WorldWideScience

Sample records for accompanying high-pressure phase

  1. High-pressure phases of alumina

    Lyle, Matthew; Pickard, Chris; Needs, Richard

    2014-03-01

    Alumina (Al2O3) has been widely used as a pressure standard in static diamond anvil cell experiments and is a major chemical component of the Earth. So a detailed knowledge of its high-pressure stability is of great importance in both materials science and deep Earth science. A phase transition is known to occur at roughly 80-100 GPa between corundum and the Rh2O3 (II) structure. A second phase transition to the CaIrO3 structure occurs at even higher pressures. Here we present a computational structure search to reveal three additional structures which are competitive at these pressures but hitherto unknown to be stable in high-pressure alumina.

  2. High pressure phase transitions in Europous oxide

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  3. High-pressure phases of lead chalcogenides

    Research highlights: → We show that the intermediate phase transition for these compounds is not the GeS nor the TlI type structures, as previously reported, but the orthorhombic Pnma phase. → All these compounds are predicted to undergo a structural phase transition from the rocksalt to Pnma phase at about 8.13, 7.45 and 5.40 GPa for PbS, PbSe and PbTe respectively. → Further structural phase transitions from this intermediate phase to the CsCl phase have been predicted at about 25.3, 18.76 and 15.43 GPa for PbS, PbSe and PbTe respectively. - Abstract: Ab initio electronic structures have been carried out to find the pressure-induced structural phase transitions of lead chalcogenides (PbS, PbSe and PbTe) compounds. The zinc-blende, wurtzite, rocksalt, CsCl, GeS, TlI and orthorhombic Pnma phases are considered. Results show that the intermediate phase transition for these compounds is not the GeS nor the TlI type structures, as previously reported, but the orthorhombic Pnma phase. All these compounds are predicted to undergo a structural phase transition from the rocksalt to Pnma phase at about 8.13, 7.45 and 5.40 GPa for PbS, PbSe and PbTe respectively. Moreover, further structural phase transitions from this intermediate phase to the CsCl phase have been predicted at about 25.3, 18.76 and 15.43 GPa for PbS, PbSe and PbTe respectively.

  4. Equations of state for barium in high-pressure phases

    The universal equation of state with an arbitrary reference point presented by the author (Fang Zheng-Hua 1998 Phys. Rev. B 50 16 238) is applied successfully to the analysis of the experimental compression data of barium in different structural phases (I, II, and V). The comparison given in this paper shows that this equation suits for the isothermal compression behaviour of barium in the high-pressure phases (II and V) better than the Birch-Murnaghan equation. The applicability of equations of state for solids in high-pressure phases is also discussed. (author)

  5. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.

  6. Novel high-pressure phase of ZrO2: An ab initio prediction

    The high-pressure behavior of the orthorhombic cotunnite type ZrO2 is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni2In type) within P63/mmc symmetry is predicted through the simulation. The Ni2In type crystal is the densest high-pressure phase of ZrO2 proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni2In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO2 through an ab initio simulation. • Cotunnite ZrO2 adopts the Ni2In type structure at high pressure. • The Ni2In type structure is the densest high-pressure phase of ZrO2 proposed so far. • The preferred mechanism in ZrO2 differs from the other metal dioxides

  7. High pressure phase transformation in iron under fast compression

    Bastea, M; Bastea, S; Becker, R

    2009-07-07

    We present experimental results on the solid-solid, {alpha} to {epsilon} phase transformation kinetics of iron under high pressure dynamic compression. We observe kinetic features - velocity loops - similar with the ones recently reported to occur when water is frozen into its ice VII phase under comparable experimental conditions. We analyze this behavior in terms of general ideas coupling the steady sample compression with phase nucleation and growth with a pressure dependent phase interface velocity. The model is used to predict the response of iron when steadily driven across the {alpha} - {epsilon} phase boundary on very short time scales, including those envisioned to be achieved in ultra-fast laser experiments.

  8. High-Pressure Phase Transition in Cyclo-octane

    GAO Ling-Ling; ZOU Guang-Tian; JIANG Sheng; LIU Dan; HAO Jian; JIN Yun-Xia; WANG Feng; WANG Qiu-Shi; LIU Jing; CUI Qi-Liang

    2008-01-01

    Structural behaviour of cyclo-octane under high pressure is studied by using a synchrotron x-ray source in a diamond anvil cell (DAC) up to 40.2 GPa at room temperature. The cyclo-octane firstly solidifies to the triclinic phase at 0.87 GPa. With the increasing pressure, the phase of cyclo-octane changes to the tetragonal phase at about 6.0 GPa and then transforms to amorphous phase above 18.2 GPa, which is kept till to 40.2 GPa. All the phase transitions of cyclo-octane are irreversible.

  9. High pressure phase transition in Pr-monopnictides

    Raypuria, Gajendra Singh, E-mail: sosfizix@gmail.com, E-mail: gsraypuria@gmail.com; Gupta, Dinesh Chandra [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior - 474011 (India); Department of Physics, Govt. K.R.G. P.G. Autonomous College, Gwalior - 474001 (India)

    2015-06-24

    The Praseodymium-monopnictides compounds have been found to undergo transition from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm) using CTIP model. The calculated values of cohesive energy, lattice constant, phase transition pressure, relative volume collapse agree well with the available measured data and better than those computed by earlier workers.

  10. Isostructural Phase Transition of TiN under High Pressure

    ZHAO Jing-Geng; LI Yan-Chun; LIU Jing; YANG Liu-Xiang; YU Yong; YOU Shu-Jie; YU Ri-Cheng; LI Feng-Ying; CHEN Liang-Chcn; JIN Chang-Qing; LI Xiao-Dong

    2005-01-01

    @@ In situ high-pressure energy dispersive x-ray diffraction experiments on polycrystalline powder TiN with NaC1type structure have been conducted with the pressure up to 30.1 GPa by using a diamond anvil cell instrument with synchrotron radiation at room temperature. The experimental results suggest that an isostructural phase transition might exist at about 7GPa as revealed by the discontinuity of V/Vo with pressure.

  11. A subdivision algorithm for phase equilibrium calculations at high pressures

    M. L. Corazza

    2007-12-01

    Full Text Available Phase equilibrium calculations at high pressures have been a continuous challenge for scientists and engineers. Traditionally, this task has been performed by solving a system of nonlinear algebraic equations originating from isofugacity equations. The reliability and accuracy of the solutions are strongly dependent on the initial guess, especially due to the fact that the phase equilibrium problems frequently have multiple roots. This work is focused on the application of a subdivision algorithm for thermodynamic calculations at high pressures. The subdivision algorithm consists in the application of successive subdivisions at a given initial interval (rectangle of variables and a systematic test to verify the existence of roots in each subinterval. If the interval checked passes in the test, then it is retained; otherwise it is discharged. The algorithm was applied for vapor-liquid, solid-fluid and solid-vapor-liquid equilibrium as well as for phase stability calculations for binary and multicomponent systems. The results show that the proposed algorithm was capable of finding all roots of all high-pressure thermodynamic problems investigated, independent of the initial guess used.

  12. High-pressure phase transitions - Examples of classical predictability

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  13. New High-Pressure Phase in Fe2O3

    Tsuchiya, T.; Nishiyama, N.; Yusa, H.; Tsuchiya, J.; Funakoshi, K.

    2009-12-01

    Hematite Fe2O3, a prototype of trivalent transition metal oxides, crystallizes in the antiferromagnetic (AFM) insulating phase with the corundum structure at ambient conditions. Extensive studies have been carried out to clarify its structural, magnetic, and electronic evolutions under high pressure due to the broad interests in hematite from condensed matter physics to geosciences. The high-pressure phase relation in Fe2O3 is also substantial to understand geophysically important MgSiO3-Fe2O3 phase equilibria. Those are however still yet to be clarified as for example, some in situ X-ray diffraction measurements using the diamond anvil cell (DAC) reported a phase change from Rh2O3(II) (or orthorhombic Pv) to the CaIrO3-type structure over 60 GPa, while an experiment using the Kawai-type apparatus with sintered diamond (SD) anvils suggested to stabilize a different phase with an unidentified orthorhombic structure at much lower pressure of 40~45 GPa. On the other hand, recent theoretical and experimental investigations of non-magnetic sesquioxide compounds have revealed an emerging systematics of their high-pressure phase sequence (Tsuchiya et al., 2005; Tsuchiya et al., 2007; Yusa et al., 2008; Yusa et al., 2009). While the CaIrO3-type phase with six and eight disproportionate coordination polyhedra was found to stabilize in Al2O3 and Ga2O3 at megabar pressure, several other compounds such as In2O3 and Sc2O3 were reported to transform directly to a further denser phase with the α-Gd2S3 structure composed only of high eight-fold coordination polyhedra at much lower pressure. Similarly to these studies, we searched for a stable form of Fe2O3 under pressure theoretically by means of the density-functional structurally consistent LDA+U method and succeeded to discover a new phase transformation from Rh2O3(II) at the pressure fairly close to that reported by the SD experiment. The high-pressure phase however has different lattice constants suggested experimentally and

  14. High pressure phase transition in Nd2O3

    Rare-Earth (RE) sesquioxides are important materials, both scientifically as well as technologically for their existence in various polymorphic forms and wide variety of applications such as for laser rods, phosphors, refractory and abrasive materials etc. Like the RE metals, the physical properties of the RE sesquioxides are mainly affected by the partial filling of their inner 4f-electron shells leading to the well known effect, lanthanide contraction. As a consequence, depending on RE+3 cation radii, RE sesquioxides exist in three polymorphic modifications at ambient conditions viz. hexagonal, monoclinic and cubic structures. It has been observed that pressure also affects the stability of various polymorphs in RE sesquioxides. Cubic and monoclinic structured sesquioxides are known to undergo polymorphous transition to hexagonal phase under high pressure; however the role of high pressure on hexagonal structured sesquioxide is relatively less studied. With this motivation we have investigated high pressure behavior of Nd2O3 using energy dispersive X-ray diffraction (EDXRD) and Raman scattering techniques

  15. Phase Diagram of RDX Crystals at High Pressures and Temperatures

    Dreger, Zbigniew; Gupta, Yogendra

    2011-06-01

    A knowledge of the RDX phase diagram is important for understanding shock-induced decomposition of RDX. Vibrational spectroscopy and optical imaging in a diamond anvil cell were used to examine the RDX behavior at high pressures and temperatures. Interplay between three solid (α, γ, ɛ) , liquid, and decomposed phases was examined in experiments on single crystals at pressures up to 12.0 GPa and temperatures to 600 K. Several distinct pressure regions were found in the RDX response at elevated temperatures. The boundaries between the α, γ, and ɛ phases were determined with a triple point at 3.7 GPa and ~ 466 K. The α - γ phase transition was confirmed to be reversible and to occur at the same pressure 3.7 GPa, regardless of temperature. The ɛ-phase was found to exist only in a narrow range of pressures, from 2.8 to 6.0 GPa. Below and above these pressures, α- or γ-RDX crystals decompose or melt instead of transforming to ɛ-RDX. Both the α - ɛ and γ - ɛ transitions were irreversible at the phase boundaries. Decomposition kinetics of both the ɛ and γ phases were found to have a positive volumes of activation. Work supported by ONR and DOE/NNSA.

  16. Anomalous thermal expansion in the metallic phase of SmS under high pressure

    SmS exhibits a pressure-induced phase transition at 0.6 GPa from a semiconducting state to a rather metallic state accompanied with a change of Sm valence and volume compression. Using the X-ray diffraction technique under high pressures, we found local minima of the lattice constant of SmS in the metallic phase up to near 2 GPa. The pressure region of the volume minima coincides with that of the low-temperature increase and the humps of electrical resistivity. We succeeded in reproducing the volume minima by a phenomenological model of a Schottky-type behavior due to electronic gap suppressed by pressure

  17. High-Pressure Neutron Diffraction Study of Hydrous Phases

    Xu, H.; Zhu, J.; Zhang, J.; Hickmott, D.; Zhao, Y.

    2013-12-01

    Mineral phases containing water in the form of H2O or/and OH- are of considerable interest for many geological applications. For example, significant amounts of water are carried into the mantle via subduction of oceanic crust that contains hydrous minerals (such as serpentine). Thus studying hydrous minerals at elevated pressure (P) and temperature (T) is important in determining the mode and fate of water in the Earth's interior. Another example is gas hydrates, which are found in oceanic floor sediments, permafrost and the outer solar system. As these phases are stable only at high-P and/or low-T conditions, determination of their formation/decomposition kinetics and mechanisms require in situ high-P low-T capabilities. Because neutrons are sensitive to hydrogen (and its isotopes), high-pressure neutron diffraction is a powerful tool for such studies. Using the high-P, high-T or low-T apparatuses coupled with time-of-flight neutron diffraction, we have investigated the structures and stability of several simple hydroxides (e.g., brucite) and gas hydrates. Rietveld analysis of the obtained data allowed determination of unit-cell parameters, atomic positions and atomic displacement parameters at various P/T conditions. The bulk moduli, thermal expansion coefficients and other thermo-mechanical parameters have been determined, and the kinetics of dehydration and phase stability relations been discussed.

  18. Structural phase transitions of sodium nitride at high pressure

    Vajenine, G. V.; Wang, X.; Efthimiopoulos, I.; Karmakar, S.; Syassen, K.; Hanfland, M.

    2009-06-01

    The structural evolution of recently characterized sodium nitride Na3N as a function of pressure was investigated at room temperature by the angle-dispersive powder x-ray diffraction in a diamond-anvil cell up to 36 GPa. The rather open cubic anti- ReO3 -type structure stable at ambient pressure is followed by a series of four high-pressure modifications. Along the route, the coordination number for the nitride anion increases from 6 in Na3N-I to 8 in hexagonal Li3N -type Na3N-II , 9 in orthorhombic anti- YF3 -type Na3N-III , 11 in hexagonal Cu3P -type Na3N-IV , and finally 14 in cubic Li3Bi -type Na3N-V structures. The experimental data are compared to the results of total-energy calculations and are discussed with regard to the structural details of the five phases and their equations of state.

  19. High pressure equation of state for condensed phase thermodynamics

    Nogva, Stig-Erik

    2012-01-01

    In this study a search for an equation of state (EOS) that accurately predicts solids behaviour at both high pressure and temperature has been performed. Firstly, several two-parameter isothermal EOSs for solids under high pressure were investigated. The EOSs evaluated were the Murnaghan, Birch?Murnaghan, Vinet and pseudo-spinodal. The input parameters needed were found through parameter fitting of experimental data. The parameter fitting was done through a second order Murnagh...

  20. A New High Pressure Phase and the Equation of State of YbH2

    Staun Olsen, J.; Buras, B.; Gerward, Leif;

    1984-01-01

    High-pressure X-ray diffraction studies have been performed on YbH2 up to 28 GPa. A first order phase transition from an orthorhombic structure to a collapsed hexagonal structure with c/a = 1.34 has been observed at about 15 GPa. The transition is accompanied by a 5.2% decrease in volume. Fitting...... the V(P) data to Murnaghan's equation of state yields the bulk modulus B0 = 40.2 GPa and its pressure derivative B'0 = 4.75 for the orthorhombic phase. For the hexagonal phase we find the bulk modulus to be B = B0 = 138 GPa independent of pressure, i.e. B'0 = 0....

  1. High pressure behavior of P2O5 crystalline modifications: compressibility, elastic properties and phase transitions

    Solid phases of the P2O5 compound have rarely been studied under high pressure to date due to their record-high hygroscopicity. We present the results of in situ x-ray diffraction study of the structure of P2O5 molecular and polymeric modifications under pressures up to 11 GPa, as well as the results of an ultrasonic study of a molecular phase up to 2 GPa. At low pressures (0.3–0.7 GPa), there is a structural transformation in the molecular phase accompanied by a significant (7–8%) density increase. This phase transition is accompanied by a large increase of both the shear modulus (by 30–40%) and bulk modulus (by 20–25%). Compression curves of the molecular and polymeric covalent phases asymptotically converge to each other at 9–10 GPa and reach a density of 3.6–3.7 g cm−3. The polymeric modification is ‘typical’ for covalent oxides values of the bulk modulus and its derivative: B ≈ 35–40 GPa, B′P ≈ 3–4. The molecular phase has quite small values of the bulk and shear moduli (B ≈ 12 GPa, G ≈ 5 GPa). (paper)

  2. Unusually large structural stability of terbium oxide phase under high pressure

    High-pressure X-Ray diffraction studies on terbium oxide have been carried out up to a pressure of ∼35 GPa in a diamond anvil cell at room temperature. Terbium oxide, which exhibits the fluorite structure at ambient conditions, remains stable in its fluorite form up to a pressure of ∼27 GPa. Above 27 GPa, it undergoes a structural phase transition accompanied with broadening and appearance of new diffraction peaks. The large structural stability of the compound under pressure is thus unusual when compared with other rare earth sesquioxides, and has been attributed to the presence of Tb4+ ions. The XPS spectra on the sample confirms the presence of Tb4+ ions. The bulk modulus and its pressure derivative of the parent phase are evaluated and reported.

  3. High-pressure phase relations of CsD2PO4

    The high-pressure phase diagram of CsD2PO4 to 4.5 GPa and temperatures between 0 and 4700C is reported. Comparisons are made with CsH2PO4 and correlated with the isotope effect on the high-temperature high-pressure phase relations of KH2PO4

  4. High-pressure phases and compressibility of neptunium and plutonium compounds

    In this paper the diamond anvil technique for generation of pressure and its potential are briefly introduced. An overview is given on recent studies of the behavior of neptunium and plutonium compounds of the Bl (NaCl) and Cl (CaF2) types under high pressure. Most Bl-type compounds adopt the B2 (CsCl) form as a high-pressure structure, but tetragonal and rhombohedral high-pressure phases occur as well. Orthorhombic high-pressure phases exist for the dioxides. Bulk moduli were determined for all compounds studied. PuO2 is less compressible than dioxides of lighter actinides

  5. High pressure phase transitions for CdSe

    Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun

    2014-05-01

    The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.

  6. High pressure phase transition and elastic properties of Lutetium chalcogenide

    Seddik, T., E-mail: sedik_t@yahoo.f [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Semari, F. [Physics Department, Faculty of Sciences, University of Sidi-Bel-Abbes, 22000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.f [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterisation, Department of Physics, Faculty of Sciences, University of Setif (Algeria); Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2010-01-01

    Using first-principles density functional calculation, the pressure induced structural phase transformation and mechanical properties of NaCl type (B1) structure in Lutetium chalcogenides (LuX: X=S, Se, Te) were studied by means of the full-potential augmented plane wave plus local orbitals (FP-APW+lo) method. The calculations were performed within the generalized gradient approximation (GGA) for the exchange-correlation potential. The calculated ground state properties such us lattice constants agree quit well with the experimental findings. We have determined the full set of first-order elastic constants and their pressure dependence, which have not been calculated and measured yet. The Debye temperature is estimated from the average sound velocity. To our knowledge this is the first quantitative theoretical prediction of the structural phase transition and elastic properties for these compounds and still awaits experimental confirmations.

  7. High pressure phase transition and elastic properties of Lutetium chalcogenide

    Using first-principles density functional calculation, the pressure induced structural phase transformation and mechanical properties of NaCl type (B1) structure in Lutetium chalcogenides (LuX: X=S, Se, Te) were studied by means of the full-potential augmented plane wave plus local orbitals (FP-APW+lo) method. The calculations were performed within the generalized gradient approximation (GGA) for the exchange-correlation potential. The calculated ground state properties such us lattice constants agree quit well with the experimental findings. We have determined the full set of first-order elastic constants and their pressure dependence, which have not been calculated and measured yet. The Debye temperature is estimated from the average sound velocity. To our knowledge this is the first quantitative theoretical prediction of the structural phase transition and elastic properties for these compounds and still awaits experimental confirmations.

  8. On the high-pressure superconducting phase in platinum hydride

    Szczȩśniak, D.; Zemła, T. P.

    2015-08-01

    Motivated by the ambiguous experimental data for the superconducting phase in silane (SiH4), which may originate from platinum hydride (PtH), we provide a theoretical study of the superconducting state in the latter alloy. The quantitative estimates of the thermodynamics of PtH at 100 GPa are given for a wide range of Coulomb pseudopotential values ({μ }*) within the Eliashberg formalism. The obtained critical temperature value ({T}{{C}}\\in for {μ }*\\in ) agrees well with the experimental TC for SiH4, which may be ascribed to PtH. Moreover, the calculated characteristic thermodynamic ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory, implying the occurrence of strong-coupling and retardation effects in PtH. We note that our results may be of high relevance for future theoretical and experimental studies on hydrides.

  9. Structural phase transition of BaZrO{sub 3} under high pressure

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Zhang, Huafang; Jiang, Shuqing; Zou, Bo; Cui, Tian; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-03-28

    We studied the phase transition behavior of cubic BaZrO{sub 3} perovskite by in situ high pressure synchrotron X-ray diffraction experiments up to 46.4 GPa at room temperature. The phase transition from cubic phase to tetragonal phase was observed in BaZrO{sub 3} for the first time, which takes place at 17.2 GPa. A bulk modulus 189 (26) GPa for cubic BaZrO{sub 3} is derived from the pressure–volume data. Upon decompression, the high pressure phase transforms into the initial cubic phase. It is suggested that the unstable phonon mode caused by the rotation of oxygen octahedra plays a crucial role in the high pressure phase transition behavior of BaZrO{sub 3}.

  10. Mechanical behaviors and phase transition of Ho2O3 nanocrystals under high pressure

    Mechanical properties and phase transition often show quite large crystal size dependent behavior, especially at nanoscale under high pressure. Here, we have investigated Ho2O3 nanocrystals with in-situ x-ray diffraction and Raman spectroscopy under high pressure up to 33.5 GPa. When compared to the structural transition routine cubic -> monoclinic -> hexagonal phase in bulk Ho2O3 under high pressure, the nano-sized Ho2O3 shows a much higher onset transition pressure from cubic to monoclinic structure and followed by a pressure-induced-amorphization under compression. The detailed analysis on the Q (Q = 2π/d) dependent bulk moduli reveals the nanosized Ho2O3 particles consist of a clear higher compressible shell and a less compressible core. Insight into these phenomena shed lights on micro-mechanism studies of the mechanical behavior and phase evolution for nanomaterials under high pressure, in general.

  11. High-Pressure Induced New Phases and Properties in Typical Molecular Systems

    Cui, Tian

    2013-06-01

    High pressure introduces new phases by the rearrangement of atoms and reconfigurations of electronic states in materials, often with new physical and chemical phenomena. Study of the new phases in typical molecular systems under high pressure is an interesting subject, such as energy storage materials of solid hydrogen and polymeric nitrogen, hydrogen-rich compound with high-Tc superconductivity under high pressure, high pressure induced metallization of hydrogen, etc. High-pressure structures and pressure-induced phase transitions in the typical molecular solids, such as solid iodine, CHBr3, N2/CN, HBr/HCl, hydrogen-rich compounds (H2S, ZrH2, AsH3, BaReH9, etc.), and group IVA hydrides (Si2H6, Ge2H6, Sn2H6, etc.) are investigated extensively by means of first-principles density functional theory and extensive prediction strategies (molecular dynamics simulation, simulated annealing, soft mode phase transition, random structure-searching method and evolutionary methodology etc.). The new structures and new properties derived from pressure-induced phase transitions in these typical molecular systems have been observed. It is showed that high pressure provides a path for producing new materials with new properties.

  12. High pressure structural phase transitions of TiO2 nanomaterials

    Quan-Jun, Li; Bing-Bing, Liu

    2016-07-01

    Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α-PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

  13. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  14. High-pressure phases of group-IV, III-V, and II-VI compounds

    Mujica, A.; Rubio Secades, Ángel; A. Muñoz; Needs, R. J.

    2003-01-01

    Advances in the accuracy and efficiency of first-principles electronic structure calculations have allowed detailed studies of the energetics of materials under high pressures. At the same time, improvements in the resolution of powder x-ray diffraction experiments and more sophisticated methods of data analysis have revealed the existence of many new and unexpected high-pressure phases. The most complete set of theoretical and experimental data obtained to date is for the group-IVA elements ...

  15. The influence of peak shock stress on the high pressure phase transformation in Zr

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  16. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems

    Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min

    1996-01-01

    mixing rule to the energy parameter "a", (2) apply the revised MPT model (MPT2 model) to predict the effects of the coexisting water/formation water phase on the high-pressure phase behavior of reservoir oils/gas condensates, of which no experimental data is available.The predicted results indicate that...

  17. Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis

    van Bennekom, Joost G.; Winkelman, Jozef G. M.; Venderbosch, Robertus H.; Nieland, Sebastiaan D. G. B.; Heeres, Hero J.

    2012-01-01

    A solution method was developed to calculate the simultaneous phase and chemical equilibria in high-pressure methanol synthesis (P = 20 MPa, 463 phase and include dew point calculations. A modification of the

  18. High Pressure Raman Scattering Study on the Phase Stability of DyVO4

    Patel, Nishant N.; Garg, Alka B.; Meenakshi, S.; Wani, B. N.; Sharma, S. M.

    2011-07-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate DyVO4 upto 22 GPa. Abrupt changes and appearance of new modes were noted in Raman spectrum above 8 GPa with two phase coexistence over a pressure range of about 8-13 GPa The phase transition was found to be irreversible when pressure is released.

  19. Phase Transformation of BN Nanoparticles Under High Pressure Low Temperature Conditions

    Chen, Z.; Lai, Z. F.; Li, K.; Cui, D. L.; Lun, N.; Wang, Q. L.; Jiang, M. H.

    Phase transformation of BN nanoparticles under high pressure (580~860MPa) and low temperature (270~325°C) hot press conditions was investigated. It was found that the contents of orthorhombic boron nitride (oBN) and cubic boron nitride (cBN) increased with the increase of temperature and the prolonging of hot pressing time under high pressure conditions. At the same time, because of the intergrowth of hBN, oBN and cBN. there are strong interactions among these three phases.

  20. Nanosize effects assisted synthesis of the high pressure metastable phase in ZrO2

    Li, Quanjun; Zhang, Huafang; Liu, Ran; Liu, Bo; Li, Dongmei; Zheng, Lirong; Liu, Jing; Cui, Tian; Liu, Bingbing

    2016-01-01

    The size effects on the high pressure behaviors of monoclinic (MI) ZrO2 nanoparticles were studied using in situ high pressure synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). A size-dependent phase transition behavior under high pressure was found in nanoscale ZrO2. The normal phase transition sequence of MI-orthorhombic I (OI)-orthorhombic II (OII) occurs in 100-300 nm ZrO2 nanoparticles, while only the transition of MI-OI exists in ultrafine ~5 nm ZrO2 nanoparticles up to the highest experimental pressure of ~52 GPa. This indicates that the size effects preclude the transition from the OI to the OII phase in ~5 nm nanoparticles. Upon decompression, the OII and OI phases are retained down to ambient pressure, respectively. This is the first observation of the pure OI phase ZrO2 under ambient conditions. The bulk moduli of the MI ZrO2 nanoparticles were determined to be B0 = 192 (7) GPa for the 100-300 nm nanoparticles and B0 = 218 (12) GPa for the ~5 nm nanoparticles. We suggest that the significant high surface energy precludes the transition from the OI to the OII phase and the nanosize effects enhance the incompressibility in the ultrafine ZrO2 nanoparticles (~5 nm). Our study indicates that this is a potential way of preparing novel nanomaterials with high pressure structures using nanosize effects.

  1. Structural and magnetic phase transitions in NdCoAsO under high pressures

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  2. High-pressure Sapphire Cell for Phase Equilibria Measurements of CO2/Organic/Water Systems

    Pollet, Pamela; Amy L. Ethier; Senter, James C.; Charles A. Eckert; Charles L. Liotta

    2014-01-01

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although te...

  3. Raman study of plastic crystal phase of cyclooctanol under high pressure with different compression rate

    Ren, Yufen; Cheng, Xuerui; Yang, Kun; Zhu, Xiang; Li, Haining; Wang, Yongqiang

    2015-12-01

    The cyclooctanol (C8H16O) has been investigated under high pressure with different compression rate using Raman spectroscopy. With lower compression rate, two-phase transformations are observed at around 0.4 and 1.1 GPa respectively. At around 0.4 GPa, solidification was observed while no any change presents in the Raman spectra, indicating plastic crystal phase formed. Further compressing to 1.1 GPa, most Raman peaks become sharper and more intense. Additionally, several new peaks present, meaning one ordered crystal phase occur at this pressure. While with higher compression rate, cyclooctanol maintains the liquid state during compression, indicating superpressuring liquid present. The result indicates compression rate plays one important role in phase transition of cyclooctanol. Finally, the phase transitions under high pressure are reversible. After depressurization to the ambient condition, the vibration spectra will return back to the original structure.

  4. High pressure phase transitions in scheelite structured fluoride: ErLiF4

    Our synchrotron based angle dispersive x-ray diffraction studies on scheelite structured ErLiF4 show that it undergoes two phase transitions, at ~11.5 and ~15.5 GPa to lower symmetry monoclinic phases, before becoming (irreversibly) amorphous at ~28 GPa. The first high pressure phase transformation to the fergusonite structure (space group I2/a) is found to be of thermodynamically second order. The second high pressure phase could be fitted to the P2/c space group, but detailed analysis rules out the wolframite structure (P2/c space group), common to many scheelite compounds under high pressures. We also suggest that despite the ionic character of the LiF4 tetrahedra, the compressibility of LnLiF4 (Ln=Eu–Lu) kind of scheelites is more affected by the LnF8 dodecahedra than the LiF4 tetrahedra. - Graphical abstract: Volume per formula unit of the scheelite and high pressure phases of ErLiF4 as a function of pressure. - Highlights: • ErLiF4 transforms to fergusonite and P2/c phase at high pressure. • Polyhedra of LnF8 affects compressibility of LnLiF4 (Ln=Eu–Lu) more than LiF4. • Amorphization pressure varies inversely in LnLiF4 with ionic size of Ln cation. • In ErLiF4a/c ratio reduces with pressure in contrast to reported increase in YLiF4

  5. Phase transitions in delafossite CuLaO2 at high pressures

    Structural stability of a transparent conducting oxide CuLaO2 at high pressures is investigated using in-situ Raman spectroscopy, electrical resistance, and x-ray diffraction techniques. The present Raman investigations indicate a sequence of structural phase transitions at 1.8 GPa and 7 GPa. The compound remains in the first high pressure phase when pressure is released. Electrical resistance measurements carried out at high pressures confirm the second phase transition. These observations are further supported by powder x-ray diffraction at high pressures which also showed that a-axis is more compressible than c-axis in this compound. Fitting the pressure dependence of unit cell volume to 3rd order Birch-Murnaghan equation of state, zero pressure bulk modulus of CuLaO2 is determined to be 154(25) GPa. The vibrational properties in the ambient delafossite phase of CuLaO2 are investigated using ab-initio calculations of phonon frequencies to complement the Raman spectroscopic measurements. Temperature dependence of the Raman modes of CuLaO2 is investigated to estimate the anharmonicity of Raman modes

  6. The high-pressure phase of alumina and implications for Earth's D″ layer

    Artem R. Oganov; Ono, Shigeaki

    2005-01-01

    Using ab initio simulations and high-pressure experiments in a diamond anvil cell, we show that alumina (Al2O3) adopts the CaIrO3-type structure above 130 GPa. This finding substantially changes the picture of high-pressure behavior of alumina; in particular, we find that perovskite structure is never stable for Al2O3 at zero Kelvin. The CaIrO3-type phase suggests a reinterpretation of previous shock-wave experiments and has important implications for the use of alumina as a window material i...

  7. Phase transitions in Cd3P2 at high pressures and high temperatures

    Yel'kin, F.S.; Sidorov, V.A.; Waskowska, A.;

    2008-01-01

    The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression. The experimen......The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression....... The experimental zero-pressure bulk modulus of the low-pressure phase is 64.7(7) GPa, which agrees quite well with the calculated value of 66.3 GPa using the tight-binding linear muffin-tin orbital method within the local density approximation. Tentatively, the high-pressure phase has an orthorhombic crystal...... structure with space group Pmmn (#59). The relative volume change at the phase transition is Delta V/V= -5.5%. Amorphization of the sample occurs above 25 GPa. A P-T phase diagram of Cd3P2 has been constructed. A metastable phase is observed at ambient conditions after heating the sample to above 600 K...

  8. First-principles prediction of a high-pressure hydrous phase of AlOOH

    Tsuchiya, Jun; Tsuchiya, Taku

    2011-02-01

    We have predicted a high-pressure hydrous phase of AlOOH stabilizing at ˜170 GPa by first-principles density-functional calculations. The structure predicted has a cubic pyrite-type AlO2 framework with interstitial H atoms forming symmetric hydrogen bonds, whose symmetry is assigned to the space group Pa3¯ (No. 205). The predicted δ-AlOOH to the pyrite-type phase sequence is analogous to a recent theoretical and experimental discovery of high-pressure phase evolution in InOOH and invokes the high-pressure phase relationship in SiO2, but the transition pressure is much greater in AlOOH than in InOOH. Relative enthalpies also indicate that the dissociation of this phase into a CaIrO3-type phase of Al2O3 plus ice X finally occurs at a further pressure of 300 GPa. The present results suggest that AlOOH has an unexpectedly wide stability range in pressure compared to common hydrous materials.

  9. Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy

    Raman spectra of Y2O3 single crystal were recorded at room temperature in a diamond anvil cell up to a pressure of 22 GPa. Two phase transitions were detected at pressures of 12 and 29 GPa. The different phases were identified with the three structures exhibited by rare-earth (RE) sesquioxides: cubic (C-type), monoclinic (B-type), and rhombohedral (A-type) phases. The first transition corresponds to the C rarrow B transformation and the second transition to the B rarrow A transformation. The reversibility of the two phase transitions as well as the evolution of the Y-O bonds under high pressure is discussed

  10. Structural Phase Transitions in AuIn2 at High Pressure

    Clark, S. M.; Speziale, S.; Voltolini, M.; Godwal, B. K.; Jeanloz, R.

    2007-12-01

    The intermetallic compound AuIn2 provides an analog for the high-pressure phases of SiO2, as it is initially in the Fm3m fluorite (CaF2) structure. Synchrotron-based angular-dispersive x-ray diffraction (Advanced Light Source beamline 12.2.2) reveals subtle anomalies in the pressure variation of normalized stress (F) versus Eulerian strain (f) around 3 GPa, coinciding with anomalies observed in fusion, transport and optical data, and potentially associated with the onset of an electronic phase transition. Our diamond-cell experiments (gasketted sample with methanol-ethanol pressure medium) show continuous broadening of diffraction peaks beyond 12 GPa, leading to amorphization near 24 GPa. On further increase of pressure, a crystalline phase appears around 28 GPa and persists upon unloading from 30 GPa to about 5 GPa, then reverting back to the original CaF2 phase. We find the sequence of pressure-induced phase transition documented for CaF2 (fluorite structure Fm3m - PbCl2 Pnma - Ni2In-type P63/mmc and a combination of PbCl2 and Ni2In) to be inadequate in fitting the observed high-pressure diffraction patterns of AuIn2. However, the post-cotunnite structure of PbCl2, BaCl2, BaBr2 and SnCl2 (P1121/c, Z=8) is able to account for most of the prominent peaks in our high-pressure diffraction patterns (a=10.983, b=9.875, c=4.350, À=96.6). Many oxides of geophysical interest occur in the CaF2 structure, and study of intermetallic compounds such as AuIn2 may prove useful in suggesting high-pressure metallic phases for these oxides.

  11. Phase stability of ε and γ HNIW (CL-20) at high-pressure and temperature

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ε, ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 deg. C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 deg. C then underwent a transition to the gamma phase above 125 deg. C and then thermal decomposition occurred above 150 deg. C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 deg. C. Pressure--volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 deg. C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state

  12. High pressure phase transition in Zr–Ni binary system: A first principle study

    Mukherjee, Debojyoti, E-mail: debojyoti@barc.gov.in; Sahoo, B.D.; Joshi, K.D.; Gupta, Satish C.

    2015-11-05

    Total energy calculations have been performed on zirconium–nickel (with 50% nickel by atom) binary system to examine its structural stability under high pressure. The evolutionary structure search method in conjunction with density functional theory based projector augmented wave (PAW) method suggested that at zero pressure an orthorhombic phase with space group symmetry Cmcm is the lowest enthalpy structure, in agreement with the experiments. Further, it has been predicted that upon compression at ∼10 GPa, this structure will transform to a lower symmetry triclinic phase (space group P-1) which will remain stable up to ∼50 GPa, the maximum pressure of the present calculations. To support the results of our static lattice calculations, we performed lattice dynamic calculations also on Cmcm and P-1 structures. Lattice dynamic calculations correctly showed that at ambient condition the Cmcm phase is dynamically stable. Further, these calculations carried around the Cmcm to P-1 transition pressure predicted that the Cmcm phase will become unstable dynamically due to failure of acoustic zone boundary phonons, suggesting that the Cmcm to P-1 transition is phonon driven. For P-1 phase our calculations showed that this structure is dynamically stable not only at high pressures but also at ambient condition, indicating that at pressure lower than 10 GPa this phase could be a metastable structure. Further, we have calculated the elastic constants for both the phase at various pressures. - Highlights: • Pressure induced phonon driven orthorhombic to triclinic phase transformations in Zr–Ni binary system at ∼10 GPa. • Elastic and lattice dynamic stability of orthorhombic and triclinic phase. • Exploitation of evolutionary structure searching method to explore high pressure phase of Zr–Ni material.

  13. High pressure-low temperature phase diagram of barium: Simplicity versus complexity

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo; Li, Quan; Ma, Yanming

    2015-11-01

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  14. The Phase Transition of Eu2O3 under High Pressures

    JIANG Sheng; BAI Li-Gang; LIU Jing; XIAO Wan-Sheng; LI Xiao-Dong; LI Yan-Chun; TANG Ling-Yun; ZHANG Yu-Feng; ZHANG De-Chun; ZHENG Li-Rong

    2009-01-01

    Pressure-induced phase transition of cubic Eu2Oa is studied by angle-dispersive x-ray diffraction (ADXD) up to 42.3 GPa at room temperature. A structural transformation from a cubic phase to a hexagonal phase is observed,which starts at 5.0 GPa and finishes at about 13.1 GPa. The phase transition leads to a volume collapse of 9.0% at 8.6 GPa. The hexagonal phase of Eu2O3 maintains stable up to the highest experiment pressure. After release of pressure, the high-pressure phase transforms to a monoclinic phase. The pressure-volume data are fitted with the Birch-Murnaghan equation of state. The bulk moduli obtained upon compression from the fitting are 145(2) GPa and 151(6) GPa for the cubic and hexagonal phases, respectively, when their first pressure derivatives are fixed at 4.

