WorldWideScience

Sample records for accredited dosimetry calibration

  1. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST)

  2. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    DeWard, L.A.; Micka, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  3. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM

  4. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    Rozenfeld, M. [St. James Hospital and Health Centers, Chicago Heights, IL (United States)

    1993-12-31

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM.

  5. Radiation protection dosimetry and calibrations

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  6. US accreditation programmes for personal radiation dosimetry

    In order to verify an acceptable level of safety in the workplace, it is necessary to measure the quantity of ionising radiation to which radiation workers could be, or actually are, exposed. At present, there are organisations capable of providing measurement results with good accuracy and precision. These organisations may provide personal dosimetry services to their own facilities, or to others on a contractual basis. They generally have high quality equipment and well trained personnel. However, in today's climate, it is important to demonstrate and document that these systems and services to others meet national standards of quality. In order to provide a higher level of confidence in the results generated by organisations that provide personal dosimetry services in the US, two accreditation programmes have been established. They are the Department of Energy Laboratory Accreditation Program (DOELAP) and the National Voluntary Laboratory Accreditation Program (NVLAP). These two programmes will be described and results will be given, along with plans for future development. (author)

  7. Dosimetry and Calibration Section

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  8. Dosimetry and Calibration Section

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  9. Individual dosimetry and calibration

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  10. HPS instrument calibration laboratory accreditation program

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. HPS instrument calibration laboratory accreditation program

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory

  12. Accreditation ISO/IEC 1705 in dosimetry: Experience and results

    The objective of this work is to present the experience in the process of accreditation of the radiation dosimetry service in which there are trials for the determination of radiation doses due to internal and external exhibitions. Is They describe the aspects that were considered for the design and development of a system of quality and results after its implementation. A review of the benefits accreditation has been reported to the organization is finally made. (Author)

  13. The method validation step of biological dosimetry accreditation process

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  14. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC)

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard General Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  15. Requirements for the accreditation of a calibration laboratory

    CNEA's activity in calibration is recent but it has a significant development. To assure high quality results, activity must be sustained and improved from day to day. The calibrations laboratory was accredited before Laboratories Qualification Committee, thus adding reliability to its results and making it more competitive when compared to other laboratories not accredited. Among other services given are supervision and follow up of calibrations in laboratories, participation in interlaboratory assays together with other calibration laboratories and assessments on calibration aspects of measuring equipment. (author)

  16. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  17. The Belgian laboratory for standard dosimetry calibrations used in radiotherapy

    Starting from the end of the year 2008, the RDC (Radiation Protection dosimetry and Calibrations) expertise group of SCK CEN took over the calibration and research activities at the Laboratory for Standard Dosimetry Ghent. The laboratory runs under a collaboration between SCK CEN and the University of Ghent, with the support of Federal Agency for Nuclear Control (FANC). The calibrations in Ghent were stopped at the beginning of 2008 and then restarted at the end of 2008. A new 60Co source was installed at Ghent, a Theratron 780 unit. All the calibration setups installed in the past to the old 60Co source had to move to the new source and measurement history had to be acquired. The calibration of cylindrical and plane-parallel ionization chambers in terms of absorbed dose to water was defined as the first priority, since there was an urgent need from the Belgian hospitals. These calibrations are presently done in Ghent as secondary standard calibrations, traceable to the water calorimeter of VSL, Delft, The Netherlands and following the recommendations from TRS-398 protocol. The second priority was restarting the calibrations of cylindrical ionization chambers in terms of air kerma. A cylindrical graphite ionization chamber of type CC01 is used for the absolute measurement of air kerma. Both setups are fully operational. Special efforts were done to implement the SCK CEN quality assurance (QA) system regarding ISO 17025 accreditation. The activity at the laboratory in Ghent was integrated as part of the Laboratory for Nuclear Calibrations (LNK-from the Dutch translation) of the SCK-CEN. Most of the activities of the LNK are already accredited by Belgian Accreditation Body (BELAC) with respect to the ISO-17025 standards. The quality assurance procedures were prepared and are routinely followed for the two new setups mentioned above: calibrations in terms of absorbed dose to water and air kerma in 60Co beam. During the preparation of the quality assurance procedures

  18. High-dose secondary calibration laboratory accreditation program

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  19. High-dose secondary calibration laboratory accreditation program

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  20. Calibration methods of plane-parallel ionization chambers used in electron dosimetry

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of 60 Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  1. Implementation of ISO guide 25 in a medical dosimetry secondary standards calibration laboratory

    Currently, there is a great deal of discussion among industry and government agencies about ISO 9000 accreditation. U.S. manufacturers with ISO 9000 accreditation are regarded more favorably by European countries. The principles behind the ISO 9000 accreditation are based on the Total Quality Management (TQM) principles that are being implemented in many U.S. industries. This paper will deal only with the calibration issue. There is a difference in the areas covered by ISO 9000 and ISO Guide 25 documents. ISO 9000, in particular ISO 9001 - ISO 9003, cover the open-quotes calibrationclose quotes of inspection, measuring and test equipment. This equipment is basically used for open-quotes factory calibrationsclose quotes to determine that equipment is performing within manufacturer specifications. ISO Guide 25 is specifically for open-quotes calibration and testing laboratories,close quotes generally laboratories that have painstaking procedures to reduce uncertainties and establish high accuracy of the transfer of calibration. The experience of the University of Wisconsin Accredited Dosimetry Calibration Laboratory in conforming to ISO Guide 25 will be outlined. The entire laboratory staff must become familiar with the process and an individual with direct authority must become the one to maintain the quality of equipment and calibrations in the role of open-quotes quality-assurance manager.close quotes

  2. Calibration facility for environment dosimetry instruments

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin [Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului St, Magurele, Jud Ilfov, P.O.B. MG-6, RO-077125 (Romania)

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  3. Calibration facility for environment dosimetry instruments

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10−9 - 10−8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe

  4. Proposal of a Brazilian accreditation program for personal dosimetry using OSL

    After the development of the highly sensitive material Al2O3:C, personal dosimetry using optically stimulated luminescence (OSL) has been continuously adopted in place of thermoluminescence dosimeters (TLD) by different countries (e.g. USA and Japan). In order to use a dosimetric system in Brazil it is necessary to develop a protocol and to fulfill performance and type tests in accordance with the accreditation program approved by the responsible governmental committee. This paper presents a proposal for an accreditation program for OSL personal dosimetry using a commercial dosimetric system, including tests that follow the same rules as applied to TLD and film dosimetry. The experimental results are within the reliability interval and in accordance to the expected behavior. A new test concerning re-analysis of exposed badges is also proposed.

  5. Accreditation of a personal dosimetry service in Switzerland: Practical experience and transition from EN 45004 to ISO 17025

    In compliance with the Swiss legislation on radiological protection, the Paul Scherrer Institute (PSI) operates a dosimetry service that is approved by the Swiss Federal Nuclear Safety Inspectorate. In 1997, the dosimetry service was also accredited by the Swiss Federal Office of Metrology and Accreditation as an inspection body for legal personal and environmental dosimetry, according to EN 45004. The accreditation covers determination of personal dose equivalent for photon, neutron and beta radiation, and ambient dose equivalent for photon and neutron radiation, by means of thermoluminescence and solid state track detection techniques. Within this formal accreditation it was confirmed that the relevant requirements of ISO 9002 are also fulfilled. The first re-accreditation will take place in 2001 and work is going on to achieve the transition from EN 45004 to ISO 17025. Accreditation is a feasible, practicable and acceptable way to achieve harmonisation in the field of dosimetry. However, before starting on the path to formal accreditation, a careful analysis should be made, taking into consideration not only cost-benefit aspects but also national legal requirements. (author)

  6. Dose calibration optimization and error propagation in polymer gel dosimetry

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters. (paper)

  7. Dosimetry intercomparisons in European medical device sterilization plants

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o......Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy...

  8. Accreditation ISO/IEC 1705 in dosimetry: Experience and results; Acreditacion ISO/IEC 17025 en dosimetria: Experiencia y resultados

    Martin Garcia, R.; Navarro Bravo, T.

    2013-07-01

    The objective of this work is to present the experience in the process of accreditation of the radiation dosimetry service in which there are trials for the determination of radiation doses due to internal and external exhibitions. Is They describe the aspects that were considered for the design and development of a system of quality and results after its implementation. A review of the benefits accreditation has been reported to the organization is finally made. (Author)

  9. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  10. Establishment of qualities mammography according to the standard IEC-61267 in the laboratory of metrology of ionizing radiation of the National Center of Dosimetry and enlargement of the accreditation by ENAC; Establecimiento de las calidades de mamografia segun la norma IEC-61267 en el laboratorio de metrologia de radiaciones ionizantes del centro nacional de dosimetria (CND) y proceso de ampliacion de su acreditacion por ENAC

    Roig Petit, F.; Mestre de Juan, V.; Alabau Albors, J.; Palma Copete, J.; Ruiz Rodriguez, J. C.; Pons Mocholi, S.

    2013-07-01

    The extension of the accreditation of the laboratory of the National Center Dosimetry (No. 58/LC10.036) by the national accreditation entity (ENAC), according to the ISO 17025 standard [2], for the standard qualities of mammography by the IEC 61267 comes to meet part of the needs that demand our health care environment in terms of radiation measuring instruments calibration. This work intends to publicize this enlargement commenting on the different phases of the process to get the accreditation. (Author)

  11. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC); Acreditacion del Servicio de Dosimetria Personal Interna de Tecnatom por la Entidad Nacional de Acreditacion (ENAC)

    Bravo, B.; Marchena, P.

    2014-07-01

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard {sup G}eneral Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  12. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  13. Reliability, calibration and metrology in ionizing radiation dosimetry

    Cundin, Luisiana X

    2013-01-01

    Radiation dosimetry systems are complex systems, comprised of a milieu of components, designed for determining absorbed dose after exposure to ionizing radiation. Although many materials serve as absorbing media for measurement, thermoluminescent dosimeters represent some of the more desirable materials available; yet, reliability studies have revealed a clear and definite decrement in dosimeter sensitivity after repeated use. Unfortunately, repeated use of any such material for absorbing media in ionizing radiation dosimetry will in time experience performance decrements; thus, in order to achieve the most accuracy and/or precision in dosimetry, it is imperative proper compensation be made in calibration. Yet, analysis proves the majority of the measured decrement in sensitivity experienced by dosimeters is attributable to drift noise and not to any degradation in dosimeter performance, at least, not to any great degree. In addition to investigating dosimeter reliability, implications for metrological tracea...

  14. Accreditation of a system of extremity dosimetry: validation and uncertainty of method; Acreditacion de un sistema de dosimetria de extremidades: validacion e incertidumbre del metodo

    Romero Gutierrez, A. M.; Rodriguez Jimenez, R.; Lopez Moyano, J. L.

    2013-07-01

    The authors' goal is to spread the practical experience gained during the accreditation process paying special attention to the process of method validation and estimation uncertainty of the dosimetry system. (Author)

  15. Calibration methods of plane-parallel ionization chambers used in electron dosimetry; Metodos de calibracao de camaras de ionizacao de placas paralelas para dosimetria de feixes de eletrons

    Bulla, Roseli Tadeu

    1999-07-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of {sup 60} Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  16. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of clinical dosemeters. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the ionizing

  17. Panoptes: Calibration of a dosimetry system for eye brachytherapy

    Intraocular cancer is a serious threat to the lives of those that suffer from it. Dosimetry for eye brachytherapy presents a significant challenge due to the inherently steep dose gradients that are needed to treat such small tumours in close proximity to sensitive normal structures. This issue is addressed by providing much needed quality assurance to eye brachytherapy, a novel volumetric dosimetry system, called PANOPTES was developed. This study focuses on the preliminary characterisation and calibration of the system. Using ion beam facilities, the custom, pixelated silicon detector of PANOPTES was shown to have good charge collection uniformity and a well defined sensitive volume. Flat-field calibration was conducted on the device using a 250 kVp orthovoltage beam. Finally, the detector and phantom were simulated with Monte Carlo in Geant4, to create water equivalent dose correction factors for each pixel across a range of angles. - Highlights: • Volumetric detector system produced for plaque brachytherapy. • Orthovoltage, flat-field calibration performed for detector pixels. • Monte Carlo simulation showed mostly little angular deviation across all angles. • Ion beam induced charge collection showed pixels uniform and fully depleted

  18. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  19. Anniversary Paper: Fifty years of AAPM involvement in radiation dosimetry

    This article reviews the involvement of the AAPM in various aspects of radiation dosimetry over its 50 year history, emphasizing the especially important role that external beam dosimetry played in the early formation of the organization. Topics covered include the AAPM's involvement with external beam and x-ray dosimetry protocols, brachytherapy dosimetry, primary standards laboratories, accredited dosimetry chains, and audits for machine calibrations through the Radiological Physics Center

  20. Some methods for calibration and beta radiation dosimetry

    The calibration of beta radiation was studied from the point of view of primary and secondary standardization, using extrapolation chambers and examining several effects. The properties of a commercial ionization chamber were investigated, and the possibility of its use in calibration and dosimetry of 90Sr- 90Y beta radiation was demonstrated . A secondary standard calibration facility was developed and the results obtained with this facility were compared with those obtained from a primary system directly or indirectly. Nearly energy independent response was obtained in.the range 60 keV to 0,8 MeV with this secondary standard. Two solid state techniques namely thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) were also used for beta dosimetry. Various characteristics like reproducibility, response with dose,energy dependence, etc. were studied for the materials: LiF, CaF2,Li2B4O7, Be O, CaSO4 and Al2O3. TL detectors of thickness 0,9 mm underestimate the dose 60 μm thick CaSO4:Tm embedded on a thin aluminium plate gave energy independent response behind skin layers of 7 mg/cm2. Mixed field of beta, X and gamma radiation was analysed using this detector. Quartz based Be O and graphite based alpha beta-Al2O3 were found to be good beta radiation detectors when the TSEE technique is used. Energy independent CaSO4:Tm TL dosimeters were used in international comparison for dose measurements and the results obtained were in agreement with the actual given doses within 10%. The TL detectors were also used for dose rate measurements from glazed painted tiles used in construction industry and a 85Kr source used in textile and metal industries. Results obtained in the later case were Q compared with those using the secondary standard facility. (author)

  1. High-dose dosimetry at ANSTO: quality assurance, calibration and traceability

    A overview of the techniques used by ANSTO's high-dose dosimetry laboratory is given, commencing with a description of the facilities operated and the nature of the services provided. The dosimetry systems used by ANSTO are detailed along with their applications. Techniques used for calibration of dosimeters and radiation sources are given, including traceability and measurement uncertainty considerations. Quality assurance aspects of the dosimetry service are discussed. (author)

  2. Dose calibration of EPIDs for segmented IMRT dosimetry.

    Deshpande, Shrikant; Xing, Aitang; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2014-01-01

    The purpose of this study was to investigate the dose response of amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) under different acquisi- tion settings for both open jaw defined fields and segmented intensity-modulated radiation therapy (IMRT) fields. Four different EPIDs were used. Two Siemens and one Elekta plus a standalone Perkin Elmer research EPID. Each was operated with different acquisition systems and settings. Dose response linearity was measured for open static jaw defined fields and 'simple' segmented IMRT fields for a range of equipment and system settings. Six 'simple' segmented IMRT fields were used. The segments of each IMRT field were fixed at 10 × 10 cm2 field size with equal MU per segment, each field having a total of 20 MU. Simultaneous measurements with an ionization chamber array (ICA) and EPID were performed to separate beam and detector response characteristics. Three different pixel calibration meth- ods were demonstrated and compared for an example 'clinical IMRT field'. The dose response with the Elekta EPID for 'simple' segmented IMRT fields versus static fields agreed to within 2.5% for monitor unit (MU) ≥ 2. The dose response for the Siemens systems was difficult to interpret due to the poor reproducibility for segmented delivery, at MU ≤ 5, which was not observed with the standalone research EPID nor ICA on the same machine. The dose response measured under different acquisition settings and different linac/EPID combinations matched closely (≤ 1%), except for the Siemens EPID. Clinical IMRT EPID dosimetry implemented with the different pixel-to-dose calibration methods indicated that calibration at 20 MU provides equivalent results to implementing a ghosting correction model. The nonlinear dose response was consistent across both clinical EPIDs and the standalone research EPID, with the exception of the poor reproducibility seen with Siemens EPID images of IMRT fields. The nonlinear dose response was

  3. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  4. The DOE Laboratory Accreditation Program performance testing laboratory automated calibration verification program

    The Performance Testing Laboratory for the DOE Laboratory Accreditation Program (DOELAP) resides at the Radiological and Environmental Sciences Laboratory (RESL) on the Idaho National Engineering Laboratory (INEL). A system has been developed to verify the calibration of Cesium 137 irradiators using a reference class ionization chamber under computer control. The measurement system consists of irradiators, a Victoreen Model 415 ionization chamber, a Keithley Model 617 electrometer, a high voltage power supply, a VAXLAB microVAX II processor controller, a Fluke digital thermometer, a Heise digital barometer and an Optomux interface between the computer and irradiator. The ionization chamber is placed in an irradiation fixture which is affixed to the dosimeter phantom stand. The computer then executes a variety of steps to conduct the irradiation and measurement. The data taken over the last six months indicate that all of the irradiator geometries meet requirements in the governing standards

  5. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ∼25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%–7%, 3%–5%, and 2%–4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy−1 versus the CT scatter phantom 29.2 ± 1.0 mV cGy−1 and FIA with x-ray 29.9 ± 1.1 mV cGy−1 methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ∼3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual

  6. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    Brady, S. L.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-06-15

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by {approx}25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 {+-} 1.1 mV cGy{sup -1} versus the CT scatter phantom 29.2 {+-} 1.0 mV cGy{sup -1} and FIA with x-ray 29.9 {+-} 1.1 mV cGy{sup -1} methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of {approx}3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration

  7. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (Uc) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  8. MODIFIED LIULIN DETECTOR CALIBRATION FOR ONBOARD AIRCRAFT DOSIMETRY MEASUREMENTS

    Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Ploc, Ondřej; Kyselová, Dagmar

    Vol. 34. Bratislava: SMU - Faculty of Public Health, 2014. s. 60-60. ISBN 978-80-89384-08-2. [XXXVI.Dny radiační ochrany. 10.11.2014-14.11.2014, Poprad] Institutional support: RVO:61389005 Keywords : dosimetry * aircraft * detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  9. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  10. Accreditation of testing laboratories in dosimetry: The use of a flexible scope at the competent Incorporation Measuring Body Juelich

    The accreditation of the Competent Incorporation Measuring Body at Juelich includes incorporation monitoring by means of direct measurements of the body activity as well as by means of indirect determination of the body activity by radiochemical analysis of excreta samples. In both testing areas, it proved to be very useful to have a flexible scope. In particular, the associated freedom in choosing testing procedures supports the continual improvement process of the laboratory. The modification of existing methods as well as the development and introduction of new procedures makes an immediate reaction to changed requirements feasible. At Juelich the use made out of the flexible scope included, e.g. the introduction of mathematical calibration in whole-body counting and the automation of sample preparation in radiochemical analysis. Advantages of the new procedures and modified methods include on the one hand the reduction of processing times, downtimes and hazard potentials on the other hand enhanced detection limits and improved cost-efficiency. In the result, it can be recommended to other qualified testing laboratories to go for a flexible scope. (authors)

  11. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  12. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  13. Comparison of calibration coefficients in the IAEA/WHO network of secondary standards dosimetry laboratories

    The paper describes the methodology, measurements, evaluation and analysis of the results of the IAEA programme for the comparison of calibration coefficients for radiotherapy dosimetry in the IAEA/World Health Organization network of secondary standards dosimetry laboratories (SSDLs). A pilot study was initiated in 1995 and the comparison programme started in 1997. In this programme ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA and again at the SSDL. Since 1997, 42 SSDLs have participated in this comparison programme, although only 34 laboratories have effectively completed the process. The results from six participants were outside the acceptance limit set by the IAEA, but the follow-up process has improved the calibration procedures at these SSDLs. The results of the comparison, grouped according to the traceability of the SSDL measurements, are presented and discussed. As part of its own quality assurance programme, the IAEA participated in a regional comparison organized by the Sistema Interamericano de Metrologia (SIM, the regional metrology organization for the Americas) from 2000 to 2002, in which four SSDLs from Latin America also participated. Taking into account the differences in the primary standards to which the various SSDLs are traceable, the results of the IAEA-SIM comparison show good consistency and demonstrate the robustness of the international measurement system in radiotherapy dosimetry. (author)

  14. Dosimetry

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  15. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs

  16. A round-robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols

    Drzymala, R. E., E-mail: drzymala@wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Alvarez, P. E. [Imaging and Radiation Oncology Core Houston, UT MD Anderson Cancer Center, Houston, Texas 77030 (United States); Bednarz, G. [Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15232 (United States); Bourland, J. D. [Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina 27157 (United States); DeWerd, L. A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Ma, L. [Department of Radiation Oncology, University California San Francisco, San Francisco, California 94143 (United States); Meltsner, S. G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Neyman, G. [Department of Radiation Oncology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195 (United States); Novotny, J. [Medical Physics Department, Hospital Na Homolce, Prague 15030 (Czech Republic); Petti, P. L. [Gamma Knife Center, Washington Hospital Healthcare System, Fremont, California 94538 (United States); Rivard, M. J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Shiu, A. S. [Department of Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Goetsch, S. J. [San Diego Medical Physics, Inc., La Jolla, California 92037 (United States)

    2015-11-15

    Purpose: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. Methods: Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution’s results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. Results: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21 + ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG-21 + ABS

  17. A round-robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols

    Purpose: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. Methods: Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution’s results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. Results: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21 + ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG-21 + ABS

  18. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  19. Calibration of the Gamma Knife Perfexion using TG-21 and the solid water Leksell dosimetry phantom

    Purpose: To calibrate a Gamma Knife (GK) Perfexion using TG-21 with updated chamber-dependent values for modern microionization chambers in the new solid water Leksell dosimetry phantom. This work illustrates a calibration method using commercially available equipment, instruments, and an established dosimetry protocol that may be adopted at any GK center, thus reducing the interinstitutional variation in GK calibration. The calibration was verified by three third-party dosimetry checks. In addition, measurements of the relative output factors are presented and compared to available data and the new manufacturer-provided relative output factors yet to be released. Methods: An absolute dose calibration based on the TG-21 formalism, utilizing recently reported phantom material and chamber-dependent factors, was performed using a microionization chamber in a spherical solid water phantom. The result was compared to other calibration protocols based on TG-51. Independent verification of the machine output was conducted through M.D. Anderson Dosimetry Services (MDADS), using thermoluminescent dosimeters (TLDs) in an anthropomorphic head phantom; the Radiological Physics Center (RPC), using TLDs in the standard Elekta ABS plastic calibration phantom (gray phantom), included with the GK; and through a collaborative international calibration survey by the University of Pittsburgh Medical Center (UPMC) using alanine dosimeters, also in the gray phantom. The alanine dosimeters were read by the National Institute of Standards and Technology. Finally, Gafchromic EBT film was used to measure relative output factors and these factors were compared to values reported in the literature as well as new values announced for release by Elekta. The films were exposed in the solid water phantom using an included film insert accessory. Results: Compared to the TG-21 protocol in the solid water phantom, the modified and unmodified TG-51 calibrations resulted in dose rates which were 1

  20. Calibration in medical diagnostic beams at the Swedish secondary standard dosimetry laboratory

    New diagnostic X-ray beams based on the IEC standard no. 1267 are now available at the Secondary Standard Dosimetry Laboratory in Sweden. These beams are alternatives to the ISO narrow qualities and BIPM qualities that until now have been used for calibration of diagnostic instruments. A procedure differing somewhat from the IEC standard but following the primary radiation standards laboratory at PTB has been used for defining the radiation quality. This report describes the characteristics of the new radiation beams and the estimated effect on calibration factors due to the change in radiation quality. The effect on existing calibration beams due to the reconstruction of filter wheels has been investigated concerning scattered radiation, half-value layers and air kerma rates

  1. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer

  2. ESR dosimetry in calibration intercomparisons with high-energy photons and electrons

    Olsen, K.J. (University Hospital of Copenhagen, Herlev (Denmark)); Hansen, J.W. (Risoe National Lab., Roskilde (Denmark)); Waligorski, M.P.R. (Institute of Nuclear Physics, Cracow (Poland))

    1989-01-01

    When alanine is exposed to radiation, stable free radicals are produced which may be measured by electron spin resonance (ESR) spectroscopy. Our dosimeters consist of L-{alpha}-alanine mixed with 5% polyvinyl pyrrolidone, compacted in the shape of 2-mm thick cylinders of 4.5 mm diameter. The alanine dosimeters were exposed to 0.25 to 16-MV {sub p} X-ray beams and 6 to 20-MeV electron beams and measured at Riso National Laboratory. Doses were determined by comparison with alanine dosimeters exposed to {sup 60}Co {gamma}-rays calibrated with Fricke dosimetry. At absorbed doses above 10 Gy, the standard deviation for the dose measurements was 1%. Dosimetry comparisons better than 2% at the 95% confidence level are possible. The dosimeters are easy to handle, robust and cheap, and may be read repeatedly. Fading after 100 Gy of {sup 60}Co {gamma}-rays and Linac-produced X-ray and electron beams is less than 2 and 6% in 4 years, respectively. Alanine dosimeters are useful for dosimetry comparisons both for photons and electrons, and the negligible fading make them ideal for documentation of patient doses in radiation therapy. (author).

  3. A method for automating calibration and records management for instrumentation and dosimetry

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation

  4. Calibration curves for biological dosimetry; Curvas de calibracion para dosimetria biologica

    Guerrero C, C.; Brena V, M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail cgc@nuclear.inin.mx

    2004-07-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of {sup 60} Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  5. A method for automating calibration and records management for instrumentation and dosimetry

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr. [Atlan-Tech, Inc., Roswell, GA (United States)

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  6. Dosimetry

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source

  7. Calibration of survey meters at the Algerian Secondary Standard Dosimetry Laboratory

    Full text: The Algerian Secondary Standard Dosimetry Laboratory, which became a Regional AFRA Designated Centre for French spoken countries, in the field of calibration since 2005, has developed and implemented methodologies for the calibration of radiation protection instruments such as survey meters. These instruments were initially calibrated in terms of air kerma free in air (NK) in 60Co, 137Cs gamma radiations. Although the recommended calibration quantity is H*(10) (Sv/h), most of instruments measure different physical quantities and problems about the expression of calibration factor in the calibration certificates are always raised. In order to switch to calibrations in terms of H*(10), a feasibility study was performed using instruments submitted for calibration at the SSDL. This paper presents the variation of the calibration coefficients, Fc, obtained since 2005 for three types of survey meters. The uncertainty components involved in the determination of Fc are analysed in details. Material and method: This study included the most used survey meters in Algeria and received at the SSDL in 2005 and 2006 which consist of 127 survey-meters of type Automess (different models), 80 Ludlum model 3 and 23 Graetz X 5 DE. Calibrations were performed using the beam output decay method. This output was determined with the Reference Standard chamber of type NE 2575 in 2005 and LS01 in 2006, both calibrated at the IAEA calibration laboratory. The average calibration coefficients, Fc, which converts the instruments reading to ambient equivalent absorbed dose, are calculated and the relative standard deviations assessed. The variation of calibration coefficients, for each type of instruments, is compared to the overall stated uncertainty for this coefficient. Results and discussion: The mean calibration coefficients in terms of H*(10) were lying from 0.993 ± 2.55% and 1.039 ± 3.16% for the Automess survey meters and from . The results are 1.215 ± 5.93%, 1.149 ± 14

  8. Assuring the quality of the mammography calibrations in Cuban laboratory by comparison with Greek dosimetry standard

    The Secondary Standard Dosimetry Laboratory (SSDL) of Cuba has recently worked on preparation of the dissemination proposal of air kerma quantities for dose measurements at mammography beams into the country. This work was supported by IAEA coordinated research project. The X-ray equipment available at the laboratory is based on tungsten anode, and then the recommended RQR-M series based on molybdenum target and specified in IEC 61267 cannot be established at the SSDL. The calibration of the reference class chamber with flat response in any beams on mammography range is an option suggested in TRS 457 when not all radiation qualities are available. As an alternative some authors have suggested the use of radiation qualities based on tungsten anode and defined by IEC 1223-3-2, The Radcal 10X6M chamber was designated as secondary standard of the SSDL. The chamber was calibrated over the IEC 1223-3-2 range in the primary laboratory of Austria (BEV). The designation and calibration of the secondary standard was followed by the establishment of the IEC 1223-3-2 qualities at the SSDL of Cuba and preparation of the calibration procedures. Before introducing the calibrations by alternative method it was necessary to test the quality of the results provided by SSDL of Cuba to confirm both if this procedure can be properly operated by laboratory and the needs of customer are met. For this goal it was found the experienced laboratory from Greece that use appropriate X-ray spectra for calibration of mammography dosimeters. The Hellenic Ionizing Radiation Calibration Laboratory (HIRCL) of Greece maintains the MAGNA Ref 92650 chamber as secondary standard traceable to PTB in RQR-M qualities based on molybdenum target. The X-ray system used is the clinical mammography unit with some modifications to fit the needs of calibrations. The laboratories were agreed to initiate a bilateral comparison exercise to evaluate whether the results of calibration of both laboratories are similar

  9. Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.

