Fernandez, C; Romano, P; Torres, D F; Ferrigno, C; Kajava, J J E; Kuulkers, E

    2016-01-01

    We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm$^2$/s and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({\\sigma} ~ 1 keV) emission line was detected at an energy (E = 6.9$^{+0.2}_{-0.3}$ keV) compatible with the K{\\alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the so...

  16. Chest x-ray

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  17. New insights on accretion in Supergiant Fast X-ray Transients from XMM-Newton and INTEGRAL observations of IGR J17544$-$2619

    Drave, S P; Sidoli, L; Sguera, V; Bazzano, A; Hill, A B; Goossens, M E

    2014-01-01

    XMM-Newton observations of the supergiant fast X-ray transient IGR$~$J17544$-$2619 are reported and placed in the context of an analysis of archival INTEGRAL/IBIS data that provides a refined estimate of the orbital period at 4.9272$\\pm$0.0004 days. A complete outburst history across the INTEGRAL mission is reported. Although the new XMM-Newton observations (each lasting $\\sim$15 ks) targeted the peak flux in the phase-folded hard X-ray light curve of IGR$~$J17544$-$2619, no bright outbursts were observed, the source spending the majority of the exposure at intermediate luminosities of the order of several 10$^{33}\\,$erg$\\,$s$^{-1}$ (0.5$\\,-\\,$10$\\,$keV) and displaying only low level flickering activity. For the final portion of the exposure, the luminosity of IGR$~$J17544$-$2619 dropped to $\\sim$4$\\times$10$^{32}\\,$erg$\\,$s$^{-1}$ (0.5 - 10 keV), comparable with the lowest luminosities ever detected from this source, despite the observations being taken near to periastron. We consider the possible orbital ge...

  18. Thoracic spine x-ray

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  19. Chest X-Ray

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  20. Dental x-rays

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  1. X-ray (image)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  2. X-ray apparatus

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  3. X-Rays

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  4. Chest X-Ray

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  5. X-Ray Imaging

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  6. Polarisation modulation in X-ray binaries

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  7. Spin evolution of long-period X-ray pulsars

    Ikhsanov, N R; Beskrovnaya, N G

    2014-01-01

    Spin evolution of X-ray pulsars in High Mass X-ray Binaries (HMXBs) is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star from the accretion flow and equilibrium period of the pulsars are evaluated. We show that the observed spin evolution of the pulsars can be explained in terms of a scenario in which the neutron star accretes material from a magnetized stellar wind.

  8. Theory of wind accretion

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  9. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  10. Probing the MSP prenatal stage: the optical identification of the X-ray burster EXO 1745-248 in Terzan 5

    Ferraro, F R; Lanzoni, B; Cadelano, M; Massari, D; Dalessandro, E; Mucciarelli, A; -,

    2015-01-01

    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Director's Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.

  11. X-ray Variability of AGN and the Flare Model

    Goosmann, R. W.; Czerny, B.; Dumont, A. -M.; Mouchet, M.; Rozanska, A.

    2004-01-01

    Short-term variability of X-ray continuum spectra has been reported for several Active Galactic Nuclei. Significant X-ray flux variations are observed within time scales down to 10^3-10^5 seconds. We discuss short variability time scales in the frame of the X-ray flare model, which assumes the release of a large hard X-ray flux above a small portion of the accretion disk. The resulting observed X-ray spectrum is composed of the primary radiation and of a reprocessed Compton reflection compone...

  12. Applications of Indirect Imaging techniques in X-ray binaries

    Harlaftis, E T

    2000-01-01

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  13. On the lack of X-ray iron line reverberation in MCG-6-30-15 Implications for the black hole mass and accretion disk structure

    Reynolds, C S

    1999-01-01

    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverbera...

  14. X-Ray Polarimetry

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  15. X-ray interferometers

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  16. X-ray - skeleton

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  17. Extremity x-ray

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  18. Dental x-rays

    ... addition, many dentists are taking x-rays using digital technology. The image runs through a computer. The amount of radiation given off during the procedure is less than traditional methods. Other types of dental x-rays can create a 3-D picture ...

  19. QPO-jet relation in X-ray binaries

    Belloni, Tomaso M

    2010-01-01

    In the past years, a clear picture of the evolution of outbursts of black-hole X-ray binaries has emerged. While the X-ray properties can be classified into our distinct states, based on spectral and timing properties, the observations in the radio band have shown strong links between accretion and ejection properties. Here I briefly outline the association between X-ray timing and jet properties.

  20. The Scientific Potential of X-ray Polarimetry

    Fabian, Andrew C.

    2016-04-01

    X-ray Polarimetry is a rich, untapped source of information on the geometry and/or magnetic structure of a wide range of cosmic object from accreting black holes to jets and neutron stars. This introductory overview will outline the basics of the production of polarized X-ray emission and emphasise its importance in our quest to understand how compact objects work.

  1. X-ray studies of the redback system PSR J2129-0429

    Noori, Hind Al; Roberts, Mallory; Hessels, Jason; McLaughlin, Maura; Breton, Rene

    2016-04-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems, and so this system can help in understanding the intrabinary shock of eclipsing MSPs.

  2. Examining the hard X-ray emission of the redback PSR J2129-0429

    Noori, Hind Al; Roberts, Mallory; McLaughlin, Maura; Hessels, Jason; Breton, Rene; 17077031498

    2016-06-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems; hence, this system can help in understanding the intrabinary shock of eclipsing MSPs.

  3. X-ray crystallography

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  4. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  5. Bone X-Ray (Radiography)

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  6. Bone X-Ray (Radiography)

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  7. Bone X-Ray (Radiography)

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  8. Lumbosacral spine x-ray

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  9. Bone X-Ray (Radiography)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  10. Abdomen X-Ray (Radiography)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  11. X-ray apparatus

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  12. X-ray lasers

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  13. The SAS-3 X-ray observatory

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  14. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    Miller-Jones, J. C. A.; Strader, J.; Heinke, C. O.; Maccarone, T. J.; van den Berg, M.; Knigge, C.; Chomiuk, L.; Noyola, E.; Russell, T. D.; Seth, A. C.; Sivakoff, G. R.

    2015-11-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA (Australia Telescope Compact Array) imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as Sν ∝ να) of α = -0.4 ± 0.4. Our measured flux density of 42 ± 4 μJy beam-1 at 5.5 GHz implies a radio luminosity (νLν) of 5.8 × 1027 erg s-1, significantly higher than any previous radio detection of an accreting white dwarf. Transitional millisecond pulsars, which have the highest radio-to-X-ray flux ratios among accreting neutron stars (still a factor of a few below accreting black holes at the same LX), show distinctly different patterns of X-ray and radio variability than X9. When combined with archival X-ray measurements, our radio detection places 47 Tuc X9 very close to the radio/X-ray correlation for accreting black holes, and we explore the possibility that this source is instead a quiescent stellar-mass black hole X-ray binary. The nature of the donor star is uncertain; although the luminosity of the optical counterpart is consistent with a low-mass main-sequence donor star, the mass transfer rate required to produce the high quiescent X-ray luminosity of 1033 erg s-1 suggests the system may instead be ultracompact, with an orbital period of order 25 min. This is the fourth quiescent black hole candidate discovered to date in a Galactic globular cluster, and the only one with a confirmed accretion signature from its optical/ultraviolet spectrum.