  15. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  16. High-pressure high-temperature phase diagram of organic crystal paracetamol

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  17. High-pressure and high-temperature study of the phase transition in anhydrite

    The high-pressure and high-temperature behaviors of anhydrite (CaSO4) are studied up to 53.5 GPa and 1800 K using double-sided laser heating Raman spectroscopy and x-ray diffraction in diamond anvil cells. The evidence of phase transition from an anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. Another phase transition and a change in color of the sample from transparent to black have been also observed at a pressure of 33.2 GPa after laser heating. The new phase after laser heating persists to 53.5 GPa and 1800 K

  18. Free energy model for solid high-pressure phases of carbon.

    Schöttler, Manuel; French, Martin; Cebulla, Daniel; Redmer, Ronald

    2016-04-13

    Analytic free energy models for three solid high-pressure phases--diamond, body centered cubic phase with eight atoms in the unit cell (BC8), and simple cubic (SC)--are developed using density functional theory. We explicitly include anharmonic effects by performing molecular dynamics simulations and investigate their density and temperature dependence in detail. Anharmonicity in the nuclear motion shifts the phase transitions significantly compared to the harmonic approximation. Furthermore, we apply a thermodynamically constrained correction that brings the equation of state in accordance with diamond anvil cell experiments. The performance of our thermodynamic functions is validated against Hugoniot experiments. PMID:26974530

  19. Elements, Oxides, Silicates: High Pressure Phases With Implications for the Earth's Interior [Book Review

    Ahrens, Thomas J.

    1988-01-01

    A vitally important aspect of understanding the composition, structure, and processes acting within the solid Earth is obtaining a complete as possible knowledge of the fields of stability of the Earth's component minerals and their high-pressure polymorphs with respect to pressure and temperature. Liu and Bassett's book is the first effort which has focused on bringing together the available phase diagrams for the elements, oxides, and silicates that are relevant to the understanding of Eart...

  20. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  1. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure.

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30-70 K in pressure range of 100-170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50-70 K in pressure range of 100-150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  2. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  3. A new high-pressure phase transition in natural Fe-bearing orthoenstatite

    Zhang, Jin S.; Dera, Przemyslaw; Bass, Jay D. (UC); (UIUC)

    2016-07-29

    Single-crystal X-ray structure refinements have been carried out on natural Fe-bearing orthoenstatite (OEN) at pressures up to 14.53 GPa. We report a new high-pressure phase transition from OEN to a monoclinic phase (HPCEN2) with space group P2{sub 1}/c, with a density change of {approx}1.9(3)%. The HPCEN2 phase is crystallographically different from low-pressure clinoenstatite (LPCEN), which also has P2{sub 1}/c symmetry. Upon release of pressure HPCEN2 reverts to OEN, and the transition pressure is bracketed between 9.96 and 14.26 GPa at room temperature. We find no evidence for a C2/c phase at high pressure. The lattice constants for the new phase at 14.26 GPa are a = 17.87(2), b = 8.526(9), c = 4.9485(10) {angstrom}, {beta} = 92.88(4){sup o} [{rho} = 3.658(9) g/cm{sup 3}]. Refinement of the new structure indicates rotation of tetrahedral chain as the key characteristic of this transition. This experiment points to the possibility of OEN and HPCEN2 as the stable phases in Earth's upper mantle.

  4. High-Pressure Low-Symmetry Phases of Cesium Halides from First Principle Techniques

    Nardelli, M. Buongiorno; Baroni, S.; Giannozzi, P.

    1994-01-01

    The relative stability of different high-pressure phases of various Cesium Halides is studied from first principles and analyzed using the Landau theory of phase transitions. We present results for CsI, CsBr, and CsCl up to pressures of about 100 GPa. A cubic-to-orthorhombic transition, driven by the softening of an acoustic phonon at the M point of the Brillouin zone, is competing with the cubic-to-tetragonal martensitic transition typical of these compounds. The phonon softening takes place...

  5. 'Devil's Staircase'-Type Phase Transition in NaV2O5 under High Pressure

    The 'devil's staircase'-type phase transition in the quarter-filled spin-ladder compound NaV2O 5 has been discovered at low temperature and high pressure by synchrotron radiation x-ray diffraction. A large number of transitions are found to successively take place among higher-order commensurate phases with 2a x 2b x zc type superstructures. The observed temperature and pressure dependence of modulation wave number qc, defined by 1/z, is well reproduced by the axial next nearest neighbor Ising model. The qc is suggested to reflect atomic displacements presumably coupled with charge ordering in this system

  6. Free energy model for solid high-pressure phases of carbon

    Analytic free energy models for three solid high-pressure phases—diamond, body centered cubic phase with eight atoms in the unit cell (BC8), and simple cubic (SC)—are developed using density functional theory. We explicitly include anharmonic effects by performing molecular dynamics simulations and investigate their density and temperature dependence in detail. Anharmonicity in the nuclear motion shifts the phase transitions significantly compared to the harmonic approximation. Furthermore, we apply a thermodynamically constrained correction that brings the equation of state in accordance with diamond anvil cell experiments. The performance of our thermodynamic functions is validated against Hugoniot experiments. (paper)

  7. Development of high pressure two-phase choked flow analysis methodology in complex piping system

    Choked flow mechanism, characteristics of two-phase flow sound velocity and compressibility effects on flow through various piping system components are studied to develop analysis methodology for high pressure two-phase choked flow in complex piping system which allows choking flow rate evaluation and piping system design related analysis. Piping flow can be said choked if Mach number is equal to 1 and compressibility effects can be accounted through modified incompressible formula in momentum equation. Based on these findings, overall analysis system is developed to study thermal-hydraulic effects on steady-state piping system flow and future research items are presented. (Author)

  8. Free energy model for solid high-pressure phases of carbon

    Schöttler, Manuel; French, Martin; Cebulla, Daniel; Redmer, Ronald

    2016-04-01

    Analytic free energy models for three solid high-pressure phases—diamond, body centered cubic phase with eight atoms in the unit cell (BC8), and simple cubic (SC)—are developed using density functional theory. We explicitly include anharmonic effects by performing molecular dynamics simulations and investigate their density and temperature dependence in detail. Anharmonicity in the nuclear motion shifts the phase transitions significantly compared to the harmonic approximation. Furthermore, we apply a thermodynamically constrained correction that brings the equation of state in accordance with diamond anvil cell experiments. The performance of our thermodynamic functions is validated against Hugoniot experiments.

  9. The high-pressure phase of alumina and implications for Earth's D″ layer

    Oganov, Artem R.; Ono, Shigeaki

    2005-01-01

    Using ab initio simulations and high-pressure experiments in a diamond anvil cell, we show that alumina (Al2O3) adopts the CaIrO3-type structure above 130 GPa. This finding substantially changes the picture of high-pressure behavior of alumina; in particular, we find that perovskite structure is never stable for Al2O3 at zero Kelvin. The CaIrO3-type phase suggests a reinterpretation of previous shock-wave experiments and has important implications for the use of alumina as a window material in shock-wave experiments. In particular, the conditions of the stability of this phase correspond to those at which shock-wave experiments indicated an increase of the electrical conductivity. If this increase is caused by high ionic mobility in the CaIrO3-type phase of Al2O3, similar effect can be expected in the isostructural postperovskite phase of MgSiO3 (which is the dominant mineral phase in the Earth's D″ layer). The effect of the incorporation of Al on the perovskite/postperovskite transition of MgSiO3 is discussed. PMID:16040809

  10. Phase transition induced strain in ZnO under high pressure.

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-01-01

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure. PMID:27173609

  11. The dynamic response of high pressure phase of Si using phase contrast imaging and X-ray diffraction

    Lee, H. J.; Galtier, E.; Xing, Z.; Gleason, A.; Granados, E.; Tavella, F.; Schropp, A.; Seiboth, F.; Schroer, C.; Higginbotham, A.; Brown, S.; Arnold, B.; Curiel, R.; Peterswright, D.; Fry, A.; Nagler, B.

    2015-11-01

    Static compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including body-centered tetragonal phase, an orthorhombic phase, and a hexagonal primitive phase. However, the dynamic response of silicon at high pressure is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. With respect to the elastic and plastic compression, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudoflat top shape creates high pressures up to 60 GPa. We also measure the crystal structure by observing the X-ray diffraction orthogonal to the shock propagation direction over a range of pressure. In this talk, we will present the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and will discuss the dynamic response of Si in high pressure phases

  12. Phase transformation and fluorescent enhancement of ErF3 at high pressure

    Li, Wentao; Ren, Xiangting; Huang, Yanwei; Yu, Zhenhai; Mi, Zhongying; Tamura, Nobumichi; Li, Xiaodong; Peng, Fang; Wang, Lin

    2016-09-01

    Pressure-induced phase transformation and fluorescent properties of ErF3 were investigated here using in-situ synchrotron X-ray diffraction and photoluminescence up to 32.1 GPa at room temperature. Results showed that ErF3 underwent a reversible pressure-induced phase transition from the β-YF3-type to the fluocerite LaF3-type at 9.8 GPa. The bulk moduli B0 for low- and high-pressure phases were determined to be 130 and 208 GPa, respectively. Photoluminescencent studies showed that new emission lines belonging to the transition of 2H11/2→4I15/2, 4S3/2→4I15/2, and 4F9/2→4I15/2 appeared during phase transition, suggesting pressure-induced electronic band splitting. Remarkably, significant pressure-induced enhancement of photoluminescence was observed, which was attributed to lattice distortion of the material under high pressure.

  13. High-Pressure Torsion of Ti: Synchrotron characterization of phase volume fraction and domain sizes

    Bolmaro, Raúl E.; Sordi, Vitor L.; Ferrante, Maurizio; Brokmeier, Heinz-Günter; Kawasaki, Megumi; Langdon, Terence G.

    2014-08-01

    Rods of grade 2 Ti were processed by Equal-Channel Angular Pressing (ECAP) (phi = 120° at 573 K) employing 2, 4 and 6 passes. The same billets were further deformed by High- Pressure Torsion (HPT) at room temperature, varying both the hydrostatic pressure (1 and 6 GPa) and the number of rotations (n = 1 and 5). The ECAP and HPT samples were studied by synchrotron radiation at DESY-Petra III GEMS line. On the ECAP samples, textures were thus determined while for both ECAP and HPT samples the measurements were further analyzed by MAUD. Domain sizes and phase volume fractions were determined as a function of the radial direction of the samples. Alpha and Omega phases were detected in different amounts depending mostly on hydrostatic pressure and shear deformation. These transition phases can be pressure-induced during HPT processing and the results of Vickers microhardness measurements were related to the processing parameters and to the amounts of these phases.

  14. High-pressure Phase Equilibria for Binary Ethanol System Containing Supercriticai CO2

    朱虎刚; 田宜灵; 陈丽; 秦颖; 冯季军

    2001-01-01

    High-pressure phase behavior of supercritical (SC) CO2+ethanol system was investigated at 333.2 K,348.2K, 353.2K, 368.2K, 413.2K and 453.2K and pressure from 2.0MPa to 14.3MPa. The measurement was carried out in a cylindrical autoclave with a moveable piston and a window for adjustment and observation of phase equilibria at given T and p. The samples were taken from two coexisting phases and were analyzed to obtain their compositions. It is shown that the solubility of SC CO2 in ethanol increases drastically with pressures at the given temperature, but the content of ethanol in CO2-rich phase increase faintly.

  15. Anomalous phase transition of InN nanowires under high pressure

    Tang, Shun-Xi; Zhu, Hong-Yang; Jiang, Jun-Ru; Wu, Xiao-Xin; Dong, Yun-Xuan; Zhang, Jian; Yang, Da-Peng; Cui, Qi-Liang

    2015-09-01

    Uniform InN nanowires were studied under pressures up to 35.5 GPa by using in situ synchrotron radiation x-ray diffraction technique at room temperature. An anomalous phase transition behavior has been discovered. Contrary to the results in the literature, which indicated that InN undergoes a fully reversible phase transition from the wurtzite structure to the rocksalt type structure, the InN nanowires in this study unusually showed a partially irreversible phase transition. The released sample contained the metastable rocksalt phase as well as the starting wurtzite one. The experimental findings of this study also reveal the potentiality of high pressure techniques to synthesize InN nanomaterials with the metastable rocksalt type structure, in addition to the generally obtained zincblende type one. Project supported by the National Natural Science Foundation of China (Grant Nos. 50772043, 51172087, and 11074089).

  16. Structural phase transformations of GaN and InN under high pressure

    We present the results of an ab initio study of the relative stability of structural phases of GaN and InN materials at high pressures. Both the local density and generalized gradient approximations for the exchange-correlation potential have been used in the calculations. The wurtzite, zinc-blende and rocksalt structures are considered. Comparisons with the available experimental data reveal a roughly better agreement with respect to previous calculations. In many cases, the generalized gradient approximation results are found to differ significantly from those of the local density approximation

  17. A Steinberg-Guinan model for High-Pressure Carbon, Diamond Phase

    Orlikowski, D; Correa, A; Schwegler, E; Klepeis, J

    2007-07-27

    Since the carbon, diamond phase has such a high yield strength, dynamic simulations must account for strength even for strong shock waves ({approx} 3 Mbar). We have determined an initial parametrization of two strength models: Steinberg-Guinan (SG) and a modified or improved SG, that captures the high pressure dependence of the calculated shear modulus up to 10 Mbar. The models are based upon available experimental data and on calculated elastic moduli using robust density functional theory. Additionally, we have evaluated these models using hydrodynamic simulations of planar shocks experiments.

  18. Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

    Helen R. Mazzer

    2012-01-01

    Full Text Available High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] and carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60. Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K. As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.

  19. The high-pressure phase behavior and compressibility of 2,4,6-trinitrotoluene

    Stevens, Lewis L.; Velisavljevic, Nenad; Hooks, Daniel E.; Dattelbaum, Dana M. (LANL)

    2008-10-24

    The phase stability and isothermal compression behavior of 2,4,6-trinitrotoluene (TNT) have been established to 26.5 GPa using angle-dispersive x-ray diffraction. P-V isotherms derived from the high-pressure x-ray spectra displayed a slight density hysteresis around 4.0 GPa and a sharp discontinuity at - 20.0 GPa. The latter transition is ascribed to a monoclinic-to-orthorhombic first-order phase transition in TNT. The conversion of the isothermal P-V data to the shock velocity-particle velocity plane revealed a deviation from linearity at low u{sub p}, a cusp associated with the phase transition at high u{sub p}, and general agreement with the wealth of unreacted Hugoniot data on TNT.

  20. The high-pressure phase stability of 2,4,6-trinitrotoluene (TNT)

    Bowden, P. R.; Chellappa, R. S.; Dattelbaum, D. M.; Manner, V. W.; Mack, N. H.; Liu, Z.

    2014-05-01

    2,4,6-trinitrotoluene (TNT) is a widely used explosive that is relatively insensitive to initiation by shock loading. While the detonation properties of TNT have been extensively reported, the high pressure-temperature (P-T) stability of TNT has not been investigated in detail. At ambient conditions, TNT crystallizes in a monoclinic lattice (space group P21/a), and our previous X-ray diffraction (XRD) measurements at room temperature suggested a phase transition to orthorhombic (space group Pca21) at ~20 GPa. In this work, we have performed in-situ synchrotron XRD and vibrational spectroscopy measurements along the room temperature isotherm to investigate phase stabilities up to 18 GPa. While our Raman spectroscopy measurements indicate spectral changes at ~2 GPa, careful XRD measurements reveal that the monoclinic phase persists up to 10 GPa.

  1. The high-pressure phase stability of 2,4,6-trinitrotoluene (TNT)

    2,4,6-trinitrotoluene (TNT) is a widely used explosive that is relatively insensitive to initiation by shock loading. While the detonation properties of TNT have been extensively reported, the high pressure-temperature (P-T) stability of TNT has not been investigated in detail. At ambient conditions, TNT crystallizes in a monoclinic lattice (space group P21/a), and our previous X-ray diffraction (XRD) measurements at room temperature suggested a phase transition to orthorhombic (space group Pca21) at ∼20 GPa. In this work, we have performed in-situ synchrotron XRD and vibrational spectroscopy measurements along the room temperature isotherm to investigate phase stabilities up to 18 GPa. While our Raman spectroscopy measurements indicate spectral changes at ∼2 GPa, careful XRD measurements reveal that the monoclinic phase persists up to 10 GPa.

  2. Nanosecond Ultrasonics to Study Phase Transitions in Solid and Liquid Systems at High Pressure and Temperature

    Bonner, B P; Berge, P A; Carlson, S C; Farber, D L; Akella, J

    2007-03-21

    This report describes the development of a high-frequency ultrasonic measurement capability for application to the study of phase transitions at elevated pressure and temperature. We combined expertise in various aspects of static high-pressure technique with recent advances in wave propagation modeling, ultrasonic transducer development, electronic methods and broadband instrumentation to accomplish the goals of this project. The transduction and electronic systems have a demonstrated bandwidth of 400 MHz, allowing investigations of phenomena with characteristic times as short as 2.5 nS. A compact, pneumatically driven moissanite anvil cell was developed and constructed for this project. This device generates a high-pressure environment for mm dimension samples to pressures of 3 GPa. Ultrasonic measurements were conducted in the moissanite cell, an LLNL multi-anvil device and in a modified piston cylinder device. Measurements for water, and elemental tantalum, tin and cerium demonstrate the success of the methods. The {gamma}-{alpha} phase transition in cerium was clearly detected at {approx}0.7 GPa with 75 MHz longitudinal waves. These results have direct application to important problems in LLNL programs, as well as seismology and planetary science.

  3. Nanosecond Ultrasonics to Study Phase Transitions in Solid and Liquid Systems at High Pressure and Temperature

    This report describes the development of a high-frequency ultrasonic measurement capability for application to the study of phase transitions at elevated pressure and temperature. We combined expertise in various aspects of static high-pressure technique with recent advances in wave propagation modeling, ultrasonic transducer development, electronic methods and broadband instrumentation to accomplish the goals of this project. The transduction and electronic systems have a demonstrated bandwidth of 400 MHz, allowing investigations of phenomena with characteristic times as short as 2.5 nS. A compact, pneumatically driven moissanite anvil cell was developed and constructed for this project. This device generates a high-pressure environment for mm dimension samples to pressures of 3 GPa. Ultrasonic measurements were conducted in the moissanite cell, an LLNL multi-anvil device and in a modified piston cylinder device. Measurements for water, and elemental tantalum, tin and cerium demonstrate the success of the methods. The γ-α phase transition in cerium was clearly detected at ∼0.7 GPa with 75 MHz longitudinal waves. These results have direct application to important problems in LLNL programs, as well as seismology and planetary science

  4. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-07-01

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  5. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B. (UC); (Maryland)

    2016-07-29

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition, and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  6. High-pressure phase transitions of CaRhO3 perovskite

    Shirako, Yuichi; Kojitani, Hiroshi; Akaogi, Masaki; Yamaura, Kazunari; Takayama-Muromachi, Eiji

    2009-09-01

    High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6-27 GPa and temperatures of 1,000-1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m = 33.66(1) cm3/mol ( Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are -1.1 and -0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.

  7. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  8. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  9. High pressure Raman scattering study on the phase stability of LuVO 4

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S. N.; Tyagi, A. K.

    2009-07-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported.

  10. Turbulence modelling of high-pressure convective boiling two-phase flows

    This article is a contribution to the modelling of multidimensional high-pressure convective boiling two-phase flows relative to PWR's thermal hydraulics conditions. Postulating that the turbulence is one possible physical mechanism for heat removal from the wall towards the two-phase flow core, this work focuses on modelling turbulent transport terms in the momentum and energy balance equations. Using the pioneering work of Sato et al., the momentum and the energy balance equations are derived for a two-phase mixture. Such a system can be expressed as a combination of parameters, which include the local void fraction as well as the fluid velocity profile, the wall shear stress and the eddy diffusivity. By specifying a closure relation for this last parameter, a numerical solution can be obtained. As a preliminary step towards a numerical solution, the turbulent structure of the two-phase flow is expressed as a linear superposition of an inherent liquid turbulence and an additional one due to the bubble agitation. On the basis of this theory, the mixture velocity and temperature profiles can be predicted provided that the local void fraction and the wall shear stress are known. The model is then tested against the experimental data bank DEBORA (Garnier et al.,) which is devoted to the study of high pressure boiling flows. The first results are encouraging for the mechanical part but some discrepancies are observed on temperature profiles for boiling tests. This work should be continued in order to (i) improve the model especially for the thermal aspects and (ii) identify the key parameters responsible for the heat flux limitation (DNB). (author)

  11. Novel high-pressure phases of AlP from first principles

    Liu, Chao; Hu, Meng; Luo, Kun; Yu, Dongli; Zhao, Zhisheng; He, Julong

    2016-05-01

    By utilizing a crystal structure prediction software via particle swarm optimization, this study proposes three new high-pressure phases of aluminum phosphide (AlP) with high density and high hardness, in addition to previously proposed phases (wz-, zb-, rs-, NiAs-, β-Sn-, CsCl-, and Cmcm-AlP). These new phases are as follows: (1) an I 4 ¯ 3d symmetric structure (cI24-AlP) at 55.2 GPa, (2) an R 3 ¯ m symmetric structure (hR18-AlP) at 9.9 GPa, and (3) a C222 symmetric structure (oC12-AlP) at 20.6 GPa. Based on first-principle calculations, these phases have higher energetic advantage than CsCl- and β-Sn-AlP at ambient pressure. The independent elastic constants and phonon dispersion spectra are calculated to check the mechanical and dynamic stabilities of these phases. According to mechanical property studies, these new AlP phases have higher hardness than NiAs-AlP, and oC12-AlP has the highest hardness of 7.9 GPa. Electronic band structure calculations indicate that NiAs- and hR18-AlP have electrical conductivity. Additionally, wz-, zb-, and oC12-AlP possess semiconductive properties with indirect bandgaps, and cI24-AlP has a semiconductive property with a direct bandgap.

  12. The high pressure-temperature phase behavior of 2,4,6-trinitrotoluene (TNT)

    Bowden, Patrick; Chellappa, Raja; Dattelbaum, Dana; Manner, Virginia; Mack, Nathan; Liu, Zhenxian

    2013-06-01

    2,4,6-trinitrotoluene (TNT) is a widely used explosive that is relatively insensitive to initiation by shock loading. While the detonation properties of TNT have been extensively reported, the high pressure-temperature (P - T) stability of TNT has not been investigated in detail. In addition, there are no studies that have determined the effects of pressure on the stability of the liquid phase. At ambient conditions, TNT crystallizes in a monoclinic lattice (space group P21 / a) , and our previous x-ray diffraction (XRD) measurements at room temperature suggested a phase transition to orthorhombic (space group Pca21) at ~20 GPa. In this work, we have performed in situ synchrotron XRD and vibrational spectroscopy measurements at various P - T conditions along isothermal and isobaric pathways to confirm previously reported phase transitions, and investigate phase stabilities up to 30 GPa and 500°C. Using all the available data, we have established the first comprehensive high P - T phase diagram of TNT, including the melting line as a function of pressure. While our synchrotron IR and Raman spectroscopy measurements indicate spectral changes at ~2 GPa, careful XRD measurements (hydrostatic, He medium and non-hydrostatic) reveal that the monoclinic phase is likely stable up to 20 GPa. We will present a self-consistent P - V - T equation of state derived from the reported structural and vibrational data.

  13. The high-pressure phase transformations of PbO2

    Using a diamond-anvil high-pressure cell, an in situ X-ray diffraction study of PbO2 to about 240 kbar at room temperature has revealed the following phase transformations: rutile → αPbO2 → tetragonal fluorite → cubic fluorite with increasing pressure. The volume change for the transition rutile → αPbO2 is about -2% and for the transition αPbO2 → tetragonal fluorite is about -6%, nearly constant within the pressure range of investigation. The volume difference between the tetragonal and the cubic fluorite-type phases is negligibly small. Both the tetragonal and the cubic fluorite-type phases cannot be preserved after removal of the pressure, even after heating by the laser. Both phases have been found to revert to αPbO2 at one atmospheric pressure. Optically, the colour of αPbO2 changes from an opaque black to transparent red with increasing pressure. The tetragonal fluorite-type phase, which exists in the pressure range between about 90 and 180 kbar at room temperature, is slightly transparent with very dark red or brown colour, and the cubic fluorite-type phase is dark red and transparent. (orig.)

  14. Structure determination of the high-pressure phase of CdSe

    Structural phase transition sequence of CdSe has been investigated at pressures up to 60 GPa under quasi-hydrostatic conditions using synchrotron X-ray diffraction. A phase transition from the wurtzite type (B4) to the NaCl-type (B1) structure has been observed, followed by another phase transition to an orthorhombic structure at 27 GPa, in agreement with previous reports. We show that this high-pressure orthorhombic phase has a Pnma symmetry rather than being a Cmcm-symmetric structure as previously suggested. From our observations, the appearance of the new reflections and reflection splitting with increasing pressure is due to the change of atomic relative positions in crystal lattice and the difference in the compression ratio of lattice parameters for the Pnma structure, and we find no evidence for the third phase transition reported previously. The pressure-induced phase transition of CdSe has been further confirmed by the density-functional theory calculations.

  15. Phase transition and equation of state of paratellurite (TeO2) under high pressure

    Liu, Xun; Mashimo, Tsutomu; Kawai, Nobuaki; Sekine, Toshimori; Zeng, Zhaoyi; Zhou, Xianming

    2016-07-01

    The Hugoniot data for TeO2 single crystals were obtained for pressures up to ∼85 GPa along both the (a-axis) and (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun or two-stage light gas gun. The Hugoniot-elastic limit of TeO2 was determined to be 3.3–4.3 GPa along the c-axes. The shock velocity (U s) versus particle velocity (U p) relation for TeO2 shows a kink around U p = 1.0 km s‑1, which suggests a phase transition completes at ∼26 ± 2 GPa. The Hugoniot relations of the low and high pressure phase are given by U s = 3.13(5) + 1.10(6)U p for U p 1.0 km s‑1, respectively. First-principles geometry optimizations based on the generalized gradient approximation after Perdew, Burke and Ernzerhof method were also performed on TeO2. It suggested that a continuous structure distortion occurs up to 22 GPa, and the lattice parameters b and c abruptly increase and decrease at 22 GPa, respectively, indicating a first-order phase transition to the cotunnite structure phase. The equation of state of the cotunnite phase TeO2 is discussed based on the experimental and simulation results.

  16. High-pressure phase transition of MH3 (M: Er, Ho)

    Hou, Pugeng; Tian, Fubo; Li, Da; Chu, Binhua; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian

    2014-08-01

    Motivated by the potential high temperature superconductivity in hydrogen-rich materials, high-pressure structures of ErH3 and HoH3 were studied by using genetic algorithm method. Our calculations indicate that both ErH3 and HoH3 transform from P-3c1 structure to a monoclinic C2/m structure at about 15 GPa, and then transforms into a cubic Fm-3m structure at about 40 GPa. ErH3 and HoH3 adopt the same P63/mmc structure with space group P63/mmc at above about 220 and 196 GPa, respectively. For ErH3, the P63/mmc phase is stable up to at least 300 GPa, while for HoH3, a phase transformation P63/mmc → Cmcm occurs at about 216 GPa, and the Cmcm phase is stable up to at least 300 GPa. The P-3c1 ErH3 and HoH3 are calculated to demonstrate non-metallic character, and the other phases are all metallic phases.

  17. Synthesis of Novel Extended Phases of Molecular Solids at High Pressures and Temperatures

    This study is for in-situ investigation of chemical bonding and molecular structure of low z-elements and simple molecular solids at high pressures and temperatures using 3rd-generation synchrotron x-ray diffraction. To understand the contribution of the empty d-electron orbital of Mg in relation to the formation of molecular solids like MgO, which is one of the important Earth lower mantle materials and MgB2, which has recently been the focus of intense superconducting material research, we have performed double-sided laser heating experiments using a diamond anvil cell (DAC). Understanding the structural stability and the formation of the above Mg-compounds requires studying Mg itself as well as the relevant compounds. BL10XU at the Spring-8 was used to study phase stability and make accurate equation of state (EOS) determinations of Mg coupled with external heating and the double-sided laser heating technique. Monochromatic x-ray at 30 keV (0.4135 (angstrom)) was focused to about 40 (micro)m at the sample and the diffracted x-ray were recorded using a high-resolution image plate (3000 x 3000 pixels with a 0.1 mm resolution per pixel). EOS parameters for hcp and bcc Mg were determined by fitting to a Birch-Murnaghan equation. An isothermal compression of Mg at 300 K up to 100 GPa provides EOS parameters (B0, B0(prime), and V0) comparable for both hcp and bcc phases, which is similar to the cases for hcp and fcc phases measured in cobalt and xenon. Similar EOS parameters for both low and high pressure phases with a very small or no measurable volume discontinuity at the phase transition pressure suggests that the hcp-bcc structural transition of Mg may be driven by a stacking fault due to a shear instability as seen in xenon and cobalt. Compared to the recent estimation determined using a large volume press [1], our B0 is smaller by more than 10% suggesting that the difference may be due to non-hydrostatic conditions. The phase boundary of Mg up to 650 K was

  18. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  19. High pressure phase diagram of CeCoGe2.2Si0.8

    We have investigated the temperature-pressure phase diagram of the heavy fermion compound CeCoGe2.2Si0.8 by DC magnetic susceptibility measurements, χDC(T), under high pressure. The Néel temperature of TN = 4 K in zero pressure is reduced by pressure up to 3 kbar. At higher pressures antiferromagnetic order appears to gradually transform into a spin glass like-state. Magnetic field decreases both TN and the spin glass freezing temperature Tf. At 3 T and 6.5 kbar a divergence of χDC(T) is observed with a power law that is consistent with a disorder-dominated quantum criticality.

  20. A dynamic study of the warm-up phase of a high-pressure mercury lamp

    A time-dependent two-dimensional computational fluid model has been adopted to investigate the dynamic behavior of the high-pressure mercury lamp during the last phase of the warm-up period. The model solves the combined momentum, continuity, energy, and electric field equations for the plasma and the energy equation for the wall. Two models have been compared. The first takes convection into account and is called ''convection model.'' The second, which neglects this term, is termed ''convectionless model.'' Good agreement between the predictions and experimental data from literature has been obtained. It is found that the convection affects the lamp performance by increasing the mercury losses behind the electrodes and the mercury-evaporation time.

  1. High-pressure phase equilibrium data for the (carbon dioxide + L-lactide + ethanol) system

    Highlights: • Equilibrium data are important for polymerization of L-lactide at high pressure. • Addition of ethanol causes a reduction in pressure to obtain a homogeneous region. • Experimental results were modeled using the Peng–Robinson (PR) equation of state. - Abstract: Experimental phase equilibrium values (cloud points) for the ternary system involving carbon dioxide, L-lactide and ethanol have been measured in order to provide fundamental values to conduct the polymerization reaction in supercritical carbon dioxide medium. The experiments were performed using a variable-volume view cell over the temperature range from 323 K to 353 K, system pressure between 9 MPa and 25.0 MPa and different mole ratios of ethanol to L-lactide (0.5:1, 1:1 and 1.5:1). Phase transitions of vapour-liquid types were observed. The experimental results were modelled using the Peng–Robinson (PR) equation of state with the Wong–Sandler (PR–WS) mixing rule, providing a good representation of the experimental phase equilibrium values

  2. High-pressure light scattering apparatus to study pressure-induced phase separation in polymer solutions

    Xiong, Yan; Kiran, Erdogan

    1998-03-01

    A new high-pressure time- and angle-resolved light scattering apparatus has been developed to study the kinetics of phase separation in polymer solutions and other fluid mixtures under pressure at near- and supercritical conditions. The system consists of a high-pressure polymer loading chamber, a solvent charge line, a variable-volume scattering cell (with a built-in movable piston connected to a pressure generator, and an expansion rod driven by an air-actuated diaphragm), and a recirculation pump which are all housed in a temperature-controlled oven. The system is operable at pressures up to 70 MPa, and temperatures up to 473 K. The scattering cell is a short path-length cell made of two flat sapphire windows that are separated by 250 μm. It is designed to permit measurements of transmitted and scattered light intensities over an angle range from 0° to 30°. A linear image sensor with 256 elements is used to monitor the time evolution of the scattered light intensities at different angles. With this sensor, the angle range from 2° to 13° is scanned at a sampling rate of 3.2 ms/scan. The pressure quenches are achieved by movement of the air-actuated movable expansion rod, or by the movement of the piston with the aid of the pressure generator to bring about either rapid (at rates approaching 2000 MPa/s) or slow pressure changes in the system. Quench depth is also adjustable, and very deep (70 MPa) or very shallow (as low as 0.1 MPa) pressure quenches are readily achievable. The temperature and the pressure of the solution in the scattering cell, and the transmitted and scattered light intensities at different angles are recorded in real time through a computerized data acquisition system before and during phase separation. The experimental system is especially suited to follow the kinetics of phase separation in polymer solutions and to assess the metastable and unstable regions where phase separation proceeds by the nucleation and growth, and the spinodal

  3. Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable" ice phases.

    Bauer, Marion; Winkel, Katrin; Toebbens, Daniel M; Mayer, Erwin; Loerting, Thomas

    2009-12-14

    We report compression and decompression experiments of hexagonal ice in a piston cylinder setup in the temperature range of 170-220 K up to pressures of 1.6 GPa. The main focus is on establishing the effect that an increase in compression rate up to 4000 MPa/min has on the phase changes incurred at high pressures. While at low compression rates, a phase change to stable ice II takes place (in agreement with earlier comprehensive studies), we find that at higher compression rates, increasing fractions and even pure ice III forms from hexagonal ice. We show that the critical compression rate, above which mainly the metastable ice III polymorph is produced, decreases by a factor of 30 when decreasing the temperature from 220 to 170 K. At the highest rate capable with our equipment, we even find formation of an ice V fraction in the mixture, which is metastable with respect to ice II and also metastable with respect to ice III. This indicates that at increasing compression rates, progressively more metastable phases of ice grow from hexagonal ice. Since ices II, III, and V differ very much in, e.g., strength and rheological properties, we have prepared solids of very different mechanical properties just by variation in compression rate. In addition, these metastable phases have stability regions in the phase diagrams only at much higher pressures and temperatures. Therefore, we anticipate that the method of isothermal compression at low temperatures and high compression rates is a tool for the academic and industrial polymorph search with great potential. PMID:20001064

  4. Investigation of new phases in the Ba-Si phase diagram under high pressure using ab initio structural search.

    Shi, Jingming; Cui, Wenwen; Flores-Livas, José A; San-Miguel, Alfonso; Botti, Silvana; Marques, Miguel A L

    2016-03-01

    Barium silicides are versatile materials that have attracted attention for a variety of applications in electronics and optoelectronics. Using an unbiased structural search based on a particle-swarm optimization algorithm combined with density functional theory calculations, we investigate systematically the ground-state phase stability and the structural diversity of Ba-Si binaries under high pressure. The phase diagram turns out to be quite intricate, with several compositions stabilizing/destabilizing as a function of pressure. In particular, we identify novel phases of BaSi, BaSi2, BaSi3, and BaSi5 that might be synthesizable experimentally over a wide range of pressures. Our results not only clarify and complete the previously known structural phase diagram, but also provide new insights for understanding the Ba-Si binary system. PMID:26923068

  5. Phase Transitions of Triflate-Based Ionic Liquids under High Pressure.

    Faria, Luiz F O; Ribeiro, Mauro C C

    2015-11-01

    Raman spectroscopy has been used to study phase transitions of ionic liquids based on the triflate anion, [TfO](-), as a function of pressure or temperature. Raman spectra of ionic liquids containing the cations 1-butyl-3-methylimidazolium, [C4C1Im](+), 1-octyl-3-methylimidazolium, [C8C1Im](+), 1-butyl-2,3-dimethylimidazolium, [C4C1C1Im](+), and 1-butyl-1-methylpyrrolidinium, [C4C1Pyr](+), were compared. Vibrational frequencies and binding energy of ionic pairs were calculated by quantum chemistry methods. The ionic liquids [C4C1Im][TfO] and [C4C1Pyr][TfO] crystallize at 1.0 GPa when the pressure is increased in steps of ∼ 0.2 GPa from the atmospheric pressure, whereas [C8C1Im][TfO] and [C4C1C1Im][TfO] do not crystallize up to 2.3 GPa of applied pressure. The low-frequency range of the Raman spectrum of [C4C1Im][TfO] indicates that the system undergoes glass transition, rather than crystallization, when the pressure applied on the liquid has been increased above 2.0 GPa in a single step. Strong hysteresis of spectral features (frequency shift and bandwidth) of the high-pressure crystalline phase when the pressure was released stepwise back to the atmospheric pressure has been found . PMID:26457868

  6. Strength and structural phase transitions of gadolinium at high pressure from radial X-ray diffraction

    Lattice strength and structural phase transitions of gadolinium (Gd) were determined under nonhydrostatic compression up to 55 GPa using an angle-dispersive radial x-ray diffraction technique in a diamond-anvil cell at room temperature. Three new phases of fcc structure, dfcc structure, and new monoclinic structure were observed at 25 GPa, 34 GPa, and 53 GPa, respectively. The radial x-ray diffraction data yield a bulk modulus K0 = 36(1) GPa with its pressure derivate K0′ = 3.8(1) at the azimuthal angle between the diamond cell loading axis and the diffraction plane normal and diffraction plane ψ = 54.7°. With K0′ fixed at 4, the derived K0 is 34(1) GPa. In addition, analysis of diffraction data with lattice strain theory indicates that the ratio of differential stress to shear modulus (t/G) ranges from 0.011 to 0.014 at pressures of 12–55 GPa. Together with estimated high-pressure shear moduli, our results show that Gd can support a maximum differential stress of 0.41 GPa, while it starts to yield to plastic deformation at 16 GPa under uniaxial compression. The yield strength of Gd remains approximately a constant with increasing pressure, and reaches 0.46 GPa at 55 GPa

  7. High pressure monoclinic phases of Sb{sub 2}Te{sub 3}

    Souza, S.M.; Poffo, C.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Polian, A.; Gauthier, M. [Physique des Milieux Denses, IMPMC, CNRS-UMR 7590, Universite Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2012-09-15

    The effect of pressure on nanostructured rhombohedral {alpha}-Sb{sub 2}Te{sub 3} (phase I) was investigated using X-ray diffraction (XRD) and Raman spectroscopy (RS) up to 19.2 and 25.5 GPa, respectively. XRD patterns showed two new high pressure phases (named phases II and III). From a Rietveld refinement of XRD patterns of {alpha}-Sb{sub 2}Te{sub 3}, the unit cell volume as a function of pressure was obtained and the values were fitted to a Birch-Murnaghan equation of state (BM-EOS). The best fit was obtained for bulk modulus B{sub 0}=36.1{+-}0.9 GPa and its derivative B{sub 0}{sup Prime }=6.2{+-}0.4 (not fixed). Using the refined structural data for {alpha}-Sb{sub 2}Te{sub 3}, for pressures up to 9.8 GPa, changes in the angle of succession [Te-Sb-Te-Sb-Te], in the interaromic distances of Sb and Te atoms belonging to this angle of succession and in the interatomic distances of atoms located on the c axis were examined. This analysis revealed an electronic topological transition (ETT) along the a and c axes at close to 3.7 GPa. From the RS spectra, the full widths at half maximum (FWHM) of the Raman active modes of {alpha}-Sb{sub 2}Te{sub 3} were plotted as functions of pressure and showed an ETT along the a and c axes at close to 3.2 GPa. The XRD patterns of phases II and III were well reproduced assuming {beta}-Bi{sub 2}Te{sub 3} and {gamma}-Bi{sub 2}Te{sub 3} structures similar to those reported in the literature for {alpha}-Bi{sub 2}Te{sub 3}.