    Budzanowski, Maciej; Kopeć, Renata; Obryk, Barbara; Olko, Paweł

    2011-03-01

    Individual dosimetry service based on thermoluminescence (TLD) detectors has started its activity at the Institute of Nuclear Physics (IFJ) in Krakow in 1965. In 2002, the new Laboratory of Individual and Environment Dosimetry (Polish acronym LADIS) was established and underwent the accreditation according to the EN-PN-ISO/IEC 17025 standard. Nowadays, the service is based on the worldwide known standard thermoluminescent detectors MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P), developed at IFJ, processed in automatic thermoluminescent DOSACUS or RE2000 (Rados Oy, Finland) readers. Laboratory provides individual monitoring in terms of personal dose equivalent H(p)(10) and H(p)(0.07) in photon and neutron fields, over the range from 0.1 mSv to 1 Sv, and environmental dosimetry in terms of air kerma K(a) over the range from 30 μGy to 1 Gy and also ambient dose equivalent H*(10) over the range from 30 μSv to 1 Sv. Dosimetric service is currently performed for ca. 3200 institutions from Poland and abroad, monitored on quarterly and monthly basis. The goal of this paper is to identify the main activities leading to the highest radiation exposures in Poland. The paper presents the results of statistical evaluation of ∼ 100,000 quarterly H(p)(10) and K(a) measurements performed between 2002 and 2009. Sixty-five per cent up to 90 % of all individual doses in Poland are on the level of natural radiation background. The dose levels between 0.1 and 5 mSv per quarter are the most frequent in nuclear medicine, veterinary and industrial radiography sectors. PMID:21183549

  10. A global calibration model for a-Si EPIDs used for transit dosimetry.

    Nijsten, S M J J G; van Elmpt, W J C; Jacobs, M; Mijnheer, B J; Dekker, A L A J; Lambin, P; Minken, A W H

    2007-10-01

    Electronic portal imaging devices (EPIDs) are not only applied for patient setup verification and detection of organ motion but are also increasingly used for dosimetric verification. The aim of our work is to obtain accurate dose distributions from a commercially available amorphous silicon (a-Si) EPID for transit dosimetry applications. For that purpose, a global calibration model was developed, which includes a correction procedure for ghosting effects, field size dependence and energy dependence of the a-Si EPID response. In addition, the long-term stability and additional buildup material for this type of EPID were determined. Differences in EPID response due to photon energy spectrum changes have been measured for different absorber thicknesses and field sizes, yielding off-axis spectrum correction factors based on transmission measurements. Dose measurements performed with an ionization chamber in a water tank were used as reference data, and the accuracy of the dosimetric calibration model was determined for a large range of treatment conditions. Gamma values using 3% as dose-difference criterion and 3 mm as distance-to-agreement criterion were used for evaluation. The field size dependence of the response could be corrected by a single kernel, fulfilling the gamma evaluation criteria in case of virtual wedges and intensity modulated radiation therapy fields. Differences in energy spectrum response amounted up to 30%-40%, but could be reduced to less than 3% using our correction model. For different treatment fields and (in)homogeneous phantoms, transit dose distributions satisfied in almost all situations the gamma criteria. We have shown that a-Si EPIDs can be accurately calibrated for transit dosimetry purposes. PMID:17985633

  11. A global calibration model for a-Si EPIDs used for transit dosimetry

    Electronic portal imaging devices (EPIDs) are not only applied for patient setup verification and detection of organ motion but are also increasingly used for dosimetric verification. The aim of our work is to obtain accurate dose distributions from a commercially available amorphous silicon (a-Si) EPID for transit dosimetry applications. For that purpose, a global calibration model was developed, which includes a correction procedure for ghosting effects, field size dependence and energy dependence of the a-Si EPID response. In addition, the long-term stability and additional buildup material for this type of EPID were determined. Differences in EPID response due to photon energy spectrum changes have been measured for different absorber thicknesses and field sizes, yielding off-axis spectrum correction factors based on transmission measurements. Dose measurements performed with an ionization chamber in a water tank were used as reference data, and the accuracy of the dosimetric calibration model was determined for a large range of treatment conditions. Gamma values using 3% as dose-difference criterion and 3 mm as distance-to-agreement criterion were used for evaluation. The field size dependence of the response could be corrected by a single kernel, fulfilling the gamma evaluation criteria in case of virtual wedges and intensity modulated radiation therapy fields. Differences in energy spectrum response amounted up to 30%-40%, but could be reduced to less than 3% using our correction model. For different treatment fields and (in)homogeneous phantoms, transit dose distributions satisfied in almost all situations the gamma criteria. We have shown that a-Si EPIDs can be accurately calibrated for transit dosimetry purposes

  12. Optimization of MOSFET-type sensor calibration for the implementation of in vivo dosimetry in stereotactic radiosurgery; Optimisation de la calibration de capteurs de type MOSFET pour la mise en oeuvre de la dosimetrie in vivo en radiochirurgie stereotaxique

    Sors, A. [Laboratoire d' etude et de recherche en imagerie spatiale et medicale, universite Paul-Sabatier, 31 - Toulouse (France); Cassol, E.; Duthil, P. [Unite de radiophysique et de radioprotection, CHU Toulouse, 31 (France); Cassol, E.; Lotterie, J.A.; Berry, I.; Franceries, X. [Inserm UMRS 825, 31 - Toulouse (France); Hallil, A. [Best Medical Canada, Ottawa (Canada); Sors, A.; Latorzeff, I.; Lotterie, J.A.; Redon, A.; Berry, I. [Centre de radiochirurgie stereotaxique, CHU Rangueil, 31 - Toulouse (France); Latorzeff, I.; Redon, A.; Berry, I. [Groupe Oncorad Garonne, 31 - Toulouse (France); Sors, A.; Cassol, E.; Hallil, A.; Latorzeff, I.; Duthil, P.; Lotterie, J.A.; Redon, A.; Berry, I.; Franceries, X. [Universite Paul-Sabatier, Toulouse-3, 31 - Toulouse (France)

    2010-10-15

    Within the frame of a project of assessment of in vivo dosimetry methods in stereotactic radiosurgery delivering an irradiation by a conformational dynamic arc therapy technique, the authors more precisely report the assessment and optimization of the calibration of MOSFET and micro MOSFET sensors. Measurements are performed on a Navel's system equipped with a multi-blade collimator. Short communication

  13. Development and calibration of a routine dosimetry system for radiation processing

    The development and calibration of a routine dosimetry system based on commercial, low cost photodiode (SFH 206) are presented in this work. The dosimeter probe was designed to operate unbiased in the direct current mode. The radiations were performed with Cobalt-60 Panoramic Irradiator facility in the dose-rate range of 8.1 Gy/h - 125 Gy/h. The photocurrents generated in the device, in each dose-rate, were registered with a digital electrometer and stored during the exposure time. The current response of the diode was measured as a function of the time in steps from 1 Gy up to 200 Gy with accumulated dose up to 15 kGy. In this range, the dose-response of the diode, given by the charge as function of dose, was linear with correlation coefficient better than 0.998. These results were compared with those obtained using Gafchromic film dosimetry often used in routine. To monitor possible gamma radiation effects produced on the diode, the current and charge sensitivities were measured as a function of the absorbed dose. For doses up to 15 kGy, it was not observed any radiation damage what confirms the reproducibility of the diode response better than 3 %. Finally, due to the small experimental errors ( 5% ) and good spatial resolution of the diode it was possible to measure the transit dose due to the movement of the Cobalt-60 radioactive source as well the dose rate mapping in the Panoramic Irradiator. (author)

  14. Methods of measurement and calibration in personnel dosimetry for external irradiation: presentation of the concept and the results of a test programme in Switzerland

    In 1986 the Swiss working group on personnel dosimetry issued a recommendation on methods of calibration and measurement in personnel dosimetry for external radiation, based on ICRU report 39. The aim of the report was to give detailed and pragmatic guidance to the dosimetry services and the calibration labs. In the recommendation a definition is given for primary and secondary limited quantities, for calibration quantities and operational quantities as well as for their interrelationships. The second part of the report is a manual for the calibration and evaluation procedures for whole-body and extremity dosemeters for photon and electron radiation. Based on that recommendation an extended test programme has been performed for all dosimetry services in Switzerland. The results show that the legal introduction of the recommended concept has no severe consequences for the dosimetry services although a number of minor modifications are needed. (author)

  15. Calibration of dosimeters and survey instruments for photons at the Malaysian Secondary Standard Dosimetry Laboratory

    Radiation protection infrastructures are well established in Malaysia. The infrastructures include laws and regulations regarding the use of ionising radiations, regulatory body to enforce the regulations, the radiation protection services and radiation protection training capability. The Atomic Energy Licensing Board (AELB) is the regulatory body responsible for licensing and enforcement of the law and regulation while Malaysian Institute for Nuclear Technology Research (MINT) through its Secondary Standard Dosimetry Laboratory (SSDL) is to provide radiation protection services throughout the country. The laboratory facilitates the proper radiation calibration and verification of the instruments used for the measurement of radiation ensuring the safe use of nuclear technology. The rapid growth in the application of nuclear technology is obviously to be welcomed but there must be someway of ensuring that the safety aspects really meet the required standards. (J.P.N.)

  16. Calibration of brachytherapy sources. Guidelines on standardized procedures for the calibration of brachytherapy sources at Secondary Standard Dosimetry Laboratories (SSDLs) and hospitals

    Today, irradiation by brachytherapy is considered an essential part of the treatment for almost all the sites of cancer. With the improved localization techniques and treatment planning systems, it is now possible to have precise and reproducible dose delivery. However, the desired clinical results can only be achieved with a good clinical and dosimetric practice, i.e. with the implementation of a comprehensive quality assurance (QA) programme which includes detailed quality control procedures. As summarized in the present report, accidents in brachytherapy treatments have been caused due to the lack of traceable calibration of the sources, due to the incorrect use of quantities and units, or errors made in the dose calculation procedure. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources has established a requirement on the calibration of sources used for medical exposure. For sources used in brachytherapy treatments, a calibration traceable to a standards dosimetry laboratory is required. The present report deals with the calibration of brachytherapy sources and related quality control (QC) measurements, QC of ionization chambers and safety aspects related to the calibration procedures. It does not include safety aspects related to the clinical use of brachytherapy sources, which have been addressed in a recent IAEA publication, IAEA-TECDOC-1040, 'Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects'. The procedures recommended in this report yield traceability to internationally accepted standards. It must be realized, however, that a comprehensive QA programme for brachytherapy cannot rest on source calibration alone, but must ensure QC of all the equipment and techniques that are used for the dose delivery to the patient. The present publication incorporates the reports of several consultants meetings in the field of

  17. Neutron personnel dosimetry

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  18. Radiation dosimetry

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  19. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry

    The work package two of the ORAMED project-Collaborative Project (2008-2011) supported by the European Commission within its seventh Framework Programme-is devoted to the study of the eye lens dosimetry. A first approach is to implement the use of Hp(3) by providing new sets of conversion coefficients and well suited calibration and type test procedures. This approach is presented in other papers in the proceedings of this conference. Taking into account that the eye lens is an organ close to the surface of the body, another approach would be to directly estimate the absorbed dose to the eye lens, Dlens,est through a special calibration procedure although this quantity is not directly measurable. This paper is a methodological paper that tries to identify the critical aspects of a dosimetry in terms of Dlens. (authors)

  20. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  1. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  2. Optimization of MOSFET calibration for in vivo dosimetry in radiosurgery: reduction of measurement uncertainties in pre-clinical conditions; Optimisation de la calibration de MOSFET pour la dosimetrie in vivo en radiochirurgie: reduction des incertitudes de mesure en conditions precliniques

    Sors, A.; Berry, I.; Franceries, X. [UMR 825 ' imagerie cerebrale et handicaps neurologiques' , Inserm, Toulouse (France); Cassol, E.; Duthil, P. [Unite de radiophysique et de radioprotection, CHU de Toulouse, Toulouse (France); Hallil, A. [Best medical Canada, Ottawa (Canada); Latorzeff, I.; Lotterie, J.A. [Centre de radiochirurgie stereotaxique, CHU Rangueil, Toulouse (France); Redon, A. [Groupe Oncorad Garonne, Montauban (France)

    2011-10-15

    The objective of this study is to assess the conventional formulas of equivalent square for fields with irregular geometry, by transposing the optimized calibration method which has been previously developed, to micro-MOSFET. The study has been performed on a 6 MV Novalis apparatus equipped with micro-multi-blades collimators (BrainLab). The average dose bias reaches 2.66 per cent for all field sizes. Therefore, it appears that the joint use of the square inverse of distances and of conventional formulas of equivalent square results in an acceptable in vivo dosimetry precision. Short communication

  3. A comparison of in-air and in-water calibration of a dosimetry system used for radiation dose assessment in cancer therapy

    Arshed Waheed

    2010-01-01

    Full Text Available An accurate calibration of the therapy level radiation dosimetry system has a pivotal role in the accuracy of dose delivery to cancer patients. The two methods used for obtaining a tissue equivalent calibration of the system: air kerma calibration and its conversion to a tissue equivalent value (absorbed dose to water and direct calibration of the system in a water phantom, have been compared for identical irradiation geometry. It was found that the deviation between the two methods remained within a range of 0% to ±1.7% for the PTW UNIDOS dosimetry system. This means that although the recommended method is in-water calibration, under exceptional circumstances, in-air calibration may be used as well.

  4. Dosimetry in high-energy photon fields for the calibration of measuring instruments for radiation protection purposes

    This report describes the dosimetry in various reference photon fields with energies between 4.4 MeV and about 8 MeV. Two dosimetric quantities were chosen. The air kerma was determined from measurements without a phantom and the absorbed dose to water from measurements with a phantom. This mean that the range of realization of the quantity air kerma has been extended from the energy of Co-60 photons to about 8 MeV. The results can serve as basis for the calibration of radiation protection dosemeters in nuclear power plants (0-16(n,p)N-16 reaction) with high energy photons. (orig./HP)

  5. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of Hp(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  6. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  7. Radioluminescence (RL) probe dosimetry using Al2O3:C for precise calibration of beta sources applied in luminescence dating

    The radioluminescence (RL) phenomenon is widely known as prompt luminescence or fluorescence of synthetic materials, like Al2O3 and LiF as well as of natural dosimeter materials, like feldspar and quartz, during interaction with ionising radiation, especially electron rays. Almost all of these materials show increasing RL flux with increasing absorbed beta dose. Only potassium rich feldspars (microcline and orthoclase) show a RL emission at 1.45 eV of decreasing intensity with rising delivered dose. For a number of reasons, this RL emission is suitable for dating purposes. Accuracy and reproducibility of the RL dating method are much more advantageous compared to TL and OSL methods. Carbon doped Al2O3 (TLD 500) shows a much more higher RL intensity than, e.g., feldspar and the stability of the stored electrons as well as the linearity of RL yield versus primary electron energy, qualifies this dosimeter material to be a useful tool in source calibration, using radioluminescence. However, the accuracy of a luminescence dating method depends largely on the calibration of the used irradiation sources. To prevent calibration uncertainties due to the use of natural dosimeters with a high scattering of luminescence yield, a new method is suggested. This method bases on probe dosimetry using a very small amount of Al2O3:C as probe and, consequently, the material that should be calibrated (e.g. feldspar). The amount of Al2O3:C may disturb the electron fluence within the material to be calibrated only insignificantly. The sample mix is irradiated by an exactly known Gamma or Beta radiation source and the absorbed dose is treated as absorbed dose in the appropriated material. In contrast to conventional calibration methods, the suggested performance uses the dose dependent RL signal of Al2O3:C at 3.00 eV. This shows a good reproducibility, even with a tiny amount of the applied synthetic probe material. (author)

  8. Calibration of semiconductors diodes for in vivo dosimetry in total body irradiation treatments; Calibracao de diodos semicondutores para dosimetria in vivo em tratamentos de irradiacao de corpo inteiro

    Oliveira, Fernanda F.; Costa, Alessandro M.; Ghilardi Netto, Thomaz, E-mail: ferretti.oliveira@gmail.com [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias e Letras. Departamento de Fisica; Amaral, Leonardo L. [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2012-08-15

    This paper presents the results of in vivo dosimetry with p-type semiconductors diodes, EDP-15 (Scanditronix Wellhoefer) of two patients who underwent total body irradiation treatments, at Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto University of Sao Paulo (HCFMRP-USP). The diodes were well calibrated and the calibration factors were determined with the aid of a reference ionization chamber (FC065, IBA dosimetry, sensitive volume of 0.65 cm{sup 3}).The calibration was performed in a Total Body Irradiation (TBI) setup, using solid water phantoms. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings (half of the lateral thickness). The response difference between diode readings and the prescribed dose for both treatments was below 4%. This difference is in agreement as recommended by International Commission on Radiation Units (ICRU), which is {+-}5%. (author)

  9. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  10. H p(0.07) photon dosemeters for eye lens dosimetry: Calibration on a rod vs. a slab phantom

    In recent years, several papers dealing with eye lens dosimetry have been published as epidemiological studies are implying that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. For that reason, the necessity to monitor the eye lens may become more important than it was before. However, only few dosemeters for the appropriate quantity Hp(3) are available. Partial-body dosemeters are usually designed to measure the quantity Hp(0.07) calibrated on a rod phantom representing a finger while a slab phantom much better represents the head. Therefore, in this work it was investigated whether dosemeters designed for the quantity Hp(0.07) calibrated on a rod phantom can also be worn on the head (close to the eyes) and still deliver correct results (Hp(0.07) on a head). For that purpose, different types of partial-body dosemeters from routine use were irradiated at different photon energies on both a rod and a slab phantom. It turned out that their response values are within ±5% independent of the phantom if the quantity value for the respective phantom is used. Thus, partial-body dosemeters designed for the quantity Hp(0.07) calibrated on a rod phantom may be worn on the head and used to monitor the eye lens dose due to photon radiation via the measurement of Hp(0.07) on the head. (authors)

  11. Ophthalmic applicators: An overview of calibrations following the change to SI units

    Since the NIST dose to water standard for 90Sr/90Y ophthalmic applicators was introduced, numerous sources have undergone calibration either at NIST or at the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL). From 1997 to 2008, 222 of these beta-emitting sources were calibrated at the UWADCL, and prior reference source strength values were available for 149 of these sources. A survey of UWADCL ophthalmic applicator calibrations is presented here, demonstrating an average discrepancy of -19% with a standard deviation of ±16% between prior reference values and the NIST-traceable UWADCL absorbed dose to water calibrations. Values ranged from -49% to +42%.

  12. Accreditation of environmental TLD dosimetry system: validation and uncertainty of the method; Acreditacion de sistema de dosimetria ambiental TLD: validacion e incertumbre del metodo

    Rodriguez Jimenez, R.; Romero Gutierrez, A. M.; Lopez Moyano, J. L.

    2013-07-01

    he work shows the results obtained in the validation of the method used, and the calculation of uncertainty. The authors' goal is to spread the practical experience gained during the accreditation process, paying special attention to the process of validation of the method and the estimation of the uncertainty of the dosimetric systems. (Author)

  13. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    Guerra P, F.; Heeren de O, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Programa de Pos Graduacao / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling {sup 18}F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by {sup 40}K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  14. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  15. Calibration process of survey meters and dosemeters at Standard Dosimetry Laboratory, Nuclear Energy Unit, Malaysia

    Techniques of calibration and its possible uses are reviewed and discussed. Three main techniques identified are substitution, simultaneous irradiation and inverse square law. The scope of application of each technique is discussed in detail. In addition, tests which are performed on the calibrated dosemeters including energy dependence, angular dependence as well as linearity are explained. For the above purposes, photon radiations from 30 keV to 1250 keV were used. The radiations are obtained by means of an X-ray machine, PHILIPS Model MCN 32, Cs 137 and C60. At the end of the report, several forms tht are required for giving the calibration services are attached. (author)

  16. Electron beam dosimetry. Calibration and use of plane parallel chambers following IAEA TRS-381 recommendations

    Using different plane parallel chamber types (NACP-02, PTW Roos and PTW Markus), and a cylindrical chamber NE-2571 as reference, the IAEA TRS-381 Code of Practice has been compared with the AAPM TG-39 dosimetry protocol for plane parallel chambers. ND,airpp was determined following the 60Co in-phantom method and the electron beam method described in TRS-381, using water, PMMA and RMI-457 Solid Water phantoms. Differences were smaller than 0.5% between the two methods except for the PTW Roos chamber where the discrepancy was about 1.5%. The absorbed dose to water was determined according to the procedures and data of each protocol for electron beams between 4 and 18 MeV. Differences in absorbed dose were less than 1% when measurements were made in water, but a deviation of up to 2% was found between TRS-381 and TG-39 when PMMA phantoms were used. To validate the results obtained and to investigate differences between plastic and water phantoms in electron beam dosimetry, the scaling factor Cpl and the fluence correction factor hm for PMMA and solid water RMI-457 were measured and compared to the data in TRS-381. Good agreement was found for Cpl, but only when the plastics density were taken into account. The experimental values of hm have a large uncertainty but for PMMA a trend for hm being lower than in TRS-381 has been obtained. (author)

  17. Calibration System for Dosimetry and Radioactivity of Beta-Emitting Sources

    Choi, Chang Heon; Ye, Sungjoon [Seoul National Univ., Seoul (Korea, Republic of); Son, Kwangjae; Park, Uljae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    This study aims to develop a calibration system for radioactivity of beta sources using a calibration constant which derived from comparing measurement and simulation. It is hard to measure the activity of beta emitter isotope due to self absorption and scattering. So the activity involves high levels of uncertainty. The surface dose of Sr/Y-90 standard isotope was measured using extrapolation chamber and calculated using Monte Carlo. The activity (4.077 kBq) of source was measured by NIST measurement assurance program. And several correction factors were calculated Monte Carlo method. The measurement result was corrected by correction factors. The calibration constant was defined as the ratio of surface dose to activity. It was 4.5Χ10{sup -8} and 6.52Χ10{sup -8} for measurement and Monte Carlo, respectively. There was about 15.4% difference in the calibration constant determined by the two techniques. The depth uncertainty makes the difference because of high dose gradients. Some correction factors have error due to scattering by detector geometry. A test source will be produced by HANARO. The activity will be calculated using calibration constant. The activity will be performed cross-calibration with NIST. Finally, the system will provide accurate information of sources.

  18. Experimental procedure for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry

    A simple methodology for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry is presented to enable individuals to undertake such work in a routine clinical environment. Samples of PAG were irradiated using a linear accelerator and imaged using a 0.5 T (22 MHz) Philips Gyroscan MRI scanner. The mean spin-lattice relaxation rate was measured using a 'turbo-mixed' sequence, consisting of a series of 90 deg. pulses, each followed by acquisition of a train of spin echoes. The mean sensitivity for five different batches of PAG in the range up to 10 Gy was calculated to be 0.0285 s-1 Gy-1 for the mean spin-lattice relaxation rate with a percentage standard deviation of 1.25%. The overall reproducibility between batches was calculated to be 2.69%. This methodology, which introduces the novel use of pre-filled nitrogen vials for calibration, has been used to develop techniques for filling anatomically shaped anthropomorphic phantoms. (author)

  19. NVLAP activities at Department of Defense calibration laboratories

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  20. NVLAP activities at Department of Defense calibration laboratories

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  1. A reference current source for the calibration of current measuring systems in dosimetry using ionisation chambers

    This work describes a newly developed, easily handled current source containing one 90Sr + 90Y Y beta emitter. Four different currents from 7x10-11A to 4x10-14A are supplied. From 5 to 10 control measurements were performed for each of the four currents during a period of eight months. The standard deviation of the values of these control measurements, corrected to a reference air density and for radioactive decay, was between 0,07% and 0,4% with respect to the mean values obtained during the eight months. The relative standard deviation of the single values belonging to a control measurement carried out on one day under constant ambient conditions amounts to approximately one fourth of the values quoted above. The current source was utilized in a number of laboratories in the PTB and proved its reliability for checking current measuring systems in dosimetry with ionization chambers. (orig.)

  2. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration

    A multipurpose anthropomorphic neck phantom was designed and fabricated for use in medical applications. The designed neck phantom is composed of seven elliptic cylindrical slices with a semi-major axis of 14 cm and a semi-minor axis of 12.5 cm, each having the thickness of 2 cm. The thyroid gland, bony part of the neck, and the windpipe were also built inside the neck phantom. For the purpose of medical dosimetry, some holes were drilled inside the phantom to accommodate the thermoluminescence dosemeters with different shapes and dimensions. For testing the quality of images in nuclear medicine, the thyroid gland was built separately to accommodate the radioactive iodine. Finally, the nuclear medicine images were obtained by inserting 131I in both male and female thyroid parts. (authors)

  3. Dosimetry standards

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  4. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico; Dosimetria a traves del Laboratorio Secundario de Calibracion Dosimetrica de Mexico

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of ''clinical dosemeters''. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the

  5. 1989 neutron and gamma personnel dosimetry intercomparison study using RADCAL [Radiation Calibration Laboratory] sources

    The fourteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 14) was conducted during May 1-5, 1989. A total of 48 organizations (33 from the US and 15 from abroad) participated in PDIS 14. Participants submitted by mail a total of 1,302 neutron and gamma dosimeters for this mixed field study. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (40%), direct interaction TLD (22%), track (20%), film (7%), combination (7%), and bubble detectors (4%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: TLD (84%) and film (16%). Radiation sources used in the six PDIS 14 exposures included 252Cf moderated by 15-cm D2O, 252Cf moderated by 15-cm polyethylene (gamma-enhanced with 137Cs), and 238PuBe. Neutron dose equivalents ranged from 0.44--2.63 mSv and gamma doses ranged from 0. 01-1.85 mSv. One 252Cf(D2O) exposure was performed at a 60 degree angle of incidence (most performance tests are at perpendicular incidence). The average neutron dosimeter response for this exposure was 70% of that at normal incidence. The average gamma dosimeter response was 96% of that at normal incidence. A total of 70% of individual reported neutron dosimeter measurements were within ±50% of reference values. If the 0.01 mSv data are omitted, approximately 90% of the individual reported gamma measurements were within ±50% of reference values. 33 refs., 9 figs., 27 tabs

  6. Development of dose calibrators Tandem systems and establishment of beta dosimetry in nuclear medicine

    A quality control program at Nuclear Medicine Services includes the checking of all equipment used for diagnostics and treatment, and the individual monitoring of the workers occupationally exposed to ionizing radiations. In this work the main quality control tests were performed with three dose calibrators using standard radiation sources of 57Co, 133Ba, 137Cs and 60Co. Tandem systems of dose calibrators were established and characterized using four cylindrical absorbers of different materials for an additional quality control test in Nuclear Medicine. The main utility of this new test is the possibility of impurity detection in radiopharmaceuticals, when the ratio of the measurements with different absorbers is different from that obtained at the laboratory in ideal conditions. The dosimetric characteristics of three types of CaS04:Dy + Teflon pellets were studied for an appropriate choice of the material to be used for individual monitoring of workers. The thermoluminescent detectors were irradiated using beta sources of 90Sr+90Y, 204TI, 147Pm, 153Sm and 32P. A wrist badge for beta individual monitoring was developed for workers that handle beta radiopharmaceuticals in Nuclear Medicine Services. (author)

  7. Quality assurance in radiotherapy dosimetry in China

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  8. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  9. Radiochromic film dosimetry with flatbed scanners: A fast and accurate method for dose calibration and uniformity correction with single film exposure

    Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupled device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18x18 cm2 open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18x18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification

  10. Comparison of two standard dosimetry protocols for output calibration of 60Co teletherapy machines

    Two protocols for output calibration of 60Co teletherapy machines were studied in two steps. In the first step, two methods for timer error determination were studied both in air and in water: the two-exposure method with the short exposure time ranging in value form ts=0.1tL to ts=0.7tL, where tL is the long exposure time; and the single/multiple exposure method with the number of exposures ranging from n=2 to n=9. The results showed better precision for the two-exposure method with smaller ratios of ts to tL and for the single/multiple exposure method with the greater n, and also showed better precision for in-air than in-water measurements in both protocols. A comparison was made between the two-exposure protocol with ts=0.2tL, 0.3tL and 0.5tL and the single/multiple exposure protocol with n=6. In-air measurements showed the best results with ts=0.2tL in terms of both precision and decay constants estimated from the regression of exposure rate against time. In the second step, the protocol with n=6 was used in comparing the output value measured in air with that measured in water. The dose rates at 5 cm depth in water determined by these two methods of measurement were comparable to within ±0.5%. (author). 8 refs, 3 figs, 2 tabs

  11. Accredited Birth Centers

    ... 717-933-9743 Accredited since January 2016 100 Bright Eyes Midwifery and Wild Rivers Women's Health Accredited ... Birthing Center-Cedar Park Accredited 1130 Cottonwood Creek Trail Building D Suite 2 Cedar Park, TX 78613 ...

  12. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  13. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005; (Re)implantacao do sistema da qualidade do LCR para acreditacao na ABNT NBR ISO/IEC 17025:2005

    Leite, Sandro P., E-mail: leite_sp@ig.com.br [Rede Sibratec, Sao Paulo, SP (Brazil); Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2014-07-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  14. Bilateral comparison 2012 between calibration laboratories dosimetry spaniards for qualities ISO: S-Cs and S-Co

    This paper describes the Protocol and the results of the comparison bilateral organized during 2012, between two Spanish calibration laboratories. The main objective of the comparison was to contribute to verification and documentation of the consistency of calibration services offered at national level, with regard to the metrological traceability of calibrations and dose levels of protection assignments radiation to gamma radiation. (Author)

  15. Measurement assurance in dosimetry

    The uses of radiation in medicine and industry are today wide in scope and diversity and there is a need for reliable dosimetry in most applications. In particular, high accuracy in dosimetry is required in the therapeutic use of radiation. Consequently, calibration procedures for radiotherapy generally meet also the accuracy requirements for applications in other fields, such as diagnostic radiology, radiation protection and industrial radiation processing. The emphasis at this symposium was therefore mainly or radiotherapy dosimetry, but the meeting also included one session devoted to dosimetry in diagnostic radiology. Refs, fig and tabs

  16. Dosimetry of ionizing radiation

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  17. DRDC Ottawa working standard for biological dosimetry

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  18. DRDC Ottawa working standard for biological dosimetry

    Segura, T.M.; Prud' homme-Lalonde, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E. [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S.; Mullins, D. [JERA Consulting (Canada); Qutob, S. [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D.

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  19. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  20. Evaluation on the effect of dosimetry using a depth of calibration point or a depth of temporary dose maximum in high energy electron beams

    The Japan Society of Medical Physics (JSMP) has published a new dosimetry protocol ''JSMP-01'' for the calibration of radiotherapy beams. This protocol provides a new definition of the calibration point (depth) in order to obtain the absorbed dose at a reference point (Dr) by the calculation in high energy electron beams. This study evaluated the difference in the absorbed dose at the depth dose maximum (Ddmax) and Dr calculated from the absorbed dose at the calibration point. Further, the difference in the absorbed dose (Ddmax) at ''measured maximum depth (dmax)'' was evaluated using ''temporary maximum depth (dmax*)''. In the experiment at a depth interval of 0.1 g cm2, no difference was observed between Ddmax and Dr. However, in the experiment at a depth interval of 0.3 g cm-2 the differences between Ddmax and Dr increased to 6.4% and 5.2% at 4 MeV and 6 MeV, respectively. Subsequently, at all energy levels the difference between Ddmax and Dr of all energy was more than 3% at a depth interval of 0.4 g cm-2. The differences between Ddmax and Ddmax* were 2.68% and 4.50% at 6 MeV and 9 MeV, respectively, for this depth interval. (author)

  1. Comparison of radiotherapy dosimetry for 3D-CRT, IMRT, and SBRT based on electron density calibration

    Kartutik, K.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    Accurate calculation of dose distribution affected by inhomogeneity tissue is required in radiotherapy planning. This study was performed to determine the ratio between radiotherapy planning using 3D-CRT, IMRT, and SBRT based on a calibrated curve of CT-number in the lung for different target's shape in 3D-CRT, IMRT, and spinal cord for SBRT. Calibration curves of CT-number were generated under measurement basis and introduced into TPS, then planning was performed for 3D-CRT, IMRT, and SBRT with 7, and 15 radiation fields. Afterwards, planning evaluation was performed by comparing the DVH curve, HI, and CI. 3D-CRT and IMRT produced the lowest HI at calibration curve of CIRS 002LFC with the value 0.24 and 10. Whereas SBRT produced the lowest HI on a linear calibration curve with a value of 0.361. The highest CI in IMRT and SBRT technique achieved using a linear calibration curve was 0.97 and 1.77 respectively. For 3D-CRT, the highest CI was obtained by using calibration curve of CIRS 062M with the value of 0.45. From the results of CI and HI, it is concluded that the calibration curve of CT-number does not significantly differ with Schneider's calibrated curve, and inverse planning gives a better result than forward planning.