  15. The slowest spinning X-ray pulsar in an extragalactic globular cluster

    Zolotukhin, Ivan; Sartore, Nicola; Chilingarian, Igor; Webb, Natalie A

    2016-01-01

    Neutron stars are thought to be born rapidly rotating and then exhibit a phase of a rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recycling concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with $P_{\\rm spin} = 1.20$ s in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up-to 30% of the Eddington luminosity), high spin-up rate pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hz. The neutron star in this unique wide binary with an orbital period $P_{\\rm orb} = 30.5$ h in a 12 Gyr old, meta...

  16. X-Ray Diffraction.

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  17. Medical X-Rays

    ... The Conference of Radiation Control Program Directors (CRCPD) publishes Suggested State Regulations for the Control of Radiation , ... eSubmitter Guidance for Industry and Food and Drug Administration Staff - Assembler's Guide to Diagnostic X-Ray Equipment ...

  18. Chest X-Ray

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  19. Chest X-Ray

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  20. Chest X-Ray

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  1. Chest X-Ray

    Full Text Available ... Angioplasty & vascular stenting Video: Arthrography Video: Contrast Material Radiology and You Take our survey About this Site ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  2. Chest X-Ray

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  3. Chest X-Ray

    Full Text Available ... Site Index A-Z Spotlight June is Men's Health Month Recently posted: Focused Ultrasound for Uterine Fibroids ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny ...

  4. Optical spectra of the carbon-oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543-624 and 2S 0918-549

    Nelemans, G.; Jonker, P. G.; Marsh, T. R.; Klis, van der, M.

    2004-01-01

    We present optical spectra in the range 4600 -- 8600 A for three low-mass X-ray binaries which have been suggested to belong to the class of ultra-compact X-ray binaries based on their X-ray spectra. Our spectra show no evidence for hydrogen or helium emission lines, as are seen in classical X-ray binaries. The spectrum of 4U~0614+09 does show emission lines which we identify with carbon and oxygen lines of CII, CIII, OII and OIII. While the spectra of 4U 1543-624 and 2S 0918-549 have a lower...

  5. Spin-up of low luminosity low mass X-ray binaries

    Yi, I

    1998-01-01

    We examine the spin-up of low luminosity, low mass X-ray binaries (LMXBs) to millisecond pulsars (MSPs). In the conventional spin-up model of the Ghosh & Lamb type, where the stellar magnetic field interacts with the Keplerian accretion disk, MSPs could be produced from LMXBs if their magnetic field B < 10^{8}({\\dot M}/10^{16}g/s)^{1/2}G, where {\\dot M} is the mass accretion rate. However, for {\\dot M} < {\\dot M}_c ~ 10^{16}g/s accretion is likely to occur via a quasi-spherical flow with a sub-Keplerian rotation. The sub-Keplerian rotation rate is smaller than the Keplerian rate by a factor ~2-10. As a consequence, the spin-up of LMXBs produces pulsars with spin periods longer by a factor ~2-10 than those with a Keplerian accretion disk. The observed MSPs could be produced only for B < 10^7G even when {\\dot M}\\sim {\\dot M}_c ~ 10^{16}g/s. This suggests that the low luminosity LMXBs with {\\dot M} < {\\dot M}_c would not be able to spin-up to the observed MSPs. This rules out any undetected popul...

  6. X-ray tubes

    An improved form of x-ray tube is described which consists of a rotatable anode disc and an electron beam source enclosed in an envelope. The beam of electrons strikes the edge of the anode disc at an acute angle, producing x-rays which are transmitted through a window in the envelope. To improve performance and life of the anode disc it is additionally reciprocated back and forth along its axis of rotation. Dimensions are specified. (U.K.)

  7. Bone X-Ray (Radiography)

    Full Text Available ... around or in bones. top of page How should I prepare? Most bone x-rays require no ... might interfere with the x-ray images. Women should always inform their physician and x-ray technologist ...

  8. Bone X-Ray (Radiography)

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  9. Bone X-Ray (Radiography)

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  10. X-ray laser

    X-ray is among the most important research tools today, and has given priceless contributions to all disciplines within the natural sciences. State of the art in this field is called XFEL, X-ray Free Electron Laser, which may be 10 thousand million times stronger than the x-rays at the European Synchrotron Radiation Facility in Grenoble. In addition XFEL has properties that allow the study of processes which previously would have been impossible. Of special interest are depictions on atomic- and molecular level by the use of x-ray holographic methods, and being able to study chemical reactions in nature's own timescale, the femtosecond. Conclusion: The construction of x-ray lasers is a natural development in a scientific field which has an enormous influence on the surrounding society. While the discovery of x-ray was an important breakthrough in itself, new applications appear one after the other: Medical depiction, dissemination, diffraction, DNA and protein structures, synchrotron radiation and tomography. There is reason to believe that XFEL implies a technological leap as big as the synchrotrons some decades ago. As we are now talking about studies of femtosecond and direct depiction of chemical reactions, it is obvious that we are dealing with a revolution to come, with extensive consequences, both scientifically and culturally. (EW)

  11. INTEGRAL monitoring of unusually long X-ray bursts

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2008-01-01

    exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading......X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence of...

  12. THE X-RAY SPECTRAL EVOLUTION OF GALACTIC BLACK HOLE X-RAY BINARIES TOWARD QUIESCENCE

    Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a normalized Eddington ratio lx = L0.5-10keV/LEdd –5). Here, we present Chandra X-ray imaging spectroscopy for three BHXB systems (H 1743–322, MAXI J1659–152, and XTE J1752–223) as they fade into quiescence following an outburst. Multiple X-ray observations were taken within one month of each other, allowing us to track each individual system's X-ray spectral evolution during its decay. We compare these three systems to other BHXB systems. We confirm that quiescent BHXBs have softer X-ray spectra than low-hard-state BHXBs, and that quiescent BHXB spectral properties show no dependence on the binary system's orbital parameters. However, the observed anti-correlation between X-ray photon index (Γ) and lx in the low-hard state does not continue once a BHXB enters quiescence. Instead, Γ plateaus to an average (Γ) = 2.08 ± 0.07 by the time lx reaches ∼10–5. lx ∼ 10–5 is thus an observationally motivated upper limit for the beginning of the quiescent spectral state. Our results are discussed in the context of different accretion flow models and across the black hole mass scale

  13. The Fermi-GBM X-ray burst monitor

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  14. Long X-ray burst monitoring with INTEGRAL

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive...