  8. Phase equilibrium data and thermodynamic modeling of the system (CO2 + biodiesel + methanol) at high pressures

    Highlights: → We measured phase behavior for the system involving {CO2 + biodiesel + methanol}. → The saturation pressures were obtained using a variable-volume view cell. → The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  9. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    Lee, Kibaek; Joshi, Kaushik; Chaudhuri, Santanu; Stewart, D. Scott

    2016-05-01

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model is based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.

  10. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure

    Gattinoni, Chiara; Heyes, David M.; Lorenz, Christian D.; Dini, Daniele

    2013-11-01

    Nonequilibrium molecular dynamics simulations of confined model liquids under pressure and sheared by the relative sliding of the boundary walls have been carried out. The relationship between the time-dependent traction coefficient, μ(t), and the state of internal structure of the film is followed from commencement of shear for various control parameters, such as applied load, global shear rate, and solid-liquid atom interaction parameters. Phase diagrams, velocity and temperature profiles, and traction coefficient diagrams are analyzed for pure Lennard-Jones (LJ) liquids and a binary LJ mixture. A single component LJ liquid is found to form semicrystalline arrangements with high-traction coefficients, and stick-slip behavior is observed for high pressures and low-shear velocities, which is shown to involve periodic deformation and stress release of the wall atoms and slip in the solid-liquid boundary region. A binary mixture, which discourages crystallization, gives a more classical tribological response with the larger atoms preferentially adsorbing commensurate with the wall. The results obtained are analyzed in the context of tribology: the binary mixture behaves like a typical lubricant, whereas the monatomic system behaves like a traction fluid. It is discussed how this type of simulation can give insights on the tribological behavior of realistic systems.

  11. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.50K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  12. Prediction of new high pressure phase of TaB{sub 3}: First-principles

    Zhang, Xiaozheng [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhao, Erjun, E-mail: ejzhao@yahoo.com [College of Science, Inner Mongolia University of Technology, Hohhot 010051 (China); Wu, Zhijian, E-mail: zjwu@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-05-25

    Highlights: • Crystal structure of TaB{sub 3} is predicted using the evolutionary algorithm USPEX code. • The structural and mechanical properties of tantalum borides are investigated by DFT. • The stable phases are found by enthalpy-pressure relationship and convex hull. • oC16–TaB{sub 3} has a estimated hardness (41.2 GPa) and indentation strength (22.8 GPa). • High pressure is advantageous to syntheses of ruthenium Triborides oC16–TaB{sub 3}. - Abstract: The phase stability, elastic, mechanical, dynamical and electronic properties of tantalum borides, i.e., Ta{sub 2}B, TaB, Ta{sub 3}B{sub 4}, Ta{sub 5}B{sub 6}, TaB{sub 2} and TaB{sub 3}, have been investigated by first-principles. The calculated convex hull indicates that at ambient conditions, the ground state phases are tI12–Ta{sub 2}B, oC8–TaB, oC22–Ta{sub 5}B{sub 6}, oI14–Ta{sub 3}B{sub 4}, and hP3–TaB{sub 2}; while at 75 GPa, they are tI12–Ta{sub 2}B, oC8–TaB, oC22–Ta{sub 5}B{sub 6}, oI14–Ta{sub 3}B{sub 4}, hP3–TaB{sub 2} and oC16–TaB{sub 3}; oC8–TaB, oC22–Ta{sub 5}B{sub 6}, oI14–Ta{sub 3}B{sub 4}, oC16–TaB{sub 3} are the most stable phases at 120 GPa. The enthalpy-pressure relationship reveals that the hP3–TaB{sub 2} is the most stable below 75 GPa, while the predicted oC16–TaB{sub 3} becomes the most stable above 75 GPa. Combining the estimated hardness (41.2 GPa) and indentation strength (22.8 GPa) for oC16–TaB{sub 3}, it is suggested that oC16–TaB{sub 3} is hard or potential superhard. Since it is not available experimentally, further experimental synthesis could be rewarding.

  13. Melting phase relations in the system H2O - NH3 at high pressure

    Sugimura, E.; Hirose, K.; Komabayashi, T.; Ohishi, Y.; Hirao, N.; Dubrovinsky, L. S.

    2012-12-01

    The density models of Uranus and Neptune constrained by their gravitational moments from Voyager mission suggest that mantles of these planets may be predominantly comprised of water (H2O), methane (CH4), and ammonia (NH3). The impurities in pure water would greatly influence the phase relations in the water-rich system expected in the icy mantle, which must be known to construct a plausible planetary model. One of important effects of the impurity is on the liquidus temperature (Tliq), since it decides the actual presence of solid phase within the icy mantle. In order to determine Tliq in H2O-rich region of the H2O - CH4 - NH3 ternary system, the melting phase relations in the H2O - CH4 and H2O - NH3 systems must be accurately known. However, previous melting experiments on each binary system were limited to several gigapascals, thus need to be explored to higher P-T conditions for application in interiors of Uranus and Neptune. We have investigated high-pressure (P) and -temperature (T) melting phase relations in the H2O - NH3 system based on a combination of visual observation and angle-dispersive x-ray diffraction (XRD) measurements at BL10XU, SPring-8. High-P-T conditions were generated in an externally-resistive heated diamond anvil cell (DAC). Starting material was 20wt% NH3 aqueous solution whose composition was checked via Tliq of the solution measured in a DAC at near atmospheric pressure. The aqueous solution was loaded into a gold-lined hole in a preindented rhenium gasket in order to insulate the sample from rhenium. Pressure was determined from the unit-cell volume of gold liner. Melting and freezing of the sample were detected by monitoring disappearance/appearance of diffraction peaks of solid and diffuse scattering of liquids, as well as observing melting/crystallization of crystal grains under microscope. Up to 20 GPa at room temperature, in addition to ice VII, diffraction peaks of bcc-like phase, which is most likely to be the reported phase VI

  14. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  15. 77 FR 3281 - High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty...

    2012-01-23

    ... 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly revised Commission's Handbook on E-Filing... COMMISSION High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty and... cylinders, provided for in subheading 7311.00.00 of the Harmonized Tariff Schedule of the United...

  16. Mechanical behaviors and phase transition of Ho{sub 2}O{sub 3} nanocrystals under high pressure

    Yan, Xiaozhi [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Rd., Pudong, Shanghai 201203 (China); Ren, Xiangting [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); He, Duanwei, E-mail: duanweihe@scu.edu.cn, E-mail: yangwg@hpstar.ac.cn [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China); Chen, Bin [Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Rd., Pudong, Shanghai 201203 (China); Yang, Wenge, E-mail: duanweihe@scu.edu.cn, E-mail: yangwg@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Rd., Pudong, Shanghai 201203 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-07-21

    Mechanical properties and phase transition often show quite large crystal size dependent behavior, especially at nanoscale under high pressure. Here, we have investigated Ho{sub 2}O{sub 3} nanocrystals with in-situ x-ray diffraction and Raman spectroscopy under high pressure up to 33.5 GPa. When compared to the structural transition routine cubic -> monoclinic -> hexagonal phase in bulk Ho{sub 2}O{sub 3} under high pressure, the nano-sized Ho{sub 2}O{sub 3} shows a much higher onset transition pressure from cubic to monoclinic structure and followed by a pressure-induced-amorphization under compression. The detailed analysis on the Q (Q = 2π/d) dependent bulk moduli reveals the nanosized Ho{sub 2}O{sub 3} particles consist of a clear higher compressible shell and a less compressible core. Insight into these phenomena shed lights on micro-mechanism studies of the mechanical behavior and phase evolution for nanomaterials under high pressure, in general.

  17. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-01-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase. PMID:24763088

  18. Development and testing of a new apparatus for the measurement of high-pressure low-temperature phase equilibria

    Fonseca, José M.S.; von Solms, Nicolas

    2012-01-01

    A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors, at tem...... the study of the system methane+water. An equilibrium point for the quaternary system methane+n-hexane+methanol+water is also presented....

  19. On the use of distorted fcc structures for describing high-pressure phases

    The paper describes distorted lattices that can be derived from the face-centred cubic Bravais lattice. Crystallographic principles are outlined and it is discussed how various lattices can be identified from the observed splitting of X-ray powder diffraction lines. Examples are taken from recent high-pressure studies of actinide rocksalt structure compounds and cerium metal. (orig.)

  20. An approximate approach of heat transfer accompanied by phase transition

    Low temperature heat (solar energy, geothermal energy, industrial and domestic waste heat) is widely available for many applications. Energy storage of that heat is now of great importance because the key to the effective and widespread use of low temperature heat is its adaptation to the energy requirements. From this point of view, storage tanks based on the phase change principal are one interesting alternative. Phase change material (PCM) is particularly attractive due to its ability to provide a high-energy storage density and its characteristics to store heat at a constant temperature corresponding to the phase transition temperature of the heat storage material. That is why the problem of the heat transfer accompanied by phase transition is of mine interest to the practice. Heat storage system with the PCM and shell-and-tube type is analysed by Lacroix [6]. Several authors, using mathematical models of different complexity, studied this type of. latent heat storage unit. Heat-of-fusion storage materials for law temperature storage in the temperature range 0-120oC are reviewed by Abhat [5] and Reiter and Rota [4]. Hamdan and Elweer [3] have investigated a melting process of a solid phase. In the present study, the phase change problem of the PCM is analysed in another type of heat storage system. We use closed tubes (capsules) filled with PCM and the heat transfer fluid (HTF) flowing in the shell space of the heat exchanger (Fig.1). The heat process is analysed in terms of both radial and axial direction and is linked to the convective heat transfer from the HTF. As it is known [2,3] the transient heat transfer in PCM can be described by the well-known heat conduction equation applied for various phase conditions and the energy balance on the interface given by the Stephan's equation. The later determines the rate of moving of the interface and in this manner the space areas where the heat conduction equations have corresponding coefficients. The application

  1. A new phase of ThC at high pressure predicted from a first-principles study

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  2. Phase changes induced by guest orientational ordering of filled ice Ih methane hydrate under high pressure and low temperature

    Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under pressure and temperature conditions of 2.0 to 77.0 GPa and 30 to 300 K, respectively, using diamond anvil cells and a helium-refrigeration cryostat. Distinct changes in the axial ratios of the host framework were revealed by In-situ X-ray diffractometry. Splitting in the CH vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules, was observed by Raman spectroscopy. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the axial ratio changes. The results indicated that orientational ordering of the guest methane molecules from orientational disordered-state occurred at high pressures and low temperatures, and that this guest ordering led to the axial ratio changes in the host framework. Existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray data. In addition, above the pressure of the guest-ordered phase, another high pressure phase was developed at a low-temperature region. The deuterated-water host samples were also examined and isotopic effects on the guest ordering and phase changes were observed.

  3. High-Pressure Phase Equilibria in Systems Containing CO2 and Ionic Liquids

    Sedláková, Zuzana; Wagner, Zdeněk; Aim, Karel

    Catalogue : Zagreb Inventors Association, 2011, s. 131. [International Invention Show (silver medal awarded) /36./. Zagreb (HR), 09.11.2011-12.11.2011] R&D Projects: GA ČR GP203/09/P141; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : high pressure * ionic liquid * carbon dioxide Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Study of film thickness on fuel rod under high pressure and high temperature steam-water two phase flow

    The liquid film thickness on the fuel rod is measured by ultrasonic echo technique under high temperature and high pressure steam-water two phase flow. As quality is increased, film thickness is decreased. The film thickness is about 0.2 mm at 9% of quality under 1 MPa. It was found from test data that disturbance wave is not measured clearly and change of film is small. (author)

  5. Metamagnetic behaviour and phase diagram of Lu.sub.2./sub.Fe.sub.17./sub. under high pressure

    Kamarád, Jiří; Arnold, Zdeněk; Medvedeva, I. V.; Kuchin, A. G.

    242-245, - (2002), s. 876-878. ISSN 0304-8853 R&D Projects: GA ČR GA202/99/0184; GA AV ČR IAA1010018 Grant ostatní: RFBR(RU) 99-02-16935 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic phase diagram * high pressure * metamagnetism * rare-earth intermetallic compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  6. Ergot alkaloids in rye flour determined by solid phase cation-exchange and high pressure liquid chromatography with fluorescence detection

    Storm, Ida Drejer; Have Rasmussen, Peter; Strobel, Bjarne W.; Hansen, Hans Christian Bruun

    2008-01-01

    Abstract Ergot alkaloids (EAs) are mycotoxins which are unavoidable contaminants of cereal products, particularly rye. A method was compiled employing clean-up by cation-exchange solid phase extraction, separation by high-pressure liquid chromatography under alkaline conditions and fluorescence detection. It is capable of separating and quantifying both C8-isomers of ergocornine, a-ergocryptine, ergocristine, ergonovine, and ergotamine. The average recovery was 61?10 % with limits ...

  7. High-Pressure Torsion of Ti: Synchrotron characterization of phase volume fraction and domain sizes

    Bolmaro, Raúl E; Sordi, Vitor L.; Ferrante, Maurizio; Brokmeier, Heinz-Günter; Kawasaki, Megumi; Terence G. Langdon

    2014-01-01

    Rods of grade 2 Ti were processed by Equal-Channel Angular Pressing (ECAP) (phi = 120° at 573 K) employing 2, 4 and 6 passes. The same billets were further deformed by High- Pressure Torsion (HPT) at room temperature, varying both the hydrostatic pressure (1 and 6 GPa) and the number of rotations (n = 1 and 5). The ECAP and HPT samples were studied by synchrotron radiation at DESY-Petra III GEMS line. On the ECAP samples, textures were thus determined while for both ECAP and HPT samples the m...

  8. High-pressure phase transition and properties of spinel ZnMn2O4

    Åbrink, S.; Waskowska, A.; Gerward, Leif;

    1999-01-01

    X-ray photoelectron spectroscopy, magnetic measurements, and a single-crystal x-ray structure determination at normal pressure have shown that Jahn-Teller active manganese ions in ZnMn2O4 are present in one valence state (III) on the octahedral sites of the spinel structure. The high-pressure beh......X-ray photoelectron spectroscopy, magnetic measurements, and a single-crystal x-ray structure determination at normal pressure have shown that Jahn-Teller active manganese ions in ZnMn2O4 are present in one valence state (III) on the octahedral sites of the spinel structure. The high...

  9. The piston-cylinder apparatus for in-situ structural investigations of high-pressure phases of gas hydrates with the use of synchrotron radiation

    Mirinski, D S; Larionova, E G; Kurnosov, A V; Ancharov, A I; Dyadin, Y A; Tolochko, B P; Sheromov, M A

    2001-01-01

    The piston-cylinder apparatus for the investigation of high-pressure gas hydrate phases by the powder diffraction method is presented. The first results concerning the nature of the high-pressure gas hydrate phase in the sulfur hexafluoride-water system are reported.

  10. The stability of Al,Fe-bearing phase H and a new pyrite-type hydroxide at high pressures

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Irifune, T.

    2015-12-01

    Water plays an important role in the structure, dynamics, and evolution of planets because hydrogen can affect the physical properties and stabilities of constituent minerals in the planets. Since alumimous phase H (MgSiO4H2-AlOOH) is stable over the entire pressure range of the lower mantle, the hydrated subducting plate may deliver a certain amount of water into the bottom of the Earth's mantle (Tsuchiya 2013, Nishi et al. 2013, Ohira et al. 2014, Walter et al. 2015). Compositional analysis of phase H grains synthesized from natural serpentine shows the presence of the Fe component in this phase (Nishi et al., 2015). This result suggests that phase H would also form solid solutions with ɛ-FeOOH, since ɛ-FeOOH is isostructural to phase H and δ-AlOOH. Moreover, an ab initio calculation has recently predicted that the new high pressure form of AlOOH, which has pyrite-type structure, would be stabilized at pressures above 170 GPa (Tsuchiya and Tsuchiya, 2011). Although this pyrite-type hydroxide has been found in InOOH, this structure in AlOOH has not been reported by experimental studies. Here we examine the composition and stability of Al,Fe-bearing phase H using a multi-anvil apparatus combined with sintered diamond anvils. Results show that large amounts of Fe and Al are partitioned into phase H relative to bridgmanite. Fe likely affects the stability of phase H in the lower mantle. Also, we conducted high pressure experiments on pure δ-AlOOH by using laser-heated diamond anvil cell (DAC) techniques up to 200 GPa and 2,500 K. In-situ X-ray diffraction (XRD) measurements indicated that the transition from the δ-AlOOH to the pyrite-type structure occurs at high pressures above 190 GPa. Our experimental results exhibited a density reduction of 2.6 wt.% through the structural transition, and both experimental data plots and theoretical calculations showed similar compressibilities of δ-AlOOH and pyrite-type AlOOH. In recent years, hundreds of extra

  11. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of

  12. Thermal expansion study on high-pressure phases of SmS

    We have measured the thermal expansion coefficient αL(T) of SmS under pressure up to 21.6kbar. In the golden phase, an excitation gap Δ inferred from αL(T) decreases with increasing pressure. When the system enters the metallic phase from the golden phase, Δ collapses suddenly to zero, and simultaneously, a huge sharp anomaly appears in the αL(T) curve, reflecting the magnetic phase transition

  13. Natural gas exploitation by carbon dioxide from gas hydrate fields - high-pressure phase equilibrium for an ethane hydrate system

    Natural gas hydrate fields which have a large amount of methane and ethane deposits in the subterranean Arctic and in the bottom of the sea at various places in the world, have become the object of public attention as a potential natural gas resource. Here the idea of natural gas exploitation from natural gas hydrate fields combined with CO2 isolation using CO2 hydrate has been presented. As a fundamental study, high-pressure phase behaviour for the ethane hydrate system was investigated in a high-pressure cell up to a maximum pressure of 100 MPa, following a previous study of CO2 and methane hydrates. Consequently, the phase equilibrium relationship of an ethane hydrate-water-liquid ethane mixture was obtained in the temperature range from 290.4 to 298.4 K and over a pressure range of 19.48 to 83.75 MPa. The observed phase boundary corresponds to the three-phase coexisting line with non-variant quadruple point of ethane hydrate-water-liquid ethane-gaseous ethane at 288.8 K and 3.50 MPa, similar to the CO2 hydrate-water-liquid CO2 system. (Author)

  14. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation.

    Ren, Yan; Zhao, Xian; Hagley, Edward W; Deng, Lu

    2016-08-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition-grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm(3). A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  15. Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance

    No binary phases exist in the Mg–Ti binary equilibrium phase diagram and the two elements are totally immiscible even in liquid form. This study shows that four metastable phases (two with the bcc and fcc structures and two with the hcp structures) are formed in the Mg–Ti system by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT). Investigation of hydrogenation properties reveals that these metastable phases are decomposed to pure Mg and Ti during heating before they can absorb the hydrogen in the form of ternary Mg–Ti hydrides. First-principles calculations show that the hydrogenation reaction should occur thermodynamically, and ternary Mg–Ti hydrides with the cubic structure should form at low temperature. However, the slow kinetics for this reaction appears to be the limiting step. Calculations show that the binding energy of hydrogen increases and the thermodynamic stability of hydrides undesirably increases by addition of Ti to Mg

  16. Structural phase transitions of ionic layered PbFX (X = Cl−or Br–) compounds under high pressure

    The PbFX (X = Cl–or Br–) compounds crystallize in tetragonal structure with space group P4/nmm. High pressure X-ray diffraction studies carried out on PbFCl compound reveals that it undergoes pressure induced structural transitions at ∼18 GPa and ∼38 GPa to orthorhombic and monoclinic (P21/m) phases respectively. Like PbFCl, a similar phase transition from tetragonal to orthorhombic phase is observed in PbFBr at intermediate pressure. These phase transitions seem to be similar to the transitions involving other matlockite structure compounds such as BaFX (X = Cl–, Br–or I–). PbFCl has a larger structural stability range compared to BaFCl and is attributed to the large anisotropic coordination of the Pb2+ and Cl–ions

  17. Modelling three-phase releases of carbon dioxide from high-pressure pipelines

    Martynov, S.; S. Brown; Mahgerefteh, H.; Sundara, V.; Chen, S.; Zhang, Y.

    2014-01-01

    This paper describes the development and experimental validation of a three-phase flow model for predicting the transient outflow following the failure of pressurised CO2 pipelines and vessels. The choked flow parameters at the rupture plane, spanning the dense-phase and saturated conditions to below the triple point, are modelled by maximisation of the mass flowrate with respect to pressure and solids mass fraction at the triple point. The pertinent solid/vapour/liquid phase equilibrium data...

  18. High-pressure phase of the cubic spinel NiMn2O4

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun;

    1998-01-01

    It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....

  19. High-pressure high-temperature synthesis of novel binary and ternary nitride phases of group 4 and 14 elements

    Dzivenko, D. A.; Horvath-Bordon, E.; Zerr, A.; Miehe, G.; Kroll, P.; Boehler, R.; McMillan, P.F.; Riedel, R.

    2008-01-01

    Our recent experiments on high-pressure high-temperature synthesis of novel ternary nitrides of group 4 and 14 elements are presented. Dense carbon nitride imide, C2N2(NH), was synthesized for the first time in a laser heated diamond anvil cell (LH-DAC) at pressures above 27 GPa and temperatures around 2000 K. Based on results of the electron diffraction-, EELS-and SIMS-measurements combined with theoretical calculations the structure of this new C-N-H phase was suggested to be of the defect-...

  20. Structural phase transition and elastic properties of thorium pnictides at high pressure

    Kuldeep Kholiya; B R K Gupta

    2007-04-01

    In the present paper we have pointed out the weaknesses of the approach by Aynyas et al [1] to study the structural phase transition and elastic properties of thorium pnictides. The calculated values of phase transition pressure and other elastic properties using the realistic and actual approach are also given and compared with the experimental and previous theoretical work.

  1. High pressure studies of the phase transition in the ferroelectric Sn2P2S6

    Dzhavadov, Leonid N.; Ryzhov, Valentin N.

    2016-06-01

    We apply a method of pulse-adiabatic modulation of pressure to obtain heat capacity and thermal expansion of ferroelectric Sn2P2S6 in the vicinity of the second order phase transition at pressures to 5 kbar. The phase transition in Sn2P2S6 does not change its nature and stays second order in the whole range of pressure currently studied. The earlier conclusion on the tricritical features of the phase transition in Sn2P2S6 cannot be confirmed. Discontinuities of heat capacity and thermal expansion perfectly fit the Ehrenfest equation that expected in the mean field theories. An excellent performance of the Ehrenfest formula in a wide range of pressures establishes phase transition in Sn2P2S6 as an almost ideal mean field phase transition.

  2. High pressure Laue diffraction and its application to study microstructural changes during the α → β phase transition in Si

    Popov, D., E-mail: dpopov@carnegiescience.edu; Park, C.; Kenney-Benson, C.; Shen, G. [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-07-15

    An approach using polychromatic x-ray Laue diffraction is described for studying pressure induced microstructural changes of materials under pressure. The advantages of this approach with respect to application of monochromatic x-ray diffraction and other techniques are discussed. Experiments to demonstrate the applications of the method have been performed on the α → β phase transition in Si at high pressures using a diamond anvil cell. We present the characterization of microstructures across the α–β phase transition, such as morphology of both the parent and product phases, relative orientation of single-crystals, and deviatoric strains. Subtle inhomogeneous strain of the single-crystal sample caused by lattice rotations becomes detectable with the approach.

  3. High pressure Laue diffraction and its application to study microstructural changes during the α → β phase transition in Si

    An approach using polychromatic x-ray Laue diffraction is described for studying pressure induced microstructural changes of materials under pressure. The advantages of this approach with respect to application of monochromatic x-ray diffraction and other techniques are discussed. Experiments to demonstrate the applications of the method have been performed on the α → β phase transition in Si at high pressures using a diamond anvil cell. We present the characterization of microstructures across the α–β phase transition, such as morphology of both the parent and product phases, relative orientation of single-crystals, and deviatoric strains. Subtle inhomogeneous strain of the single-crystal sample caused by lattice rotations becomes detectable with the approach

  4. High-pressure phase transitions in rare earth metal thulium to 195 GPa

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/Vo = 0.38 at room temperature. The rare earth crystal structure sequence, hcp → Sm-type → dhcp → fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR- 24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  5. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    Ming, L. C. [University of Hawaii; Zinin, P. V. [University of Hawaii; Sharma, S. K. [University of Hawaii

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  6. High-pressure phase behaviour of poly(D-lactic acid), trichloromethane, and carbon dioxide ternary mixture systems

    Highlights: • The high pressure phase behaviour of poly(D-lactic acid), trichloromethane and carbon dioxide ternary mixtures was measured. • The experimental data shows the characteristics of the LCST behaviour of (polymer + solvent + gas) systems. • The hybrid equation of state for the (polymer + carbon dioxide) system was used to correlate the experimental data. - Abstract: The high pressure phase behaviour of poly(D-lactic acid) (Mw = 359,000), trichloromethane, and carbon dioxide ternary mixture systems is presented in this study. Cloud and bubble point pressures were measured using a variable volume view cell at temperatures (313.15 to 363.15) K and pressures up to 33.6 MPa. The hybrid equation of state for the polymer-carbon dioxide system was used to correlate the experimental results. The van der Waals one-fluid mixing rule with three adjustable binary interaction parameters was used for all correlations. The binary parameters were optimised using the simplex method algorithm

  7. A route to possible civil engineering materials: the case of high-pressure phases of lime

    A. Bouibes; Zaoui, A.

    2015-01-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa...

  8. Pressure-induced phase transitions in GeS under high pressures

    Dias, Ranga; Yoo, Choong-Shik

    2012-02-01

    We have studied the pressure-induced structural and electronic phase transitions of layered GeS (Pnma) to 30 GPa, using micro-Raman spectroscopy and electrical resistivity measurements in diamond anvil cells. The result shows a steady decrease in resistivity to that of metal at around 18 GPa. The visual appearance of GeS supports the insulator-metal transition: initially black GeS becomes opaque and eventually reflective with increasing pressure. The Raman result indicates that the metallization is preceded by a structural phase transition, presumably to the previously predicted Cmcm structure.

  9. Compressibility of the high-pressure rocksalt phase of ZnO

    Recio, J.M.; Blanco, M.A.; Luana, V.;

    1998-01-01

    We report the results of a combined experimental and theoretical investigation on the stability and the volume behavior under hydrostatic pressure of the rocksalt (B1) phase of ZnO. Synchrotron-radiation x-ray powder-diffraction data are obtained from 0 to 30 GPa. Static simulations of the ZnO B1...... in the range of 160-194 GPa. For its zero-pressure first derivative, the experimental and theoretical data yield a value of 4.4+/-1.0. Overall, our results show that the ZnO B1 phase is slightly more compressible than previously reported. [S0163-1829(98)07537-7]....

  10. Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K

    Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru

    2016-05-01

    Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.

  11. Structural phase transitions in IrO2 at high pressures

    Structural transformations in iridium dioxide (IrO2) were investigated using first-principles calculations up to a pressure of 50 GPa at 0 K. The phase transformation from the rutile-type to the pyrite-type structure was confirmed at 8-15 GPa. Although structures of the CaCl2-type and α-PbO2-type are observed in other metal dioxides, such as SiO2, GeO2, and SnO2, our calculations indicated that these structures are metastable in IrO2. Our calculations explain experimental observations which show the direct transformation from the rutile-type to the pyrite-type structures in IrO2. The bulk modulus of the pyrite-type phase calculated in this study is in good agreement with the experimental value. The non-magnetic state is stable relative to the ferromagnetic and antiferromagnetic states in all IrO2 phases. The calculated electronic density of states suggests that the pyrite-type phase is metallic

  12. Equilibrium Between Phases of Matter: Supplemental Text for Materials Science and High-Pressure Geophysics

    Jacobs, M.H.G.; Oonk, H.A.J.

    2012-01-01

    The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on iso

  13. Formation of collapsed tetragonal phase in EuCo2As2 under high pressure

    The structural properties of EuCo2As2 have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo2As2 (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 ± 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures.

  14. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp3-bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  15. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    CARDOZO-FILHO Lúcio

    1997-01-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.

  16. Hybrid functionals and electronic structure of high-pressure phase of CdO

    Joshi, K.B.; Paliwal, U. [Department of Physics, M. L. Sukhadia University, Udaipur 313001 (India); Sharma, B.K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

    2011-05-15

    The electronic band structure and density of states (DOS) of B2-phase cadmium oxide (CdO) are computed following the first-principles linear combination of atomic orbitals method applying the CRYSTAL code. The PBE correlation functional coupled with Becke's ansatz for exchange is considered for calculations. The electronic band structure and DOS are examined considering HF, B3LYP and hybrid schemes. Hybrid functionals are used with 25, 15, 10 and 5% mixing of Fock exchange with PBE-GGA. Depending on the correlation functionals, and different mixings in the hybrid schemes, B2-phase CdO may have an indirect positive band gap, a negative band gap or a zero gap. The effect of pd repulsion originating from pd hybridisation is visible in the calculated band structures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. In-situ Phase Transformation and Deformation of Iron at High Pressure and Temperature

    Miyagi, Lowell

    2009-01-01

    With a membrane based mechanism to allow for pressure change of a sample in a radial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, it is now possible to investigate texture changes during deformation and phase transformations over a wide range of temperature-pressure conditions. The device is used to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles paral...

  18. Structural study of the high-pressure antiferroelectric phase of CsH2PO4

    A three-dimensional neutron diffraction study has been carried out on the pressure-induced antiferroelectric phase of CsH2PO4. At 100.70K and a hydrostatic pressure of 3.6 kbar, the unit cell parameters are a = 15.625(9), b = 6.254(2), c = 4.886(1) A, β = 108.08(3)0 and Z = 4. Atomic parameters were determined using full-matrix least-squares methods which yield final agreement indices: R(F2) = 0.0715, R/sub w/(F2) = 0.0807 and S = 2.13. The structure is nearly consistent with the monoclinic space group P21/a but refinement in P21 yields a slightly better fit. The structure is markedly different from those of the paraelectric and ferroelectric phases with large relative displacements (nearly 1 A) of Cs+1 and PO4-3 groups in the x-z plane. Hydrogens bonding in b-chains, which are disordered in the paraelectric phase, show antiferroelectric order

  19. High pressure phase transformation in yttrium sulfide(YS): A first principle study

    First principles calculations have been carried out to analyze structural, elastic and dynamic stability, of YS under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and CsCl type cubic (B2) structures determined as a function of compression suggests the B1→B2 transition at ∼ 49 GPa. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state. The single crystal elastic constants derived from the energy strain method agree well with the experimental values. The activation barrier between B1 and B2 phases calculated at transition point is ∼ 17/mRy/formula unit. Our lattice dynamic calculations show that at ambient condition, the B1 phase is lattice dynamically stable and frequencies of phonon modes in different high symmetry directions of Brillouin zone agrees well with experimental values. The B2 phase also is dynamical stable at ambient condition as well as at ∼ 49 GPa, supporting our static lattice calculation

  20. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase. PMID:24985659

  1. Recycling of water of high pressure cleaning of pipes. Phase 1. Quality demands and economical aspects

    According to the regulation 6.1 in the current licence Surface Water Pollution Law (WVO, abbreviated in Dutch) of October 10, 1997, ECN carried out the first phase of a study on the title subject with respect to pipes applied in oil and gas exploration. In the present situation water of the so-called pipe-cleaner is transported via a seapipe after precipitation and membrane filtration. Next to the quality demands and economical aspects attention is paid to a number of environmental aspects

  2. Structural properties of the zircon- and scheelite-type phases of YVO4 at high pressure

    Wang, X.; Loa, I.; Syassen, K.; Hanfland, M.; Ferrand, B.

    2004-08-01

    The laser host material yttrium orthovanadate YVO4 with a tetragonal zircon-type structure has been studied by angle-dispersive powder x-ray diffraction in a diamond anvil cell up to 26GPa (T=300K) . In situ diffraction confirms that the compound undergoes a nonreversible transformation to a scheelite-type structure at a pressure of 8.5GPa . The equations of state of the zircon and scheelite phases and changes in internal structural parameters are reported. The effect of pressure on the distorted tetrahedral and dodecahedral coordinations of the V and Y ions, respectively, is discussed.

  3. High-pressure phase transition makes B4.3C boron carbide a wide-gap semiconductor

    Hushur, Anwar; Manghnani, Murli H.; Werheit, Helmut; Dera, Przemyslaw; Williams, Quentin

    2016-02-01

    Single-crystal B4.3C boron carbide is investigated through the pressure-dependence and inter-relation of atomic distances, optical properties and Raman-active phonons up to ~70 GPa. The anomalous pressure evolution of the gap width to higher energies is striking. This is obtained from observations of transparency, which most rapidly increases around 55 GPa. Full visible optical transparency is approached at pressures of  >60 GPa indicating that the band gap reaches ~3.5 eV at high pressure, boron carbide is a wide-gap semiconductor. The reason is that the high concentration of structural defects controlling the electronic properties of boron carbide at ambient conditions initially decreases and finally vanishes at high pressures. The structural parameters and Raman-active phonons indicate a pressure-dependent phase transition in single-crystal natB4.3C boron carbide near 40 GPa, likely related to structural changes in the C-B-C chains, while the basic icosahedral structure appears to be less affected.

  4. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4.

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang; Mao, Ho-kwang

    2016-01-28

    Employing particle swarm optimization (PSO) combined with first-principles calculations, we systemically studied high-pressure behaviors of hard CrB4. Our predictions reveal a distinct structural evolution under pressure for CrB4 despite having the same initial structure as FeB4. CrB4 is found to adopt a new P2/m structure above 196 GPa, another Pm structure at a pressure range of 261-294 GPa and then a Pmma structure beyond 294 GPa. Instead of puckering boron sheets in the initial structure, the high-pressure phases have planar boron sheets with different motifs upon compression. Comparatively, FeB4 prefers an I41/acd structure over 48 GPa with tetrahedron B4 units and a P213 structure above 231 GPa having equilateral triangle B3 units. Significantly, CrB4 exhibits persistent metallic behavior in contrast with the semiconducting features of FeB4 upon compression. The varied pressure response of hard tetraborides studied here is of importance for understanding boron-rich compounds and designing new materials with superlative properties. PMID:26692374

  5. In-situ Phase Transformation and Deformation of Iron at High Pressure andTemperature

    Miyagi, Lowell; Kunz, Martin; Knight, Jason; Nasiatka, James; Voltolini, Marco; Wenk, Hans-Rudolf

    2008-07-01

    With a membrane based mechanism to allow for pressure change of a sample in aradial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, itis now possible to investigate texture changes during deformation and phasetransformations over a wide range of temperature-pressure conditions. The device isused to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations are favored to transform to the hcp structure first and generate a texture of (01-10) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)bcc // (0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal {2-1-12}<2-1-13> and basal (0001)-{2-1-10} slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression.

  6. A route to possible civil engineering materials: the case of high-pressure phases of lime

    Bouibes, A.; Zaoui, A.

    2015-07-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  7. Polyamorphic phase transition of Yb-based metallic glass at high pressure

    li, L.; Li, R.; Liu, H.; Chupas, P.

    2013-12-01

    A family of Yb-based bulk metallic glasses (BMG) has been fabricated based on strong liquid characteristic and excellent glass-forming ability. Using a diamond anvil cell with high-energy synchrotron X-ray, the total scattering of metallic glass Yb-Mg-Zn was studied at pressure up to 30GPa in a hydrostatic isopropanol pressure-medium. The local structure was investigated through direct Fourier transformation of the structure factor [S(Q)], pair distribution function (PDF) [G(r)] with background correction. Polyamorphic phase transition is achieved because smaller atoms are extruded into the clearance of the larger rare earth atoms and 4f electrons delocalized. Phase transition from a low-density state to a high-density state occurs, smaller atoms can be extruded is one of two reasons for the high compressibility of rare earth BMG. The second reason is the delocalization of 4f electrons, which can induce the volume collapse of rare earth atoms.