  2. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: effect of ion chamber calibration and long-term stability

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL 'dose intercomparison' for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy and uncertainities are within reported values. (author)

  3. SU-E-T-433: Calibration Accuracy in Mailed High-Resolution 3D Dosimetry Service for SRS/SBRT QA

    Purpose: SRS/SBRT combines hypofractionation with excellent dose distributions. However, extremely steep gradients across the target along with dose escalation, if not administered accurately, may lead to serious complications, recurrences, or even fatalities. Existing commercial QA products either lack adequate spatial resolution or the 3D aspect. By contrast, the new CrystalBall™ mailed high-resolution 3D dosimetry service removes the above limitations while reducing the overall workload on medical physics staff. The exposed dosimeters, which change optical density in proportion to local dose, are sent back to the manufacturer (MGS Research Inc., Madison, CT) for sub-millimeter-resolution laser-CT scanning and QA data analysis. QA report is returned electronically within 24 hours. The purpose of this study was to evaluate the dose calibration accuracy in this system. Methods: Two spherical CrystalBall™ polymer gel dosimeters from the same batch, 166 mm diameter, with embedded 3D image registration markers, were mounted in a special phantom designed for reproducible positioning. For full end to end testing, the optical guidance array was mounted onto the phantom and a CT was taken. Two separate Rapid Arc SRS plans were designed. Varian Medical Systems optical guidance system was used to position the phantom and the SRS treatment plans were delivered to the two spheres on Varian's Trilogy Accelerator. Exposed dosimeters were mailed back to the manufacturer for laser CT scanning and analysis. Results: For each plan, 3D gamma passing rate was 100% for 2%/2mm distance-to-agreement criteria above 50% isodose level. The two calibration curves, generated using volumetric dose and optical density data, showed excellent mutual agreement (max difference 2.2%, median difference 0.75%). Conclusion: The clinical utility of new CrystalBall™ mailed QA service for SRS/SBRT and high accuracy of dose calibration have been validated. The workflow associated with the use

  4. Accreditation: The American Experience.

    Adelman, Clem; Silver, Harold

    The report presents the findings of an investigation into the trends and issues concerning accreditation of professionals and institutions of higher education in the United States. In late 1988 and early 1989, the study examined the accreditation of courses in nursing, engineering, and teacher education, and the accreditation of institutions in…

  5. NVLAP calibration laboratory program

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  6. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    Hornbeck, Amaury, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr; Garcia, Tristan, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette Cedex (France); Cuttat, Marguerite; Jenny, Catherine [Radiotherapy Department, Medical Physics Unit, University Hospital Pitié-Salpêtrière, 75013 Paris (France)

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  7. Characterization of calibration curves and energy dependence GafChromicTM XR-QA2 model based radiochromic film dosimetry system

    Purpose: The authors investigated the energy response of XR-QA2 GafChromicTM film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·em netΔR that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at Kairair = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at Kairair = 8 cGy) amounts to ± 5%, while variation in Kairair amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromicTM film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized

  8. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. PMID:26242561

  9. Proceedings of the second conference on radiation protection and dosimetry

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  10. Proceedings of the second conference on radiation protection and dosimetry

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base

  11. Electromedical devices test laboratories accreditation

    Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.

    2007-11-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.

  12. Preliminary measurements of the establishment of a quality control programme for the activimeter calibration reference system

    The nuclear medicine techniques efficiency and safety depends on, beside other factors, a quality control programme, mainly regards to the nuclides activimeter utilization. The Calibration Laboratory of IPEN uses as a work standard, a tertiary standard system Capintec, calibrated at the Accredited Dosimetry Calibration Laboratory of the Medical radiation Research Center - University of Wisconsin. In this work, as preliminary measurements to establish a quality control programme for the activimeter calibration procedures, initially the repeatability and reproducibility (long term stability) tests were performed using a sealed check source of 133Ba. Later on, to complete this quality control programme other check sources (137Cs, 57Co, 60Co) will be used to perform the same tests. A series of 80 experiments of 10 measurements each has been carried out. The reference system showed a good behaviour to the repeatability test, considering the tolerance limits of 5%. The percent deviations of all tested sources in the activity measurements were lower 1% to 133Ba. (author)

  13. Sixth symposium on neutron dosimetry

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  14. Ion chamber absorbed dose calibration coefficients, ND,w, measured at ADCLs: Distribution analysis and stability

    Purpose: To analyze absorbed dose calibration coefficients, ND,w, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among ND,w coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing ND,w coefficients for chambers of the same type; and (iii) the long-term stability of ND,w coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of ND,w coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that ND,w coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average ND,w coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of

  15. Secondary standards dosimetry laboratories

    The Secondary Standards Dosimetry Laboratory (SSDL) is part of an international network of dosimetry laboratories established by the IAEA and WHO. The network services maintain the consistency and accuracy of the therapeutic dose by exercising a national and international intercomparison program as well as providing calibration services to the end users, mainly radiotherapy departments in hospitals. The SSDL's are designated by national laboratories (such as Primary Standards Dosimetry Laboratories, PSDL's) to provide national and international absorbed dose traceability for users in that country. The advantage of the SSDL is that the absorbed dose measurements are consistent among the stakeholder countries.The Physics and Safety divisions have recently re-established an SSDL at ANSTO. The SSDL utilises a collimated cobalt-60 source of activity 170 TBq and dose rate of SmGy/sec at 1 metre (within ±2%), and provides a service to calibrate therapy level thimble ionisation chambers and electrometers

  16. Training Accreditation Program

    The Training Accreditation Program establishes the objectives and criteria against which DOE nuclear facility training is evaluated to determine its readiness for accreditation. Training programs are evaluated against the accreditation objectives and criteria by facility personnel during the initial self-evaluation process. From this self-evaluation, action plans are made by the contractor to address the scope of work necessary in order to upgrade any deficiencies noted. This scope of work must be formally documented in the Training Program Accreditation Plan. When reviewed and approved by the responsible Head of the Field Organization and cognizant Program Secretarial Office, EH-1 concurrence is obtained. This plan then becomes the document which guides accreditation efforts for the contractor

  17. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  18. Accreditation of nuclear engineering programs

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  19. The Next Accreditation System.

    Kirk, Lynne M

    2016-02-01

    The Accreditation Council for Graduate Medical Education has implemented a new accreditation system for graduate medical education in the United States. This system, called the Next Accreditation System, focuses on more continuous monitoring of the outcomes of residency training, and for high-quality programs, less on the detailed processes of that training. This allows programs to innovate to best meet the needs of their trainees and communities. This new system also reviews the clinical learning environment at each institution sponsoring graduate medical education, focusing on professionalism, trainee supervision, duty hour and fatigue management, care transitions, and integration of residents into patient safety and health care quality. This Next Accreditation System is too new to fully assess its outcomes in better preparing residents for medical practice. Assessments of its early implementation, however, suggest we can expect such outcomes in the near future. PMID:26859375

  20. Tales of Accreditation Woe.

    Dickmeyer, Nathan

    2002-01-01

    Offers cautionary tales depicting how an "Enron mentality" infiltrated three universities and jeopardized their accreditation status. The schools were guilty, respectively, of bad bookkeeping, lack of strategy and stable leadership, and loss of academic integrity by selling degrees. (EV)

  1. Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. http://service-rp-dosimetry.web.cern.ch/service-rp-dosimetry/

  2. Accreditation of laboratories in the field of radiation protection

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  3. Dosimetry Service

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  4. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  5. Evaluation of uncertainty in dosimetry of irradiator system

    This paper describes the study of uncertainties in the estimates of dosimetry irradiator system STS 0B85 of LCI IPEN/CNEN-SP. This study is relevant for determination of best measurement capability when the laboratory performs routine calibrations of measuring radiation next the optimal measures designed to radioprotection. It is also a requirement for obtaining the accreditation of the laboratory by the INMETRO. For this dosimetry was used a reference system of the laboratory composed of a electrometer and a spherical ionization chamber of 1 liter. Measurements were made at five distances selected so to include the whole range of the optical bench tests and using three attenuators filters so as to extend the measurement capability. The magnitude used for evaluation was the rate of air kerma for 137Cs and 60Co beams. Were carried out four series of measurements. It was verified the inverse square law to these series and their sets of uncertainty. Unfiltered, with one and two filters series showed good agreement with the inverse square low and the maximum uncertainty obtained was approximately 1.7%. In series with all the filters was a major deviation of the inverse square law and wide increase in uncertainty to measurements at the end of the optical bench

  6. Neutron dosimetry

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq 241 Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s-1 and 0,5 μSv s-1. A calibrated 50 nSv s-1 thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the 241 Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold 241 Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,α) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kVpp cm-1, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46± 0,09) 104 tracks cm-2 mSv-1 for thermal neutrons, (9±3) 102 tracks cm-2 mSV-1 for intermediate neutrons and (26±4) tracks cm-2 mSv-1 for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990's ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is sufficiently sensitive to thermal and intermediate neutrons but fast neutron monitoring ar radiological protection level

  7. [Accreditation in health care].

    Fügedi, Gergely; Lám, Judit; Belicza, Éva

    2016-01-24

    Besides the rapid development of healing procedures and healthcare, efficiency of care, institutional performance and safe treatment are receiving more and more attention in the 21st century. Accreditation, a scientifically proven tool for improving patient safety, has been used effectively in healthcare for nearly a hundred years, but only started to spread worldwide since the 1990s. The support and active participation of medical staff are determining factors in operating and getting accross the nationally developed, upcoming Hungarian accreditation system. However, this active assistance cannot be expected without the participants' understanding of the basic goals and features of the system. The presence of the ISO certification in Hungary, well-known by healthcare professionals, further complicates the understanding and orientation among quality management and improvement systems. This paper aims to provide an overview of the history, goals, function and importance of healthcare accreditation, and its similarities and differences regarding ISO certification. PMID:26772826

  8. Advances in reference and transfer dosimetry

    All prerequisites are now in place to create a fundamentally and radically different type of calibration service for the radiation processing industry. Advancements in dosimetry and information technology can be combined to provide industry with on-line calibrations, on demand at a low cost. The remote calibration service will serve as a basis for other areas of metrology. (Author)

  9. From Evaluation to Accreditation

    Rasmussen, Palle

    for policy. In the state controlled and public financed Danish higher education system quality assessment became institutionalised in a national agency, the "evaluation centre", which was to do recurrent assessment of all higher education programmes. This was later given up. Recently accreditation of...

  10. Collection of abstracts. 6. national symposium on radiation dosimetry

    Abstracts are given of the total of 137 papers presented at the symposium. The papers discussed radiation dosimetry methods, dosemeters and detectors, the metrology and calibration of radiation sources, calibration standards, and radioactivity monitoring. (J.P.)

  11. Statistical analysis of personal dosimetry of exposed workers

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  12. Calibration of individual dosemeters by using external beams of photon radiation. A nationwide survey among Personal Dosimetry Services, authorized by CSN

    A nationwide survey in 1995 among Personal Dosimetry Services, authorized by the Spanish Nuclear Safety Council (CSN), has led the Spanish Dosimetry Laboratories to review and update the dosimetric conversion coefficients and correction factors in use in Spain since 1987. The recommendations of the ICRU Report 47(1992) are discussed and adopted. In addition differences in back-scattering form IRCU tissue and PMMA phantoms are analysed. Analytical functions used to calculate conversion coefficients and back-scattering correction factors due to the use of different phantom materials are presented, together with the adopted final values. Firstly, the above mentioned parameters are applied to ISO narrow spectra series, which are discribed in this report. Secondly, differences between 1995 and 1987 values are also shown. (Author)

  13. Is gerontology ready for accreditation?

    Haley, William E; Ferraro, Kenneth F; Montgomery, Rhonda J V

    2012-01-01

    The authors review widely accepted criteria for program accreditation and compare gerontology with well-established accredited fields including clinical psychology and social work. At present gerontology lacks many necessary elements for credible professional accreditation, including defined scope of practice, applied curriculum, faculty with applied professional credentials, and resources necessary to support professional credentialing review. Accreditation with weak requirements will be dismissed as "vanity" accreditation, and strict requirements will be impossible for many resource-poor programs to achieve, putting unaccredited programs at increased risk for elimination. Accreditation may be appropriate in the future, but it should be limited to professional or applied gerontology, perhaps for programs conferring bachelor's or master's degrees. Options other than accreditation to enhance professional skills and employability of gerontology graduates are discussed. PMID:22289064

  14. Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  15. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  16. Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  17. ESR Dosimetry

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  18. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago; Laboratorio secundario de calibracion para dosimetria en niveles de terapia en la Universidad de Santiago

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-07-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  19. Calibration of personal dosemeters in terms of the ICRU operational quantities

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosemeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The US personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethymethacrylate (PMMA) phantom, therefore it is necessary to relate the response of dosemeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosemeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors

  20. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapes and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine

  1. Third conference on radiation protection and dosimetry

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  2. Third conference on radiation protection and dosimetry

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  3. Radio-analysis. Applications: biological dosimetry

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  4. Results of the dosimetry intercomparison

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000)

  5. Accredited dose measurements for validation of radiation sterilized products

    Miller, A.

    1993-01-01

    for control of radiation sterilization. The accredited services include: 1. 1. Irradiation of dosimeters and test samples with cobalt-60 gamma rays. 2. 2. Irradiation of dosimeters and test samples with 10 MeV electrons. 3. 3. Issue of and measurement with calibrated dosimeters. 4. 4. Measurement...

  6. Dosimetry in diagnostic radiology

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures.

  7. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  8. Mammography accreditation program

    Wilcox, P.

    1993-12-31

    In the mid-1980`s, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded.

  9. FIS accreditation guidelines

    Ojanen, Pinja

    2010-01-01

    The International Ski Federation (FIS) was founded to support and develop the sport of skiing 100 years ago. Since then skiing has grown in importance and has become more popular. Nowadays ski companies, athletes and family members, but also fan clubs, national ski associations, sponsors and local organizers get involved for a sporting event. The aim of this project-based thesis was to create guidelines and make the FIS accreditation system as user-friendly as possible. For the groups (ser...

  10. Mammography accreditation program

    In the mid-1980's, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded

  11. Dosimetry for electron beam sterilization

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  12. Dosimetry for Electron Beam Applications

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimet...

  13. Accreditation: recognition for quality training

    A three-step accreditation program for personnel training has upgraded nuclear power plant instruction and standards. The accreditation process includes self-evaluation, Institute of Nuclear Power Operations (INPO) evaluation, and an Accrediting Board decision. During the self-evaluation phase, utilities compare their training with standardized criteria to identify any weaknesses and implement solutions. INPO participation and assistance at this point introduces objective appraisal at an early stage and ensures that adequate documentation will be available for the INPO evaluation

  14. Dosimetry Service

    Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8:30 to 11:00 and 14:00 to 16:00. For all other services we are at your disposition from 8:30 to 12:00 and 14:00 to 17:00. Do not forget to read your dosimeter. A regular read-out is indispensable in order to ensure a periodic monitoring of personal dose. This read-out should be done during the first week of every month. Thank you for your cooperation. The personnel of the Dosimetry Service wish you a Merry Christmas and a Happy New Year. Dosimetry Service Tel. 767 21 55 http://cern.ch/rp-dosimetry

  15. 热释光剂量测量系统检定的质量保证及刻度因子的应用%Quality assurance for verification of thermoluminescence dosimetry system and application of calibration factors

    李秀芹; 赵进沛; 米宁; 杨新芳; 侯金兵

    2012-01-01

    [ Objective] To ensure the reliability of individual dose monitoring data of radiation exposed workers, explore the influencing factors during verification process of thermoluminescence (TL) dosimetry system, calculate the linearity and the calibration factors of different energy respond, and determine the calibration factors that were suitable to different types of radiation exposed workers. [Methods] According to JJG 593-2006, two schemes were designed for verification. Scheme one; the chosen TL detectors were placed directly on the phantom and irradiated by different dosage 137 Cs--y ray radiation. Scheme two; the chosen TL detectors were worn by boxes, then placed on the phantom and irradiated by different dosage 137Cs~7 radiation and different energy X rays. The linearity and calibration factors were calculated. [ Results]There was significant difference between the detectors placed directly on the phantom and detectors worn by boxes, and the difference between calibration factors of different energy respond was significant , too. [ Conclusion] In the course of the verification of TL dosimetry system, the balance condition should be controlled strictly , and it is important to adopt the detector boxes for balance. The low energy X-ray radiation calibration factors should be used in radiation diagnosis group, and the -/-ray radiation calibration factors is suitable to radiation therapy group. The application of two calibration factors can get more accurate monitoring data.%目的 为保证辐射受照人员个人剂量监测数据的可靠性,探讨热释光剂量测量系统检定过程影响因素,计算线性和不同能响刻度因子,确定不同类别照射群体所使用的刻度因子.方法 依据标准JJG 593 - 2006,设计2种方案进行系统检定.方案1:已筛选退火后的探测器片放于有机玻璃平衡板中,分别予以不同剂量的137 Cs γ射线照射;方案2:将探测器片放于剂量计盒中,置于与方案1相同位置,予γ

  16. Dosimetry methods

    McLaughlin, W.L.; Miller, A.; Kovacs, A.; Mehta, K. K.

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  17. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  18. Dosimetry in radiotherapy. V.1

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  19. Dosimetry in radiotherapy. V.2

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  20. 42 CFR 488.8 - Federal review of accreditation organizations.

    2010-10-01

    ... organization proposes to adopt new requirements or change its survey process. An accreditation organization... national accreditation organization. CMS's review and evaluation of a national accreditation organization... criteria— (1) The equivalency of an accreditation organization's accreditation requirements of an entity...

  1. Mammography calibration: Factor or fit?

    Dose measurements in mammography x-ray have become more important and a basic path in quality assurance programmes. It is recognized by the international guidelines that it is necessary to have calibration services offered for mammography beams in order to help the improvement of the clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The indication of a dosimeter, whose reference point is positioned at the point of test, is compared with the conventional true value of the quantity to be measured. The calibration coefficient is then the ratio of the conventional true value to the indicated. The Primary Standard Dosimetry Laboratory - PSDL or the Secondary Standard Dosimetry Laboratory - SSDL provides the calibration coefficient of the dosimeters in reference to the Half Value Layers - HVL implemented in their laboratories. The dosimetry calibration data is enough when the user has the same system as the laboratory where the ionization chamber has been calibrated. However, there are other calibration systems that have different calibration qualities implemented using different combinations of anode and filter and, therefore, there is no direct relation with the calibration coefficient. How to deal with this? There are two different ways to obtain calibration coefficients when the user's implemented qualities are different from the calibration laboratory's qualities. The first is the interpolation of each calibration coefficient stated in the certificate. The second is the fit of all calibration coefficients, separately for non-attenuated and attenuated beam qualities, to obtain a function by which the calibration coefficients can be determined at each beam quality. The second one includes the statistical fluctuation. The dosimetry calibration data must fit an analytical form, as for example a

  2. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  3. Experimental and theoretical considerations on the calibration factor K between α-activity concentration and track density for application in radon dosimetry

    A new version of the measurement of the calibration factor, K is described between radon activity concentration and track density. The use of Solid State Nuclear Track Detectors (SSNTDs) is one of the most convenient techniques to assess the radiation level of α-activities in the environment. Exposed plastic films are chemically and electrochemically etched in an alkali solution and the α-tracks are evaluated under optical microscope. The detailed procedure for this study and the calibration of the etched films for conversion of track density to radon exposure in (Bq * m-3) are given. It was found the experimental and theoretical values of K were 1.37 and 1.27 (track * cm-2 * kBq-1 * h -1 * m3), respectively, for plastic detectors CR-39. (author) 16 refs.; 5 figs.; 4 tabs

  4. Environmental dosimetry of radon-222 and daughters: measurement of absolute calibration factors of CR-39 considering the plate-out effects and environmental factors

    The subject of this work concerns with the measurement of absolute calibration factors for the use of CR-39 as an absolute detector in indoor and daughters monitoring. Up to now the usefulness of calibration factors was restricted to environmental conditions equal (or very close) to those worthing during their determinations. This fact is consequence of the difficulties related to the understanding of the plate-out properties of radon daughters activity in the air. The plate-out effects on radon daughters monitoring performed by SSNTDs are studied. Our experimental results are in agreement with those of other authors about the great sensitivity of CR-39 to the plate-out effects, fact that recommended its use in this work. Being succeeded in the employment of CR-39 as an alpha-spectrometer we concluded that some important information (like the radon daughters deposition rates on the walls of an environment) can be achieved. The knowledge about the behavior of plate-out made possible the determination of the ranges in zenithal angle and energy where CR-39 can detect alpha-particles with efficiency of 100%, at our conditions of track observation. In this way, we obtained calibration factors for CR-39 that are weakly dependent on environmental conditions. We think that these results can contribute to the improvement of RD (Radiation Detector) detection techniques. (author). 159 refs, 106 figs, 05 tabs

  5. 7 CFR 983.1 - Accredited laboratory.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Accredited laboratory. 983.1 Section 983.1 Agriculture..., ARIZONA, AND NEW MEXICO Definitions § 983.1 Accredited laboratory. An accredited laboratory is a laboratory that has been approved or accredited by the U.S. Department of Agriculture....

  6. CAECC Software Testing Laboratory Accredited by CNAL

    2005-01-01

    Software Testing Laboratory of China Aerospace Engineering and Consultation Center (CAECC) is accredited by China National Accreditation Board for Laboratories (CNAL) as the first such laboratory in domestic space industry. Since CNAL is a member of International Laboratory Accreditation Cooperation (ILAC),software testing reports certificated to CAECC are recognized by 45 laboratory accreditation organizations in AsiaPacific region, Europe and America.

  7. Dosimetry Service

    2005-01-01

    The Dosimetry Service will be closed every afternoon the week of 21st to 25th February 2005. The opening hours will be from 8.30 am to 12.00 midday. Don't forget to read your dosimeter, as regular read-outs are indispensable to ensure periodic monitoring of personal doses. Thank you for you cooperation.

  8. Radiation dosimetry in Cyprus

    Cyprus is a small island in the eastern part of the mediterranean sea with a population of 700,000. A small Physics Department in the Nicosia General Hospital is responsible for all matters related to ionising radiation. The main applications of ionising radiation are in medicine, some applications of radioisotopes in agriculture and hydrology research and very few applications in industry with sealed radiation sources. The same problems in radiation dosimetry are encountered as in any other countries but on a smaller scale. These have to be solved locally, because of the island's geographic isolation. All the infrastructure including Secondary Standard Dosemeters, field instruments and calibration sources is needed in order to achieve this, but the financial resources available are very limited. For this reason improvisation is often necessary. The Co-60 and other X-ray units intended for radiotherapy or other clinical use, are used as radiation sources for dosimetry and calibration of the instruments. Simple, locally made phantoms are designed in order to decrease costs whenever possible. (author). 7 refs, 1 fig

  9. Basic physical data for neutron dosimetry

    Based on the results of a workshop on basic physical data for neutron dosimetry held in Rijswijk (The Netherlands) on 19-21 May 1976, this monograph reviews the current status in neutron dosimetry and the agreements that were reached on the use of some common basic physical parameters. As appendices are joint tables of kerma factors and a draft of a protocol for neutron dosimetry for radiobiological and medical applications. Main topic treated: source and field characteristics; cross sections and mass energy transfer coefficients; measurements and calculations; detector response, measurements and calculations; dose distributions in phantoms for a limited set of conditions; standardization, calibration and intercomparison

  10. Calibration of farmer dosemeters

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  11. Radiation monitor calibration technique

    Reference radiations in the Secondary Standard Dosimetry Laboratory, OAEP have been improved and modified by employing lead attenuators. To identify low-level exposure rate, shadow-cone method has been applied. The secondary standard dosemeter has been used periodically to check the constancy of reference radiations to assure the calibration of dosemeters and dose-ratemeters used for radiation protection

  12. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina; Actividades desarrolladas por el laboratorio de dosimetria biologica de la Autoridad Regulatoria Nuclear de Argentina

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M., E-mail: csapienza@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina)

    2013-07-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary.

  13. Relative dosimetry by Ebt-3

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  14. Advances in biomedical dosimetry

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  15. Calibration of CT density values in dosimetry verification of intensity modulated radiation therapy%调强适形放射治疗剂量验证中CT密度值的校准分析

    庄名赞; 吴仁华; 邱庆春; 彭逊; 陆佳扬; 陈志坚

    2011-01-01

    Objecfive Based on intensity modulated radiation therapy (IMRT)phantom,the impact of CT-to-density conversion curve on dosimetry verification of IMRT is investigated and calibrated.Methods The electron density phantom was used to establish the CT-to-density conversion curve in radiation treatment planning system.IMRT plans of 12 nasopharynx carcinoma patients were chosen,copied to IMRT phantom and computed for the dose distribution.For each plan a measured point was put at the place where the dose was well-distributed and its dose value was measured using the ionization chamber.The physical density of IMRT phantom and its CTvalue were input into the planning system,to make a calibration for the CT-to-density conversion curve.The dose distribution was recomputed for each IMRT plan.Other parameters were kept the same in the plans and the differences between the computed dose values before and after correction were compared with the measured values.Results In 12 nasopharynx carcinoma IMRT plans,the average error of computed dose values was 1.96%±0.87% before correction and 0.63%±0.74%after correction,compared with measured values.The error between measured values and computed values after correction was less than ±2% whereas the maximum error of computed values before correction was 3.24%.Conclusions The computed dose values are closer to the measured values when using the calibrated CT-to-density conversion curve.The CT density values of IMRT phantom should be verified before usage,so as to increase the accuracy of IMRT dosimetry verification.%目的 基于调强适形放射治疗(IMRT)验证体模,分析放射治疗计划系统中CT密度转换曲线在IMRT剂量验证中的影响,并加以校准.方法 利用CT电子密度体模刻度计划系统中的CT密度转换曲线,取12例鼻咽癌患者的IMRT计划,分别移植至IMRT验证体模,计算剂量分布,并于剂量均匀处放置测量点,利用电离室测量出其实际剂量.将IMRT验证体模的物

  16. Technical basis document for internal dosimetry

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosimetry program in accordance with expected Department of Energy Laboratory Accreditation Program (DOELAP) requirements for the selected radionuclides provided in this document, including uranium mill tailing mixtures. Additions and modifications to this document and procedures derived FR-om this document are expected in the future according to changes in standards and changes in programmatic mission

  17. MO-A-BRD-07: Feasibility of X-Ray Acoustic Computed Tomography as a Tool for Calibration and In Vivo Dosimetry of Radiotherapy Electron and Photon Beams

    Purpose: This work simulates radiation-induced acoustic waves to assess the feasibility of x-ray acoustic computed tomography (XACT) as a dosimeter. XACT exploits the phenomenon that acoustic waves with amplitude proportional to the dose deposited are induced following a radiation pulse. After detecting these acoustic waves with an ultrasound transducer, an image of the dose distribution can be reconstructed in realtime. Methods: Monte Carlo was used to simulate the dose distribution for monoenergetic 6 MeV photon and 9 MeV electron beams incident on a water tank. The dose distribution for a prostate patient planned with a photon 4-field box technique was calculated using clinical treatment planning software. All three dose distributions were converted into initial pressure distributions, and transportation of the induced acoustic waves was simulated using an open-source toolkit. Ideal transducers were placed around the circumference of the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to obtain an XACT image of the dose for each radiation pulse. Results: For the photon water tank relative dosimetry case, it was found that the normalized acoustic signal amplitude agreed with the normalized dose at depths from 0 cm to 10 cm, with an average percent difference of 0.5%. For the reconstructed in-plane dose distribution of an electron water tank irradiation, all pixels passed a 3%–3 mm 2D gamma test. The reconstructed prostate dose distribution closely resembled the plan, with 89% of pixels passing a 3%–3 mm 2D gamma test. For all situations, the amplitude of the induced acoustic waves ranged from 0.01 Pa to 1 Pa. Conclusion: Based on the amplitude of the radiation-induced acoustic waves and accuracy of the reconstructed dose distributions, XACT is a feasible technique for dosimetry in both calibration and in vivo environments for photon and electron beams and merits further investigation. Funding from NSERC, CIHR and Mc

  18. Quality management system in the CIEMAT radiation dosimetry service

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible. (authors)

  19. Dosimetry Service

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  20. Hematological dosimetry

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues

  1. Radiation dosimetry.

    Cameron, J.

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  2. Dosimetry Service

    2004-01-01

    We wish to remind the people who are invited to the Dosimetry Service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. Do not forget to read your dosimeter. The reading should be done during the first week of every month. Thank you for your cooperation.

  3. An accredited infrastructure for clearance of decommissioning waste

    The nuclear research reactors and a hot-cell facility at the Riso site in Denmark have been closed and are in the process of being decommissioned. This has prompted the development of an accredited infrastructure called the Clearance Function. This function is responsible for the activity concentration measurements of the clearance candidates and for the demonstration of compliance with the clearance levels for the released objects. The Clearance Function comprises laboratory facilities, measuring equipment, measuring procedures, waste handling software, software for clearance related calculations and trained personnel. An accreditation of the Clearance Function has been granted from the accreditation body, DANAK, according to the international standard ISO/IEC 17025:2005. DANAK is a member of ILAC, the International Laboratory Accreditation Cooperation. The Clearance Function has been accredited to measure surface-specific and mass-specific activities using surface contamination monitors and high purity germanium detectors. The germanium detectors are characterised and in each measurement they are calibrated using the ISOCS (registered) calibration software. Activity concentration measurements can be made on items as a whole (one or several combined measurements) or on samples from an item. In the latter case a statistical method is used to evaluate whether the activity concentration is above or below the clearance level. The paper describes the different elements of the Clearance Function and the processing of items through the flow routes depending on the likely activity content and the distribution of activity. It is shown how uncertainties are incorporated in the clearance criteria. Experience from the first year of operation of the Clearance Function is reported. (author)

  4. An accredited infrastructure for clearance of decommissioning waste

    The nuclear research reactors and a hot-cell facility at the Riso site in Denmark have been closed and are in the process of being decommissioned. This has prompted the development of an accredited infrastructure called the Clearance Function. This function is responsible for the activity concentration measurements of the clearance candidates and for the demonstration of compliance with the clearance levels for the released objects. The Clearance Function comprises laboratory facilities, measuring equipment, measuring procedures, waste handling software, software for clearance related calculations and trained personnel. An accreditation of the Clearance Function has been granted from the accreditation body, DANAK, according to the international standard ISO/IEC 17025:2005. DANAK is a member of ILAC, the International Laboratory Accreditation Cooperation. The Clearance Function has been accredited to measure surface-specific and mass-specific activities using surface contamination monitors and high purity germanium detectors. The germanium detectors are characterised and in each measurement they are calibrated using the ISOCS calibration software. Activity concentration measurements can be made on items as a whole (one or several combined measurements) or on samples from an item. In the latter case a statistical method is used to evaluate whether the activity concentration is above or below the clearance level. The paper describes the different elements of the Clearance Function and the processing of items through the flow routes depending on the likely activity content and the distribution of activity. It is shown how uncertainties are incorporated in the clearance criteria. Experience from the first year of operation of the Clearance Function is reported. (author)

  5. Dosimetry standards for radiation processing

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  6. Third conference on radiation protection and dosimetry. Program and abstracts

    1991-12-31

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  7. Radio-analysis. Applications: biological dosimetry; Radioanalyse. Applications: dosage biologique

    Bourrel, F. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Courriere, Ph. [UFR de Pharmacie, 31 - Toulouse (France)

    2003-06-01

    Radioisotopes have revolutionized the medical biology. Radio-immunology remains the reference measurement of the infinitely small in biology. Constant efforts have been performed to improve the simpleness, detectability and fastness of the method thanks to an increasing automation. This paper presents: 1 - the advantages of compounds labelling and the isotopic dilution; 2 - the antigen-antibody system: properties, determination of the affinity constant using the Scatchard method; 3 - radio-immunologic dosimetry: competitive dosimetry (radioimmunoassay), calibration curve and mathematical data processing, application to the free thyroxine dosimetry, immunoradiometric dosimetry (immunoradiometric assay), evaluation of the analytical efficiency of a radioimmunoassay; 4 - detection of the radioactive signal (solid and liquid scintillation). (J.S.)