  15. X-ray Orbital Modulations in Intermediate Polars

    Parker, T L; Mukai, K

    2005-01-01

    We present an analysis of 30 archival ASCA and RXTE X-ray observations of 16 intermediate polars to investigate the nature of their orbital modulation. We show that X-ray orbital modulation is widespread amongst these systems, but not ubiquitous as indicated by previous studies that included fewer objects. Only seven of the sixteen systems show a clearly statistically significant modulation depth whose amplitude decreases with increasing X-ray energy. Interpreting this as due to photoelectric absorption in material at the edge of an accretion disc would imply that such modulations are visible for all system inclination angles in excess of 60 degrees. However, it is also apparent that the presence of an X-ray orbital modulation can appear and disappear on a timescale of ~years or months in an individual system. This may be evidence for the presence of a precessing, tilted accretion disc, as inferred in some low mass X-ray binaries.

  16. Massive stars and X-ray pulsars

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  17. X-ray nanotomography

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  18. The INTEGRAL view of intermediate long X-ray bursts

    CONCLUSIONS Most intermediate bursts are observed from low luminosity sources and are interpreted as long pure He bursts. If no H is accreted, they are consistent with the burning of a slowly accreted, thick He layer, in Ultra Compact X-ray Binaries (UCXB) where the donor star is probably a...

  19. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun;

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappear...... state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk....

  20. X-Ray Spectroscopy of Photoionized Plasmas

    Kallman, Tim

    2008-01-01

    Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.

  1. Transient High Mass X-ray Binaries

    Paul, Biswajit

    2011-01-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the transient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some...

  2. X-ray astronomy

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  3. CRL X-RAY TUBE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  4. A NEW ACCRETION DISK AROUND THE MISSING LINK BINARY SYSTEM PSR J1023+0038

    PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light curve or at any other times

  5. X-Ray spectroscopy of cooling flows

    Prestwich, Andrea

    1996-01-01

    Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.

  6. X-ray astronomical spectroscopy

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  7. X-ray and optical observations of four polars

    Worpel, H; Granzer, T; Reinsch, K; Schwarz, R; Traulsen, I

    2016-01-01

    We aim to study the temporal and spectral behaviour of four polar CVs from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and to search for a possible excess of soft X-ray photons. We analysed four XMM X-ray observations of three of the sources, two of them discovered in SDSS, one in RASS. The X-ray data were complemented by optical photometry and spectroscopy and, for two sources, archival Swift observations. SDSSJ0328 was X-ray bright in two XMM and two Swift observations, and shows transitions from high and low accretion states over a few months. It has no strong soft excess. We measured the magnetic field strength at the main pole to be 39 MG, the inclination to be 45X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which spends almost all of its time accreting at a low level. Its inclination is less than about 76...

  8. Time-dependent two-dimensional radiation hydrodynamics of accreting matter onto highly magnetized neutron stars

    We present for the first time, the self-consistent solution of the two-dimensional, time-dependent equations of radiation-hydrodynamics governing the accretion of matter onto the highly magnetized polar caps of luminous x-ray pulsars. The calculations show a structure in the accretion column very different from previous one-zone uniform models. We have included all the relevant magnetic field corrections to both the hydrodynamics and the radiative transport. We include a new theory for the diffusion and advection of both radiation energy density and photon number density. For initially uniformly accreting models with super-Eddington flows, we have uncovered evidence of strong radiation-driven outflowing optically thin radiation filled regions of the accretion column embedded in optically-thick inflowing plasma. The development of these photon ''bubbles'' have growth times on the order of a millisecond and show fluctuations on sub-millisecond timescales. The photon bubbles are likely to be a consequence of convective over-stability and may result in observable fluctuations in the emitted luminosity leading to luminosity dependent changes in the pulse profile. This may provide important new diagnostics for conditions in accreting x-ray pulsars. 13 refs., 18 figs

  9. X-ray apparatus

    The invention discloses an X-ray apparatus that can be used for tomography with the aid of a computer. With this apparatus plus computer, it is possible to quickly achieve the required edge values whereby the influence of the movement is diminished

  10. Chest X-Ray

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  11. Medical x-ray

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  12. Chest X-Ray

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  13. Chest X-Ray

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... time! Spotlight Recently posted: Pediatric MRI Intravascular Ultrasound Video: Chest CT Video:Thyroid Ultrasound Video: Head CT ...

  14. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10)...

  15. Pyroelectric x-ray detectors and x-ray pyrometers

    This paper discusses pyroelectric detectors which are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low energy x-rays. The authors report tests of LiTaO3, Sr.5Ba.5Nb2O6 and LiNbO3 detectors at Nova laser with 1 ns low energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The temporal and spectral responses are discussed

  16. Pyroelectric x-ray detectors and x-ray pyrometers

    Pyroelectric detectors are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low-energy x rays. We report our tests of LiTaO3 detectors at Nova laser with 1-ns low-energy x rays and at Zapp Z-pinch machine with 100-ns x rays. The temporal and spectral responses are discussed

  17. Accretion Disks

    Spruit, H.C.

    1995-01-01

    This is an introduction to accretion disk theory, with emphasis on aspects relevant for X-ray Binaries and Cataclysmic Variables. The text corrects some mistakes in an earlier version, which appeared in 'Lives of Neutron Stars', A. Alpar, \\"U. Kizilo\\u glu and J. van Paradijs (eds.), Kluwer, Dordrecht (NATO ASI series, 1994).

  18. Black Holes in Ultra-Luminous X-ray sources: X-ray timing versus spectroscopy

    Caballero-Garcia, M D; Belloni, T M; Wolter, A

    2012-01-01

    Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ray timing and spectral data from the ULX in NGC 5408 provided by XMM-Newton. The main goal is to study the broad-band noise variability of the source. We found an anti-correlation of the fractional root-mean square variability versus the intensity of the source, similar to black-hole binaries during hard states.

  19. X ray Production. Chapter 5

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4

  20. X-ray microtomography

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  1. X-ray generators

    Volume 4 provides a comparative survey on generators for stationary applications as available on the German market. It provides decision-making tools, physical characteristics, suggestions for radiation protection and for safe appliance operation as well as a concept for inspections all of which have been developed jointly by physicians of various specialities, physicists, engineers, business men, hospital experts and medicotechnical X-ray staff on the basis of a well-tried working concept. The systematic representation of correlations relevant to decision-making processes is based on a profile of technico-physical characteristics (standard product information) which was established by way of interdisciplinary dialog and which will enable any hospital or clinic to easily equip its X-ray department in an economic and purposeful way. The information on device data, device descriptions and market survey furnish the data tested by the manufacturers without guarantee and subject to correction. (orig./HP)

  2. X-ray lithography

    An invention relating to the development of photo-resists used in X-ray lithography is described. A COP resist which has been exposed to X-ray radiation, is developed with methyl ethyl ketone (MEK) developer and an ethanol solvent. The resist is first developed in a strong developing solution and then with a weaker developer whose concentration is slightly above that required to obtain complete development. Preferably the resist is exposed so as to obtain about a fifty per cent developed thickness and the developing is carried out in steps, the first with a concentration of 5:1.8 (MEK to ethanol) for five seconds, the second using concentrations of 5:1.8 and 5:2.7 for ten seconds and the third with a concentration of 5:2.7 for five seconds. (author)

  3. X-ray diffraction

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  4. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  5. The X-ray variability of high redshift QSOs

    Manners, J C; Lawrence, A

    2002-01-01

    We present an analysis of X-ray variability in a sample of 156 radio quiet quasars taken from the ROSAT archive, covering a redshift range 0.1 2) in the sense that QSOs of the same X-ray luminosity are more variable at z > 2. We discuss possible explanations for this effect. The simplest explanation may be that high redshift QSOs are accreting at a larger fraction of the Eddington limit than local AGN.