  8. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  9. First principles study of isostructural phase transition in Sb2Te3 under high pressure

    The structural properties, electronic band structure and Bader charge of Sb2Te3 under hydrostatic pressure were simulated using density functional theory in order to study isostructural phase transitions (IPT) in Sb2Te3. The theoretical results showed that the axial ratio c /a did not exhibit any anomaly below 6 GPa. The variations of bond lengths were discontinuous at 2.5 GPa, which suggested considerable changes in interatomic interactions and provided sound support to the IPT. The effective charges of Sb and Te atoms showed significant discontinuous variations at 2.5 GPa, which revealed a strong redistribution of the electronic charge density and considerably changed interactions among bonding atoms. Thus, the IPT is originated from the considerable variation in the electronic charge density. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Phase equilibrium of binary system carbon dioxide - methanol at high pressure using artificial neural network

    Interest in supercritical fluids extraction (SFE ) is increasing throughout many scientific and industrial fields. The common solvent for use in SFE is carbon dioxide. However, pure carbon dioxide frequently fails to efficiently extract the essential oil from a sample matrix, and modifier fluids such as methanol should be used to enhance extraction yield. A more efficient use of SFE requires quantitative prediction of phase equilibrium of this binary system, carbon dioxide - methanol. The purpose of the current research is modeling carbon dioxide - methanol system using artificial neural network (ANN). Results of ANN modeling has been compared with experimental data as well as thermodynamic equations of state. The comparison shows that the ANN modeling has a higher accuracy than thermodynamic models. (author)

  11. High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study

    Fan Jing; Bao Kuo; Duan De-Fang; Wang Lian-Cheng; Liu Bing-Bing; Cui Tian

    2012-01-01

    The previously proposed theoretical and experimental structures,bond characterization,and compressibility of Mg(BH4)2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations.It is found that the ambient pressure phases of meta-stable I41/amd and unstable P-3ml proposed recently are extra stable and cannot decompose under high pressure.Enthalpy calculation indicates that the ground state of F222 structure proposed by Zhou et al.[2009 Phys.Rev.B 79 212102]will transfer to I41/amd at 0.7 GPa,and then to a P-3m1 structure at 6.3 GPa.The experimental P6122 structure (α-phase) transfers to I41/amd at 1.2 GPa.Furthermore,both I41/amd and P-3m1 can exist as high volumetric hydrogen density phases at low pressure.Their theoretical volumetric hydrogen densities reach 146.351 g H2/L and 134.028 g H2/L at ambient pressure,respectively.The calculated phonon dispersion curve shows that the I41/amd phase is dynamically stable in a pressure range from 0 to 4 GPa and the P-3ml phase is stable at pressures higher than 1 GPa.So the I41/amd phase may be synthesized under high pressure and retained to ambient pressure.Energy band structures show that they are both always ionic crystalline and insulating with a band-gap of about 5 eV in this pressure range.In addition,they each have an anisotropic compressibility.The c axis of these structures is easy to compress.Especially,the c axis and volume of P-3m1 phase are extraordinarily compressible,showing that compression along the c axis can increase the volumetric hydrogen content for both I41/amd and P-3m1 structures.

  12. Elastic behaviour and phase stability of pyrophyllite and talc at high pressure and temperature

    Gatta, G. Diego; Lotti, Paolo; Merlini, Marco; Liermann, Hanns-Peter; Lausi, Andrea; Valdrè, Giovanni; Pavese, Alessandro

    2015-04-01

    The compressional behaviour of (triclinic) pyrophyllite-1 Tc was investigated by means of in situ synchrotron single-crystal diffraction up to 6.2 GPa (at room temperature) using a diamond anvil cell. Its thermal behaviour was investigated by in situ synchrotron powder diffraction up to 923 K (at room pressure) with a furnace. No evidence of phase transition has been observed within the pressure range investigated. The α angle decreases whereas the β and γ angles increase with P, with the following linear trends: α( P) = α 0 - 0.203(9)·Δ P, β( P) = β 0 + 0.126(8)·Δ P, and γ( P) = γ 0 + 0.109(5)·Δ P (angles in ° and P in GPa). P- V data fits with isothermal Murnaghan and third-order Birch-Murnaghan Equations of State yield: K T0 = 47(3) GPa and K' = 6.6(14) for the M-EoS fit, K T0 = 47(4) GPa and K' = 7.3(19) for a III-BM-EoS fit, with the following anisotropic compressional scheme: β a : β b : β c = 1.06:1:4.00. The evolution of the "Eulerian finite strain" versus "normalized stress" leads to: Fe(0) = 47(3) GPa as intercept value and regression line slope with K' = 7.1(18). A drastic and irreversible change of the thermal behaviour of pyrophyllite-1 Tc was observed at 700 modelled between 298 and 773 K following the equation α V( T) = α 0(1 - 10 T -1/2), with α V298 K = 2.2(2) × 10-5 K-1 [with V 0 = 424.2(1) Å3 and α 0 = 5.5(3) × 10-5 K-1] and thermal anisotropic scheme α a : α b : α c = 1.20:1:2.72. By linear regression, we obtained: V( T)/ V 0 = 1 + α 0V· T = 1 + 3.1(2) × 10-5 ( T - T 0). The thermal behaviour of talc-1 Tc was investigated by in situ synchrotron powder diffraction up to 1,173 K (at room- P) with a furnace. At 423 K, the diffraction pattern was indexable with a monoclinic unit-cell but with a doubling of the c-axis (as expected for the 2 M-polytype). At T > 1,123 K, an irreversible transformation occurs, likely ascribable to the first stage of the T-induced de-hydroxylation. Between 423 and 1,123 K, the β angle

  13. High-temperature- and high-pressure-induced formation of the Laves-phase compound XeS2

    Yan, Xiaozhen; Chen, Yangmei; Xiang, Shikai; Kuang, Xiaoyu; Bi, Yan; Chen, Haiyan

    2016-06-01

    We explore the reactivity of xenon with sulfur under high pressure, using unbiased structure searching techniques combined with first-principles calculations, which identify a stable XeS2 compound crystallized in a Laves phase with hypercoordinated (16-fold) Xe at 191 GPa and 0 K. Taking the thermal effects into account, we find that increasing the temperature could further stabilize it. The formation of XeS2 is a consequence of pressure-induced charge transfer from Xe to S atoms and the delocalization of Xe 5 p and S 3 p electrons. Meanwhile, the stabilization into a Laves phase of XeS2 is the result of delocalized chemical bonding and the need for optimum structure packing. The present discussion of the formation mechanism in XeS2 is general, and conclusions can be used to understand the formation of other Laves-phase compounds and the Xe chemistry that allows closed-shell Xe to participate in chemical reactions.

  14. Phase diagram of ZrZn2 at high pressure: Low-temperature features and elusive superconductivity

    Studies of the AC magnetic susceptibility and electrical resistivity of polycrystalline samples of ZrZn2, synthesized at high pressure, were performed at pressures up to 4.5 GPa and temperatures down to 0.4 K. The evolution with pressure of the line of ferromagnetic phase transformations qualitatively agrees with numerous previous data, though the transition temperature is highly sensitive to the quality and history of samples. Upon approaching zero temperature, the transition line bends toward the pressure axis as dictated by the Nernst theorem. An additional feature of the phase diagram was discovered in the samples with the highest Curie temperature (25-26 K). The electrical resistance of these samples drastically decreases near 1.4-1.8 K at ambient pressure. The temperature of this resistive transition does not change much with pressure and crosses the Curie line at a pressure near 1.2 GPa, seemingly forming some sort of tetracritical point. Application of magnetic fields up to 2 T suppresses the transition that one may expect if superconductivity is involved. However, heat capacity measurements do not show any anomaly at the transition, which resembles the case described by Pfliederer et al. [Nature (2001) 58

  15. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch–Murnaghan equation of state parameters are; bcc: V0 = 11.759 A3/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A3/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A3/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures. (paper)

  16. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  17. Characterization of boron nitride phase transformations in the Li–B–N system under high pressure and high temperature

    Highlights: • The characterization of cBN phase transformation in Li3N melt is revealed under HPHT. • A simultaneous precipitation and dissolution of cBN in Li3BN2 melt is proved. • The BN phase transition behaviors of Li3N–hBN and Li3N–cBN system is not equivalent. • The results provide a clue for further improvement of the quality of direct sintering of cubic boron nitride. - Abstract: The possible phase transformations of boron nitride in the Li–B–N system have been discussed by the chemical reactions of Li3N, hBN and cBN at the conditions of 5.0 GPa and 1300–1500 °C. The results of the reaction between Li3N and hBN shows that certain Li–B–N eutectic compound(s) which were produced in the thermodynamical stable region of cBN have no catalytic effect for cBN growth. It indicates that a certain irreversible BN precipitation/dissolution process takes place in Li3N melt. However, the reaction between Li3N and hBN is preferential when Li3N, hBN and cBN coexist in Li–B–N system, and the regrowth of cBN is observed, namely the morphology of cBN changing from irregular to fine shape crystals with well-facetted (1 1 1) surface. Furthermore, the estimated sizes of regrown cBN are almost same as those of the raw cBN. This indicates a simultaneous cBN dissolution and precipitation process in Li3N + hBN/cBN system under high pressure and high temperature

  18. Characterization of boron nitride phase transformations in the Li–B–N system under high pressure and high temperature

    Guo, W., E-mail: guowei1982cry@163.com [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Shi, Y. [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, P. [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Ma, H.A.; Jia, X. [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Wang, S., E-mail: wangshuang@tyut.edu.cn [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-09-25

    Highlights: • The characterization of cBN phase transformation in Li{sub 3}N melt is revealed under HPHT. • A simultaneous precipitation and dissolution of cBN in Li{sub 3}BN{sub 2} melt is proved. • The BN phase transition behaviors of Li{sub 3}N–hBN and Li{sub 3}N–cBN system is not equivalent. • The results provide a clue for further improvement of the quality of direct sintering of cubic boron nitride. - Abstract: The possible phase transformations of boron nitride in the Li–B–N system have been discussed by the chemical reactions of Li{sub 3}N, hBN and cBN at the conditions of 5.0 GPa and 1300–1500 °C. The results of the reaction between Li{sub 3}N and hBN shows that certain Li–B–N eutectic compound(s) which were produced in the thermodynamical stable region of cBN have no catalytic effect for cBN growth. It indicates that a certain irreversible BN precipitation/dissolution process takes place in Li{sub 3}N melt. However, the reaction between Li{sub 3}N and hBN is preferential when Li{sub 3}N, hBN and cBN coexist in Li–B–N system, and the regrowth of cBN is observed, namely the morphology of cBN changing from irregular to fine shape crystals with well-facetted (1 1 1) surface. Furthermore, the estimated sizes of regrown cBN are almost same as those of the raw cBN. This indicates a simultaneous cBN dissolution and precipitation process in Li{sub 3}N + hBN/cBN system under high pressure and high temperature.

  19. Application of phase-modulated dispersion interferometry to electron-density diagnostics of high-pressure plasma

    Phase-modulated dispersion interferometry (PMDI) is a technique for measuring the electron density in plasmas that was first developed for large fusion reactors. In this paper, we demonstrate the potential of PMDI for the diagnostics of microplasma generated at high pressures. PMDI can eliminate the effect of nondispersive components in the refractive-index variation on the measurement; therefore, most of the variation of the refractive index induced by the variation of gas density is eliminated by signal processing, contributing to accurate electron-density determination in microplasmas. The measurement results for a pulsed-dc microplasma in an atmospheric-pressure helium gas flow revealed that the electron density of the microplasma was in the range between 4 × 1013 and 1.4 × 1014 cm−3, and our PMDI system had a temporal resolution of 110µs and a sensitivity of the line-integrated electron density of 7 × 1011 cm−2. (fast track communication)

  20. Crystal structure of SrGeO3 in the high-pressure perovskite-type phase

    Akihiko Nakatsuka

    2015-05-01

    Full Text Available Single crystals of the SrGeO3 (strontium germanium trioxide high-pressure phase have been synthesized successfully at 6 GPa and 1223 K. The compound crystallizes with the ideal cubic perovskite-type structure (space group Pm-3m, which consists of a network of corner-linked regular GeO6 octahedra (point-group symmetry m-3m, with the larger Sr atoms located at the centers of cavities in the form of SrO12 cuboctahedra (point-group symmetry m-3m in the network. The degrees of covalencies included in the Sr—O and the Ge—O bonds calculated from bond valences are 20.4 and 48.9%, respectively. Thus, the Ge—O bond of the GeO6 octahedron in the SrGeO3 perovskite has a strong covalency, comparable to those of the Si—O bonds of the SiO4 tetrahedra in silicates with about 50% covalency. The thermal vibrations of the O atoms in the title compound are remarkably suppressed in the directions of the Ge—O bonds. This anisotropy ranks among the largest observed in stoichiometric cubic perovskites.

  1. High-pressure high-temperature synthesis of novel binary and ternary nitride phases of group 4 and 14 elements

    Dzivenko, D A; Horvath-Bordon, E; Miehe, G; Riedel, R [FB Materialwissenschaft, TU Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany); Zerr, A [LPMTM-CNRS, Universite Paris Nord, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Kroll, P [Department of Chemistry, UTA, Arlington, Texas 760019-0065 (United States); Boehler, R [Hochdruckgruppe, MPI fuer Chemie, J.-J.-Becher-Weg 27, 55128 Mainz (Germany); McMillan, P F [Department of Chemistry, UCL, 20 Gordon Street, London WC1 H0AJ (United Kingdom)], E-mail: dzivenko@materials.tu-darmstadt.de

    2008-07-15

    Our recent experiments on high-pressure high-temperature synthesis of novel ternary nitrides of group 4 and 14 elements are presented. Dense carbon nitride imide, C{sub 2}N{sub 2}(NH), was synthesized for the first time in a laser heated diamond anvil cell (LH-DAC) at pressures above 27 GPa and temperatures around 2000 K. Based on results of the electron diffraction-, EELS-and SIMS-measurements combined with theoretical calculations the structure of this new C-N-H phase was suggested to be of the defect-wurtzite type. Farther, macroscopic amounts of a new oxynitride of zirconium having cubic Th{sub 3}P{sub 4}-type structure, c-Zr{sub 2.86}(N{sub 0.88}O{sub 0.12}){sub 4}, were synthesized at high pressures and temperatures using a multi-anvil apparatus. Earlier this structure was observed for binary nitrides of zirconium(IV) and hafnium(IV) synthesized in microscopic amounts in a LH-DAC. The lattice parameter of c-Zr{sub 2.86}(N{sub 0.88}O{sub 0.12}){sub 4} was found to be a{sub 0} = 6.7549(1) A which is slightly larger than that of c-Zr{sub 3}N{sub 4}. Isotropic bulk and shear moduli of c-Zr{sub 2.86}(N{sub 0.88}O{sub 0.12}){sub 4} of B{sub 0} = 219 GPa and G{sub 0} = 96 GPa, respectively, were determined from the compression and nanoindentation measurements. The Vickers microhardness, H{sub V}(1), of the porous (about 30 vol. %) sample of c-Zr{sub 2.86}(N{sub 0.88}O{sub 0.12}){sub 4} was measured to be 12 GPa, similar to that of single crystal {delta}-ZrN.

  2. Random phase disturbances and tolerance on amplitude and phase spread in driver of two-beam accelerator with accompanying wave

    One investigates into effect of random phase disturbances on particle dynamics at extraction of UHF power from two-beam accelerator driver with accompanying wave. Paper presents the simulation results of beam dynamics in the driver depending on the value of phase disturbances. One determines tolerances for spread in values of amplitude and phase of wave in driver power extractors

  3. Phase equilibrium data and thermodynamic modeling of the system (CO{sub 2} + biodiesel + methanol) at high pressures

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Rosa da Silva, Fabiano; Ramos, Luiz P. [Department of Chemistry, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Corazza, Marcos L., E-mail: corazza@ufpr.br [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)

    2012-01-15

    Highlights: > We measured phase behavior for the system involving {l_brace}CO{sub 2} + biodiesel + methanol{r_brace}. > The saturation pressures were obtained using a variable-volume view cell. > The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {l_brace}CO{sub 2}(1) + methanol(2){r_brace} and {l_brace}CO{sub 2}(1) + soybean methyl esters (biodiesel)(2){r_brace} and the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {l_brace}CO{sub 2}(1) + methanol(2){r_brace}; (0.4201 to 0.9931) for the binary system {l_brace}CO{sub 2}(1) + biodiesel(2){r_brace}; (0.4864 to 0.9767) for the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {l_brace}CO{sub 2} + biodiesel + methanol{r_brace} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  4. Calculation of stability of sodic phases in high-pressure metapelites and observation of Sambagawa metamorphic rocks

    Kouketsu, Y.; Enami, M.

    2010-12-01

    P-T pseudosection analyses of high-pressure metapelites from several subduction related regions were carried out by using the computer program Perple_X 07 in order to determine the mineral equilibrium, particularly the stability of sodic phases, in the model system MnO-Na2O-K2O-CaO-FeO-MgO-Al2O3-SiO2-H2O. Metapelites from Sambagawa, Western Alps, New Caledonia, Greece, and South Tianshan were selected for these analyses. Although the occurrence of sodic pyroxene in these metapelite samples is free or very rare, all the samples are considered to have undergone high-pressure metamorphism under blueschist-eclogite facies conditions. The bulk rock compositions of these metapelites have relatively low XNa [=Na/(Al + Na)] values. Therefore, the rare occurrences of sodic pyroxene in these samples are possibly due to their characteristic bulk rock compositions, although this has not been proved yet. The calculation results for the stability of sodic phases under the blueschist and eclogite facies conditions indicate the following. (1) Sodic pyroxene in the studied metapelites is stable only under higher-pressure conditions of P > 2.5 GPa, although its stable P-T range increases toward the lower-pressure side with increasing XNa value of the bulk-rock composition. (2) Paragonite and glaucophane are stable throughout the wide XNa range of bulk-rock compositions of host rocks under the blueschist and quartz-eclogite facies conditions. (3) The stability field of paragonite enlarges with the presence of CO2 in the metamorphic fluid. Thus, the high stability of paragonite and glaucophane in metapelites and the close relationship between the stability of sodic pyroxene and the bulk-rock composition explain why omphacite-bearing metapelites are rarely found. Observations of Sambagawa metapelites were carried out on the basis of these results. In the Besshi region of the Sambagawa belt, quartz grains with a high residual pressure of up to 0.8 GPa extensively occur as inclusions in

  5. A new fullerene network phase obtained from C.sub.70./sub. at high-pressure and high-temperature

    Marques, L.; Skorokhod, Yuriy; Soares, R.

    2015-01-01

    Roč. 9, č. 9 (2015), s. 535-538. ISSN 1862-6254 Institutional support: RVO:68378271 Keywords : fullerenes * high-pressure synthesis * X-ray diffraction * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.142, year: 2014

  6. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    Budkov, Yu. A.; Vyalov, I. I.; Kolesnikov, A. L.; Georgi, N.; Chuev, G. N.; Kiselev, M. G.

    2014-11-01

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radius of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.

  7. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Vyalov, I. I. [Istituto Italiano di Tecnologia, via Morego 30, Genova 16163 (Italy); Kolesnikov, A. L. [Ivanovo State University, Ivanovo (Russian Federation); Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig (Germany); Georgi, N., E-mail: bancocker@mail.ru [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany); Chuev, G. N. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region (Russian Federation); Kiselev, M. G. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-11-28

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radius of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.

  8. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    Prilliman, Gerald Stephen

    2003-09-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe{sub 2}O{sub 3}) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the {gamma} to the {alpha} structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the {alpha} structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced {alpha} phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the {alpha} phase which would increase the thermodynamic offset and thereby increase the kinetic barrier

  9. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe2O3) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure. The

  10. Collapse of CuO Double Chains and Suppression of Superconductivity in High-Pressure Phase of YBa2Cu4O8

    Nakayama, Atsuko; Onda, Yusuke; Yamada, Shuhei; Fujihisa, Hiroshi; Sakata, Masafumi; Nakamoto, Yuki; Shimizu, Katsuya; Nakano, Satoshi; Ohmura, Ayako; Ishikawa, Fumihiro; Yamada, Yuh

    2014-09-01

    The crystal structure and electrical resistivity of YBa2Cu4O8 (Y124) were studied under high pressure up to 18 GPa using diamond-anvil cells, respectively, in order to clarify its conduction mechanism. Y124 causes the first-order phase-transition into the orthorhombic Immm at pressure around 11 GPa. The high-pressure phase (HPP) also shows the superconductivity, while the manner of temperature dependence of electrical resistance and the pressure dependence of transition temperature, Tc, drastically change above 11 GPa. The CuO2 plane persists in HPP but the CuO double chains collapse with the phase transition and transform into three-dimensional Cu-O network, resulting in the renewal of conduction system.

  11. An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures

    An interatomic potential has been developed to describe interactions in silicon, carbon and silicon carbide, based on the environment-dependent interatomic potential (EDIP) (Bazant et al 1997 Phys. Rev. B 56 8542). The functional form of the original EDIP has been generalized and two sets of parameters have been proposed. Tests with these two potentials have been performed for many properties of SiC, including bulk properties, high-pressure phases, point and extended defects, and amorphous structures. One parameter set allows us to keep the original EDIP formulation for silicon, and is shown to be well suited for modelling irradiation-induced effects in silicon carbide, with a very good description of point defects and of the disordered phase. The other set, including a new parametrization for silicon, has been shown to be efficient for modelling point and extended defects, as well as high-pressure phases.

  12. An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures.

    Lucas, G; Bertolus, M; Pizzagalli, L

    2010-01-27

    An interatomic potential has been developed to describe interactions in silicon, carbon and silicon carbide, based on the environment-dependent interatomic potential (EDIP) (Bazant et al 1997 Phys. Rev. B 56 8542). The functional form of the original EDIP has been generalized and two sets of parameters have been proposed. Tests with these two potentials have been performed for many properties of SiC, including bulk properties, high-pressure phases, point and extended defects, and amorphous structures. One parameter set allows us to keep the original EDIP formulation for silicon, and is shown to be well suited for modelling irradiation-induced effects in silicon carbide, with a very good description of point defects and of the disordered phase. The other set, including a new parametrization for silicon, has been shown to be efficient for modelling point and extended defects, as well as high-pressure phases. PMID:21386297

  13. Laser-driven phase transitions in aqueous colloidal gold nanoparticles under high pressure: picosecond pump-probe study.

    Hashimoto, Shuichi; Katayama, Tetsuro; Setoura, Kenji; Strasser, Michael; Uwada, Takayuki; Miyasaka, Hiroshi

    2016-02-14

    Pump-probe transient extinction spectroscopy was used to analyze 355 nm picosecond laser heating-induced phenomena in 60 nm-diameter aqueous gold nanoparticles (AuNPs) under a high pressure of 60 MPa. Kinetic spectroscopy revealed that a supercritical layer surrounding the AuNP nucleated with a lifetime of approximately 1 ns during its dynamic expansion and decay for a fluence of 19.6 mJ cm(-2). Moreover, in the post-mortem transmission electron micrographs we observed a number of fragments, a small percentage of size-reduced cores, and erupted particles among the intact particles after 60 shots, suggesting that evaporation occurred under laser illumination. The particle temperature calculation indicated that evaporation begins with a liquid droplet AuNP surrounded by a supercritical layer at temperatures below the boiling point of gold. By applying high pressure, we obtained a clear picture of the evaporation event, which was not possible at ambient pressure because bubble formation caused particle temperatures to rise uncontrollably. In this study, we shed light on the critical role of the supercritical layer formed around the AuNP under high pressure during laser-induced evaporation. PMID:26812175

  14. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    Highlights: • The phase transition of Pt3Al alloys occurs at 60 GPa. • The elastic modulus of Pt3Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt3Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt3Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at EF decrease. The cubic Pt3Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  15. Determination of the phase boundary of the omega to beta transition in Zr using in situ high-pressure and high-temperature X-ray diffraction

    Ono, Shigeaki, E-mail: sono@jamstec.go.jp [Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061 (Japan); Kikegawa, Takumi [High Energy Acceleration Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2015-05-15

    The high-pressure behavior of zirconium has been examined using the synchrotron X-ray diffraction technique to a pressure of 38 GPa and a temperature of 800 K employing a hydrothermal diamond anvil cell technique. The structural transition from the ω to the β phase was observed. This transition has a negative dP/dT gradient, which is in general agreement with those reported in previous studies. The transition boundary was determined to be, P (GPa)=41.2–0.025×T (K). The negative slope of the transition, dP/dT, determined in our study using the diamond anvil cell technique was less than half that estimated by the previous study using a large press apparatus. - Graphical abstract: Experimental results and phase boundary of the ω–β transition in Zr. - Highlights: • X-ray diffraction patterns of zirconium were measured by the synchrotron experiments. • High-pressure experiments were performed by an external-heated diamond anvil cell. • Phase diagram of zirconium was determined at high pressures and high temperatures. • Phase boundary between omega and beta transition has a negative dP/dT slope.

  16. A density functional study of the high-pressure chemistry of MSiN2(M = Be, Mg, Ca): prediction of high-pressure phases and examination of pressure-induced decomposition

    Rebecca Römer, S.; Kroll, Peter; Schnick, Wolfgang

    2009-07-01

    Normal pressure modifications and tentative high-pressure phases of the nitridosilicates MSiN2 with M = Be, Mg, or Ca have been thoroughly studied by density functional methods. At ambient pressure, BeSiN2 and MgSiN2 exhibit an ordered wurtzite variant derived from idealized filled β-cristobalite by a C1-type distortion. At ambient pressure, the structure of CaSiN2 can also be derived from idealized filled β-cristobalite by a different type of distortion (D1-type). Energy-volume calculations for all three compounds reveal transition into an NaCl superstructure under pressure, affording sixfold coordination for Si. At 76 GPa BeSiN2 forms an LiFeO2-type structure, corresponding to the stable ambient-pressure modification of LiFeO2, while MgSiN2 and CaSiN2 adopt an LiFeO2-type structure, corresponding to a metastable modification (24 and 60 GPa, respectively). For both BeSiN2 and CaSiN2 intermediate phases appear (for BeSiN2 a chalcopyrite-type structure and for CaSiN2 a CaGeN2-type structure). These two tetragonal intermediate structures are closely related, differing mainly in their c/a ratio. As a consequence, chalcopyrite-type structures exhibit tetrahedral coordination for both cations (M and Si), whereas in CaGeN2-type structures one cation is tetrahedrally (Si) and one bisdisphenoidally (M) coordinated. Both structure types, chalcopyrite and CaGeN2, can also be derived from idealized filled β-cristobalite through a B1-type distortion. The group-subgroup relation of the BeSiN2/MgSiN2, the CaSiN2, the chalcopyrite, the CaGeN2 and the idealized filled β-cristobalite structure is discussed and the displacive phase transformation pathways are illustrated. The zero-pressure bulk moduli were calculated for all phases and have been found to be comparable to compounds such as α- Si3N4, CaIrO3 and Al4C3. Furthermore, the thermodynamic stability of BeSiN2, MgSiN2 and CaSiN2 against phase agglomerates of the binary nitrides M3N2 and Si3N4 under pressure are examined.

  17. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  18. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  19. High-pressure-high-temperature phase relations of MgGeO3 : First-principles calculations

    Tsuchiya, Taku; Tsuchiya, Jun

    2007-09-01

    The high-pressure-high-temperature behavior of MgGeO3 has been investigated by first-principles computations. It is found that at 300K , the first transformation from ilmenite to orthorhombic perovskite at 24-38GPa is followed by the second one to the CaIrO3 structure at 51-56GPa . Quasiharmonic free energy calculations suggest that the first transformation has a negative Clapeyron slope ( -9.3MPa/K at 1000K ), whereas the second one has a less temperature-sensitive positive Clapeyron slope ( +7.8MPa/K at 1000K ). It is also confirmed that the LiNbO3 structure does not have its own stability P,T conditions. Pressure dependence of the Goldschmidt tolerance factor indicates a clear correlation between distortion of the perovskite structure and relative stability of perovskite and postperovskite structures.

  20. Structural phase transition of edge-sharing copper oxide Ca0.85CuO2 under high pressure

    MAI Wenjie; ZHANG Gongmu; QIN Xiaomei; CHEN Liangchen; LI Fengying; YU Richeng; LIU Jing; JIN Changqing

    2004-01-01

    The perovskite-like structure compound Ca0.85- CuO2 has interesting structural properties: it has infinite one-dimensional edge-sharing copper-oxygen chains as well as partial occupancy of the Ca sites resulting in an incommensurate superstructure. In situ high-pressure energy dispersive X-ray diffraction measurements on polycrystalline powder Ca0.85CuO2 have been performed by using diamond anvil cell (DAC) instrument with synchrotron radiation. The results for the first time show that edge-sharing copper oxide Ca0.85CuO2 undergoes a structural transition at 14.5 GPa, and furthermore the structural transition is reversible.

  1. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757

    Hu, Jinping; Sharp, Thomas G.

    2016-07-01

    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  2. High-pressure phase behaviour of the binary system {CO2 + cis-decalin} from (292.75 to 373.75) K

    The phase behaviour of the {CO2 (1) + cis-decalin (2)} binary system has been experimentally studied at temperatures ranging from (292.75 to 373.75) K. Saturation pressures, ranging from (15.9 to 490.5) bar, were obtained using a variable volume high-pressure cell by visual observation of phase transitions at constant overall composition. For this system, no literature data are available and the results obtained in this study reveal the occurrence of vapor-liquid, liquid-liquid, and vapor-liquid-liquid phase transitions in the investigated temperature range. A total of 133 experimental points are reported including bubble points, dew points, liquid-liquid phase equilibria, and coordinates of the three-phase line. The experimental data can be reasonably predicted by the PPR78 model in which the temperature-dependent binary interaction parameter is calculated by a group contribution method

  3. High Pressure and high temperature phase transition in FeTiO3: implications for the deep interior of giant planet

    Hamane, D.; Zhang, M.; Yagi, T.; Yanming, M.

    2011-12-01

    The discovery of the structural phase transition of perovskite into a CaIrO3-type phase at high pressures invites the investigation of further phase transitions in order to understand the deep interior of giant planet. Recent experimental studies for FeTiO3 have detected a new dissociation to a dense compound assemblage rather than the CaIrO3-type phase at high pressures. Since the phase relation of FeTiO3 is expected to be significant for estimating the ultrahigh-pressure behavior of ABX3 compounds such as MgSiO3, we investigated the phase transition in FeTiO3 up to 80 GPa and 2600K by synchrotron X-ray diffraction using a laser-heated diamond anvil cell and analytical transmission electron microscopy observations. We conclude that FeTiO3 ilmenite transforms into the following phase(s) with increasing pressure: FeTiO3 (perovskite) at 18-30 GPa, 1/2 Fe2TiO4 (Ca2TiO4-type) + TiO2 (OI-type) at 30-45 GPa and high temperature, FeO (wüstite) + TiO2 (OI) at 30-45 GPa and low temperature, and 2/3 FeO (wüstite) + 1/3 FeTi3O7 (orthorhombic phase) above 45 GPa. We also estimates the structural model of FeTi3O7 phase by using the particle swarm optimization simulation, and Rietveld refinement based on this model structure gave an excellent fit with the experimentally obtained X-ray diffraction pattern. This new high-density FeTi3O7 structure consists of the polyhedra for monocapped prisms FeO7, bicapped prisms TiO8, and tricapped prisms TiO9 with Imm2 symmetry. The dense compound assemblage found in FeTiO3 is promising for investigating the behavior of ABX3 compounds under ultrahigh pressures, and our experimental results suggest that the AB3X7 type oxide instead of cotunnite SiO2 may produce the denser assemblage even in the silicate system at ultra high pressure. This new model has not yet been proposed as a candidate, but our suggestion will be important for predicting the mineral assemblage in the deep interiors of giant planets.

  4. Compressibility and phase transformations of AgInSe{sub 2} from high-pressure X-ray diffraction studies

    Orlova, N.S.; Turtsevich, G.A.; Bodnar, I.V. [Institute of Solid State and Semiconductor Physics, Minsk (Belarus)

    1994-06-01

    The compound AgInSe{sub 2} is one of the A{sup I}B{sup III}C{sup VI}{sub 2} ternary semiconductors, which exhibit unique optical properties and are highly promising materials for use in nonlinear optics and semiconductor engineering. Their elastic properties are of great importance and yet, unlike other characteristics, remain inadequately studied. In particular, the elastic constants were determined only for AgGaS{sub 2} and AgGaSe{sub 2}. The compressibilities were measured for a number of CuB{sup III}C{sup VI}{sub 2} compounds and for three Ag compounds AgGaS{sub 2}, AgGaSe{sub 2}, and AgGaTe{sub 2}. No data on the compressiblity of AgInC{sup VI}{sub 2} compounds is available in the literature. The compressibilities along the major directions of AgInS{sub 2} crystals with the chalcopyrite structure were reported. In this work, we studied the compressibility of AgInSe{sub 2} using high-pressure X-ray diffraction analysis.

  5. Observation of phase transformations in LiMn2O4 under high pressure and at high temperature by in situ X-ray diffraction measurements

    This work presents the diffraction features of lithium-manganese oxide in extreme pressure and temperature conditions used as positive electrode materials in lithium-ion batteries. Energy-dispersive X-ray diffraction yield reliable description of material lattice, its distortion and chemical stability under high pressure and at high temperature (HP/HT). The phase evolution as a function of pressure and temperature is reported and analyzed in the LiMn2O4 sample. A comparison with another tetragonal spinel shows the influence of the Jahn-Teller effect on the HP/HT structure of this class of materials.

  6. Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure

    Jie, Yang; Pei, Wang; Guo-Zhao, Zhang; Xiao-Xue, Zhou; Jing, Li; Cai-Long, Liu

    2016-06-01

    Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure. We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two ZnSe samples with different sizes obtained by physical grinding. The results show that (i) two different-sized ZnSe samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase; (ii) the structural transition pressure of the 859-nm ZnSe sample is higher than that of the sample of 478 nm, which indicates the strong scale effect. The pressure induced boundary resistance change is obtained by fitting the impedance spectrum, which shows that the boundary conduction dominates the electrical transport behavior of ZnSe in the whole experimental pressure range. By comparing the impedance spectra of two different-sized ZnSe samples at high pressure, we find that the resistance of the 478-nm ZnSe sample is lower than that of the 859-nm sample, which illustrates that the sample with smaller particle size has more defects which are due to physical grinding. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404133 and 11374121) and the Program of Science and Technology Development Plan of Jilin Province, China (Grant No. 20140520105JH).

  7. High-Pressure Microfluidics

    Ogden, Sam

    2013-01-01

    In this thesis, some fundamentals and possible applications of high-pressure microfluidics have been explored. Furthermore, handling fluids at high pressures has been addressed, specifically by creating and characterizing strong microvalves and pumps. A variety of microstructuring techniques was used to realize these microfluidic devices, e.g., etching, lithography, and bonding. To be able to handle high pressures, the valves and pumps need to be strong. This necessitates a strong actuator ma...

  8. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs

  9. Phase behaviour and thermodynamic modelling for the system (grape seed oil + carbon dioxide + ethanol) at high pressures

    This short communication reports phase equilibrium data (cloud points), employing the synthetic static method, for the system {grape seed oil (GSO) + carbon dioxide (CO2) + ethanol} up to T = 343.15 K and 22.53 MPa. Experimental results were modelled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2). It is shown that the thermodynamic model is able to represent satisfactorily the phase behaviour of the system investigated

  10. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  11. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    Ullrich, A; Miletich, R; 10.1007/s00269-009-0300-8

    2010-01-01

    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pr...

  12. The disproportionation reaction phase transition, mechanical, and lattice dynamical properties of the lanthanum dihydrides under high pressure: A first principles study

    Yang, Jin-Wen; Gao, Tao; Gong, Yan-Rong

    2014-06-01

    The pressure-induced disproportionation reaction phase transition, mechanical, and dynamical properties of LaH2 with fluorite structure under high pressure are investigated by performing first-principles calculations using the projector augmented wave (PAW) method. The phase transition of 2LaH2 → LaH + LaH3 obtained from the usual condition of equal enthalpies occurs at the pressure of 10.38 GPa for Perdew-Wang (PW91) functional and 6.05 GPa for Ceperly-Adler (CA) functional, respectively. The result shows that the PW91 functional calculations agree excellently with the experimental finding of 11 GPa of synchrotron radiation (SR) X-ray diffraction (XRD) of Machida et al. and 10 GPa of their PBE functional theoretical result. Three independent single-crystal elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, elastic anisotropy, Poisson's ratio, the brittle/ductile characteristics and elastic wave velocities over different directions dependences on pressure are also successfully obtained. Especially, the phonon dispersion curves and corresponding phonon density of states of LaH2 under high pressure are determined systematically using a linear-response approach to density functional perturbation theory (DFPT). Our results demonstrate that LaH2 in fluorite phase can be stable energetically up to 10.38 GPa, stabilized mechanically up to 17.98 GPa, and stabilized dynamically up to 29 GPa, so it may remain a metastable phase above 10.38 GPa up to 29 GPa, these calculated results accord with the recent X-Ray diffraction experimental finding and theoretical predictions of Machida et al.

  13. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    Highlights: •The transition pressure Pt between the ReB2–ReB2 and MoB2–ReB2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB2–ReB2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB2. The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure Pt between the ReB2–ReB2 and MoB2–ReB2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB2–ReB2 indicate that it is a superhard material

  14. High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5

    Okada, Taku; Yagi, Takehiko; Nishio-Hamane, Daisuke

    2011-04-01

    The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency of the Ti-O chemical bonds.

  15. High-pressure structural phase transitions in TiO sub 2 and synthesis of the hardest known oxide

    Ahuja, R

    2002-01-01

    Despite great technological importance and many investigations, a material with a measured hardness comparable to that of diamond or cubic boron nitride has yet to be identified. Our combined theoretical and experimental investigations led to the discovery of a new polymorph of titanium dioxide, where titanium is ninefold coordinated to oxygen in the cotunnite (PbCl sub 2) structure. Hardness measurements on this phase, synthesized at pressures above 60 GPa and temperatures above 1000 K, reveal that this material is the hardest oxide yet discovered. Furthermore, it is one of the least compressible (with a measured bulk modulus of 431 GPa) and hardest (with a microhardness of 38 GPa) polycrystalline materials studied so far.

  16. Study on two-phase flow dynamics in steam injectors II. High-pressure tests using scale-models

    Analytical and experimental studies have been conducted on large-scale steam injectors for a next-generation reactor. The steam injectors are simple, compact, passive steam jet pumps for a steam-injector-driven passive core injection system (SI-PCIS) or steam-injector-driven primary loop recirculation system (SI-PLR). In order to check the feasibility of such large-scale steam injectors we developed the separate-two-phase flow models installed in the PHOENICS Code, and scale-model tests were conducted for both SI-PCIS and SI-PLR. A 1/2 scale SI-PCIS model achieved a discharge pressure of almost 8 MPa with 7 MPa steam and 0.4 MPa water, and a 1/5 scale SI-PLR model attained a discharge pressure of 12.5 MPa with 3 MPa steam and 7 MPa water. Both results are in good agreement with the analysis, confirming the feasibility of both systems. The systems will help to simplify the next generation of BWRs.