  8. Technical basis document for internal dosimetry

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  9. Calibration of sources for alpha spectroscopy systems

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  10. Clinical dosimetry using mosfets

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  11. Quality management system of secondary standards dosimetry laboratory in Sri Lanka

    Full text: Application of Quality Management System (QMS) of Secondary Standard Dosimetry Laboratory (SSDL) of the Atomic Energy Authority (ALA) of Sri Lanka provides path of workflow and information on laboratory operations, management and competence of staff that would assist the laboratory in continual improvement of its processes and meeting accreditation requirements in compliance with IS017025. Thus provision of customers' satisfied accredited dosimetry calibration services is needed for the country. The SSDL currently possesses a reference electrometer (PTW Unidos) with protection level ion- chambers (NE2575, 600cc ion-chamber and PTW - lOLt ion-chamber) and therapy level ion-chambers (NE2571, 0.6cc thimble ion-chamber). Also the laboratory is also having measuring standards (NE2570 electrometer with NE2575, 600cc ion-chamber and NE2571, 0.6cc thimble ion-chamber) . A gamma irradiator which contains two gamma sources (Co-60 and Cs-137) and a X-ray system with six ISO 4037 beam qualities (narrow spectrum of energy range: 33keV - 118keV) are available for protection level X-ray calibrations. Stability of the electrometers with Ion- chambers is performed with Sr-90 check sources, which are specially designed for each type of chambers in order to fix the set-up maintaining the same geometry for every measurement. An average of reading of ten consecutive measurements of which each measurement was made for 300s is taken for stability measurement. Each reading is corrected for ambient temperature and pressure. Acceptance of percentage deviation of stability results with respect to reference reading of respective chamber is ±1% for protection level and ± 0.5% for therapy level. All these equipments, when they are not in used are kept in a dry cabinet in order to control humidity. The SSDL of AEA has become a part of an international network of dosimetry laboratories established by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO

  12. Radiation dosimetry and standards at the austrian dosimetry laboratory

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources (60Co and 137Cs) and a reference source system with six gamma ray sources (60Co and 137Cs). In addition a set of calibrated beta ray sources are provided (147Pm, 204Tl and 90Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137Cs and 60Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  13. Topics in radiation dosimetry radiation dosimetry

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  14. Biological dosimetry - Dose estimation method using biomakers

    The individual radiation dose estimation is an important step in the radiation risk assessment. In case of radiation incident or radiation accident, sometime, physical dosimetry method can not be used for calculating the individual radiation dose, the other complement method such as biological dosimetry is very necessary. This method is based on the quantitative specific biomarkers induced by ionizing radiation, such as dicentric chromosomes, translocations, micronuclei... in human peripheral blood lymphocytes. The basis of the biological dosimetry method is the close relationship between the biomarkers and absorbed dose or dose rate; the effects of in vitro and in vivo are similar, so it is able to generate the calibration dose-effect curve in vitro for in vivo assessment. Possibilities and perspectives for performing biological dosimetry method in radiation protection area are presented in this report. (author)

  15. Accreditation to ISO 17025:2005 for the Radioactivity Metrology Group of the UK's National Physical Laboratory

    In the mid 1990s, the National Physical Laboratory (NPL) took the decision to seek external accreditation to the then UK national accreditation standard (M10, M10 supplement and M11) through the NPL's National Measurement Accreditation Service (NAMAS). This paper details the reasoning behind that initial decision and, in particular, how this impinged on the day-to-day activities of the NPL's Radioactivity Metrology Group (RMG). In the intervening decade, the accreditation standard has changed considerably; accreditation is now to the international standards ISO 9001:2000 (Quality Management Systems: Requirements) and ISO 17025:2005 (General Requirements for the Competence of Testing and Calibration Laboratories); accreditation is now carried out by a wholly separate successor organization to NAMAS, the United Kingdom Accreditation Service (UKAS). To meet the new accreditation requirements the RMG: realigned it's scope of work; streamlined and consolidated written procedures, references and appendices; centralized the collection of written procedures, and clarified the document identification system. Future developments will include efforts for RMG accreditation for conducting proficiency tests and providing reference materials. (author)

  16. Laboratory accreditation in developing economies

    Full text: Accreditation of laboratories has been practiced for well over one hundred years with the primary objective of seeking a formal recognition for the competence of a laboratory to perform specified tests or measurements. While first accreditation schemes intended initially to serve only the immediate needs of the body making the evaluation with the purpose of minimizing testing and inspection to be conducted by laboratories, third-party accreditation enables a laboratory to demonstrate its capability as well as availability of all necessary resources to undertake particular tests correctly and that is managed in such a way that it is likely to do this consistently, taking into consideration standards developed by national and international standards-setting bodies. The international standard ISO/IEC 17025 and laboratory accreditation are concerned with competence and quality management of laboratories only, thus requiring a single common set of criteria applicable to them. Quality assurance is therefore fully relevant to laboratories in general and analytical laboratories in particular; it should not be confused with the certification approach according to ISO/IEC 9000 family of standards, that is concerned with quality management applicable to any organization as a whole. The role of laboratory accreditation can be manifold, but in all cases the recipient of the test report needs to have confidence that the data in it is reliable, particularly if the test data is important in a decision-making process. As such, it offers a comprehensive way to ensure: - the availability of managerial and technical staff with the authority and resources needed; - the effectiveness of equipment management, traceability of measurement and safety procedures; - the performance of tests, taking into consideration laboratory accommodation and facilities as well as laboratory practices. The presentation will include also some practical aspects of quality management system

  17. Accreditation of occupational health services in Norway

    Lie, A.; Bjørnstad, O.

    2015-01-01

    Background In 2010, an accreditation system for occupational health services (OHS) in Norway was implemented. Aims To examine OHS experiences of the accreditation system in Norway 4 years after its implementation. Methods A web-based questionnaire was sent to all accredited OHS asking about their experiences with the accreditation system. Responses were compared with a similar survey conducted in 2011. Results The response rate was 76% (173/228). OHS reported that the most common changes they...

  18. Accreditation of Engineering Programs In The USA

    Jones, E. C.; Reyes-Guerra, David R.

    1989-01-01

    Accreditation is a way of assessing the quality of education. In the United States accreditation of engineering programs is carried out by volunteers, engineering educators and practitioners who evaluate programs against criteria developed by the profession. Universities voluntarily submit their engineering programs for professional accreditation. The process is supported by various professional engineering societies, the universities that request accreditation, the volunteers who carry out t...

  19. Feasibility of using neural networks to unfold the response of multi-element TLD for mixed field dosimetry

    Significant advances have been made in recent years to improve calibration methodology and dose calculation algorithm in the fields of TL dosimetry. This process was accelerated in the past decade particularly in the Republic of Korea by the need to meet mandatory national accreditation requirements. The objective of this study is to develop a new algorithm to replace the simplistic decision tree algorithms by the more sophisticated neural networks in hopes of achieving a higher degree of accuracy and precision in personnel dosimetry system. The original hypothesis of this work is that the spectral information of an X and γ-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feed forward neural network using the error back-propagation method with Bayesian optimization was designed for the response unfolding procedure. The response functions of the single element to photons were calculated by application of a computational Monte-Carlo model for an energy range from 10 keV to 2 MeV with different spectral proportions. The training of the artificial neural network was based on the computation of responses of a four-element system for the back-propagation method. The validation of the proposed algorithm was investigated by unfolding the 10 computed responses for arbitrary mixed gamma fields and the spectra resulting from the unfolding procedure agree well with the original spectra. (author)

  20. The Accreditation of Laboratories Proficiency and Safety

    2005-01-01

    @@ Recently, China National Accreditation Board for Laboratories (CNAL) has released CNAL/AC23:2004 Medical Laboratories: Accreditation Criteria For Quality and Proficiency, and meanwhile GB 19489 Laboratories: General Requirements For Biosafety and ISO 15190 Medical Laboratories-Requirements For Safetywill be adopted by CNAL as the accreditation criteria for laboratories safety.

  1. 42 CFR 423.168 - Accreditation organizations.

    2010-10-01

    ... accreditation organization. (2) Within 30 days of a change in CMS requirements, submit the following to CMS— (i... an accreditation organization for a given standard under this part if the organization meets the... whenever it is considering granting an accreditation organization's application for approval. The...

  2. Survey of international personnel radiation dosimetry programs

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  3. Personal dosimetry performance testing in the United States

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11. Now in it's fourth edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Laboratory Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by U.S. Nuclear Regulatory Commission (NRC) regulations. The U.S. Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). One of the goals of this current revision was the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to U.S. personal dosemeter performance testing. The testing philosophy of ANSI/HPS N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. In this paper, the history of performance testing in the U.S. is briefly reviewed. Also described is the revision that produced the fourth edition of this standard, which has taken place over the last three years (2005-2008) by a working group representing national standards laboratories, government laboratories, the military, dosimetry vendors, universities and the nuclear power industry. (author)

  4. College Student Services Accreditation Questionnaire.

    Cassel, Russell N.

    1979-01-01

    This questionnaire is intended for use as one aspect in accrediting the "Student Personnel Services" which an institution of higher learning provides for students. Areas in question include personal development, health fostering, vocational preparation, effective personalized learning, economic viability, transpersonal offerings, and satisfactory…

  5. The Accreditation-Eligibility Link.

    Levin, Nora Jean

    1981-01-01

    Public policy rests on the unreliable assumption that postsecondary education institutions and programs approved by nationally recognized private accrediting agencies are bona fide providers of educational services, worthy of students' time, effort, and money and of federal funds. Rather, federal fund eligibility should focus on measures of…

  6. Specialized Accreditation: College Library Responses.

    Frazer, Stuart

    1994-01-01

    Offers a detailed overview of accreditation standards, criteria, and procedures used by one specialized accreditor; and suggests ways to be prepared for site visits and reports. A directory of 73 specialized accreditors and a brief bibliography are appended. (18 references) (Author/SLW)

  7. Dosimetry of total body irradiation

    In the treatment of disseminated malignancies an improvement in the curability and reduction of complication rates require high precision total body irradiation (TBI) and correct reporting of relevant treatment parameters. Optimal TBI dosimetry is the basis. Radiooncological and radiobiological requirements as well as the special physical situation have to be considered. To review the efforts of medical physicists, highlights from TBI workshops and publications are summarized. Additionally, dosimetric data from 34 European radiooncological centres contributing to the recent ESTRO inquiry on TBI are analysed. The topics are: absorbed dose and dose monitor calibration, determination of absolute and relative doses, dose ratios, attenuation data and heterogeneity corrections; TBI dose calculation methods regarding patient position, beam incidence, body shape and thickness, lung size and density; methods of TBI treatment planning including calculated dose modification and of TBI quality assurance. In conclusion, the following recommendations can be given: TBI dosimetry shall be performed under TBI conditions, close to the real treatment situation. The absorbed dose to water must be determined. The dose monitor should be calibrated against dose measurements at the centre of a water equivalent phantom of TBI equivalent size and typical thickness. Photon fluence profiles have to be measured with small phantoms. Influences on the local dose must be investigated systematically. A reproducible AP/PA TBI technique should be used. The TBI dose shall be specified to mid-abdomen and reported in units of gray. The single and total dose and the dose rate to the lungs, the number of fractions and the treatment time schedule must be stated. In vivo dosimetry is required if non-reliable TBI techniques are used. An international TBI dosimetry intercomparison could assist these efforts to improve the treatment of acute leukaemia. (author). 89 refs, 3 figs, 13 tabs

  8. Accreditation to supervise research

    In this document the author reviews his works between 1995 and 2010. First, the development of a silicon pixel detector is detailed, the purpose of this detector was to improve the forward proton spectrometer of the H1 experiment at DESY. The works made to develop the reading circuits of the pixel detector are presented, particularly the design of the test bench for the testing of these circuits and the simulation of their behaviour in realistic environment. The second part describes the design of the front electronic for the data acquisition of the calorimeter detector of ATLAS (TileCal) and its testing system (MobiDICK). The software for the control system of the laser calibration of TileCal is detailed. The last part gives an account of the author's activities in the field of science popularization through the 'Cosmophone' and knowledge dissemination. The Cosmophone is a particle detector that turns the passage of particles into sounds in order to make the general public more aware of the presence of particles

  9. The Brazilian experience on the integrated authorization of individual monitoring systems and calibration laboratories of equipment used in radiation protection

    In Brazil, the National Commission for Nuclear Energy gives formal authorization of operation for Individual Monitoring Services and for Calibration Facilities for Equipment Used in Radiation Protection. The responsibility for recommending these authorizations has been delegated to the Institute for Radiation Protection and Dosimetry which, until 2005, had two separate committees operating in each area of authorization, namely IMS and calibration laboratories. Both committees had the responsibility of defining the requirements for authorization, auditing the laboratories, organizing inter-comparison exercises, certifying the heads of the laboratories and of recommending the authorization or cessation of laboratories activities to the direction of the institute. In the year 2005 a single integrated committee was formed to perform both kinds of authorization, which was named Committee for the Evaluation of Services of Essays and Calibration (CASEC). With a different philosophy in mind, this new group focuses only on the certification of compliance with the authorization regulation, leaving the definition of these rules to independent groups named technical chambers that should be formed by experts, who are not necessarily staff, according to specific needs. At present, CASEC is starting to require accreditation on ISO standard 17025 for both kinds of laboratories as a prerequisite for the authorization. This paper presents the difficulties faced during the process of transition from one system of authorization to the other, the present status of the system of individual monitoring systems and calibration facilities and results of inter-laboratory comparison exercises. (author)

  10. Perspective from a commercial supplier of dosimetry services

    The traditional radiation related industries in the United States have matured. The growth rates in the numbers of radiation workers have moderated and ALARA programs have favorably reduced many exposures. Dosimetry testing and accreditation by the National Bureau of Standards have identified those services possessing satisfactory dosimetry systems and technical competence. These developments have influenced the business perspectives. Combined with the overall renewed emphasis on competition and productivity in American business, many dosimetry services have become more aggressive in seeking new markets; residential radon measurements being most obvious. The potential size of these markets is making investments in technical research more attractive. In the past, most research funding was provided by the government. The renewed research interest by the private sector could stimulate the entry of new professionals into radiation measurement research. Research results have the potential for improving traditional services and expanding the applicability of certain measurement methods

  11. INPO accreditation - product definition for utility training

    As a part of its responsibility to promote training excellence, the Institute of Nuclear Power Operations (INPO) initiated an accreditation program in 1982 on behalf of its member utilities. The purpose of the accreditation program is to assist INPO members in developing and maintaining training programs that produce well-qualified, competent personnel to operate the nation's nuclear power plants. Accreditation formally recognizes nuclear utility training as meeting the INPO accreditation objectives and criteria for initial and continuing training programs for operations, maintenance, and technical personnel. The ultimate objective to be achieved by accreditation is to maintain high-quality training and enhance the professionalism of the personnel who operate the nuclear power plants. While initial accreditation represents recognition that quality training programs have been put in place at the nuclear power plants, the renewal of accreditation represents recognition that quality training programs have been put in place at the nuclear power plants, the renewal of accreditation will keep the training programs vital, effective, and up to high standards. The nuclear power industry has accepted the responsibility of striving for excellence in training its personnel to safely operate the power plants. The full use of accreditation and the accrediting process is an important means to fulfilling this responsibility

  12. Definition study of the project Dosimetry Brachytherapy

    The purpose of the research project Dosimetry Brachytherapy is the standardization of calibration methods and quality control procedures used for Brachytherapy sources. Proposals to develop measurement standards and methods for calibrating these sources are presented. Brachytherapy sources will be calibrated in terms of reference airkerma rate or in terms of absorbed dose in water. Therefore, in this project, special attention will be given to the in-phantom measurement method described by Meertens and the use of re-entrant ionisation chambers as transfer standards. In this report, a workplan and time schedule is included. (author). 19 refs.; 1 fig

  13. Secondary standard dosimetry laboratory at INFLPR

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  14. Dosimetry for electron beam application

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  15. Breast dosimetry

    The estimation of the absorbed dose to the breast is an important part of the quality control of the mammographic examination. Knowledge of breast dose is essential for the design and performance assessment of mammographic imaging systems. This review gives a historical introduction to the measurement of breast dose. The mean glandular dose (MGD) is introduced as an appropriate measure of breast dose. MGD can be estimated from measurements of the incident air kerma at the surface of the breast and the application of an appropriate conversion factor. Methods of calculating and measuring this conversion factor are described and the results discussed. The incident air kerma itself may be measured for patients or for a test phantom simulating the breast. In each case the dose may be determined using TLD measurements, or known exposure parameters and measurements of tube output. The methodology appropriate to each case is considered and the results from sample surveys of breast dose are presented. Finally the various national protocols for breast dosimetry are compared

  16. Uncertainty in 3D gel dosimetry

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  17. Neutron dosimetry - A review

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  18. Accreditation of undergraduate and graduate medical education

    Davis, Deborah J; Ringsted, Charlotte

    2006-01-01

    Accreditation organizations such as the Liaison Committee for Medical Education (LCME), the Royal College of Physicians and Surgeons of Canada (RCPSC), and the Accreditation Council for Graduate Medical Education (ACGME) are charged with the difficult task of evaluating the educational quality of...... not at all clear. As medical education moves toward outcome-based education related to a broad and context-based concept of competence, the accreditation paradigm should change accordingly. Udgivelsesdato: 2006-Aug...... medical education programs in North America. Traditionally accreditation includes a more quantitative rather than qualitative judgment of the educational facilities, resources and teaching provided by the programs. The focus is on the educational process but the contributions of these to the outcomes are......Accreditation organizations such as the Liaison Committee for Medical Education (LCME), the Royal College of Physicians and Surgeons of Canada (RCPSC), and the Accreditation Council for Graduate Medical Education (ACGME) are charged with the difficult task of evaluating the educational quality of...

  19. Early experiences of accredited clinical informatics fellowships.

    Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R

    2016-07-01

    Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. PMID:27206458

  20. A Threat to Accreditation: Defamation Judgment against an Accreditation Team Member.

    Flygare, Thomas J.

    1980-01-01

    Delaware Law School founder Alfred Avins successfully sued accreditation team member James White for defamation as a result of comments made in 1974 and 1975. An appeals brief claims Avins was a "public figure," that he consented to accreditation, and that the accreditation process deserves court protection against such suits. (PGD)

  1. Engineering Accreditation in China: The Progress and Development of China's Engineering Accreditation

    Jiaju, Bi

    2009-01-01

    Among engineering degree programs at the bachelor's level in China, civil engineering was the first one accredited in accordance with a professional programmatic accreditation system comparable to that of international practice. Launched in 1994, the accreditation of civil engineering aimed high and toward international standards and featured the…

  2. 75 FR 59605 - National Veterinary Accreditation Program; Currently Accredited Veterinarians Performing...

    2010-09-28

    ... United States and internationally. On December 9, 2009 (74 FR 64998-65013, Docket No. APHIS-2006- 0093... Health Inspection Service 9 CFR Part 161 RIN 0579-AC04 National Veterinary Accreditation Program... National Veterinary Accreditation Program (NVAP) may continue to perform accredited duties and to elect...

  3. Software for evaluation of EPR-dosimetry performance

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  4. Dosimetry on the radiological risks prevention in radiotherapy

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  5. Instrumentation for the individual dosimetry of workers

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  6. Performance testing of UK personal dosimetry laboratories

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  7. Performance testing of UK personal dosimetry laboratories

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  8. Lyoluminescence dosimetry of the radiation in industrial doses

    The γ-rays lyoluminescence (LL) dosimetry study is presented. The basic principles involved, both in the method and radiation dosimetry, the equivalence between water and lyoluminescent materials, apparatus, irradiation technique and calibration method are discussed. The LL response dependence with environmental conditions are presented. These were temperature, humidity, storage time and the dependence on dissolved mass. A pre-reading thermal treatment was developed to overcome previous difficulties. The developed technique was applied to dose intercomparisons. (M.A.C.)

  9. General guidance for laboratories providing personal dosimetry services

    This guidance is recommended to all dosimetry services in the interests of good radiation protection practice. For dosimetry services who seek approval under the Ionising Radiation Regulations 1985, the Health and Safety Executive (HSE) would invoke compliance with this guidance, in broad terms, as well as other published guidance. The recommendations include sections concerning laboratory organizations and staff, documentation of procedures, laboratory accommodation and services, equipment, calibration and traceability, housekeeping, dosimetric capability, laboratory records. (Author)

  10. HSE performance tests for dosimetry services

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. (author)

  11. Accreditation to manage research programs

    In this report for an accreditation to supervise research, the author proposes an overview of a study of transfers of vanadium towards benthic organisms (i.e. the toxicity of vanadium for sea coastal organisms), of studies of transfer of transuranic elements from sediment to marine benthic species. He presents current researches and perspectives: study of the level of metallic pollutants and physical-chemical characteristics of coastal waters in northern Cotentin, researches in Seine Bay, study of pollution biologic indicators. Numerous articles are provided in appendix

  12. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...... parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes....

  13. Accredited Internship and Postdoctoral Programs for Training in Psychology: 2012

    American Psychologist, 2012

    2012-01-01

    This is the official listing of accredited internship and postdoctoral residency programs in psychology. It reflects all Commission on Accreditation decisions through July 22, 2012. (Contains 15 footnotes.)

  14. History of personal dosimetry performance testing in the United States

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Dept. of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Dept. of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (authors)

  15. Evaluation of quality assurance calibration results based on repeated calibrations

    To ensure quality assurance of the calibration results, as indicated by the UNE-EN ISO / IEC 17025:2005 in paragraph 5.9, the laboratory has established procedures for quality control of its activity. Thus, the laboratory participates in both inter-laboratory intercomparison exercises, cycle through the entire range of radiation qualities reflected in the scope of its accreditation, such as intra-laboratory intercomparison exercises. In this case, repeat quarterly by two different operators both the calibration of an ionization chamber irradiation of a direct reading personal dosimeter.

  16. Dosimetry in radiation processing- Indian scenario

    Radiation processing is a method for producing chemical, physical, and microbiological changes in substances by exposing to ionizing radiation. Availability of high intensity cobalt-60 gamma ray sources and high power electron beam accelerators has led to a continuous growth of radiation processing industry in India. Commercial viability and safe operation of these radiation-processing plants depends on accurate dosimetry. Depending on the purpose to be achieved, a widespread dose range, from few grays to few hundred kilo grays, is encountered in radiation processing technology and this necessitates the use of different dosimetry systems. In the present paper, current status of radiation processing facilities in India has been reviewed. Various indigenously developed dosimetry systems such as Alanine/glutamine (Spectrophotometric readout), FBX and ceric-cerous (potentiometry) are being used for quality assurance and routine plant dosimetry. Fricke dosimeter is used as a reference standard for calibrating other dosimetry systems. Glutamine (Spectrophotometric read out) dosimeter, used as transfer standard for Q.A. has traceability to NPL, UK and has shown an agreement within ±2% during dose intercomparisons carried out with various international standards laboratories. Performance of these dosimeters was found to be better than ±10% during dose measurements in radiation sterilization and food irradiation plants. (author)

  17. Accreditation and Expansion in Danish Higher Education

    Rasmussen, Palle

    2014-01-01

    During the last decade, an accreditation system for higher education has been introduced in Denmark. Accreditation partly represents continuity from an earlier evaluation system, but it is also part of a government policy to increasingly define higher education institutions as market actors. The ...

  18. Social Partnership in Accrediting Lithuanian VET Qualifications

    Tutlys, Vidmantas; Kaminskiene, Lina

    2008-01-01

    This article examines social partnership in accrediting qualifications in Lithuania. It defines the factors influencing social partnership and surveys future development perspectives, referring to the creation and implementation of the national qualifications system in Lithuania. Social partnership in qualifications accreditation is regarded as a…

  19. Cost-Benefit Analyses of Accreditation.

    Reidlinger, Charles R.; Prager, Carolyn

    1993-01-01

    Argues that decreasing participation in accreditation will not necessarily realize financial gains for colleges, since other methods of remaining accountable will take its place. Proposes ways to reduce accreditation's real costs while preserving its traditional benefits of self-examination, external scrutiny, and participatory membership. (MAB)

  20. Comments on "Reinventing Social Work Accreditation"

    Midgley, James

    2009-01-01

    It is unlikely that Stoesz and Karger will be widely commended for the critique of social work accreditation. Social work academics do not usually handle criticism with equanimity. In some respects, their case is overstated. The problems associated with social work accreditation are not caused by the low publication productivity of social work…

  1. Practitioner Perceptions of Advertising Education Accreditation.

    Vance, Donald

    According to a 1981 survey, advertising practitioners place more importance on the accreditation of college advertising programs when it comes to evaluating a graduate of such a program than do the educators who must earn the accreditation. Only directors of advertising education programs in the communication-journalism area that are currently…

  2. ACCREDITATION FOR TECHNICAL ABILITIES INCLUDING COMPUTER SKILLS

    Halit Hami OZ

    2013-01-01

    Full Text Available Sector Skills are defined by state-sponsored, employer-led organizations that cover specific economic sectors in the European Union and other countries in the world to reduce skills gaps and shortages, improve productivity, boost the skills of their sector workforces and improve learning supply. The accreditation and registration systems used by professional bodies raise the profile of the profession. In many countries including the European Union, professional associations are beginning to accept practice-based accreditation, generally as an alternative to their mainstream systems. Besides studying the certain agencies in the European Union for assessing/accreditating practical abilities , Accreditation for practical abilities of Information Communication Technology and Business Management/Language domains developed by Accreditation Council for Practical abilities are also studied in detail as an example to establish a similar agency in Turkey.

  3. Calibration of low-energy electron beams from a mobile linear accelerator with plane-parallel chambers using both TG-51 and TG-21 protocols

    A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2-3% overestimation in dose-output determination if accredited dosimetry-calibration laboratory based chamber factors are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams. (note)

  4. Development of a procedure of calibration of meters of product Kerma-Area; Desarrollo de un procedimiento de calibracion de medidores de producto Kerma-Area

    Ginjaume, M.; Roig, M.; Amores, M.; Ortega, X.

    2013-07-01

    The aim of this paper is to present the calibration procedure developed, uncertainties associated and scope of accredited degree. Also the objectives of EURAMET 1177 and calibrations are described conducted by our laboratory in this intercomparison. (Author)

  5. Silicon diode dosimetry

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry. (author)

  6. Silicon diode dosimetry

    Dixon, R.L.; Ekstrand, K.E. (Wake Forest Univ., Winston-Salem, NC (USA). Bowman Gray School of Medicine)

    1982-11-01

    The theory of silicon dosimetry is briefly reviewed with respect to operation of these diodes without reverse bias in the short-circuit current mode. The problems of temperature dependence, radiation damage, and the dependence on photon energy are discussed. Various applications of the diodes to practical radiation dosimetry are then described with a view toward pointing out the pitfalls as well as the advantages of using these diodes for dosimetry.

  7. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  8. Advances in biomedical dosimetry

    The symposium was organized in order to focus on the problems, developments and areas of further research in the life sciences. Forty-nine papers were presented dealing with instrumentation, techniques, experimental and theoretical studies. They included neutron sources and mixed-field dosimetry; developments (e.g. thermocurrent dosimetry) in dosimetry; physical aspects of radiation therapy, and treatment planning; international, national and regional radiation metrology programmes; diagnostic medical x-ray sources, imaging systems and patient doses; high-energy electron and γ-ray dosimetry; and doses determination for ingested or administered radionuclides

  9. Internal sources dosimetry

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  10. Commissioning dosimetry for the laboratory irradiation facility type PX-γ-30

    In the present paper at the laboratory irradiation type PX-y-30 was carried out the commissioning dosimetry, which belongs to Radiological Department of the CEADEN. It was determined the dose distribution as well as principal dosimetric parameters of the irradiation process. Besides, an irradiation position was found for the calibration or intercomparison of dosimetry systems

  11. TRS 398 dosimetry protocol for radiotherapy

    Full text: In recent years, international codes of practice based on absorbed dose to water standards have been published for the clinical reference dosimetry of external beams. It has become widely accepted that dosimetry of radiotherapeutic beams should be based on these standards. These codes of practice are a major improvement over earlier ones that used air kerma calibration factors as they are based on a calibration directly in a phantom in terms of the quantity of interest. The previous codes begin with calibration in air in terms of air kerma, then use theoretical and generic conversion factors to obtain dose to water that do not take account of chamber-to-chamber variation. Other good reasons for implementing the new codes are that they are conceptually simpler, include improved physical data and improve the consistency for various ionisation chamber types as well as between different beam types. TRS-3982,3 is a new Code of Practice (CoP) for reference dosimetry of external radiotherapy beams based on absorbed dose to, water calibrations and was published by the IAEA in a joint effort with the WHO, PAHO and ESTRO. It is the first CoP of its kind comprehensively covering all external radiotherapy beams except neutrons. The Radiotherapy Interest Group (RJG) of the ACPSEM has recommended that radiotherapy centres in Australia and New Zealand implement this CoP by the end of 2004. In this workshop, the general philosophy of the CoP will be outlined which will provide a framework for each of the individual subcodes. Although it represents just one of the potential implementations of the CoP, this workshop will deal only with dosimetry based on a cylindrical ionisation chamber with an absorbed dose calibration factor in 60Co from the standards laboratory. With the framework of the code in mind, it is straightforward to identify the basic steps that are required for measuring absorbed dose under reference conditions in a high-energy photon beam. The same is true

  12. Calibration of nuclear medicine gamma counters

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  13. Accreditation - Its relevance for laboratories measuring radionuclides

    Palsson, S.E. [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  14. Accreditation - Its relevance for laboratories measuring radionuclides

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  15. A Method of Determining Accuracy and Precision for Dosimeter Systems Using Accreditation Data

    A study of the uncertainty of dosimeter results is required by the national accreditation programs for each dosimeter model for which accreditation is sought. Typically, the methods used to determine uncertainty have included the partial differentiation method described in the U.S. Guide to Uncertainty in Measurements or the use of Monte Carlo techniques and probability distribution functions to generate simulated dose results. Each of these techniques has particular strengths and should be employed when the areas of uncertainty are required to be understood in detail. However, the uncertainty of dosimeter results can also be determined using a Model II One-Way Analysis of Variance technique and accreditation testing data. The strengths of the technique include (1) the method is straightforward and the data are provided under accreditation testing and (2) the method provides additional data for the analysis of long-term uncertainty using Statistical Process Control (SPC) techniques. The use of SPC to compare variances and standard deviations over time is described well in other areas and is not discussed in detail in this paper. The application of Analysis of Variance to historic testing data indicated that the accuracy in a representative dosimetry system (Panasonic(regsign) Model UD-802) was 8.2%, 5.1%, and 4.8% and the expanded uncertainties at the 95% confidence level were 10.7%, 14.9%, and 15.2% for the Accident, Protection Level-Shallow, and Protection Level-Deep test categories in the Department of Energy Laboratory Accreditation Program, respectively. The 95% level of confidence ranges were (0.98 to 1.19), (0.90 to 1.20), and (0.90 to 1.20) for the three groupings of test categories, respectively.