  6. Einstein X-ray observations of M101

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  7. X-ray spectra of bursting neutron stars

    The global properties of type-I x-ray bursts can be successfully accounted for by the thermonuclear shell flash model of accreting neutron stars. According to this model, the luminosity of a relatively large burst approaches to the Eddington luminosity. We calculate the atmospheric structure and the photon energy spectrum of x-ray bursting neutron star taking account of comptonization. From the x-ray spectrum, theoretical color temperature-luminosity diagram is obtained. Observational color temperature-luminosity diagram of x-ray burster is constructed using data of Japanese x-ray sutellite Tenma. Comparing our theoretical diagram with observational ones, we can estimate a mass-radius relation of neutron stars and distances to the galactic center. (Mori, K.)

  8. Bone X-Ray (Radiography)

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  9. Bone X-Ray (Radiography)

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ...

  10. Dental X-ray apparatus

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si02. The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  11. Bone X-Ray (Radiography)

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  12. Soft X-ray Imaging

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  13. Bone X-Ray (Radiography)

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  14. Bone X-Ray (Radiography)

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  15. Bone X-Ray (Radiography)

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  16. Bone X-Ray (Radiography)

    Full Text Available ... As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air appears black. Until recently, x-ray images were maintained on large film sheets (much ...

  17. Panoramic Dental X-Ray

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ...

  18. Bone X-Ray (Radiography)

    Full Text Available ... that helps physicians diagnose and treat medical conditions. Imaging with x-rays involves exposing a part of ... oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ...

  19. Bone X-Ray (Radiography)

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  20. The PG X-Ray QSO Sample Links among X-ray, UV & Optical Spectra

    Wills, B J; Laor, A; Wills, D; Wilkes, B J; Ferland, G J; Wills, Beverley J.

    1998-01-01

    A unique, essentially complete sample of 22 QSOs, with high quality soft X-ray spectra from ROSAT, as well as HST and optical spectrophotometry from below Ly-alpha to above H-alpha, is being used to investigate the relationships among the ionizing continuum and the optical and UV continuum, emission and absorption lines. Here we present a first analysis showing that optical `Eigenvector 1' linking steeper soft X-ray spectra with increasing optical Fe II strength, decreasing [O III] 5007 emission, and narrower BLR H-beta emission, extends to the UV emission lines, and is manifested by weaker C IV 1549 emission, stronger Si III] 1892/C III] 1909 ratio, and narrower C III] 1909 emission. Steeper soft X-ray spectra have been linked to higher L/L_Edd ratios, thus apparently linking BLR densities, high and low ionization gas, and kinematics, to the accretion process.

  1. Active X-ray Optics

    Hudec, René; Inneman, A.; Pina, L.; Černá, D.; Tichý, V.

    Bellingham: SPIE, 2013 - (Juha, L.; Bajt, S.; London, R.; Hudec, R.; Pína, L.), 877718/1-877718/7. (Proceedings of SPIE. 8777). ISBN 9780819495792. [Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III. Praha (CZ), 15.04.2013-18.04.2013] Institutional support: RVO:67985815 Keywords : X-ray optics * active optics * active X-ray optics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Cool star X-ray variability

    Stelzer, B.

    2016-06-01

    Variability is a key characteristic of late-type stars. In analogy to the Sun, late-type stars display a range of magnetic activity phenomena. These comprise strong radiation in the X-ray band emerging from the stellar corona as a result of magnetic heating. The time-scales of the observed X-ray variability associated with magnetic activity range from hours (for flares) to years (for dynamo cycles). Next to these activity-related variability features, in Young Stellar Objects (YSO) the mass accretion from a circumstellar disk and protostellar outflows can induce X-ray emission. The YSO circumstellar environment can give rise to variability either due to intrinsic changes in mass transfer or due to geometric effects as accretion streams or structures in the disk rotate in and out of the line-of-sight. Magnetic interaction between star and disk may play a role as well. I summarize recent developments in this research area and point out some directions for the possible contributions of XMM-Newton in the future.

  3. Rotation and X-ray emission from protostars

    Montmerle, Thierry; Grosso, Nicolas; Tsuboi, Yohko; Koyama, Katsuji

    1999-01-01

    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiqu...

  4. Spectroscopic Studies of X-Ray Binary Pulsars

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  5. Outbursts in ultracompact X-ray binaries

    Hameury, J -M

    2016-01-01

    Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...

  6. X-ray Crystallography Facility

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  7. Bone X-Ray (Radiography)

    Full Text Available ... lies. A drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... that is extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  8. Bone X-Ray (Radiography)

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  9. Tunable X-ray source

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  10. X-Ray Exam: Ankle

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A Text Size ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  11. X-Ray Exam: Finger

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A Text Size ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  12. X-Ray Exam: Wrist

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist Print A A A Text Size ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  13. X-Ray Exam: Hip

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip Print A A A Text Size ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Forearm

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm Print A A A Text Size ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that uses ...

  15. X-Ray Exam: Pelvis

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A Text Size ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  16. X-Ray Exam: Foot

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A Text Size ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  17. Bone X-Ray (Radiography)

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  18. A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    Papitto, A; Li, J

    2013-01-01

    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitio...

  19. Two methods for studying the X-ray variability

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-04-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray variability. One is amplitude-ratio spectrum analysis method. The other is mapping analysis method. Based on the consideration that the aperiodic variability originates from all spectral components whereas the QPO originates from one spectral component, we divided the root-mean-square (rms) amplitude spectrum of the power density spectrum (PDS) broadband noise component by the amplitude spectrum of an accompanying QPO, and first identified a high-frequency (> 10 Hz) aperiodic variability from the accretion disk (Yan et al. 2013). We now present the evolution of the amplitude-ratio spectrum with the cycle phase of the heartbeat state of the microquasar GRS 1915+105. We produced the energy-frequency-power map to investigate the origin of the X-ray variability, and show that most aperiodic X-ray variability is produced in the corona, and the low-frequency aperiodic variability from the corona is significant in the hard phase of the cycle phase of the heartbeat state of GRS 1915+105 while the low-frequency aperiodic variability from the disk and the corona are both significant in the soft phase.