  17. High pressure phase transitions in Mg{sub 1-x}Ca{sub x}O: Theory

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon (India); Padegaonker, Rishikesh [Indian Embassy School, Sana (Yemen)

    2011-08-15

    We have analysed a B1 {yields} B2 structural phase transitions in Mg{sub 1-x}Ca{sub x}O solid solutions and their ground state properties by using first principle density functional theory and charge transfer interaction potential (CTIP) approach. The effects of exchange-correlation interactions are handled by the generalized gradient approximation with Perdew-Burke-Ernzerhof type parameterization. CTIP approach includes the long range modified Coulomb with charge transfer interactions and short range part of this model includes the van der Waals as well as Hafemeister Flygare type overlap repulsive interactions. The study observes a linear variation of calculated transition pressure, bulk modulus and lattice parameter of Mg{sub 1-x}Ca{sub x}O as a function of Ca composition. The observed results for the end point members are in agreement to their experimental counterparts and the deviations have been discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  19. Experimental study of simulating high pressure steam-water to-phase flow with sulfur hexafluoride gas and ethyl alcohol liquid

    Mist flow appears in various industrial plants and machines; nuclear power plants, chemical plants, heat exchangers, steam turbines, and so on. Behaviors of droplet have effects on heat and mass transfer process on them. As for a steam generator of a nuclear power plant, mist flow appears at primary and secondary separator. These apparatus separates steam and droplet. Droplet erodes steam turbine blade and gives it too much damage. In order to prevent it, we must clarify the behavior of droplet; i.e. diameter and its distribution. Clarification of droplet behavior at actual pressure and temperature of a steam generator is very difficult and it costs too much and takes long time to develop a steam generator. It is needed, therefore, to develop a new experimental method. One of the best ways is to use alternate fluids of which properties as same as that of high pressure and high temperature steam-water system. We have developed the new experimental method and simulated actual pressure steam-water two phase flow using Sulfur Hexafluoride gas and ethyl alcohol liquid two-phase flow at low pressures and atmospheric temperature. The specific objectives of this study are to: (1) simulate easily a high pressure and high temperature steam-water system by using alternative fluids; (2) confirm that Sulfur Hexafluoride and ethyl alcohol system at atmospheric temperature and low pressure is able to simulate steam-water system. For measuring drop diameter, the laser diffraction technique was applied. Further, the photographs of the droplets were taken by the video camera. The drop diameter decreased as increasing gas velocity and it was found that drop diameter was about 100∼200μm under the simulation condition of 6MPa and 280 .deg. C

  20. Synthesis of new cubic C3N4 and diamond-like BC3 phases under high pressure and high temperature

    In this report, we discuss the progress in synthesis of new binary phases from B-C-N triangle in DAC under high-pressure and high-temperature (HPHT) conditions: cubic C3N4 (c-C3N4) and diamond-like BC3 (d-BC3) phase. These two phases have been synthesized by direct transformation from graphitic phases under HPHT conditions. The c-C3N4 phase was recovered at ambient conditions from the graphite-like C3N4 (g-C3N4) phase subjected to pressures between 21 and 38 GPa in a diamond anvil cell, laser-heated to temperatures between 1600 and 3000 K. The x-ray diffraction data on the new phase are best explained by a cubic unit cell with the lattice parameters a = 3.878±0.001 A. The synthesis of the c-C3N4 phase has been also conducted in a large volume press at pressure 25 GPa and temperature 20000C. X-ray peaks of c-C3N4 phase obtained in the large-volume press are weaker than those of diamonds. Application of the UV Raman spectroscopy revealed that UV Raman spectrum of the g-C3N4 is substantially different from that measured with visible Raman spectroscopy. It has two strong peaks at 690 cm-1 and at 986 cm-1 assigned to different types of the ring (s-triazine ring) breathing modes. A diamond-like BC3 has been synthesized at temperature 2033 ± 241 K and at pressure 50 GPa. The conclusion about the phase transition from graphitic BC3 (g-BC3) to d-BC3 phase was made from the analysis of Raman scattering data. The Raman spectrum of the novel d-BC3 displays all the peaks but one at 671 cm-1 characteristic to Raman spectra the B doped diamond. The peaks pattern of the d-BC3 suggests that this phase could become a superconductor at low temperatures

  1. Elastic Constants at High Pressure, Solid-Liquid Phase Boundaries and Equations of State for Solid and Liquid Copper and 316-Stainless Steel

    Hayes, Dennis

    1999-06-01

    Prior accurate measurements of sound speed on the Hugoniot for copper and 316-SS are used to construct complete equations of state for solid and liquid phases. Differences between calculated bulk and observed elastic sound-speed in the solid are used to infer high-pressure elastic constants. At higher pressures, where the shocked state is entirely liquid, data are sufficient to construct the EOS including an accurate estimate for Grüneisen's ratio. The liquid EOS also reasonably describes some low-pressure, high-temperature properties, including density, sound speed, variation of sound speed with temperature, and thermal expansion, lending confidence to its accuracy. Results are comparable for each metal: the shear modulus increases along the Hugoniot and then drops precipitously toward zero as the pressure nears the liquid-phase boundary. In the liquid, Grüneisen's ratio is observed to be constant and agrees with the value measured for the liquid at zero pressure. The state below which this constancy holds is identified as the smallest pressure on the Hugoniot at which melting is complete. The gap between pure solid and pure liquid is identified as the mixed-phase region and in the case of copper, its size and location are in reasonable agreement with published ab initio calculations of Moriarty. Confidence in calculated temperature and entropy is less then that in pressure, volume and energy owing to uncertainties in specific heats.

  2. On the Chemical Evolution of Upper Mantle of the Early Earth—An Experimental Study on Melting of the Silicate Phase in Jilin Chondrite at High Pressures

    谢鸿森; 方虹; 等

    1989-01-01

    Relatively old ages of chondrites(normally around 4.5Ga)suggest that their parent bodies did not experience any mely-fractionation under high temperature and high pressure conditions pertaining to the interior of terrestrial plaets.Therefore,it is reasonable to take chondrites as starting materials in the study of the chemical evolution of the early earth.The sillicate phase in the Jilin chondrite (H5)was chosen for this purpose because it possesses a chemical composition similar to that of the primitive mantle.The melting experiment was carried out at 20-30 k bar and has rsulted in a product which contains1-5% melts in addition to solid cryustal phase.The chemical composition of the melt phases and the partitioning of various elements between the coexisting silicate melts are geochemically similar to those of anatectic rocks on the earth.This can thus serve as the basis for discussing the chemical evolution of the early upper mantle.

  3. Experimental study of simulating high pressure steam-water two-phase flow with sulfur hexafluoride gas and ethyl alcohol liquid (droplets behavior of downward mist flow)

    The full text follows. Mist flow appears in various industrial plants and machines; nuclear power plants, chemical plants, heat exchangers, steam turbines, and so on. Behaviors of droplet have effects on heat and mass transfer process on them. As for nuclear power plants, droplet diameters of downward mist flow have an important effect on peak-clad-temperature (PCT) at loss of coolant accidents (LOCA). Reliability of two-fluid model computer codes to predict gas-liquid two-phase flow relies on the experimental database. We simulated actual pressure steam-water two-phase flow using Sulfur Hexafluoride gas and ethyl alcohol liquid two-phase flow at low pressures. The specific objectives of this study are to: (1) simulate easily a high pressure and high temperature steam-water system by using alternative fluids; (2) clarify the diameter of droplet which does not break up any more (stable droplet diameter) in the blow down phenomenon of LOCA; (3) extend the downward mist flow database to lower liquid-to-gas density ratio. We carried out the experiment of downward mist flow with two kinds of fluids: Sulfur Hexafluoride (SF6) and ethyl alcohol (C2H5OH) as gas and liquid phase, respectively. Those fluids can simulate a high pressure and temperature steam-water system of 6 MPa, and 550 K at the condition of the lower pressure and atmospheric temperature (0.5 MPa and 300 K, respectively). The physical properties of SF6 and C2H5OH are as same as steam-water system. The density ratio and surface tension, which affect on the diameter of droplet, of SF6 / C2H5OH at 0.5 MPa and 300 K is about 30 and 2.1 10-2 N/m, respectively. SF6 is widely used in electronic equipment as insulating gas. It stays in the same chemical state under the condition of atmospheric temperature and chemical decomposition due to thermal energy is not developed below 770 K. Experimental conditions of superficial gas and liquid velocities were 1.5 m/s-10 m/s and 0.01 m/s-0.03 m/s, respectively. The system

  4. Rapid determination of sixteen sulfonylurea herbicides in surface water by solid phase extraction cleanup and ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry.

    Yan, Cuimin; Zhang, Beibei; Liu, Wenyuan; Feng, Feng; Zhao, Yonggang; Du, Hui

    2011-11-15

    A sensitive and very fast analytical method has been developed for the simultaneous quantification of sixteen sulfonylurea herbicides in surface water. An ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry method with solid phase extraction for sample cleanup has been developed for screening sixteen sulfonylurea herbicides (oxasulfuron, thifensulfuron-methyl, cinosulfuron, metsulfuron methyl, sulfometuron methyl, triasulfuron, rimsulfuron, ethametsulfuron methyl, sulfosulfuron, tribenuron methyl, bensulfuron methyl, iodosulfuron methyl, pyrazosulfuron ethyl, prosulfuron, chlorimuron ethyl, ethoxysulfuron) in water samples simultaneously within 12 min. Water samples were acidified, and the target herbicides were extracted by passing through ProElut C18 extraction cartridges. After drying by nitrogen flow, the cartridges were eluted with elution solvents, and the eluate was then evaporated to dryness, redissolved and analyzed. The mobile phase composed of 0.02% formic acid and acetonitrile using gradient elution. A triple quadrupole mass spectrometer equipped with an electrospray ionization source operated in the positive ion with selective reaction monitoring mode. Each of the analytes in all the samples was monitored using protonated molecule and its two characteristic fragment ions for confirmation. The limits of detection for all analytes were below 1.0 ng/mL, except for sulfosulfuron and prosulfuron, and limits of quantitation were between 1 and 8 ng/mL for this method. Three water types were used for the validation of the method. PMID:21983197

  5. An experimental study of two-phase critical flow with non-condensable gas in a small-diameter pipe at high pressure and normal temperature

    An experimental study is performed on two-phase critical flow with non-condensable gas in a small diameter pipe at high pressure and normal temperature. T2GDM, which is a test section for measuring void fraction inside, is used on KAREI non-condensable gas two-phase critical flow test facility which has the existing test section T2. The gamma densitometer for void fraction measurement is composed of a sealed gamma ray source, a shielding equipment, a radiation detector, a signal processing unit and a traversing system. The measurement results show that a lot of void is generated while passing through the test section. Experimental data of critical flow rates are generated using two test section of T2 and T2GDM. The results show that the critical flow rates decrease rapidly with the increase of the volumetric gas fraction. The experiments are simulated with the MARS2.1 code. The simulation results show that the modified Henry-Fauske model in the MARS2.1 code predicts well the measured critical flow rates when the non-condensable gas is not injected, while it over-predicts the flow rates when the non-condensable gas is injected

  6. Infrared Spectra of High Pressure Carbon Monoxide

    Evans, W J; Lipp, M J; Lorenzana, H E

    2001-09-21

    We report infrared (IR) spectroscopic measurements of carbon monoxide (CO) at high pressures. Although CO is one of the simplest heteronuclear diatomic molecules, it displays surprisingly complex behavior at high pressures and has been the subject of several studies [1-5]. IR spectroscopic studies of high pressures phases of CO provide data complementing results from previous studies and elucidating the nature of these phases. Though a well-known and widely utilized diagnostic of molecular systems, IR spectroscopy presents several experimental challenges to high pressure diamond anvil cell research. We present measurements of the IR absorption bands of CO at high pressures and experimentally illustrate the crucial importance of accurate normalization of IR spectra specially within regions of strong absorptions in diamond.

  7. High-pressure phase behaviors of ZnTiO3: ilmenite-perovskite transition, decomposition of perovskite into constituent oxides, and perovskite-lithium niobate transition

    Akaogi, M.; Abe, K.; Yusa, H.; Kojitani, H.; Mori, D.; Inaguma, Y.

    2015-06-01

    High-pressure high-temperature phase transitions of ZnTiO3 ilmenite were examined using multianvil apparatus up to 25.5 GPa and 1,500 °C and diamond anvil cell to 26.5 GPa and about 2,000 °C. Combined results of the multianvil quench experiments and in situ diamond anvil cell experiments indicated that at about 10 GPa and 1,200 °C ZnTiO3 ilmenite transforms to orthorhombic perovskite which is converted to lithium niobate phase on release of pressure. The boundary of the ilmenite-provskite transition is expressed by P(GPa) = 15.9 - 0.005 T (°C). The high-pressure experiments also indicated that at 20-24 GPa and 1,000-1,400 °C ZnTiO3 orthorhombic perovskite dissociates into rocksalt-type ZnO + baddeleyite-type TiO2 which are recovered, respectively, as wurtzite-type ZnO and α-PbO2-type TiO2 at 1 atm. The boundary of the perovskite dissociation is expressed by P(GPa) = 8.7 + 0.011 T (°C). Molar volume changes of ZnTiO3 at ambient conditions were estimated as -4.7 % for the ilmenite-perovskite transition and -3.5 % for the perovskite decomposition into the oxides. The absence of CaIrO3-type postperovskite in ZnTiO3 is consistent with that dissociation of ZnTiO3 perovskite into the oxides has the larger molar volume change than -1 to -2 % of the perovskite-postperovskite transition in various ABO3 compounds and with previous data that ABO3 perovskites with relatively ionic B-O bonds do not transform to the postperovskite. The transition behaviors of ZnTiO3 are similar to those of MnTiO3 and FeTiO3, but ZnTiO3 perovskite dissociates into the constituent oxides.

  8. Deuterium high pressure target

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  9. Deuterium High Pressure Target

    Perevozchikov, V; Vinogradov, Yu I; Vikharev, M D; Ganchuk, N S; Golubkov, A N; Grishenchkin, S K; Demin, A M; Demin, D L; Zinov, V G; Kononenko, A A; Lobanov, V N; Malkov, I L; Yukhimchuk, S A

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm^3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system.

  10. High pressure gas target

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    Compact, high pressure, high current gas target features all metal construction and semi-automatic window assembly change. The unique aspect of this target is the domed-shaped window. The Havar alloy window is electron beam welded to a metal ring, thus forming one, interchangeable assembly. The window assembly is sealed by knife-edges locked by a pneumatic toggle allowing a quick, in situ window change.

  11. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. PMID:27157422

  12. Phase diagram of the La-Si binary system under high pressure and the structures of superconducting LaSi5 and LaSi10

    The La-Si binary phase diagram under a high pressure of 13.5 GPa was experimentally constructed. New superconducting silicides LaSi5 and LaSi10 were found, which have peritectic decomposition temperatures at 1000 and 750 deg. C, respectively. The single crystal X-ray structural analysis revealed that there are two polymorphs in LaSi5. The α-form obtained by heating a molar mixture of LaSi2 and 3 Si at about 700 deg. C or by a rapid cooling from 1000 deg. C under pressure crystallizes with the space group C2/m and the lattice parameters a=15.11(3), b=4.032(6), c=8.26(1) A, and β=109.11(1)o. The β-form obtained by a slow cooling from 800-950 deg. C to 600 deg. C under pressure has the same space group but with slightly different lattice parameters, a=14.922(7), b=3.906(2), c=8.807(4) A, and β=107.19(1)o. The β-form is formed during the incomplete transformation of the α-form on cooling, and has always been obtained as a mixture with the α-form. The compound can be characterized as a Zintl phase with a polyanionic framework ∞3[Si5]3- with large tunnels running along the b axis hosting lanthanum ions. In the β-form, three of the five Si sites are disordered. The two polymorphs contain one dimensional sila-polyacene ribbons, Si ladder polymer, running along the b axis. The α-form showed superconductivity with the transition temperature Tc of 11.5 K. LaSi10 crystallizes with the space group 63/mmc and the lattice parameters a=9.623(4), c=4.723(3) A. It is composed of La containing Si18 polyhedra (La-Si18) of hexagonal beer-barrel shape, which form straight columns by stacking along the c-axis via face sharing. One-dimensional columns of La-Si18 barrels are edge-shared, and bundled with infinite Si trigonal bipyramid chains via corner sharing. The Si atoms in the straight chains have a five-fold coordination. LaSi10 became a superconductor with Tc=6.7 K. The ab initio calculation of the electric band structures showed that α-LaSi5 and LaSi10 are metallic, and

  13. High-pressure phase behaviour measurement of (CO2 + ethylene glycol dimethacrylate) and (CO2 + di-ethylene glycol dimethacrylate) binary mixture systems

    Highlights: → Binary mixtures of CO2 + EGDMA and CO2 + DEGDMA have been studied. → Isothermal experimental data were determined from 313.2 to 363.2 K. → A static method with a variable-volume view cell was used. → The experimental data was correlated well using the Peng-PR model. - Abstract: Ethylene glycol dimethacrylate (EGDMA) and di-ethylene glycol dimethacrylate (DEGDMA) are two of the most wildly used di-functional monomers in the polymer industry. The EGDMA and DEGDMA are applied to cross-linking polymerisation for improving the physical and chemical properties of synthesized polymers. However, residual and unreacted EGDMA and DEGDMA applied to the synthesis of dental composite and super-absorption polymer poses a health threat. This problem can be solved by using supercritical CO2, which has high diffusivity and causes polymer swelling. To design and operate the supercritical fluid extraction process using scCO2, high pressure phase behaviour data are required. The pressure-composition (P-x) isotherms for the (CO2 + EGDMA) and (CO2 + DEGDMA) binary mixture systems were measured using the static method with a variable-volume view cell at temperatures ranging from (313.2 to 363.2) K. The experimental data correlation was performed using the Peng-Robinson equation of state (PR-EOS) and the Van der Waals one fluid mixing rule. The critical constants for the PR-EOS were estimated by the Joback method and the Marrero-Gani method. The acentric factor was estimated by the Lee-Kesler method. The Marrero-Gani method showed better correlation results than the Joback method and the EGDMA is more soluble in the supercritical carbon dioxide than the DEGDMA.

  14. Phase transitions and photoinduced transformations at high pressure in the molecular donor-acceptor fullerene complex {Cd(dedtc)2}2 · C60

    Meletov, K. P.; Konarev, D. V.; Tolstikova, A. O.

    2015-06-01

    The Raman spectra of crystals of C60 fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes {Cd(dedtc)2}2 · C60 were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ˜2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular H g (1)- H g (8) phonon modes and by softening of the A g (2) mode of the C60 molecule. A further increase in pressure up to 17 GPa does not induce significant new changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C60 molecules and, probably, the appearance of C120 dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm2. These changes are manifested by splitting and softening of the A g (2) mode and resemble analogous changes accompanying the photopolymerization of C60 fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The A g (2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C60 molecule.

  15. Phase transitions and photoinduced transformations at high pressure in the molecular donor-acceptor fullerene complex (Cd(dedtc)2)2 · C60

    The Raman spectra of crystals of C60 fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes (Cd(dedtc)2)2 · C60 were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ∼2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular Hg(1)-Hg(8) phonon modes and by softening of the Ag(2) mode of the C60 molecule. A further increase in pressure up to 17 GPa does not induce significant new changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C60 molecules and, probably, the appearance of C120 dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm2. These changes are manifested by splitting and softening of the Ag(2) mode and resemble analogous changes accompanying the photopolymerization of C60 fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The Ag(2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C60 molecule

  16. High pressure experimental water loop

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm2 and flow rates up to 5 m3/h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm2, and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author)

  17. Phase transitions and photoinduced transformations at high pressure in the molecular donor-acceptor fullerene complex (Cd(dedtc){sub 2}){sub 2} · C{sub 60}

    Meletov, K. P., E-mail: mele@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Konarev, D. V. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation); Tolstikova, A. O. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2015-06-15

    The Raman spectra of crystals of C{sub 60} fullerene-cadmium diethyldithiocarbamate molecular donor-acceptor complexes (Cd(dedtc){sub 2}){sub 2} · C{sub 60} were measured at pressures of up to 17 GPa, and the crystal lattice parameters of these complexes were determined at pressures of up to 6 GPa. An increase in pressure up to ∼2 GPa leads to changes in the Raman spectra, which are manifested by splitting of the intramolecular H{sub g}(1)-H{sub g}(8) phonon modes and by softening of the A{sub g}(2) mode of the C{sub 60} molecule. A further increase in pressure up to 17 GPa does not induce significant new changes to the Raman spectra, while a decrease is accompanied by the reverse transformation at a pressure of about 2 GPa. The pressure dependence of the lattice parameters also exhibits a reversible feature at 2 GPa related to a jumplike decrease in compressibility. All these data are indicative of a phase transition in the vicinity of 2 GPa related to the formation of covalent bonds between C{sub 60} molecules and, probably, the appearance of C{sub 120} dimers in fullerene layers. It was also found that, in the pressure interval from 2 to 6.3 GPa, the Raman spectra of complexes exhibit photoinduced transformations under prolonged exposure to laser radiation with a wavelength of λ = 532 nm and power density up to 5000 W/cm{sup 2}. These changes are manifested by splitting and softening of the A{sub g}(2) mode and resemble analogous changes accompanying the photopolymerization of C{sub 60} fullerene. The intensity of new bands exhibits exponential growth with increasing exposure time. The photopolymer yield depends on both the laser radiation power and external pressure. The A{sub g}(2) mode splitting under irradiation can be related to the formation of photo-oligomers with various numbers of intermolecular covalent bonds per C{sub 60} molecule.

  18. Prediction of incommensurate crystal structure in Ca at high pressure

    Arapan, Sergiu; Mao, Ho-kwang; Ahuja, Rajeev

    2008-01-01

    Ca shows an interesting high-pressure phase transformation sequence, but, despite similar physical properties at high pressure and affinity in the electronic structure with its neighbors in the periodic table, no complex phase has been identified for Ca so far. We predict an incommensurate high-pressure phase of Ca from first principle calculations and describe a procedure of estimating incommensurate structure parameters by means of electronic structure calculations for periodic crystals. Th...

  19. Theory of high pressure hydrogen, made simple

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  20. Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN-Nb2O5 System.

    Woerner, William R; Qian, Guang-Rui; Oganov, Artem R; Stephens, Peter W; Dharmagunawardhane, H A Naveen; Sinclair, Alexandra; Parise, John B

    2016-04-01

    The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides-semiconductors for photocatalytic overall water splitting-is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in the GaN-Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV. PMID:27002597

  1. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO{sub 3}-type phase of FeTiO{sub 3}.

    Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; Mitchell, J. F.; Pennsylvania State Univ.; Univ. of Chicago; Cornell Univ.

    2009-01-01

    We report the magnetic and electrical characteristics of polycrystalline FeTiO{sub 3} synthesized at high pressure that is isostructural with acentric LiNbO{sub 3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below {approx} 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

  2. Structural relaxation accompanied by photo-induced chromatic phase transition of polydiacetylenes with butylene-N-difluorophenyl carbamate side chains

    Maekawa, Yuuki; Sakamoto, Naoya; Kokado, Ryousuke; Kajimoto, Naoshi; Izumi, Yuuichiro [Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama (Japan); Itoh, Chihiro, E-mail: citoh@sys.wakayama-u.ac.jp [Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama (Japan)

    2013-01-15

    We have studied the phase transition of poly-5,7-dodecadiyne-1,12-diol bis[2,4-difluorophenyl carbamate] (PDA-2,4-DFPC) and poly-5,7-dodecadiyne-1,12-diol bis[3,4-difluorophenyl carbamate] (PDA-3,4-DFPC) by visible reflection spectroscopy and mid-infrared absorption spectroscopy. Both PDA-2,4-DFPC and PDA-3,4-DFPC show the reflection spectra characterized by a sharp peak at around 1.9 eV at room temperature. While PDA-3,4-DFPC shows thermochromic phase transition to the phase showing the reflection spectrum with a peak around 2.2 eV above 120 Degree-Sign C, PDA-2,4-DFPC shows no abrupt change of the reflection spectrum. However, PDA-2,4-DFPC shows drastic change of the reflection spectrum under 532-nm CW-laser excitation. Based on these results, we can draw the following two conclusions. First, the phase transition behavior of PDA can be controlled by modifying the side-chain structure. Second, we demonstrate that thermally inaccessible phase of PDA is induced by the photo-excitation. By measuring mid-infrared absorption of PDAs, we elucidated that conformational change of side chains is accompanied with the phase transition. Based on the results, we discussed the role of the side chain in the phase transition. - Highlights: Black-Right-Pointing-Pointer We have synthesized polydiacetylene (PDA) with difluorophenyl carbamate side chain. Black-Right-Pointing-Pointer PDAs show distinct phase transition (PT) depending on the side-chain structure. Black-Right-Pointing-Pointer PDA with 3,4-difluorophenyl carbamate shows PT by thermal stimulation. Black-Right-Pointing-Pointer However, PDA with 2,4-difluorophenyl carbamate shows PT only under photo-excitation.

  3. Psychosocial Accompaniment

    Mary Watkins

    2015-01-01

    This essay advocates for a paradigm shift in psychology toward the activity and ethics of accompaniment. Accompaniment requires a reorientation of the subjectivity, interpersonal practices, and critical understanding of the accompanier so that (s)he can stand alongside others who desire listening, witnessing, advocacy, space to develop critical inquiry and research, and joint imagination and action to address desired and needed changes. The idea of “accompaniment” emerged in liberation theolo...

  4. Study of ceramics sintering under high pressures

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  5. High pressure engineering and technology

    This book contains 10 papers. Some of the titles are: Control of vibration in high pressure piping systems; Hazards and safeguards of high pressure hydraulic fatigue testing; Load, stress and fatigue analysis of threaded end closures; Application of fatigue crack growth to an isostatic press; and Time dependent failure in high strength steels for autoclave service

  6. Flow regime transition to wavy dispersed flow for high-pressure steam/water two-phase flow in horizontal pipe

    A wavy-dispersed flow regime was observed between slug and annular-dispersed flow regimes in TPTF high-pressure steam/water horizontal pipe experiments, employing the video probe visual observation. The onset of entrainment was identified to cause slug to wavy-dispersed flow transition. The wavy-dispersed flow regime extended towards lower gas flow rates as pressure was increased. Furthermore, it was found that the gas-liquid relative velocity for the onset of entrainment decreases significantly, resulting in decrease in the minimum void fraction. Consequently, the slug flow regime was found to disappear for pressures above 8.6 MPa, as observed in the previous TPTF experiments. Applicability of available models and correlations on the onset of entrainment was assessed against the TPTF data. Steen-Wallis parameter correlated the data well when the superficial gas velocity term in this parameter is replaced by the gas-liquid relative velocity. (author)

  7. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    Rond, C., E-mail: rond@lspm.cnrs.fr; Lombardi, G.; Gicquel, A. [LSPM CNRS UPR 3407 Université Paris 13, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France); Hamann, S.; Röpcke, J. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wartel, M. [GREMI UMR 7344, CNRS/Université d' Orléans, site de Bourges, rue G. Berger, 18000 Bourges (France)

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f = 2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4 kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}–10{sup 17} molecules cm{sup −3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup −3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2 kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  8. Infrared spectroscopic and modeling studies of H2/CH4 microwave plasma gas phase from low to high pressure and power

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H2/CH4 Micro-Wave (MW frequency f = 2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4 kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH3, CH4, C2H2, C2H4, and C2H6. The densities of the stable detected species were found to vary in the range of 1012–1017 molecules cm−3, while the methyl radical CH3 (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 1014 molecules cm−3. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2 kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH4, associated to an increase of the C2H2 density, the most abundant reaction product in the plasma

  9. High pressure diffraction at ISIS

    The development of the high pressure diffraction programme at ISIS is reviewed. Along with general accounts of the technique and the pressure cells used, examples of science carried out in this field are given. (author)

  10. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    Chen, J; Ren, X.; Li, X Z; Alfè, D.; Wang, E

    2014-01-01

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from ...

  11. Experimental determination of phase equilibria of a basalt from Piton de la Fournaise (La Réunion island): 1 atm data and high pressure results in presence of volatiles

    Brugier, Yann-Aurélien; Pichavant, Michel; Di Muro, Andréa

    2015-01-01

    To understand the petrogenetic relations between the 4 groups of lavas erupted at Piton de la Fournaise (PdF), constrain the structure of the feeding system and the magma storage conditions, experimental phase equilibria have been determined, both at 1 atm and high pressures (HP), on a lava representative of Steady State Basalts (SSB). The lava (SiO 2 =49.2 wt%, MgO=7.8 wt%, CaO/Al2O 3 = 0.81) was fused at 1400 • C, 1 atm in air. The resulting glass was crushed and the powder directly used as...

  12. Electronic Transitions in f-electron Metals at High Pressures:

    This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: ∼20% at the (delta)-α transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonance inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP)

  13. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results

  14. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results. PMID:25028021

  15. Advanced Diagnostics for High Pressure Spray Combustion.

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  16. High-pressure torsion of hafnium

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  17. High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type

    Santillán, Javier; Shim, Sang-Heon; Shen, Guoyin; Prakapenka, Vitali B.

    2006-08-01

    Our X-ray diffraction measurements reveal that Mn2O3 undergoes a phase transition to the CaIrO3 type, which is proposed for the post-perovskite in MgSiO3, at 27-38 GPa and 300 K, bypassing the other phase transitions observed in sesquioxides. Small distortions in the polyhedra after the transition indicate that the Jahn-Teller effect, which is strong at ambient conditions, is suppressed during the transition. The CaIrO3-type phase exhibits strong preferred orientation of the (010) plane perpendicular to the loading axis before annealing whereas preferred orientation of the (100) and (110) planes was observed after annealing. The pre-annealing texture may result from either the deformation under strong differential stresses or the phase transition. The post-annealing texture may be related to either lower differential stresses or thermal annealing. Our result shows that the texture of the CaIrO3 type can be sensitive to phase transition and annealing as well as differential stresses.

  18. Microscopic Experimental Approaches to High Pressure Chemistry

    Russell, T.; ALLEN, T.; Rice, J.; Gupta, Y.

    1995-01-01

    The experimental study of the chemistry related to the deflagration/detonation of energetic materials is extremely challenging due to the high pressure, high temperature, and time domain under which the chemical reactions occur. In addition, non equilibrium pressure and temperature conditions temporally effect the reaction pathways and rates during the reaction process. The multiple phases of material present (i.e. the heterogeneous nature of the problem), the multiple reaction pathways (both...

  19. 晶体化学新领域——高压相变晶体化学%New Special Field of Crystal Chemistry: High-Pressure Phase Transition Crystal Chemistry

    施倪承; 李国武; 马喆生; 熊明

    2011-01-01

    用X射线衍射的方法衡量原子及离子的尺寸并测定其晶体结构是人类进入微观世界最为关键的一步.在通常的温度和压力下各种原子及离子的结合方式及排布规则已在晶体化学中得到详尽的阐述.笔者着重探讨了在高压下离子化合物及矿物的晶体化学特点.在高压下随着压力的增加,氧化物及硅酸盐中阳离子会发生从低配位数多面体向高配位数的多面体的迁移.这种迁移是由于阴阳离子半径比值改变所致.计算了不同的SiO2多形中氧和硅的离子半径,表明氧离子半径随压力增加而不断缩小,硅离子半径却随着压力的增加及相变的发生而逐渐增大,这种现象可能是由于离子化合物向金属相转变的结果.%The method which use X ray diffraction to measure the size of atom and ion and determine crystal structure is most important step for mankind get into microscopic view world. At usual temperature and pressure, the connection pattern and the arrangement rule of various atom and ion have already elaborated in the crystal chemistry in detail. In this paper, the study on the crystal chemistry characteristics of ionic compounds and minerals was emphasized under high pressure. Under high pressure when the pressure increases, the cations of silicon in oxide or silicate minerals occurred migration from low coordination number polyhedra to high coordination number polyhedra. This migration is due to the change with radius ratio of cations to anions. Under high pressure the ionic radii of oxygen and silicon have been calculated for different SiO2 polymorphs. It is indicated that the ionic radius of oxygen is decreasing gradually with the increase of pressure, but the cation radius of silicon is increasing with the increase of pressure and the occurrence of phase transitions. This kind of phenomenon may be due to the transition from ionic compounds to metallic phases under high pressure.

  20. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause...

  1. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection

    Storm, Ida Marie Lindhardt Drejer; Rasmussen, Peter Have; Strobel, B.W.;

    2008-01-01

    Ergot alkaloids are mycotoxins that are undesirable contaminants of cereal products, particularly rye. A method was developed employing clean-up by cation-exchange solid-phase extraction, separation by high-performance liquid chromatography under alkaline conditions and fluorescence detection. It...

  2. Modification of Sako-Wu-Prausnitz equation of state for fluid phase equilibria in polyethylene-ethylene systems at high pressures

    F. Gharagheizi

    2006-09-01

    Full Text Available In order to model phase equilibria at all pressures, it is necessary to have an equation of state. We have chosen the Sako-Wu-Prausnitz cubic equation of state, which had shown some promising results. However, in order to satisfy our demands, we had to modify it slightly and fit new pure component parameters. New pure component parameters have been determined for ethylene and the n-alkane series, using vapor pressure data, saturated liquid volume and one-phase PVT-data. For higher n-alkanes, where vapor pressure data are poor or not available, determination of the pure component parameters was made in part by extrapolation and in part by fitting to one-phase PVT-data. Using one-fluid van der Waals mixing rules, with one adjustable interaction parameter, good correlation of binary hydrocarbon system was obtained, except for the critical region. The extension of the equation of state to polyethylene systems is covered in this work. Using the determined parameters, flash and cloud point calculations were performed, and treating the polymer as polydisperse. The results fit data well.

  3. High Pressure Effects on Superconductivity

    Lorenz, B.; Chu, C. W.

    2004-01-01

    The review is devoted to a discussion of the effects of high pressure imposed on superconducting materials. Low-temperature superconductors, high-temperature superconducting cuprates, and some unconventional superconducting compounds are investigated. Experimental as well as theoretical results regarding the pressure effects on Tc and other interesting properties are summarized.

  4. The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. [in terrestrial and other planetary interiors

    Eggler, D. H.; Mysen, B. O.; Hoering, T. C.; Holloway, J. R.

    1979-01-01

    Autoradiographic analysis and gas chromatography were used to measure the solubility in silicate melts of CO-CO2 vapors (30 to 40% CO by thermodynamic calculation) in equilibrium with graphite at temperatures up to 1700 deg C and pressures to 30 kbar. At near-liquidus temperatures CO-CO2 vapors were found to be slightly more soluble than CO2 alone. As a result of the apparently negative temperature dependence of CO solubility, the solubility of CO-CO2 at superliquidus temperatures is less than that of CO2. Melting points of two silicates were depressed more by CO than by CO2. Phase boundary orientations suggest that CO/CO + CO2 is greater in the liquid than in the vapor. The effect of the presence of CO on periodotite phase relations was investigated, and it was found that melts containing both CO and CO2 are nearly as polymerized as those containing only CO2. These results suggest that crystallization processes in planetary interiors can be expected to be about the same, whether the melts contain CO2 alone or CO2 and CO.

  5. Magnetic and Superconducting Materials at High Pressures

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  6. High-pressure optical studies

    High pressure experimentation may concern intrinsically high pressure phenomena, or it may be used to gain a better understanding of states or processes at one atmosphere. The latter application is probably more prevelant in condensed matter physics. Under this second rubric one may either use high pressure to perturb various electronic energy levels and from this pressure tuning characterize states or processes, or one can use pressure to change a macroscopic parameter in a controlled way, then measure the effect on some molecular property. In this paper, the pressure tuning aspect is emphasized, with a lesser discussion of macroscopic - molecular relationships. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand modification at one atmosphere. Photochromic crystals change color upon irradiation due to occupation of a metastable ground state. In thermochromic crystals, raising the temperature accomplishes the same results. For a group of molecular crystals (anils) at high pressure, the metastable state can be occupied at room temperature. The relative displacement of the energy levels at high pressure also inhibits the optical process. Effects on luminescence intensity are shown to be consistent. In the area of microscopic - molecular relationships, the effect of viscosity and dielectric properties on rates of non-radiative (thermal) and radiative emission, and on peak energy for luminescence is demonstrated. For systems which can emit from either of two excited states depending on the interaction with the environment, the effect of rigidity of the medium on the rate of rearrangement of the excited state is shown

  7. Evolution of tetragonal phase of ZrO2 in the corrosion of Zry-4 and Zr-2.5Nb at high pressure and temperature

    The corrosion kinetics of Zr-2.5 Nb and Zircaloy-4 was studied at 350 C degrees in lithiated heavy water. The oxides grown on both alloys during the exposures were found to be strongly textured. The pole figures showed that the major orientation components of the oxide formed on Zr-2.5 Nb were (10-3) [0-10] and (10-3)[301] while (10-3) fiber was formed on Zircaloy-4. No significant change in texture was found in either alloy when increasing the thickness of the oxide film. The phases present in the film were determined and their evolution with the exposure time was followed. The results indicated that the tetragonal volume fraction decreased with increasing the thickness of the oxide layers of both materials. The tetragonal volume fraction of Zircaloy-4 was higher than that of Zr-2.5 Nb for the same oxide thickness. (author)

  8. Thermodynamic properties of fluid mixtures at high pressures and high temperatures. Application to high explosives and to phase diagrams of binary mixtures

    The free energy for mixtures of about ten species which are chemically reacting is calculated. In order to have accurate results near the freezing line, excess properties are deduced from a modern statistical mechanics theory. Intermolecular potentials for like molecules are fitted to give good agreement with shock experiments in pure liquid samples, and mixture properties come naturally from the theory. The stationary Chapman-Jouguet detonation wave is calculated with a chemical equilibrium computer code and results are in good agreement with experiment for a lot of various explosives. One then study gas-gas equilibria in a binary mixture and show the extreme sensitivity of theoretical phase diagrams to the hypothesis of the model (author)

  9. Measurement of high-pressure steam jet from crack area at practical FBR

    One of the design basis accidents in sodium-cooled fast reactor is sodium-water reaction at steam generator (SG). In case of a defect occurred on a heat transfer tube, the high-pressure water/vapor will spout into the low-pressure sodium surrounding outside the tube. As sodium is ordinarily quite reactive with water, this will initiate sodium-water reactions accompanied by high chemical heat generation. The liquid droplet in the reaction steam outflow would impinge on neighboring tubes to cause erosion, while the chemical reaction will cause corrosion, eventually may lead to secondary tube failure. Focusing on the erosion part, this study is to evaluate the liquid droplet impingement erosion (LDIE) rate on neighboring tubes caused by SG heat transfer tube rupture. In this paper, as a basic study, the pressure and temperature distribution of high-pressure two-phase free jet into the air is measured. (author)

  10. Neutron scattering at high pressure

    Mcwhan, D.B.