  16. Accredited Internship and Postdoctoral Programs for Training in Psychology: 2008

    American Psychologist, 2008

    2008-01-01

    This article provides an official listing of accredited internship and postdoctoral residency programs. It reflects all Commission on Accreditation decisions through July 20, 2008. The Commission on Accreditation has accredited the predoctoral internship and postdoctoral residency training programs in psychology offered by the agencies listed. The…

  17. Calibration of routine dosimeters in radiation processing: Validation procedure for in-plant calibration

    Šećerov Bojana Lj.

    2011-01-01

    Full Text Available The essential prerequisite of radiation dosimetry is to provide quality assurance and documentation that the irradiation procedure has been carried out according to the specification requirement of correct calibration of the chosen dosimetry system. At the Radiation Plant of the Vinča Institute of Nuclear Sciences we compared two recommended protocols of irradiation procedures in the calibration of dosimetry systems in radiation processing: (1 by irradiation of routine dosimeters (ethanol-chlorobenzene - ECB at the calibration laboratory and (2, by in-plant calibration with alanine transfer - dosimeters. The critical point for in-plant calibration is irradiation geometry, so we carefully positioned the phantom carrying both dosimeters in order to minimize dose gradients across the sample. The analysis of results obtained showed that the difference among determined absorbed doses for the construction of calibration curves between these two methods, (alanine vs. ECB, is less than 1%. The difference in combined standard uncertainty for each calibration procedure is 0.1%. These results demonstrate that our in-plant calibration is as good as calibration by irradiation at the calibration laboratory and validates our placement of the irradiation phantom during irradiation.

  18. Dosimetry service removal

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  19. Radiation therapy dosimetry system

    New therapeutic treatments generally aim to increase therapeutic efficacy while minimizing toxicity. Many aspects of radiation dosimetry have been studied and developed particularly in the field of external radiation. The success of radiotherapy relies on monitoring the dose of radiation to which the tumor and the adjacent tissues are exposed. Radiotherapy techniques have evolved through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments or radiosurgery and robotic radiation therapy. These advances push the frontiers in our effort to provide better patient care by improving the precision of the absorbed dose delivered. This paper presents state-of-the art radiation therapy dosimetry techniques as well as the value of integral dosimetry (INDOS), which shows promise in the fulfillment of radiation therapy dosimetry requirements. - highlights: • Pre-treatment delivery and phantom dosimetry in brachytherapy treatments were analyzed. • Dose distribution in the head and neck was estimated by physical and mathematical dosimetry. • Electron beam flattening was acquired by means of mathematical, physical and “in vivo” dosimetry. • Integral dosimetry (INDOS) has been suggested as a routine dosimetric method in all radiation therapy treatments

  20. Dosimetry in process control

    Measurement of absorbed dose and dose distribution in irradiated medical products relies on the use of quality dosimetry systems, trained personnel and a thorough understanding of the energy deposition process. The interrelationship of these factors will be discussed with emphasis on the current and future practices of process control dosimetry. (author)

  1. Usage of JENDL dosimetry file for material dosimetry in JOYO

    A cross section set with covariance error matrix for neutron spectrum unfolding has been newly prepared from JENDL-3 dosimetry file and was applied to the dosimetry test in the MK-II core (the irradiation core) of Experimental Fast Reactor 'JOYO'. The dosimetry results by the new cross section set were compared with the previous ones by ENDF/B-V dosimetry file to evaluate the applicability and accuracy for the fast reactor dosimetry. In this work, it has been concluded that more improvement can be expected for the JOYO dosimetry test by employing JENDL-3 dosimetry file. (author)

  2. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  3. Report of a consultants meeting on dosimetry in diagnostic radiology

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  4. Strengthening Concurrent Enrollment through NACEP Accreditation

    Scheffel, Kent; McLemore, Yvette; Lowe, Adam

    2015-01-01

    This chapter describes how implementing the National Alliance of Concurrent Enrollment Partnerships' 17 accreditation standards strengthens a concurrent enrollment program, enhances secondary-postsecondary relations, and benefits students, their families, and secondary and postsecondary institutions.

  5. Intercomparison exercise within a distributed-dosimetry network

    The results of an intercomparison exercise within the US Navy dosimetric network (USN-DN) are presented and discussed. The USN-DN uses a commercially available LiF:Mg,Cu,P thermoluminescent dosemeter (TLD) model Harshaw 8840/8841 and TLD reader model Harshaw 8800 manufactured by Thermo Fisher Scientific. The USN-DN consists of a single calibration facility and 16 satellite dosimetry reading facilities throughout the world with ∼40 model 8800 TLD readers and in excess of 350 000 TLD cards in circulation. The Naval Dosimetry Center (NDC) is the primary calibration site responsible for the distribution and calibration of all TLD cards and their associated holders. In turn, each satellite facility is assigned a subpopulation of cards, which are utilised for servicing their local customers. Consistency of the NDC calibration of 150 dosemeters (calibrated at NDC) and 27 locally calibrated remote readers was evaluated in the framework of this intercomparison. Accuracy of TLDs' calibration, performed at the NDC, was found to be <3 % throughout the entire network. Accuracy of the readers' calibration, performed with the NDC issued calibration dosemeters at remote sites, was found to be better than 4 % for most readers. The worst performance was found for reader Channel 3, which is calibrated using the thinnest chip of the Harshaw 8840/8841 dosemeter. The loss of sensitivity of this chip may be caused by time-temperature profile that has been designed for all four chips without consideration of chip thickness. (authors)

  6. Retrospective dosimetry by chromosomal analysis

    The joint EU/CIS project ECP-6, was set up to examine whether cytogenetic dosimetry is possible for persons irradiated years previously at Chernobyl. The paper describes the possibility of achieving this by the examination of blood lymphocytes for unstable and stable chromosome aberrations; dicentrics and translocations. Emphasis was placed on the relatively new fluorescence in situ hybridization (FISH) method for rapid screening for stable translocations. In a collaborative experiment in vitro dose response calibration curves for dicentrics and FISH were produced with gamma radiation over the range 0-1.0 Gy. A pilot study of about 60 liquidators with registered doses ranging from 0-300 mSv was undertaken to determine whether the chromosomal methods may verify the recorded doses. It was concluded that the dicentric is no longer valid as a measured endpoint. Translocations may be used to verify early dosimetry carried out on highly irradiated persons. For the vast majority of lesser exposed subjects FISH is impractical as an individual dosimeter; it may have some value for comparing groups of subjects

  7. Accreditation standards for undergraduate forensic science programs

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  8. IAEA Support to National TLD Audit Networks for Radiotherapy Dosimetry

    For several years, the IAEA has supported the development of methodology and establishment of national quality audit networks for radiotherapy dosimetry. The main objective was to extend the availability of radiotherapy dosimetry audits to as many radiotherapy centres as possible throughout the world. Since 1995, a series of three coordinated research projects (CRPs) has been conducted by the IAEA to assist its Member States to develop such national audit programmes. The first CRP focused on the basic beam calibration audits. The basic programme was extended to audits in non-reference conditions through a second CRP. The third CRP initiated in 2009 is expanding the dosimetry audit tools for more complex techniques used for treatment of cancer patients. The national audit networks participating in these CRPs have incorporated in their programmes procedures for auditing hospital dosimetry for these techniques. (author)

  9. Radiation dosimetry for quality control of food preservation and disinfestation

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  10. Validation protocol for multiple blood gas analyzers in accordance with laboratory accreditation programs

    Pérsio A. R. Ebner; Paschoalina Romano; Alexandre Sant’Anna; Maria Elizabete Mendes; Magna Oliveira; Nairo M. Sumita

    2015-01-01

    ABSTRACTIntroduction:The results of blood gas analysis using different instrumentation can vary widely due to the methodological differences, the calibration procedures and the use of different configurations for each type of instrument.Objective:The objective of this study was to evaluate multiple analytical systems for measurement of blood gases, electrolytes and metabolites in accordance with the accreditation program (PALC) of Sociedade Brasileira de Patologia Clínica/Medicina Laboratoria...

  11. Automated Calibration of Dosimeters for Diagnostic Radiology

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  12. The United Kingdom's radiotherapy dosimetry audit network

    The first comprehensive national dosimetry intercomparison in the United Kingdom involving all UK radiotherapy centres was carried out in the late 1980s. Out of this a regular radiotherapy dosimetry audit network evolved in the early 1990s. The network is co-ordinated by the Institute of Physics and Engineering in Medicine and comprises eight co-operative regional groups. Audits are based on site visits using ionization chambers and epoxy resin water substitute phantoms. The basic audit methodology and phantom design follows that of the original national intercomparison exercise. However, most of the groups have evolved more complex methods, to extend the audit scope to include other parameters, other parts of the radiotherapy process and other treatment modalities. A number of the groups have developed phantoms to simulate various clinical treatment situations, enabling the sharing of phantoms and expertise between groups, but retaining a common base. Besides megavoltage external beam photon dosimetry, a number of the groups have also included the audit of kilovoltage X ray beams, electron beams and brachytherapy dosimetry. The National Physical Laboratory is involved in the network and carries out basic beam calibration audits to link the groups. The network is described and the methods and results are illustrated using the Scottish+ group as an example. (author)

  13. The ENEA neutron personal dosimetry service

    The ENEA Radiation Protection Inst. has been operating the only neutron personal dosimetry service in Italy since the 1970's. Since the 1980's the service has been based on PADC (poly-allyl-diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and 7LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of Hp(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed. (authors)

  14. In vivo dosimetry with silicon diodes in total body irradiation

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  15. Dosimetry practices at the Radiation Technology Centre (Ghana)

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  16. Clinical application of in vivo dosimetry for external telecobalt machine

    In external beam radiotherapy quality assurance is carried out on the individual components of treatment chain. The patient simulating device, planning system and treatment machine are tested regularly according to set protocols developed by national and international organizations. Even thought these individual systems are not tested for errors which can be made in the transfer between the systems. The best quality assurance for the treatment planning chain. In vivo dosimetry is used as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. It is a proven reliable method of checking overall treatment accuracy, allowing verification of dosimetry and dose calculation as well as patient treatment setup. Accurate in vivo dosimetry is carried out if diodes and thermoluminescence dosimeters (TLDs). the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. The aim of this study was to verify the response of TLDs type (LiF: Mg, Cu, p) use in radiotherapy, to establish calibration procedure for TLDs and to evaluate entrance dose obtained by the treatment planning system with measured dose using thermoluminescence detectors. Calibration of TLDs was done using Cobalt-60 teletherapy machine, linearity and calibration factors were determined. Measurements were performed in random phantom for breast irradiation (for the breast irradiation ( For the breast irradiation technique considered, wedge field was used). All TLDs were processed and analyzed at RICK. In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Thermoluminescent dosimeters are considered the gold stander for in vivo dosimetry and do not require cables for measurements which makes them ideal for mail based studies and have no dose rate or temperature dependence

  17. Quality assurance of BNCT dosimetry

    The Phase I clinical trials for boron neutron capture therapy (BNCT) started in May 1999 in Otaniemi, Espoo. For BNCT no uniform international guidance for the quality assurance of dosimetry exists, so far. Because of the complex dose distribution with several different dose components, the international recommendations on conventional radiotherapy dosimetry are not applicable in every part. Therefore, special guidance specifically for BNCT is needed. To obtain such guidelines a European collaboration project has been defined. The aim of the project is a generally accepted Code of Practice for use by all European BNCT centres. This code will introduce the traceability of the dosimetric methods to the international measurement system. It will also ensure the comparability of the results in various BNCT beams and form the basis for the comparison of the treatment results with the conventional radiotherapy or other treatment modalities. The quality assurance of the dosimetry in BNCT in Finland covers each step of the BNCT treatment, which include dose planning imaging, dose planning, boron infusion, boron kinetics, patient positioning, monitoring of the treatment beam, characterising the radiation spectrum, calibration of the beam model and the dosimetric measurements both in patients (in viva measurements) and in various phantoms. The dose planning images are obtained using a MR scanner with MRI sensitive markers and the dose distribution is computed with a dose planning software BNCTRtpe. The program and the treatment beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantom. Dosimetric intercomparison has been done with the Brookhaven BNCT beam (BMRR). Before every patient irradiation the relationship between the beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Kinetic models used to estimate the time-behavior of the blood boron concentration have been verified

  18. Current work on dosimetry standards in Japan

    Basic concepts on standardization of radiation dosimetry are reviewed. The present situation regarding primary standards in the Electrotechnical Laboratory, the primary standard dosimetry laboratory in Japan, is presented, considering the following; (i) Established dosimetric standards of exposure for soft and medium-energy X-rays and gamma rays. This section includes methods of their standardization, and discusses accuracies of instruments operating as environmental-level, protection-level, inspection-level, therapy-level, and processing-level measuring systems. The results of international comparisons between ETL and other, foreign primary standard dosimetry laboratories are presented; (ii) Other established radiation standards related to derivation of radiation absorbed dose. These primary standards include those for the neutron emission rates, thermal and fast neutron flux densities, energy fluences for high-energy photons and electrons, and activities of several kinds of radioactive material. The accuracies and results of international comparisons relating to them are also presented; (iii) Research being carried out at ETL. The current status of the dissemination of radiation standards is presented considering in particular: (i) The calibration services available at ETL, the categories of these services, energy and dose rate ranges, methods, accuracies, etc.; (ii) The calibration services available in certain other organizations considered as SSDLs in Japan, the categories of such work, methods, accuracies etc.; (iii) Present endeavours towards establishing a systematic and effective dissemination system (a so-called Traceability System) in Japan

  19. Factors influencing EPR dosimetry in fingernails

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors)

  20. The ARN critical dosimetry system

    The ARN critical dosimetry system is shown in this work. It includes personal and area dosemeters, and the information of typical spectra. The spectra of the critical facilities in our country are characterised by measurements with our Bonner Sphere System (BSS) or by computational methods in order to evaluate the dose in each case with the actual spectrum. The personal and area dosemeters are able to evaluate the gamma and neutron contributions. The detectors used are thermoluminescents, (TLD) 7Li:Mg,Ti for gamma and threshold detectors (Indium and sulphur pellets) and activation detectors Au (bare and Cd cover) for neutron. The Gamma-ray spectrometry is made with GeHp and MCA (Canberra) calibrated with 133Ba and 137Cs sources. The Beta-ray counting is made with a Geiger Muller (LND)(8%) with an electronic counter prototype developed in Argentina. The system is calibrated with the tioacetamida-technique carried out in our chemistry laboratory. The TLD are calibrated in Argentine SSDL with 60Co source, free in air. The calibration curve has been extended up to 10Gy. The neutron fluence distribution is obtained considering the thermal region as a Maxwellian distribution with a modal energy of 0.0253 eV and the intermediate region with a 1/E spectrum from 0.5 eV to E=200 keV. The basic data are the measured activities in the gold foils. The fast neutron fluence is calculated considering the mean cross section for the selected spectrum over the energy range. The basic data are the measured activities in indium foil and sulphur pellets with threshold energy of 1.7MeV and 2.5MeV respectively. The neutron kerma dose, the recoil charged particle dose and the contribution of the 1H(n, γ) 2H dose component, are calculated applying the dose conversion factors published in TRS211. The area dosemeter gives the gamma incident radiation kerma, and the personal dosemeter, the gamma total dose. This system has participated at the International Intercomparison of Criticality

  1. IS 2010 and ABET Accreditation: An Analysis of ABET-Accredited Information Systems Programs

    Saulnier, Bruce; White, Bruce

    2011-01-01

    Many strong forces are converging on information systems academic departments. Among these forces are quality considerations, accreditation, curriculum models, declining/steady student enrollments, and keeping current with respect to emerging technologies and trends. ABET, formerly the Accrediting Board for Engineering and Technology, is at…

  2. Proposed Accreditation Standards for Degree-Granting Correspondence Programs Offered by Accredited Institutions.

    McGraw-Hill Continuing Education Center, Washington, DC.

    A study on proposed accreditation standards grew out of a need to (1) stimulate the growth of quality correspondence degree programs; and (2) provide a policy for accreditation of correspondence degree programs so that graduates would be encouraged to pursue advanced degree programs offered elsewhere by educational institutions. The study focused…

  3. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  6. JACIE accreditation in paediatric haemopoietic SCT.

    Cornish, J M

    2008-10-01

    The Joint Accreditation Committee of the International Society for Cellular Therapy (ISCT) and European Group for Blood and Marrow Transplantation (EBMT), known as JACIE, is a nonprofit body established for the purposes of assessment and accreditation in the field of haemopoietic SCT (HSCT). The committee was established in 1999 with the aim of creating a standardized system of accreditation officially recognized across Europe and based on the accreditation standards established by the US-based Foundation for the Accreditation of Cellular Therapy (FACT). The major objectives of JACIE are to improve the quality of HSCT in Europe by providing a means whereby transplant centres, cell collection facilities and processing facilities can demonstrate high-quality practice. JACIE launched its official inspection programme in January 2004, and since then more than 35 centres in Europe have been inspected. The history of paediatric-specific accreditation guidelines has lagged behind the overall development but is now incorporated within the standards. There is now acknowledgement that a paediatric transplant team will be headed by a paediatric programme director, that an independent paediatric unit will perform no less than 10 allogeneic transplants in children under the age of 18 per year, be looked after by nurses and junior doctors specifically trained in paediatric practice and have access to paediatric subspecialties with an intensive care unit on site. Paediatric units will be examined by a paediatric-trained inspector. Remaining issues of difference with the guidelines relate to the numbers required for accreditation in combined units. Overall, the paediatric community in Europe has embraced the JACIE guidelines. JACIE is working more closely with other international organizations in cellular therapy to develop international standards for all aspects of SCT. The recent implementation of Directive 2004/23/EC has provided an impetus for the implementation of JACIE in

  7. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  8. Reference radiation fields of dosimetry quantities

    The reference radiation fields are used for transmission of the scales of dosimetry quantities to measuring units and to determining their response as a function of radiation quality .The reference dosimetric fields one can divide into therapy level (> 10 Gy/h) and radiation protection level << 10 Gy/h) ranges. In this contribution we will deal with gamma and electron therapy reference fields and with gamma and neutron radiation protection reference fields. X-ray reference fields will be described at the separate article. Ranges of reference radiation field determine the calibration capabilities. There are specific requirements for production reference radiation at individual radiation qualities, predominantly determined by international recommendations and at the relevant STN ISO standards. Quality of reference fields at individual calibration distances from source was verified by measurements of area distribution around the main axis of radiation. Quality of calibration services is confirmed by results of international comparisons measurements (EUROMET, COOMET, EA). (authors)

  9. INFORMATION: INDIVIDUAL DOSIMETRY SERVICE

    2004-01-01

    We inform you that the Individual Dosimetry Service will be exceptionally closed on April 13 and 14 (Tuesday and Wednesday). Only the very urgent cases will be handled during the days mentioned above.

  10. Dosimetry for radiation processing

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors...... international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...

  11. Local overexposure: the role of physical dosimetry

    The role of physical dosimetry in cases of local overexposure is limited. However, if dosimetry, which is usually of no use for diagnosis, is combined with clinical and biological data, it can be useful for therapy and prognosis. This paper, based on cases treated at the Hopital Curie, proposes a method which may be used. It consists of: determination of isodose curves at the surface (skin) by an experimental reconstruction of the accident or by calculation; comparison of these isodoses with the skin pathology: area of erythema (3-8 Gy), area of dry desquamation (> 5 Gy), area of exudative desquamation (12-20 Gy) and area of necrosis (> 25 Gy); calibration of the depth-dose curves after this comparison and the determination of the dose to essential organs or tissues. Examples illustrating this approach are given for accidents involving X rays and 192Ir and 60Co sources. (author)

  12. Individual Dosimetry Service

    2004-01-01

    Individual Dosimetry Service will be closed on Thursday 9 September (Jeûne genevois) and on Friday 10 September. We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period SEPTEMBER-OCTOBER 2004 are available from their usual dispatchers. Please have your films changed before the 13 SEPTEMBER 2004. The color of the dosimeter valid in SEPTEMBER-OCTOBER 2004 is RED.

  13. News on personal dosimetry

    What is going on in personal monitoring? The DIS-1 dosimeter (Rados/Mirion Technologies), on the market since 2000, is being introduced in the 4th dosimetry service in Switzerland. In Germany, dosimetry services are looking for alternatives to the film dosimeter. They have recently taken the decision for two technical solutions. IEC has published a standard which shall regulate technical requirements for dosimeters world-wide. (orig.)

  14. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm2 filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet

  15. Guidelines for the calibration of personnel dosimeters

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  16. Analysis of ISO/IEC 17025 for establishment of KOLAS (Korea Laboratory Accreditation Scheme) quality assurance system

    Besides one existent accredited lab, radioactive material chemical analysis lab, five test laboratories and two calibration labs are under plan to acquire the accreditation from KOLAS. But the current Quality Manual was developed according to ISO Guide 25 that was superceded by ISO/IEC 17025. Since it is tailored to the radioactive material chemical analysis lab, a number of requirements of the Manual are not applicable to the labs other than radioactive material chemical analysis lab. Through the analysis of ISO/IEC 17025, a model of quality system was established which is not only consistent with ISO/IEC 17025 but reflective of the KAERI's situation

  17. Optimisation of an EPR dosimetry system for robust and high precision dosimetry

    Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements. - Highlights: • A lithium formate dosimetry system was optimized for accurate dose determinations. • Smaller-sized dosimeters for measurements in dose gradient regions was developed. • Individual sensitivity calibration was introduced for EPR dosimetry. • Measurement precision versus measurement time was evaluated

  18. Strengthening organizational performance through accreditation research-a framework for twelve interrelated studies: the ACCREDIT project study protocol

    Pope Catherine

    2011-10-01

    Full Text Available Abstract Background Service accreditation is a structured process of recognising and promoting performance and adherence to standards. Typically, accreditation agencies either receive standards from an authorized body or develop new and upgrade existing standards through research and expert views. They then apply standards, criteria and performance indicators, testing their effects, and monitoring compliance with them. The accreditation process has been widely adopted. The international investments in accreditation are considerable. However, reliable evidence of its efficiency or effectiveness in achieving organizational improvements is sparse and the value of accreditation in cost-benefit terms has yet to be demonstrated. Although some evidence suggests that accreditation promotes the improvement and standardization of care, there have been calls to strengthen its research base. In response, the ACCREDIT (Accreditation Collaborative for the Conduct of Research, Evaluation and Designated Investigations through Teamwork project has been established to evaluate the effectiveness of Australian accreditation in achieving its goals. ACCREDIT is a partnership of key researchers, policymakers and agencies. Findings We present the framework for our studies in accreditation. Four specific aims of the ACCREDIT project, which will direct our findings, are to: (i evaluate current accreditation processes; (ii analyse the costs and benefits of accreditation; (iii improve future accreditation via evidence; and (iv develop and apply new standards of consumer involvement in accreditation. These will be addressed through 12 interrelated studies designed to examine specific issues identified as a high priority. Novel techniques, a mix of qualitative and quantitative methods, and randomized designs relevant for health-care research have been developed. These methods allow us to circumvent the fragmented and incommensurate findings that can be generated in small

  19. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  20. System calibration for air control of radioactive gases [contamination control

    Testing of the system for air contamination control at the RA reactor was done and calibrated by Ar41. This report contains the report on testing and calibration. This activity was necessary in order to achieve its performance with existing dosimetry system in the RA reactor building

  1. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  2. Voluntary accreditation of cellular therapies: Foundation for the Accreditation of Cellular Therapy (FACT).

    Warkentin, P I

    2003-01-01

    Voluntary accreditation of cells, tissues, and cellular and tissue-based products intended for human transplantation is an important mechanism for improving quality in cellular therapy. The Foundation for the Accreditation of Cellular Therapy (FACT) has developed and implemented programs of voluntary inspection and accreditation for hematopoietic cellular therapy, and for cord blood banking. These programs are based on the standards of the clinical and laboratory professionals of the American Society of Blood and Marrow Transplantation (ASBMT), the International Society for Cellular Therapy (ISCT), and NETCORD. FACT has collaborated with European colleagues in the development of the Joint Accreditation Committee in Europe (jACIE). FACT has published standards documents, a guidance manual, accreditation checklists, and inspection documents; and has trained as inspectors over 300 professionals active in the field. All inspectors have a minimum of 5 years' experience in the area they inspect. Since the incorporation of FACT in 1996, 215 hematopoietic progenitor cell facilities have applied for FACT accreditation. Of these facilities, 113 are fully accredited; the others are in the process of document submission or inspection. Significant opportunities and challenges exist for FACT in the future, including keeping standards and guidance materials current and relevant, recruiting and retaining expert inspectors, and establishing collaborations to develop standards and accreditation systems for new cellular products. The continuing dialogue with the Food and Drug Administration (FDA) is also important to ensure that they are aware of the accomplishments of voluntary accreditation, and keep FACT membership alerted to FDA intentions for the future. Other potential avenues of communication and cooperation with FDA and other regulatory agencies are being investigated and evaluated. PMID:12944235

  3. Guidelines on calibration of neutron measuring devices

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  4. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  5. Accreditation, a tool for business competitiveness

    Conformity Assessment Bodies (laboratories , certification and inspection bodies, etc ) assess conformity of products and services to requirements , usually relating to quality and safety. For their activities to provide due confidence both in national and international markets these bodies must demonstrate to have the relevant technical competence and to perform according to international standards. This confidence is based on the assessments conducted in different countries by the accreditation body in Spain ENAC. Using accredited conformity assessment bodies bodies: risks are minimized; customer confidence is increased; acceptance in foreign countries is enhanced; self-regulation is promoted. (Author)

  6. BUSINESS ETHICS AS AN ACCREDITATION REQUIREMENT: A KNOWLEDGE MAPPING APPROACH

    Rita A. Franks; Albert D. Spalding, Jr

    2013-01-01

    Most of the more prominent and highly ranked business and management schools in the United States and elsewhere are accredited by one of two international accrediting organizations, the Association to Advance Collegiate Schools of Business (AACSB) or the Accreditation Council for Business Schools & Programs (ACBSP). Both of these organizations require the inclusion of business ethics in the curriculum of each accredited institution. Business ethics, however, is a concept that includes, overla...

  7. A Finnish national code of practice for reference dosimetry of radiation therapy

    Full text: A national Code of Practice (CoP) for reference dosimetry of radiation therapy in Finland will be established during 2002 and will be implemented from the beginning of 2003. The CoP will cover dosimetry of the conventional radiotherapy modalities used in Finland i.e. external radiotherapy with megavoltage photon and electron beams, external radiotherapy with low energy kilovoltage X-ray beams and brachytherapy. The formalisms for external radiation beam dosimetry are those of TRS 389. For brachytherapy the formalism will follow the general guidelines of TECDOC-1274. The CoP will be prepared by the SSDL of STUK in close co-operation with the Finnish radiotherapy physicists. For external beam radiotherapy, the main objective of the national Code of Practice for radiation therapy dosimetry is to maintain the achieved good level of consistency of the dosimetry procedures in external beam radiotherapy as the 'absorbed dose to water' based approach of TRS 389 is implemented in Finland. In the CoP the dosimetry the procedures are described for the whole dosimetry chain starting from the calibration of the ionisation chambers at the SSDL of STUK and ending to the calibration of the beam monitor ionisation chamber of a linear accelerator. For brachytherapy dosimetry the aim is to fix the national practice for reference air kerma rate calibrations both for radioactive sources and for well-type ionisation chambers. Although the dosimetry procedures are described independently of the SSDL service, CoP makes use of the special features of the calibration service offered by the SSDL of STUK. For ionisation chambers used for photon dosimetry the calibration factors for the user measurement chain are given not only for the actual reference beam quality (60Co) but also for a set of user beam qualities. Furthermore, SSDL of STUK offers calibration services for plane parallel ionisation chambers in an electron beam of a user linac. For brachytherapy SSDL of STUK has

  8. Worldwide QA networks for radiotherapy dosimetry

    A number of national or international organizations have developed various types and levels of external audits for radiotherapy dosimetry. There are three major programmes who make available external audits, based on mailed TLD (thermoluminescent dosimetry), to local radiotherapy centres on a regular basis. These are the IAEA/WHO TLD postal dose audit service operating worldwide, the European Society for Therapeutic Radiology and Oncology (ESTRO) system, EQUAL, in European Union (EU) and the Radiological Physics Center (RPC) in North America. The IAEA, in collaboration with WHO, was the first organization to initiate TLD audits on an international scale in 1969, using mailed system, and has a well-established programme for providing dose verification in reference conditions. Over 32 years, the IAEA/WHO TLD audit service has checked the calibration of more than 4300 radiotherapy beams in about 1200 hospitals world-wide. Only 74% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limits of ±5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful. EQUAL, an audit programme set up in 1998 by ESTRO, involves the verification of output for high energy photon and electron beams, and the audit of beam parameters in non-reference conditions. More than 300 beams are checked each year, mainly in the countries of EU, covering approximately 500 hospitals. The results show that although 98% of the beam calibrations are within the tolerance level of ±5%, a second check was required in 10% of the participating centres, because a deviation larger than ±5% was observed in at least one of the beam parameters in non-reference conditions. EQUAL has been linked to another European network (EC network) which tested the audit methodology prior to its application. The RPC has been funded continuously since 1968 to monitor radiation therapy dose delivery at

  9. CNEA's (Comision Nacional de Energia Atomica) experience in the preparation of a national system for laboratory accreditation

    Within the regional markets, as it is the case of MERCOSUR , the laboratories which are suppliers of test and calibration results, are mutually recognized through the National Accreditation Systems. In Argentina there is a project to create a Center for the Accreditation of Test Laboratories. CNEA, which is involved in the execution of large projects and has adopted quality assurance criteria for a long time, requires for internal and external laboratories to be qualified. At the beginning of this year, a Committee for the Qualification of Laboratories was created in the Research and Development and Fuel Cycle Areas. Its objective was planning, management of documents, coordination, evaluation and quantification of laboratories, according to national IRAM and international ISO standards. This paper analyzes the organization of the system and the methods to evaluate and qualify laboratories as a process of growing up leading to the future National Accreditation System. (author). 3 figs

  10. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  11. Accredited Internship and Postdoctoral Programs for Training in Psychology: 2006

    American Psychologist, 2006

    2006-01-01

    Presents the official listing of accredited internship and postdoctoral residency programs. It reflects all committee decisions through July 16, 2006. The Committee on Accreditation has accredited the doctoral internship and postdoctoral residency training programs in psychology offered by the agencies listed.

  12. Accreditation in the Professions: Implications for Educational Leadership Preparation Programs

    Pavlakis, Alexandra; Kelley, Carolyn

    2016-01-01

    Program accreditation is a process based on a set of professional expectations and standards meant to signal competency and credibility. Although accreditation has played an important role in shaping educational leadership preparation programs, recent revisions to accreditation processes and standards have highlighted attention to the purposes,…

  13. CNAL Successfully Passed APLAC Peer Evaluation Inspection Body Accreditation

    2004-01-01

    @@ Aug. 9-12, 2004, APLAC (Asia Pacific Laboratory Accreditation Cooperation) conducted evaluation of CNAL on Inspection Body Accreditation. After four-day′s evaluation (including Secretariat Office and witnessing assessment), the evaluation group of APLAC declared that "CNAL has operated the Accreditation System of Inspection Body which complies with the requirements in MR001 and MR002.