  20. X-ray diffraction

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  1. X-ray detector

    The multicell X-ray or gamma detector is used in computer tomography. To achieve good spatial resolution, the electrode plates are narrowly spaced in each cell and are designed identical over the whole length of the detector group. The uniform spacing and precise check of the angles between the electrodes and accurate control of the dimensions of the whole detector structure are achieved by depositing, in the fabrication process, a viscous, resin type material (e.g., epoxy resin) or glue at selected points between the electrodes and insulators. (ORU)

  2. ISO investigates the nature of extremely-red hard X-ray sources responsible for the X-ray background

    Franceschini, A; Césarsky, C J; Elbaz, D; Flores, H; Granato, G L; Franceschini, Alberto; Fadda, Dario; Cesarsky, Catherine; Elbaz, David; Flores, Hector; Granato, Gian Luigi

    2001-01-01

    We analyse very deep X-ray and mid-IR surveys in common areas of the Lockman Hole and the HDF North to study the sources of the X-ray background (XRB) and to test the standard obscured accretion paradigm. We detect with ISO a rich population of X-ray luminous sources with red optical colours, including a fraction identified with Extremely Red Objects (R-K > 5) and galaxies with SEDs typical of normal massive ellipticals or spirals at z ~ 1. The high 0.5-10 keV X-ray luminosities of these objects (1E43-1E45 erg/s) indicate that the ultimate energy source is gravitational accretion, while the X-ray to IR flux ratios and the X-ray spectral hardness show evidence of photoelectric absorption at low X-ray energies. An important hint on the physics comes from the mid-IR data at 6.7 and 15 um, well reproduced by model spectra of completely obscured quasars under standard assumptions and l.o.s. optical depths tau ~ 30-40. Other predictions of the standard XRB picture, like the distributions of intrinsic bolometric lum...

  3. Timing studies of Seyfert galaxies with the Rossi X-ray Timing Explorer

    Previous studies of the X-ray variability power spectra of active galactic nuclei (AGN) on time-scales of hours to days revealed striking similarities to the timing properties of black hole X-ray binary systems (XRBs) on much shorter time-scales (-8 Hz to 10-2 Hz. We use RXTE long-look observations to show that the power spectra of our sample are intrinsically non-stationary, in that their RMS variability scales with local mean flux. We show that this relation also applies to the black hole XRB Cygnus X-1 and the accreting millisecond pulsar SAX J1808.4-3658 and is highly linear, implying that it is intrinsic to the red-noise variability process which dominates the X-ray lightcurves of accreting compact objects. The scaling of RMS variability with flux occurs on all measured time-scales, posing problems for models where lightcurves are made from small building blocks, such as conventional shot-noise models. We suggest that the lightcurves are built from the top down, out of large flaring events which break up into self-similar structure on smaller scales. Discrete sampling of lightcurves causes distortion in the observed power spectrum due to red-noise leak and aliasing effects. We develop a Monte Carlo technique, based on the 'response method' of Done et al. (1992), to robustly estimate the shape of the underlying broadband power spectrum. We apply this technique to our data, and data obtained from a separate program to monitor the Seyfert galaxy NGC 3516. We find that the broadband power spectra of MCG-6-30-15, NGC 5506 and NGC 3516 flatten significantly at low frequencies, and that this flattening can be well fitted by a high-frequency break model analogous to the shape of the high-frequency power spectrum in Cygnus X-1. The break frequency of NGC 3516 and the lack of a detectable break in NGC 5548 are consistent with a linear scaling of the break time-scale with their respective black hole masses (as estimated from reverberation mapping). The high break

  4. A high speed X-ray computed tomography scanner for multipurpose flow visualization and measurement

    The development of a high-speed X-ray computed tomography (CT) scanner has been performed in this study. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. This X-ray CT system uses the concept of electronic switching of electron beams for X-ray generation to increase scanning speed. A continuous operation X-ray CT scanner sampling at about 4 milliseconds scanning rate has already been developed and applied for air-water two-phase flow measurement. The feasibility and the excellent performance of this CT scanner system are demonstrated and confirmed. (author)

  5. Spectral Properties of Anomalous X-ray Pulsars

    Ye Lu; Wei Wang; Yong-Heng Zhao

    2003-01-01

    We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate Ω. Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.

  6. DIFFUSE X-RAY EMISSION IN GLOBULAR CLUSTER CORES

    The unresolved X-ray emission in the cores of 10 globular clusters hosting millisecond pulsars is investigated. Subtraction of the known resolved point sources leads to detectable levels of unresolved emission in the core region of M28, NGC 6440, M62, and NGC 6752. The X-ray luminosities in the 0.3-8 keV energy band of this emission component were found to lie in the range ∼1.5 x 1031erg s-1 (NGC 6752) to ∼2.2 x 1032 erg s-1 (M28). The lowest limiting luminosity for X-ray source detections amongst these four clusters was 1.1 x 1030 erg s-1 for NGC 6752. The spectrum of the unresolved emission can be fit equally well by a power law, a thermal bremsstrahlung model, a blackbody plus power law, or a thermal bremsstrahlung model plus blackbody component. The unresolved emission is considered to arise from the cumulative contribution of active binaries, cataclysmic variables, and faint millisecond pulsars with their associated pulsar wind nebulae. In examining the available X-ray data, no evidence for any pulsar wind nebular emission in globular clusters is found. It is shown that the X-ray luminosity contribution of a faint source population based on an extrapolation of the luminosity function of detected point sources is compatible with the unresolved X-ray emission in the cores of NGC 6440 and NGC 6752. Adopting the same slope for the luminosity function for M62 as for NGC 6440 and NGC 6752 leads to a similar result for M62. For M28, the contribution from faint sources in the core can attain a level comparable with the observed value if a steeper slope is adopted. The characteristics on the faint source population as constrained by the properties of the unresolved X-ray emission are briefly discussed.

  7. Ultra Luminous X-ray Sources

    Webb, N. A.; Godet, O.

    2015-12-01

    Ultra Luminous X-ray sources (ULXs) are X-ray bright objects that are not coincident with the central nucleus of the host galaxy and which have luminosities that exceed the Eddington limit for a stellar mass black hole, typically L > 3 × 10^{39} erg s^{-1} for a black hole of 20 M_⊙. The nature of these objects is still unclear. However, it is possible that these sources do not form a single class of objects. Many ULXs may house stellar mass black holes accreting at super-Eddington rates, even if the physical mechanism for such high accretion rates is still not understood. Some ULXs may contain intermediate mass black holes (˜1 × 10^{2} - ˜1 × 10^{5} M_⊙). These elusive black holes are thought to be the building blocks of the more massive supermassive black holes, observed at the centre of many galaxies. Other ULXs may not be accreting black holes at all. Recent evidence for the different types of ULXs is presented in this paper.

  8. The observers' view of (very) long X-ray bursts: they are super!

    Kuulkers, Erik

    2003-01-01

    In many X-ray point sources on the sky, the X-ray emission arises because hydrogen and/or helium is accreted onto a neutron star from a nearby donor star. When this matter settles on the neutron star surface, it will undergo nuclear fusion. For a large range of physical parameters the fusion is unstable. The resulting thermo-nuclear explosions last from seconds to minutes. They are observed as short flares in X-rays and are called `type I X-ray bursts'. Recently, hours-long X-ray flares have ...