    1984-01-01

    The techniques to do elastic and inelastic neutron scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron scattering centres are capable of reaching pressures of the order of 5 GPa (50 kbar), and attempts to reach 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X-ray scattering at high pressure using rotating anode or synchrotron sources.

  11. High pressure gas metering project

    The initial research and development of a system that uses high pressure helium gas to pressurize vessels over a wide range of pressurization rates, vessel volumes, and maximum test pressures are described. A method of controlling the mass flow rate in a test vessel was developed by using the pressure difference across a capillary tube. The mass flow rate is related to the pressurization rate through a real gas equation of state. The resulting mass flow equation is then used in a control algorithm. Plots of two typical pressurization tests run on a manually operated system are included

  12. High pressure processing of meat

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per;

    Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle......–PAGE gels of myofibrillar protein extract from HP treated meat showed that myofibrillar proteins form high molecular weight aggregates after HP treatment. Myofibrillar protein aggregates were stable in a reducing environment, suggesting that disulfide bonds are not the main molecular interactions...

  13. Structural behaviour of YGa under high pressure

    Sekar, M., E-mail: sekarm@igcar.gov.in; Shekar, N. V. Chandra, E-mail: sekarm@igcar.gov.in; Sahu, P. Ch., E-mail: sekarm@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 Tamil Nadu (India); Babu, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 Tamil Nadu (India)

    2014-04-24

    High pressure X-ray diffraction studies on rare-earth gallide YGa was carried up to a pressure of ∼ 33 GPa using rotating anode x-ray source in an angle dispersive mode. YGa exhibits CrB (B33) type orthorhombic structure (space group Cmcm) at ambient pressure. It undergoes a reversible structural phase transition from orthorhombic to tetragonal structure at ∼ 8.8 GPa. Both the phases coexist up to the highest pressure studied. The zero pressure bulk modulus and its derivative for parent phase have been estimated to be B{sub o} = 60 ± 3 GPa, B{sub o}' = 4.6 ± 1.5.

  14. Structural and vibrational properties of single crystals of Scandia, Sc{sub 2}O{sub 3} under high pressure

    Ovsyannikov, Sergey V., E-mail: sergey.ovsyannikov@uni-bayreuth.de, E-mail: sergey2503@gmail.com; Wenz, Michelle D.; Pakhomova, Anna S.; Dubrovinsky, Leonid [Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, Bayreuth D-95447 (Germany); Bykova, Elena; Bykov, Maxim [Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, Bayreuth D-95447 (Germany); Laboratory of Crystallography, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth (Germany); Glazyrin, Konstantin; Liermann, Hanns-Peter [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-10-28

    We report the results of single-crystal X-ray diffraction and Raman spectroscopy studies of scandium oxide, Sc{sub 2}O{sub 3}, at ambient temperature under high pressure up to 55 and 28 GPa, respectively. Both X-ray diffraction and Raman studies indicated a phase transition from the cubic bixbyite phase (so-called C-Res phase) to a monoclinic C2/m phase (so-called B-Res phase) at pressures around 25–28 GPa. The transition was accompanied by a significant volumetric drop by ∼6.7%. In addition, the Raman spectroscopy detected a minor crossover around 10–12 GPa, which manifested in the appearance of new and disappearance of some Raman modes, as well as in softening of one Raman mode. We found the bulk modulus values of the both C-Res and B-Res phases as B{sub 0} = 198.2(3) and 171.2(1) GPa (for fixed B′ = 4), respectively. Thus, the denser high-pressure lattice of Sc{sub 2}O{sub 3} is much softer than the original lattice. We discuss possible mechanisms that might be responsible for the pronounced elastic softening in the monoclinic high-pressure phase in this “simple” oxide with an ultra-wide band gap.

  15. Materials response under static and dynamic high pressures

    Studies on equation of state and phase transitions at high pressures have significantly contributed to our basic understanding of condensed matter physics. High-pressure data on materials also find important applications in applied sciences. The developments in first principle theories and experimental techniques are listed. The similarities and differences in behaviour of materials under static and dynamic pressures are discussed. The article also describes the current interplay between theoretical and experimental high-pressure research with illustrations from our own studies and emphasis on future scope. (author). 135 refs., 10 figs., 2 tabs

  16. High pressure xenon ionization detector

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs

  17. High-pressure investigations of lanthanoid oxoarsenates. I. Single crystals of scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd from monazite-type precursors

    Metzger, Sebastian J.; Ledderboge, Florian; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2016-08-01

    Transparent single crystals of the scheelite-type Ln[AsO{sub 4}] phases with Ln = La-Nd are obtained by the pressure-induced monazite-to-scheelite type phase transition in a Walker-type module under high-pressure and high-temperature conditions of 11 GPa at 1100-1300 C. Coinciding with this transition, there is an increase in density and a reduction in molar volume of about 4.5 % for the scheelite-type phases (tetragonal, I4{sub 1}/a) for La[AsO{sub 4}] (a = 516.92(4), c = 1186.1(9) pm), Ce[AsO{sub 4}] (a = 514.60(1), c = 1175.44(2) pm), Pr[AsO{sub 4}] (a = 512.63(4), c = 1168.25(9) pm), and Nd[AsO{sub 4}] (a = 510.46(4), c = 1160.32(11) pm) as compared to the well-known monazite-type phases (monoclinic, P2{sub 1}/n). Surprisingly enough, the scheelite-type oxoarsenates(V) exhibit a lower coordination number for the Ln{sup 3+} cations (CN = 8 versus CN = 8 + 1), whereas the isolated tetrahedral [AsO{sub 4}]{sup 3-} anions (d(As-O) = 168.9-169.3 pm for the scheelites as compared to d(As-O) = 167.1-169.9 pm for the monazites) remain almost unchanged. So the densification must occur because of the loss of two edge-connections of the involved [LnO{sub 8+1}]{sup 15-} polyhedra with the [AsO{sub 4}]{sup 3-} tetrahedra in the monazite- resulting in exclusively vertex connected [LnO{sub 8}]{sup 13-} and [AsO{sub 4}]{sup 3-} units in the scheelite-type structure.

  18. Research status and development trend of pulverized coal transportation by dense phase conveying system under high pressure%煤粉加压密相输送系统研究现状及发展方向

    李君; 卢洪; 郭屹; 李轩

    2015-01-01

    In order to optimize the dense phase conveying system in dry coal gasification process, the dense phase pneumatic conveying technology under high pressure and solid conveying pump based on the theory of solid mechanics of granular media were introduced. The characteristics and critical process of the two methods were summarized.The development trend of solid conveying pump under high pressure was introduced.The fundamental research about granular media statics and dynamics, the function relationship between coal types,moisture,particles size and friction coefficient were the focus of the research.The maximum delivery pressure of Stamet Pump and PWR which provided for the coal types in China was researched.Concerning the bottleneck of XTL industrial scale-up,we also put forward the solutions.%为优化干法煤气化的煤粉密相输送系统,介绍了加压密相气力输送技术和基于散体力学理论的固体输送泵技术2种典型的煤粉加压密相输送技术,分析了2种典型技术的技术特征及气体加压密相输送技术中的关键问题,提出了干粉加压固体输送泵的发展方向。固体输送泵技术是未来煤粉密相输送的发展趋势。未来应加强国内散体力学的相关理论、数值及试验研究,包括散体静力学,散体动力学的相关基础研究;研究煤种、水分、粒径等参数与摩擦系数之间的函数关系,确定Stamet Pump及PWR针对国内煤种所能提供的最大输出压力;确定典型的Stamep Pump、PWR的XTL技术工业放大的瓶颈所在,提出切实可行的放大解决方案。

  19. High-pressure structural properties of tetramethylsilane

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  20. Amorphous boron nitride at high pressure

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  1. Polyurethane interpenetrating networks synthesized under high pressure

    Using time resolved and real time small angle x-ray scattering on Beamline I-IV at SSRL, the phase separation behavior in a series of linear mixtures, semi-interpenetrating (SIPN) and interpenetrating polymer networks (IPN) was investigated as a function of temperature and composition. Polystyrene (PS) and polyurethane (PU) are polymers that at room temperature and pressure are incompatible over the entire composition range. Preparation of the mixed polymers under high pressure forces the two to be miscible. Crosslinking either one or both of the components can prohibit phase separation of the two components when the pressure is released and the ''mixture'' is heated to temperatures in access of the glass transition temperatures of the two polymers

  2. Steam Oxidation at High Pressure

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  3. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development.

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  4. Phase equilibrium at high pressure of heavy oil fraction in propane and n-butane; Equilibrio de fases em alta pressao de fracoes pesadas do petroleo em propano e n-butano

    Canziani, Daniel B.; Ndiaye, Papa M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Oliveira, Jose V. de; Corazza, Marcos L. [Universidade Regional Integrada, Erechim, RS (Brazil)

    2008-07-01

    One of the biggest challenge of the oil industry is the preparation and adequacy of existing refineries for processing of heavy oil in large quantities. Specifically aims of this work is to measure phase equilibria date at high-pressure with systems involving GOP (Heavy Gasoil), RAT (Atmospheric Residue) and Marlim (crude oil) in n-butane and propane, using the static-synthetic method. The influence of the addition of methanol on the transition pressure is also investigated. With regard to tests made with the use of methanol as a co-solvent, those with higher levels of methanol (5% in mass fraction) had presented transition pressures a little higher than systems with 1% of methanol and systems without methanol. The systems without methanol showed similar pressures. All systems are PT diagrams of the type Lower Critical Solution Temperature (LCST). Among the solvents used the n-butane shown to be the most soluble for all solutes, in particular for the RAT. With the n-butane were observed only liquid-vapour equilibria, and with propane the liquid-liquid, liquid-liquid-vapour and liquid-liquid-fluid equilibria could be observed. The system Propane-5%Methanol-GOP presented liquid-liquid-vapour transitions, indicates be a diagram of the type V (according to the classification of van Konynenburg and Scott). (author)

  5. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry.

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Pagano, Imma; Russo, Mariateresa; Rastrelli, Luca

    2016-01-01

    This study reports a fast and automated analytical procedure for the analysis of aflatoxin M1 (AFM1) in milk and dairy products. The method is based on the simultaneous protein precipitation and AFM1 extraction, by salt-induced liquid-liquid extraction (SI-LLE), followed by an online solid-phase extraction (online SPE) coupled to ultra-high-pressure-liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis to the automatic pre-concentration, clean up and sensitive and selective determination of AFM1. The main parameters affecting the extraction efficiency and accuracy of the analytical method were studied in detail. In the optimal conditions, acetonitrile and NaCl were used as extraction/denaturant solvent and salting-out agent in SI-LLE, respectively. After centrifugation, the organic phase (acetonitrile) was diluted with water (1:9 v/v) and purified (1mL) by online C18 cartridge coupled with an UHPLC column. Finally, selected reaction monitoring (SRM) acquisition mode was applied to the detection of AFM1. Validation studies were carried out on different dairy products (whole and skimmed cow milk, yogurt, goat milk, and powder infant formula), providing method quantification limits about 25 times lower than AFM1 maximum levels permitted by EU regulation 1881/2006 in milk and dairy products for direct human consumption. Recoveries (86-102%) and repeatability (RSDeffects were observed in the different milk and dairy products studied. The proposed method improves the performance of AFM1 analysis in milk samples as AFM1 determination is performed with a degree of accuracy higher than the conventional methods. Other advantages are the reduction of sample preparation procedure, time and cost of the analysis, enabling high sample throughput that meet the current concerns of food safety and the public health protection. PMID:26589945

  6. High Pressure Boiling Water Reactor

    Some four hundred Boiling Water Reactors (BWR) and Pressurized Water Reactors (PWR) have been in operation for several decades. The presented concept, the High Pressure Boiling Water Reactor (HP-BWR) makes use of the operating experiences. HP-BWR combines the advantages and leaves out the disadvantages of the traditional BWRs and PWRs by taking in consideration the experiences gained during their operation. The best parts of the two traditional reactor types are used and the troublesome components are left out. HP-BWR major benefits are; 1. Safety is improved; -Gravity operated control rods -Large space for the cross formed control rods between fuel boxes -Bottom of the reactor vessel is smooth and is without penetrations -All the pipe connections to the reactor vessel are well above the top of the reactor core -Core spray is not needed -Internal circulation pumps are used. 2. Environment friendly; -Improved thermal efficiency, feeding the turbine with ∼340 oC (15 MPa) steam instead of ∼285 oC (7MPa) -Less warm water release to the recipient and less uranium consumption per produced kWh and consequently less waste is produced. 3. Cost effective, simple; -Direct cycle, no need for complicated steam generators -Moisture separators and steam dryers are inside the reactor vessel and additional separators and dryers can be installed inside or outside the containment -Well proved simple dry containment or wet containment can be used. (author)

  7. Orientational bonding of phases accompanying directed crystallization of the eutectic of the system Si-TiSi2

    Derevyagina, L. S.; Butkevich, L. M.

    1987-09-01

    The characteristic features of structure formation in cast and direct crystallized alloys of the system Si-TiSi2 were studied. It is shown that the predominant orientation of the bonding of the phases in directionally crystallized eutectics (DE) of the system Si-TiSi2, observed at the stage of steady-state growth, already appears on the surface of nucleation, which apparently indicates that the nucleation of the phases in the alloys of this system is of an epitaxial character.

  8. Preparation of a hierarchically porous AlPO4 monolith via an epoxide-mediated sol–gel process accompanied by phase separation

    Monolithic aluminum phosphate (AlPO4) with a macro–mesoporous structure has been successfully prepared via the sol–gel process accompanied by phase separation in the presence of poly(ethylene oxide) (PEO). Gelation of the system has been mediated by propylene oxide (PO), while PEO induces a phase separation. The dried gel is amorphous, whereas the crystalline tridymite phase precipitates upon heating above 1000 °C. Heat treatment does not spoil the macroporous morphology of the AlPO4 monoliths. Nitrogen adsorption–desorption measurements revealed that the skeletons of the dried gels possess a mesostructure with a median pore size of about 30 nm and a surface area as high as 120 m2 g−1. Hydrothermal treatment before heat treatment can increase the surface area to 282 m2 g−1. (paper)

  9. Preparation of a hierarchically porous AlPO4 monolith via an epoxide-mediated sol-gel process accompanied by phase separation

    Li, Wenyan; Zhu, Yang; Guo, Xingzhong; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Yang, Hui

    2013-08-01

    Monolithic aluminum phosphate (AlPO4) with a macro-mesoporous structure has been successfully prepared via the sol-gel process accompanied by phase separation in the presence of poly(ethylene oxide) (PEO). Gelation of the system has been mediated by propylene oxide (PO), while PEO induces a phase separation. The dried gel is amorphous, whereas the crystalline tridymite phase precipitates upon heating above 1000 °C. Heat treatment does not spoil the macroporous morphology of the AlPO4 monoliths. Nitrogen adsorption-desorption measurements revealed that the skeletons of the dried gels possess a mesostructure with a median pore size of about 30 nm and a surface area as high as 120 m2 g-1. Hydrothermal treatment before heat treatment can increase the surface area to 282 m2 g-1.

  10. VLE measurements using a static cell vapor phase manual sampling method accompanied with an empirical data consistency test

    Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method

  11. High-Pressure Lightweight Thrusters

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  12. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  13. High-pressure protein crystallography of hen egg-white lysozyme

    Yamada, Hiroyuki; Nagae, Takayuki [Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan); Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp [Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan); Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan)

    2015-04-01

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.

  14. High pressure and multiferroics materials: a happy marriage

    Edmondo Gilioli

    2014-11-01

    Full Text Available The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  15. High-pressure test loop design and application

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  16. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  17. Experimental determination of phase equilibria of a basalt from Piton de la Fournaise (La Réunion island): 1 atm data and high pressure results in presence of volatiles.

    Brugier, Yann-Aurélien; Pichavant, Michel; di Muro, Andréa

    2015-04-01

    To understand the petrogenetic relations between the 4 groups of lavas erupted at Piton de la Fournaise (PdF), constrain the structure of the feeding system and the magma storage conditions, experimental phase equilibria have been determined, both at 1 atm and high pressures (HP), on a lava representative of Steady State Basalts (SSB). The lava (SiO2=49.2 wt%, MgO=7.8 wt%, CaO/Al2O3= 0.81) was fused at 1400°C, 1 atm in air. The resulting glass was crushed and the powder directly used as starting material. The 1atm experiments were performed with the wire-loop method in a vertical CO-CO2 gas mixing furnace. To minimize Fe-loss from the charge, experiments were repeated under constant T-fO2 conditions to progressively saturate the suspension wire with Fe. Intermediate charges were dissolved in HF and the charge from the last cycle retained for detailed study. Analyses of experimental products are in progress. The HP experiments were carried out in an internally heated pressure vessel, at 50MPa and 400MPa, between 1100-1200°C and under fluid-present conditions. Glass (30-50 mg) plus 10% in mass of volatiles (H2O or H2O+CO2) were loaded in Au80Pd20 capsules. Distilled water and Ag2C2O4 (CO2 source) were weighted to give charges with xH2O initial (molar H2O / (H2O+CO2)) ranging from 1 to 0. Run durations lasted for 2-14h. Redox conditions were controlled by loading a given proportion of H2 gas in the vessel (3 bar H2 for 50MPa, 5 bar H2 for 400MPa). Experimental fH2 were determined by solid Pd-Co sensors, leading to fO2 conditions approaching NNO-1. All experiments were rapidly drop quenched and products analyzed by SEM, EMPA and µ-FTIR Spectroscopy. To overcome Fe-loss, both capsule Fe pre-saturation and charge Fe pre-enrichment were tested. The first method was shown to be time-consuming and fraught with difficulties while the second is still being developed. Consequently, the experimental data presented here were obtained with no attempt to circumvent Fe loss

  18. Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation

    Dudina D.V.

    2015-01-01

    Full Text Available We report the formation and phase separation response of nickel-graphite composites with variable-architecture phases by graphitization-accompanied consolidation via Spark Plasma Sintering and hot pressing. It was shown that the application of pressure during consolidation is crucial for the occurrence of graphitization and formation of 3D graphite structures. We evaluated the suitability of the synthesized composites as precursors for making porous structures. Nickel behaved as a space holder with the particle size and spatial distribution changing during consolidation with the temperature and determining the structure of porous graphite formed by phase separation by dissolution in HCl. The response of the consolidated Ni-Cgr to separation of carbon by its burnout in air was studied. The result of the carbon removal was either the formation of a dense and continuous NiO film on the surface of the compacts or oxidation through the compact thickness. The choice between these two options depended on the density of the compacts and on the presence of carbon dissolved in nickel. It was found that during the burnout of graphite from Ni-Cgr composites, sintering, rather than formation of pores, dominated.

  19. Stable magnesium peroxide at high pressure.

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-01-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions. PMID:26323635

  20. Application of High Pressure in Food Processing

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  1. Energy efficiency of high pressure pneumatic systems

    Trujillo, José A.

    2015-01-01

    The energy efficiency assessment of high-pressure pneumatic circuits is the aim of this dissertation. From a historical perspective the past and cur- rent activities with regards to the energy saving conservation in pneumatic technology were examined, and it could be concluded that high pressure pneumatic circuits have been repeatedly used for years in several industrial applications but to date no studies on that specific field are known. After a systematic review of studies concerning e...

  2. High pressure effects on fruits and vegetables

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  3. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation

    Guo, Xingzhong; Song, Jie; Lvlin, Yixiu; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Yang, Hui

    2015-04-01

    Monolithic macroporous zirconia (ZrO2) derived from ionic precursors has been successfully fabricated via the epoxide-mediated sol-gel route accompanied by phase separation in the presence of propylene oxide (PO) and poly(ethylene oxide) (PEO). The addition of PO used as an acid scavenger mediates the gelation, whereas PEO enhances the polymerization-induced phase separation. The appropriate choice of the starting compositions allows the production of a macroporous zirconia monolith with a porosity of 52.9% and a Brunauer-Emmett-Teller (BET) surface area of 171.9 m2 · g-1. The resultant dried gel is amorphous, whereas tetragonal ZrO2 and monoclinic ZrO2 are precipitated at 400 and 600 °C, respectively, without spoiling the macroporous morphology. After solvothermal treatment with an ethanol solution of ammonia, tetragonal ZrO2 monoliths with smooth skeletons and well-defined mesopores can be obtained, and the BET surface area is enhanced to 583.8 m2 · g-1.

  4. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  5. High pressure elasticity and thermal properties of depleted uranium

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  6. Temperature control for high pressure processes up to 1400 MPa

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  7. Temperature control for high pressure processes up to 1400 MPa

    Reineke, K; Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box: 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 {mu}L sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s{sup -1} and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and

  8. Temperature control for high pressure processes up to 1400 MPa

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  9. High pressure structural studies on nanophase praseodymium oxide

    The phase stability of nanocrystalline Pr2O3 has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa

  10. Nonmetallization and band inversion in beryllium dicarbide at high pressure

    Du, Henan; Feng, Wanxiang; Li, Fei; Wang, Dashuai; Zhou, Dan; Liu, Yanhui

    2016-05-01

    Carbides have attracted much attention owing to their interesting physical and chemical properties. Here, we systematically investigated global energetically stable structures of BeC2 in the pressure range of 0–100 GPa using a first-principles structural search. A transition from the ambient-pressure α-phase to the high-pressure β-phase was theoretically predicted. Chemical bonding analysis revealed that the predicted phase transition is associated with the transformation from sp2 to sp3 C-C hybridization. The electrical conductivity of the high-pressure phase changed from a metal (α-phase) to a narrow bandgap semiconductor (β-phase), and the β-phase had an inverted band structure with positive pressure dependence. Interestingly, the β-phase was a topological insulator with the metallic surface states protected by the time-reversal symmetry of the crystal. The results indicate that pressure modulates the electronic band structure of BeC2, which is an important finding for fundamental physics and for a wide range of potential applications in electronic devices.

  11. Some recent investigations of materials under high pressures

    Surinder M Sharma

    2006-07-01

    By subjecting materials to high pressures one can significantly reduce inter-atomic and intermolecular distances. This causes drastic changes in the nature of electronic and vibrational states and also in bonding, bringing about several unusual structural, electronic and magnetic phase transitions. In addition, these studies provide a very useful data about the equation of state of the materials of interest. Several examples from our work are presented which elucidate the richness of physics under these conditions.

  12. Possible mechanism for cold denaturation of proteins at high pressure

    We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase (≅2 kbars) the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonuclease A

  13. Reinvestigation of high pressure polymorphism in hafnium metal

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure Po = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  14. Structural stability of URh3 at high pressure

    URh3 stabilizes in the cubic AuCu3 type structure at normal temperature and pressure. High-pressure angle-dispersive X-ray diffraction experiments were performed on URh3 up to 25 GPa using a diamond-anvil cell. URh3 remains in its cubic AuCu3 type structure up to the maximum pressure studied. The Birch–Murnaghan equation of state fit to the P–V data yields the bulk modulus to be 133 GPa. The Villars structural stability map gives a clue of a possible high pressure phase transition to a Ni3Sn type structure. The electronic structure calculations were carried out for both the ambient AuCu3 type cubic phase and the expected Ni3Sn type hexagonal high pressure phase. However, the total energy curves of these two structures do not intersect even at pressure as high as 360 GPa, removing the possibility of transition to Ni3Sn type structure

  15. High-pressure liquid-monopropellant strand combustion.

    Faeth, G. M.

    1972-01-01

    Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.

  16. Layered polymeric nitrogen in RbN3 at high pressures

    Wang, Xiaoli; Li, Jianfu; Xu, Ning; Zhu, Hongyang; Hu, Ziyu; Chen, Li

    2015-11-01

    The structural evolutionary behaviors of nitrogen in RbN3 have been studied up to 300 GPa using a particle swarm optimization structure searching method combined with density functional calculations. Three stable new phases with P-1, P6/mmm and C2/m structure at pressure of 30, 50 and 200 GPa are identified for the first time. The analysis of the crystal structures of three new predicated phases reveals that the transition of N3- ions goes from linear molecules to polymeric chains, benzene-like rings and then to polymeric layers induced by pressure. The electronic structures of three predicted phases reveal that the structural changes are accompanied and driven by the change of orbital hybridization of N atoms from sp to sp2 and finally to partial sp3. Most interestingly, the Rb atoms show obvious transition metal-like properties through the occupation of 4d orbitals in high-pressure phases. Moreover, the Rb atoms are characterized by strong hybridization between 4d orbitals of Rb and 2p orbitals of N in C2/m structure. Our studies complete the structural evolution of RbN3 under pressure and reveal for the first time that the Rb atoms in rubidium nitride possess transition element-like properties under pressure.

  17. Superelastic carbon spheres under high pressure

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  18. Techniques in high pressure neutron scattering

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  19. Experimental study of lower mantle materials by high pressure in situ x-ray diffraction

    A new experimental system was constructed to make high pressure and temperature in situ X-ray diffraction study under lower mantle conditions. Behavior of silicates and oxides were studied using the new system, which consists of laser-heated diamond anvil cell combined with synchrotron radiation. It became clear that the behavior of garnet is very complicated and the high pressure phase(s) varices depending on the pressure, temperature, and compositions. Several new unquenchable high pressure phases were found through the present study. (author)

  20. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  1. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.; Miletich, Ronald; Dera, Przemyslaw

    2016-05-01

    Three isotypic crystals, SiO2 (α-cristobalite), ɛ-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5-2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.

  2. High-pressure structural behaviour of Cu0.5Fe0.5Cr2S4: An experimental and theoretical study

    Highlights: •First high-pressure study of the thiospinel Cu½Fe½Cr2S4. •First determination of the bulk modulus and its pressure derivative. •Phase transition, reducing symmetry to lower than cubic, at 14.5 GPa. •Jahn–Teller activity of Cu(2+) and high-spin to low-spin transition of Fe(2+). -- Abstract: The structural behaviour of Cu0.5Fe0.5Cr2S4 has been studied experimentally and theoretically at pressures up to 44 GPa. The experiments are supported by density functional calculations using the full-potential linear muffin-tin orbital method for investigating ground state properties and high-pressure behaviour. We report here the first experimental and theoretical determinations of the bulk modulus: B0 = 106(2) GPa and B0′ = 4.0 (experimental), and B0 = 96 GPa and B0′ = 3.9 (calculated). Moreover, a pressure-induced structural and electronic phase transformation occurs at 14.5 GPa accompanied by a volume collapse of about 6%. Tentatively, the high-pressure phase is assigned the defect NiAs structure of Cr3S4 type with space group I2/m (12). The mechanism of the phase transition is explained by a Jahn–Teller type distortion, associated with geometrical frustration and magnetic spin changes

  3. High pressure and synchrotron radiation satellite workshop

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  4. High pressure and synchrotron radiation satellite workshop

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  5. High Pressure Inactivation of HAV within Mussels

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  6. High pressure synthesis of bismuth disulfide

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  7. High-pressure differential scanning microcalorimeter

    Senin, A. A.; Dzhavadov, L. N.; Potekhin, S. A.

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  8. A hydrogen high pressure proportional drift detector

    The construction and operation of a hydrogen high pressure proportional detector is described. The detector is used as a live target in the experiment on n-p elastic scattering to detect recoil protons with kinetic energy as low as 2 keV. (orig.)

  9. High-Pressure Behavior of Serpentines and Talc

    Reynard, B.; Bezacier, L.; Caracas, R.

    2013-12-01

    Serpentines and talc are formed by water interactions with basic to ultrabasic rocks under conditions that range from shallow (talc is essential for modeling of the mineralogical composition, seismic velocities, and understanding mechanical behavior of the subduction interface. Elastic properties of serpentines and talc are know well-constrained from experiments at ambient temperatures that are extrapolated to higher temperatures of subduction zones within the quasi-harmonic approximation [Bezacier et al., 2013]. This simple extrapolation may be invalid due to the occurrence of phase transitions that could lead to large anharmonic contributions in the elastic and vibrational properties. In order to test potential effects of phase transitions on elasticity of serpentines and talc, we conducted first-principles calculations and high-pressure Raman spectroscopic experiments. We computed the lattice dynamical properties of lizardite and talc within the density functional perturbation theory as implemented in the ABINIT package. Results of DFT calculations are compared with new high-pressure Raman spectroscopic data. Consequences for serpentine and talc seismic and thermo-elastic properties in subduction zones are discussed. Bezacier, L., B. Reynard, J. D. Bass, H. Cardon, and G. Montagnac (2013), High-pressure elasticity of serpentine, and seismic properties of the hydrated mantle wedge, Journal of Geophysical Research-Solid Earth, 118, 1-9.

  10. High pressure studies on nanometer sized clusters: Structural, optical, and cooperative properties

    Tolbert, S.H.

    1995-05-01

    High-pressure Se EXAFS is used to study pressure-induced structural transformations in CdSe nanocrystals. The transformation is wurtzite to rock salt, at a pressure much higher than in bulk. High-pressure XRD is used to confirm the EXAFS results. Diffraction peak widths indicate that nanocrystals do not fragment upon transformation. Optical absorption correlates with structural transformations and is used to measure transition pressures; transformation pressure increases smoothly as nanocrystal size decreases. Thermodynamics of transformation is modeled using an elevated surface energy in the high-pressure phase. High-pressure study of Si nanocrystals show large increases in transformation pressure in crystallites to 500{angstrom} diameter, and an overall change in crystallite shape upon transformation is seen from XRD line widths. C{sub 60} single crystals were studied using Raman scattering; results provide information about the clusters` rotational state. Optical properties of high-pressure phase CdSe clusters were studied.

  11. High pressure synthesis of BiS2

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study the...... contains Bi atoms in distorted square-based pyramidal coordination to five surrounding sulfur atoms. The results will be displayed together with a comparison to other metal dichalcogenide compounds. Experimental details and physical properties will also be presented together with theoretical calculations...

  12. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  13. Hydrogen - High pressure production and storage

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  14. High-pressure oxidation of methane

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander;

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  15. Inspection technology for high pressure pipes

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  16. High pressure neutron powder diffraction at LANSCE

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD)2, to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  17. High pressure hydrogen time projection chamber

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H2 with 2 kV/cm drift field and 7 kV on the 35μ sense wires, the drift velocity is about 0.5 cm/μsec and the spatial resolution +-200μ

  18. Raman study of opal at high pressure

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  19. High-pressure layered structure of carbon disulfide

    Naghavi, S. Shahab; Crespo, Yanier; MartoÅák, Roman; Tosatti, Erio

    2015-06-01

    Solid CS2 is superficially similar to CO2, with the same C m c a molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first-principles evolutionary search in order to identify the zero-temperature lowest-enthalpy structures of CS2 for increasing pressure up to 200 GPa. Surprisingly, the molecular C m c a phase does not evolve into β -cristobalite as in CO2 but transforms instead into phases HP2 and HP1, both recently described in high-pressure SiS2. HP1 in particular, with a wide stability range, is a layered P 21/c structure characterized by pairs of edge-sharing tetrahedra and is theoretically more robust than all other CS2 phases discussed so far. Its predicted Raman spectrum and pair correlation function agree with experiment better than those of β -cristobalite, and further differences are predicted between their respective IR spectra. The band gap of HP1-CS2 is calculated to close under pressure, yielding an insulator-metal transition near 50 GPa, in agreement with experimental observations. However, the metallic density of states remains modest above this pressure, suggesting a different origin for the reported superconductivity.

  20. Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures

    Montgomery, W; Crowhurst, J C; Zaug, J M; Jeanloz, R

    2007-03-20

    We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLS High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.

  1. Determining complex crystal structures from high pressure single-crystal diffraction data collected on synchrotron sources

    McMahon, M. I.; Loa, I.; Stinton, G. W.; Lundegaard, L. F.

    2013-08-01

    As part of a Long Term Project, single-crystal diffraction techniques have been developed for use at the high pressure beamlines ID09 and ID27 at the European Synchrotron Radiation Facility, and have been utilised to determine the crystal structures of various high pressure phases, including those with incommensurate structures, at both high and low temperatures. The same techniques have also been used to determine the structures of high pressure phases at the SRS, Diamond and Petra-III synchrotron sources. In this paper, we describe technical details of the methods developed, and describe some of the considerations necessary for planning experiments and collecting and processing the data. We then illustrate the quality of data that can be obtained, and the complexity of the structures that can be refined, using recent results obtained from complex high pressure phases of N2 and Ba.

  2. High-pressure study of substrate material ScAlMgO4

    Errandonea, D.; R. S. Kumar; Ruiz-Fuertes, J.; Segura, A.; Haussuehl, E.

    2011-01-01

    We report on the structural properties of ScAlMgO4 studied under quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at 300 K and 100 K. We found that the low-pressure phase remains stable up to 24 GPa. At 28 GPa, we detected a reversible phase transformation. The high-pressure phase is assigned to a monoclinic distortion of the low-pressure phase. No additional phase transition is observed u...

  3. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2. PMID:27587156

  4. High pressure water jet injuries of the hand: Case report and review of the literature

    Bilgen Can

    2013-12-01

    Full Text Available Internal and external injuries after high pressure water jet injuries are dispropotional. This situation refers to a misjudgement of vital injuries. Because of there is no approved treatment algorithm to evaluate this type of injuries, treatment and diagnosis are controversial. In our study we presented a patient with a high pressure water jet injury of 4th digit, to take attention of the general properties of this type of injuries with accompanied literature review. [Hand Microsurg 2013; 2(3.000: 125-127

  5. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  6. Urea and deuterium mixtures at high pressures

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D2 mixtures that indicate no inclusion compound forms up to 3.7 GPa

  7. Structural properties of BeO at high pressure

    Umesh Kumar Sakalle; Anita Singh; Ekta Sharma

    2014-10-01

    In the present paper, we have investigated the phase transition and elastic properties of BeO at high pressure using three-body potential model (TBPM). The present interaction potential consists of longrange coulomb and three-body interactions and short-range overlap repulsion effective up to second neighbour ions. We have studied the phase transition from wurtzite (4) to rock salt (1) for BeO. The phase transition pressure (t) obtained from this approach shows a respectably good agreement with experimental and other theoretical data. We have also computed the collapse of relative volume changes ( (t)/(0)). Three-body potential model has also been used to derive the correct expressions for third-order elastic constants and pressure derivatives of second-order elastic constants for BeO.

  8. High pressure structural studies on nanophase praseodymium oxide

    Saranya, L. [Jamal Mohamed College, Tiruchirapalli 620020, Tamil Nadu (India); Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Hussain, Shamima [UGC-DAE-CSR node, Kokilamedu 603103, Tamil Nadu (India); Arulraj, A.; Sahu, P. Ch. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2014-09-15

    The phase stability of nanocrystalline Pr{sub 2}O{sub 3} has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa.

  9. High pressure structural behavior of YGa{sub 2}: A combined experimental and theoretical study

    Sekar, M., E-mail: sekarm@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamil Nadu (India); Shekar, N.V. Chandra [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamil Nadu (India); Babu, R. [Chemical Group@, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamil Nadu (India); Sahu, P. Ch. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamil Nadu (India); Sinha, A.K.; Upadhyay, Anuj; Singh, M.N. [Indus Synchrotron Utilization Division, Raja Ramanna Center for Advanced Technology, Indore-452013 (India); Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G. [Advanced Centre for Research in High Energy Materials, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana (India); Kanchana, V. [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram-502 205, Telangana (India)

    2015-03-15

    High pressure structural stability studies were carried out on YGa{sub 2} (AlB{sub 2} type structure at NTP, space group P6/mmm) up to a pressure of ~35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at ~6 GPa and above ~17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B{sub 0} for the parent and high pressure phases were estimated using Birch–Murnaghan and modified Birch–Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the ‘Ga’ networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of ‘Ga’ atoms interconnected by strong covalent bonds. - Graphical abstract: High pressure X-ray diffraction patterns of YGa{sub 2} up to ~35 GPa shows an isostructural phase transition at ~5 GPa and transition to an orthorhombic structure ~14 GPa. - Highlights: • High pressure structural stability studies were carried out on YGa{sub 2} up to 35 GPa. • An isostructural transition with reduced c/a ratio was observed above 6 GPa. • Above 17.5 GPa, the compound transformed to orthorhombic structure. • PAW based electronic structure calculations have been carried out. • Calculations confirm the experimentally observed structural transitions.

  10. High pressure structural behavior of YGa2: A combined experimental and theoretical study

    High pressure structural stability studies were carried out on YGa2 (AlB2 type structure at NTP, space group P6/mmm) up to a pressure of ~35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at ~6 GPa and above ~17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B0 for the parent and high pressure phases were estimated using Birch–Murnaghan and modified Birch–Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the ‘Ga’ networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of ‘Ga’ atoms interconnected by strong covalent bonds. - Graphical abstract: High pressure X-ray diffraction patterns of YGa2 up to ~35 GPa shows an isostructural phase transition at ~5 GPa and transition to an orthorhombic structure ~14 GPa. - Highlights: • High pressure structural stability studies were carried out on YGa2 up to 35 GPa. • An isostructural transition with reduced c/a ratio was observed above 6 GPa. • Above 17.5 GPa, the compound transformed to orthorhombic structure. • PAW based electronic structure calculations have been carried out. • Calculations confirm the experimentally observed structural transitions

  11. High-pressure crystal structures of TaAs from first-principles calculations

    Lu, Mingchun; Guo, Yanan; Zhang, Miao; Liu, Hanyu; Tse, John S.

    2016-08-01

    In this work, we systematically studied the phase transition of TaAs under high pressures and reported three high-pressure structures P-6m2 (hexagonal, stable at 13-32 GPa), P21/c (monoclinic, stable at 32-103 GPa) and Pm-3m (cubic, stable above 103 GPa), by using particle swarm optimization in combination with first principles electronic structure methodology. All predicted structures are dynamically stable, since there is no imaginary mode to be found in the whole Brillouin zone. At high pressures, the TaAs was found to become superconductor with the superconducting critical temperature of ~1 K at about 100 GPa.