  14. Improving Outcome Assessment in Information Technology Program Accreditation

    Goda, Bryan S.; Reynolds, Charles

    2010-01-01

    As of March 2010, there were fourteen Information Technology programs accredited by the Accreditation Board for Engineering and Technology, known as ABET, Inc (ABET Inc. 2009). ABET Inc. is the only recognized institution for the accreditation of engineering, computing, and technology programs in the U.S. There are currently over 128 U.S. schools…

  15. 76 FR 17367 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    2011-03-29

    ... participant is the same cost for any size participant; (2) access to NVLAP's accreditation system is not conditional upon the size of a laboratory or membership of any association or group, nor are there undue..., Conformity assessment--General requirements for accreditation bodies accrediting conformity assessment...

  16. Reactor Dosimetry State of the Art 2008

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear

  17. Dosimetry and quality control in radiodiagnosis

    This work deals with physics of radiodiagnosis. In a first part a study of the characteristics of different kinds of radiological equipments and a quality assurance of some of them (standard radiography, coronarography and computed tomography) have been performed. The second part deals with patient irradiation. After a bibliographic study of radiodiagnosis dosimetry, two kinds of dosimetric measures have been made: ''in vitro'' measures, using a phantom, that had allowed to calibrate the equipment and to improve the individual irradiation card, and ''in vivo'' measures. For the first types of measures ionization chambers, have been used for the second thermoluminescent dosimeters

  18. Secondary standard dosimetry laboratory (SSDL)

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  19. Topics in radiation dosimetry radiation dosimetry, v.1

    Attix, Frank H

    2013-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  20. The National Accreditation Board for Hospital and Health Care Providers accreditation programme in India.

    Gyani, Girdhar J; Krishnamurthy, B

    2014-01-01

    Quality in health care is important as it is directly linked with patient safety. Quality as we know is driven either by regulation or by market demand. Regulation in most developing countries has not been effective, as there is shortage of health care providers and governments have to be flexible. In such circumstances, quality has taken a back seat. Accreditation symbolizes the framework for quality governance of a hospital and is based on optimum standards. Not only is India establishing numerous state of the art hospitals, but they are also experiencing an increase in demand for quality as well as medical tourism. India launched its own accreditation system in 2006, conforming to standards accredited by ISQua. This article shows the journey to accreditation in India and describes the problems encountered by hospitals as well as the benefits it has generated for the industry and patients. PMID:24938026

  1. Dosimetry of neutron irradiations

    Biological dosimetry of neutron irradiation appears to be of great difficulty due to the multiparametric aspect of the relative biological effectiveness and the heterogeneity of the neutron dose distribution. Dosimetry by sodium 24 activation which can be performed by means of portable radiameters appears to be very useful for early triage within the 3 h following neutron irradiation, whereas hematological dosimetry by slope and level analysis of the lymphocyte drop cannot be used in this case. Chromosomic aberration analysis allows to evaluate the neutron dose heterogeneity by the frequency measurement of acentric fragments not originating from the formation of dicentrics or rings. Finally, recent experimental data on large primate models (baboons) have shown that some plasma hemostasia factors appear to be reliable biological indicators and noticeable markers of the prognosis of neutron irradiation

  2. Interstitial brachytherapy dosimetry update

    In March 2004, the American Association of Physicists in Medicine (AAPM) published an update to the AAPM Task Group No. 43 Report (TG-43) which was initially published in 1995. This update was pursued primarily due to the marked increase in permanent implantation of low-energy photon-emitting brachytherapy sources in the United States over the past decade, and clinical rationale for the need of accurate dosimetry in the implementation of interstitial brachytherapy. Additionally, there were substantial improvements in the brachytherapy dosimetry formalism, accuracy of related parameters and methods for determining these parameters. With salient background, these improvements are discussed in the context of radiation dosimetry. As an example, the impact of this update on the administered dose is assessed for the model 200 103Pd brachytherapy source. (authors)

  3. 38 CFR 21.4253 - Accredited courses.

    2010-07-01

    ... college degree) or it may be vocational or professional (an occupation). (c) Accrediting agencies. A... hours or by recognition at completion by the granting of a standard college degree. (f) Courses not leading to a standard college degree. Any course in a school approved by the State approving agency...

  4. 42 CFR 414.68 - Imaging accreditation.

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Imaging accreditation. 414.68 Section 414.68 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Physicians and Other...

  5. Approaches to the ISO/IEC 17025 accreditation for Pu and U accountancy analysis

    The quality control section of Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions by Mass Spectrometry as well as content by Isotope Dilution Mass Spectrometry (IDMS) of plutonium and uranium in nuclear materials. Along with establishing and managing the quality assurance system, ensuring the reliability of the analysis data is important. PFDC has been establishing the quality management system with ISO9001. ISO9001 consists of management requirements for quality system of organizations. While ISO/IEC 17025 consists of technical requirements for the competence of testing and calibration laboratories in addition to the management requirements. The quality control section addressed technical improvement to improve further reliability of analysis quality and we have accredited for ISO/IEC 17025 of isotopic compositions and content of plutonium and uranium in nuclear materials in March 2010. In this presentation, we report our approaches to the ISO/IEC 17025 accreditation and operation status. (author)

  6. Does accreditation stimulate change? A study of the impact of the accreditation process on Canadian healthcare organizations

    Shabah Abdo

    2010-04-01

    Full Text Available Abstract Background One way to improve quality and safety in healthcare organizations (HCOs is through accreditation. Accreditation is a rigorous external evaluation process that comprises self-assessment against a given set of standards, an on-site survey followed by a report with or without recommendations, and the award or refusal of accreditation status. This study evaluates how the accreditation process helps introduce organizational changes that enhance the quality and safety of care. Methods We used an embedded multiple case study design to explore organizational characteristics and identify changes linked to the accreditation process. We employed a theoretical framework to analyze various elements and for each case, we interviewed top managers, conducted focus groups with staff directly involved in the accreditation process, and analyzed self-assessment reports, accreditation reports and other case-related documents. Results The context in which accreditation took place, including the organizational context, influenced the type of change dynamics that occurred in HCOs. Furthermore, while accreditation itself was not necessarily the element that initiated change, the accreditation process was a highly effective tool for (i accelerating integration and stimulating a spirit of cooperation in newly merged HCOs; (ii helping to introduce continuous quality improvement programs to newly accredited or not-yet-accredited organizations; (iii creating new leadership for quality improvement initiatives; (iv increasing social capital by giving staff the opportunity to develop relationships; and (v fostering links between HCOs and other stakeholders. The study also found that HCOs' motivation to introduce accreditation-related changes dwindled over time. Conclusions We conclude that the accreditation process is an effective leitmotiv for the introduction of change but is nonetheless subject to a learning cycle and a learning curve. Institutions invest

  7. Accreditation of test laboratories in Germany and Europe

    The accreditation of test laboratories is an important part of the quality policy of the EC (now EU) and EFTA States. It is aimed at creating and strengthening confidence in the test work of the laboratories, in order to avoid multiple testing, to save costs and to raise the quality of products. A survey of the 12 European accreditation systems is given, which, with the exception of the German one, have a public/legal character. The German accreditation system is sectorial, ie: accreditation offices were created for certain economic areas. The petroleum sector is represented by the German Accreditation Office Mineraloel GmbH (DASMIN) in this system. (orig./BBR)

  8. TL dosimeters for gamma and thermal neutrons used at ENEA. Accuracy and calibration standards; Dosimetri a TL per neutroni termici e gamma impiegati in ENEA: metodo, calibrazione e qualificazione

    Fantuzzi, E.; Gualdrini, G.F.; Monteventi, F.; Morelli, B.; Uleri, G. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    This work summaries the experimental results achieved on the characterisation of dosimetric systems used at ENEA (National Agency for New Technology, Energy and the Environment) laboratory in Bologna (Italy) and describes the calibration method either for a two-element dosemeter Harshaw and for a two-element dosemeter assembled at ENEA with higher sensitivity LiF detectors. Both calculation algorithm and calibration procedure have been defined and analyzed in terms of the dosimetric reference quantities. In addition, parameters responsible and crucial for the dosimetric reference quantities. In addition, parameters responsible and crucial for the dosimetric results are pointed out. Finally, intercomparisons between experimental data and numerical data (Monte Carlo code) are shown. [Italian] Vengono esposti i metodi utilizzati per la calibrazione di un dosimetro Harshaw e di uno con maggiore sensibilita' prodotto dal centro ENEA di Bologna con LiF. Sono stati definiti sia l'algoritmo di calcolo sia la procedura di calibrazione ed analizzate le problematiche legate alle grandezze di riferimento. Sono state inoltre individuate le specifiche variabili che possono incidere sul dato dosimetrico ed infine esposti i risultati di interconfronti sperimentali e di calcolo con tecnica Monte Carlo.

  9. Development of dose calibrators Tandem systems and establishment of beta dosimetry in nuclear medicine; Desenvolvimento de sistemas Tandem de activimetros e estabelecimento de dosimetria beta em servicos de medicina nuclear

    Cecatti, Sonia Garcia Pereira

    2004-07-01

    A quality control program at Nuclear Medicine Services includes the checking of all equipment used for diagnostics and treatment, and the individual monitoring of the workers occupationally exposed to ionizing radiations. In this work the main quality control tests were performed with three dose calibrators using standard radiation sources of {sup 57}Co, {sup 133}Ba, {sup 137}Cs and {sup 60}Co. Tandem systems of dose calibrators were established and characterized using four cylindrical absorbers of different materials for an additional quality control test in Nuclear Medicine. The main utility of this new test is the possibility of impurity detection in radiopharmaceuticals, when the ratio of the measurements with different absorbers is different from that obtained at the laboratory in ideal conditions. The dosimetric characteristics of three types of CaS0{sub 4}:Dy + Teflon pellets were studied for an appropriate choice of the material to be used for individual monitoring of workers. The thermoluminescent detectors were irradiated using beta sources of {sup 90}Sr+{sup 90}Y, {sup 204}TI, {sup 147}Pm, {sup 153}Sm and {sup 32}P. A wrist badge for beta individual monitoring was developed for workers that handle beta radiopharmaceuticals in Nuclear Medicine Services. (author)

  10. Nuclear medicine radiation dosimetry

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  11. Accreditation and improvement in process quality: A nationwide study

    Bie Bogh, Søren; Hollnagel, Erik; Johnsen, Søren P; Falstie-Jensen, Anne Mette

    Objectives: To examine the development in process quality related to stroke, heart failure and ulcer (bleeding and perforated) between accredited and non-accredited hospitals. Method: All Danish hospitals which treated patients with stroke or heart failure during 2004-2008 or treated patients with...... bleeding or perforated ulcer during 2006-2008 were included. The hospitals were categorized in two groups, non-accredited hospitals (i.e., hospitals not participating in an accreditation program) and hospitals accredited either by Joint Commission International or Health Quality Service. Individual......-level processes of care data was obtained from national population-based registries. The accredited and non-accredited hospitals were compared using 20 processes of care indicators reflecting hospital compliance with national clinical guidelines. The 20 indicators included seven indicators for stroke, seven...

  12. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  13. Status of radiation processing dosimetry

    Miller, A.

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been or are...... being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in...

  14. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  15. Ion storage dosimetry

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  16. Individual Dosimetry Service

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MAY-JUNE 2004 are available from their usual dispatchers. Please have your films changed before the 11th MAY 2004. The color of the dosimeter valid in MAY-JUNE 2004 is YELLOW.

  17. Individual dosimetry service

    2004-01-01

    We inform all staffs and users under regular dosimetry control that the dosimeters for the monitoring period MARCH/APRIL 2004 are available from their usual dispatchers. Please have your films changed before the 11th MARCH 2004. The color of the dosimeter valid in MARCH/APRIL 2004 is BLUE.

  18. Individual dosimetry service

    2004-01-01

    We inform all staff and users under regular dosimetry control that the dosimeters for the monitoring period JULY-AUGUST 2004 are available from their usual dispatchers. Please have your films changed before the 15 JULY 2004. The color of the dosimeter valid in July-August 2004 is PINK.

  19. Ion-kill dosimetry

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  20. High frequency electromagnetic dosimetry

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  1. Dosimetry of pion beams

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  2. Neutron dosimetry; Dosimetria de neutrons

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  3. Individual Monitoring and TL Dosimetry in Hungary

    The widespread development and application of X-ray and nuclear energy resulted in the problem of ionizing radiation dosimetry also in Hungary. The individual monitoring started in 1955 using film badge and various ''pen type'' ionization chambers with different measuring ranges to determine the external photon radiation doses. Since 1966 the film badge has been accepted as the official personal dosimeter system in Hungary. The film monitors are presently processed bimonthly. The personal monitoring for about 16 000 occupationally exposed ''A category'' workers is conducted by the National Research Institute of Radiobiology and Radiohygiene, with Kodak film badge. The calibration of dosimeters is performed in the primary standard laboratory of the National Standardization Laboratory (OMH) according to ISO17025 standard. The thermoluminescent (TL) method for personal dosimetry purposes was introduced in Hungary in the early 1970's. Central Research Insitute of Physics and Insitute of Isotopes developed together a solid state dosimetry system using first 2 pieces of LiF (TLD-100) TL dosimeters in the same badge together with the film. Later, the Harshaw LiF dosimeters were changed to the Polish LiF (MTS-N) ones, having higher sensitivity to gamma and to mixed neutron-gamma field dosimetry purposes. At present, besides the national film dosimetry service, there are three TL dosimetry services as well (Atomic Energy Research Institute, Institute of Isotopes, Nuclear Power Plant). The thermoluminescent (TL) whole body dosimeters are used for individual monitoring parallel with the film and the evaluation of the various types of LiF (TLD-100, Polish MTS-N etc.) is performed at ''home'' dosimetry services using different manual and automatic TL readers (Harshaw 4000, Harshaw 3500, Alnor TLD reader). Personal dosimetry data measured by film and TL method are regularly compared. In addition to the successful applications of various TL dosimeters for work place monitoiring

  4. Verification of IMRT fields by film dosimetry

    In intensity modulated radiation therapy (IMRT) the aim of an accurate conformal dose distribution is obtained through a complex process. This ranges from the calculation of the optimal distribution of fluence by the treatment planning system (TPS), to the dose delivery through a multilamellar collimator (MLC), with several segments per beam in the step and shoot approach. The above-mentioned consideration makes mandatory an accurate dosimetric verification of the IM beams. A high resolution and integrating dosimeter, like the radiographic film, permits one to simultaneously measure the dose in a matrix of points, providing a good means of obtaining dose distributions. The intrinsic limitation of film dosimetry is the sensitivity dependence on the field size and on the measurement depth. However, the introduction of a scattered radiation filter permits the use of a single calibration curve for all field sizes and measurement depths. In this paper the quality control procedure developed for dosimetric verification of IMRT technique is reported. In particular a system of film dosimetry for the verification of a 6 MV photon beam has been implemented, with the introduction of the scattered radiation filter in the clinical practice that permits one to achieve an absolute dose determination with a global uncertainty within 3.4% (1 s.d.). The film has been calibrated to be used both in perpendicular and parallel configurations. The work also includes the characterization of the Elekta MLC. Ionimetric independent detectors have been used to check single point doses. The film dosimetry procedure has been applied to compare the measured absolute dose distributions with the ones calculated by the TPS, both for test and clinical plans. The agreement, quantified by the gamma index that seldom reaches the 1.5 value, is satisfying considering that the comparison is performed between absolute doses

  5. Dosimetry and process control for food irradiation

    Whatever a radiation process is designed to achieve, dosimetry is fundamental to it, either as a necessary control, or to establish the process, or for research and development studies. Dosimetry provides the quantitative baseline against which the biological or chemical changes induced by radiation can be measured. In the case of irradiation of food, a minimum dose will be required to achieve the technological objective. A maximum dose will be defined by the onset of the loss of acceptable quality of the food, but upper dose limits will usually be prescribed by regulatory bodies. There is no accurate way of assessing the dose once the food has left the irradiation plant. Therefore the dose must be properly applied and verified during processing. The dose is measured using dosimeters. There are many different types of dosimeters for different applications, dose ranges and conditions of use. All dosimeters must be calibrated, with a measurement traceability chain to a national or international primary standard. This paper describes the classification of dosimeters and gives examples and their applications. Calibration and use of a typical dosimetry system used for food irradiation is then discussed, including the effects of environmental influence factors such as dose rate and temperature, and how measurement traceability can be established. Before routine processing of a product can occur, process qualification must be carried out to ensure the irradiation process produces acceptable results. An example of a dose mapping study is given, followed by discussion of some practical considerations of process control, including measurement uncertainty and how this relates to the setting of process limits

  6. On multichannel film dosimetry with channel-independent perturbations

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  7. Implementation of an efficient workflow process for gel dosimetry using 3D Slicer

    One challenge in gel dosimetry is the manipulation and analysis of complex data sets from different systems. In this paper, we describe a simple and fast gel dosimetry analysis tool for radiation therapy dose deliveries. Using the open source medical imaging software 3D Slicer, an extension was designed and implemented for the purpose of importing treatment planning system dose, CT imaging from simulation and at treatment, and optical CT gel dosimeter data. The extension also allows for calibration of gel dosimeter data, registration, and comparison of 3D dose distributions. The development of an open source gel dosimetry processing environment may help adoption of gels in the clinic

  8. Calibration of RB reactor power

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  9. Technical features of the personal internal dosimetry service of Tecnatom

    Since the beginning of the operation of nuclear energy in Spain, all the nuclear power plants have established dosimetry services with all the means necessary to measure and determine doses, both internal as external. In that way, the Personal Internal Dosimetry Service of Tecnatom was authorised by the Spanish Nuclear Safety Council (CSN) in October 1988. Actually, the capabilities of the Service are the following: - Direct dosimetry (in-vivo measurements): assistance to the existing services in the plants and installations of the nuclear-fuel cycle, in order to carry out routine and incident bioassay analysis, and also in situations where there is a great movement of personnel such as outages and shutdowns. - Indirect dosimetry (in-vitro measurements): complete process, radiochemistry analysis and internal dose assessments of radionuclide intakes. - Participation in special situations like real emergencies, drill exercises and exceptional tests. - Calibration and verification of fast and bed internal dosimetry counters for the Dosimetry Services in NPP. For this purpose, the Dosimetry Service has two Mobiles Units, each one containing a body counter from Helgeson Scientific Company. Mobile Unit I is provided with a counter with four INa (Tl) detectors, as well as twenty proportional detectors to assess and evaluate also external surface contamination. This equipment is intended to be used for the fast determination of the presence or not of radionuclides inside the body. In one or two minutes this equipment is able of confirming whether or not radioactive materials are present inside, as well as outside the body. Mobile Unit II is provided with a 'Whole Body Counter' (WBC), with four INa (Tl) detectors. The detector system provides also a variable collimator to allow accurate measurements of some specific organs. This unit is specially designed to perform routine and non-routine measurements of nuclear, radioactive, medical and industrial facilities as well as

  10. Twenty new ISO standards on dosimetry for radiation processing

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have

  11. The Council on Aviation Accreditation. Part 2; Contemporary Issues

    Prather, C. Daniel

    2007-01-01

    The Council on Aviation Accreditation (CAA) was established in 1988 in response to the need for formal, specialized accreditation of aviation academic programs, as expressed by institutional members of the University Aviation Association (UAA). The first aviation programs were accredited by the CAA in 1992, and today, the CAA lists 60 accredited programs at 21 institutions nationwide. Although the number of accredited programs has steadily grown, there are currently only 20 percent of UAA member institutions with CAA accredited programs. In an effort to further understand this issue, a case study of the CAA was performed, which resulted in a two-part case study report. Part one addressed the historical foundation of the organization and the current environment in which the CAA functions. Part two focuses on the following questions: (a) what are some of the costs to a program seeking CAA accreditation (b) what are some fo the benefits of being CAA accredited; (c) why do programs seek CAA accreditation; (d) why do programs choose no to seek CAA accreditation; (e) what role is the CAA playing in the international aviation academic community; and (f) what are some possible strategies the CAA may adopt to enhance the benefits of CAA accreditation and increase the number of CAA accredited programs. This second part allows for a more thorough understanding of the contemporary issued faced by the organization, as well as alternative strategies for the CAA to consider in an effort to increase the number of CAA accredited programs and more fully fulfill the role of the CAA in the collegiate aviation community.

  12. A new implementation of multichannel radiochromic film dosimetry

    The aims of this paper are to carry out a new implementation of the multichannel radiochromic film dosimetry (Micke A, Lewis D, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys 2011;38:2523-34), to quantify the variation in gamma index as compared to the single channel film dosimetry, and to determine if the procedure achieves similar results by means of a different scanner that the one used by Micke et al. Radiochromic EBT2 films and a Microtek 9000 XL scanner were used. Our procedure simplifies the system calibration splitting it into two factors, manufactured batch and digitalization specific. Absorbed dose spatial distributions from an open radiotherapy beam without any modulation and 20 IMRT treatments were determined. Their gamma index maps were calculated and a comparison of the results from single channel and multichannel dosimetry was performed. A 5% mean increase in concordance was obtained by using the multichannel film dosimetry. Our results are similar to those reported by Micke et al. even though we are using a different scanner. (Author)

  13. Accreditation in university environmental radioactivity laboratories

    Full text: The experimental work performed in university laboratories comes from many different fields and it is assumed to be of high quality. In general, the results are published in national or international journals or presented at conferences. Only a few laboratories have a clear understanding of the importance of implementing Quality Assurance Systems and the accreditation of their activities according to the international standards, such as ISO 17025. Today, few universities include this issue in the ir programmes. Most laboratories associate quality assurance with the fact that referees before publication have revised their works. Here the authors describe their experience in two university laboratories involved in environmental radioactivity control. Both laboratories have implanted a Quality Assurance System based on ISO 17025, the standard used for accreditation of the technical competence of laboratories. One of them (LARA-UPC) belongs to a research institute and the other (LRAUB) belongs to a university department with different logistic organisation. Both laboratories provide services to public and private institutions along side their teaching and research activities. The Quality Assurance Unit (UGQ-UB) is responsible for activities related to technical support in implementation and assessment in quality systems. In the case of these laboratories this UGQ performs internal audits. Accreditation is particularly important in environmental radioactivity analysis, where objective evidence of the quality of the data is required. Moreover, the results of radioactivity analysis are important: e.g. quality of water for human consumption (Directive 98/83/CE), environmental surveys (PVRA, Art. 35 of the Euratom Treaty for EU members), imports of agricultural products (Directive 99/1661/EC), export certificate required for agricultural products (2001/1621/EC), measurements in support of health and safety. It is important to assure the accuracy and precision of

  14. Accreditation in university environmental radioactivity laboratories

    Full text: The experimental work performed in university laboratories comes from many different fields and it is assumed to be of high quality. In general, the results are published in national or international journals or presented at conferences. Only a few laboratories have a clear understanding of the importance of implementing Quality Assurance Systems and the accreditation of their activities according to the international standards, such as ISO 17025. Today, few universities include this issue in their programmes. Most laboratories associate quality assurance with the fact that referees before publication have revised their works. Here the authors describe their experience in two university laboratories involved in environmental radioactivity control. Both laboratories have implanted a Quality Assurance System based on ISO 17025, the standard used for accreditation of the technical competence of laboratories. One of them (LARA-UPC) belongs to a research institute and the other (LRA-UB) belongs to a university department with different logistic organisation. Both laboratories provide services to public and private institutions along side their teaching and research activities. The Quality Assurance Unit (UGQ-UB) is responsible for activities related to technical support in implementation and assessment in quality systems. In the case of these laboratories this UGQ performs internal audits. Accreditation is particularly important in environmental radioactivity analysis, where objective evidence of the quality of the data is required. Moreover, the results of radioactivity analysis are important: e.g. quality of water for human consumption (Directive 98/83/CE), environmental surveys (PVRA, Art. 35 of the Euratom Treaty for EU members), imports of agricultural products (Directive 99/1661/EC), export certificate required for agricultural products (2001/1621/EC), measurements in support of health and safety. It is important to assure the accuracy and precision of

  15. [Merits of acquiring ISO15189 accreditation].

    Kitagawa, Masami

    2010-01-01

    In Japan, an ISO15189 accreditation system was started in 2005. To date, 47 hospitals have been accredited. In this session, I will present the merits of acquiring accreditation regarding ISO15189 based on our experience. Our hospital has 263 beds. The Clinical Examination Section consists of 12 staff (including 5 part-time workers): 7 in change of sample examination and 5 in charge of physiological examination. The annual number of samples is approximately 150,000. Samples collected on health checkups account for 90%. To improve the quality and service, assessment by third persons has been positively utilized in our hospital. Accreditation regarding ISO9001, ISO14001, ISO27001, privacy mark, hospital function assessment, the functional assessment of "ningen-dock"/health checkup hospitals, labor/hygiene service function assessment, and ISO15189 has been acquired. Patients may not recognize ISO. So, it must be utilized, considering that the acquisition of accreditation is not a goal but a starting point. Furthermore, cost-performance should be improved to achieve utilization-related merits. It is important to not only acquire accreditation but also help clinical staff and patients become aware of some changes/merits. Patients may consult a hospital for the following reasons: confidence in the hospital, and the staffs kind/polite attitudes. Long-term management strategies should be established without pursuing only short-term profits. I will introduce several merits of acquiring accreditation regarding ISO15189. Initially, incidental conditions for bids and appeal points include accreditation regarding ISO15189. Our corporation has participated in some competitive bids regarding health checkup business. In some companies, the bid conditions included ISO acquisition. In our hospital, clinical trials have been positively carried out. For participation in trials, hospitals must pass an institutional examination. However, ISO acquisition facilitates the preparation of

  16. Accredited Medical Web: an experience in Spain

    Sarrias, R; Mayer, MA; M. Latorre

    2000-01-01

    Introduction The Official Medical College of Barcelona (OMCB) is a centennial corporation created to defend the interests of the medical profession and ensure that it adheres to ethical and scientific norms in order to offer the best healthcare services to society. The Internet has the capacity to transmit a volume of information that is both difficult to control and widely available. The OMCB emphasizes the necessity to contribute to the accreditation of medical/healthcare information diffus...

  17. Calibration uncertainty

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types of...

  18. Incompatibilities analysis in the accredited laboratory

    D. Szewieczek

    2008-06-01

    Full Text Available Purpose of the presented paper aimed at motivating the necessity of the accreditation of research and standardising laboratories as factors deciding about the competitive advantage of those organisations on the European Union market.Design/methodology/approach used for the research has covered the analyses of results of internal and external audits conducted in one of Polish accredited laboratories and estimation of the incompatibilities occurred.Findings of the carried out research are as follows: number and character of incompatibilities, which are exposed during internal and external audits, reflect size of organisation, where the management system is implemented, phase of implementation as well as the time of functioning.Practical implications refers to any organisation which has quality management system implemented as well as to any accredited laboratory using internal audits as an element of continuous improvement and treating incompatibilities not as something disqualifying the investigated area, but as an supporting element. Originality/value of the presented paper belongs to the methodology comprising the usage of internal audits’ results - proved incompatibilities - as a tool for obtaining and assuring the confidence in the management system.