  9. MCP-Optics for X-ray Timing

    Very lightweight X-ray optics are being developed by ESA and its industrial partners, for a number of X-ray astronomy and planetary missions. These developments could significantly improve the performance of future X-ray timing instrumentation. Based on Micro-Channel Plates (MCPs), the novel optics effectively reduce the mirror thickness by almost two orders of magnitude, and therefore also the mass of the telescope optics. Very large collecting areas become feasible for space implementation, especially as required for X-ray timing observations. Furthermore this technology leads to much reduced detector sizes due to the use of imaging X-ray optics. This dramatically improves the detected signal-to-noise ratios, as well as introducing photon collection areas sufficiently large as to study temporal phenomena on the millisecond time scale. This is particularly important to improve the studies of compact X-ray sources, both for improving the signal:noise ratios in temporal bins so that spectral or fluctuation analyses are improved, and for extending the range of measurements to fainter classes of objects.We present a brief overview of the MCP optics technology, and some basic design rules relevant to such systems. The performance of such optics and some possible mission implementations will be discussed

  10. GBM Observations of Be X-Ray Binary Outbursts

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  11. Correlated X-ray/Ultraviolet/Optical Variability in NGC 6814

    Troyer, Jon; Cackett, Edward; Bentz, Misty; Goad, Michael; Horne, Keith; Seals, James

    2015-01-01

    We present results of a 3-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the lightcurves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly under-pre...

  12. Formation of redbacks via accretion induced collapse

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  13. X-ray instrumentation for SR beamlines

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  14. X-ray lithography sources

    Synchrotron from dipole magnets in electron storage rings has emerged as a useful source of x-rays for lithography. To meet the need for these sources numerous groups around the world have embarked on projects to design and construct storage rings for x-ray lithography. Both conventional electromagnets as well as superconducting (SC) dipoles have been incorporated into the various designs. An overview of the worldwide effort to produce commercial x-ray sources will be presented. To better illustrate the elements involved in these sources a closer examination of the Superconducting X-ray Lithography Source Project (SXLS) at BNL will be presented. 11 refs., 1 fig., 5 tabs

  15. X-ray Absorption Spectroscopy

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  16. X-ray Fluorescence Sectioning

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  17. Eccentric Binary Millisecond Pulsars

    Freire, Paulo C C

    2009-01-01

    In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.

  18. Very faint X-ray binaries with XMM-Newton

    Armas Padilla, M.

    2016-06-01

    A population of very faint X-ray binaries has been discovered in the last years thanks to the improvement in sensitivity and resolution of the new generations of X-ray missions. These systems show anomalously low luminosities, below 10^{36} ergs/sec, challenging our understanding of accretion physics and binary evolution models, and thereby opening new windows for both observational and theoretical work on accretion onto compact objects. XMM-Newton is playing a crucial role in the study of this dim family of objects thanks to its incomparable spectral capabilities at low luminosities. I will review the state-of-the-art of the field and present our XMM results in both black hole and neutron star objects. Finally, I will discuss the possibilities that the new generation of X-ray telescopes offer for this research line.

  19. Observing Galactic Black Hole Sources in Hard X-rays

    Rao, A R

    2013-01-01

    Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.

  20. Flares of Sgr A*: from X-ray to mm

    Zamaninasab, M.; Eckart, A.; Kunneriath, D.; Witzel, G.; Schödel, R.; Meyer, L.; Dovčiak, Michal; Karas, Vladimír; König, S.; Krichbaum, T.P.; Lu, R.-S.; Straubmeier, C.; Zensus, A.

    2008-01-01

    Roč. 79, č. 4 (2008), s. 1054-1057. ISSN 0037-8720. [Central Kiloparsec - Active Galactic Nuclei and Their Hosts. Ierapetra, Crete, 04.06.2008-06.06.2008] Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * X-rays general * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Polarized NIR and X-ray flares from Sagittarius A*

    Eckart, A.; Baganoff, F. K.; Zamaninasab, M.; Morris, M.; Schödel, R.; Meyer, L.; Muzic, K.; Bautz, M.W.; Brandt, W.N.; Garmire, G.P.; Ricker, G.; Kunneriath, D.; Straubmeier, C.; Duschl, W.J.; Dovčiak, Michal; Karas, Vladimír; Markoff, S. B.; Najarro, F.; Mauerhan, J.; Moultaka, J.; Zensus, A.

    2008-01-01

    Roč. 479, č. 3 (2008), s. 625-639. ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * accretion disks * Galactic nucleus * NIR * X-rays * polarization Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.153, year: 2008

  2. Constraining MHD Disk-Winds with X-ray Absorbers

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  3. Echo Tomography of Reprocessing Sites in X-Ray Binaries

    Patterson, Joseph; Haswell, Carole

    1998-01-01

    We discovered correlated rapid variability between the optical/UV and X-ray emission for the first time in a soft X-ray transient, GRO J1655-40. Hubble Space Telescope light curves show features similar to those seen by the Rossi X-ray Timing Explorer, but with a mean delay of up to 10 - 20 s. We interpret the correlation as the result of reprocessing of X-rays into optical and UV emission, with a delay owing to finite light travel time; this assumption enables us to perform echo mapping of the system. The time-delay distribution has a mean of 14.6 +/-1.4 s and a dispersion of 10.5+/-1.9 s at binary phase 0.4. This establishes that the reprocessing region is the accretion disk around the compact star, rather than the mass-donating secondary. These results have been published.

  4. INTEGRAL monitoring of unusually long X-ray bursts

    Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number of the...... known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...... events lasting more than a few minutes. Of special interest are exceptional X-ray bursts which duration about a few tens of minutes is intermediate between usual short bursts and hour long superbursts. The processes driving such long bursts are not yet fully understood: depending on the composition of...

  5. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-01

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with LX > 3 × 1033 erg s‑1 in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  6. Radioisotope x-ray analysis

    Radioisotope x-ray fluorescence and x-ray preferential absorption (XRA) techniques are used extensively for the analysis of materials, covering such diverse applications as analysis of alloys, coal, environmental samples, paper, waste materials, and metalliferous mineral ores and products. Many of these analyses are undertaken in the harsh environment of industrial plants and in the field. Some are continuous on-line analyses of material being processed in industry, where instantaneous analysis information is required for the control of rapidly changing processes. Radioisotope x-ray analysis systems are often tailored to a specific but limited range of applications. They are simpler and often considerably less expensive than analysis systems based on x-ray tubes. These systems are preferred to x-ray tube techniques when simplicity, ruggedness, reliability, and cost of equipment are important; when minimum size, weight, and power consumption are necessary; when a very constant and predictable x-ray output is required; when the use of high-energy x-rays is advantageous; and when short x-ray path lengths are required to minimize the absorption of low-energy x-rays in air. This chapter reviews radioisotope XRF, preferential absorption, and scattering techniques. Some of the basic analysis equations are given. The characteristics of radioisotope sources and x-ray detectors are described, and then the x-ray analytical techniques are presented. The choice of radioisotope technique for a specific application is discussed. This is followed by a summary of applications of these techniques, with a more detailed account given of some of the applications, particularly those of considerable industrial importance. 79 refs., 28 figs., 7 tabs

  7. Bright flares in supergiant fast X-ray transients

    Shakura, N.; Postnov, K.; Sidoli, L.; Paizis, A.