  12. Na-Au intermetallic compounds formed under high pressure at room temperature

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  13. Simulation of High-Pressure Methane Hydrate Combustion

    Popov, Pavel; Sirignano, William

    2015-11-01

    With its prevalence in ocean floor deposits, methane hydrate has recently attracted considerable attention in the combustion community. We present a new scheme for the simulation of methane hydrate combustion at high, near critical pressures. This process features a combination of solid, liquid and gas phases, wherein the solid methane hydrate melts into a bubbly liquid, which then evaporates into a gas phase; methane-air combustion occurs in the gas phase. In addition to its multiphase nature, this problem features the additional challenge of modelling the gas/liquid phase transition at near-critical pressures. A new computational procedure has been developed to simulate this problem, using a detailed chemical mechanism for the simulation of reaction in the gas phase, and featuring a volume-of-fluid (VOF) approach for the simulation of the liquid phase with gas bubbles - a low Stokes number is assumed. This procedure is applied to a laminar shear flow methane hydrate combustion problem. Particular attention is directed to the effects on simulation results of the high-pressure equation of state, liquid/gas phase transition modelling, and the bubbly liquid phase modelling. Simulation results are compared to experimental observations. Supported by AFOSR grant FA9550-12-1-0156, AFOSR scientific manager: Dr. Mitat Birkan.

  14. Stable Calcium Nitrides at Ambient and High Pressures.

    Zhu, Shuangshuang; Peng, Feng; Liu, Hanyu; Majumdar, Arnab; Gao, Tao; Yao, Yansun

    2016-08-01

    The knowledge of stoichiometries of alkaline-earth metal nitrides, where nitrogen can exist in polynitrogen forms, is of significant interest for understanding nitrogen bonding and its applications in energy storage. For calcium nitrides, there were three known crystalline forms, CaN2, Ca2N, and Ca3N2, at ambient conditions. In the present study, we demonstrated that there are more stable forms of calcium nitrides than what is already known to exist at ambient and high pressures. Using a global structure searching method, we theoretically explored the phase diagram of CaNx and discovered a series of new compounds in this family. In particular, we found a new CaN phase that is thermodynamically stable at ambient conditions, which may be synthesized using CaN2 and Ca2N. Four other stoichiometries, namely, Ca2N3, CaN3, CaN4, and CaN5, were shown to be stable under high pressure. The predicted CaNx compounds contain a rich variety of polynitrogen forms ranging from small molecules (N2, N4, N5, and N6) to extended chains (N∞). Because of the large energy difference between the single and triple nitrogen bonds, dissociation of the CaNx crystals with polynitrogens is expected to be highly exothermic, making them as potential high-energy-density materials. PMID:27428707

  15. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  16. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-07-15

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  17. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed

  18. High Pressure Seebeck Coefficient Measurements Using Paris-Edinburgh Cell

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Velisavljevic, Nenad; Hipsec; Department Of Physics, University Of Nevada, Las Vegas Collaboration; Hpcat, Geophysical Laboratory, Carnegie Institution Of Washington Collaboration; Shock; Detonation Physics Group, Los Alamos National Laboratory Collaboration

    We have developed a new type of sample cell assembly for the Paris-Edinburgh (PE) type large volume press for simultaneous x-ray diffraction, electrical resistance, and thermal measurements at high pressures. We demonstrate the feasibility of performing in situ measurements of the Seebeck coefficient over a broad range of pressure-temperature conditions by observing the well-known solid-solid and solid-melt transitions of bismuth (Bi) up to 3GPa and 450 K. We observed a gradual increase in the Seebeck coefficient which becomes positive during transition to the Bi - II phase. Also, we have performed successful Seebeck coefficient measurements on the thermoelectric material PbTe. This new capability enables us to directly correlate pressure-induced structural phase transitions to electrical and thermal properties.

  19. High pressure research using muons at the Paul Scherrer Institute

    Khasanov, R.; Guguchia, Z.; Maisuradze, A.; Andreica, D.; Elender, M.; Raselli, A.; Shermadini, Z.; Goko, T.; Knecht, F.; Morenzoni, E.; Amato, A.

    2016-04-01

    Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (μSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform μSR experiments under pressure, introduce the high pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the μSR technique with pressure.

  20. Model of current enhancement at high pressure

    A model is proposed to account for the phenomenon of net current enhancement at high pressures recently observed on the Experimental Test Accelerator. The proposed mechanism involves energetic secondary electrons (delta rays) which are pushed forward by the self-magnetic field of the electron beam. For high current beams, the forward delta ray current can build up to a significant fraction of the beam current. Analytic calculations of the steady-state solution as well as the rate of buildup of the delta ray current are presented in this paper. In addition, numerical results from a nonlocal Boltzmann code, NUTS, are presented. The analytic and numerical results have many features which are in qualitative agreement with the experiments, but quantitative discrepancies still exist

  1. High Pressure Quick Disconnect Particle Impact Tests

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  2. High-pressure structures of methane hydrate

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  3. Low energy high pressure miniature screw valve

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  4. Synthesis of sodium polyhydrides at high pressures.

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. PMID:27464650

  5. Fe-Ni-Cu-C-S phase relations at high pressures and temperatures - The role of sulfur in carbon storage and diamond stability at mid- to deep-upper mantle

    Tsuno, Kyusei; Dasgupta, Rajdeep

    2015-02-01

    Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe-Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe-Ni ± Cu-C-S system, and carbon solubility in the Fe-Ni solid and Fe-Ni-S liquid alloys at 6-8 GPa and 800-1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8-16 wt.% S) contain C-bearing, solid Fe-Ni alloy + Fe-Ni-C-S alloy melt + metastable graphite, and the solid alloy-out boundary is constrained, at 1150-1200 °C at 6 GPa and 900-1000 °C at 8 GPa for S-poor starting mix, and at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy

  6. High-pressure coal fuel processor development

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  7. 常压及高压凝固Al-Mg及Al-Mg-Zn合金中Al相的固溶体结构%Solid solution structure of Al phase in Al-Mg and Al-Mg-Zn alloys solidifying under normal pressure and high pressure

    王振玲; 张涛; 李莉; 周月波; 王宏伟; 魏尊杰

    2012-01-01

    采用X射线衍射仪、能谱仪和透射电镜分别对Al-9.6%Mg合金、Al- 11Mg-4.5Zn合金和Al- 17Zn- 1.5Mg合金常压及6 GPa高压凝固后Al相的固溶体结构进行研究.结果表明:6GPa高压凝固后,Al-9.6%Mg合金中Mg在Al相中的固溶度显著增大:在Al-11Mg-4.5Zn合金和Al- 17Zn- 1.5Mg合金中,Mg、Zn溶质在Al相中的固溶度均增大,但Zn比Mg固溶的比例要大得多.在常压凝固条件下,与纯铝相比,3种合金中Al相的晶格常数均增大.与常压凝固相比,高压凝固Al-9.6Mg合金和Al-11Mg-4.5Zn中Al相晶格常数分别增大了1.178%和0.220%;在Al- 17Zn- 1.5Mg合金中,Al相晶格常数变化很小.此外,在Al-Mg-Zn合金中,原子半径较大的Mg固溶到Al相中,导致其晶格常数增大,原子半径较小的Zn固溶到Al相中,导致其晶格常数减小,且高压凝固后,溶质的原子半径越小,在Al相中固溶的比例越大.%The solid solution structures of Al phases in Al-9.6%Mg, Al-llMg-4.5Zn andAl-17Zn-1.5Mg alloys solidified under normal pressure and high pressure were investigated using XRD, EDS and TEM. The results show that the solid solubility of Mg in Al phase in Al-9.6%Mg alloy increases remarkably, and those of Mg and Zn in Al phase in Al-llMg-4.5Zn and Al-17Zn-1.5Mg alloys increase, however, the proportion of Zn saturating in Al phase is much more than that of Mg. Under the condition of normal pressure solidification, the lattice constants of Al phases in three alloys have an increment comparing with that of pure Al. In contrast to normal pressure solidification, the lattice constants of Al phases in Al-9.6Mg alloy and AI-llMg-4.5Zn alloy solidifying at 6 GPa high pressure increase up to 1.178% and 0.220%, respectively. And the lattice constant of Al phase in AI-17Zn-1.5Mg alloy changes little. Furthermore, Mg with larger atomic radius saturating in Al phase leads to the increment of the lattice constant in Al-Mg-Zn alloy, and that of Zn with smaller atomic radium causes

  8. A new and improved strategy combining a dispersive-solid phase extraction-based multiclass method with ultra high pressure liquid chromatography for analysis of low molecular weight polyphenols in vegetables.

    Silva, Catarina L; Haesen, Nathaly; Câmara, José S

    2012-10-19

    This paper reports on the development and optimization of a modified Quick, Easy, Cheap Effective, Rugged and Safe (QuEChERS) based extraction technique coupled with a clean-up dispersive-solid phase extraction (dSPE) as a new, reliable and powerful strategy to enhance the extraction efficiency of free low molecular-weight polyphenols in selected species of dietary vegetables. The process involves two simple steps. First, the homogenized samples are extracted and partitioned using an organic solvent and salt solution. Then, the supernatant is further extracted and cleaned using a dSPE technique. Final clear extracts of vegetables were concentrated under vacuum to near dryness and taken up into initial mobile phase (0.1% formic acid and 20% methanol). The separation and quantification of free low molecular weight polyphenols from the vegetable extracts was achieved by ultrahigh pressure liquid chromatography (UHPLC) equipped with a phodiode array (PDA) detection system and a Trifunctional High Strength Silica capillary analytical column (HSS T3), specially designed for polar compounds. The performance of the method was assessed by studying the selectivity, linear dynamic range, the limit of detection (LOD) and limit of quantification (LOQ), precision, trueness, and matrix effects. The validation parameters of the method showed satisfactory figures of merit. Good linearity (Rvalues2>0.954; (+)-catechin in carrot samples) was achieved at the studied concentration range. Reproducibility was better than 3%. Consistent recoveries of polyphenols ranging from 78.4 to 99.9% were observed when all target vegetable samples were spiked at two concentration levels, with relative standard deviations (RSDs, n=5) lower than 2.9%. The LODs and the LOQs ranged from 0.005 μg mL(-1) (trans-resveratrol, carrot) to 0.62 μg mL(-1) (syringic acid, garlic) and from 0.016 μg mL(-1) (trans-resveratrol, carrot) to 0.87 μg mL(-1) ((+)-catechin, carrot) depending on the compound. The method

  9. PHERMEX applications to study high-pressure flow and detonation waves

    Pulsed High-Energy Radiographic Machine Emitting X Rays (PHERMEX), has been used as a diagnostic tool to make quantitative measurements from radiographs of inert materials under dynamic high-pressure conditions and of explosives during the detonation process. In some experiments, radiography is the best method (compared to high-speed optical cameras and contactor pins) to study complicated hydrodynamic flow occurring in a dynamic experiment. To demonstrate the versatility and uniqueness of PHERMEX and the radiographic method, several experiments on inert solids having high and low atomic numbers will be discussed with some particulars. This includes the observation of the 11.0-GPa-pressure phase transition for antimony and the accompanying two-shock structure and the off-Hugoniot data for lead using regular reflection. Also, by careful design of a radiographic experiment, the Hugoniot state behind a shock front can be completely and precisely specified. Aluminum is an example of a material studies in this manner. PHERMEX is useful in studying some detonation properties of explosives. As an illustration, the discussion will include radiographic results of divergence characteristics of a detonation wave in sensitive and insensitive explosives as it propagates past a corner and the effect of preshocking on the detonation process of insensitive explosives when the detonation wave interacts with a region that has been shock-compressed at a pressure too low to cause detonation

  10. High-pressure transformation in the cobalt spinel ferrites

    Blasco, J., E-mail: jbc@posta.unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Subías, G.; García, J. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, Consejo Superior de Investigaciones Científicas y Universidad de Zaragoza, 50009 Zaragoza (Spain); Popescu, C. [CELLS-ALBA Synchrotron Light Facility, Ctra. BP1413 km 3.3, 08290 Cerdanyola del Vallès, Barcelona (Spain); Cuartero, V. [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex 9 (France)

    2015-01-15

    We report high pressure angle-dispersive x-ray diffraction measurements on Co{sub x}Fe{sub 3−x}O{sub 4} (x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a similar structural phase transformation from the cubic spinel structure to an analogous post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide pressure range (∼20–25 GPa) and the transformation is irreversible. The equation of state of the three cubic spinel ferrites was determined and our results agree with the data obtained in related oxide spinels showing the role of the pressure-transmitting medium for the accurate determination of the equation of state. Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 GPa when it decomposes yielding a new phase with poor crystallinity. Later compression does not recover either the spinel or the post-spinel phases. This phase transformation induced by pressure explains the irreversible lost of the ferrimagnetic behavior reported in these spinels. - Graphical abstract: Pressure dependence of the unit cell volume per formula unit for Co{sub 1.5}Fe{sub 1.5}O{sub 4} spinel. Circles and squares stand for spinel and postspinel phases, respectively. Dark (open) symbols: determination upon compression (decompression). - Highlights: • The pressure induces similar phase transformation in Co{sub 3−x}Fe{sub x}O{sub 4} spinels (1≤x≤2). • The postspinel phases decompose after releasing pressure. • The irreversibility of this phase transformation explains the disappearance of magnetism in these spinels after applying pressure. • Accurate equation of state can be obtained up to 10 GPa using an alcohol mixture as pressure transmitting medium. • The equation of state suggests similar elastic properties for these spinels in this composition range.

  11. Novel High Pressure Pump-on-a-Chip Technology Project

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  12. Novel and sensitive reversed-phase high-pressure liquid chromatography method with electrochemical detection for the simultaneous and fast determination of eight biogenic amines and metabolites in human brain tissue.

    Van Dam, Debby; Vermeiren, Yannick; Aerts, Tony; De Deyn, Peter Paul

    2014-08-01

    A fast and simple RP-HPLC method with electrochemical detection (ECD) and ion pair chromatography was developed, optimized and validated in order to simultaneously determine eight different biogenic amines and metabolites in post-mortem human brain tissue in a single-run analytical approach. The compounds of interest are the indolamine serotonin (5-hydroxytryptamine, 5-HT), the catecholamines dopamine (DA) and (nor)epinephrine ((N)E), as well as their respective metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 5-hydroxy-3-indoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG). A two-level fractional factorial experimental design was applied to study the effect of five experimental factors (i.e. the ion-pair counter concentration, the level of organic modifier, the pH of the mobile phase, the temperature of the column, and the voltage setting of the detector) on the chromatographic behaviour. The cross effect between the five quantitative factors and the capacity and separation factors of the analytes were then analysed using a Standard Least Squares model. The optimized method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). Our human brain tissue sample preparation procedure is straightforward and relatively short, which allows samples to be loaded onto the HPLC system within approximately 4h. Additionally, a high sample throughput was achieved after optimization due to a total runtime of maximally 40min per sample. The conditions and settings of the HPLC system were found to be accurate with high intra and inter-assay repeatability, recovery and accuracy rates. The robust analytical method results in very low detection limits and good separation for all of the eight biogenic amines and metabolites in this complex mixture of biological analytes. PMID:24857034

  13. Temperature-controlled ionic liquid dispersive liquid phase microextraction combined with ultra-high-pressure liquid chromatography for the rapid determination of triclosan,triclocarban and methyl-triclosan in aqueous samples

    2010-01-01

    As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) > 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.

  14. The Characteristics and Structure of High Pressure (1-42 bars) Gas Tungsten Arcs

    Allum, C. J.

    1982-01-01

    The last decade has seen a considerable growth in the exploitation of deep sea mineral reserves. Accompanying these developments has come the need for suitable underwater repair and uainten-nce techniques. one such technique involves the use of fusion welding processes in localised dry high pressure environments created around weldments. Pressure chambers at Cranfield have been employed to simulate this sitiu. ation. These have been used to investigate the influence of ambie...

  15. High-pressure stainless steel active membrane microvalves

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  16. Acceptance test procedure for High Pressure Water Jet System

    The overall objective of the acceptance test is to demonstrate a combined system. This includes associated tools and equipment necessary to perform cleaning in the 105 K East Basin (KE) for achieving optimum reduction in the level of contamination/dose rate on canisters prior to removal from the KE Basin and subsequent packaging for disposal. Acceptance tests shall include necessary hardware to achieve acceptance of the cleaning phase of canisters. This acceptance test procedure will define the acceptance testing criteria of the high pressure water jet cleaning fixture. The focus of this procedure will be to provide guidelines and instructions to control, evaluate and document the acceptance testing for cleaning effectiveness and method(s) of removing the contaminated surface layer from the canister presently identified in KE Basin. Additionally, the desired result of the acceptance test will be to deliver to K Basins a thoroughly tested and proven system for underwater decontamination and dose reduction. This report discusses the acceptance test procedure for the High Pressure Water Jet

  17. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong;

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...

  18. Band structure of CdTe under high pressure

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(EF)) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (PM = 1.935 Mbar) and the corresponding reduced volume ((V/V0)M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  19. Recent progress in high-pressure studies on organic conductors

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  20. Reliability of BWR high pressure core cooling

    The high pressure coolant injection system (HPCI), and the reactor core isolation cooling system (RCIC) are steam turbine driven systems that can inject water into a boiling water reactor at full operating pressure. Their purpose is to supply water during any failure that allows water to be lost while the reactor is at pressure and temperature. A large number of BWR plants are not meeting HPCI and RCIC performance goals for core cooling. NSAC considers concurrent failure of NPCI and RCIC to be the most probable potential cause of low reactor water level and possibly fuel damage in a boiling water reactor. Between January 1978 and May 1981, 169 licensee event reports were filed where HPCI or RCIC was inoperable or was declared inoperable. The present effort has shown that at least 40% of NPCI and RCIC problems might be averted by a high quality preventive maintenance program. About half of the plants do not perform cold quick-start surveillance testing of HPCI and RCIC. They do perform routine startup tests, but the equipment is first preheated and the startup is relatively gentle. However, emergency start-ups are abrupt and from the cold condition. Therefore, cold quick-start testing is the only way to assure that all components, control systems, and instruments are functioning correctly for automatic safety initiation. (author)

  1. The high-pressure behavior of bloedite

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci;

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  2. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al12Mg17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al3Mg2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  3. Compaction and High-Pressure Response of Granular Tantalum Oxide

    Vogler, Tracy; Root, Seth; Knudson, Marcus; Thornhill, Tom; Reinhart, William

    2015-06-01

    The dynamic behavior of nearly fully-dense and porous tantalum oxide (Ta2O5) is studied. Two particle morphologies are used to obtain two distinct initial tap densities, which correspond to approximately 40% and 15% of crystalline density. The response is characterized from low pressures, which result in incomplete compaction, to very high pressures where the thermal component of the EOS dominates. Issues related to a possible phase transformation along the Hugoniot and to establishing reasonable error bars on the experimental data will be discussed. The suitability of continuum and mesoscale models to capture the experimental results will be examined. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. In situ viscosity measurements of albite melt under high pressure

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  5. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Cardozo-Filho, Lúcio; Fred WOLFF; M. Angela A Meireles

    1997-01-01

    This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in ca...

  6. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    CARDOZO-FILHO Lúcio

    1997-01-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.

  7. Electronic phase transitions in cadmium at high pressures

    Elemental solid Cd crystallizes in the hcp structure with a large c/a value of 1.89. This leads to anisotropy in the Fermi-surface topology, electron-transport and other physical properties. Application of pressure reduces this anisotropy, with the c/a ratio decreasing to the ideal value corresponding to a spherical Fermi surface. There is long standing interest in the detection of departures of c/a from a smooth variation with pressure, and in associating such anomalies with electronic topological transitions. Angular x-ray diffraction measurements were carried out on Cd up to 25 GPa at room temperature. Variations of c/a with pressure reveal anomalies near 2, 7, 15 and 22 GPa; we find anomalies in the pressure-volume compression curve close to these pressures, which are also associated with electronic topological transitions determined from first-principles calculations. Independent in-situ x-ray powder-diffraction determinations of melting for Cd show departures from Lindemann predictions above 1 GPa, consistent with the occurrence of electronic topological transitions.

  8. High pressure behaviour of heavy rare earth mono antimonides

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono antimonides (RESb; RE = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of RE ion with the p orbital of neighboring pnictogen ion. These compounds exhibit first order crystallographic phase transition from their NaCl (B1) phase to CsCl (B2) phase at 23.6 GPa and 25.4 GPa respectively. The bulk modulii of RESb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the RE-RE distance as a function of pressure. Elastic properties of these compounds have also been studied and their second order elastic constants are calculated.

  9. High pressure/high temperature thermogravimetric apparatus. Final report

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  10. High-pressure inactivation of dried microorganisms.

    Espinasse, V; Perrier-Cornet, J-M; Marecat, A; Gervais, P

    2008-01-01

    Dried microorganisms are particularly resistant to high hydrostatic pressure effects. In this study, the survival of Saccharomyces cerevisiae was studied under pressure applied in different ways. Original processes and devices were purposely developed in our laboratory for long-term pressurization. Dried and wet yeast powders were submitted to high-pressure treatments (100-150 MPa for 24-144 h at 25 degrees C) through liquid media or inert gas. These powders were also pressurized after being vacuum-packed. In the case of wet yeasts, the pressurization procedure had little influence on the inactivation rate. In this case, inactivations were mainly due to hydrostatic pressure effects. Conversely, in the case of dried yeasts, inactivation was highly dependent on the treatment scheme. No mortality was observed when dried cells were pressurized in a non-aqueous liquid medium, but when nitrogen gas was used as the pressure-transmitting fluid, the inactivation rate was found to be between 1.5 and 2 log for the same pressure level and holding time. Several hypotheses were formulated to explain this phenomenon: the thermal effects induced by the pressure variations, the drying resulting from the gas pressure release and the sorption and desorption of the gas in cells. The highest inactivation rates were obtained with vacuum-packed dried yeasts. In this case, cell death occurred during the pressurization step and was induced by shear forces. Our results show that the mechanisms at the origin of cell death under pressure are strongly dependent on the nature of the pressure-transmitting medium and the hydration of microorganisms. PMID:17573691

  11. Cobalt ferrite nanoparticles under high pressure

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe2O4) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B0 = 204 GPa) is considerably larger than the value previously reported for bulk CoFe2O4 (B0 = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B0 = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible

  12. Cobalt ferrite nanoparticles under high pressure

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  13. First-principles calculations of a high-pressure synthesized compound PtC

    Li, L. Y.; Yu, W; Jin, C. Q.

    2005-01-01

    First-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that the platinum carbide has a zinc-blende ground-state phase at zero pressure and the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt is determined to be 52GPa. Furthermore, our calculation shows the possibility that the experimentally synthesized PtC by Ono et al. under high press...

  14. Stability of rutile-type TiO sub 2 under high pressure

    Sasaki, T

    2002-01-01

    The high-pressure phases of TiO sub 2 have been investigated theoretically on the basis of first-principles density functional theory. Both the equation of states of the low-pressure phase and the structural phase transitions (the rutile-to-alpha-PbO sub 2 -type and alpha-PbO sub 2 -to-baddeleyite transitions) were successfully explained in agreement with previous experiments. The calculation suggests the possibility that the high-pressure phase next to the baddeleyite phase does not have the brookite structure, which has been observed in ZrO sub 2 and HfO sub 2. Furthermore, the stability of the low-pressure phases in TiO sub 2 was discussed on the basis of the atomic electronic structure.

  15. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe.

    Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T

    2016-01-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates. PMID:27431724

  16. Nuclear quantum effects in high-pressure ice

    Bronstein, Yael; Depondt, Philippe; Finocchi, Fabio

    Because of their mass, hydrogen nuclei are subjected to nuclear quantum effects (NQE), mainly tunneling and zero-point energy. They can be crucial to describe correctly the properties of H-containing systems, even at room temperature. A prototypical example of the importance of NQE is the transition from asymmetric H-bonds in phase VII to symmetric bonds in phase X of high-pressure ice, in which NQE drastically reduce the transition pressure. However, natural ice is rarely pure and even small concentrations of salt (LiCl or NaCl) in ice have a strong effect on the phase diagram: the VII to X transition is shifted to higher pressures, questioning the resilience of NQE in the presence of ionic impurities. We investigate these questions using the Quantum Thermal Bath, a semi-classical Langevin dynamics, taking into account both NQE and thermal effects in pure and salty ices. We show why NQE can be sensitive to the presence of impurities and that non-trivial phenomena could result, such as the spectacular upshift of the transition pressure and the peculiar motion of ions.

  17. Performance of Structured Packing in High Pressure Distillation

    张鹏; 刘春江; 等

    2002-01-01

    Performance of Mellapak 250Y and 350Y corrugated structured packing in distillation applications at pressures ranging from 0.3 to 2.0MPa is analysed by using HTU-NTU method.These data are obtained in distillation column with 0.15m diameter operated with n-butane/n-pentane system at total reflux.In considering the axial backmixing effects.the height of an overall gas phase transfer unit,HTUOG,is divided into two parts.One part represents the height of an overall gas phase transfer unit,without backmixing, designated as HUTOG,and the other part,designated as the height of a backmixing unit(HBUO),accounts for the backmixing effects.The HTUOG is evaluated from the measured concentration profile of n-butane in liquid phase.The HBUO obtained experimentally is correlated in terms of the properties of the materials being separated and the equivalent diameter of the structured packing.Our result shows that HBUO varies from 0.12 to 0.34m as pressure increases from 1.0 to 1.9MPa.It indicates that the overall efficiency of the structured packing decreas gradually at high pressure,as a result of the vapor backmixing.

  18. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

    Ferrari, S.; Kumar, R. S.; Grinblat, F.; Aphesteguy, J. C.; Saccone, F. D.; Errandonea, D.

    2016-06-01

    We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.

  19. Cyclic High Pressure Torsion of Nickel and Armco Iron

    Wetscher, Florian; Pippan, Reinhard

    2006-01-01

    Abstract Cyclic high pressure torsion, a modified version of High Pressure Torsion, is applied to Armco-iron and nickel. The results in terms of microstructure and flow stress are compared to samples deformed by conventional high pressure torsion. For both processes and both materials, a saturation in the decrease of the structure size and the increase in the flow stress is observed. The minimum size of the structural elements which is obtainable is smallest for the conventionally ...

  20. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  1. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  2. Metal additive manufacturing of a high-pressure micro-pump

    Wits, Wessel W.; Weitkamp, Sander J.; Es, van J.

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed mi

  3. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia

    Brothers, R.N.; Blake, M.C., Jr.

    1973-01-01

    The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases. 1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks. 2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes. 3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe. At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs. ?? 1973.

  4. High-pressure processing for preservation of blood products

    Matser, A.M.; Ven, van der C.; Gouwerok, C.W.N.; Korte, de D.

    2005-01-01

    The possibilities of high pressure as a preservation method for human blood products were evaluated by examining the functional properties of blood fractions, after high-pressure processing at conditions which potentially inactivate micro-organisms and viruses. Blood platelets, red blood cells and b

  5. 76 FR 38697 - High Pressure Steel Cylinders From China

    2011-07-01

    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  6. 77 FR 37712 - High Pressure Steel Cylinders From China

    2012-06-22

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  7. The Working Principle and Use of High Pressures in the Food Industry

    Karlović, S.; Brnčić, M.; Ježek, D.; Tripalo, B.; Bosiljkov, T.

    2010-01-01

    High pressure in the food industry, as a new non-thermal method, is applied in many phases of food processing. This new non-thermal technology was developed in the 1990s. The main advantages of high-pressure processing are in the short time of processing which is between a few seconds and 30 minutes. Processing of solid or liquid food products with or without packaginghappens in the temperature interval 5 – 90 °C, and pressures 50 – 1000 MPa. The driving pressure is distributed uniformly thro...

  8. High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review.

    Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona

    2014-06-01

    This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed. PMID:24892591

  9. Asymptotic analysis soot model for a high pressure common rail diesel engine

    Qiu, Tao; Qi, Zhiquan; Yin, Wenhui; Liu, Yongfeng

    2010-07-01

    Polycyclic hydrocarbons (PAHs) are mainly responsible for the formation of soot but a more accurate model is needed. The aim of this paper is to present a temperature phase model to optimize calculation for high pressure common rail diesel engine. This new model was developed and implemented in KIVA code and then tested through simulations. Results showed that this new model better matches measured data than the original one increasing the accuracy by up to 50%. The model developed was proved to be an improvement compare to the original KIVA-3V model and it can be used to optimize calculations for high pressure common rail diesel engines.

  10. Infrared Microspectroscopy study of insulin crystals at high pressure

    During the last years the coupling of high pressure techniques and infrared spectroscopy has proven to be a very powerful tool in the study of conformational changes of proteins. Protein unfolding and monomerization are events that are expected to take place at high pressure due to the peculiarity of pressure to shift the system towards the state that occupies the minimum volume. We observed the growth of apparently cubic crystals at a pressure of about 4 kbar, subjecting to high pressure a solution of misfolded insulin. Even if high pressure is commonly used to tune the growth rate of crystals, protein crystallization at high pressure is not a well known process and no evidences of the particular case of insulin are present in literature.

  11. Determination of Vanillin from Tincture and Extract Products of Vanilla by Using Reversed Phase High Pressure Liquid Chromatography%反相高效液相色谱法检测香草兰豆酊、浸膏中香兰素

    卢少芳; 初众; 赵建平

    2009-01-01

    采用反相高效液相色谱法测定香草兰豆酊、浸膏中香兰素含量,色谱柱为C_(18)柱,甲醇/0.5%冰乙酸水溶液(20/80.v/v)为流动相,等浓度洗脱,测定波长为280 nm,外标法定量.该方法相对标准偏差分别为0.28%和0.24%.加标回收率为97.89%~100.71%.本方法具有操作简便,结果准确等优点,特别适用于香草兰豆酊、浸膏等精深加工产品中香兰素含量的检测分析.%A simple, rapid and accurate method was developed for determination of vanillin by Reversed Phase High Pressure Liquid Chromatography. In this method chromatographic column was C18, mobile phase methanol/0.5% acetic acid (20/80, v/v), elution isocratic, wavelength 280nm, External Standard for quantification. With this method the relative standard deviation was 0.28% for detection of the samples of vanilla tincture and 0.24% for detection of the samples of vanilla extract, and the spike recovery rate ranged from 98.89% to 100.71%. This method is good for determination of vanillin from the well-processed vanilla tincture and the vanilla extract.

  12. Ab initio pseudopotential studies of cubic BC2N under high pressure

    We present the results of a systematic study of the structural, electronic, and vibrational properties of various cubic BC2N phases under high pressure. Ab initio pseudopotential total-energy and phonon calculations have been carried out to examine the changes in the structural parameters, bonding behaviours, band structures, and dynamic instabilities caused by phonon softening in these phases. We find that an experimentally synthesized high-density phase of cubic BC2N exhibits outstanding stability in the structural and electronic properties up to very high pressures. On the other hand, another experimentally identified phase with lower density and lower symmetry undergoes a dramatic structural transformation with a volume and bond-length collapse and a concomitant semi-metal to semiconductor transition. A third phase is predicted to be favourable over the above-mentioned lower-density phase by the enthalpy calculations. However, the dynamic phonon calculations reveal that it develops imaginary phonon modes and, therefore, is unstable in the experimental pressure range. The calculations indicate that its synthesis may be achieved at reduced pressures. These results provide a comprehensive understanding for the high-pressure behaviour of the cubic BC2N phases and reveal their interesting properties that can be verified by experiments

  13. High-pressure studies on Tc and crystal structure of iron chalcogenide superconductors

    Hiroki Takahashi, Takahiro Tomita, Hiroyuki Takahashi, Yoshikazu Mizuguchi, Yoshihiko Takano, Satoshi Nakano, Kazuyuki Matsubayashi and Yoshiya Uwatoko

    2012-01-01

    Full Text Available The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1−xTex and Fe(Se1−xSx. In the case of Fe(Se1−xTex, the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1−xSx (0 < x < 0.3, Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1−xCoxAsF. The Tc of Fe(Se1−xSx showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P curve was correlated with the local structural parameter.

  14. Elasticity of stishovite at high pressure

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  15. High-pressure powder x-ray diffraction study of EuVO{sub 4}

    Garg, Alka B. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada—ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain)

    2015-03-15

    The high-pressure structural behavior of europium orthovanadate has been studied using in-situ, synchrotron based, high-pressure x-ray powder diffraction technique. Angle-dispersive x-ray diffraction measurements were carried out at room temperature up to 34.7 GPa using a diamond-anvil cell, extending the pressure range reported in previous experiments. We confirmed the occurrence of zircon–scheelite phase transition at 6.8 GPa and the coexistence of low- and high-pressure phases up to 10.1 GPa. In addition, clear evidence of a scheelite–fregusonite transition is found at 23.4 GPa. The fergusonite structure remains stable up to 34.7 GPa, the highest pressure reached in the present measurements. A partial decomposition of EuVO{sub 4} was also observed from 8.1 to 12.8 GPa; however, this fact did not preclude the identification of the different crystal structures of EuVO{sub 4}. The crystal structures of the different phases have been Rietveld refined and their equations of state (EOS) have been determined. The results are compared with the previous experimental data and theoretical calculations. - Graphical abstract: The high-pressure structural sequence of EuVO{sub 4}. - Highlights: • EuVO{sub 4} is studied under pressure up to 35 GPa using synchrotron XRD. • The zircón–scheelite–fergusonite structural sequence is observed. • Crystal structures are refined and equations of state determined.

  16. High-pressure magic angle spinning nuclear magnetic resonance.

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372

  17. High-pressure Magic Angle Spinning Nuclear Magnetic Resonance

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 C are reported, with relevance to geological sequestration of carbon dioxide.

  18. High-pressure compaction and cold sintering of stainless steel powders

    The compaction of stainless steel powders at room temperature under high pressures up to P = 4.0 GPa indicates that at P > 2.0 GPa, cold sintering takes place, accompanied by bonding of powder particles into solid bodies with high mechanical strength. Thermal treatments of cold sintered samples at relatively low temperatures compared with those used in sintering of stainless steel show that high mechanical properties and high ductility can be obtained on cold sintered samples. Possible applications of cold sintering of stainless steel powders are discussed briefly. (orig.)

  19. Effect of impurity on high pressure behavior of nano indium titanate

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai– 400085 (India); Singhal, Anshu [Chemistry Division, Bhabha Atomic Research Centre, Mumbai –400085 (India)

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of the intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.

  20. Effect of impurity on high pressure behavior of nano indium titanate

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO2 upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In2O3 transformed to the In2O3 (II) (iso-structural to Rh2O3 (II)) phase, without any signature of the intermediate corundum phase. The high pressure In2O3 (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase

  1. Metabolic Activity of Bacteria at High Pressure

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  2. Production of nanograined intermetallics using high-pressure torsion

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  3. High-Pressure Effects in Benzoic Acid Dimers: Vibrational Spectroscopy

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2013-06-01

    To understand pressure effects on dimer structure stability, Raman and FTIR spectroscopy were used to examine changes in hydrogen bonded dimers of benzoic acid crystals up to 31 GPa. Raman measurements indicated a phase transition around 7-8 GPa. It is proposed that this transition is caused by a rearrangement of molecules within the dimer leading to a symmetry change from C2h to likely C2 or Cs. This change was reversible upon pressure release from 15 GPa. Pressures above 15 GPa, induced gradual changes in luminescence and a color change in the crystal from white to brownish. FTIR measurements at 31 GPa revealed the formation of a new broad band centered around 3250 cm-1, which was attributed to the stretching vibrations of the O -H bond. It is proposed that hydrogen bonded dimers of benzoic acid transform partially to a covalently bonded compound composed of benzoic anhydride-like molecules and H2O. This study demonstrates that application of high pressure can lead to significant changes in the H-bonded dimer structure, including formation of chemical bonding. Work supported by DOE/NNSA and ONR/MURI.

  4. High-pressure transformations in sulfuric acid hydrates

    The Galilean moons of Jupiter; Io, Europa, Ganymede and Callisto, have surfaces that are composed of very different materials to the silicates that make up our Earth. For Europa and Ganymede, two moons under intense investigation from past and future space missions, their surfaces are made up of ice and hydrates. Despite the apparent ‘simplicity’ of these materials, we still observe very complex geological formations on these moons – including subduction. This means we need to understand the transformations of candidate surface materials under a range of pressure/temperature conditions in order to accurately explain the formations on these icy surfaces. One hydrate candidate material for the surfaces of these moons are sulfuric acid hydrates, formed from radolytic sulfur (from Io) reacting with the surface ice. Sulfuric acid hydrates have already been established to have a complex phase diagram with composition. We have now used the Mito cell at the PLANET instrument to undertake the first investigation of the high-pressure behavior of the water rich sulfuric acid hydrates. Compressing at 100 K and 180 K we see that the hemitriskaidekahydrate becomes the stable water-rich hydrate and observe some interesting relaxation behaviour in this material at pressure, which could have significant consequences for the interiors of Ganymede.

  5. High-Pressure Polymorph of NaBiO3.

    Naa, Octavianti; Kumada, Nobuhiro; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Kusano, Yoshihiro; Oka, Kengo

    2016-06-20

    A new high-pressure polymorph of NaBiO3 (hereafter β-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of β-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation. PMID:27243818

  6. High pressure studies in Ca3Ru2O7

    The bilayer ruthenate Ca3Ru2O7 undergoes first a magnetic transition (TN=56 K) and then a structural transition (TS= 48 K) on cooling. Most of the Fermi surface is gapped out at low temperature, leading to a very low carrier density and small Fermi surface pockets. Pressure suppresses both TN and TS and, for p>3.5 GPa, induces a third low temperature state, which has been known to be robust up to at least 7.5 GPa. A detailed investigation of the unusual low temperature states of Ca3Ru2O7 across the pressure-temperature-field phase diagram requires reliable access to hydrostatic pressures up to and beyond 10 GPa. We apply lithographic patterning and sputtering processes to anvil pressure cells in order to produce complex but robust lead patterns, which are integrated into the anvil surface. Patterns include multi-turn coils as well as eight-lead configurations for resistivity measurements. Resistivity data in Ca3Ru2O7 is presented, which indicates that the high pressure ordered state is fully suppressed at pc ≅9.5 GPa. Beyond pc, the in-plane resistivity follows a T5/3 power-law down to below 1 K, suggesting ferromagnetic quantum criticality.