  19. Relative dosimetry by Ebt-3; Dosimetria relativa por EBT3

    De Leon A, M. A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Hernandez O, J. O., E-mail: madla16@hotmail.com [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Mexico D. F. (Mexico)

    2015-10-15

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  20. Dosimetry for food irradiation

    A Manual of Food Irradiation Dosimetry was published in 1977 under the auspices of the IAEA as Technical Reports Series No. 178. It was the first monograph of its kind and served as a reference in the field of radiation processing and in the development of standards. While the essential information about radiation dosimetry in this publication has not become obsolete, other publications on radiation dosimetry have become available which have provided useful information for incorporation in this updated version. There is already a Codex General Standard for Irradiated Foods and an associated Code of Practice for Operation of Irradiation Facilities used for Treatment of Food, issued in 1984 by the Codex Alimentarius Commission of the FAO/WHO Food Standard Programme. The Codex Standard contains provisions on irradiation facilities and process control which include, among other requirements, that control of the processes within facilities shall include the keeping of adequate records including quantitative dosimetry. Appendix A of the Standard provides an explanation of process control and dosimetric requirements in compliance with the Codex Standard. By 1999, over 40 countries had implemented national regulations or issued specific approval for certain irradiated food items/classes of food based on the principles of the Codex Standard and its Code of Practice. Food irradiation is thus expanding, as over 30 countries are now actually applying this process for the treatment of one or more food products for commercial purposes. Irradiated foods are being marketed at retail level in several countries. With the increasing recognition and application of irradiation as a sanitary and phytosanitary treatment of food based on the provisions of the Agreement on the Application of Sanitary and Phytosanitary Measures of the World Trade Organization, international trade in irradiated food is expected to expand during the next decade. It is therefore essential that proper dosimetry

  1. US Navy's personnel neutron dosimetry program

    Since 1964 the Navy has been monitoring personnel for exposure to neutrons. With nuclear reactors, special nuclear materials, neutron calibration sources, and high energy linear accelerators, the Navy has organize over more neutron sources than any other single organization in the world. Personnel neutron monitoring in the Navy was first accomplished using NTA film from 1964 through 1980. In 1975 the Navy instituted albedo neutron dosimetry, which would completely replace NTA film in 1981. From 1975 through 1982 the Navy directed considerable efforts toward assessing the complexity of its field neutron spectra, evaluating techniques to correct the neutron response of its albedo dosimeter, and developing methods to perform neutron area monitoring. As a result of investigating field neutron spectra, the Navy again modified its calibration procedure in September 1979, by changing its calibration source to Cf-252 moderated with two inches of polyethylene. This source's spectrum more closely represented spectra found aboard ships, and as a result, shipboard personnel neutron doses were reduced by 45%. The Navy's newest albedo dosimeter is calibrated on an ANSI standard PMMA phantom using a D(sub 2)O moderated Cf-252 source at 50 cm

  2. Laboratory accreditation complying with ISO 25 Guide (IRAM 301): Industrial radiography method

    The ISO 25 Guide (IRAM 301) replaced by ISO 17025 is the standard applied for the implementation of a quality system in a test or calibration laboratory. This document is not known as ISO 9000, but it is the proper standard for this kind of laboratory. This document establishes requirements no just for the quality system in general, but on technical competence, that means the laboratory technical aptitude to carry out the tests. The aim of this paper is to comment the criteria used in the Radiographic Laboratory of CEMEC, that have been assessed by the United King dome Accreditation Service (UKAS). (author)

  3. The UK radiotherapy dosimetry audit network

    Full text: Radiotherapy dosimetry intercomparison in the UK has been carried out in limited studies since the 1960s. However the first national dosimetry intercomparison involving all radiotherapy centres was conducted in the late 1980s. This was based on visits to each centre, using ionisation chamber dosimetry. It audited megavoltage photon beam calibration and other single field parameters. It also measured doses in a three-field 'treatment' in a trapezoidal phantom constructed from epoxy-resin water-equivalent material and compared these to locally planned doses. This included off-axis points, oblique incidence, inhomogeneities, etc. The study found mean measured beam calibration doses close to stated values (ratio 1.003), with a standard deviation (sd) of the distribution of 1.5% and 97% of doses within the pro-set 3% tolerance. For the planned multi-field irradiations, mean dose ratios (measured/stated) were 1.01 (sd 3%, 90% of results within 5%). A number of discrepancies were identified, leading to improved practice. A follow up study (mid-1990s) for electron beam audit also repeated the megavoltage photon calibration audit. For photons, an improvement was noted (mean ratio 1.003, sd 1.0%, 100% within 3%), whilst for electron beams, the mean ratio of measured/stated dose was 0.994 (sd 1.8%, 94% within 3%, 99% within 5%). In parallel with - and growing out of - this, a national audit network began to develop in 1991/2. It utilised similar methodology to the intercomparison and a network approach to allow parallel developments of the scope of the system. The network has eight regional groups, each with up to 10 radiotherapy centres, serving average populations of 7-8 million. Each group organises audits of its own centres and has developed at its own pace. Most have piloted methodology, phantoms, etc. for new audits which can then be used by other groups. All 65 UK centres are included. The network is co-ordinated by an IPEM Steering Committee (current chair

  4. Modern methods of personnel dosimetry

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  5. The dosimetry of ionizing radiation

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  6. Thorium survey using thermoluminescence radiation dosimetry (Cerro Impacto, Venezuela)

    Calibrated thermoluminescent dosimeters of LiF were utilized to map the radiation flux 0.5m beneath the surface of a thorium-rare-earth elements deposit in southern Venezuela. The isorad map obtained from measurements of the thermoluminescence induced in the buried dosimeters during their eight-month exposure period at the site, agrees well with the mapped thorium concentration at the surface of the deposit. The results indicate that thermoluminescence radiation dosimetry can be used for radiometric prospecting

  7. Calibration of reference dosimeters for external beam radiotherapy

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standards Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since they disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. To contribute to harmonization and consistency in radiation measurements, the IAEA and the World Health Organization (WHO) created a network of SSDLs in 1976. To provide SSDLs with a practical guide on calibration and quality control procedures in radiotherapy dosimetry, the IAEA published a manual in 1995 entitled Calibration of Dosimeters Used in Radiotherapy (Technical Reports Series (TRS) No. 374). The manual was a revision of a report, Calibration of Dose Meters Used in Radiotherapy (TRS-185), published in 1979. Although much of TRS-374 remains relevant, there are a number of reasons for preparing a new report, including the development of new dosimetry standards and an increased emphasis on implementing quality assurance systems to help calibration laboratories provide documented assurance to the user community of their commitment to offering consistent and reliable results. This report is not simply a revision of TRS-374, and should be regarded as a new publication with a new structure. Nevertheless, some material, especially that related to the calibration of dosimeters in terms of air kerma for kilovoltage X rays, has been extracted from TRS-374. It fulfils the need for a systematic and standardized approach to the calibration of reference dosimeters used in external beam radiotherapy by the SSDLs. It provides a framework for the operation of an SSDL within the international measurement system, a methodology for the calibration of instruments, and related quality control procedures to

  8. Quality indicators to compare accredited independent pharmacies and accredited chain pharmacies in Thailand.

    Arkaravichien, Wiwat; Wongpratat, Apichaya; Lertsinudom, Sunee

    2016-08-01

    Background Quality indicators determine the quality of actual practice in reference to standard criteria. The Community Pharmacy Association (Thailand), with technical support from the International Pharmaceutical Federation, developed a tool for quality assessment and quality improvement at community pharmacies. This tool has passed validity and reliability tests, but has not yet had feasibility testing. Objective (1) To test whether this quality tool could be used in routine settings. (2) To compare quality scores between accredited independent and accredited chain pharmacies. Setting Accredited independent pharmacies and accredited chain pharmacies in the north eastern region of Thailand. Methods A cross sectional study was conducted in 34 accredited independent pharmacies and accredited chain pharmacies. Quality scores were assessed by observation and by interviewing the responsible pharmacists. Data were collected and analyzed by independent t-test and Mann-Whitney U test as appropriate. Results were plotted by histogram and spider chart. Main outcome measure Domain's assessable scores, possible maximum scores, mean and median of measured scores. Results Domain's assessable scores were close to domain's possible maximum scores. This meant that most indicators could be assessed in most pharmacies. The spider chart revealed that measured scores in the personnel, drug inventory and stocking, and patient satisfaction and health promotion domains of chain pharmacies were significantly higher than those of independent pharmacies (p pharmacies and chain pharmacies in the premise and facility or dispensing and patient care domains. Conclusion Quality indicators developed by the Community Pharmacy Association (Thailand) could be used to assess quality of practice in pharmacies in routine settings. It is revealed that the quality scores of chain pharmacies were higher than those of independent pharmacies. PMID:27118461

  9. The Radiotherapy Dosimetry Audit System In the UK

    Two national radiotherapy dosimetry intercomparisons have been earned out in the UK, involving all radiotherapy institutes. The first was concerned with megavoltage photon beams and looked at beam calibration and simple three-field planned distributions in a geometric phantom. The intercomparisons were carried out by an independent intercomparison physicist visiting each department in turn and making measurements with ion chambers, following a fixed protocol. The beam calibration intercomparison was earned out on every 60Co beam and every MV x-ray beam, whilst the planned comparisons were carried out on one beam only. The plans included effects of wedges, oblique incidence and inhomogeneities. The study was unfunded and took a significant time (1988-1991) to cover the 65 or so centres. It was followed up by a national electron dosimetry intercomparison which was fended (Department of Health) and which ran from 1994-1996. This audited three electron beam energies in each centre (depth dose, beam energy, dose calibration) and also included a follow-up of the original photon beam intercomparison. In general these studies showed good consistency of dosimetry across the UK centres, with mean (measured/locally stated) doses being close to unity and standard deviations of the distributions of values being approx. 1.5 and 1% for photons, 1.8% for electrons for beam calibration and 2.5-3.5% for the planned multi-beam situations. 97-100% of measurements were within the pre-set 3% tolerance for beam calibration and around 90% of the measurements within a pre-set 5% tolerance for planned situations. The studies did highlight some areas where increased on Q A could provide benefits. In particular the photon intercomparison discovered one 60Co unit mis calibration which led to national recommendations for the implementation of Quality Systems in radiotherapy departments

  10. Neutron beam measurement dosimetry

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  11. Ambiguities in thermoluminescence dosimetry

    On one hand, thermoluminescence dosimetry is one of most reliable, rugged and economical system of passive dosimetry but on the other hand there are several ambiguities, which need attention. The PTTL is a complex phenomenon and it is difficult to identify the source for the transfer of the charge carrier to repopulate the traps related to the glow peaks. For the photon energy dependence it is difficult to explain the change in the response for 662 keV gamma rays of 137Cs as compared to the response for 1.25 MeV gamma rays of 60Co. The increase in the response of a TLD with increasing heating rate poses another ambiguity and so is the case with the observations of the supra linearity of different glow peaks. To over come the ambiguities, efforts have to continue to enhance the understanding and to harmonize the protocol for reliable experimental data

  12. Neutron beam measurement dosimetry

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  13. Personal radon daughter dosimetry

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  14. Personnel radiation dosimetry

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  15. New instrument calibration facility for the DOE Savannah River Site

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided

  16. New instrument calibration facility for the DOE Savannah River Site

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  17. Breast dosimetry in clinical mammography

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  18. Personal dosimetry service in the Slovak Republic

    From first January 1996 in Slovak Republic (SR) was started a new independent national personal dosimetry service on external ionizing radiation provided by the Personal Dosimetry Laboratory in the Slovak Institute of Metrology in Bratislava. At first July 1998 was this laboratory delimited from Slovak Institute of Metrology to legal metrology services of SR. This dosimetry services is based fully on the Automated Thermoluminescent Dosimeter Card Reader System made in U.S.A. by Harshaw-Bicron NE, which was given to the Nuclear Regulatory Authority of SR and Slovak Institute of Metrology in Bratislava on an International Technical co-operation project piloted and financed by International Atomic Energy Agency. In this time we have complete TLD Readers Harshaw 6600 and we calibrate and evaluate TLDs of three different type of all body personal dosimeters: (1) beta-gamma TLDs type 0110 with 2 element TL chip type 100 (LiF:Mg,Ti 3.2 x 3.2 x 0.38 mm) fixed in two teflon windows in a aluminium card in a plastic holder with 1000 mg/cm2 Ptfe hemisphere thickens (o 10 mm) to measure the individual dose equivalent penetrating at a the depth 10 mm (Hp(10)) and individual dose equivalent superficial Hs(0.07) at recommended depth of 0.07 mm (type of this holder is 8814); (2) beta-gamma TLDs type 1111 in holders type 8805 with 4 elements of TL chips type 100 to measure both Hp(10) and Hs(0.07) plus lens of eye dose (Hle(3); (3) for measurement of doses in mixed neutron-beta-gamma fields we have more neutron beta gamma dosimeters type 7776 in holders type 8805 with 4 elements of TL chips: three TLD 700 and one TLD 600 LiF chip. The periods of the dosimeters evaluation are 3 months or 1 month for the basic (the all body) beta-gamma dosimeter with 2 element of TL-100 material and 1 month for all other type of dosimeters. Now we monitors about 6000 persons by all body TL dosimeters and about 720 persons by additive finger of wrist strap dosimeters. These are about 5000 measurements

  19. Dosimetry: an ARDENT topic

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  20. Dosimetry in diagnostic and interventional radiology: international commission on radiation units and measurements and IAEA activities

    Dosimetric quantities are used in diagnostic and interventional radiology for the establishment of guidance or diagnostic reference levels and for the assessment of comparative risk; only a limited number of measurements serve for the assessment of potential risk. An additional objective of dosimetry in medical imaging is the assessment of equipment performance. The present situation in dosimetry for medical X ray imaging clearly indicates the need for international recommendations on appropriate radiation quantities and units. In addition, guidance on the calibration of instruments and measurements in hospitals is also needed.This has been recognized by the International Commission on Radiation Units and Measurements (ICRU) and resulted in the establishment of an ICRU report committee on patient dosimetry in medical imaging. The ICRU proposes a harmonized system of quantities and units for patient dosimetry in medical X ray imaging. New symbols are proposed for various quantities. General information is provided on measurement methods, the calibration of dosimeters and methods of determining organ and tissue doses. The IAEA is developing an international code of practice for dosimetry in X ray diagnostic radiology.The main objective is to help to achieve and maintain a high level of quality in dosimetry, to improve the implementation of traceable standards at the national level and to ensure the control of dose in X ray medical imaging worldwide. Compared with the ICRU, the IAEA puts more emphasis on the practical aspects of establishing proper calibration facilities, for example at the secondary standards dosimetry laboratories, and provides more detailed recommendations for clinical dosimetry. Coordination between ICRU and IAEA activities is considered important by both organizations. This has been taken into account in part by having a person who is a member of both committees.The intention is to have a restricted overlap between both documents and to harmonize

  1. Answer to request on the ININ internal dosimetry

    In this report it is presented the reply to CNSNS asking for information about the methodology for the evaluation of the occupational dose due to internal contamination. The characteristics of the installation, type and dimensions of the shield room, construction materials, type of detecting, calibration geometries, type of used phantom, intervals of energy of the calibration, type of routine measurements, detection limit for Cs-137 and Co-60, code to carry out the analysis of the spectra, evaluation of the measurement data, whole body system type armchair with anthropomorphic phantom, whole body system of vertical scanning, distribution and location diagram of the internal dosimetry laboratory there are among the treated aspects. (Author

  2. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  3. Algorithm Verification for A TLD Personal Dosimetry System

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study an Automated Harshaw 6600 reader was rigorously tested prior to use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose, Hp(10), shallow dose, Hp(0.07), and eye lens dose, Hp(3),. Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  4. Teaching competencies of physical education teachers in primary education (comparative study between accredited and non-accredited schools)

    AWAD, Khaled Thabet; EID, Ahmed Ibrahim

    2014-01-01

    This study aims at comparing the level of teaching competencies of physical education teachers in bothPrimary Education phases in accordance with (gender, educational level, quality of educational accreditation),using descriptive survey method.The study sample included 160 male and female physical education teachersfrom the accredited and non-accredited schools in primary education in Port said, Ismailia, Suez, and Sharkiagovernorates. They have been randomly chosen, and divided into basic sa...

  5. Neutron dosimetry in containment of a pressurized water reactor utilizing the Panasonic UD-802 dosimetry system

    The Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in containment of a PWR. The Panasonic UD-802 dosimeter, although designed as a beta and gamma dosimeter, is also sensitive to neutrons. UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to known doses at selected locations in containment. The known neutron dose equivalents were determined based on remmeter dose rate measurements and stay times. The thermoluminescent response of the dosimeters and the known neutron dose equivalents were used to obtain a calibration factor at each location. The average calibration factor was 3.7 (unit of dosimeter response per mrem) and all calibration factors were within +-30% of this mean value. The dosimeter distance from the phantom was found to have minimal effect on the response but the system was directionally dependent, necessitating a correction in the calibration factor. The minimum significant dosimeter response was determined independent of any calibration factor. The minimum significant response of the UD-802 to neutrons is a function of the corresponding gamma exposure rate. It is concluded that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in PWR containment

  6. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  7. Quality control for dose calibrators

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  9. Internal dosimetry for occupationally exposed personnel in nuclear medicine

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of 133Ba which simulates the energy of 131I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  10. 76 FR 52548 - National Veterinary Accreditation Program; Currently Accredited Veterinarians Performing...

    2011-08-23

    ... spread of animal diseases throughout the United States and internationally. On December 9, 2009 (74 FR... accredited duties. In a notice published in the Federal Register and effective on September 28, 2010 (75 FR... Animal and Plant Health Inspection Service 9 CFR Part 161 RIN 0579-AC04 National Veterinary...

  11. Measuring up to the challenges of the 21st century. An international evaluation of the Centre for Metrology and Accreditation

    Clapman, P.; Kaarls, R.; Temmes, M.

    1997-04-01

    The international evaluation of the Centre for Metrology and Accreditation (MIKES) is part of the process in which all relevant industrial and technology policy measures and organizations under the auspices of the Ministry of Trade and Industry (MTI) are being evaluated with the aim of improving their effectiveness. The overall conclusion of the evaluation is that MIKES is serving the country well. An effective national measurement system (FINMET) is being maintained which provides a wide range of calibration services covering most of the nation`s needs. The accreditation service (FINAS) is now well established, is operating effectively, and has good prospects for growth. The evaluators present, however, a number of proposals (including 33 specific recommendations) where they feel that the metrology and accreditation arrangements could be better-suited to meet future national and international challenges. According to the recommendations the Finnish quality policy framework should be developed in a consistent way. There is a need of a comprehensive governmental quality policy statement upon which the inter-ministry coordination and harmonization of various conformity assessment activities can be based. MIKES should retain its current status as an agency within MTI. The national measurement system should be more centralised and a new purpose-built national standards laboratory should be procured. The responsibility for legal metrology should be transferred to MIKES. The terms of reference and membership of Advisory Committee for Metrology, as well as the Advisory Committee for Accreditation should be revised to ensure wider representation of all relevant, and especially industrial interests

  12. [For an efficient and reasonable accreditation of allergen specific IgE].

    Sarrat, Anne; Brabant, Séverine; Charbonnier, Eric; Alyanakian, Marie-Alexandra; Apoil, Pol-André; Bienvenu, Françoise; Jaby, Délia; Lainé, Catherine; Nicaise-Roland, Pascale; Renier, Gilles; Sainte-Laudy, Jean; Tabary, Thierry; Uring-Lambert, Béatrice; Vigneron, Céline; Lambert, Claude

    2013-01-01

    French medical laboratories must be accredited before November 2016 according to NF/EN/ISO 15189 standard. However, technical accreditation guidelines cannot be applied literally for the determination of specific IgE for several reasons: more than 600 allergen tests, lack of international gold standard, limited external quality controls. Furthermore, the technique for determination of specific IgE is CE DM-IVD marked, common to all specificities, automatised, standardized according to a single calibration curve. Thus, we propose an efficient but reasonable solution conform to the idea of the accreditation by validating the process. We recommend: a flexible extend type A; choice of only one representative allergen (Dermatophagoides pteronyssinus) for repeatability and precision (20 tests, 2 levels 0.5-1 and 8-12 kUA/L) performed on patients sera, reproducibility (30 consecutive determinations using an Internal Quality Control/IQC), accuracy (IQC and rare External Quality Controls) compared with peers. Sensitivity, specificity, dynamic range, detection threshold are determinated by the provider. Linearity may be checked if the laboratory practices sample dilution for values higher than the upper limit guaranteed by the provider. In the absence of international gold standard, the uncertainty is not measurable. In case of change of instrument, the results obtained by the systems must be compared through 35 tests of different specificities distributed across the range of calibration and including 5 values close to the detection limit. This methodology allows a scientifically effective verification, technically and financially reasonable, to ensure the excellence of the performance of the laboratory with regard to peers and users (allergologists and patients). PMID:23747670

  13. Accreditation of Medical Education in China: Accomplishments and Challenges

    Wang, Qing

    2014-01-01

    As an external review mechanism, accreditation has played a positive global role in quality assurance and promotion of educational reform. Accreditation systems for medical education have been developed in more than 100 countries including China. In the past decade, Chinese standards for basic medical education have been issued together with…

  14. Primary Medical Care Provider Accreditation (PMCPA): pilot evaluation.

    Campbell, S.M.; Chauhan, U.; Lester, H.

    2010-01-01

    BACKGROUND: While practice-level or team accreditation is not new to primary care in the UK and there are organisational indicators in the Quality and Outcomes Framework (QOF) organisational domain, there is no universal system of accreditation of the quality of organisational aspects of care in the

  15. Shaping Performance: Do International Accreditations and Quality Management Really Help?

    Nigsch, Stefano; Schenker-Wicki, Andrea

    2013-01-01

    In recent years, international accreditations have become an important form of quality management for business schools all over the world. However, given their high costs and the risk of increasing bureaucratisation and control, accreditations remain highly disputed in academia. This paper uses quantitative data to assess whether accreditations…

  16. 9 CFR 439.10 - Criteria for obtaining accreditation.

    2010-01-01

    .... (a) Analytical laboratories may be accredited for the analyses of food chemistry analytes, as defined... successfully satisfies the requirements presented below. For food chemistry accreditation, the requirements... degree in chemistry, food science, food technology, or a related field. (i) For food...

  17. 42 CFR 8.4 - Accreditation body responsibilities.

    2010-10-01

    ... compliance with, all Federal and State laws, including 42 CFR part 2. (i) Information collected or received... dosing and administration of opioid agonist treatment medications for the treatment of opioid addiction... CERTIFICATION OF OPIOID TREATMENT PROGRAMS Accreditation § 8.4 Accreditation body responsibilities....

  18. Accreditation of Agricultural Engineering University studies in Portugal

    Cruz, Vasco Fitas; Silva, Luis Leopoldo

    2005-01-01

    The paper describes the evaluation and accreditation processes of high studies study programs in Portugal; the process of Quality evaluation of new study courses; Nature of engineering profession; EurAgEng recognition; Recognition process implementation;Elements for the recognition process; Some aspects to assure curricula comparability; European Accreditation Process.

  19. 76 FR 78814 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    2011-12-20

    ... upon the size of a laboratory or membership of any association or group, nor are there undue financial... requirements of ISO/IEC 17011, Conformity assessment--General requirements for accreditation bodies accrediting conformity assessment bodies. The change will allow NVLAP more flexibility in determining how to best...

  20. Agency for quality and accreditation of the health care facilities

    Zisovska, Elizabeta

    2014-01-01

    The Agency ensures quality and safety in health care through the process of accreditation and re-accreditation of the health care facilities. The Agency develops, revise and improves the standards of the health care in HC facilities, monitors the implementation of the standards and facilitates the preparedness of the HC facility for successful external assessment.

  1. 22 CFR 41.23 - Accredited officials in transit.

    2010-04-01

    ... IMMIGRATION AND NATIONALITY ACT, AS AMENDED Foreign Government Officials § 41.23 Accredited officials in transit. An accredited official of a foreign government intending to proceed in immediate and continuous transit through the United States on official business for that government is entitled to the benefits...

  2. Policy Priorities for Accreditation Put Quality College Learning at Risk

    Schneider, Carol Geary

    2016-01-01

    Ensuring the quality of college learning is, beyond doubt, the most important responsibility of higher education accreditation. Yet, almost no one currently thinks that accreditation, especially at the institutional level, is what it should be for twenty-first-century students and institutions of higher education. In this article, the author…

  3. Reputation Cycles: The Value of Accreditation for Undergraduate Journalism Programs

    Blom, Robin; Davenport, Lucinda D.; Bowe, Brian J.

    2012-01-01

    Accreditation is among various outside influences when developing an ideal journalism curriculum. The value of journalism accreditation standards for undergraduate programs has been studied and is still debated. This study discovers views of opinion leaders in U.S. journalism programs, as surveyed program directors give reasons for being…

  4. Spanish National Dosimetry Bank

    The National Dosimetry Bank (BDN) was designed to be a useful instrument for the protection of exposed workers. On the basis of individual doses, in conjunction with the type of facility where they were received and the type of work involved, it is possible to monitor and control the individual conditions of an exposed worker. In addition to this primary objective, the BDN's structure and utilities are such that it can be used for applications such as determining the suitability of the working conditions in various areas of ionizing radiation applications, evaluating exposure trends and the most affected areas, and supplying statistical data that can be used for legal studies

  5. Relocation of Dosimetry Service

    2007-01-01

    The Dosimetry Service is moving from Building 24 to Building 55 and will therefore be closed on Friday, March 30. From Monday, April 2 onwards you will find us in building 55/1-001. Please note that during that day we might still have some problems with the internet connections and cannot fully guarantee normal service procedures. The service's opening hours and telephone number will not change as a result of the move 8.30 - 12.00, afternoons closed Tel. 72155

  6. Dosimetry in Radiology

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors)

  7. Fast neutron dosimetry

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  8. Improving TL dosimetry for external radiotherapy

    Full text: In vivo thermoluminescence dosimetry (TLD) has always been one of the most accurate dosimetry method for external radiotherapy control, but the delay in the response is a well know drawback when it is applied. In this work we show some improvements and demonstrate that keeping the precision and accuracy of this technique, it is possible to obtain a response in few hours. Harshaw 4000 TL reader and LiF TLD-100 dosimeters, chips (3,1 x 3,1 x 0,9 mm3) and rods (1 x 1 x 6 mm3) have been used. The thermal treatment necessary to reuse the TLD is only 1h at 400 degree C, by using a glow curve analyser developed at the Ciemat (Spain), that allows a complete, prompt and precise identification of the individuals peaks. The dosimeters are periodically and individually calibrated. We also have study the factors contributing to the relation TL-dose like linearity, energy correction, directional response and fading. All those results are included into an Excel worksheet which automatically give us the dose resulting from the TL reading (peaks areas 4 and 5). The obtained uncertainty is better than 5%. The TLD already irradiated in radiotherapy institutions distant 30-40 Km from our centre can be read and analysed in about 3-4 hours. These facts render our methods rapid and allow a better control of radiotherapy treatment even if it is bi-fractionated. (author)

  9. The importance of 3D dosimetry

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions

  10. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  11. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  12. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  13. Performance testing and dose verification for extremity ring dosimetry

    The paper describes the testing performed on an extremity dosimetry system to measure the personal dose equivalent Hp(0.07) in photon and beta reference fields. This research refers to the American National Standard Institute to organize the performance testing for the INER's TLD-100H extremity ring dosimeters. The results show that tolerance level (L), absolute of bias (|B|) and standard deviation (S) for all categories of performance testing meet the ANSI N13.32 performance testing criteria. The performance testing results were suggested to be an important step of an accreditation procedure for the extremity ring dosimetry system in Taiwan. Besides, the dose evaluation of extremity ring dosimeters to measure Hp(0.07) in realistic fields of nuclear medicine is also verified. The reference values of Hp(0.07) were calculated using the Monte Carlo method normalized by the measured activity of the radioactive solution. For nuclear medicine irradiations the relative response to 201Tl and 99mTc radionuclides produced by INER are also satisfactory.

  14. Current status of internal dosimetry service laboratories in Brazil

    Dantas, B.M.; Acar, M.E.D.; Dantas, A.L.A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). In Vivo Monitoring Lab.], e-mail: bmdantas@ird.gov.br; Cardoso, J.C.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). In Vivo Monitoring Lab.], e-mail: jcardoso@ipen.br; Tadei, M.H.T. [Laboratorio de Pocos de Caldas, (LAPOC/CNEN-MG), MG (Brazil). Radiochemistry Lab.], e-mail: mhtaddei@cnen.gov.br; Juliao, L.Q.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). In Vitro Bioassay Lab.], e-mail: ligia@ird.gov.br; Lima, M.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Radiochemistry Lab.], e-mail: mflima@ipen.br; Arine, D.R. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP) , SP (Brazil). Radioecology Lab.], e-mail: djair@ctmsp.mar.mil.br; Ramos, M.A. [Central Nuclear Almirante Alvaro Alberto (CNAAA), Angra dos Reis, RJ (Brazil). In Vivo Monitoring Lab.], e-mail: mramos@eletronuclear.gov.br; Alonso, T.C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). In Vivo Monitoring Lab.], e-mail: alonso@cdtn.br; Lima, F.F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil). In Vivo Monitoring Lab.], e-mail: fflima@cnen.gov.br

    2009-07-01

    Several technical documents related to internal dosimetry have been released by the IAEA and ICRP after nuclear and radiological accidents, such as the Chernobyl and Goiania. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, not well understood by the professionals involved in this specific field of radiation protection. Therefore, both in routine and emergency monitoring, responses may differ markedly among Dosimetry Laboratories and it may be difficult to interpret and use the bioassay data generated. The resulting misunderstanding can impair countermeasures and remediation operations and enhance significant socio-economic and political consequences. Currently it is recognized worldwide the need to have a realistic evaluation of the reliability of the services provided by specific laboratory as well as a clear compliance with best practices and a permanent effort to improve data interpretation. The objective of this work is to ensure regular and systematic quality monitoring of the Accredited Laboratory Network composed by the Brazilian governmental Institutes which will comprise expert teams able to provide, upon request, reliable services in case of a radiological accidents and follow-up operations, as well as internal dose evaluation of occupationally exposed workers. (author)

  15. Current status of internal dosimetry service laboratories in Brazil

    Several technical documents related to internal dosimetry have been released by the IAEA and ICRP after nuclear and radiological accidents, such as the Chernobyl and Goiania. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, not well understood by the professionals involved in this specific field of radiation protection. Therefore, both in routine and emergency monitoring, responses may differ markedly among Dosimetry Laboratories and it may be difficult to interpret and use the bioassay data generated. The resulting misunderstanding can impair countermeasures and remediation operations and enhance significant socio-economic and political consequences. Currently it is recognized worldwide the need to have a realistic evaluation of the reliability of the services provided by specific laboratory as well as a clear compliance with best practices and a permanent effort to improve data interpretation. The objective of this work is to ensure regular and systematic quality monitoring of the Accredited Laboratory Network composed by the Brazilian governmental Institutes which will comprise expert teams able to provide, upon request, reliable services in case of a radiological accidents and follow-up operations, as well as internal dose evaluation of occupationally exposed workers. (author)

  16. Dosimetry on the radiological risks prevention in radiotherapy; La dosimetria en la prevencion de riesgos radiologicos en radioterapia

    Fornet R, O. M.; Perez G, F., E-mail: nuclear2@citmahlg.holguin.inf.cu [Delegacion Territorial del CITMA, Peralta 16 esq. P. Feria, Rpto. Peralta, 80400 Holguin (Cuba)

    2014-08-15

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  17. External quality audit programmes for radiotherapy dosimetry and equipment

    It is widely accepted that individual radiotherapy centres should have in place a comprehensive quality assurance programme on all the necessary steps for the delivery of safe accurate treatment. As regards the performance of radiotherapy equipment and dosimetry, the most widely used process of external checking has been dosimetry intercomparison, comparing independently measured doses to locally stated doses in a variety of conditions. These have been at a number of different levels: from basic beam calibration; up to and including exercises employing anatomic or pseudo-anatomic phantoms and incorporating tests of treatment planning equipment and procedures. Some of these have been one-off exercises, whilst others are continuing, or have given rise to on-going quality audit programmes on a national (or wider) basis. A number of these have evolved, or are evolving, into audits which include external checking of the achievement of standards in performance of treatment equipment, as well as in the dosimetry in each institution involved. The principles and methodologies of the various types of external checking programmes for treatment equipment and dosimetry are reviewed, covering the experimental approaches and the tolerances applied. What is included in a given programme will, of necessity, depend on the resources available and the purpose of the exercise. Methods and tolerances must be matched to endpoint. Tolerance levels must take into account the experimental uncertainties of the measurement methods employed. Finally, external audit can only be used to complement, and in conjunction with, institutional quality assurance programmes and not as a substitute for them

  18. ESR/alanine dosimetry applied to radiation processing

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Metrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Metrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. Photon dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. Electron dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved. (author)

  19. Dosimetry of industrial sources

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  20. Internal Dosimetry. Chapter 18

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented

  1. Thermo-luminescent dosimetry

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber (1, 2, 3, 4, 6, 7, 10, 11, 12, 14, and 14). The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field. (orig.)

  2. Calibration of two 90Sr+90Y dermatological applicators

    The 90Sr+90Y applicators need to be periodically calibrated, but in Brazil the service it not offered yet. The recommended method for the calibration of this kind of applicators is the use of extrapolation chambers. An alternative method for the calibration of clinical applicators is the use of thermoluminescent dosimeters. A dosimetric method of these applicators was already developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN) and several types of thermoluminescent dosimeters were studied in previous works. The aim of this work was the application of this method to calibrate two dermatological applicators. Thin CaSO4:Dy pellets, with and without 10% of graphite were utilized. The reproducibility of these pellets was studied, and calibration curves were obtained using a standard applicator calibrated at the National Institute of Standards and Technology (NIST), USA. Both applicators showed similar results. The TL materials tested showed usefulness for dosimetry and calibration of this kind of applicators. (author)

  3. Experimental evaluation of a method for performing personnel β dosimetry using multi-element thermoluminescent dosimeters

    Two multi-element thermoluminescent (TL) dosimeter designs were calibrated in a γ field and then exposed to β sources emitting different β spectra. The TL readouts from the dosimeters were analyzed using an algorithm designed to enable calculation of the β doses from the dosimeter readings without performing any β calibrations. The results suggest that the method is promising for application in personnel β dosimetry

  4. Radiological standards and calibration laboratory capabilities

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29

  5. Radiation dosimetry instrumentation and methods

    Shani, Gad

    2000-01-01

    Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.

  6. Information from the Dosimetry Service

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  7. Comment on 'Proton beam monitor chamber calibration'.