    2014-08-01

    At steady low-luminosity states, supergiant fast X-ray transients (SFXTs) can be at the stage of quasi-spherical settling accretion on to slowly rotating magnetized neutron stars from the OB-companion winds. At this stage, a hot quasi-static shell is formed above the magnetosphere, the plasma entry rate into magnetosphere is controlled by (inefficient) radiative plasma cooling, and the accretion rate on to the neutron star is suppressed by a factor of ˜30 relative to the Bondi-Hoyle-Littleton value. Changes in the local wind velocity and density due to, e.g. clumps, can only slightly increase the mass accretion rate (a factor of ˜10) bringing the system into the Compton-cooling-dominated regime and led to the production of moderately bright flares (Lx ≲ 1036 erg s-1). To interpret the brightest flares (Lx > 1036 erg s-1) displayed by the SFXTs within the quasi-spherical settling accretion regimes, we propose that a larger increase in the mass accretion rate can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time-scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell. This view is consistent with the energy released in SFXT bright flares (˜1038-1040 erg), their typical dynamic range (˜100) and with the observed dependence of these characteristics on the average unflaring X-ray luminosity of SFXTs. Thus, the flaring behaviour of SFXTs, as opposed to steady HMXBs, may be primarily related to their low X-ray luminosity allowing sporadic magnetic reconnection to occur during magnetized plasma entry into the magnetosphere.

  8. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  9. X-ray spectroscopy of NGC 5548

    Kaastra, J S; Raassen, A J J; Van der Meer, R L J; Brinkman, A C; Liedahl, D A; Behar, E; De Rosa, A

    2002-01-01

    We analyze the high-resolution X-ray spectrum of the Seyfert 1 galaxy NGC 5548, for the full 0.1-10 keV band, using improved calibration results of the Chandra-LETGS instrument. The warm absorber consists of at least three ionization components, namely one with a low, medium and high ionization parameter. The X-ray absorbing material, from an outflowing wind, covers the full range of velocity components found from UV absorption lines. The presence of redshifted emission components for the strongest blue-shifted resonance absorption lines indicate that the absorber is located at a distance larger than the edge of the accretion disk. We derive an upper limit to the edge of the accretion disk of 1 light year. Absorption lines from ions of at least ten chemical elements have been detected, and in general for these elements there are no strong deviations from solar abundances. The narrow emission lines from the O VII and Ne IX forbidden and intercombination lines probably originate from much larger distances to th...

  10. Bone X-Ray (Radiography)

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose of ionizing ...

  11. X-ray Dynamic Defectoscopy

    Vavřík, Daniel; Visschers, J.; Jakůbek, J.; Ponchut, C.

    Orosei : IMC S.r.l., 2001. s. 47. [International Workshop on Radiation Imaging Detectors /3./. 23.09.2001-27.09.2001, Orosei] R&D Projects: GA ČR GA106/00/D064 Institutional research plan: CEZ:MSM 210000018 Keywords : X-ray Defectoscopy * Damage * X-ray Detectors Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. X-ray diagnostic equipment

    An X-ray tube is connected to several different image processing devices in X-ray diagnostic equipment. Only a single organ selector is allocated to it, for which the picture parameters for each image processing device are selected. The choice of the correct combination of picture parameters is made by means of a selector switch. (DG)

  13. X-ray tube arrangement

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  14. Bone X-Ray (Radiography)

    Full Text Available ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is the procedure performed? The technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray ...

  15. Bone X-Ray (Radiography)

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  16. X-ray photoelectron spectroscopy

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  17. The INTEGRAL long monitoring of persistent Ultra Compact X-ray Bursters

    Fiocchi, M.; Bazzano, A.; Ubertini, P.; Bird, A. J.; Natalucci, L; Sguera, V.

    2008-01-01

    The combination of compact objects, short period variability and peculiar chemical composition of the Ultra Compact X-ray Binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. The improved large optical telescopes and more sensitive X-ray satellites have increased the number of known Ultra Compact X-ray Binaries allowing their study with unprecedented detail. We analyze the average properties common to all ultra comp...

  18. Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy

    Mapelli, M.; Moore, B.; Giordano, L.; Mayer, L.; Colpi, M.; Ripamonti, E.; Callegari, S.

    2008-01-01

    Chandra and XMM-Newton observations of the Cartwheel galaxy show similar to 17 bright X-ray sources (greater than or similar to 5 x 10(38) erg s(-1)), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting

  19. Polarization effects in radiation from compact X-ray sources

    A theory of polarization of X rays emitted by magnetized neutron stars, white dwarfs and black hole accretion disks is presented and predictions are compared with polarimetric data. Polarization occurs in accreting neutron stars and white dwarfs in binary systems as plasma travels along magnetic field lines formed between the companions. Movement parallel to the field produces circular polarization, transverse propagation yields linear polarization and elliptical polarization arises from other angles. The actual mechanism is alterations in the absorption coefficients of magnetized plasma, changes introduced by available bremsstrahlung and electron scattering processes. Thomson scattering is an origin of X ray polarization in black hole and neutron star accretion disks, with the type of polarization being dependent on the radiation density near the boundary, the presence of Faraday rotation and the geometry of the disk magnetic field. Polarimetric data on 10 stellar objects are presented as supportive evidence for the theory. 14 references

  20. Prospects for Neutron Star Equation of State Constraints using "Recycled" Millisecond Pulsars

    Bogdanov, Slavko

    2015-01-01

    Rotation-powered "recycled" millisecond pulsars are a variety of rapidly-spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  1. Optical observations of Be/X-ray transient system KS 1947+300

    Kiziloglu, U; Kiziloglu, N

    2006-01-01

    ROTSE-IIId observations of the Be/X-ray transient system KS 1947+300 obtained between September 2004 and December 2005 make it possible to study the correlation between optical and X-ray activity. The optical outburst of 0.1 mag was accompanied by an increase in X-ray flux in 2004 observations. Strong correlation between the optical and X-ray light curves suggests that neutron star directly accretes from the outflowing material of Be star. The nearly zero time lag between X-ray and optical light curves suggests a heating of the disk of Be star by X-rays. No optical brightening and X-ray enhancement was seen in 2005 observations. There is no indication of the orbital modulation in the optical light curve.