  7. Synthesis of metal-nitrides using high pressures and temperatures

    Guillaume, C; Serghiou, G [University of Edinburgh, School of Engineering and Electronics, Kings Buildings, Mayfield Road, EH9 3JL UK (United Kingdom); Morniroli, J P [Laboratoire de Metallurgie Physique et Genie des Materiaux, UMR CNRS 8517, Universite des Sciences et Technologies de Lille et Ecole Nationale Superieure de Chimie de Lille, Cite Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Frost, D J [Bayerisches Geoinstitut, Universitat Bayreuth, D-95440, Bayreuth (Germany)], E-mail: george.serghiou@ed.ac.uk

    2008-07-15

    Technologically, high density nitrides are showing promise for both ceramic and electronic applications. In a laser-heated diamond cell we prepare high density metal-nitrides by reaction of the nitrogen pressure medium with an elemental substrate. Two of our objectives are to develop criteria governing whether denser than ambient nitride phases will form, and to in particular establish the parameters required for synthesis in a multianvil press using elemental starting materials. We have already synthesized transition metal nitrides in a multianvil press using elemental starting materials, including hexagonal nickel nitride and alkali rhenium nitrides. Unlike previous metals, we also report that Cu does not form a nitride after heating with NaN{sub 3} at 2000 K and 20 GPa. Notably, Cu{sub 3}N is a semiconductor exhibiting weak directional bonds, whereas the immediately adjacent lower atomic number systems are metallic interstitial nitrides. We also briefly mention our work on processing high pressure and temperature recovered reaction products with focused ion beam methods for tailored characterization using electron microscopy.

  8. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  9. Safety supervision on high-pressure gas regulations

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  10. Safety analysis of high pressure gasous fuel container punctures

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  11. Studies on synthesis of diamond at high pressure and temperature

    Kailath, Ansu J.

    chapter is a general introduction incorporating the information regarding diamond together with a brief history of diamond synthesis. It also includes the details of the high pressure synthesis of diamond, the uses of diamond grits, the advantages of the synthetic diamond grit over natural grit and an outline to elucidate the reasons which prompted to undertake the present work. The details of the technique used in the present studies for synthesis of diamond grits by high-pressure high-temperature process are included in chapter II. The hydraulic press used for synthesis, the details of the reactant materials, stacking of the high pressure cell and the details of synthesis run have been described together with the separation procedure to isolate diamond grits from the frozen slug. Different analytical and characterization techniques used in the present studies for the analysis and characterization of the reactant materials, synthesized diamonds and the crystallization medium have been illustrated in chapter III. The effect of different synthesizing parameters on synthesized diamond crystals were studied. This study includes: (a) dependence of yield of diamond on temperature and pressure, (b) dependence of crystal size on cook length, (c) effect of variation of the relative amounts of carbonaceous material and catalyst on synthesis, (d) morphological variation and (e) effect of pressure pulse on synthesized crystals. Various observations made during this study and the results obtained have been compiled in chapter IV. The synthesized diamond crystals were characterized by X-ray Powder Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Optical Microscopy. The results obtained have been compiled in chapter V. In addition to these, the results obtained from the Infrared Spectra and the Electron Paramagnetic Spectra have also been included. Studies of crystallization medium and inclusions in the synthesized diamonds were carried out. This include

  12. High-pressure studies on molecular crystals-relations between structure and high-pressure behavior

    Orgzall, Ingo [Institut fuer Duennschichttechnologie und Mikrosensorik e.V., Kantstrasse 55, D-14513 Teltow (Germany); Emmerling, Franziska [Bundesanstalt fuer Materialforschung und -pruefung, Richard-Willstaetter-Strasse 11, D-12489 Berlin (Germany); Schulz, Burkhard [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Franco, Olga [Heinrich-Heine-Universitaet Duesseldorf, Institut fuer Physikalische Chemie II, Universitaetsstrasse 1, Gebaeude 26.42.02, D-40225 Duesseldorf (Germany)], E-mail: orgzall@uni-potsdam.de, E-mail: franziska.emmerling@bam.de, E-mail: buschu@uni-potsdam.de, E-mail: olga.franco@uni-duesseldorf.de

    2008-07-23

    This paper summarizes attempts to understand structure-property relationships for a large class of aromatic diphenyl-1,3,4-oxadiazole molecules. Starting from the investigation of the crystal structure several common packing motifs as well as characteristic differences are derived. Many different molecules show a rather planar conformation in the solid state. A stronger intermolecular twist is only observed for compounds with substituents occupying the ortho-positions of the phenyl rings. Most crystal structures are characterized by the formation of stacks leading to intense {pi}-{pi} acceptor-donor interactions between oxadiazole and phenyl rings. High-pressure investigations result in a soft compression behavior typical for organic molecular crystals. The bulk behavior may be described by the Murnaghan equation of state with similar coefficients (bulk modulus and its pressure derivative) for nearly all investigated compounds but also for related substances. The compression shows a strong anisotropy resulting from the specific features and packing motifs of the crystal structure. This is clearly indicated by a corresponding strain analysis. Additionally to the crystal structure the Raman spectrum was also investigated under increasing pressure. The different pressure behavior of external and internal modes reflects the difference between intra- and intermolecular interactions.

  13. High-pressure studies on molecular crystals-relations between structure and high-pressure behavior

    This paper summarizes attempts to understand structure-property relationships for a large class of aromatic diphenyl-1,3,4-oxadiazole molecules. Starting from the investigation of the crystal structure several common packing motifs as well as characteristic differences are derived. Many different molecules show a rather planar conformation in the solid state. A stronger intermolecular twist is only observed for compounds with substituents occupying the ortho-positions of the phenyl rings. Most crystal structures are characterized by the formation of stacks leading to intense π-π acceptor-donor interactions between oxadiazole and phenyl rings. High-pressure investigations result in a soft compression behavior typical for organic molecular crystals. The bulk behavior may be described by the Murnaghan equation of state with similar coefficients (bulk modulus and its pressure derivative) for nearly all investigated compounds but also for related substances. The compression shows a strong anisotropy resulting from the specific features and packing motifs of the crystal structure. This is clearly indicated by a corresponding strain analysis. Additionally to the crystal structure the Raman spectrum was also investigated under increasing pressure. The different pressure behavior of external and internal modes reflects the difference between intra- and intermolecular interactions

  14. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  15. Metallization and Hall-effect of Mg2Ge under high pressure

    The electrical transport properties of Mg2Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg2Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg2Ge was hole, indicating the “bad metal” nature of Mg2Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni2In-type phases it was governed by the Hall mobility

  16. Metallization and Hall-effect of Mg{sub 2}Ge under high pressure

    Li, Yuqiang [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Gao, Yang [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Han, Yonghao, E-mail: hanyh@jlu.edu.cn; Liu, Cailong; Peng, Gang; Ke, Feng; Gao, Chunxiao [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Wang, Qinglin [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Center for High Pressure Science and Technology Advanced Research, Changchun 130012 (China); Ma, Yanzhang [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2015-10-05

    The electrical transport properties of Mg{sub 2}Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg{sub 2}Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg{sub 2}Ge was hole, indicating the “bad metal” nature of Mg{sub 2}Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni{sub 2}In-type phases it was governed by the Hall mobility.

  17. Rapid identification of micro-constituents in monoammonium glycyrrhizinate raw materials by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry%高压固相萃取-高效液相色谱-质谱法快速鉴定甘草酸单铵原料中的微量成分

    杨学东; 唐绪岩; 桑琳

    2012-01-01

    Objective:To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. Method; HPLC preparative chromato-graph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18MS-II column (20. 0 mm x20. 0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL min~ . The sample size was 0. 5 mL, and the extraction cycle was 4. 5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry ( HPLC-MS) after being concentrated by 100 times. Result: Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[β-D-glucuronopyranosyl-β-D)-glucuronopyranosyl ] -30-O-β-D-apiopyranosylglycynhetic/3-O-[β-D)-glucuroriopy-ranosyl-β-D-glueuronopyranosyl] -30-O-β-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3 , 22-hydroxyglyeyrrhizin/18α-glycyr-rhizic saponin G2, 3-0-[β-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS" spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18β-glycyrrhi-zic acid, uralglycyrrhizic saponin B and 18α-glycyrrhizic acid by liquid chromatography, MSn and ultraviolet spectra information and comparison with reference substances. Conclusion: The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate

  18. The high pressure electronic control system in liquid chromatography

    The Liquid Chromatography system can perform a wide variety of measurements and separations especially for the organic liquids, with maximum applications flexibility for less than half price of Gas Chromatography. The repeatability and accuracy of results in quantitative high pressure liquid chromatography are highly dependent on the reproducibility and accuracy of both integrated flow rate and mobile phase composition. Flow rate fluctuation leads to poor reproducibility in both integrated peak areas and retention times. Similarly, poor control of mobile phase composition will cause poor repeatability of retention time and peak heights. The our Solvent Delivery System SDS 200 is a single pump system which provides precise compensated flow rates from 0.01 to 10 mL/min, selectable upper pressure limits of 0 to 100 bar or 10 to 450 bar, and solvent compressibility correction. Ternary solvent system on-line mixing capability saves time, reduces solvent waste and provides more flexibility for difficult separations. The pump itself has two different displacement pistons which are used alternately on both suction and discharge, so that intake of the solvent are synchronous. The evacuated solvent from the two pump's chambers is mixed in the reference unit and then is supplied to the damping unit for flow ripple reduction. The SDS Electronic Module ensures the functions: controls the programmed flow rate, detects and shows the solvent pressure in solvent, supplies the step motor, measures and limits the solvent pressure. The control panel of SDS 200, contains a two-stages flow decimal programmer, a eight-positions knob for upper pressure limits, an alarm LED and a parallel port for connection to a PC system. (authors)

  19. Computational searches for iron oxides at high pressures

    Weerasinghe, Gihan L.; Pickard, Chris J.; Needs, R. J.

    2015-11-01

    We have used density-functional-theory methods and the ab initio random structure searching (AIRSS) approach to predict stable structures and stoichiometries of mixtures of iron and oxygen at high pressures. Searching was performed for 12 different stoichiometries at pressures of 100, 350 and 500 GPa, which involved relaxing more than 32 000 structures. We find that Fe2O3 and FeO2 are the only phases stable to decomposition at 100 GPa, while at 350 and 500 GPa several stoichiometries are found to be stable or very nearly stable. We report a new structure of Fe2O3 with P{{2}1}{{2}1}{{2}1} symmetry which is found to be more stable than the known Rh2O3(II) phase at pressures above  ˜233 GPa. We also report two new structures of FeO, with Pnma and R\\bar{3}m symmetries, which are found to be stable within the ranges 195-285 GPa and 285-500 GPa, respectively, and two new structures of Fe3O4 with Pca21 and P21/c symmetries, which are found to be stable within the ranges 100-340 GPa and 340-500 GPa, respectively. Finally, we report two new structures of Fe4O5 with P42/n and P\\bar{3}m1 symmetries, which are found to be stable within the ranges 100-231 GPa and 231-500 GPa, respectively. Our new structures of Fe3O4 and Fe4O5 are found to have lower enthalpies than their known structures within their respective stable pressure ranges.

  20. Development of high pressure gas cells at ISIS

    Kirichek, O.; Done, R.; Goodway, C. M.; Kibble, M. G.; Evans, B.; Bowden, Z. A.

    2012-02-01

    High-pressure research is one of the fastest-growing areas of natural science, and one that attracts as diverse communities as those of physics, bio-physics, chemistry, materials science and earth science. In condensed matter physics there are a number of highly topical areas, such as quantum criticality, pressure-induced superconductivity or non-Fermi liquid behaviour, where pressure is a fundamental parameter. Reliable, safe and user-friendly high pressure gas handling systems with gas pressures up to 1GPa should make a significant impact on the range of science possible. The ISIS facility is participating in the NMI3 FP7 sample environment project supported by the European Commission which includes high pressure gas cell development. In this paper the progress in designing, manufacturing and testing a new generation of high pressure gas cells for neutron scattering experiments is discussed.

  1. Beam steering effects in turbulent high pressure flames

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  2. The high pressure gas Cerenkov counter at the Omega Facility.

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  3. Novel High Pressure Pump-on-a-Chip Technology Project

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  4. High pressure processing reaches the U.S. market

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  5. The Working Principle and Use of High Pressures in the Food Industry

    Karlović, S.

    2010-11-01

    Full Text Available High pressure in the food industry, as a new non-thermal method, is applied in many phases of food processing. This new non-thermal technology was developed in the 1990s. The main advantages of high-pressure processing are in the short time of processing which is between a few seconds and 30 minutes. Processing of solid or liquid food products with or without packaginghappens in the temperature interval 5 – 90 °C, and pressures 50 – 1000 MPa. The driving pressure is distributed uniformly through the whole product independently of its quantity and shape. These processing characteristics combined with improved food microbiological safety, less energy expenditure, low concentration of waste products and longer shelf life make high-pressure processing a very promising novel food technology. Combined with lower cost of treatment (but unfortunately higher initial cost of equipment compared to traditional processing technologies, it is also economically profitable. The main purpose of such treated food products are in preservation of sensory, nutritive and textural properties. As the temperature increase is very low, there are no significant changes in sensory properties, in contrast to conventional thermal processing (sterilization, pasteurization. However, with the combination of heating or cooling and high pressure, modification of existing and creation of new food products is possible. Today, high pressure is used for the treatment of meat products (inactivation of microorganisms, freezing and defrosting of foodstuffs, production of fruit juices (pasteurization, processing of oysters, modificationof milk characteristics (foaming etc. The main purpose of this work is to present the working principle and application of high pressure in the food industry.

  6. A Generalized Equation of State for High-Pressure Liquids

    LIANG Yan-bo; TONG Jing-shan

    2005-01-01

    An equation of state (EOS) for high-pressure liquids, I.e., Tait EOS, is deduced according to isothermal compressibility KT=-1/V·((а)V/(а)p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factorξ.Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.

  7. NSRR high-temperature high-pressure capsule

    This report describes a high temperature, high pressure capsule (HT-HP capsule) developed for NSRR (Nuclear Safety Research Reactor) in JAERI. To perform reactivity accident tests under power reactor operating conditions, the capsule is designed to simulate a high temperature, high pressure atmosphere of BWR or PWR. Out-pile and in-pile performance tests of the capsule made by December 1978 showed its design specifications had been met. (author)

  8. High Pressure Xenon Detectors for Rare Physics Searches

    Renner, Joshua Edward

    2014-01-01

    High pressure xenon gas detectors have the potential to significantly contribute to searches for rare physics processes such as neutrinoless double beta (0νββ) decay and interactions of dark matter with ordinary matter. We summarize the physics and implications of these two phenomena and discuss experimental developments conducted with an electroluminescent high pressure xenon time projection chamber (TPC).The detector was constructed as a prototype for the NEXT experiment - Neut...

  9. Practical conditions in the neutron diffraction under high pressure

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  10. Highly crystallized poly (lactic acid) under high pressure

    Jin Zhang; Ding-Xiang Yan; Jia-Zhuang Xu; Hua-Dong Huang; Jun Lei; Zhong-Ming Li

    2012-01-01

    Biodegradable poly (lactic acid) (PLA) usually has a crystallinity less than 10% due to its poor crystallization ability. In this work, we found high pressure could significantly facilitate formation of crystallites of PLA, resulting in a crystallinity high up to 66.3% at pressure and temperature of 300 MPa and 185 ºC. High-pressure induced crystalline reorganization and lamellar thickening led to two melting temperatures in the highly crystallized PLA but without cold crystallization compare...

  11. Experimental Investigation On Design Of High Pressure Steam Turbine Blade

    SUBRAMANYAM PAVULURI, DR. A. SIVA KUMAR

    2013-01-01

    The Experimental investigation on design of high pressure steam turbine blade addresses the issue of steam turbine efficiency. A specific focus on aerofoil profile for high pressure turbine blade, and it evaluates the effectiveness of certain Chromium and Nickel in resisting creep and fracture in turbine blades. The capable of thermal and chemical conditions in blade substrate from to prevent the corrosion when exposed to wet steam. The efficiency of the steam turbine is a key factor in both ...

  12. A high-pressure MWPC detector for crystallography

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.;

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...... to these problems is to use a glass micro-strip detector in place of the wire frames. The characteristics of a high-pressure Micro-Strip Gas Chamber (MSGC) tested in the laboratory are presented....

  13. Advances and synergy of high pressure sciences at synchrotron sources

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  14. High-pressure crystallography of periodic and aperiodic crystals

    Clivia Hejny

    2015-03-01

    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  15. High-pressure crystallography of periodic and aperiodic crystals.

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic. PMID:25866659

  16. A new high-pressure research facility at the Australian Synchrotron

    Clark, S.; Rushmer, T. A.; Glover, C.; Turner, S.; Garrett, R.; Wang, Y.

    2012-12-01

    The development of large volume, multi-anvil experimental techniques in the United States and their use with synchrotron sources has brought new technology to the experimental community. These facilities have allowed us to significantly improve our understanding of the physical properties of Earth and planetary materials under high pressures and temperatures. In 2011-2012, this technology is being brought to the Australian Synchrotron, and will provide the Australian scientific community an opportunity to significantly improve understanding of materials under extreme conditions. The high-pressure deformation system located at the Australian Synchrotron is comprised of a D-DIA deformation apparatus and a 250T hydraulic press together with the necessary x-ray definition and detection systems. The development of a synchrotron-based, high-pressure and temperature deformation facility is an exciting new opportunity and a major advance in experimental capability for Australia. We will build into the facility a unique addition, the accompanying AC conductivity system that will allow conductivity measurements at the same time as x-ray diffraction and imaging. This is important for the projects where interconnectivity of fluids is being investigated; as it will provide us with an in-situ measure of melt connectivity. In this presentation we will describe the new facility, include details of installation and commissioning progress and outline the initial science program.

  17. High pressure dielectric studies on the structural and orientational glass

    Kaminska, E.; Tarnacka, M.; Jurkiewicz, K.; Kaminski, K.; Paluch, M.

    2016-02-01

    High pressure dielectric studies on the H-bonded liquid d-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-d-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both d-glucose and 1,6-anhydro-d-glucose. Although it should be noted that ∂ Tg 0 / ∂ p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of d-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-d-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-d-glucose. This result mimics the impact of pressure on the

  18. Structure and stability of hydrous minerals at high pressure

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  19. Potassium-Rich Ices at High Pressures and Temperatures

    Frank, M. R.; Scott, H. P.; Aarestad, E.; Prakapenka, V.

    2014-12-01

    Accurate modeling of planetary interiors requires that the pressure-volume-temperature properties of phases present within the body be well understood. The high-pressure polymorphs of H2O have been studied extensively, due to the abundance of ice phases in icy moons and likely vast number of extra-solar planetary bodies, with only select studies evaluating impurity-laden ices. In this study, ice formed from a 1.6 mole percent KCl-bearing aqueous solution was studied up to 33 GPa and 650 K, and the incorporation of K+ and Cl- into the ice VII structure was documented. The compression data at 300 K were fit with a third order Birch-Murnaghan equation of state and yielded K, K/, and V0 of 24.7±0.9 GPa, 4.44±0.09, and 39.17±0.15 Å3, respectively. Thermal expansion coefficients were also determined for several isothermal compression curves at elevated temperatures, and a P-V-T equation of state will be presented. The melting of ice VII with incorporated K+ and Cl- was determined up to 625 K and 10.6 GPa and was fit by using a Simon-Glatzel equation. The melting curve is systematically depressed relative to the melting curve of pure H2O by approximately 45 K and 80 K at 4 and 11 GPa, respectively. Interestingly, a portion of the K+ and Cl- contained within the ice VII structure was observed to exsolve with increasing temperature and pressure. This suggests that an internal differentiating process could concentrate a K-rich phase deep within H2O-rich planets, and we speculate that this could supply an additional source of heat through the radioactive decay of 40K. Birch (1951; JGR, 56, 107-126) has estimated that 40K contributes 2.7 μcal/g.year for each wt.% of K, and our results suggest at least 3.33 wt.% can be incorporated into the structure of ice VII, thus making it a source of heat rather than just a conductive layer. In conclusion, our data illustrate a mechanism that may concentrate K at depth and impact the supposed pressure and temperature within moderate

  20. Novel high pressure structures and superconductivity of niobium disulfide

    Highlights: • At 26 GPa, NbS2 transits from the 2H structure to the novel I4/mmm structure. • The Nb and S atoms forms a new [NbS8] hexahedron unit in the I4/mmm-NbS2. • The I4/mmm-NbS2 exhibits a higher Tc than 2H-NbS2. • The higher Tc is resulted from the stronger electron–phonon coupling coefficients. - Abstract: We have investigated the pressure-induced phase transition and superconducting properties of niobium disulfide (NbS2) based on the density functional theory. The structures of NbS2 at pressures from 0 to 200 GPa were predicted using the multi-algorithm collaborative (MAC) structure prediction technique. The previously known 1T-, 2H-, and 3R-NbS2 were successfully reproduced. In addition, many metastable structures which are potential to be synthesized were also discovered. Based on the enthalpy calculations, we found that at 26 GPa NbS2 transits from the double-hexagonal (2H) structure to the tetragonal I4/mmm structure with a 10.6% volume reduction. The calculated elastic constants and phonon dispersion curves of I4/mmm-NbS2 confirm its mechanical and dynamical stability at high pressure. More interestingly, the coordination number of Nb in I4/mmm structure is eight which is larger than that in the traditional metal dichalcogenides, indicating a new type of bondings of Nb and S atoms. In the new Nb–S bondings, one Nb atom and neighboring eight S atoms form a [NbS8] hexahedron unit. Furthermore, I4/mmm-NbS2 exhibits a higher superconducting critical temperature than 2H-NbS2, as is resulted from the stronger electron–phonon coupling coefficients

  1. Operational life improvement of SSME high-pressure turbopumps. [Space Shuttle Main Engine

    Hale, J. R.; Wood, B. K.

    1985-01-01

    The current Space Shuttle Main Engine (SSME) Phase I engine demonstrated excellent flight performance but showed limited operational life of the high-pressure fuel turbopumps (HPFTP). Design improvements, supporting analyses, and test results of the SSME Phase II development program are presented. The HPFTP improvements include reduction of turbine operating temperature by 110 to 130 R by reconstructing the seals and the flow contours; modifications of the first- and second-stage turbine blades by recontouring the shank, shotpeening the shank surface, and applying a multilayered, plasma-spray coating to the shank on the downstream side to reduce the effect of the disk coolant; and reduction of the tendency for thermal cracks in the turbine by changing weld configuration to avoid the concentration of stresses in local areas. The high-pressure oxidizer turbopump has been also modified to improve bearing life and to eliminate subsynchronous whirl.

  2. Unexpectedly high pressure for molecular dissociation in liquid hydrogen by a reliable electronic simulation

    Mazzola, Guglielmo; Sorella, Sandro

    2014-01-01

    The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic roperties. We find that the molecular liquid phase is unexpectedly stable and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low temperature atomization is, therefore, still far from experimental reach.

  3. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    Dreger, Z. A.

    2012-07-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  4. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  5. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-07-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ˜105 frames/second (fps) in air and up to ˜104 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  6. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Shibazaki, Yuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578 (Japan); Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  7. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼105 frames/second (fps) in air and up to ∼104 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures

  8. Some Aspects of the Crystal Chemistry of Perovskites under High Pressures

    Wang, Di

    2012-01-01

    This thesis makes contributions to the methodology of quantitative description of the tilting systems of perovskite structures and theoretical analysis of high-pressure phase transitions of representative perovskites. Chapter 1 and 2 introduce the perovskite structures, tilting classification and descriptions. The structures in each of the 15 tilt systems have been decomposed in to the amplitudes of symmetry-adapted modes in order to provide a clear and unambiguous definition of the tilt ...

  9. A possible mechanism for cold denaturation of proteins at high pressure

    Marques, Manuel I.; Borreguero, Jose M.; Stanley, H. Eugene; Dokholyan, Nikolay V.

    2002-01-01

    We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase ($\\approx2$ kbar), the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonucl...

  10. Transportable, small high-pressure preservation vessel for cells

    Kamimura, N; Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: mf_kamimura@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4{sup 0}C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4{sup 0}C.

  11. Microstructure variation and growth mechanism of hypoeutectic Al-Si alloy solidifi ed under high pressure

    Zhang Guozhi

    2009-05-01

    Full Text Available The microstructure of hypoeutectic Al-9.21wt.%Si alloy solidified under 5.5 GPa was studied. The results show that the solidifi cation microstructure is refi ned. The primary α phase is the extended solid solution. The solid solubility of Si in α phase is up to 8.26wt.%. The growth mode of the α phase is cellular, and this cellular growth mechanism is interpreted in terms of the decrease of the diffusivity and the extended solid solution under high pressure. By calculation, it can be known that the the diffusivity of solute in the liquid under normal pressure is as high as two hundred times that under high pressure. The microhardness of the hypoeutectic Al-Si alloy solidified under high pressure is higher than that of solidifi ed under normal pressure. After annealing, Si precipitates from the solid solution, the microhardness of the alloy decrease, but, still higher than that of solidifi ed under normal pressure.

  12. High pressure x-ray diffraction studies on U-Al systems

    In this paper, high pressure x-ray diffraction studies of the three U-Al compounds, namely, UAl2, UAl3 and UAl4 are presented. The experiments are carried out using a unique diamond anvil high pressure x-ray diffraction system in the Guinier geometry up to a maximum pressure of ∼ 35 GPa. The compressibility behaviour of UAl2 is consistent with its itinerant 5f states, whereas that of UAl3 and UAl4 indicate more towards their localized nature. Among these three compounds, a structural phase transition in UAl2 has been observed at ∼ 11 GPa and the structure of the high pressure phase has been identified to be of MgNi2 type with space group P63/mmc. The structure of UAl2 at NTP is of MgCu2 type with space group Fd3m. From the electron to atom ratio (e/α) consideration, another structural phase transition, namely, MgNi2-MgCu2 at a higher pressure is proposed. Further, on a similar consideration, a new pressure induced structural sequence, namely, MgCu2-MgNi2 (or MgZn2-MgCu2) in the AB2 type compounds of the f electron based systems is suggested. (author)

  13. High-pressure powder x-ray diffraction study of EuVO4

    Garg, Alka B.; Errandonea, D.

    2015-03-01

    The high-pressure structural behavior of europium orthovanadate has been studied using in-situ, synchrotron based, high-pressure x-ray powder diffraction technique. Angle-dispersive x-ray diffraction measurements were carried out at room temperature up to 34.7 GPa using a diamond-anvil cell, extending the pressure range reported in previous experiments. We confirmed the occurrence of zircon-scheelite phase transition at 6.8 GPa and the coexistence of low- and high-pressure phases up to 10.1 GPa. In addition, clear evidence of a scheelite-fregusonite transition is found at 23.4 GPa. The fergusonite structure remains stable up to 34.7 GPa, the highest pressure reached in the present measurements. A partial decomposition of EuVO4 was also observed from 8.1 to 12.8 GPa; however, this fact did not preclude the identification of the different crystal structures of EuVO4. The crystal structures of the different phases have been Rietveld refined and their equations of state (EOS) have been determined. The results are compared with the previous experimental data and theoretical calculations.

  14. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  15. Diagnostics and modeling of high pressure streamer induced discharges

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  16. Enhanced MgB2 Superconductivity Under High Pressure

    刘振兴; 靳常青; 游江洋; 李绍春; 朱嘉林; 禹日成; 李风英; 苏少奎

    2002-01-01

    We report on in situ high-pressure studies up to 1.0 GPa on the MgB2 superconductor which was high-pressure synthesized. The as-prepared sample is of high quality in terms of sharp superconducting transition (Tc) at 39K from the magnetic measurements. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with mixed oil as the pressure transmitting medium which warrants a quasihydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that Tc increases by more than 1 K with pressure in the low-pressure range, before the Tc value decreases with the further increase of the pressure.

  17. Confinement of hydrogen at high pressure in carbon nanotubes

    Lassila, David H.; Bonner, Brian P.

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  18. Experiment on Wear Behavior of High Pressure Gas Seal Faces

    XU Jing; PENG Xudong; BAI Shaoxian; MENG Xiangkai; LI Jiyun

    2014-01-01

    Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.

  19. Metallization and softening of B{sub 6}O at high pressure

    Wang, Yuehui [Institute of Physics and Chemistry, HNUST, Qinhuangdao, Hebei 066600 (China); Wang, Yachun; Yao, Tiankai; Li, Hui; Wu, Lailei; Yang, Meng [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Jingwu, E-mail: ziw@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Gou, Huiyang, E-mail: huiyang.gou@gmail.com [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-05

    Highlights: • Structural searching identified a high-pressure phase for B{sub 6}O with monoclinic Cc structure. • Cc structure B{sub 6}O is mechanically and dynamically stable. • Cc phase characterizes in pentagonal pyramids and zig-zag O–B1–O chains. • Cc phase shows metallization and softened hardness as compared to zero-pressure structure. - Abstract: Structural stability, elastic and electronic properties of boron suboxide, B{sub 6}O, up to 300 GPa were investigated by first-principles calculations. Structural searching and enthalpy differences calculations identify a high-pressure phase for B{sub 6}O with monoclinic Cc structure (denoted as β-B{sub 6}O), which is energetically preferable to the known R-3 m-type phase above 245 GPa. β-B{sub 6}O phase forms a three-dimensional covalent network mainly composed of pentagonal pyramids and zig-zag O–B1–O chains extended along c-direction. β-B{sub 6}O phase is found to be stable examined by the calculated elastic constants and phonon dispersion and exhibits metallic behavior and greater elastic and hardness anisotropy, totally different from the semiconducting character and relative isotropy of ground state structure. Moreover, β-B{sub 6}O is predicted to soften significantly with a Vicker’s hardness of about 20.7 GPa.

  20. Novel High Pressure Multi-Component Diffusion Cell

    Muthia Elma; Paul Massarotto; Victor Rudolph

    2012-01-01

    A novel high pressure multi-component diffusion cell (HPMCDC) apparatus has been designed and built to measure single and binary gas diffusion, including co-current and counter-diffusion, from low to high pressures. The apparatus incorporates capability to investigate scale effects in solid coal specimens, up to 25 mm in diameter and 25 mm in thickness. Future experiments will be conducted to measure diffusion and counter-diffusion of CH4 and CO2 gases in solid coal, at various temperatures, ...

  1. Equation of state of liquid Indium under high pressure

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  2. Equation of state of liquid Indium under high pressure

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sun, Yongli [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  3. High-pressure crystallisation of TiO2 nanoparticles

    Sayle, D.C.; Sayle, T.X.T.

    2007-01-01

    The full atomistic structure of a TiO2 nanocrystal, about 7 nm in diameter and comprising 16,000 atoms, has been generated using simulated melting and crystallisation, performed under high-pressure. Specifically, the nanoparticle was heated to 6000 K after which the molten nanoparticle was crystallised at 2000 K under 20 GPa pressure. The resulting nanocrystal comprises rutile- and alpha-PbO2-structured domains (alpha-PbO2 has been identified experimentally as a high-pressur...

  4. Equation of state of liquid Indium under high pressure

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment

  5. High-Pressure/High-Temperature Studies of the Low-Z materials - Beryllium

    Evans, W J; Cynn, H

    2006-03-02

    The high-pressure/temperature phase diagrams of materials are largely unexplored. Combined laser heating/x-ray diffraction capabilities applied to diamond anvil cell experiment provide unique opportunities to study materials over a broad range of temperature (several 1000 K's) and pressure (several 100 GPa's). Of particular interest are high temperature phase transitions including solid-solid and melting transitions in geophysically and technologically important systems. Data derived from these experiments serve to extend our scientific understanding of materials and evaluate theoretical predictions. Using the laser heating (LH) and angle dispersive x-ray diffraction (ADXD) capabilities at BL10XU at SPring-8, we have studied several materials at high-pressure/temperature. This report will summarize results of our studies of solid-solid and melting transitions of beryllium at high pressures and high temperatures. The phase diagram of beryllium is largely unexplored, and the limited data that is available relies on indirect means to establish phase lines and phase transitions (see figure 1)[1]. At ambient pressure an hcp-bcc phase transition has been observed at 1523 K with a subsequent melt transition at 1551 K. Using electrical conductivity, Francois and Contre[2] inferred that the hcp-bcc phase line had a negative slope with pressure. It should be noted that this was established using indirect evidence, and the bcc phase was not definitively identified using, for example, x-ray diffraction. Many subsequent studies have searched for the extension of this phase line, but have failed to find the hcp-bcc transition at room temperature up to pressures approaching 200 GPa[1]. The goal of our studies at BL10XU/SPring-8 was to identify stronger evidence for this hcp-bcc phase line, extend the pressure range and measure the lattice parameters at high pressure. Laser-heated angle-dispersive x-ray diffraction studies of beryllium at high pressures are challenging

  6. A high-pressure study of PbCO3 by XRD and Raman spectroscopy

    Zhang, Yu-Feng; Liu, Jing; Qin, Zhen-Xing; Lin, Chuan-Long; Xiong, Lun; Li, Rui; Bai, Li-Gang

    2013-03-01

    The pressure-induced phase transitions of PbCO3 are studied using synchrotron radiation in a diamond anvil cell at room temperature. The XRD measurement indicates that PbCO3 with an initial phase of aragonite-type structure undergoes two phase transitions at ~7.8 GPa and ~15.7 GPa, respectively. The higher-pressure phase appearing at ~15.7 GPa is stable up to 51.8 GPa. The two phase transitions are further confirmed by Raman scattering up to 23.3 GPa. During the decompression process, the high-pressure phases of PbCO3 are gradually recovered to the starting aragonite-type structure, but exhibit some hysteresis. The bulk modulus B0 of the aragonite-type structure is obtained to be 63±(3) GPa by fitting the volume-pressure data to the Birch—Murnaghan equation of states with B'0 fixed to 4.

  7. High-pressure structural behaviour of Cu{sub 0.5}Fe{sub 0.5}Cr{sub 2}S{sub 4}: An experimental and theoretical study

    Waśkowska, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław (Poland); Gerward, L., E-mail: gerward@fysik.dtu.dk [Department of Physics, Technical University of Denmark, Lyngby (Denmark); Staun Olsen, J. [Niels Bohr Institute, Oersted Laboratory, University of Copenhagen, Copenhagen (Denmark); Svane, A. [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Vaitheeswaran, G. [Advanced Centre of Research in High Energy Materials, University of Hyderabad, Prof. C. R. Rao Road, Gachbowli, Hyderabad 500 046, Andhra Pradesh (India); Kanchana, V. [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Andhra Pradesh (India)

    2013-11-25

    Highlights: •First high-pressure study of the thiospinel Cu{sub ½}Fe{sub ½}Cr{sub 2}S{sub 4}. •First determination of the bulk modulus and its pressure derivative. •Phase transition, reducing symmetry to lower than cubic, at 14.5 GPa. •Jahn–Teller activity of Cu(2{sup +}) and high-spin to low-spin transition of Fe(2{sup +}). -- Abstract: The structural behaviour of Cu{sub 0.5}Fe{sub 0.5}Cr{sub 2}S{sub 4} has been studied experimentally and theoretically at pressures up to 44 GPa. The experiments are supported by density functional calculations using the full-potential linear muffin-tin orbital method for investigating ground state properties and high-pressure behaviour. We report here the first experimental and theoretical determinations of the bulk modulus: B{sub 0} = 106(2) GPa and B{sub 0}{sup ′} = 4.0 (experimental), and B{sub 0} = 96 GPa and B{sub 0}{sup ′} = 3.9 (calculated). Moreover, a pressure-induced structural and electronic phase transformation occurs at 14.5 GPa accompanied by a volume collapse of about 6%. Tentatively, the high-pressure phase is assigned the defect NiAs structure of Cr{sub 3}S{sub 4} type with space group I2/m (12). The mechanism of the phase transition is explained by a Jahn–Teller type distortion, associated with geometrical frustration and magnetic spin changes.

  8. High pressure and foods -fruit/vegetable juices

    Houška, M.; Strohalm, J.; Kocurová, K.; Totušek, J.; Lefnerová, D.; Tříska, Jan; Vrchotová, Naděžda; Fiedlerová, V.; Holasová, M.; Gabrovská, D.; Paulíčková, I.

    2006-01-01

    Roč. 77, č. 3 (2006), s. 386-398. ISSN 0260-8774 R&D Projects: GA MZe(CZ) QF3287 Institutional research plan: CEZ:AV0Z60870520 Keywords : high-pressure pasteurisation * Foods * Broccoli juice Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  9. A high pressure sample facility for neutron scattering

    Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)

  10. High-pressure applications in medicine and pharmacology

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  11. A high-pressure MWPC detector for crystallography

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.; Budtz-Jørgensen, Carl; Hall, C.; Helsby, W.; Lewis, R.; Parker, B.; Ubertini, P.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  12. Pneumomediastinum following high pressure air injection to the hand.

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  13. Pneumomediastinum following high pressure air injection to the hand.

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  14. Strength-toughness requirements for thick walled high pressure vessels

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  15. Inapplicability of high pressure spray injection for chelate administration

    A high-pressure spray injector was tested for use in injecting chelating agents around radionuclides in wounds. It was difficult to employ because of the force required for proper injection, and it did not improve the effectiveness of the injected chelate in removing intramuscularly injected 238Pu. (U.S.)

  16. Temperature effects for high pressure processing of Picornaviruses

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  17. Screening of hydrogen storage media applying high pressure thermogravimetry

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.

    2001-01-01

    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity...

  18. DRILLING CHARACTERISTICS OF COMBINATIONS OF DIFFERENT HIGH PRESSURE JET NOZZLES

    ZHANG Yu-ying; LIU Yong-wang; XU Yi-ji; REN Jian-hua

    2011-01-01

    The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall.The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 mm, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions.

  19. Ultra-high pressure water jet: Baseline report

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  20. A device for power level measurement in high pressure environments

    In a gamma thermometer the heat generating body and the interior covering of the high pressure barrier is made of zircaloy metal. The interior covering having a smaller cross section than the heat generating body, constitutes a hydrogen gas barrier that prevents a weakening of the low thermal conductivity in the resistance region in the gamma thermometer