    Palmans, Hugo; Vatnitsky, Stanislav M

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that [Formula: see text]-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication

  8. Calibration of photon and electron beams

    Modern radiotherapy relies on accurate dose delivery to the prescribed target volume. The ICRU has recommended an overall accuracy in tumour dose delivery of (+-5)%, based on an analysis of dose response data and on an evaluation of errors in dose delivery in a clinical setting. Considering all uncertainties involved in the dose delivery to the patient, the ±5% accuracy recommendation is by no means easy to attain. Before clinical use, the output of photon and electron beams produced by external beam radiotherapy machines must be calibrated. This basic output calibration is but one, albeit very important, of the links constituting the chain representing an accurate dose delivery to the patient. The other links refer to: the procedures for measurement of relative dose data, equipment commissioning and quality assurance; treatment planning; and the actual patient set-up on the treatment machine. The basic output for a radiotherapy machine is usually stated as the dose rate for a point P at a reference depth zref (often the depth of dose maximum zmax) in a water phantom for a nominal source to surface distance (SSD) or source to axis distance (SAD) and a reference field size (often 10 x 10 cm2) on the phantom surface or the isocentre. The output for kilovoltage X ray generators and teletherapy units is usually given in Gy/min, while for clinical accelerators it is given in Gy/MU. For superficial and orthovoltage beams and occasionally for beams produced by teletherapy radioisotope machines, the basic beam output may also be stated as the air kerma rate in air (Gy/min) at a given distance from the source and for a given nominal collimator or applicator setting. The basic output calibration of photon and electron beams is carried out with radiation dosimeters and special radiation dosimetry techniques. Radiation dosimetry refers to a determination by measurement and/or calculation of the absorbed dose or some other physically relevant quantity, such as air kerma

  9. Program Educational Objectives Definition and Assessment for Accreditation Purposes

    Noureddine Abbadeni

    2013-07-01

    Full Text Available Academic accreditation of degree programs is becoming an important mean for many institutions to improve the quality of their degree programs. Many programs, in particular computing and engineering, offered by many schools have engaged in the accreditation process with different accreditation bodies. The most known accreditation body in the Unites States of America for engineering, computing, technology, and applied science programs is ABET (Accreditation Board for Engineering and Technology. A key problem towards the satisfaction of ABET accreditation criteria is the appropriate definition and assessment of program educational objectives for a specific degree program. Program Educational Objectives are important as they represent the ultimate mean to judge the quality of a program. They related directly to student outcomes and curriculum of a degree program. We propose a set of guidelines to help understand how program educational objectives can be defined and assessed. We relate and use examples from our practical experience acquired while working on the ABET accreditation of a Software Engineering program;

  10. Camera calibration

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  11. Maintaining and improving accredited training programs

    The US nuclear industry's mission has been to upgrade its training efforts. The industry chose the Institute of Nuclear Power Operations accreditation program as the vehicle to help it accomplish this goal. The result is that operational training programs are now in use at all the operating plants for ten key plant positions. This is just the beginning of the industry's quest for training excellence. The ultimate objective to be achieved is to maintain high quality training and the professionalism of the personnel who operate the nuclear power plants. These training programs must now be implemented with qualified instructors. The training materials and equipment, such as the simulator, must be kept current. The feedback on the effectiveness of training must be obtained

  12. Challenges for academic accreditation: the UK experience

    Shearman, Richard; Seddon, Deborah

    2010-08-01

    Several factors (government policy, demographic trends, employer pressure) are leading to new forms of degree programmes in UK universities. The government is strongly encouraging engagement between universities and employers. Work-based learning is increasingly found in first and second cycle programmes, along with modules designed by employers and increasing use of distance learning. Engineering faculties are playing a leading part in these developments, and the Engineering Council, the engineering professional bodies and some universities are collaborating to develop work-based learning programmes as a pathway to professional qualification. While potentially beneficial to the engineering profession, these developments pose a challenge to traditional approaches to programme accreditation. This paper explores how this system deals with these challenges and highlights the issues that will have to be addressed to ensure that the system can cope effectively with change, especially the development of individually tailored, work-based second cycle programmes, while maintaining appropriate standards and international confidence.

  13. Thermoluminescence Dosimetry Studies at the Philippine Atomic Research Center

    Thermoluminescence dosimetry studies have been initiated at the Philippine Atomic Research Center of the Philippine Atomic Energy Commission. A recalibration of the equipment indicates a divergence from supplied calibration curves, especially with regard to the dark current. Operating currents and heating temperatures also show a statistical uncertainty of approximately 7%. Gamma-dose calibrations were undertaken using a 60Co gamma garden previously mapped with an R-meter and chemical dosimeters. Neutron dose calibrations have been attempted using the Philippine research reactor. Some isodose curves in a dry gamma room from a 20 000 Ci 60Co source inside the PRR-I reactor pool were presented. The values of parameters α, β, Np, N0 were obtained for both unannealed LiF and annealed LiF. The values fitted the model of thermoluminescence versus dose suggested by Cameron et al. Using the same model the values of these parameters were obtained for CaSO4 : Mn. (author)

  14. On the operational quantity Hp(3) for eye lens dosimetry

    In the past the operational quantity Hp(3) has been defined for calibration purposes in a slab phantom. Recently, an additional phantom in the form of a cylinder was suggested for eye lens dosimetry as a cylinder much better approximates the shape of a head than a slab. Therefore, this work investigates whether the quantity Hp(3), when defined in the respective calibration phantom, adequately estimates the eye lens dose (or is at least conservative) depending on the phantom: it turns out that in most cases both calibration phantoms are similarly well suited. Finally, the definition of the eye lens dose is discussed together with possible consequences on the definition of Hp(3): the consideration of only the radiation sensitive volume of the lens causes Hp(3) not to be conservative in beta radiation fields. (paper)

  15. 15 CFR 285.13 - Denial, suspension, revocation, or termination of accreditation.

    2010-01-01

    ... revoke accreditation. (1) If a laboratory's accreditation is suspended, NVLAP shall notify the laboratory... NVLAP proposes to deny or revoke accreditation of a laboratory, NVLAP shall inform the laboratory of the... period. (2) If accreditation is revoked, the laboratory may be given the option of...

  16. National TLD network for beam calibration quality control in Colombia

    Full text: Colombia counts now with 16 linear accelerators and 24 cobalt units used for radiation therapy treatments, with a total of 60 radiation beams, and the country takes part in the IAEA/WHO International Network of Postal Dosimetry, as well as in the IAEA/WHO SSDL network. Since the country has technical capacities to develop a national quality control program, based on the SSLD and other dosimetry laboratories, with the support of the IAEA through a coordinated research project, a national network for radiotherapy beam calibration quality control was created. The network is supported by the technical infrastructure of the SSDL and the thermoluminescence dosimetry laboratory of the Nuclear Safety and Radiation Protection Unit of INGEOMINAS and an External Audit Group (EAG) conformed by 5 medical physicists, joined to radiotherapy centers of different regions of the country. The objective of the network is mainly the development of procedures for the evaluation of the beam calibration by means of thermoluminiscent (TL) powdered detectors, through the system of capsules used by the IAEA/WHO postal dosimetry audit program. The TL powder contained in the capsules is divided in 20 mg samples which are placed in metallic minicapsules for their reading. As a result of the work carried out up to now, we have established the procedures for dosimetric evaluation using a HARSHAW 4500 reader. The performance of the system and procedures were evaluated by internal trials using the secondary standard of the SSDL and with irradiation set-ups corresponding to the reference conditions for beam calibration. An uncertainty of the final result better than 2% for evaluation of doses near 2 Gy was obtained. The results of the first dosimetry quality audit exercise to national level, for evaluation of high energy photon beam calibration, are presented. The problems detected, concerning the fill-in of the forms with the information about beam calibration and capsules irradiation

  17. Internal dosimetry technical basis manual

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  18. Radioembolization Dosimetry: The Road Ahead

    Smits, Maarten L. J., E-mail: m.l.j.smits-3@umcutrecht.nl; Elschot, Mattijs [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Sze, Daniel Y. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Kao, Yung H. [Austin Hospital, Department of Nuclear Medicine (Australia); Nijsen, Johannes F. W. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Iagaru, Andre H. [Stanford University School of Medicine, Division of Nuclear Medicine and Molecular Imaging (United States); Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  19. Internal dosimetry technical basis manual

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  20. Medical dosimetry in Hungary

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  1. Dosimetry of breast cancer

    The systemic therapy of breast cancer has also changed profoundly during the last 60 years, and in this time the integration of treatment modalities involve a major area of investigation. The dosimetry of breast cancer presents different complications which can range from the Physician's handling of the neoplasia up to the simple aspects of physical simulation, contour design, radiation fields, irregular surfaces and computer programs containing mathematical equations which differ little or largely with the reality of the radiation distribution into the volume to be irradiated. We have studied the problem using two types of measurements to determine how the radiation distribution is in irregular surfaces, and designing an easier skill to be used with each patient, in order to optimize the treatment with respect to the simulation and verification process. (author). 7 refs

  2. Dosimetry of iodoantipyrine

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96±0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 μGray, 0.5 μGray and 2.9 μGray per MBq of 123I, 123I, and 131I administered respectively. (orig.)

  3. Strahlungsmessung und Dosimetrie

    Krieger, Hanno

    2013-01-01

    „Strahlungsquellen und Dosimetrie“ ist Teil einer Lehrbuchreihe zur Strahlungsphysik und zum Strahlenschutz. Der erste Teil befasst sich mit den physikalischen Grundlagen der Strahlungsdetektoren und der Strahlungsmessung. Im zweiten Teil werden die Konzepte und Verfahren der klinischen Dosimetrie dargestellt. Der dritte Abschnitt erläutert ausführlich die Dosisverteilungen der klinisch angewendeten Strahlungsarten. Im vierten Teil werden weitere Messaufgaben der Strahlungsphysik einschließlich der Messsysteme für die Bildgebung mit Röntgenstrahlung dargestellt. Neben den grundlegenden Ausführungen enthält dieser Band im laufenden Text zahlreiche Tabellen und Grafiken zur technischen und medizinischen Radiologie, die bei der praktischen Arbeit sehr hilfreich sein können und 199 Übungsaufgaben mit Lösungen zur Vertiefung der Inhalte. Für die zweite Auflage wurden die Darstellungen der Elektronen- und der Protonendosimetrie sowie der bildgebenden Verfahren mit Computertomografen deutlich erweit...

  4. Radioiodotherapy: dosimetry planning

    The results of treatment of 142 case histories of 125 patients who had been treated with radioactive iodine at the Medical Radiological Research Center of Russian Academy of Medicine Sciences from 1983 to 1999 are given in the presentation. Among the patients, 35 cases of diffuse toxic goiter with signs of thyrotoxicosis of a mild degree, 25 cases of Diffuse toxic goiter with severe thyrotoxicosis, 6 cases of differentiated thyroid cancer with metastases to lymph-nodes of the neck, 30 cases of thyroid cancer with metastases to lymph-nodes of the neck and lung and 1 case of thyroid cancer with metastases to bones were diagnosed. This paper gives recommendations for individual dosimetry planning for radioiodine-therapy. (authors)

  5. On multichannel film dosimetry with channel-independent perturbations

    Méndez, Ignasi; Hudej, Rihard; Strojnik, Andrej; Casar, Božidar

    2014-01-01

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth by Micke et al and Mayer et al. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke-Mayer method, uniform distribution and truncated normal distribution. A closed-form formula to calculate film doses and the associated Type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for gamma-...

  6. Alternative statistical methods for cytogenetic radiation biological dosimetry

    Fornalski, Krzysztof Wojciech

    2014-01-01

    The paper presents alternative statistical methods for biological dosimetry, such as the Bayesian and Monte Carlo method. The classical Gaussian and robust Bayesian fit algorithms for the linear, linear-quadratic as well as saturated and critical calibration curves are described. The Bayesian model selection algorithm for those curves is also presented. In addition, five methods of dose estimation for a mixed neutron and gamma irradiation field were described: two classical methods, two Bayesian methods and one Monte Carlo method. Bayesian methods were also enhanced and generalized for situations with many types of mixed radiation. All algorithms were presented in easy-to-use form, which can be applied to any computational programming language. The presented algorithm is universal, although it was originally dedicated to cytogenetic biological dosimetry of victims of a nuclear reactor accident.

  7. IAEA/RCA external dosimetry intercomparison (1995-97)

    IAEA/RCA personal dosimeters intercomparison of external radiation was conducted by JAERI during the year 1995-1997. 17 countries using 38 types of personnel dosimeters participated in this intercomparison. Out of 38 dosimetry systems 26 used TLD, 10 film badge and 2 RPL dosimeters. Our laboratory participated with BARC personal dosimeter badge using TLD (CaSO4:Dy). Reference calibration source check of the participating laboratories was done using RPL glass dosimetry by JAERI. The dosimeters of the participants were exposed to ISO x-ray beams and γ sources to low and moderate doses during phase 1 and to mixed x-ray beams, mixed x-γ radiation, non-perpendicular radiation and x and γ radiation separately in phase 2. The participant laboratories estimated the values of the exposures given in terms of operational quantities. The results of BARC/TLD badge are presented and compared with respect to other laboratories. (author)

  8. Study of a personal passive multielement dosimeter for neutron dosimetry

    Personal neutron dosimetry is presently carried out with unsatisfying methods, viz. the use of nuclear emulsions ''blind'' for energy below 1.5 MeV, or the operation of albedo detectors that must be calibrated at the various working places since their responses vary largely as a function of neutron energies. A progress report is presented on the DINEM project studies. The DINEM (personal multielement neutron dosimeter) is made of an albedo dosimeter ''PGP-DIN'' detecting neutrons with energies below 7 keV and a solid track detector detecting energies above 100 keV. The latest improvements on the use of CN 85 as a solid track detector announce that the difficult problem of personal dosimetry should be solved soon

  9. Effects of dose fractionation on the response of alanine dosimetry

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  10. Photovoltaic module certification/laboratory accreditation criteria development

    Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  11. American College of Radiology accreditation program for mammographic screening sites

    For the past 2 years, the American College of Radiology has conducted a voluntary program for the accreditation of mammographic screening sites. To date, over 1,000 mammographic screening sites (approximately 15% of the mammography sites in the United States) have been evaluated, and approximately 75% of evaluated sites have received accreditation. Data collected from these sites illustrate the standards of technical quality that exist in the practice of mammography, the common reasons for railing the accreditation program, and the broad ranges of image quality and breast dose that exist in the practice of mammography in the United States

  12. Guiding the accreditation process utilizing an oversight committee

    The highly technical and complex training necessary for nuclear utilities plus regulatory and Institute for Nuclear Power Operations (INPO) accreditation demands are causing utilities to redefine training needs. The complexity of subject matter and tasks has caused utilities to recognize the importance of training methods. The INPO accreditation oversight committee responds to the new need to emphasize and standardize educational methods, Consolidated Edison established an INPO Accreditation Oversight Committee for its Indian Point facility. This presentation will describe the committee's purpose, composition, responsibilities, and the results achieved. The committee's formulation and responsibilities and the influence of committee members on training programs and management will be discussed

  13. Dosimetry in radionuclide therapy

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β-emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  14. Dosimetry in intravascular brachytherapy

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  15. The Vinca dosimetry experiment

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  16. Hanford internal dosimetry program manual

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  17. Hanford internal dosimetry program manual

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  18. Fifth international radiopharmaceutical dosimetry symposium

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  19. Internal dosimetry, past and future

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226Ra, 228Ra, and 224Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  20. A personal dosimetry intercomparison study in Asian and Pacific region

    Two personal dosimeter intercomparisons were conducted under International Atomic Energy Agency's RCA (Regional Cooperative Agreement) radiation protection project for Asian and Pacific region during 1990 - 1997. The first intercomparison program was carried out from 1990 to 1992. The main objective of that program was to obtain information on the technical status of basic radiation protection measurements in each participating member country and their ability to conduct monitoring for occupational protection. The dosimeters were irradiated free-in-air and the doses were expressed as exposure in R. The program was successfully completed and the results have been published. The second personal dosimeter intercomparison program was conducted from 1995 to 1997. A major objective of the second program was assess the ability of RCA member state personal dosimetry services to make measurements in terms of the operational quantity, personal dose equivalent, Hp(d), including suitable use of the associated calibration procedures. More than thirty dosimetry services from 16 RCA member countries participated in this program. The intercomparison was performed in two irradiation phases. Four calibration laboratories from three member countries provided X-ray and gamma ray irradiations for over a thousand dosimeters. The irradiations were conducted in 12 categories, defined by their photon energies and angles of incidence, using ISO water filled back-scatter phantom. All the results were expressed as the ratio of the dose value evaluated by each participant to the delivered dose. The deviations of these values from unity were used for analyzing the results. The performance of each dosimetry system was evaluated against draft recommendations of the International Atomic Energy Agency for personal dosimetry system accuracy. The results showed that the quality of individual monitoring in most of the RCA member countries was at an acceptable level with a few exceptions. They also

  1. Personal Dosimetry in UHC Sestre Milosrdnice: 10-Years Review

    Personal dose monitoring in UHC 'Sestre milosrdnice' is regulary performed for about 300 exposed workers involved in a variety of tasks with different sources of ionizing radiation. Exposed workers are required to wear personal dosimeters which are read on monthly basis and dose records are kept in the hospital. In this paper an overview of personal dosimetry data from year 2003 till 2013 is presented. Film dosimeters were used for personal dosimetry untill 2010 when the thermoluminescent (TL) dosimetry was introduced. Dosimeters are calibrated to measure personal dose equivalent Hp(10). Received doses are analyzed for workers in the field of nuclear medicine, radiotherapy (external beam and brachytherapy), general diagnostic radiology and interventional radiology. Analysis of received doses in the whole period resulted with an average individual dose in nuclear medicine of 0.6 mSv/y, which decreased to 0.21 mSv/y in the last three years, caused by more precise dosimetric methods with TL dosimetry and improved conditions of radiation protection. In the same three-year period, in interventional radiology doses were 0.32 mSv/y, compared to 0.29 mSv/y obtained for a previous seven years. This was expected due to the escalation in a number of interventions and new installed equipment. There was no such difference in diagnostic radiology doses, showing that film dosimetry is suitable for x ray energies. Analysis of all the readings showed a significant influence of measurement procedures on personal dosimeter dose and also the importance of continuous monitoring of the dose records in order to improve the conditions of radiation protection and achieving the ALARA goal.(author)

  2. Preliminary evaluation of a Neutron Calibration Laboratory

    In the past few years, Brazil and several other countries in Latin America have experimented a great demand for the calibration of neutron detectors, mainly due to the increase in oil prospection and extraction. The only laboratory for calibration of neutron detectors in Brazil is localized at the Institute for Radioprotection and Dosimetry (IRD/CNEN), Rio de Janeiro, which is part of the IAEA SSDL network. This laboratory is the national standard laboratory in Brazil. With the increase in the demand for the calibration of neutron detectors, there is a need for another calibration services. In this context, the Calibration Laboratory of IPEN/CNEN, Sao Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new calibration laboratory for neutron detectors. In this work, the ambient equivalent dose rate (H⁎(10)) was evaluated in several positions inside and around this laboratory, using Monte Carlo simulation (MCNP5 code), in order to verify the adequateness of the shielding. The obtained results showed that the shielding is effective, and that this is a low-cost methodology to improve the safety of the workers and evaluate the total staff workload. (author)

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Rathbone, Bruce A.

    2010-01-01

    manual by PNNL was discontinued beginning with Revision 0.2. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, and 9.2. Rev 0.2 (8/28/2009) Updated Chapters 3, 5, 6, 8 and 9. Chapters 6 and 8 were significantly expanded. References in the Preface and Chapters 1, 2, 4, and 7 were updated to reflect updates to DOE documents. Approved by HPDAC on 6/2/2009. Rev 1.0 (1/1/2010) Major revision. Updated all chapters to reflect the Hanford site wide implementation on January 1, 2010 of new DOE requirements for occupational radiation protection. The new requirements are given in the June 8, 2007 amendment to 10 CFR 835 Occupational Radiation Protection (Federal Register, June 8, 2007. Title 10 Part 835. U.S., Code of Federal Regulations, Vol. 72, No. 110, 31904-31941). Revision 1.0 to the manual replaces ICRP 26 dosimetry concepts and terminology with ICRP 60 dosimetry concepts and terminology and replaces external dose conversion factors from ICRP 51 with those from ICRP 74 for use in measurement of operational quantities with dosimeters. Descriptions of dose algorithms and dosimeter response characteristics, and field performance were updated to reflect changes in the neutron quality factors used in the measurement of operational quantities.

  4. Alanine/EPR dosimetry as a reference system in radiotherapy

    Full text: It is widely accepted that dosimetry intercomparisons are a key step in the continuous quality improvement programmes in radiotherapy (CQIR). Indeed, they offer the possibility to detect and evaluate errors in dose delivery. Similarly to other European and international actions, the ISS is promoting a network of dosimetry intercomparisons among radiotherapy centres. The alanine/EPR system is used as reference dosimetry for the ISS dosimetry intercomparisons. The reduced energy dependence, absence of fading, 1% (1σ) accuracy, robustness for mail delivery and non-destructive read-out procedure are the main characteristics that substantiate the choice of alanine. TLD-100 are also being used, but only for relative measurements. Alanine dosimetry has been developed at ISS and has been calibrated by the Primary Dosimetry Laboratory in Italy (INMRI- ENEA). In the framework of CQIR programmes, the ISS launched two different postal dosimetry intercomparisons: (a) for conventional treatments using external high-energy photon beams, and (b) for protontherapy centres which treat ocular melanomas. High energy photon beams: The purpose is to check the accuracy in the doses delivered under reference conditions and for a simulated treatment, through the analysis of the differences between measured and stated doses. The accuracy will depend on the procedures adopted in the radiation therapy centres, including the dosimetric protocol, the CT imaging and the treatment plan system used for the dose calculation. Two irradiation conditions have been chosen. In the first, a water phantom will be irradiated where the dose will be measured at a reference point. In the second, a rectum cancer treatment will be simulated, delivering the dose to an anthropomorphic phantom which will be measured at the isocentre and at 5 other previously defined points. In the first phase, the intercomparison will include only 16 centres and will be considered as a pilot project. The

  5. Independent dosimetry audits for radiotherapy practices in the Syrian Arab Republic using standard instrumentation kit

    Quality assurance and dose audits in radiotherapy application are important procedures for optimizing treatment and avoiding any undesirable consequences. Accurate dosimetry calculations as well as radiation dose distribution measurements arc essential parts of treatment planning and outcome verifications. Aiming to improve the accuracy and consistency of clinical radiotherapy dosimetry in hospitals worldwide, the International Atomic Energy Agency (IAEA), together with the World Health Organization (WHO) have been performing mailed thermo-luminescence dosimetry (TLD) audits in order to verify external beams calibration for radiation therapy departments in developing countries. Taking part in this program, the National Radiation Metrology Laboratory (NRML), which is the Syrian SSDL, has initiated a pilot national programme of dosimetry audits that includes, in phase one, a few radiotherapy centers. The pilot programme will be expanded to the national programme to include all radiotherapy departments in Syria. Verifying the dosimetry and calibration methodology used for radiotherapy beams will be accomplished according to the IAEA-TECDOC-1543. This programme is composed of a planned on-site team visit (Quality Assurance Team in Radiation Oncology, QUATRO) to the radiation treatment centers in Syria and independent measurement of dose rate using transportable standard instrumentation kit

  6. ADN Programs Accredited by the National League for Nursing, 1974

    Nursing Outlook, 1974

    1974-01-01

    The complete list of programs leading to an associate degree in nursing that are accredited by the National League for Nursing is presented, without annotation. The institutions are listed alphabetically by State. (Author/AJ)

  7. ACCREDITATION OF OPEN AND DISTANCE LEARNING: A Framework for Turkey

    Serpil KOCDAR

    2012-07-01

    Full Text Available The purpose of this study is to develop a framework for the accreditation of higher open and distance learning (ODL programs in Turkey. The study was designed as a sequential monomethod multistrand mixed model including two strands which were both qualitative (QUAL→QUAL. In the first strand, both quantitative and qualitative data were collected through a three-round Delphi study with an expert panel consisting of 28 experts. In the second strand, qualitative data were collected via focus group interview. Based on a comprehensive literature review and the findings from the study, a framework was proposed including an initial accreditation process for new ODL programs and a re-accreditation process for ongoing programs. In addition, 35 criteria for new programs and 42 criteria for ongoing programs were developed to be used in the accreditation process.

  8. International Federations (IF) accreditation instructions manual: Nanjing 2014

    2014-01-01

    This accreditation instructions manual for International Federations is developed by the Nanjing Youth Olympic Games Organising Committee (NYOGOC) in accordance with the guidelines established in the Youth Olympic Games event manual by the International Olympic Committee (IOC).

  9. Virginia Tech's Cook Counseling Center receives international counseling accreditation

    DeLauder, Rachel

    2010-01-01

    The Virginia Tech Thomas E. Cook Counseling Center has been accredited by the International Association of Counseling Services, Inc., an organization of United States, Canadian, and Australian counseling agencies based in Alexandria, Va.

  10. Accreditation of medical schools: the question of purpose and outcomes.

    Azila, N M A; Tan, C P L

    2005-08-01

    Accreditation is a process by which official accrediting bodies evaluate institutions using a set of criteria and standards, following established procedures, to ensure a high quality of education needed to produce highly competent graduates. Additional objectives include (1) ensuring quality institutional functioning, (2) strengthening capabilities of educational institutions for service to the nation and (3) improving public confidence in medical schools. The accreditation process provides an opportunity for the institution to critically reflect upon all the aspects of its programme and the level of compliance or attainment of the requirements. The self-evaluation exercise, which identifies strengths and weaknesses, is perceived as formative. It is envisaged that eventually institutions will adopt a learning culture for curriculum development, implementation, monitoring and matching the outcomes. In conclusion, periodic accreditation activities can act as a "monitoring" system to ensure that the quality of medical education is maintained according to established standards. PMID:16315622

  11. Film dosimetry in conformal radiotherapy

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  12. Radiotherapy gel dosimetry

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  13. Quality Assessment of Family Medicine Teams Based on Accreditation Standards

    Valjevac, Salih; Ridjanovic, Zoran; Masic, Izet

    2009-01-01

    CONFLICT OF INTEREST: NONE DECLARED In order to speed up and simplify the self assessment and external assessment process, provide better overview and access to Accreditation Standards for Family Medicine Teams and better assessment documents archiving, Agency for Healthcare Quality and Accreditation in Federation of Bosnia and Herzegovina (AKAZ) has developed self assessment and externals assessment software for family medicine teams. This article presents the development of standardized sof...

  14. Certification, accreditation, and quality control in behavior analysis

    Moore, J.; Shook, G L

    2001-01-01

    Implementing quality control measures in the discipline and professional practice of behavior analysis is a challenging, but nevertheless important, step in the evolution of our field. The Association for Behavior Analysis currently seeks to ensure quality in behavior analysis by sponsoring an accreditation program for graduate academic programs and by promoting certification of individual practitioners. The accreditation reviews are conducted by ABA, whereas certification status is awarded b...

  15. Accreditation and Participatory Design in the Health-Care Sector

    Simonsen, Jesper; Scheuer, John Damm; Hertzum, Morten

    2015-01-01

    We reconsider the role of participatory design approaches emphasizing the current context of the accreditation regime imposed on the Danish healthcare sector. We describe effects-driven IT development as an instrument supporting sustained participatory design. Effects-driven IT development includes......-based thinking. We describe and compare effects- driven IT development with accreditation and discuss the prospects and challenges for this approach to participatory design within the healthcare domain....

  16. Strengthening Laboratory Management Towards Accreditation: The Lesotho experience

    David Mothabeng; Talkmore Maruta; Mathabo Lebina; Kim Lewis; Joe Wanyoike; Yohannes Mengstu

    2011-01-01

    Introduction: The Lesotho Ministry of Health and Social Welfare’s (MOHSW) 5-year strategic plan, as well as their national laboratory policy and yearly operational plans, directly addresses issues of accreditation, indicating their commitment to fulfilling their mandate. As such, the MOHSW adopted the World Health Organization Regional Headquarters for Africa’s Stepwise Laboratory Quality Improvement Toward Accreditation (WHO–AFRO–SLIPTA) process and subsequently rolled out the Strengthening ...

  17. Calibrations of pocket dosemeters using a comparison method

    This monograph is dedicated mainly to the calibration of pocket dosemeters. Various types of radiation sources used in hospitals and different radiation detectors with emphasis on ionization chambers are briefly presented. Calibration methods based on the use of a reference dosemeter were developed to calibrate all pocket dosemeters existing at the Radiation Physics and Metrology Laboratory. Some of these dosemeters were used in personnel dosimetry at hospitals. Moreover, a study was realized about factors that affect the measurements with pocket dosemeters in the long term, such as discharges due to cosmic radiation. A DBASE IV program was developed to store the information included in the hospital's registry

  18. Small and composite field dosimetry: The problems and recent progress

    huge leap between the static fields used for reference and relative dosimetry on the one hand and the way a clinical IMRT treatment is actually delivered on the other hand. There is also an increased tendency of treatment planning systems to be based on fluence calibrations rather than on dosimetric data for a range of field sizes. For those situations reference dosimetry in a composite reference plan would be more relevant. Several national and international working groups have been established in recent years to provide literature review, guidelines and recommendations for small and composite field dosimetry (IPEM, DIN, NCS, IAEA/AAPM...). An international working group on small and composite field dosimetry formed by the IAEA in collaboration with the AAPM, published a proposed formalism extending the recommendations from IAEA TRS-398 to fields that cannot establish conventional reference conditions as well as to composite fields. This formalism introduces the concepts of machine specific or intermediate reference fields for static small fields and plan-class specific reference fields for composite fields, which both deviate from conventional reference fields and bridge the gap with smaller fields and clinical composite fields, respectively. The dosimetry for both types of fields requires dosimeter perturbation correction factors that can be evaluated using Monte Carlo simulations or experiments. This presentation will review the problems associated with small and composite field dosimetry and recent solutions that have been proposed for various of the above mentioned problems. Concerning beam quality measurement for example, several authors have proposed an equivalent field size method combined with generic tabulated data of depth dose characteristics. Others have demonstrated that dose-area-product measurements combined with lateral distributions can offer an alternative. Dosimeter volume averaging can within certain limits be corrected for by high-resolution 2D

  19. Dosimeter calibration facilities and methods at the Radiation Measurement Laboratory of the Centre d'etudes nucleaires, Grenoble

    At the Centre d'etudes nucleaires, Grenoble, the Radiation Measurement Laboratory, which forms part of the Environmental Protection and Research Department, serves the entire Centre for purposes of dosimetry and the calibration of dose meters. The needs of radiation protection are such that one must have facilities for checking periodically the calibration of radiation-monitoring instruments and developing special dosimetry techniques. It was thought a good idea to arrange for the dosimetry and radiation protection team to assist other groups working at the Centre - in particular, the staff of the biology and radiobiology laboratories - and also bodies outside the framework of the French Commissariat a l'energie atomique. Thus, technical collaboration has been established with, for example, Grenoble's Centre hospitalier universitaire (university clinic), which makes use of the facilities and skills available at the Radiation Measurement Laboratory for solving special dosimetry problems. With the Laboratory's facilities it is possible to calibrate dose meters for gamma, beta and neutron measurements

  20. Which Phantom Is Better for Assessing the Image Quality in Full-Field Digital Mammography?: American College of Radiology Accreditation Phantom versus Digital Mammography Accreditation Phantom

    Song, Sung Eun; Seo, Bo Kyoung; Yie, An; Ku, Bon Kyung; Kim, Hee-Young; Cho, Kyu Ran; Chung, Hwan Hoon; Lee, Seung Hwa; Hwang, Kyu-won

    2012-01-01

    Objective To compare between the American College of Radiology (ACR) accreditation phantom and digital mammography accreditation phantom in assessing the image quality in full-field digital mammography (FFDM). Materials and Methods In each week throughout the 42-week study, we obtained phantom images using both the ACR accreditation phantom and the digital mammography accreditation phantom, and a total of 42 pairs of images were included in this study. We assessed the signal-to-noise ratio (S...