  2. X-ray binary systems - Ariel V SSI observations

    The basis of our current theoretical understanding of galactic x-ray sources is reviewed. Models are outlined involving close binary systems containing a compact object accreting mass which has been lost from the nondegenerate star by a variety of mechanisms. The present status of galactic x-ray astronomy is discussed, with emphasis on the links between established observational categories and the characteristics of the proposed models. Observational results, consisting primarily of extended x-ray light curves derived from analysis of Ariel V SSI data are presented for two main classes of galactic x-ray source: (i) high-mass x-ray binaries containing an early-type giant or supergiant star; (ii) low-mass x-ray binaries in which the nondegenerate star is a late-type dwarf. For the high-mass binaries emphasis is placed on the determination and improvement of the orbital parameters; for the low-mass binaries, where a less complete picture is available, the discussion centres on the type of system involved, taking into account the optical observations of the source. Finally, the properties of two further categories - the sources in the galactic bulge and those associated with dwarf novae - are discussed as examples of rather different types of galactic x-ray emitter. In the case of the galactic bulge sources current observations have not led so far to a clear picture of the nature of the systems involved, indeed their binary membership is not established. X-ray emission from dwarf novae and related objects is a relatively recent discovery and represents the opening up of a new field of galactic x-ray astronomy. (author)

  3. Origin of the X-ray disc-reflection steep radial emissivity

    Svoboda, Jiří; Dovčiak, Michal; Goosmann, René W.; Jethwa, Prashin; Karas, Vladimír; Miniutti, Giovanni; Guainazzi, Matteo

    2012-01-01

    X-ray reflection off the accretion disc surrounding a black hole, together with the associated broad iron K$\\alpha$ line, has been widely used to constrain the innermost accretion-flow geometry and black hole spin. Some recent measurements have revealed steep reflection emissivity profiles in a number of active galactic nuclei and X-ray binaries. We explore the physically motivated conditions that give rise to the observed steep disc-reflection emissivity profiles. We perform a set of simulat...

  4. Using novel spectral-timing techniques to probe the rapid variability of X-Ray Binaries

    Wilkinson, Tony

    2011-01-01

    X-ray spectral variability is a powerful probe of the relationship between the accretion disc and corona in accreting compact objects. In this thesis, I present the use of variability techniques to disentangle the different variable components of X-ray spectra. By examining correlated variability over a range of timescales, I identify for the first time evidence of intrinsic disc variability on timescales of seconds. I go on to examine, utilising a range of spectral-timing techniques, the rol...

  5. Semiconductor X-ray detectors

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  6. Symbiotic stars in X-rays III: Suzaku observations

    Nuñez, N E; Mukai, K; Sokoloski, J L; Luna, G J M

    2016-01-01

    We describe the X-ray emission as observed with Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA and Swift. We find that the X-ray spectra of all five sources can be adequately fit with absorbed, optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT$~>3$ keV for all five targets were greater than expected for colliding winds. Based on these high temperatures, as well as previous measurements of UV variability and UV luminosity, and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small, optically thin portion of the emission from these boundary layers. Given the time between previous observa...

  7. Symbiotic stars in X-rays III: long term variability

    Nuñez, N E; Mukai, K; Sokoloski, J L; Luna, G J M

    2015-01-01

    We study the X-ray emission from five symbiotic stars observed with Suzaku. These objects were selected for deeper observations with Suzaku after their first detection with ROSAT and Swift. We found that the X-ray spectra can be adequately fit with absorbed optically thin thermal plasma models, either single or multi-temperature. Such a model is compatible with the X-ray emission being originated in the innermost region of the accretion disk, i.e. a boundary layer. Based on the large flickering amplitude (only detected in 4 Dra), the high plasma temperature and previous measurements of UV variability and luminosity, we conclude that all five sources are accretion-powered through predominantly opticall thick boundary layer. Given the time lapse between previous and these observations, we were able to study the long term variability of their X-ray emission and found that the intrinsic X-ray flux and the intervening absorption column can vary by factors of three or more. However, it is still elusive the location...

  8. X-ray and optical observations of four polars

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ i ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail

  9. X-ray quasars and the X-ray background

    The Einstein X-ray observations of a sample of 202 radio-and optically-selected quasars due to Ku, Helfand and Lucy and to Zamorani et al. are analysed. Correlations between X-ray, optical and radio luminosities are examined. The contribution of radio-loud quasars to the 2-keV X-ray background is estimated using high-frequency radio-source counts, and the contribution due to radio-quiet, optically bright quasars using optical counts. It is shown that radio-loud quasars and radio-quiet optically bright quasars together contribute approximately 15 per cent of the observed 2-keV X-ray background. The contribution of optically faint radio-quiet quasars is uncertain, but may be limited to a maximum of approximately 30 per cent if recent indications of a flattening in optical counts at faint magnitudes are correct. (author)

  10. X-ray diffraction apparatus

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  11. X-ray crystal interferometers

    Various configurations of the X-ray crystal interferometer are reviewed. The interferometer applications considered include metrology, the measurement of fundamental physical constants, the study of weakly absorbing phase objects, time-resolved diagnostics, the determination of hard X-ray beam parameters, and the characterization of structural defects in the context of developing an X-ray Michelson interferometer. The three-crystal Laue interferometer (LLL-interferometer), its design, and the experimental opportunities it offers are given particular attention. (instruments and methods of investigation)

  12. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    Traulsen, I; Schwope, A D; Schwarz, R; Walter, F M; Burwitz, V

    2014-01-01

    RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give eviden...

  13. Correlated X-ray/ultraviolet/optical variability in NGC 6814

    Troyer, Jon; Starkey, David; Cackett, Edward M.; Bentz, Misty C.; Goad, Michael R.; Horne, Keith; Seals, James E.

    2016-03-01

    We present results of a three-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the light curves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly underpredicted lags. If the majority of the reprocessing originates in the disc, then this implies the UV/optical emitting regions of the accretion disc are farther out than predicted by the standard thin disc model. Accounting for contributions from broad emission lines reduces the lags in B and V by ˜25 per cent (less than the uncertainty in the lag measurements), though additional contamination from the Balmer continuum may also contribute to the larger than expected lags. This discrepancy between the predicted and measured interband delays is now becoming common in AGN where wavelength-dependent lags are measured.

  14. Einstein x-ray observations of cataclysmic variables

    Observations with the imaging x-ray detectors on the Einstein Observatory have led to a large increase in the number of low luminosity x-ray sources known to be associated with cataclysmic variable stars (CVs). The high sensitivity of the Einstein instrumentation has permitted study of their short timescale variability and spectra. The data are adding significantly to our knowledge of the accretion process in cataclysmic variables and forcing some revision in our ideas concerning the origin of the optical variability in these stars

  15. Short-living Supermassive Magnetar Model for the Early X-ray Flares Following Short GRBs

    Wei-Hong Gao; Yi-Zhong Fan

    2006-01-01

    We suggest a short-lived supermassive magnetar model to account for the X-ray flares following short γ-ray bursts. In this model the central engine of the short γ-ray bursts is a supermassive millisecond magnetar, formed in coalescence of double neutron stars. The X-ray flares are powered by the dipole radiation of the magnetar. When the magnetar has lost a significant part of its angular momentum, it collapses to a black hole and the X-ray flares cease abruptly.

  16. Bone X-Ray (Radiography)

    Full Text Available ... x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x- ...

  17. Bone X-Ray (Radiography)

    Full Text Available ... an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and ...

  18. Duodenal X-ray diagnostics

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG)

  19. Bone X-Ray (Radiography)

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  20. Bone X-Ray (Radiography)

    Full Text Available ... like a photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...